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on monotonicity of the heterogeneity density and apply these bounds in an example.

We also consider identification from budget set variation. We find that kinks alone may not be 
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Introduction 

 
The taxable income elasticity is a key parameter when predicting the effect of tax reform or 

designing an income tax. A large literature has developed over several decades which attempts 

to estimate this elasticity. However, due to a large variation in results between different 

empirical studies there is still some controversy over the size of the elasticity. The usual way to 

estimate the taxable income elasticity has been to use data from several tax systems at different 

points in time.1  A major challenge for this approach is to account for exogenous productivity 

growth, which would change the taxable income even if there were no behavioural changes.  

Bunching estimators of the taxable income elasticity were developed and extended in 

influential work by Saez (2010) and Chetty et. al. (2011). According to this work one can infer 

an interesting behavioural parameter, the taxable income elasticity, without any variation in a 

budget constraint. These papers develop ways to estimate the taxable income elasticity from 

the bunching pattern around a kink point. These estimators are quite remarkable in being based 

on one budget set rather than the variation in budget sets that is used by other empirical methods 

to identify the taxable income elasticity. If bunching estimators worked they would be a major 

advance. Since data from only one point in time is needed one would not have to worry about 

exogenous productivity growth. Bunching estimators have become quite popular, and there are 

a large number of papers that apply these methods.2  

Unfortunately, bunching estimators cannot identify the taxable income elasticity when 

the functional form of heterogeneity is unknown. The problem is that a kink probability may be 

large or small because of shapes of indifference curves or because more or fewer individuals 

                                                            
1 See for example Gruber and Saez (2002).  
2 Bastani and Selin (2014), Gelber et al. (2017), Marx (2012),  Le Maire and Schjering (2013) and Seim (2015) 
are a few of the recent papers that apply the bunching method. There are about 630 Google Scholar citations to 
Saez (2010), and the paper is on the curriculum in many graduate public economics courses around the world. 
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like to have taxable income around the kink. Intuitively, for a single budget-set, variation in the 

tax rate only occurs with variation in preferences. This conjoining of individual heterogeneity 

and variation in the tax rate makes it impossible to nonparametrically distinguish the taxable 

income elasticity from heterogeneity with a single budget set.  

Nonidentification can also be explained in terms of order conditions. A kink probability 

is just one-reduced form parameter and so can identify just one structural parameter. The 

elasticity and heterogeneity parameters are not separately identified from the kink probability. 

We show that for the isoelastic specification the kink is completely uninformative about the 

size of the elasticity when the density of heterogeneity is unknown.  Any positive elasticity is 

consistent with any kink probability for some choice of heterogeneity density. Furthermore, 

using more information about the distribution of taxable income along the budget set does not 

help. The order condition fails here also. The distribution of taxable income is one reduced-

form “parameter,” and there are two structural “parameters,” the elasticity and distribution of 

heterogeneity. We show that for a single budget set and taxable income distribution any positive 

number could be the elasticity for some distribution of individual heterogeneity. The 

distribution of taxable income is uninformative about the magnitude of the taxable income 

elasticity when the distribution of heterogeneity is unknown and there is a single budget set. 

A kink probability alone can identify only one structural parameter. Thus, everything 

about heterogeneity must come from somewhere else in order to get the elasticity from the kink 

probability. That is how the elasticity estimators in Saez (2010) and Chetty et. al. (2011) must 

work, and how they do work. Saez (2010) gets density estimates at the edge points from the 

budget set near the kink and then assumes the density is linear across the kink. Chetty et al. 

(2011) estimates a polynomial density near the kink and assumes the density is this polynomial 

across the kink.  
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A functional-form assumption for the heterogeneity density seems a very fragile 

assumption on which to hang identification of such an important structural parameter as taxable 

income elasticity. The heterogeneity is like a disturbance we might find in some other 

econometric model. The taxable income elasticity is an important structural parameter. It is 

unusual to rely so heavily on the functional form of a disturbance distribution for identification 

of a structural parameter. Instead we usually rely on variation in an observed variable, such as 

price, an instrument, or a running variable in regression discontinuity. Here it may seem that 

there is price variation as we move along the budget set, but that is incorrect. Different data 

points along a single budget set correspond to different individuals, so a single budget set does 

not allow us to distinguish the effect of changing the tax rate from heterogeneity. 

