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1 Introduction

In this paper we propose a new and simple linearization method for analyzing frameworks

with consumer heterogeneity and aggregate shocks. We apply it in the context of an

otherwise standard real business cycle model with two kinds of technology shocks: those

that are neutral, as in Kydland and Prescott (1982), and those that are investment-specific,

as in Greenwood, Hercowitz, and Krusell (2000). Our main goal is to show how the method

works but we also consider the simplest type of potentially stabilizing fiscal policy for a

version of our environment, namely, countercyclical budget deficits (financed by lump-

sum transfers). The method we propose is very straightforward and therefore, we hope,

significantly easier to use than many existing methods—it is accessible even to advanced

undergraduates in economics. In this introduction, we begin with a brief motivation for

including household heterogeneity in macroeconomic analysis. We then provide a quick

summary of the core features of the method and turn to the model setting and policy

analysis.

1.1 Why an interest in heterogeneity?

Recently, the literature on business cycles and stabilization has placed an increasingly

heavy emphasis on heterogeneity across households in a variety of characteristics: wealth,

earnings, and more. Whence comes this new emphasis in macroeconomics? There are

several types of answers. One type of answer relies on the effect inequality has on macroe-

conomic aggregates. In the economic realm, there is now increasing evidence that the

marginal propensities to make decisions that are central for households—regarding con-

sumption (in total as well as in terms of its structure), hours worked, and investments in

various forms of assets—vary quite substantially in the population; see, for example, the

findings in Johnson, Parker, and Souleles (2004) who provided evidence on the departure

from the permanent income hypothesis, and Misra and Surico (2014) for estimating the

heterogeneity in responses across households. This basic evidence has potentially sharp

implications for macroeconomic aggregates. Policy makers thus need to know how their

proposed instruments affect different subgroups, as seemingly similar policies may actually
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have radically different effects (policies that are identical in a representative-agent model

are often not under heterogeneous agents). Thus, the use of representative-agent models in

macroeconomic theorizing runs the risk of overlooking these important channels. In par-

ticular, a given policy action can be either more or less potent than what is predicted from

such a representative-agent model. The rapidly expanding literature on heterogeneous-

agent modeling can likely be attributed in large part due to these arguments.

One might also worry, as elaborated on in Piketty (2014), that extreme inequality can

lead to social unrest and even threaten our democratic institutions. That is, there is a po-

litical realm too where inequality affects the macroeconomy. A different way of expressing

this point, along the lines of the argument above, is that the marginal propensities rele-

vant in political decisions—voting and political activities more generally—also vary within

the distribution. The point that the wealth distribution influences aggregate policy, like

taxes, via dispersed political preferences is since long established (see, e.g., Downs, 1957,

and Meltzer and Richard, 1981) but the broader implications for the smooth workings of

democracy are now increasingly emphasized. There is an older macro-and-political econ-

omy literature formalizing the tax-distribution channel (see, e.g., Persson and Tabellini,

1994, and Alesina and Rodrik, 1994, as well as Krusell and Ŕıos-Rull, 1999) but the

broader connection is less explored.

A second type of argument for the focus on inequality is simply that there is an increas-

ing interest in it per se, perhaps because we have social preferences displaying inequality

aversion. In addition, economists and policymakers may be interested in understanding the

distributional consequences of aggregate shocks. For example, a small aggregate decline in

hours may mask substantial heterogeneity in unemployment risk across individuals. Re-

gardless of any potential taste for redistribution, it seems important for macroeconomists

not just to work out the aggregate consequences of different shocks and policy options but

also their distributional impacts.

A third type of argument, that is related to the first one but also more general in

nature, is that the representative-agent nature of most of macroeconomic modeling, like

any other assumption, needs to be examined from a robustness perspective. Clearly, people
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in the real world are heterogeneous in many dimensions and how well the representative-

agent model approximates the aggregate behavior of a more diverse population really

is a very open question.1 That is, the focus on heterogeneity can simply be viewed as

an effort at examining the robustness (and perhaps inappropriateness) of the benchmark

model. This endeavor has been ongoing but has been challenging due to the difficulties

involved in solving dynamic models with consumer heterogeneity, especially models with

aggregate shocks. Krusell and Smith (1998) is a step forward here, as are a number of

other papers, including Den Haan (1997), Ŕıos-Rull (2001), Reiter (2009, 2010), Ahn et al.

(2017), and many others; the present paper follows in the footsteps of especially the three

latter papers. Many of the methods that have been proposed were perhaps once upon a

time demanding in terms of computer processing time or numerical knowledge investments

but these challenges are now much less daunting. As a result, in our view, computational

difficulty should no longer be a primary excuse for applied macroeconomists in abstracting

from heterogeneity in modeling when such heterogeneity is plausibly important for the

workings of policy; after all, imagine if engineers had this attitude when constructing

buildings, bridges, or airplanes. At the same time, we must continue pushing forward

in terms of providing even better and more easy-to-use tools—just like in engineering

science—and the present paper is one such effort. In the case of heterogeneous-agent

economies with aggregate uncertainty, all the available methods rely on some sort of

approximation, moreover, so it seems valuable to have an arsenal of different methods,

thus justifying “engineering-style” work along several parallel lines.

1.2 The method

As mentioned above, the literature has provided us with number of tools and techniques

to numerically solve models with heterogeneity and aggregate shocks. These methods can

be used for the models we discuss in the present paper. However, the tools we develop

here are, we think, particularly simple to use and intuitive. We especially hope that

1When macroeconomic theory is criticized by researchers from other areas within economics, the
representative-agent assumption may be the most commonly mentioned point. When it comes to commu-
nicating with non-economists how macroeconomic textbook models work, it, of course, is even harder to
motivate the representative-agent assumption; it is often best to simply not mention it.
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they can become valuable for analyzing fiscal and monetary policy rules and their welfare

implications for different subgroups of consumers. However, as for how useful and accurate

our method will be, of course, remains to be seen. As is typically the case in computational

economics, the most suitable method really varies depending on the specific model to be

solved and economic question to be answered. We will therefore not aim to make a general

method evaluation here, but merely present the key ideas and apply it in a set of simple

examples. It should be noted that although our setting is very standard and closely related

to the setting in Krusell and Smith (1998) and that studied in the JEDC volume referred

to below, its benchmark does allow two continuously-valued shocks along with valued

leisure.

The key idea is to come up with an easy-to-use linearization technique. Linearization

techniques of different sorts have been developed in a number of applications. The first

complete such contributions were provided in Michael Reiter’s work (Reiter, 2009 and

2010), but early approaches were also explored by a number of other economists, includ-

ing Jeff Campbell, Hess Chung, Stefan Krieger, and Marcelo Veracierto. Current, rather

advanced, linearization techniques include Ahn et al. (2017), which provides a very ambi-

tious and general toolbox based on the authors’ previous work, and David Childers’ recent

paper (Childers, 2017). In all these approaches, the linearization approach relies on taking

derivatives analytically along the lines of a Taylor expansion. In contrast we do not com-

pute analytical derivatives. More importantly, unlike ours, the standard approach is built

on recursive methods whereby aggregates and prices are expressed as (to be linearized)

functions of the state. The state is usually a very high-dimensional object—involving at

a minimum the distribution of wealth across agents, an infinite-dimensional object—and

therefore potentially quite challenging to even describe, let alone linearize with respect to.

There are also many ways of constructing such a linearization and its law of motion. The

approach we follow here uses recursive techniques for solving the households’ problems

but not for describing aggregates. Rather, we base our linearization on a nonlinearly ob-

tained solution for a deterministic transition path to an “MIT shock”. An “MIT shock”

is an unexpected shock that hits an economy at its steady state, leading to a transition

5



path back towards the economy’s steady state. We study a single, small “MIT shock”

carefully, and then linearize directly using the computed impulse response. We thus con-

sider this impulse response as a numerically computed derivative of the effect of an initial

(infinitesimal) shock on the variable in question at different time horizons.

As is typical, the linearization will be performed around a steady state.2 Hence, in a

first step we solve for a steady state with entirely standard, and fully nonlinear, methods.

We then study a deviation from this steady state and a transition back to it. Consider for

example a shock to aggregate TFP, which we denote by z and which, in the economy with

aggregate shocks, follows an AR(1) process in logs with a serial correlation parameter ρ.

Thus, (the log of) the shock will go up by, say, one unit in period 0 and thus delivers the

full sequence of values (1, ρ, ρ2, ρ3, . . . ). When we solve for our resulting deterministic equi-

librium transition path, we consider a dynamic-programming version of the household’s

problem where the state variable consists of the individual’s own states (asset holdings and

an income shock in our simple model, as in Aiyagari, 1994) and, importantly, time. The

appearance of time captures how aggregates affect the individual: the individual takes as

given a sequence of prices and because it is irrelevant for the individual how these prices

are determined, they can be summarized as depending simply on time. Notice that they

will not involve aggregate uncertainty since we consider a deterministic path. The compu-

tation of the deterministic equilibrium path is straightforward: it uses entirely standard

methods. In particular, we guess on a price path (or the path for an aggregate variable

like consumption), solve the household’s problem backwards—given that we know that

there will be convergence back to the same steady state—and then derive the aggregate

implications of the households’ behavior and update our guess for the price path. This

iterative procedure is also standard and fully nonlinear.

