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1 Introduction

In financial markets, investors with large trading interests are concerned about their price-

impact costs. Because of this, they execute large orders slowly. This reallocates the asset across

traders more gradually than is socially optimal. This concern is exacerbated, under post-crisis

regulations, by higher shadow costs of intermediary dealer banks for absorbing large customer

orders onto their own balance sheets. Market participants have attempted to lower their price

impacts with size-discovery trading protocols, such as workups and dark pools. We show that,

at least in our model setting, allocative efficiency cannot be improved by augmenting price-

discovery markets with size-discovery sessions, except perhaps for an initializing session. This

conclusion applies whether or not size-discovery sessions have an optimal mechanism design.

In each size-discovery session, traders are induced by the mechanism design to truthfully

report their excess inventories of an asset to a platform operator, which then allocates transfers

of cash and the asset. In equilibrium, each session is ex-post individually rational and incentive

compatible, budget balanced, and reallocates the asset perfectly efficiently among traders. Be-

tween size-discovery sessions, traders exchange the asset in a sequential double-auction market,1

modeled on the lines of Du and Zhu (2017).

It is already well understood from the work of Vayanos (1999), Rostek and Weretka (2015),

and Du and Zhu (2017) that traders bid less aggressively in a financial market in order to

strategically lower their price impacts, causing socially costly delays in rebalancing positions

across traders.2 Duffie and Zhu (2017) showed that a significant fraction of the efficiency loss

caused by rebalancing delays in the double-auction market can be avoided by introducing a

single, initializing, size-discovery session, before the sequential-double-auction market opens.

For this purpose, they analyzed workup, a form of size discovery that is heavily used in dealer-

dominated markets, such as those for treasuries and swaps. Duffie and Zhu (2017) also showed

that workup is not a fully efficient form of size discovery because traders under-report the sizes

of their positions (or equivalently, under-submit trade requests), relative to socially optimal

order submissions, due to a winner’s-curse effect.

As a mechanism design, the workup protocol places strong restrictions on the allowable

forms of messages and transfers. We calculate the optimal mechanism design for size-discovery

sessions. In equilibrium, under natural conditions, the optimal mechanism is a new form of

size discovery, a direct-revelation scheme that perfectly reallocates the asset among traders.

After each size-discovery session, traders’ asset inventories are hit by new supply and demand

1 Each auction is a demand-function submission game, in the sense of Wilson (1979) and
Klemperer and Meyer (1989).

2Sannikov and Skrzypacz (2016) study a similar setting with heterogeneous traders. They also consider
mechanism design, but solely as an analytical device to solve for the equilibrium of a double-auction model.
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shocks over time that cause a desire for further rebalancing, which is partially achieved in the

double-auction market that runs continually until the next size-discovery session, and so on.

For modeling simplicity, the size-discovery sessions are held at Poisson arrival times.

If the mechanism design must rely in part on prior double-auction price information to

set the cash-compensation terms, then traders respond strategically in their preceding double-

auction order submissions, reducing market depth and strictly reducing overall market efficiency

relative to a sequential-double-auction market with no size-discovery sessions (with the possible

exception of an initializing size-discovery session).

Even if the mechanism designer has enough information to avoid reliance on preceding

double-auction prices, welfare cannot be improved by adding size-discovery sessions. As the

expected frequency of size-discovery sessions is increased, the aggressiveness of double-auction

market bidding is lowered, precisely offsetting the expected efficiency gains associated with

future size-discovery sessions. Traders anticipate the opportunity to lay off excess positions at

low cost in the next size-discovery session, and correspondingly lower the aggressiveness of their

double-auction bidding.

In summary, adding size-discovery mechanisms to a double-auction market has no social

value, with the possible exception of an initializing session, because any allocative benefits of

size-discovery sessions are offset, or even dominated, by a corresponding reduction in the depth

of price-discovery markets. While one might imagine that this relatively discouraging result

is caused by a size-discovery mechanism design that is “too efficient,” we show that overall

allocative efficiency is not helped by impairing the efficiency of the size-discovery protocol in

order to better support market depth and trade volumes in the price-discovery market.

We also discuss some potential implications for the competition for order flow between price-

discovery and size-discovery venues, and for potential harm to the price-formation process when

size-discovery venues draw sufficiently large volumes of trade away from price-discovery venues,

a common point of debate among practitioners and policy makers, and also a point of contention

in academic research.3

In prior work on mechanism design in dynamic settings, Bergemann and Välimäki (2010)

show that a generalization of the Vickrey-Clarke-Groves pivot mechanism can implement effi-

cient allocations in dynamic settings with independent private values.4 Similarly, Athey and Segal

(2013) and Pavan, Segal, and Toikka (2014) study optimal mechanism designs in dynamic set-

tings with independent types. As opposed to this prior research, we focus on a market setting

in which agents cannot be contractually obligated5 to participate in mechanisms or to abstain

3See, for example, CFA Institute (2012) and the discussions of Zhu (2014) and Ye (2016).
4In unreported results, and prompted by correspondence with Romans Pancs, we find that such a mechanism

also implements an efficient allocation in the primitive stochastic setting of our model.
5Specifically, we always impose an ex-post participation condition that, at every mechanism session, all
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from trading in alternative venues.

Dworczak (2017) precedes this paper in considering a mechanism design problem in which

the designer cannot prevent agents from participating in a separate market.6 Beyond that

likeness of perspective, the problems addressed by our respective models are quite different.

Ollár, Rostek, and Yoon (2017) address a design problem associated with double-auction mar-

kets, but focus instead on information revelation within the market, rather than an augmenta-

tion of the double-auction market with mechanism-based sessions. Du and Zhu (2017) consid-

ered the optimal frequency of double-auctions, as an alternative design approach to reducing

allocative inefficiencies associated with the strategic avoidance of price impact. Pancs (2014)

analyzed the implications of workup for its ability to mitigate front-running.7

2 Static Mechanism Design

This section models a static mechanism-design problem in which a designer, say a trade platform

operator, elicits reports from each of n ≥ 3 traders about their asset positions, and based on

those reports makes cash and asset transfers.

For trader i, the initial quantity zi0 of assets is a finite-variance random variable8 that is

privately observable, meaning that zi0 is measurable with respect to the information set F i of

trader i. The aggregate inventory Z ≡
∑n

i=1 z
i
0 of assets is also observable to all traders and to

the platform operator. For example, Z could be deterministic. We relax the observability of Z

in Section 5.

A report from trader i is a random variable ẑi that is measurable with respect to the

information set of trader i. Given a list ẑ = (ẑ1, . . . , ẑn) of trader reports, a reallocation is a list

y = (y1, . . . , yn) of finite-variance random variables that is measurable with respect to9 {Z, ẑ}
and satisfies

∑

i y
i = 0.

traders prefer participation to the outside option of not entering this mechanism and trading in a double-
auction market until the next mechanism. In contrast, Pavan, Segal, and Toikka (2014) force agents to commit
at time zero to participate in all future mechanisms (or post an arbitrarily large bond to be forfeited in the event
of exit), and Bergemann and Välimäki (2010) force agents to forgo all future mechanism participation in order
to sit out one mechanism event. Athey and Segal (2013) provide conditions under which efficient allocations
can be reached without participation constraints, but only if agents are arbitrarily patient relative to the most
extreme (finite) realization of uncertainty.

6In a macroeconomic setting, Di Tella (2017) and Di Tella, Sannikov et al. (2016) consider mechanism design
problems in which principals cannot stop intermediaries from stealing their funds through “hidden trade.” We
focus on market inefficiencies rather than agency problems between households and intermediaries.

7The seller in Panc’s model has private information about the size of his or her desired trade. The buyer is
either a “front-runner” or a dealer. If the seller cannot sell the entire large position in workup, he would need
to liquidate the remainder by relying on an exogenously given outside demand curve.

8Fixing a probability space (Ω,F , P ), trader i has information represented by a sub-σ-algebra F i of F . That
is, trader i is initially informed of any random variable that is measurable with respect to F i.

9That is, z is measurable with respect to the sub-σ-algebra of F generated {ẑ, Z}.
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Anticipating the form of post-mechanism indirect utility for the equilibrium of our eventual

model of a dynamic market, we assume that the value to trader i of a given reallocation y is

E[V i(zi0 + yi, Z) | F i], where

V i(zi, Z) = ui(Z) +
(

β0 + β1Z
) (

zi − Z
)

−K
(

zi − Z
)2

, (1)

where ui : R → R is a real-valued measurable function to be specified such that ui(Z) has a

finite expectation, Z ≡ Z/n, and β0, β1, and K are real numbers, with K > 0, that do not

depend on i.