A kink may be informative about the elasticity when the heterogeneity density is 

restricted across the kink. When the heterogeneity density is monotonic across the kink e derive 

bounds on the elasticity when the heterogeneity density is monotonic over the kink. An 

assumption of monotonicity may seem reasonable when the kink occurs to one side of a 

unimodal distribution of taxable income. In an application like one of those in Saez (2010) we 

find these bounds to be very wide, so the kink is still not very informative. One could impose 

stronger restrictions on the heterogeneity density to shrink these bounds, like concavity. Of 

course all such bounds use information about the heterogeneity density to provide information 

about the elasticity, which is strong sensitivity of a structural parameter to disturbance 

distributions. 

We also consider identification from budget-set variation. We find that kinks alone are 

still not informative when budget sets vary because the order condition is still not satisfied. In 

contrast, we do find that the elasticity may be identified from the distributions of taxable income 

from two distinct budget sets. For the isoelastic model we find that the elasticity is identified if 
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the tax rate at the chosen point is different across the two budget sets, for some individual. We 

also discuss identification for models more general than the isoelastic specification. 

Nonparametric models are considered in Blomquist and Newey (2002), Blomquist et al. 

(2015), Manski (2014), and Kline and Tartari (2016). Blomquist and Newey (2002) 

nonparametrically identify and estimate important policy effects under scalar heterogeneity. 

Blomquist et. al. (2015) show that the results of Blomquist and Newey (2002) are valid with 

general heterogeneity and show how to impose all the conditions of utility maximization on 

expected taxable income. Manski (2014) and Kline and Tartari (2016) give bounds on effects.

 

 
For simplicity we will focus much of the discussion on budget sets with one kink. Figure 

1 illustrates such a budget set, with two linear segments with slopes ߠଵ  ଶ and a kink atߠ K .  

What the researcher can observe is the income distribution along the kinked budget constraint. 

If there were no kink at K  then there would be a smooth density function ଵ݂ሺܽሻ of taxable 

income A  along the extended first segment. However, due to the kink some individuals that 

otherwise would have had tangency solutions on the extended first segment are now located at 
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the kink. A crucial step in the bunching estimation procedure is a comparison of the actual mass 

of observations in an interval ሺܭ െ ,ߜ ܭ   ሻ around the kink with the mass that would haveߜ

been in the interval if there had been no kink. The actual mass in the interval can be observed. 

What the mass would have been in the interval, had there been no kink, must be estimated. A 

problem with such estimation is that all the individuals who would have been on the extended 

interval are now grouped at the kink. 

Saez (2010) does suggest a procedure for how one can estimate ଵ݂ሺܽሻ for individuals 

at the kink from the observed distribution of taxable income around the kink. We will see that 

this procedure corresponds to an assumption that the density function ଵ݂ሺܽሻ is linear between 

the endpoints of the kink. Thus, the Saez (2010) bunching estimator depends on linearity of 

the density of  ଵ݂ሺܽሻ along the extended first segment. As mentioned, this seems to be a very 

strong functional-form assumption on which to hang the identification of the taxable income 

elasticity. 

To illustrate nonidentification due to preference heterogeneity, consider the simple 

example in Figure 2. In this figure we show possible distributions of utility functions. In one 

of these distributions each individual has a large compensated taxable income elasticity, 

corresponding to a flat indifference curve, and the other a small taxable income elasticity 

corresponding to an indifference curve with larger curvature. As we have drawn the diagram, 

the income distributions are identical. In order not to clutter the diagram, we only show a few 

tangency points. We constructed the diagram such that at each tangency point we have one 

indifference curve corresponding to a large taxable income elasticity, the flatter indifference 

curves, and one corresponding to a low taxable income elasticity, the more curved 

indifference curves. At a point of tangency the slopes of the two indifference curves are the 

same, but the curvatures differ. There could be thousands, or millions, of tangency points, 

each constructed as the tangency points in the diagram.   
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Figure 2 shows that we can have two identical income distributions where one income 

distribution comes from preferences with a large taxable income elasticity and the other from 

preferences with a low taxable income elasticity.  We also assume that the indifference curves 

of individuals at the kink point have similar properties. The bunching estimator only uses 

information from the income distribution around a kink point. Hence, the bunching estimator 

must give the same result for the two (identical) income distributions, although they come from 

preferences implying different taxable income elasticities. This example shows that the 

bunching estimator cannot identify the taxable income elasticity when the distribution of 

heterogeneity is unrestricted.  