The result of having computed the nonlinear transition path for the heterogeneous-

agent economy is a time path for all aggregate statistics: output, consumption, investment,

prices, and the entire wealth distribution (as well as labor supply if considered as endoge-

2As all methods that rely on linearization, our method imposes certainty equivalence. Then, the
variables in the non-stochastic steady state will by assumption coincide with the ergodic mean of those of
the stochastic economy.
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nous).3 So let us focus on a generic such aggregate statistic; we label it x, and we have

thus obtained a sequence {x0, x1, x2, . . . }. Now consider the same economy subjected to

recurring aggregate shocks to z. The key idea behind the procedure we use to compute

equilibria in the aggregate-shocks economy is that we can, and do, regard the x sequence

in response to the one-time shock in the aggregate technology variable z (and exponen-

tial convergence back to its mean) as well approximated by a linear system. (The shock

appears in a multiplicative way an hence we linearize in the logarithm of the variables.)

A linear system would precisely mean that the effects of shocks are linearly scalable and

additive so that the level of x at some future time T , after a sequence of random shocks

is simply x0εz,T + x1εz,T−1 + x2εz,T−2 + . . . , where εz,t is the innovation to (the logarithm

of) z in period t. Thus, our model with aggregate shocks can be obtained by mere simula-

tion based on the one deterministic path—the non-linear impulse response function—we

obtained.

It is instructive to compare our method with the recursive linearization methods in the

literature referred to above. In essence, those techniques construct (i) a linear mapping

from (log) z and some summary description of the aggregate state (such as a set of moments

of the wealth distribution) to x and then (ii) a resulting linear law of motion for the

summary of the aggregate state. But this delivers precisely a linear system that, in

reduced form, gives our simple x0εz,T + x1εz,T−1 + x2εz,T−2 + . . . , so in this sense the

intermediate steps (i) and (ii) are not needed if one can obtain {x0, x1, x2, . . . }, which we

do with our nonlinear method.

Linearity of a dynamic system allows for very powerful generalizations. First, we can

look at any outcome variable. For example, our transition-path equilibrium delivers the

evolution for any distributional statistic, so x could be, say, the 3rd percentile of the

wealth distribution. Second, one can incorporate more kinds of aggregate shocks easily:

computation time rises linearly in the number of independent shocks. In the case of two

shocks, a z and a q shock, one would simply compute two transition-path equilibria, one

for a period-0 deviation of z from its steady-state value and then a similar one for q. Then,

3Of course, individual agents move stochastically within this distribution due to idiosyncratic income
shocks, but these wash out in the aggregate.
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given the linearity, the effects of the two shocks are simply additive: the final effect on x

in period T is xz0εz,T + xq0εq,T + xz1εz,T−1 + xq1εq,T−1 + xz2εz,T−2 + xq2εq,T−2 + . . . , where εq,t

is the innovation to (the logarithm of) q in period t.

A virtue of the linearization method compared to that in Krusell and Smith (1998) is

that the case with valued leisure can be computed in a more straightforward manner. In

such a model, as in most cases where there is a nontrivial market-clearing condition each

period,4 Krusell and Smith (1998) argue that it is necessary to use a two-step procedure:

each period during a simulation, a price (the wage in this case) needs to be iterated

on so as to achieve exact market clearing, and hence a supply function (for labor) of

this static price needs to be computed. This supply function is obtained from consumer

maximization where future prices are taken as given functions of the future aggregate state

but the current price can deviate from such a rule.5 In the linearization method here, no

extra complication arises if there are nontrivial market-clearing conditions each period.

We must also emphasize that the key numerical tool used to implement our method—if

not the only tool—is value-function iteration. Value-function iteration is used for solv-

ing the consumer’s problem in a steady-state equilibrium. This value-function iteration

involves a small set of state variables (an exogenous idiosyncratic shock and capital, in

our application). Value-function iteration is then used again in solving for the transition

path, now backwards over time, so time is the only additional state variable here and

the iteration involves only a number of steps equal to the number of time periods until

the new steady state is reached. In the former case, there is an outer layer of iterations

over the steady-state interest rate and in the latter case the iteration is over a sequence

of interest rates, but there is no additional conceptual difference between the two cases.

Hence, solving for a transition path is really very similar to solving for a steady state.

Is the equilibrium we compute accurate? That is, is our linearization an accurate

method for the economy at hand? Given that a distance measure between the computed

4In the baseline Krusell and Smith model without valued leisure both the capital stock and aggregate
hours are predetermined along any simulation path, such that the output market trivially will clear given
the wage and interest rate from the firm’s problems. Along simulation paths households may be making
forecast errors about next period’s capital stock, but contemporaneous prices always clear the market.

5The same complication appears, for example, when one solves an asset pricing model where a bond
price needs to be computed each period; see Krusell and Smith (1997).
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equilibrium and the true one cannot typically be obtained in this class of models, there

is no simple answer. One check that can be performed, however, is to compute transition

paths for different initial shock sizes and signs and assess whether the resulting effects on

the variables in question (x in our example) are scalable, as assumed in the linearization

method. It may then turn out that significant nonlinearities appear or that the shock

responses are not approximately symmetric around zero, in which case non-linear methods

are needed. One can design a variety of checks of, such as drawing two consecutive MIT

shocks, in period 0 and in period 1, and seeing whether the resulting transition path is

close to that obtained as a sum of two consecutive shocks. With two type of shocks z and

q, one can subject the economy to simultaneous shocks of these variables at time 0 and

then compare to the sum of each of the two shocks, and so on.

Finally, one may ask whether linearization does not eliminate some important mech-

anisms in a heterogeneous-agent economy, such as the nontrivial evolution of the wealth

distribution over time and its effects on aggregates. It does not: it includes all the mech-

anisms (to a first order). For example, an aggregate shock will influence outcomes in

a manner taking into account the distribution of marginal propensities to consume and

work, and the evolution of this distribution will itself be solved for; linearization does not

set these effects to zero but merely consider their first-order elements.6

6To be more concrete, consider an alternative model that will have similar features: one with two
agents with a common utility function u(c), no idiosyncratic shocks and unrestricted borrowing and lend-
ing, but unequal wealth between the two agents. Then the equilibrium laws of motion will be given
by the function H such that A′1 = H(A1, A2, z) and A′2 = H(A2, A1, z) and output will be given by
y = G(A1, A2, z), where Ai denotes the wealth of agent i, y output, and z an exogenous shock; a
prime denotes the variable’s value the following period. Because A1 + A2 = k, the aggregate capi-
tal stock, we have G(A1, A2, z) = G̃(A1 + A2, z). Now consider how yt+m will change for m > 1

in response to a change in log z0. Linearization means that we will identify
dyt+m

d log z0
based only on the

first-order effects, i.e., G̃1(A1,t+m +A2,t+m, zt+m)H1(A1,t+m−1, A2,t+m−1, zt+m)
dA1,t+m−1

d log z0
+ G̃1(A1,t+m +

A2,t+m, zt+m)H1(A2,t+m−1, A1,t+m−1, zt+m)
dA2,t+m−1

d log z0
+ G̃2(A1,t+m +A2,t+m, zt+m)

dzt+m

d log z0
. If preferences

aggregate, H1 = H2 for all values of the arguments, and then it is easy to show that the first two terms
of this expression are identical and thus collapse. If not, however, the evolution of the wealth distribution
will evolve nontrivially, and it will nontrivially affect equilibrium outcomes. Thus, despite a lack of aggre-
gation the linearization method does captures the effects going through an unequal and evolving wealth
distribution. This argument is general and can in particular be applied in our context, where there is also
a lack of aggregation.
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1.3 The model

The model we look at is a standard Aiyagari (1994) economy, augmented to include val-

ued leisure, with two kinds of aggregate shocks: an input-neutral technology shock and

an investment-specific technology shock. Consumers face idiosyncratic labor productivity

risk against which they cannot insure directly but they can accumulate precautionary sav-

ings. For this model, no aggregation theorem is available: the whole distribution of asset

holdings among consumers matters for determining aggregate capital accumulation and

for total hours worked, because the marginal propensities to save (and work) differ across

consumers. In particular, more wealthy consumers are better insured and have higher

marginal propensities to save and lower marginal propensities to work. The consumption

function is not linear either and is not necessarily concave.

We briefly look at a formulation of the model with a “demand externality” in the form

of a reduced-form pure externality on TFP from aggregate consumption. In particular, if

consumption rises, so does TFP. The interpretation is that of utilization of the input factors

and the motivation comes from the recent work by Bai, Ŕıos-Rull, and Storesletten (2016).

The difference being that our demand channel amounts to a market failure; whereas those

authors describe a search market with price posting, which yields efficient outcomes.

We illustrate the failure of aggregation by showing that Ricardian equivalence does

not hold: we look at a transfer policy with a stable rule for government bonds involving

deficits when consumption is below steady state.

1.4 Outline

We begin by describing the model in Section 3. We then briefly describe our computational

approach in Section 4 after which we show our results in Section 5. In the latter section we

also discuss accuracy of linearization based on looking at transition paths with different

sizes and signs of the initial shock. We conclude in Section 6.
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2 Numerical methods in macroeconomics: a mini-history

In this section we provide some relevant background in the form of a very brief history of

numerical methods used in dynamic macroeconomics for the purpose of producing “quan-

titative macroeconomic theory”, i.e., theory restricted to match relevant microeconomic

data and other facts, such as long-run trends. The specific aim here is to make connections

between the method we propose in the present paper and earlier methods and concepts;

that is, we do in no way aim to accurately reflect the whole literature on solving dynamic

macroeconomic models. We discuss representative-agent models and how they have been

solved first.