A reallocation is welfare maximizing given a list ẑ of reports if it solves

sup
y ∈Y(ẑ,Z)

E

[

n
∑

i=1

V i(zi0 + yi, Z)

]

,

where Y(ẑ, Z) is the set of reallocations. A reallocation is said to be perfect if it is optimal for

the case in which the reports are perfectly revealing,10 for example when ẑi = zi0. From the

quadratic costs of asset dispersion across traders reflected in the last term of V i(zi, Z), it is

immediate that a reallocation y is perfect if and only if zi0 + yi = Z for all i.

We will now calculate a mechanism design that achieves a perfect reallocation. Specifically,

a mechanism is a function that maps Z and a list ẑ of reports to a reallocation denoted

Y (ẑ) = (Y 1(ẑ), . . . , Y n(ẑ)) and a list T (ẑ, Z) = (T 1(ẑ, Z), T 2(ẑ, Z), . . . , T n(ẑ, Z)) of real-valued

“cash” transfers with finite expectations. In the game induced by a mechanism (Y, T ), ẑ is an

equilibrium if, for each trader i, the report ẑi solves

sup
z̃

U i((z̃, ẑ−i)),

where, for any list ẑ of reports,

U i(ẑ) = E
[

V i(zi0 + Y i(ẑ), Z) + T i(ẑ, Z) | F i
]

, (2)

and where we adopt the standard notation by which for any x ∈ R
n and w ∈ R,

(w, x−i) ≡ (x1, x2, . . . , xi−1, w, xi+1, . . . , xn).

In words, each trader i takes the strategies of the other traders as given and chooses a report ẑi

depending only on the information available to trader i that maximizes the conditional expected

sum of the reallocated asset valuation and the cash transfer.

10A report ẑi from trader i is perfectly revealing if zi
0
is measurable with respect to {Z, ẑi}.
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For any constant κ0 < 0 and any Lipschitz-continuous functions κ1 : R → R and κ2 :

R → R of the commonly observed aggregate inventory Z, we will consider the properties of the

mechanism Mκ defined by the asset reallocation

Y i(ẑ) =

∑n

j=1 ẑ
j

n
− ẑi (3)

and the cash transfer

T i
κ(ẑ, Z) = κ0

(

nκ2(Z) +
n
∑

j=1

ẑj

)2

+ κ1(Z)(ẑ
i + κ2(Z)) +

κ2
1(Z)

4κ0n2
. (4)

The second term of (4) is analogous to compensation at a fixed marginal price of κ1(Z).

This is the essential feature of size-discovery mechanisms, such as a dark pools, workups, and

matching sessions, which is to freeze the price and thus eliminate the adverse effect of price-

impact.11 Going beyond typical versions of size discovery that have been used in practice,

however, the first term of (4) forces trader i to internalize some of quadratic cost of an uneven

cross-sectional distribution of the asset. The final term in (4) can be viewed as a fixed partici-

pation fee, which ensures that the platform operator does not lose money. That is, for any list ẑ

of reports, the mechanism Mκ always leaves a weakly positive profit for the platform operator

because
∑

i T
i
κ(ẑ, Z) ≤ 0.

The following proposition, proven in the appendix, provides an equilibrium of the mechanism

report game. The proposition also shows that for a carefully chosen κ0, each trader can actually

ignore the reports of other traders.

Proposition 1. Consider a mechanism of the form Mκ, defined by any κ0 < 0, and any

Lipschitz-continuous κ1( · ) and κ2( · ).

1. Suppose trader i anticipates that, for each j 6= i, trader j will submit the report ẑj =

zj0. There is a unique solution to the optimal report problem for trader i induced by the

mechanism Mκ. This solution is ẑi = zi0 almost surely, if and only if

κ2(Z) = −Z +
−κ1(Z) + (n−1

n
)
(

β0 + β1Z
)

2κ0n
. (5)

11Not all dark pools are designed primarily for the purpose of mitigating price impacts for large orders.
Drawing from an industry report by Rosenblatt Securities, Ye (2016) notes that “In May 2015, among the 40
active dark pools operating in the US, there are 5 dark pools in which over 50% of their Average Daily Volumes
are block volume (larger than 10k per trade). Those pools can be regarded as “Institutional dark pools,” and
they include Liquidnet Negotiated, Barclays Directx, Citi Liquifi, Liquidnet H20, Instinet VWAP Cross, and
BIDS Trading.” Other objectives of dark pool users include a reduction in the leakage of private information
motivating trade, and the avoidance of bid-ask spread costs. Some broker-dealers use their own dark pools to
internalize order executions among their clients.
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That is, Mκ is a direct revelation mechanism if and only if κ2(Z) is given by (5).

2. Suppose κ2(Z) is given by (5). If trader i anticipates the report ẑj = zj0 for each j 6= i,

then the truthful report z∗i = zi0 is ex-post optimal, that is, optimal whether or not we

take the special case in which trader i observes12 z−i
0 .

3. For the list z∗ = (z∗1, . . . , z∗n) of such truthful reports, the reallocation Y (z∗) of (3) is

perfect. That is, zi0 + Y i(z∗) = Z for all i.

4. For any κ1( · ), for κ2(Z) given by (5), and for κ0 = −K(n − 1)/n2, the mechanism Mκ

is strategy proof. That is, the truthful report z∗i = zi0 is a dominant strategy, being an

optimal report for trader i regardless of the conjecture by trader i of the reports ẑ−i of the

other traders.

The ex-post optimality property stated in the proposition is in the spirit of Du and Zhu

(2017), although for a much different market game. In particular, it is a Nash equilibrium13 of

the complete information game (in which all traders know z0) for traders to submit the list z∗ of

reports. For the special case κ0 = −K(n− 1)/n2, this is the unique Nash equilibrium because,

for any trader i, the report z∗i is a dominant strategy and because of the strict concavity of

U i((z̃, ẑ−i)) with respect to z̃.

We have not yet considered whether trader i could do better by not entering the mechanism

at all. From this point, we always fix κ2 as specified by (5).14 For arbitrary κ0 and κ1( · ), the
mechanism Mκ need not be ex-post individually rational. That is, there could be realizations

of (zi0, Z) at which trader i would strictly prefer V i(zi0, Z) over the expected equilibrium value

to trader i. However, because the platform operator observes Z, he or she can choose κ1(Z)

so as to ensure that all traders strictly prefer to participate in the mechanism, except in the

trivial case in which the initial allocation is already perfect.

Proposition 2. Fix κ2 as in (5), let κ1(Z) = β0 + β1Z, and let κ0 be arbitrary. For the

equilibrium reports z∗ of the mechanism Mκ, we have

U i(z∗) = V i(zi0, Z) +K
(

zi0 − Z
)2

. (6)

With probability one, trader i weakly prefers this equilibrium value to the value V (zi0, Z) of the

12To be able to observe z−i
0

means that z−i
0

is measurable with respect to F i.
13Likewise, this is also a Bayesian Nash equilibrium of the incomplete information game, after specifying

beliefs about other traders’ inventories.
14By the Revelation Principle (Myerson (1981)), it is natural to focus on direct-revelation mechanisms.
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initial inventory zi0. That is,

U i(z∗) = V i(zi0 + Y i(z∗), Z) + T i
κ(z

∗, Z) ≥ V i(zi0, Z).

The inequality is strict unless zi0 = Z. Provided that the probability distribution of z0 has full

support, this inequality holds with probability one if and only if κ1(Z) = β0 + β1Z.

A proof is found in the appendix. In summary, if the aggregate inventory Z is known to

all traders and to the size-discovery platform operator, then the budget-balanced mechanism

Mκ can implement a perfect reallocation in an ex-post individually rational equilibrium.15

Proposition 2 also implies that the equilibrium payoffs do not depend upon the choice of κ0.

For κ1( · ) and κ2( · ) as specified in Proposition 2, some algebra shows that the equilibrium cash

transfer to trader i is

κ1(Z)
(

zi0 − Z
)

=
(

β0 + β1Z
) (

zi0 − Z
)

. (7)

The mechanism designer is thus free to choose any κ0 < 0, because the choice of κ0 has no

impact on equilibrium transfers or allocations. Result 4 of Proposition 1 nevertheless indicates

the strategy-proofness advantage of the particular choice κ0 = −K(n− 1)/n2.