We may also be unable to identify the taxable income elasticity because of optimization 

errors. That optimization errors make it problematic to estimate the structural taxable income 

elasticity is discussed in Saez (2010), Chetty et. al. (2011), and Kleven (2016). In what follows 

we discuss the impact of optimization errors. 



 
 

7 
 

Previous work has largely overlooked the lack of identification of the taxable income 

elasticity from kinks. An exception is Blomquist et al. (2015), where nonparametric 

identification of an average compensated tax effect from a kink was considered. That paper 

showed that the kink provides no information about the average tax effect, but that the effect is 

identified when the heterogeneity density is linear over the kink, and has identifiable bounds 

under monotonicity for that effect. Our results for the Saez (2010) utility function are analogous, 

showing kinks do not provide any information about the elasticity, that the elasticity is 

identified when the heterogeneity density is linear, and giving bounds under monotonicity. 

The rest of the paper is organized as follows. In Section 2 we describe the main ideas 

behind the bunching estimation procedure. In Section 3 we consider the same isoelastic utility 

function as Saez (2010) and show that a kink and the entire budget set provide no information 

about the taxable income elasticity when the heterogeneity distribution is unrestricted. We show 

that any positive taxable income elasticity can be obtained from a distribution of taxable income 

for one budget set by varying the distribution of heterogeneity. We also show that Saez (2010) 

implicitly assumes a linear heterogeneity density when estimating the elasticity from a kink. 

Section 4 illustrates how optimization errors hinder identification. We discuss various reasons 

for optimization errors and possible shapes for them. In Section 5 we perform a simulation 

exercise where we, for a given taxable income elasticity, vary the heterogeneity distribution 

and add various types of optimization errors. The simulations verify that the bunching estimator 

cannot identify the taxable income elasticity even in the absence of optimization errors. Adding 

optimization errors in general give estimates an order smaller in magnitude.    

 Section 6 gives bounds depending on the monotonicity of the heterogeneity density. 

Section 7 shows how observing more than one additional budget does not help with 

identification from kinks, but can lead to identification as a result of more comprehensive 

budget-set variation. Section 8 contains a brief summary and discussion.   
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2. The Bunching Estimator 

We follow Saez (2010) when we describe the general idea behind the bunching 

estimator, but omit some details that are of no importance for our analysis. That paper first 

derives the bunching estimator for a small kink. When the analysis is extended to larger kinks 

a parametric, isoelastic utility function is used. In this section we describe the analysis for a 

small kink. The analysis using an isoelastic utility function follows in Section 3.  

To establish how excess bunching at the kink is related to the taxable income elasticity 

we assume a strictly quasi-concave utility function ܷሺܥ, ,ܣ ሻ where Cߩ  is consumption 

(disposable income), A  taxable income, and ρ a random preference parameter following a 

continuous probability density function. It is assumed the taxable income function implied by 

the utility function is increasing in ρ.  Heterogeneity of preferences is necessary in order for the 

bunching estimator to be of any interest. Since there is a single budget constraint, if preferences 

were homogenous we would have one point on a single budget constraint; no inference about 

preferences could be drawn from that. Since everyone faces the same budget constraint, 

heterogeneity is needed to create variation in taxable income. 

There is a simple relationship between the taxable income elasticity and the curvature 

of the indifference curve. Consider an indifference curve defined by ܷሺܥ, ,ܣ ሻߩ ൌ  ߩ ത for fixedݑ

and define the function ܥ ൌ ݄ሺܣ, ,ߩ ݄ തሻ.  Letݑ ′ሺܣ, ,ߩ തሻݑ ൌ ,ܣ݄′′ሺ	 and  ܣ߲/݄߲ ,ߩ തሻݑ ൌ ߲ଶ݄/߲ܣଶ.    