2.1 Representative-agent models

We begin by noting that prior to the path-breaking work by Kydland and Prescott (1982),

researchers had used analytical methods to characterize perfect-foresight equilibria that

were the result of “MIT shocks”. An MIT shock, a term coined by Tom Sargent, refers

to an unpredictable shock to the steady-state equilibrium of an economy without shocks.

That is, in this economy no shocks are expected to ever materialize but nevertheless a

shock now occurs. The analysis then focuses on understanding the resulting equilibrium

transition along a perfect-foresight path, again under the assumption that no shock will

ever occur again. Thus, the described procedure seems hard to square with rational

expectations.7

The Kydland-Prescott paper developed a non-linear model without market frictions

and, hence, could focus on solving a planning problem. This problem was approached

using “linearization” around the steady state; Kydland and Prescott first solved for the

steady state, then provided a quadratic (second-order Taylor expansion) approximation of

the objective function—expressed in terms of the vector of choice variables—around that

steady state, along with a linear set of (or linearized) constraints. Thus, they obtained a

linear-quadratic problem, which was well known to have an exact solution in the form of a

7The “MIT” qualifier reflects the fact that one or more researchers at MIT used this method. Sargent,
at the time of the invention of the term, was at Minnesota; he received his PhD in Cambridge, Mass., but
from Harvard.
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quadratic value function along with linear policy rules. The paper by King, Plosser, and

Rebelo (1988) and its technical appendix (separately published later, see King, Plosser,

and Rebelo, 2002) describe this procedure in detail, including how to compute all the

endogenous policy and value-function parameters.8

A key element in the approach pioneered by Kydland and Prescott was the use of a

recursive system, which fits value-function methods well. The key objects sought were

thus functions of a state vector of exogenous and endogenous variables. To be concrete,

one would for example in the very simplest case of a stochastic growth model with optimal

saving and no adjustment costs find output, y, to be a function G of the capital stock,

k, and TFP, z: y = G(k, z). Similarly, the law of motion for the endogenous state

would be written using a function H as k′ = H(k, z). Thus, linearization amounted to

finding linear approximations of G and H—in the form of vectors.9 Once the vectors

approximating G and H had been found, the system was simulated by drawing shocks

and unconditional moments were computed, such as correlations between macroeconomic

variables and their relative percentage standard deviations. The figure below, drawn from

Kydland and Prescott (1982), illustrates.

8As of publication, King, Plosser, and Rebelo’s two papers the Kydland-Prescott paper all have thou-
sands of citations. The paper by King, Plosser, and Rebelo (1988) of course made other, distinct contri-
butions, such as finding an explicit class of utility functions that was sufficient and necessary for balanced
growth with constant hours worked.

9An alternative method in the literature has been to derive a set of linear stochastic difference equations
whose solutions then delivers G, when expressed recursively. The solved-out stochastic sequence for capital,
in our example, would then satisfy k1 = H(k0, z0), k2 = H(H(k0, z0), z1), and so on.
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Quite soon, researchers started examining the numerical accuracy of the solutions

obtained with the linear-quadratic approximation method; after all, the underlying model

had nonlinear elements of potential quantitative importance. The classic 1990 issue in the

Journal of Business and Economic Statistics, edited by John Taylor and Harald Uhlig,

collected a number of papers employing linear-quadratic other methods to solve the same

underlying model—the stochastic optimizing growth model: see the next figure for the

front page.
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The conclusion from the JBES issue was that nonlinearities simply did not seem to

play a very important role in the model under study.

Meanwhile, another development in macroeconomics was taking place whereby VARs—

vector autoregressions, a tool primarily used for empirical analysis—came to increasing

use. The path-breaking paper on this topic, Sims (1980), specified a linear system of

equations for macroeconomic aggregates. From the present perspective, such a system

can also be derived from the solution to a linear-quadratic model, which researchers soon

realized. This meant, in particular, that estimated VARs became a convenient tool for

comparing model to data: one compared the model-generated VAR to that estimated

in the data, the result of which became known as “structural VARs”, whereby some

model parameters were estimated directly using a VAR, either with classical or Bayesian

econometrics.

But more importantly from the present perspective, VARs propelled the use of impulse

response functions, IRFs in quantitative macroeconomic theory: the use of the linear

system to trace out the path for an endogenous variable in response to an exogenous
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shock at an initial point in time. Using a purely empirical VAR, one would identify

exogenous shocks—such as one to technology—along with their autocorrelation properties

and then evaluate how an endogenous variable, like output, would behave over time in

response to a shock innovation at time zero. Using the linear system obtained as an

approximation to the optimal policy rules at a steady state of the theoretical model one

can also generate an IRF (and the two IRFs can be compared—an alternative data-model

comparison to that of using the unrestricted VAR system); a typical example from the

literature of model-generated IRFs is shown in the figure below (countless papers display

such multi-box graphs, especially in the monetary literature).

The key about an IRF here is that it can be viewed as a response to an MIT shock:

let the economy be in steady state, expose it to an “unexpected” shock and work out

how the endogenous variables will behave over time in a rational-expectations equilibrium

under the assumption that no other shocks materialize. The rational-expectations part

sounds contradictory, again, but is not: in a linear-quadratic model, certainty equivalence

holds, i.e., the coefficients of the linear policy rules do not depend on the second-order

moments of the shock processes. This means, in particular, that an IRF can be viewed as

the average (conditionally expected) path of an endogenous variable, thus integrating in

this expectations operator across outcomes of all future shocks (given the initial shock).

Thus, the perfect-foresight response to an unexpected shock conditional on no other shocks
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occurring coincides with the average response to a shock of the same size that was expected

(in the sense that it had a zero expected mean but a positive variance) and that is later

followed by other shocks. Hence, the linearity of the basic models made MIT shocks turn

out to be really useful!

Approximate linearity was then used to compute equilibria in a very broad set of

business-cycle models, including those with price and wage stickiness. Thus, packages

like Dynare or Uhlig’s Toolkit became ubiquitous in research as well as teaching; it is

probably not an understatement to say that this development revolutionized quantitative

macroeconomic theory. These packages ask the researcher to input the model’s dynamic

equations in their non-linear form and then automatically offer (i) a calculation of the

steady state; (ii) the (linear) equilibrium decision rules; (iii) the corresponding impulse

response functions; and (iv) an estimation routine. It should be noted that in many

(most?) of the applications in the literature there was no separate check that a linear

approximation is indeed accurate.

For some questions, the linear-quadratic approximation is not useful; one example is

asset pricing or portfolio choice, where higher moments of the shocks are at the core of the

analysis. Similarly, in models where non-linearities are believed to play a central role, it

is also crucial to use other methods. Here, researchers have explored different paths; one

is to use one out of a variety of the general non-linear approaches (of which several were

applied in the Taylor-Uhlig volume referred to above) and another path was to develop

second-order perturbation methods; see, e.g., Judd and Guu (1997) or Schmitt-Grohé and

Uribe (2004).

2.2 Heterogeneous-agent models

The numerical analysis of models with heterogeneous consumers and uninsurable idiosyn-

cratic shocks started with papers by Imrohoroglu (1989), in a partial-equilibrium case,

and Huggett (1993) and Aiyagari (1994) in general equilibrium. Given that borrowing

constraints and uninsurability were central features in these models, it was impossible
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to avoid non-linear methods for solving the consumers’ problems.10 Thus, these papers,

which defined and computed steady states, employed value-function iteration, much as in

some of the contributions to the JBES volume, now applied at the individual level. In

Huggett’s and Aiyagari’s work, the price-determination algorithm worked as follows: (i)

the agent’s dynamic programming problem is first solved using non-linear methods based

on a guess on a set of prices (such as the steady-state interest rate); (ii) the decision rules

are then aggregated to check market clearing in the steady state; (iii) and, in case markets

do not clear, an update on the price(s) is computed and the procedure is repeated until

markets do clear.

A steady-state equilibrium in the heterogeneous-agent economy under study in these

papers consists (aside from decision rules and value functions solving the consumers’ prob-

lems) of a small set of prices or aggregate variables (one, in each of the cases of Huggett,

1993, and Aiyagari, 1994) and a stationary distribution of consumers, within which there

are idiosyncratic movements but whose aggregate moments are all constant. The algorithm

described has proven to work for a large number of applications. It should be noted here in

this context that a reason why these steady-state equilibria are rather straightforward to

compute is that a given consumer’s dynamic-programming problem is mostly independent

of how other consumers behave; the only relevant input is a very low-dimensional object

such as an interest rate and a wage rate (which, of course, are affected by all consumers).11

Not all steady-state models with heterogeneous agents have this pleasant feature, however.

One case in point is models where consumers care directly about the whole distribution

of the other consumers’ state variables, such as in a decentralized search-matching con-

text (whether in a monetary, labor, or other application). A concrete example here is

the setup considered in Krusell, Mukoyama, and Şahin (2010): they solve a model that

is a straight marriage between Aiyagari (1994) and Pissarides (1985). In their model, a

consumer’s asset holdings will influence the value of being unemployed and hence, in a

10The focus of our paper is household heterogeneity, but the methodological challenges posed by models
with firms heterogeneity, see, e.g., Khan and Thomas (2008) for a representative contribution, are very
similar to those presented here. Our method is therefore applicable in that class of models as well.