Figure 1 illustrates the cash and asset transfers that are obtainable by trader i for the mech-

anism of Proposition 2, when other traders follow the equilibrium report z∗j . The asset transfer

schedule ẑi 7→ Y (ẑ) is linear. The cash transfer schedule ẑi 7→ T i
κ(ẑ, Z) can be close to linear,

similar to the case of size-discovery mechanisms such as workups and dark pools. However, a

report by trader i that is large in magnitude induces a significant cash penalty associated with

the quadratic component of the cash transfer schedule. From a welfare viewpoint, this penalty

appropriately disciplines trader i from over-exploiting the mechanism by trying to completely

eliminate his or her excess inventory. A workup or dark pool handles this problem of disci-

plining demand and supply by rationing whichever side of the market has a greater absolute

magnitude of excess inventory. Workup rations by time prioritization of orders (first come, first

served). A typical dark pool rations the heavier side of the market pro rata to requested trade

sizes. These rationing schemes, however, are only rules of thumb, and are strictly suboptimal.

The mechanism Mκ of Proposition 2, on the other hand, achieves the first best.

As mentioned previously, a linear-quadratic utility of the form V i(z, Z) emerges in the next

section as the equilibrium continuation value in the sequential double-auction market, even if

15As noted to one of us by Romans Pancs, a Vickrey-Clarke-Groves (VCG) pivot mechanism can also imple-
ment a perfect reallocation in an ex-post equilibrium in this setting. However, the standard pivot mechanism
cannot be both budget balanced and ex-post individually rational. The AGV mechanism of Arrow (1979),
d’Aspremont and Gérard-Varet (1979) does not apply to this setting because the private information of traders
is correlated.
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(ẑ
,Z

)

Y i(ẑ)
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Figure 1: Mechanism Transfers and Reallocations. This figure plots the possible transfers and reallo-

cations available in the mechanism for a trader, in an equilibrium. The parameters are v = 0.5, r = 0.1, n = 10,

γ = 0.1, Z = −0.5, and zi0 = −2.5. The value function V ( · ) corresponds to the continuation value for the

subsequent double-auction market equilibrium, so that β0 = v, β1 = −2γ/r, and K = γ/[r(n − 1)]. We take

κ0 = −K(n− 1)/n2, κ1(Z) = β0 + β1Z, and κ2(Z) defined as in Proposition 1. The report of each of the other

nine traders is fixed at the equilibrium level z∗j.

the market is augmented with future reallocation sessions. Proposition 1 therefore implies that

if our mechanism is run at time 0, before the market opens, then all traders will instantly move

to the socially efficient allocation. However, as traders receive subsequent inventory shocks

over time, their allocation becomes inefficient, leaving some scope for later improvements in the

allocations. This is the central issue addressed by this paper.

3 The Welfare Cost of Price-Impact Avoidance

In this section, we model a sequential double-auction market in which traders strategically avoid

price impact, causing a socially inefficient delay in the re-balancing of asset positions across

agents. This issue is well covered by the results of Vayanos (1999), Rostek and Weretka (2015),

Du and Zhu (2017), and Duffie and Zhu (2017). However, for our later purpose of exploring the

augmentation of a sequential double-auction market with a sequence of size-discovery sessions,

8



we develop in this section a suitable generalization of the continuous-time double-auction model

of Duffie and Zhu (2017).

The continuous-time presentation of our results is chosen for its expositional simplicity. A

discrete-time analogue of our model is found in the appendix. While the discrete-time setting

leads to messier looking results, it allows us to demonstrate a standard equilibrium robustness

property, Perfect Bayes. The equilibrium behavior of the discrete-model converges to that of

the continuous-time model as the length of a time period shrinks to zero.

We fix a probability space, the time domain [0,∞), and an information filtration F = {Ft :

t ≥ 0} satisfying the usual conditions.16 The market is populated by n ≥ 3 risk-neutral agents

trading a divisible asset. The payoff π of the asset is a bounded random variable with mean v.

The payoff π is revealed publicly and paid to traders at a random time T that is exponentially

distributed with parameter r. Thus E(T ) = 1/r. There is no further incentive to trade once π

is revealed at time T , which is therefore the ending time of the model.

Trader i has information given by a sub-filtration F
i = {F i

t : t ≥ 0} of F. The traders have

symmetric information about the asset payoff. Specifically, we suppose that the conditional

distribution of π given Ft is constant until the payoff time T , so that no trader ever learns

anything about π until the market ends. The traders may, however, have asymmetric informa-

tion about their respective asset positions at each time. Price fluctuations are thus driven only

by allocative concerns, and not by learning about ultimate asset payoffs. This informational

setting is more relevant for markets such as those for stock index products, major currencies,

and fixed income products such as swaps and government bonds. For example, there is always

symmetric information about the payoff of a treasury bill, but the price of a treasury bill fluctu-

ates randomly over time, partly caused by shocks to the allocation of the T-bills across market

participants.

The initial inventories of the asset for the n traders are specified as in Section 2 by a list

z0 = (z10 , z
2
0 , . . . , z

n
0 ) of finite-variance random variables, with zi0 measurable with respect to F i

0.

In a continually operating double-auction market, at each time t, trader i submits an F i
t -

measurable demand function Di
t : Ω×R → R. Thus, in state ω at time t, the trader would buy

the asset at the quantity “flow” rate Di
t(ω, p) if the auction price p is chosen. Given a double-

auction price process φ, trader i would thus purchase the total quantity
∫ u

s
Di

t(ω, φt(ω)) dt of the

asset over some time interval [s, u] (assuming the integral exists). We only consider equilibria

in which demand functions are of the affine form

Di
t(ω, p) = a + bp+ czit(ω), (8)

16For the “usual conditions” on a filtration see, for example, Protter (2005).
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for constants a, b < 0, and c that do not depend on i or t, and where zit is the quantity of the

asset held by trader i at time t. To be clear, the traders are not restricted to affine demand

functions, but in equilibrium we will show that each trader optimally chooses a demand function

that is affine if he or she assumes that the other traders do so.

At time t, given the demand-function coefficients (a, b, c) and the current list zt = (z1t , . . . , z
n
t )

of trader inventories, a price φt is chosen by a trade platform operator to clear the market. A

complete equilibrium model of the demand coefficients (a, b, c) and of the evolution of the

inventory processes (z1, . . . , zn) will be provided shortly.

Lemma 1. Fix any demand-function coefficients (a, b, c) with b < 0, some time t, and some

trader i. For any candidate demand d ∈ R by trader i, there is a unique price p with d +
∑

j 6=i(a+ bp+ czjt ) = 0. This clearing price is calculated as

p = Φ(a,b,c)(d;Z
−i
t ) ≡ −1

b(n− 1)

(

d+ (n− 1)a+ cZ−i
t

)

, (9)

where Z−i
t =

∑

j 6=i z
j
t .

Thus, for any non-degenerate affine demand function used by n− 1 of the traders, there is

a unique market clearing price for each quantity chosen by the remaining trader.

The asset inventory of trader i is randomly shocked over time with additional units of the

asset. The cumulative shock to the inventory of trader i by time t is H i
t , for some finite-

variance Lévy process H i that is a martingale with respect to F and thus with respect to

the information filtration F
i of trader i. A simple example of H i is an F-Brownian motion

with zero drift. The defining property of a Lévy process is that it has independent increments

and identically distributed increments over any equally long time intervals. Without loss of

generality, we take H i
0 = 0. The inventory shock processes H = (H1, . . . , Hn) need not be

independent across traders, but we assume that H is independent of {T , π, z0} and that
∑

iH
i

is also a Lévy process.

Letting σ2
i ≡ var(H i

1), the Lévy property17 implies that for any time t we have var(H i
t) = σ2

i t.

Likewise, letting σ2
Z = var (

∑

i H
i
1) and ρi = cov(Z1, H

i
1), the Lévy property implies that

var(Zt) = var(Z0) + σ2
Zt and that cov(Zt, H

i
t) = ρit for some constant ρi.

Traders suffer costs associated with unwanted levels of inventory, whether too large or too

small. One may think in terms of a market maker that is attempting to run a matched book

of positions, but which may accept customer positions over time that shock its inventory. The

market maker may then trade so as to lay off excess inventories with other market makers in

an inter-dealer double-auction market.
17Because Hi is a finite-variance process, its characteristic exponent ψi( · ) has two continuous derivatives,

and σ2

i = ψ′′

i (0). As an example, if Hi is a Brownian motion with variance parameter ϕ, then σ2

i = ϕ.
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The market practitioners Almgren and Chriss (2001) proposed a simple model of inventory

costs for financial firms that is now popular among other practitioners and also in the related

academic research literature, by which the rate of inventory cost to trader i at time t is γ(zit)
2,

for some coefficient γ > 0. Here, we have normalized so that the inventory level zit is measured

net of the desired inventory level. With this model, trader i perceives, at any time t, an expected

total cost of future undesired inventory of

E

[
∫ T

t

−γ(zis)
2 ds

∣

∣

∣

∣

F i
t

]

.

Although financial firms do not have direct aversion to risk, broker-dealers and asset-

management firms do have extra costs for holding inventory in illiquid or risky assets. These

costs can be related to regulatory capital requirements, collateral requirements, financing costs,

agency costs associated with a lack of transparency of the position to higher-level firm managers

or clients regarding the true asset quality, as well as the expected cost of being forced to suddenly

raise liquidity by quickly disposing of remaining inventory into an illiquid market. Although it

has not been given a structural foundation, the quadratic holding-cost assumption is common

in dynamic market-design models, including those of Vives (2011), Rostek and Weretka (2012),

Du and Zhu (2017), and Sannikov and Skrzypacz (2016).

Lemma 1 allows any given trader i to simplify his or her strategic bidding problem to the

selection of a real-valued demand process Di, which then determines the market clearing price

process Φ(a,b,c)(D
i
t;Zt − zit). A demand process Di is optimal for trader i given the demand

coefficients (a, b, c) of the other traders if Di solves the stochastic control problem of optimizing

expected net profits, defined by

V i(zi0, Z) ≡ sup
D ∈Ai

E

[

zDT π −
∫ T

0

γ
(

zDs
)2

+ Φ(a,b,c)

(

Ds;Zs − zDs
)

Ds ds

∣

∣

∣

∣

F i
0

]

, (10)

where Ai is the space of integrable Fi-adapted processes such that the expectation in (10) exists,

and where

zDt = zi0 +

∫ t

0

Ds ds+H i
t . (11)

The total expected profit (10) is finite or negative infinity for any demand process D, and is

finite at any optimum demand process, given that D = 0 is a candidate demand process.

Demand coefficients (a, b, c) with b < 0 are said to constitute a symmetric affine equilibrium

if, for any trader i, given (a, b, c), the demand process Di
t = a + bφt + czit is optimal, where φt

is the market clearing price process

φt =
a + cZt

−b
,

11



where Z̄t = Zt/n and zi solves the stochastic differential equation

zit = zi0 +

∫ t

0

(a + bφs + czis) ds+H i
t .

This definition of equilibrium implies market clearing, individual trader optimality given

the assumed demand functions of other traders, and consistent conjectures about the demand

functions used by other traders. This notion of equilibrium was developed by Du and Zhu

(2017), who emphasized that the equilibrium demands are ex-post optimal. That is, no trader

would bid differently even if he or she were able to observe the inventories of all other traders.

Although we are working here for expositional simplicity in a continuous-time setting, the

equilibria that we propose may safely be considered to be Perfect Bayesian Equilibrium. That is,

in light of the ex-post optimality property, beliefs about other traders’ inventories are irrelevant.

This is tied down rigorously in a discrete-time analogue of our model found in the appendix.

In discrete time, the ex-post optimality property implies subgame perfection for the complete

information game. Moreover, the primitive parameters of the discrete-time model and the

associated discrete-time equilibrium bidding behavior converge to those for the continuous-

time model as the length of a time interval shrinks to zero. This convergence was shown by

Duffie and Zhu (2017) for a simpler version of this model, and applies also in the current setting.

A proof of the following proposition appears in the appendix.

Proposition 3. There is a unique symmetric affine equilibrium. The equilibrium market-

clearing price process is

φt = v − 2γ

r
Zt. (12)

In this equilibrium, for any trader i and any time t, the indirect utility of trader i defined by

(10) is

V i(zit, Zt) = θi + vZt −
γ

r
Z

2

t + φt

(

zit − Zt

)

− γ

r

1

n− 1

(

zit − Zt

)2
, (13)

where

θi =
γσ2

Z

r2n2
− γ

r2(n− 1)

(

σ2
Z

n2
+ σ2

i − 2
ρi

n

)

− 2γρi

r2n
.

The equilibrium demand function of any trader i evaluated at an arbitrary price p, state ω, and

time t is

Di
t(ω, p) =

(n− 2)r2

4γ

(

v − p− 2γ

r
zit(ω)

)

. (14)
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That is, the equilibrium demand function is affine with coefficients

a =
(n− 2)r2v

4γ
, b =

−(n− 2)r2

4γ
, c =

−(n− 2)r

2
. (15)

We can now define the equilibrium welfare, given the initial list z0 of positions, as

W (z0) ≡
n
∑

i=1

V i(zi0, Z0) =
∑

i

θi + vZ0 −
γ

r

Z2
0

n
− γ

r(n− 1)

n
∑

i=1

(

zi0 − Z0

)2
. (16)

An additive welfare function is appropriate for market efficiency considerations because our

traders are maximizing total expected profits net of costs, measured in “dollar” values.

A social planner who is free to reallocate inventories among the n traders can obviously im-

prove on this welfare W (z0), except in the unique trivial case in which the initial total inventory

is equally split across traders (that is, zi0 = Z0 for all i) and in which there are symmetric future

inventory shocks (H i = Hj for all i, j, almost surely). By constantly reallocating inventories so

as to keep zit = Zt, a social planner can achieve the first-best welfare of

Wfb(Z0) = − γ

r2
σ2
Z

n
+ vZ0 −

γ

r

Z2
0

n
. (17)

Relative to first best, the equilibrium behavior of Proposition 3 is inefficient because each

trader strategically bids so as to reduce the price impact associated with the dependence of the

clearing price Φ(a,b,c) (Dt;Zt − zit) on his or her demand Dt. In order to reduce a costly inventory

imbalance more rapidly, the trader would suffer a bigger price impact. In light of this, the trader

reduces the sizes of orders, trading off price impact against inventory costs. But price impacts

are mere wealth transfers, and have no direct social costs. It is not socially efficient for traders

to internalize their price-impact costs. In this paper, we are mainly interested in how this

loss of welfare might be mitigated with size-discovery sessions, such as workup or the optimal

reallocation sessions described in the previous section, at which there are no price impacts. In

our setting, social welfare is determined entirely by total expected inventory costs. To repeat,

the welfare inefficiency of strategic avoidance of price impact is well covered by the prior results

of Vayanos (1999), Rostek and Weretka (2015), and Du and Zhu (2017).

4 Augmenting Price Discovery with Size Discovery

An obvious improvement in welfare is obtained by an initializing size-discovery session. For

example, Duffie and Zhu (2017) showed a significant improvement in welfare associated with
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running a workup session at time zero, before the sequential double-auction market opens.

Workup does not optimally reallocate initial inventory. We showed in Section 2 that running

an optimal mechanism at time zero achieves a perfect initial allocation, after which all traders

have the same inventory Z0. If no further size-discovery reallocation sessions are run, so that

after the market opens traders rely entirely on the sequential double-auction market, then the

corresponding welfare is

W ∗(Z0) ≡ Wfb(Z0) +
γσ2

Z

r2n
+
∑

i

θi. (18)

A direct calculation18 then shows that

W ∗(Z0) ≤ Wfb(Z0), (19)

with strict inequality unless H i = Hj for all i, j. The negative constant
∑

i θi reflects the

aggregate costs to all traders of future random inventory shocks that are only slowly rebalanced

in the subsequent sequential double-auction market.

Somewhat surprisingly, we are about to show that welfare is not improved by adding optimal-

mechanism reallocation sessions after time zero, even though the traders’ inventories are per-

fectly reallocated at each of these sessions. In the following section, we will show that aug-

menting the market with perfect reallocation sessions strictly lowers welfare if the size-discovery

platform operator cannot directly observe the evolution of the aggregate inventory. This welfare

loss is caused by bidding behavior that attempts to strategically distort the platform operator’s

inference of the current inventory Zt from observing prior double-auction prices.

In this section, the aggregate inventory Zt is assumed to be observable by the size-discovery

mechanism operator. Later, we relax the assumption of observable aggregate inventory in order

to analyze the adverse welfare impact of bidding that is designed to strategically influence the

inference of the size-discovery platform operator, who will rely on double-auction prices for

inference regarding the aggregate inventory.

We maintain the model setup of the previous section, with one exception. We now add

a sequence of size-discovery sessions, each of which uses the perfect-reallocation mechanism

developed in Section 2. These sessions occur at the event times τ1, τ2, . . . of a commonly

observable Poisson process N with mean arrival rate λ > 0. The session-timing process N is

18Rearranging terms, we have

θi =
γ(n− 2)

r2(n− 1)
var(Z̄1 −Hi

1|Z0)−
γ

r2
σ2

i .