11Moreover, for a constant-returns production function, the interest rate and the wage rate are in a one-
to-one relation to each other so really only one endogenous equilibrium variable is used in the consumer’s
problem.
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bargaining situation with a firm, determine the wage outcome: a higher asset level allows

you to bargain for a higher wage. Moreover, the wage as a function of asset holdings then

becomes an equilibrium object that consumers need to know when solving their savings

problems, since a higher rate of saving today then implies higher wages in the future ac-

cording to the equilibrium wage function. Thus, the set of equilibrium variables appearing

as an input into the consumer’s problem is not small in this case: it is a whole function.

Thus, one needs more sophisticated numerical methods to solve for this kind of stationary

equilibrium.

Equilibria with heterogeneous agents and aggregate shocks were initially computation-

ally intractable. The reason is that in such models, the recursive objects G and H that

generalize the representative-agent framework are both infinite-dimensional. The key rea-

son for this, in turn, is that the economy’s endogenous state vector is infinite-dimensional:

it consists of the whole distribution of wealth (jointly with idiosyncratic shock outcomes).

The incomplete-markets assumption, namely, makes any aggregation theorem invalid as a

rule, even with preferences in a suitable class and, hence, the whole distribution of asset

holdings today is necessary for predicting the total amount of capital tomorrow. The

reason, of course, is that agents with different amounts of wealth have different marginal

propensities to consume. Denoting the distribution by Γ, we would thus have (again with a

focus on output as the endogenous variable), y = G(Γ, z) and Γ′ = H(Γ, z). Linearization

did not seem like a natural path forward because (i) the individual’s problem (which is

also a determinant of G and H) is fundamentally nonlinear and (ii) linearization in infinite

dimensions is a challenge (G and H both have an infinite-dimensional argument and H is

an infinite vector-valued function).

Surprisingly, however, Krusell and Smith (1998), followed by Krusell and Smith (1997),

Den Haan (1997), and Ŕıos-Rull (2001), found that a (fully non-linear) solution method

appeared to work quite well for a set of economies that could be viewed as straightforward

extensions of Huggett (1993) and Aiyagari (1994) to the case of aggregate uncertainty,

or to Kydland and Prescott (1982) by adding heterogeneous agents and uninsurable id-
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iosyncratic risk.12 The approach pursued by Krusell and Smith was to summarize the

distribution Γ by a small set of moments and replace H with a function that only maps

this small set of moments from the current to the next period. Thus, so long as a consumer

only needed to know prices which are determined by the small set of moments and these

moments could be predicted well by their own past, one obtained a “solvable” setting;

for a very detailed discussion of the method and a discussion of its accuracy, see Krusell

and Smith (2006). It turned out, in particular, that “approximate aggregation” obtained,

namely that only one moment of Γ (the mean) sufficed for producing remarkably good

forecasting accuracy.

Like in the early days of numerical representative-agent analysis, a volume appeared,

now in the Journal of Economic Dynamics and Control : the issue edited by Den Haan,

Judd, and Juillard (2010); a front page is displayed in the figure below.13

12Krusell and Smith (1998) also considered valued leisure; Den Haan (1997) looked at an endowment
economy; and Krusell and Smith (1997) looked at portfolio choice and asset pricing.

13It proved impossible to find a front page on the internet; we would be very grateful if anyone could
send us a copy of it. With a little help from a friend, Filip Rozsypal, we got by: he very kindly produced
a photo-shop “replica”.
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The overarching question in this JEDC issue was whether the proposed small-set-of-

moments approach was accurate enough. Hence, the issue contained papers offering a

plethora of other methods and a summary of the findings in the issue was that, at least

for the model under study, all the methods delivered close-to-identical equilibria and, by

implication, that the small-set-of-moments approach was quite accurate and powerful.

A name in the JEDC issue stands out: Michael Reiter. Reiter’s earlier work (Re-

iter, 2009), namely, had unveiled how linearization could be accomplished in this class of

models, again something that had appeared impossible. The idea here was to solve the

consumer’s problem at steady state fully non-linearly and then to summarize the decision

rules of this problem with a finite set of parameters. These parameters were then made to

depend on an aggregate state variable Γ̂, which in turn was a reduced-dimension version of

the full distribution Γ (but not necessarily the moments of Γ). The equilibrium could then

be linearized with respect to this finite vector summarizing Γ: G and H can be replaced
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by (large but finite) vectors. The description of Reiter’s approach here is too brief to be

clear, but the point is that a sophisticated method can be designed and implemented, thus

in the end allowing a feasible linearization approach also to heterogeneous-agent models

with aggregate risk. Reiter (2010) offers a refined, more efficient version of the same

method. Several other authors had previously explored linearization but failed to deliver

a completed and tested algorithm. Since Reiter’s work, more papers have offered addi-

tional linearization methods. Most recently, Ahn et al. (2017) propose a method that is

particularly powerful in reducing the dimensionality efficiently.14

Substantively, Reiter’s method suggested that the class of models not only appeared

to satisfy approximate aggregation but also that these models were well approximated by

a linear system. Interestingly, in parallel, some papers in the literature did provide fully

nonlinearly obtained numerical solutions to transition paths following MIT shocks.15 I.e.,

they provided impulse responses. The point we make in the present paper is that under the

assumption that linearization works well—as suggested by Reiter—these impulse-response

functions, obtained by non-linear methods, can be used directly to also simulate the be-

havior of the economy under aggregate uncertainty, as outlined in the introduction and

described in more detail below. The fundamental reason is that in linear systems, effects

of recurring, or different, shocks are additive and the effects scalable. The assumption

“linearization works well” then simply means that an impulse response, if it is a response

to a small MIT shock, can be interpreted directly as a linear response. The word “small”

is important here, as one should view it as of the size required to produce a numerical

derivative: the entire impulse response (of all endogenous variables) should thus be viewed

as a numerically computed derivative of the initial shock.

As pointed out, the methods proposed here rely on assuming that linearization works,

but in this sense the approach is not different than that in most of the applied Dynare-

based literature on representative agents, or that in the recent papers like Ahn et al. (2017)

on solving heterogeneous-agent models: they all assume that linearization works. We do

14Ahn et al. (2017) are also producing easy-to-use Dynare-like packages based on their methods.
15One example is provided in Krusell, Mukoyama, Şahin, and Smith (2009), where there is an unexpected

removal of all TFP fluctuations—these shocks are replaced with their conditional mean as of time 0—and
a deterministic path toward a steady state is solved for.
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discuss this key assumption and propose some tests that can be conducted, namely to try

out different MIT shocks (or combinations thereof) and see whether the additivity and

scalability are approximately satisfied. In our example economies, these tests are passed

with flying colors.

3 The settings

We consider a variety of models, the focus of course being on heterogeneous-agent economies.

However, we also study a very standard representative-agent model to illustrate how our

methods work. The representative-agent model can be solved non-linearly for a response

to an MIT shock with standard Dynare commands. We then use this response to gen-

erate a simulation with shocks and use it to compute conditional moments. Therefore,

we begin with a description of the representative-agent economy, after which we describe

the heterogeneous-agent economy. At the end we also look at a model with a demand

externality; we describe this setting last.

3.1 A benchmark representative-agent model

Though our benchmark representative-agent framework involves no frictions, so that one

could focus on a planning problem, we describe the decentralized equilibrium here as it is

the core on which the equilibrium with heterogeneous agents is later built.

The production technology is standard and involves two shocks. There is a repre-

sentative firm producing under perfect competition according to the following production

function:

yt = ztk
α
t h

1−α
t . (1)

Thus, the firm solves

max
k,h

= ztk
αh1−α − rtk − wth, (2)

at time t where the rental rate, rt, and the wage rate, wt, are taken by the firm as given.

The term zt is a random variable that is taken by the firm as given too; it is exogenous
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and follows a stochastic process given by log zt+1 = ρz log zt + σεzεz,t+1, with ρz ∈ (0, 1)

and εz a standard normal shock.

Capital accumulation occurs according to

kt+1 = (1− δ)kt + it, (3)

where it is investment measured in efficiency units of capital.

The resource constraint reads

ct + qtit = yt, (4)

where qt is an investment-specific technology shock; a fall in its value increases the capacity

for producing capital. We assume that the investment-specific technology too follows an

AR(1) process in logs: log qt+1 = ρq log qt + σεqεq,t+1, with ρq ∈ (0, 1) and εq a standard

normal shock.

There is a representative household solving

max
{kt+1,bt+1,ht,ct}∞t=0

E0

{ ∞∑
t=0

βtu(ct, ht)

}
,

subject to

qtkt+1 + bt+1 = (qt(1− δ) + rt)kt + bt(1 + r̃t) + wtht − ct − Tt, (5)

ht, ct ≥ 0, and a standard no-Ponzi scheme condition. We have 0 < β < 1, σ > 0, and

θ > 0. Labor supply is endogenous; T is a lump-sum transfer that will be considered only

in the heterogeneous-agent model. We note that there are two assets: physical capital and

government bonds (denoted by b). They must have the same return in a deterministic

version of the model and, under aggregate uncertainty and a linearized equilibrium, the

same expected return, even though government bonds gives a safe return and the return

to capital is risky:

1 + r̃t+1 = Et

[
qt+1

qt
(1− δ) +

rt+1

qt

]
. (6)
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The government budget, finally, reads

bt+1 = bt(1 + r̃t)− Tt. (7)

When we implement a budget rule in the heterogeneous-agent model we will be more

specific on the joint path T and b; in the representative-agent model Ricardian Equivalence

holds so whatever rule is in place will not affect the equilibrium allocation.