We note that
∑

i var(Z̄1 − Hi
1|Z0) = −nvar(Z̄1|Z0) +

∑

i var(H
i
1). The inequality follows from the fact that

n
∑

i var(H
i
1
) ≥ var(

∑

iH
i
1
), with equality if and only if Hi = Hj for all i, j .
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independent of the other primitive processes and random variables, {H, T , π, z0}.
In practice, the mean frequency of size-discovery sessions varies significantly across markets.

For example, workup sessions in BrokerTec’s market for treasury securities occur at an average

frequency of about 600 times a day for the 2-year note, and about 1400 times a day for the 5-

year note, according to statistics provided by Fleming and Nguyen (2015). These size-discovery

sessions account for approximately half of all trade volume in treasury securities on BrokerTec,

which is by far the largest trade platform for U.S. treasuries, accounting for an average of over

$30 billion in daily transactions for each of the 2-year, 5-year, and 10-year on-the-run treasury

notes. Consistent with our model, BrokerTec workup sessions are held at randomly spaced

times. As opposed to our model, however, the times of BrokerTec workup sessions are chosen

directly by market participants, rather than at exogenous random times. In the corporate bond

market, “matching sessions,” another form of size-discovery, occur with much lower frequency,

such as once per week for some bonds. The matching sessions on Electronifie, a corporate bond

trade platform, are triggered automatically by an algorithm that depends on the current limit

order book and the unfilled portion of the last trade on the central limit order book. Again,

this differs from our simplifying assumption that size-discovery reallocation sessions occur at

independent exogenously chosen times.

In many designs for size-discovery sessions, and in the setting of the next section of our paper,

the platform operator exploits prior market prices as a guide to (or automatic determinant

of) the “frozen price” used in the size-discovery session. This introduces additional incentive

effects that we consider in the next section. In this section, because the aggregate inventory Z

is observable, the size-discovery platform operator does not need to rely on prior double-auction

market prices to set the mechanism’s cash compensation rates.

In addition to choosing a double-auction market demand process Di, as modeled in the

previous section, trader i also chooses an F
i-adapted and jointly measurable19 process ẑi for

mechanism reports.

Our size-discovery sessions will use the mechanism design (Y, Tκ) of Section 2, restricting

attention to the affine functions κ1( · ) and κ2( · ) of Zt that exploit the properties of Propositions

1 and 2. We will calculate intercept and slope coefficients of both κ1 and κ2 that are consistent

with the resulting endogenous continuation value functions.

We will show that the double-auction equilibrium demand behavior in this new setting is of

the same affine form that we found in the market without reallocation sessions, however with

different demand coefficients. The traders’ demands are altered by the prospect of getting a

perfectly re-balanced allocation at the next size-discovery session.

In equilibrium, the demand process Di of trader i and the vector ẑ of report processes of all

19For the formal definition of adapted, please refer to Protter (2005).
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traders imply that the inventory process of trader i is

zit = zi0 +

∫ t

0

Di
s ds+H i

t +

∫ t

0

(

∑n

j=1 ẑ
j
s

n
− ẑis

)

dNs. (20)

Given the direct-revelation mechanism design (Y, Tκ) for the size-discovery sessions, an

equilibrium of the associated dynamic demand and reporting game (involving symmetric affine

demand functions) consists of demand coefficients (a, b, c), with the properties:

A. If each trader i assumes that each other trader j uses these demand coefficients and

truthfully report the position ẑjt = zjt for the purposes of size-discovery sessions, then

trader i optimally uses the same affine demand function coefficients (a, b, c) and also

reports truthfully.

B. Participation in the size-discovery sessions is individually rational. Specifically, given the

equilibrium strategies, at every time τj that a mechanism occurs, each trader i prefers, at

least weakly, to participate in the session and obtain the resulting conditional expected

cash and asset transfers, over the alternative of not participating.

It turns out that, in equilibrium, the continuation value of trader i at time t depends only on

zit and Zt. So, it does not matter to trader i whether or not the other n− 1 traders participate,

in the off-equilibrium event that trader i opts out of the mechanism.

Our notion of equilibrium implies market clearing, rational conjectures of other traders’

strategies, and individual trader optimality, including the incentive compatibility of truth-

telling and individual rationality of participation in all reallocation sessions. The appendix

analyzes the discrete-time version of this model, showing that the analogous equilibrium is

Perfect Bayes.

The definition of individual trader optimality in this dynamic game is relatively obvious

from the previous sections, but is now stated for completeness. Taking as given the demand

coefficients (a, b, c) used by other traders and the mechanism design (Y, Tκ) for size-discovery

sessions, trader i faces the problem of choosing a demand process Di and report process ẑi that

solve the Markov stochastic control problem

V i
A(z

i
0, Z) = sup

D,z̃

E
i

[

zD,z̃
T π −

∫ T

0

γ(zD,z̃
t )2 + Φ(a,b,c)(Dt;Zt − zD,z̃

t )Dt dt +

∫ T

0

T i
κ((z̃t, ẑ

−i
t ), Zt) dNt

]

,

where E
i denotes expectation conditional on F i

0 and

zjt = zj0 +

∫ t

0

D̂j
s ds+Hj

t +

∫ t

0

(

z̃s +
∑n

j 6=i ẑ
j
s

n
− ẑjs

)

dNs (21)
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zD,z̃
t = zi0 +

∫ t

0

Ds ds+H i
t +

∫ t

0

(

z̃s +
∑n

j 6=i ẑ
j
s

n
− z̃s

)

dNs, (22)

taking D̂j
t = a + bΦ(a,b,c)

(

Dt;Zt − zD,z̃
t

)

+ czjt .

The definition of incentive compatibility for the equilibrium is that the report process ẑi = zi

must be optimal for each trader. The equilibrium ex-post individual rationality condition for

agent i is that, for all t,

VA(z
i
t, Zt) ≤ V i

A

(

zit +

∑

j ẑ
j
t

n
− ẑit, Zt

)

+ T i
κ(ẑt, Zt). (23)

Proposition 4. Suppose that λ < r(n − 2). Let κ0 < 0 be arbitrary, and fix the mechanism

design (Y, Tκ) specified by (3) and (4), where

κ1(Zt) = v − 2γZ̄t

r
, κ2(Z) = −Zt −

κ1(Zt)

2κ0n2
.

1. Among equilibria in the dynamic game associated with the sequential double-auction mar-

ket augmented with size-discovery sessions, there is a unique equilibrium with symmetric

affine double-auction demand functions. In this equilibrium, the double-auction demand

function Di
t of trader i in state ω at time t is given by

Di
t(ω, p) =

−rλ + r2(n− 2)

4γ

(

v − p− 2γ

r
zit(ω)

)

. (24)

That is, the coefficients (a, b, c) of the demand function are

a =
[−rλ + r2(n− 2)]v

4γ
, b =

rλ− r2(n− 2)

4γ
, c =

λ− r(n− 2)

2
.

2. The market-clearing double-auction price process φ is given by φt = κ1(Zt).

3. The mechanism design (Y, Tκ) achieves the perfect post-session allocation zi(τk) = Z(τk)

for each trader i at each session time τk.

4. For each trader i, the equilibrium indirect utility V i
A(z

i
t, Zt) at time t is identical to the

indirect utility V i(zit, Zt) given by (13) for the model without size-discovery sessions. Thus,

welfare is invariant to this augmentation of the double-auction market with size-discovery

mechanisms.

The equilibrium strategies are ex-post optimal in the same sense described in earlier sections.
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That is, even if traders were to observe each others’ current and past asset inventories, their

equilibrium strategies would remain optimal.

From a comparison of the equilibrium demand schedules (14) and (24) that apply before

and after augmenting the double-auction market with size-discovery mechanism sessions, we

see that the introduction of size-discovery sessions reduces the magnitude of the slope of the

demand functions by rλ/(4γ). With size-discovery sessions, traders shade their demands in the

double auction to mitigate price impact even more than they would in a market without size-

discovery sessions. The next size-discovery session is expected by each trader to be so effective

at reducing the magnitude of that trader’s excess inventory, with a low price impact, that it is

individually optimal for traders to reduce the speed with which they rebalance their inventories

in the double-auction market. Of course, this is not socially efficient. The welfare cost of

this relaxation of order submission in the double-auction market exactly offsets the welfare

improvement directly associated with the size-discovery sessions. The two market designs are

not only equivalent in terms of total welfare, they are also equally desirable from the viewpoint

of each individual trader. In particular, there is no incentive for any subset of traders to set up

a size-discovery platform.