The equilibrium characterization is straightforward and standard. The first-order con-

ditions of the household problem read

uc(ct, ht) = βEt

{(
qt+1

qt
(1− δ) +

rt+1

qt

)
uc(ct+1, ht+1),

}
(8)

and

uc(ct, ht)wt = −uh(ct, ht), (9)

together with a transversality condition. The firm’s first-order conditions are

rt = αzt(kt/ht)
−(1−α), (10)

and

wt = (1− α)zt(kt/ht)
α. (11)

The equilibrium sequence {ct, ht, kt+1}∞t=0 is then simply given by

uc(ct, ht) = βEt

{[
qt+1

qt
(1− δ) +

αzt+1

qt
(kt+1/ht+1)

−(1−α)
]
uc(ct+1, ht+1)

}
, (12)

uc(ct, ht)(1− α)zt(kt/ht)
α = −uh(ct, ht), (13)

and

qtkt+1 = (1− δ)qtkt + ztk
α
t h

1−α
t − ct, (14)

which amounts to a system of stochastic difference equations in the sequences for consump-

tion, hours, and capital, with the restrictions k0 and a limit condition that combines the
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no-Ponzi game constraint and a transversality condition; the stochastic z and q processes

are an exogenously given determinant of the consumption, hours, and capital processes.

The steady state can be found as a solution (k, h, c) to the above equations when

shocks are constant (and normalized to 1), i.e., three equations in three unknowns:

1 = β
(

1− δ + α(k/h)−(1−α)
)
,

uc(c, h)(1− α)(k/h)α = −uh(c, h),

and

δk = kαh1−α − c.

In our application we will use the following functional form of preferences:

u(ct, ht) =
c1−σt − 1

1− σ
− ψ h

1+ 1
θ

t

1 + 1
θ

.

3.2 The heterogeneous-agent model

We now describe the model when consumers are subject to idiosyncratic shocks. For easier

notation, we describe it without transfers and bonds but our computations include the

same kinds of taxes as used in the representative-agent setting.

In the heterogeneous-agent model, different consumers will have different amounts of

efficiency units of labor per hour worked and different levels of wealth. Wages thus consist

of two components: an aggregate part, w, and an idiosyncratic one, ε, which is independent

across consumers and for which a law of large number holds. There is no direct insurance

against wage shocks but workers can save and they can borrow subject to a borrowing

constraint: their borrowing must not exceed −k. The implication of these assumptions

is that a workers wealth will fluctuate over time—reflecting precautionary savings—and

that the marginal propensities to consume and work will vary in the population. Hence,

changes in the aggregate economy, e.g., through policy, will generate nontrivial responses

by the aggregate of consumers. Hence, the joint distribution of ε and wealth will matter
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for outcomes in this model; we will denote this distribution Γ and it will be defined below.

This distribution is also the high-dimensional state variable that makes computation in

this class of models challenging as it will evolve endogenously over time. In a steady state

it will be constant: individual wealth and income will vary stochastically but the overall

distribution of these quantities across individuals will not change.

Aside from aggregate prices today and in the future, the consumers decision will be

informed by the initial individual state, which can be summarized here by the idiosyncratic

wage shock, ε, and cash on hand (excluding current labor income), which we denote ω.

We formulate the consumer’s problem recursively and we begin by defining a stationary

equilibrium. For all (ω, ε), the following functional equation has to be met:

V (ω, ε) = max
k′,h

u(ω + εwh− k′, h) + βE[V (k′(1− δ + r), ε′)|ε],

s.t. k′ ≥ k. Here, ε is some (idiosyncratic) productivity process on finite support to be

specified later. This problem leads to a pair of decision rules for capital accumulation and

hours: fk(ω, ε) and fh(ω, ε), respectively.

A stationary equilibrium can now be defined as prices r and w, decision rules fk and

fh, and a stationary distribution Γ such that

1. fk(ω, ε) and fh(ω, ε) attain the maximum in the consumer’s problem for all (ω, ε);

2. r = Fk(k̄, h̄) and w = Fh(k̄, h̄), where k̄ ≡ (
∑

ε

∫
ω ωΓ(dω, ε))/(1 − δ + r) and h̄ ≡∑

ε

∫
ω εfh(ω, ε)Γ(dω, ε); and

3. for all relevant Borel sets B, Γ(B, ε) =
∑

ε̃ πε|ε̃
∫
ω:fk(ω,ε̃)(1−δ+r)∈B Γ(dω, ε̃).

In this definition we use F (k, h) ≡ kαh1−α and we implicitly, then, set z = 1; similarly,

we implicitly set q = 1.

An equilibrium with aggregate shocks can be defined as well in a standard manner. We

instead define the equilibrium we will compute, that is, a deterministic equilibrium where

z and q follow predictable paths.16 In an equilibrium, we have a consumer’s problem that

16Our definition here also serves the role of highlighting how the agent’s problem in a transition-path
equilibrium is very similar to that in a steady state and, hence, can be computed in a very similar way.
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can be written, for all t,

Vt(ω, ε) = max
k′≥k,h

u(ω + εwth− k′, h) + βE

[
Vt+1

(
k′
(
qt+1

qt
(1− δ) +

rt+1

qt

)
, ε′
)
|ε
]
.

This problem leads to decision rules fk,t(ω, ε) and fh,t(ω, ε).

A sequential equilibrium can now be defined as the sequences of prices {rt}∞t=0 and

{wt}∞t=0, decision rules {fk,t}∞t=0 and {fh,t}∞t=0, and a distribution {Γt}∞t=0 such that

1. fk,t(ω, ε) and fh,t(ω, ε) attain the maximum in the consumer’s problem for all (ω, ε)

and t;

2. rt = ztFk(k̄t, h̄t) and wt = ztFh(k̄t, h̄t), where k̄t ≡ (
∑

ε

∫
ω ωΓt(dω, ε))/

(
qt+1

qt
(1− δ) + rt+1

qt

)
and h̄t ≡

∑
ε

∫
ω εfh,t(ω, ε)Γt(dω, ε); and

3. for all relevant Borel setsB, Γt+1(B, ε) =
∑

ε̃ πε|ε̃
∫
ω:fk,t(ω,ε̃)

(
qt+1
qt

(1−δ)+ rt+1
qt

)
∈B Γt(dω, ε̃).

3.3 Adding a demand externality

We now look at a simple extension whose main purpose is computational: to try to solve

for an equilibrium where two aggregate (price or quantity) sequences need to be guessed

and iterated upon in order to solve for a transitional equilibrium in response to an MIT

shock away from steady state.

Thus, assume that the aggregate production function reads

yt = Atk
α
t h

1−α
t , (15)

where At ≡ ztφ(ct) is taken as given by firms but ct denotes aggregate consumption. The

factor φ(ct) thus captures the externality; it is an increasing function and can perhaps be

thought of as a “utilization” function driven by consumption demand.

Thus, the firm solves

max
k,h

= Atk
αh1−α − rtk − wth (16)

at time t.
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Given this formulation, one can ask how a planner would wish to choose an allocation—

in what way the market allocation fails. However, that is not our aim here. Rather, let

us note that if ct does not appear as an argument in TFP, i.e., if there is no consumption

externality, then knowing the capital-labor ratio, along with zt, one can compute the

equilibrium prices rt and wt. With an externality, however, the capital-labor ratio is not

sufficient information: one needs to know both this ratio and the level of consumption.

Therefore, when solving for a transition equilibrium in response to an MIT shock, one

needs to guess on two sequences (either for r and w or for c and k/h) in order to have

enough information so that the consumer’s problem is fully specified and can be solved.

This is not a model virtue per se, of course; we merely add a “complication” so that we

can put our method to a slightly more demanding test.

4 Numerical approach

Here we describe some details of our computations.

Representative-agent model We solve the representative-agent model in Dynare.

Dynare has a routine that solves for a transition path nonlinearly, and we use this routine

to find the transitional equilibrium. We start at a steady state and consider a small in-

crease in z0 and a subsequent deterministic transition of z1, z2, and so on, back toward 1.

We treat the resulting transitional path for output (and any other aggregates of interest)

as an impulse response—a numerical derivative of output k periods hence in response to

a shock to (the logarithm of) z at time 0—and then use this impulse response in simula-

tions to obtain realizations of the stochastic equilibrium based on which we then compute

unconditional moments. We then compute another transition path, this time for an in-

novation to (the logarithm of) q, and compute the deterministic transition path. These

paths are then employed to run simulations and compute unconditional moments—in the

case of output only, its autocorrelation function—that can be compared to those produced

by the standard Dynare output based on linearization.

In carrying out these computations and comparisons, accuracy is improved by (i)
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choosing an appropriately small initial shock (so as to approximate a numerical derivative

as well as possible); (ii) setting a small enough tolerance level for Dynare’s nonlinear

routine; and (iii) allowing sufficiently many time periods in the impulse response.