Figure 2 illustrates the implications of augmenting a price-discovery market with size-

discovery sessions. This figure shows simulated sample paths for the excess inventories of

two of the n = 10 traders, with and without size-discovery mechanisms, based on the equilibria

characterized by Propositions 4 and 3, respectively. For each of the two traders whose invento-

ries zi are pictured, the inventory shock process H i is an independent Brownian motion with

standard deviation (“volatility”) parameter σi = 0.05. The aggregate inventory Zt is a Brow-

nian motion that is independent of {H1, H2}, with standard deviation parameter σZ = 0.15.

The mean frequency of size-discovery sessions is λ = 0.12. The other parameters are shown in

the caption of the figure. The graphs of the asset positions are shown in heavy line weights

for the market with optimal size-discovery mechanisms, and in light line weights for the mar-

ket with no size-discovery sessions. In the market that is augmented with size discovery, the

first such mechanism session is held at about time t = 10, and causes a dramatic reduction

in inventory imbalances, bringing the excess inventories of all traders to the perfectly efficient

level, the cross-sectional average inventory Z(τ1) = −0.05. In the illustrated scenario, although

there are no more size-discovery sessions until time 680, traders in the market that includes size

discovery anticipate that they will be able to shed excess inventories at the next such session,

whenever it will occur, so they allow their excess inventories to wander relatively far from the

efficient level Z̄t, avoiding price impact in the meantime by bidding relatively inaggressively in

the double-auction market. For each trader i, because the anticipation of size-discovery ses-

sions causes other traders to bid less aggressively, market depth is lowered, so that trader i has
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this additional incentive to bid less aggressively, relative to the market without size-discovery

sessions. Indeed, as one can see, during the period that roughly spans from time 110 until time

680, the market without size discovery performs somewhat better, ex post, than the market

with size discovery. However, ex ante, or looking forward from any point in time, the two

market designs have the same allocative efficiency, as stated by Result 4 of Proposition 4.

5 Unobservable Aggregate Market Inventory

We now remove the assumption that the aggregate inventory Zt ≡
∑

i z
i
0 + H i

t is observable.

If Zt is not directly observable by the size-discovery platform operator, then the size-discovery

mechanism designer cannot use the cash-transfer function Tκ, because the κ1 and κ2 coefficients

of Tκ depend on Zt. As a consequence, the mechanism design and equilibrium behavior change

significantly.

Even though the mechanism designer cannot directly observe Zt, it turns out that the

perfect reallocation zit = Zt can be achieved at each session time because the mechanism

designer can infer the aggregate inventory Zt precisely20 from the “immediately preceding”

double-auction market price φt− = lims↑t. However, traders now understand that they can

strategically influence their cash compensation in the next size-discovery session by influencing

the double-auction price in advance of that. For example, a buyer now has an additional

incentive to lower the market clearing price, and will demand less in the double-auction market.

Likewise, a seller will supply less. This delays the rebalancing of positions across traders, strictly

lowering welfare relative to a market with no size discovery.

In the double-auction market, we will limit attention to equilibria involving symmetric affine

demand strategies, as in the model of the previous section, although with potentially different

demand coefficients (a, b, c). We will restrict attention to a direct revelation mechanism (Y, T̂ )

that exploits the perfect-reallocation scheme Y ( · ) of (3). Thus, the inventory processes are

again defined by (20).

We will apply the mechanism cash transfers T̂ (ẑt;φt−) associated with the function T̂ :

R
n × R → R

n defined, for an arbitrary constant κ0 < 0, by

T̂ i(ẑ; p) = κ0

(

−nδ(p) +
n
∑

j=1

ẑj

)2

+ p (ẑi − δ(p)) +
p2

4κ0n2
, (25)

20This applies except in the zero-probability event that a mechanism session happens to be held precisely at
a jump time of Z. Because this event has zero probability, it can without loss of generality be ignored in our
calculations.
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Figure 2: Inventory sample paths with and without size-discovery. This figure plots the inventory sample paths of 2 of the n = 10 traders,

with and without size-discovery mechanisms, based on the equilibria characterized by Propositions 4 and 3, respectively. For each agent, the inventory

shock process is an independent Brownian motion with standard-deviation parameter σi = 0.05. The aggregate inventory is an independent Brownian

motion with standard-deviation parameter σZ = 0.15. The other parameters are mean asset payoff v = 0.5, mean rate of arrival of asset payoff

r = 0.1, inventory cost coefficient γ = 0.1, initial aggregate market inventory Z0 = −0.5, an initial asset position of trader 1 of z10 = −2.5, an initial

asset position of trader 2 of z2
0
= 2.5, and a mean frequency λ = 0.1167 = 0.99λ̄ of size-discovery sessions. The graphs of the asset positions are shown

in heavy line weights for the market with optimal size-discovery mechanisms, and in light line weights for the market with no size-discovery sessions.
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where

δ(p) =
−rv

2γ
+ p

(

r

2γ
− 1

2n2κ0

)

. (26)

The role of the prior price φt− is analogous to that applied in conventional forms of size-

discovery used in practice, such as workup and dark pools. In a dark pool, as explained by Zhu

(2014), the per-unit price is set by rule to the immediately preceding mid-price in a designated

limit-order-book market. In BrokerTec’s Treasury-market workup sessions, as explained by

Fleming and Nguyen (2015), the frozen price used for workup compensation is fixed at the last

trade price in the immediately preceding order-book market operated by the same platform

provider. Thus, in dark pools, workup, and other forms of size-discovery used in practice, and

also in this setting for our model, there is an incentive for traders to bid strategically in the

double-auction market so as to avoid worsening their cash compensation terms in the next

size-discovery session, through their impact on the market price φt−.

As in the previous section, given the mechanism (Y, T̂ ), a symmetric equilibrium for the

associated dynamic game is defined by a collection (a, b, c) of demand coefficients with the same

properties described in the previous section of (A) individual optimality for each trader at all

times, including optimal truthtelling, given rational conjectures of other trader’s strategies, and

(B) rationality of individual participation.

In particular, the problem faced by trader i is the choice of a double-auction-market demand

process Di and a report process ẑi solving

V i
S(z

i
0, Z0) = sup

D,z̃

E
i

[

zD,z̃
T π −

∫ T

0

[

γ
(

zD,z̃
t

)2

+ Φ(a,b,c)(Dt;Zt − zD,z̃
t )Dt

]

dt

]

(27)

+ E
i

[
∫ T

0

T̂ i((z̃t, ẑ
−i
t ); Φ(a,b,c)(Dt−;Zt− − zD,z̃

t− )) dNt

]

,

subject to Equations (21) and (22).

In contrast to the previous setting, for any fixed κ0, there are exactly two such symmetric

equilibria. The demand function of one of these equilibria has a bigger slope than that of the

other. One equilibrium therefore has low order flow and high price impact. The other equilib-

rium has higher order flow and lower price impact. The following proposition characterizes the

equilibria, and calculates the equilibrium associated with higher order flow, which is the more

efficient of the two equilibria.

For this purpose, let λ̄ be the unique positive solution of the equation

3λ̄+
√

8λ̄(r + λ̄) = (n− 2)r. (28)
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Proposition 5. Suppose λ ≤ λ̄. Fix any κ0 < 0. Given the mechanism (Y, T̂ ) defined by

(3) and (25), there exist equilibria with symmetric affine double-auction demand functions for

the dynamic game associated with the sequential auction markets augmented with size-discovery

sessions. Each such equilibrium has the following properties.

1. The market-clearing double-auction price process φ is given by

φt = v − 2γ

r
Zt. (29)

2. The double-auction market demand of trader i at time t is a+bφt+czit, for some coefficients

(a, b, c) with b < 0.

3. The post-session allocation at each size-discovery session time at each session time τk is

the perfect allocation zi(τk) = Z(τk), almost surely.

4. For each trader i, the equilibrium indirect utility at time t is

V i
S(z

i
t, Zt) = θ′i + vZt −

γ

r
Z

2

t + φt

(

zit − Zt

)

−K
(

zit − Zt

)2
, (30)

where

K =
γ

r(n− 1)
− λ

2b(n− 1)
(31)

and

θ′i =
1

r

(

γ

r

σ2
Z

n2
−K

(

σ2
Z

n2
+ σ2

i − 2
ρi

n

)

− 2γ

r

ρi

n

)

. (32)

5. In the more efficient equilibrium, the double-auction demand function coefficients are

given by

a = −vb (33)

b =
−r2

8γ



−3λ

r
+ (n− 2) +

√

(

λ

r
− (n− 2)

)2

− 4λn

r



 < 0 (34)

c =
2γ

r
b. (35)

6. In this particular equilibrium (33)-(35), the slope b of the demand function is monotonic

increasing21 with respect to the mean frequency λ of size-discovery sessions. (The magni-

21That is, for each λ0 < λ̄ and each associated equilibrium demand function coefficients (a0, b0, c0), there is
a mapping λ 7→ (aλ, bλ, cλ) on a neighborhood of λ0 to a neighborhood of (a0, b0, c0), specifying the unique
equilibrium demand coefficients (aλ, bλ, cλ) for each λ in the neighborhood of λ0. The coefficient bλ is increasing
in λ.
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tude of b is therefore decreasing in λ.)

In an equilibrium postulated by the proposition, traders are free to deviate from their

affine strategies, and could consider manipulating the double-auction price so as to influence

the size-discovery session operator’s inference of the aggregate inventory Zt from the market

clearing price φt−. For example, if their inventory zit is large, then trader i, absent any motive

to affect inference by the session platform operator, would naturally submit large orders to

sell. By instead submitting a small buy order, the resulting (off-equilibrium-path) price φt

would be higher, suggesting to the platform operator a smaller aggregate inventory. If a size-

discovery session were to occur immediately afterward, the designer would then implement cash

transfers based on this “distorted” price. The cash transfers would more generously compensate

traders who have (and report) larger inventories, given the rebalancing objective of the platform

operator. If the mechanisms are run too frequently, however, this incentive to distort the price

through order submission becomes so great that the double-auction market breaks down, in

that linear equilibrium demand functions cease to exist.

We now focus on the particular equilibrium defined by (33)-(35). As λ increases from zero to

the solution λ̄ of (28), the expected total volume of trade in the double-auction market declines.

Once λ exceeds λ̄, if an equilibrium were to exist there would be so little order flow that it

becomes sufficiently cheap for traders to manipulate the price, in order to benefit from the next

size-discovery session, that markets could not clear. That is, the double-auction market would

break down, and there is in fact no equilibrium with λ > λ̄.

Given that the equilibrium double-auction demand functions have slope b < 0, the second

term in the definition (31) of the quadratic coefficient K is positive, provided there is a non-zero

mean arrival rate λ for size-discovery sessions. This implies that the inability of the platform

operator to directly observe the aggregate inventory balance Zt causes an additional reduction in

allocative efficiency. In fact, in this setting, adding size-discovery sessions to the price-discovery

double-auction market causes a strict reduction in welfare! The welfare at any time t in this

setting is

Ŵ (zt) ≡
n
∑

i=1

V i
S(z

i
t, Zt) =

n
∑

i=1

θ′i + vZt −
nγ

r
Z

2

t −K
n
∑

i=1

(

zit − Zt

)2
, (36)

which is strictly lower than the welfare for the same market without size-discovery.22 With

stochastic and unobservable total inventory, each trader shades his or her orders in the double-

auction market because of the adverse expected impact of aggressive order submissions on the

terms of cash compensation that will be received in the next reallocation session.

22The exception is of course the degenerate case of λ = 0, for which K = −γ/(r(n− 1)) and the two welfare
functions coincide.
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We see from (36) that equilibrium welfare is strictly decreasing in K and strictly increasing

in
∑n

i=1 θ
′
i. In the equilibrium of Proposition 5, K is monotonically increasing in λ,23 while

each θ′i is monotonically decreasing in λ. That is, equilibrium welfare only gets worse as the

frequency of size-discovery sessions is increased, until size-discovery sessions are so frequent

that the price-discovery market breaks down.

Moreover, each trader individually strictly prefers the market design without size discovery.

That is, if size discovery exists, it is individually rational for traders to participate in each

size-discovery session, but all traders would prefer to commit to a market design in which size

discovery does not exist.

Figure 3 illustrates the implications of augmenting a price-discovery market with price-based

size-discovery sessions. As in Figure 2, this figure shows simulated inventory sample paths of

two of the n = 10 traders, with and without size-discovery mechanisms, now based on the

equilibria characterized by Propositions 5 and 3, respectively. Figures 2 and 3 are based on

the same model parameters and the same simulated scenarios for the inventory shock process

H = (H1, . . . , Hn) and size-discovery session times τ1, τ2, . . . . The graphs of the asset positions

shown in heavy line weights are for the market with optimal size-discovery mechanisms. Those

paths shown in light line weights correspond to the market with no size-discovery sessions. In

the market that is augmented with size-discovery, the first such session is held at about time

t = 10, and causes a dramatic reduction in inventory imbalances, bringing the excess inventories

of all traders to the perfectly efficient level, the cross-sectional average inventory Z(τ1) = −0.05.

However, because traders shade their bids even more than in the equilibrium of Proposition 4,

from roughly time 110 until time 680 for these inventory sample paths, the market without size

discovery performed dramatically better, ex post, than the market with size discovery. This is

consistent with the result that, looking forward from any point in time, the market design of

Proposition 5 has strictly worse allocative efficiency than that of Proposition 3. A comparison

with Figure 2 shows the degree to which the informational reliance in size-discovery sessions

on prior double-auction market prices worsens the allocative efficiency of the double-auction

markets.

6 Mechanisms Only

In the previous sections, we showed that augmenting a price-discovery market with future

size-discovery sessions never increases welfare, and strictly reduces welfare if the size-discovery

platform operator relies on the price-discovery market for information about aggregate inventory

imbalances. It is then natural to ask whether simply getting rid of the price-discovery market,

23This follows from (31) since b is negative and increases monotonically in λ.
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Figure 3: Inventory sample paths with and without price-based size discovery. This figure plots the inventory sample paths of 2 of the

n = 10 traders, with and without size-discovery mechanisms, based on the equilibria characterized by Propositions 5 and 3, respectively. For each

agent, the inventory shock process is an independent Brownian motion with standard-deviation parameter σi = 0.05. The aggregate inventory is an

independent Brownian motion with standard-deviation parameter σZ = 0.15. The other parameters are mean asset payoff v = 0.5, mean rate of

arrival of asset payoff r = 0.1, inventory cost coefficient γ = 0.1, initial aggregate market inventory Z0 = −0.5, an initial asset position of trader 1 of

z10 = −2.5, an initial asset position of trader 2 of z20 = 2.5, and a mean frequency λ = 0.1167 = 0.99λ̄ of size-discovery sessions. The graphs of the

asset positions are shown in heavy line weights for the market with optimal size-discovery mechanisms, and in light line weights for the market with

no size-discovery sessions.
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and running only size-discovery sessions, could improve welfare, relative to a setting with price

discovery. When stand-alone size discovery is feasible and is run sufficiently frequently, it

strictly improves welfare, and indeed is strictly preferred by each trader individually. From

a practical viewpoint, however, it could be difficult to arrange for the abandonment of price-

discovery markets. Moreover, the size-discovery sessions that we analyze might be difficult to

implement in practice without information coming out of the price-discovery market.

In this section, we consider a pure size-discovery market, for an economy with observable

aggregate inventory. For example, it suffices that Z is a deterministic constant. We exploit the

same perfect-reallocation size-discovery sessions developed earlier. As before, these sessions are

run at the event times of an independent Poisson process N with mean arrival rate λ > 0.

Again, traders submit mechanism report processes ẑ = (ẑ1, . . . , ẑn). The resulting excess-

inventory process zi of trader i is then determined by

zit = zi0 +H i
t +

∫ t

0

(

∑n

j=1 ẑ
j
s

n
− ẑis

)

dNs. (37)

As in Section 4, we assume that the aggregate inventory Zt is common knowledge for all t.

The size-discovery mechanism design (Y, Tκ) uses the asset reallocation determined by (3). We

again apply the cash-transfer function Tκ defined by (4) for some coefficient κ0 < 0, with

κ1(Zt) = v − 2γ

r
Zt (38)

and

κ2(Zt) = −Zt −
κ1(Zt)

2κ0n2
. (39)

By the same reasoning used in Propositions 1 and 2, one can show these are the unique

affine choices for κ1(·) and κ2(·) such that an equilibrium exists. Moreover, we must restrict

attention to affine κ1(·), κ2(·) in this dynamic setting in order to guarantee a linear-quadratic

continuation-value function.

We seek a truth-telling equilibrium of the dynamic reporting game, in which each trader

optimally chooses to report ẑit = zit and in which mechanism participation is always individually

rational. The exact stochastic control problem solved by each trader is an obvious simplification

of the control problem of Section 4, which appears in the appendix. The next proposition

confirms that this equilibrium exists and provides a calculation of the continuation value for

each trader.

Proposition 6. For any κ0 < 0, consider the size-discovery session mechanism design (Y, Tκ)

of (3)-(4), with (38)-(39). The truth-telling equilibrium, that with reports ẑit = zit, exists and
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has the following properties.