Heterogeneous-agent model, stationary equilibrium For the heterogeneous-agent

model the first step is to find a stationary equilibrium. We carry this task out using our

own MATLAB code. The consumer’s problem is solved on a grid using the endogenous

grid point method of Carroll (2006).17 The individual income process is an AR(1) process

and we use 7 grid points to discretize the process into a Markov chain using Rouwenhorst’s

method (Kopecky and Suen, 2010). For the decision rules, the asset grid has 50 points,

non-linearly spaced, and households can choose points off the grid by piecewise cubic

interpolation (pchip in MATLAB). The dynamic programming problem is then solved by

evaluating the value function at the optimal decisions for consumption, hours, and savings.

The steady state is solved for simultaneously with the calibration of the capital-output

ratio and hours worked. Instead of having nested loops—where one guesses on parameters,

then conditional on those parameters solves for market clearing prices, then checks if those

prices are consistent with the calibration targets—there is only one loop where we use

parameters to clear markets at fixed prices (instead of using prices to clear markets at

fixed parameters). The target for the capital-output ratio (10.26, quarterly) pins down

the real rate and wages, and the target for hours (1/3) pins down the level of aggregate

capital. To find the steady state given these prices and quantities, one guesses on β and

ψ, solves the household problem and computes aggregate assets and labor supplied by

the households. If either quantity is too high or too low relative to the demand from

firms, the guesses are updated. We use a MATLAB’s fsolve solver, which employs a

trust-region method to solve for the values of β = 0.985 and ψ = 8.024 that clear the

markets. The stationary distribution is solved for by approximating the distribution using

17The method involves guessing a policy rule for consumption of a function of assets and idiosyncratic
productivity, setting a grid on tomorrow’s assets, then solving (in closed form) for today’s consumption
using the Euler equation of the household. This then allows one to cover the implied grid for today’s assets
consistent (hence giving the method its name) which is then used to update the consumption function. We
do the updating by interpolating the consumption function between the exogenous and endogenous grids
using piecewise cubic interpolation.
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a histogram over income and assets defined on a finer grid than the policy functions—1,000

points (also non-linearly spaced). We compute the transition matrix between individual

states using the policy functions of households and the Markov transition matrix for labor

productivity. We recover the invariant distribution by finding the eigenvector associated

with the largest eigenvalue (1) of the transition matrix. Aggregate savings and labor supply

is then straightforwardly computed as the sum of savings over the invariant distribution.

Heterogeneous-agent model, transitional equilibrium To solve for a transitional

equilibrium we also use a home-made MATLAB code. The solution algorithm here is

outlined as follows:

Transitional Equilibrium Algorithm

1. Choose a time T at which point we assume the economy has reached steady state.

2. Guess a path for the capital-labor ratio, ({Kt/Ht}Tt=0)
0.

3. Solve the value function (and policy functions) backwards from t = T−1, . . . 1 setting

V T = V SS .

4. Starting from the steady state distribution, simulate the distribution forward from

t = 1, . . . , T using the policy functions and idiosyncratic productivity Markov tran-

sition matrix.

5. At each t, compute aggregate capital and labor supplied KS
t , H

S
t using the distribu-

tion and policy functions.

6. Compute the maximum difference between supply and demand ζ = max |Kt/Ht −
KS
t /HS

t |.

7. If ζ < 10−5 min{εx,0, 1}, STOP.

8. Update guess18 ({Kt/Ht}Tt=0)
1 = υ({Kt/Ht}Tt=0)

0 + (1− υ){KS
t /HS

t }Tt=0 and GO TO 2.

18The particular values we choose for υ are 0.8, when the deviation ζ is greater than 10−4, and 0.65
otherwise.
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The basic idea is that after some long amount of time (here T = 350 quarters) the economy

will return to the original steady state. Thus, we are guessing on a transition path back

to the original steady state. In order to solve the households’ and firms’ problems we need

to know the path of prices along the transition. The capital-labor ratio is sufficient to

pin down the prices, thus, by guessing a path for the capital-labor ratio we have all the

prices that we need.19 Thus, then we can take the original steady state value function

as our terminal condition and solve the household problem backwards. We then simulate

the distribution over households forward starting with the steady state distribution. If

the path of the capital output ratio implied by the policy functions and distribution is

sufficiently close to our guess, we’ve solved for the equilibrium and we’re done. Otherwise,

we update the guess by taking a convex combination between the guessed path and the

path implied by simulating forward. Despite the fact that the shooting method that we use

for the transition path does not have well established convergence properties, in practice

we find that our algorithm achieves roughly first-order convergence when beginning with

an initial guess for the path of the capital-labor ratio obtained from the representative-

agent model. Thus, typically we can achieve our desired level of convergence in less than

15 iterations.

The simulation of a stochastic equilibrium is identical to that used for the representative-

agent model.

5 Parameter selection

5.1 Calibration

Our calibration is straightforward. For the standard parameters we use α = 0.36 to

match the capital share, δ = 0.025 to match a real rate of 4% per year, and σ = 1

(logarithmic curvature) as a benchmark value used in the literature. We choose a Frisch

elasticity θ of 1, again as a standard in the literature. We use standard parameters for

the technology shocks, a serial correlation coefficient ρz for TFP of 0.95, and a ρq for the

19We typically use the solution to the representative-agent model as the initial guess for solving the
transition.
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investment-specific shock of 0.9, with standard deviations σz for TFP of 0.007 and σq for

the investment-specific shock of 0.02.

We calibrate the income process following Krueger, Mitman, and Perri (2016) who

estimate a process for disposable earnings after taxes and transfers using the PSID. They

estimate the quarterly persistence for innovations, ρy, to be 0.9923 and the standard

deviation, σy, to be 0.0983. We treat their measured transitory shock as measurement

error.

5.2 Findings

We begin with the representative-agent (RA) economy, where we can implement our

method using only Dynare’s model solution. We then display results for the benchmark

heterogeneous-agent (HA) model, after which we produce checks on the linearity assump-

tion. We finally present results from the model with an externality and with policy.

5.2.1 The RA case

Figure 1 displays the impulse response function for output and various aggregates for the

RA economy. These results are computed using Dynare’s nonlinear transition algorithm.

Unless otherwise noted, we always select innovations of size εx,0 = 0.01.

The figure reports impulse responses that have the expected shape and, by ocular

inspection, look just like those obtained from Dynare’s standard, linearization-based im-

pulse response command (we omit showing the latter for brevity). What is key here,

however, is that we can now simulate the representative-agent economy with aggregate

shocks based on these impulse responses and compare its features to those generated by

Dynare’s linearization-based algorithm, as well as for its higher orders of perturbation.

These results are contained in Table 1 below. Our method produces nearly identical cor-

relation statistics to those using Dynare linearization and they are also very close to the

values using second-order perturbation.

For the benchmark simulation method we used 500 periods from the deterministic

impulse response functions. It is instructive to understand how the approximation varies
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Figure 1: Impulse responses to neutral (top) and investment-specific (bottom) technology
shocks for the representative-agent economy
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Table 1: Correlations between variables — RA economy

z q y c i h r w

Our method (N = 500)
1.000 -0.021 0.785 0.506 0.286 0.372 0.199 0.748
-0.021 1.000 -0.533 0.324 -0.856 -0.911 0.156 -0.124
0.785 -0.533 1.000 0.496 0.512 0.686 -0.257 0.867
0.506 0.324 0.496 1.000 -0.492 -0.284 -0.614 0.863
0.286 -0.856 0.512 -0.492 1.000 0.969 0.349 0.016
0.372 -0.911 0.686 -0.284 0.969 1.000 0.137 0.236
0.199 0.156 -0.257 -0.614 0.349 0.137 1.000 -0.502
0.748 -0.124 0.867 0.863 0.016 0.236 -0.502 1.000

Dynare 1st order
1.000 -0.021 0.785 0.506 0.286 0.372 0.199 0.748
-0.021 1.000 -0.533 0.324 -0.855 -0.911 0.156 -0.124
0.785 -0.533 1.000 0.496 0.512 0.686 -0.257 0.867
0.506 0.324 0.496 1.000 -0.492 -0.284 -0.614 0.863
0.286 -0.855 0.512 -0.492 1.000 0.969 0.349 0.016
0.372 -0.911 0.686 -0.284 0.969 1.000 0.136 0.236
0.199 0.156 -0.257 -0.614 0.349 0.136 1.000 -0.502
0.748 -0.124 0.867 0.863 0.016 0.236 -0.502 1.000

Dynare 2nd order
1.000 -0.021 0.784 0.505 0.287 0.368 0.200 0.746
-0.021 1.000 -0.534 0.323 -0.855 -0.909 0.157 -0.125
0.784 -0.534 1.000 0.496 0.512 0.681 -0.258 0.867
0.505 0.323 0.496 1.000 -0.492 -0.287 -0.615 0.863
0.287 -0.855 0.512 -0.492 1.000 0.967 0.350 0.016
0.368 -0.909 0.681 -0.287 0.967 1.000 0.137 0.232
0.200 0.157 -0.258 -0.615 0.350 0.137 1.000 -0.503
0.746 -0.125 0.867 0.863 0.016 0.232 -0.503 1.000
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with the length of the IRF used for the linearization. In Table 2 we display the model

correlations when we use our method with 10, 100, and 500 (benchmark) periods of the

IRF for the linearization. As the shocks are persistent, the approximations begin to differ

when only using a truncated history of the shocks, suggesting that a longer time horizon

is necessary for an accurate approximation when using highly persistent shocks. However,

the 100-period simulation length still does a decent job under this scenario.

Table 2: Correlations between variables — RA economy

z q y c i h r w

Benchmark (N = 500)

1.000 -0.021 0.785 0.506 0.286 0.372 0.199 0.748
-0.021 1.000 -0.533 0.324 -0.856 -0.911 0.156 -0.124
0.785 -0.533 1.000 0.496 0.512 0.686 -0.257 0.867
0.506 0.324 0.496 1.000 -0.492 -0.284 -0.614 0.863
0.286 -0.856 0.512 -0.492 1.000 0.969 0.349 0.016
0.372 -0.911 0.686 -0.284 0.969 1.000 0.137 0.236
0.199 0.156 -0.257 -0.614 0.349 0.137 1.000 -0.502
0.748 -0.124 0.867 0.863 0.016 0.236 -0.502 1.000

N = 100

1.000 -0.018 0.778 0.503 0.284 0.369 0.198 0.741
-0.018 1.000 -0.540 0.312 -0.853 -0.911 0.174 -0.135
0.778 -0.540 1.000 0.499 0.512 0.688 -0.271 0.868
0.503 0.312 0.499 1.000 -0.489 -0.278 -0.616 0.863
0.284 -0.853 0.512 -0.489 1.000 0.968 0.337 0.018
0.369 -0.911 0.688 -0.278 0.968 1.000 0.120 0.241
0.198 0.174 -0.271 -0.616 0.337 0.120 1.000 -0.511
0.741 -0.135 0.868 0.863 0.018 0.241 -0.511 1.000

N = 10

1.000 0.007 0.784 0.420 0.329 0.345 0.808 0.924
0.007 1.000 -0.599 0.819 -0.932 -0.934 -0.064 0.051
0.784 -0.599 1.000 -0.108 0.804 0.828 0.593 0.751
0.420 0.819 -0.108 1.000 -0.678 -0.644 0.050 0.576
0.329 -0.932 0.804 -0.678 1.000 0.997 0.409 0.211
0.345 -0.934 0.828 -0.644 0.997 1.000 0.381 0.253
0.808 -0.064 0.593 0.050 0.409 0.381 1.000 0.521
0.924 0.051 0.751 0.576 0.211 0.253 0.521 1.000
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5.2.2 The HA case

Turning to the heterogeneous-agent economy, our impulse response functions for output

and other aggregates are contained in Figures 2 and 3 below, where we include the IRFs

from the representative-agent economy for comparison.

0 20 40 60
0

1

2

3

4

5

6

7

8
10 -5 TFP Shock

0 20 40 60
0

1

2

3

4

5
10 -5 Consumption

0 20 40 60
0

1

2

3

4

5

6
10 -5 Capital

0 20 40 60
-4

-2

0

2

4

6

8

10
10 -5 Hours

0 20 40 60
-1

0

1

2

3

4

5

6
10 -5 Wages

0 20 40 60
0

0.2

0.4

0.6

0.8

1
10 -4 Output

HA
RA

Figure 2: Impulse response to neutral technology shock for the HA and RA economies

The impulse response in the heterogeneous-agent model looks quite similar to that in

the representative-agent setting in the case of a neutral technology shock, though, there

is a noticeable difference in the response of hours and the capital stock. However, in

response to the investment-specific shock we note significantly more propagation in the

heterogeneous-agent relative to the representative-agent economy, with all series noticeably

different.

Given this impulse response we then generate output for an economy with aggregate

shocks based on treating the impulse response above as a linear response. We simulate
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Figure 3: Impulse response to investment-specific technology shock for the HA and RA
economies
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shocks for 10,500 periods and discard the first 500 periods of the simulation. One of

the advantages of our approximation procedure is that we are able to directly simulate

interesting statistics from the distribution. For example, in Table 3 we include the Gini

coefficient of the wealth distribution and the fraction of households that are borrowing

constrained (the steady-state values are 0.77 for the Gini and 26% for the constrained).

We include the impulse responses for the Gini and fraction of hand-to-mouth (HtM)

households in Figure 4.

Table 3: Correlations between variables — HA economy

z q y c i h r w HtM Gini

HA model
1.000 -0.021 0.807 0.537 0.370 0.263 0.229 0.772 -0.289 -0.337
-0.021 1.000 -0.512 0.310 -0.908 -0.838 0.171 -0.131 0.426 0.500
0.807 -0.512 1.000 0.526 0.671 0.467 -0.212 0.881 -0.709 -0.772
0.537 0.310 0.526 1.000 -0.269 -0.506 -0.567 0.865 -0.669 -0.643
0.370 -0.908 0.671 -0.269 1.000 0.958 0.145 0.247 -0.294 -0.386
0.263 -0.838 0.467 -0.506 0.958 1.000 0.379 -0.006 -0.019 -0.111
0.229 0.171 -0.212 -0.567 0.145 0.379 1.000 -0.443 0.805 0.771
0.772 -0.131 0.881 0.865 0.247 -0.006 -0.443 1.000 -0.792 -0.814
-0.289 0.426 -0.709 -0.669 -0.294 -0.019 0.805 -0.792 1.000 0.985
-0.337 0.500 -0.772 -0.643 -0.386 -0.111 0.771 -0.814 0.985 1.000
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Figure 4: Distributional impulse responses to the neutral shock (left) and investment-
specific shock (right) for the HA economy

38



5.2.3 Are the responses linear? Some tests

Next, we explore the appropriateness of the linearity and symmetry assumptions implicit

in our methodology. For brevity, we limit our tests to the HA economy, but similar results

obtain in the RA case. First, we compute the impulse responses for the z and q shocks of

sizes for ±0.01 and ±2 standard deviations to investigate whether the deterministic IRFs

exhibit asymmetries or non-linearities. The normalized (by shock size) impulse responses

for output to productivity are plotted in Figure 5. The values are normalized by the size

of the initial shock (i.e., in log deviations from steady-state consumption divided by the

log of productivity, z0). The solid and dotted lines correspond to the 0.01% and -0.01%

impulse responses, respectively. Note that there is a striking absence of asymmetry or

non-linearity in the shocks. We plot the equivalent figure for investment-specific shocks

in Figure 6 with virtually the same result, though here there is a visible deviation with a

slightly smaller response for the larger positive shock.
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Figure 5: Normalized impulse responses for small/large positive/negative neutral shocks

Next, we assess the appropriateness of linearity in the number of shocks. We compute

the perfect-foresight impulse responses for both z and q shocks occurring at the same
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Figure 6: Normalized impulse responses for small/large positive/negative investment-
specific shocks

time, correlated either perfectly positively or perfectly negatively. We can then compare

the IRFs to those from taking the linear combination of the IRFs to the two shocks

individually.
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Figure 7: Differential impulse responses for correlated shocks.

Clearly, from inspecting Figure 7 there is very little sign of departure from linearity

here as well.

40



5.2.4 Policy: Ricardian non-equivalence and demand-determined output

In the model above, policy would have nontrivial effects relative to the corresponding

representative-agent economy. This is perhaps a surprise to some, as it is often claimed

that the model in Krusell and Smith (1998) “shows” that the distribution (almost) does

not matter for outcomes. The quotation marks are used here because the opposite is in fact

shown in the same paper. In the case where all consumers have the same discount factor

the distribution (almost) does not matter for outcomes but in the case with discount-

factor heterogeneity the distribution does matter. Moreover, the case where it matters

is the quantitatively reasonable case in the sense that it matches the empirical wealth

distribution well, whereas the case without discount-factor heterogeneity does not. The

present model, though not featuring discount-factor heterogeneity, also features significant

wealth inequality and gives the distribution a more prominent role, largely because the

dynamic nature of idiosyncratic shocks is different here.20 Thus it will give policy a

nontrivial role.

The purpose of the present section is to show that our method makes policy very

straightforward to study—it does not add numerical complication. In particular, we show

how it is straightforward to compute equilibria where policy follows a rule. The class of

such rules is very large and we specify two very simple fiscal rules for illustration only. We

also change the model somewhat by introducing an externality: we allow for aggregate

productivity to depend on contemporaneous aggregate consumption. A key reason for this

addition is that it makes the model more challenging to solve: it makes it necessary to

guess on two paths to solve for the transitional equilibrium.21 We show that our method

continues to work very well.

We specify the functional form for the demand externality φ(c) as follows:

φ(c) = (c− κc)ϑ,
20An additional reason is that the utility function over consumption and hours employed here does not

admit aggregation even under complete markets.
21The externality also gives policy an additional role, but that is not our focus here.
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where we set ϑ = 0.2 and κc = 0.3Css. We think of this externality as a reduced form

for the type of demand-determined search productivity shocks modeled in, e.g., Bai et al.

(2014). In the present paper the externality leads to a market failure, unlike in the Bai

et al. paper, where the search process, which is competitive, leads to efficient outcomes.

We conjecture that undirected search would generate features similar to the economy we

consider here.

In this version of the model, knowing the capital-labor ratio is not sufficient for solving

the household problem, because we need to know, in addition, aggregate consumption

to determine the factor prices that the households face. We therefore need to shoot on

an additional aggregate sequence and for this we choose aggregate consumption, ct. The

algorithm for computing transitions laid out in the section above is modified to update

both the guess for the capital-labor ratio and aggregate consumption, but is otherwise

unchanged (i.e., conditional on those conjectured prices and the productivity shock, we

solve the household problem backwards, then simulate forward, check market clearing—for

capital and hours, and hence consumption—and update).22

We also consider a policy that stabilizes aggregate consumption. The government sets

the lump-sum transfer according to

T = −c+ 0.05b,

where c is aggregate consumption and b is the level of government debt (so negative

values of b imply that the government is saving). This formulation stabilizes aggregate

consumption, but also ensures long-run budget balance by responding also to the level of

government debt.