1. At each session time τk, each trader i achieves the efficient post-session position zi(τk) =

Z(τk), almost surely.

2. For each trader i, the equilibrium continuation value V i
M(zit, Zt) at time t is

V i
M(zit, Zt) = θ̃i + vZt −

γ

r
Z

2

t + κ1(Zt)
(

zit − Zt

)

− γ

r + λ

(

zit − Zt

)2
,

where

θ̃i =
1

r

(

γ

r

σ2
Z

n2
− γ

r + λ

(

σ2
Z

n2
+ σ2

i − 2
ρi

n

)

− 2γ

r

ρi

n

)

.

As the mean frequency λ of reallocation sessions approaches infinity, the equilibrium welfare

approaches the first-best welfare Wfb(Z). This follows from the fact that the equilibrium total

expected holding costs associated with excess inventory, relative to the holding costs at first

best, approaches zero24 as λ → ∞. This is immediate from the fact that the quadratic coefficient

γ/(r + λ) of the indirect utility V i
M approaches zero as λ → ∞. These properties hold for any

choice of κ0 < 0, but setting κ0 = −γ(n − 1)/(n2(r + λ)) makes each trader indifferent to

instantaneous deviations by other traders.25

7 Discussion and Concluding Remarks

We conclude by discussing some implications for market designs involving both price discovery

and size discovery.

7.1 Some discouraging market-design observations

The central result of the paper is that augmenting a price-discovery market (an exchange, in

our case a dynamic double-auction market) with optimal size-discovery mechanisms does not

improve allocative efficiency. Actually, for the more realistic case in which the size-discovery

platform operator relies on the price-discovery market to help set the terms of compensation

24This convergence is also intuitively obvious from the fact that δit ≡ (zit − Zt)
2 jumps to zero at each of

the event times of N . The duration of time between these successive perfect reallocations has expectation 1/λ,
which goes to zero. Between these perfect reallocations, δit has a mean that is continuous in t and grows in
expectation at a bounded rate.

25Formally, if we consider the static mechanism report game with the continuation value corresponding to
proposition 6, for this κ0 truth-telling is a dominant strategy.
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in size-discovery sessions, welfare is strictly lowered by adding size-discovery. Although the

total welfare of market participants jumps up at each size-discovery session, the prospect of

subsequent size-discovery sessions reduces the expected gains from trade in the price-discovery

market between size-discovery sessions. The net effect is to leave welfare at least as low as that

achieved without size-discovery, and strictly lower when the size-discovery operator relies on

price information from the price-discovery market.

From a normative market-design viewpoint, this result is discouraging.

We do show that the first-best allocation can be achieved in principle by relying entirely

on size-discovery, and simply dispensing with price-discovery markets. Even if such a radical

redesign of markets could be realistically contemplated, it would require that the size-discovery

platform operator is able to compute what would have been the market-clearing price φt =

v − 2Ztγ/r in a double-auction market, were one to exist. This price-related information may

be difficult to obtain in practice without actually opening the price-discovery market. The

pieces of information needed to construct this hypothetical price φt are the mean payoff v of

the asset, the average current excess inventory Zt of market participants, the inventory cost

coefficient γ, and the mean duration of time r−1 before the asset payoff occurs. In addition to

its allocative role, the price-discovery market serves the role of constructing and revealing this

price information.

We also showed that a market designer cannot rely on the price-discovery market merely

to learn the price φt, and then achieve nearly full efficiency by running size-discovery ses-

sions arbitrarily frequently. As λ rises, market participants become less and less active in the

price-discovery market, in anticipation of the next size-discovery session, given the very low

effective trading “cost-impact” of order submission in size-discovery sessions. If λ exceeds a

specific threshold λ̄, there would be no reliable price information coming out of the double-

auction market. This is so because the resulting extremely low trade volume would make it so

cheap to “push the price,” in order to benefit from improved compensation in the subsequent

size-discovery mechanism, that the price-discovery market would break down. The terms of

compensation in the size-discovery sessions would thus need to be obtained from some other

source.

Ye (2016) offers a model in which a dark pool can indeed harm the formation of informative

prices. For a different model, Zhu (2014) obtains the opposite result for cases that do not

involve large-trader price impact.
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7.2 Cross-venue competition and stability

The observations of the previous subsection also imply that there may be a tenuous relationship

between the operators of size-discovery and price-discovery platforms, respectively. Barring

nearly omniscient alternative information sources, the size-discovery platform operator may

need to rely heavily on the prices φt being produced in price-discovery markets. The size-

discovery venue operator can draw more and more volume away from the price-discovery market

by holding more and more frequent size-discovery sessions. In theory, the size-discovery venue

could in some cases capture an arbitrarily large fraction of the total volume of trade across the

two venues. In practice, however, the size-discovery operator would stop short, or be stopped

short by others, out of practical business or regulatory concerns. CFA Institute (2012) address

general concerns in this area, summarizing with the comment “The results of our analysis

show that increases in dark pool activity and internalization are associated with improvements

in market quality, but these improvements persist only up to a certain threshold. When a

majority of trading occurs in undisplayed venues, the benefits of competition are eroded and

market quality will likely deteriorate.”

This concern may in some cases lead toward integration of the sponsors of price-discovery

platforms and size-discovery platforms for trading the same asset, along the lines of BrokerTec,

which operates both of these protocols for treasuries trading on the same screen-based platform.

Even in this case, however, Schaumburg and Yang (2016) point to some interference arising

from price information arriving during size-discovery sessions from the simultaneous operation

of treasury futures trading on the Chicago Mercantile Exchange.

Zhu (2014) has shown that in a setting with asymmetric information about asset payoffs,

there tends to be a selection bias by which relatively informed investors migrate toward price-

discovery markets and relatively less informed investors migrate toward dark pools. This seems

to suggest support for robust trade volumes on both types of venues. On the other hand,

Zhu (2014) addressed the case of dark pools that promote this selection effect with delays in

dark-pool order execution caused by rationing, because rationing discourages informed investors

who want to act quickly on their information. As we have pointed out, dark-pool rationing

is a relatively crude mechanism design for size-discovery. Although we have not analyzed the

implications in our setting of adding asymmetric information about asset payoffs, one may

anticipate from our results that more efficient mechanism designs than those currently used

in dark pools would be less discouraging to informed investors. This could call into question

the robustness of a market design that allows size-discovery venues to free-ride on the price

information coming from lit exchanges, while also having a significant ability to draw volume

away from lit exchanges.

As of late 2017, according to Rosenblatt Securities, dark pools account for about 15% of
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U.S. equity trading volume.26

7.3 Intentional impairment of size-discovery mechanisms

One might be drawn to conjecture that our mechanism design for size-discovery is “too efficient.”

Indeed, we have shown that the reallocative efficiency and low effective price impact of our size-

discovery mechanism design offer such an attractive alternative for executing trades, relative

to submitting orders into the price-discovery market, that they reduce price-discovery market

depth enough to offset all of the benefit of adding size-discovery. We have shown that adding

size-discovery can actually worsen overall market efficiency.

Given this tension, one might hope to impair the efficiency of the size-discovery design just

enough to raise overall market efficiency. By this line of enquiry, one would look for a loss of

size-discovery efficiency that is more than offset by a gain in price-discovery allocative efficiency

through an improvement of market depth.

We have discovered that this approach does not work, at least among linear-quadratic

schemes for size-discovery. In the appendix, we calculate a mechanism design in which the

imbalance zit−− Z̄t in the inventory of trader i is not completely eliminated in the size-discovery

session. Instead, only a specified fraction ξ of this imbalance is erased by size discovery. Any

parameter ξ between 0 and 1 can be supported in an equilibrium with the same properties

(other than full efficiency)27 shown in Section 2, which treats the special case ξ = 1. The

appendix provides a corresponding generalization of the dynamic trading model of Section 4.

In this setting, overall welfare is invariant to the effectiveness ξ of size-discovery. That is, welfare

is the same whether one runs perfect reallocation mechanisms (ξ = 1), arbitrarily imperfect

size-discovery mechanisms (0 < ξ < 1), or no size-discovery mechanisms at all.28

26 See “Let There be Light, Rosenblatt’s Monthly Dark Liquidity Tracker,” September 2017, at
http://rblt.com/letThereBeLight.aspx?year=2017.

27We must, however, slightly modify our notion of budget balance. Given the equilibrium strategies, the
mechanism is budget balanced with probability 1, but this might not be the case for arbitrary off-equilibrium
reports.

28We find in unreported numerical examples that if the Zt is unobservable, and in what is otherwise the
setting of Proposition 5, welfare is strictly lower with impaired mechanisms than with no mechanisms at all.
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