Before we display the results for our main endogenous variables, let us illustrate the

sense in which shooting on two sequences (the capital-labor ratio and consumption) is

necessary in this economy. To this end, Figures 8 and 9 compare equilibrium wages over

time to those that would have materialized without movements in the demand externality.

22We find that the our algorithm converges quickly when beginning with the RA model path as an initial
guess despite the fact that we are now guessing on two sequences.
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Thus, for each aggregate shock scenario, the difference between the curves is a measure of

how much a consumer would go wrong by predicting the wage solely based on the capital-

labor ratio and the neutral productivity shock, hence ignoring the externality movements.

We take some comfort in the fact that the gap is substantial and, thus, that in this version

of the model shooting on two, as opposed to only one, sequence, is not only necessary from

a conceptual perspective but also important in a quantitative sense.
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Figure 8: Wages in equilibrium vs. net of externalities, neutral shock.

The impulse responses for the economy with and without the policy are plotted in

Figures 10 and 11.

We see that there is stabilization under the transfer policy. Note that the representative-

agent version of the present economy would make lump-sum transfers completely ineffec-

tive because of Ricardian Equivalence. Under incomplete markets, transfers do influence

aggregates as they involve redistribution across households with different marginal propen-
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Figure 9: Wages in equilibrium vs. net of externalities, investment-specific shock.
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Figure 10: Impulse response to neutral shock for the HA economy with and without
deficit-financed transfers.
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Figure 11: Impulse response to investment-specific shock for the HA economy with and
without deficit-financed transfers.
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sities to consume and work.

In addition, we simulate the two versions of the model under recurring aggregate shocks

using our method. The correlation tables are reported in Table 4. We find that under the

deficit-financed transfer policy, aggregate consumption is significantly stabilized relative

to laissez-faire.

Table 4: Correlations between variables — HA economy with externality

z q y c i h r w HtM Gini

Laissez-faire
1.000 -0.021 0.793 0.544 0.537 0.401 0.416 0.704 -0.332 -0.386
-0.021 1.000 -0.237 0.258 -0.854 -0.830 0.269 0.000 0.365 0.412
0.793 -0.237 1.000 0.823 0.595 0.269 -0.223 0.958 -0.813 -0.855
0.544 0.258 0.823 1.000 0.041 -0.325 -0.387 0.951 -0.745 -0.746
0.537 -0.854 0.595 0.041 1.000 0.920 0.014 0.345 -0.454 -0.523
0.401 -0.830 0.269 -0.325 0.920 1.000 0.289 -0.018 -0.087 -0.155
0.416 0.269 -0.223 -0.387 0.014 0.289 1.000 -0.318 0.681 0.655
0.704 0.000 0.958 0.951 0.345 -0.018 -0.318 1.000 -0.818 -0.842
-0.332 0.365 -0.813 -0.745 -0.454 -0.087 0.681 -0.818 1.000 0.987
-0.386 0.412 -0.855 -0.746 -0.523 -0.155 0.655 -0.842 0.987 1.000

Deficit-financed transfers
1.000 -0.021 0.796 0.026 0.413 0.221 0.458 0.718 -0.657 -0.367
-0.021 1.000 -0.311 0.400 -0.902 -0.835 0.286 -0.011 -0.282 0.029
0.796 -0.311 1.000 0.289 0.523 0.188 -0.142 0.935 -0.635 -0.746
0.026 0.400 0.289 1.000 -0.476 -0.717 -0.528 0.549 -0.528 -0.507
0.413 -0.902 0.523 -0.476 1.000 0.921 0.059 0.192 0.063 -0.098
0.221 -0.835 0.188 -0.717 0.921 1.000 0.274 -0.172 0.310 0.195
0.458 0.286 -0.142 -0.528 0.059 0.274 1.000 -0.242 -0.041 0.418
0.718 -0.011 0.935 0.549 0.192 -0.172 -0.242 1.000 -0.749 -0.818
-0.657 -0.282 -0.635 -0.528 0.063 0.310 -0.041 -0.749 1.000 0.485
-0.367 0.029 -0.746 -0.507 -0.098 0.195 0.418 -0.818 0.485 1.000

6 Concluding remarks

We first sum up by pointing to our main findings: we present a simple numerical lin-

earization method for heterogeneous-agent models with aggregate uncertainty and we find

that it works very well in a standard RBC setting with neutral and investment-specific

AR(1) technology shocks. We also look at a model with a consumption externality and

government transfer policy, both illustrating how easy it is to examine the effects of eco-
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nomically relevant policy rules in our economy and how the method works well also when

there are nontrivial market-clearing conditions each period. The tentative conclusion from

our analysis here is that it would be entirely feasible to extend our methods to more com-

plex settings; an example of such a setting is the kind of model studied by Smets and

Wouters (2003), where there are frictions in price and wage setting, some additional real

features to those considered here (such as consumption habits), and seven shocks. Given

that one would solve for impulse responses to each shock individually, the inclusion of more

shocks is not cumbersome: computing impulse responses to seven shocks is not much more

time-consuming to the case of two shocks that we considered here.

We must also remind the reader that the only nontrivial tool necessary for implement-

ing our solution method is value-function iteration. Value-function iteration is necessary

for solving for the steady state and it is also the key tool in solving for the transition

equilibrium. When it comes to what particular value-function iteration to choose, we are

agnostic. However, we should note that using the endogenous grid point method in the

transitional equilibrium case does allow to avoid any root finding or numerical optimiza-

tion in the backsolve of the household decisions. One can also, alternatively, use methods

based on policy-function iteration: our basic approach is equally applicable to that case.

It is obviously important to be able to solve for a transition path and it may be that

there are settings for which this is significantly more demanding. As the techniques used

in solving for transition paths could probably developed further—be made more stable as

well as faster—we hope that this will not be a significant obstacle. Auclert and Rognlie

(2017) propose a quasi-Newton method for computing transitions in heterogenous-agent

economies that offers a promising step in this direction.23

Of course, our approach of using numerical linearization to solve for equilibria relies

on nonlinearities not being important in the model at hand. Although this is a clear

weakness, it is an integral part of the procedure we propose here to examine to what

extent the equilibrium is “scalable”, i.e., linear. Thus, if one finds that scalability is not

23In their application they compute an approximate Jacobian to the transitional system by solving a
relaxed version of the household problem and then take Newton steps. They show that the their method
is stable and efficient, and converges rapidly in their application.
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satisfied, the model’s behavior is fundamentally more non-linear and other methods will

have to be used, such as those offered in Krusell and Smith (1998). Finding models that

are not approximately linear may be challenging, however, as much as such models could

enhance our understanding of some real-world phenomena. Our scalability check seems a

reasonable and challenging first hurdle to pass in the hunt for such models.

It should also be emphasized that our method, in placing MIT shocks and impulse-

response analysis at center stage, is sequential in nature, as opposed to recursive, like most

other approaches. Sequentiality allows us to eliminate the complications introduced by

infinite-dimensional (and typically uncountable) state vectors and functions of these state

vectors by replacing them by sequences that, in the numerical application, are finite. For

example, when one goes from solving an Aiyagari model for a steady state—in which no

aggregate state variable is needed in the individual’s dynamic programming problem—

to solving for a transition path for the same economy, one only adds one state variable,

namely, time. The sequential nature of impulse responses also lends itself to inspecting the

intuitive mechanisms of the model. In models with aggregate uncertainty and a discrete

number of shocks, such as Krusell and Smith (1998) or Krusell, Mukoyama, Rogerson, and

Şahin (2017), impulse responses are not a natural element of the mechanism inspection

toolbox so it becomes harder to understand the model’s conditional properties.

Models based on analytical linearization tend to come with an analysis of the stability

properties of the dynamic system the model leads to (as in Blanchard and Kahn, 1980). In

our case, no stability characterization is offered: we solve for a transition path and we do

not characterize its uniqueness nor whether there are local explosive paths. To the extent

there is a indeterminate set of stable paths, however, one would think that the iteration

over price paths would have poor convergence properties; in any case, determinacy issues

must be left for future research.24

Compared to the methods in the literature for solving heterogeneous-agent models, a

disadvantage of the present method is that it does not offer a metric of fit. Instead it

24For a discussion of price-level determinacy in heterogenous-agent models in response to MIT shocks
see Hagedorn, Manovskii and Mitman (2017) who apply the theoretical results of Hagedorn (2017) to a
heterogenous-agent New Keneysian model.
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assumes that linearization works and proceeds based on this assumption. The assump-

tion, we argue, can be tested to some extent with scalability checks, and hopefully one is

reassured at this point that linearization offers a good approximation. In contrast, models

based on recursive techniques, whether linear or nonlinear, can, when they are simulated,

offer a test in the form of a comparison between the simulated path of aggregate vari-

ables appearing in an individual’s decision problem and the perceptions of this behavior

assumed in his decision problem. Thus a goodness-of-fit measure, such as an R2, can be

computed.25 In sum, there are pros and cons with our approach but we hope that it can

be of value, mainly because of its simplicity and ties to impulse-response analysis, in a

range of interesting applications.
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