We note that ݄′ is the slope of the indifference curve with utility level ݑത and ݄′′ the curvature 

of the indifference curve. One can show that if utility is maximized subject to a linear budget 

constraint with slope ߠ, then the compensated effect is given by ߲ߠ߲/ܣ ൌ 1/݂′′. The less 

curved an indifference curve is (small ݂′′), the larger the ߲ߠ߲/ܣ and the taxable income 

elasticity are. 

To derive the bunching estimator, Saez (2010) considers a counterfactual hypothetical 

change in a budget constraint. Suppose individuals maximize their utility subject to the 
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extended first segment illustrated in Figure 1. This would generate a smooth density, ଵ݂ሺܽሻ, of 

taxable income along the extended first segment. Suppose next that a kink at ܣ ൌ  is ܭ

introduced, and the slope of the budget constraint after the kink is ߠଶ ൌ ଵߠ  ,ߠ߂ ߠ߂ ൏ 0. Some 

of the individuals who had a tangency solution above ܭ on the extended segment will now 

instead choose the kink point ܭ. This implies that there will be a mass of individuals locating 

at the kink, a spike in the distribution. We follow the literature and refer to this as bunching.  

In Figure 1 we have drawn two indifference curves for the marginal buncher, i.e., the 

individual with the highest ρ that before the (hypothetical) change had a tangency on the 

extended first segment and after the change has a tangency at the kink. Before the (hypothetical) 

change in the budget constraint, the individual had a tangency on the extended segment at ܭ 

 The .ܭ and after the change in the budget constraint a tangency on the second segment at ,ܣ߂

taxable income elasticity is 

݁ ൌ ௱/

௱ఏ/ఏభ
   (1) 

However, in reality we cannot observe incomes at the individual level on the extended first 

segment. This means that we do not know ܣ߂. To overcome this lack of information Saez 

(2010) assumes that one can use observations along the kinked budget set to estimate the density 

ଵ݂ሺܽሻ of taxable income along the extended first segment. This is a crucial assumption for the 

bunching method to work and, as we will show in the next section, it corresponds to assuming 

a functional form for ଵ݂ሺܽሻ along the extended first segment.  

We can observe the amount of bunching around the kink; we denote this bunching by 

B.  This bunching consists of all individuals who would have had a tangency between K and 

ܭ  ݂ along the extended first segment. Suppose we knew the density ܣ߂ ଵሺܽሻ of taxable income 

along the extended first segment. We could then use the relationship  

ܤ                                  ൌ  ଵ݂ሺܽሻ݀ܽ
ା௱
                                       (2) 
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to calculate ܣ߂.  We would then have all the pieces necessary to calculate the taxable income 

elasticity for the marginal buncher.  

Saez (2010) notes that there might be optimization errors, which implies that some 

individuals might not be able to locate at the kink even if they would like to do so. This implies 

that instead of a pronounced spike at K, we would observe more of a hump in the distribution 

around the kink. Saez (2010) develops a technique for how to get an estimate of the excess 

bunching at the kink when there are optimization errors. Chetty et al. (2011) refines this 

technique. In the next section we will discuss precisely what is being assumed about the 

distribution of heterogeneity for these techniques.  

Suppose that the distribution of taxable income A is uniform along an extended first 

segment ሺܭ, ܭ  ሻ with density ଵ݂ܣ߂
ഥ   We can then rewrite equation (2) as ܤ ൌ ଵ݂

ഥܣ߂.  

Combining this with equation (1) we get 

݁ ൌ
ሺ/భതതത		ሻ/

௱ఏ/ఏభ
.         (3) 

In the literature, the expression ܤ/ ଵ݂
ഥ  is often called the excess bunching at the kink. The goal 

of the empirical work is to come up with an estimate of the excess bunching at the kink.  Since 

in actual data there is rarely a spike at a kink, but more of a hump, one tries to estimate the 

excess bunching in an interval ሺܭ െ ܭ,ߜ   ሻ.  To achieve this, one divides the data into aߜ

number of equally-sized bins and constructs a histogram. From a visual inspection of the 

histogram one decides on the interval  ,K K   .  Using the distribution as measured by 

the number of observations in each bin one makes an estimate of the distribution along the 

extended first segment. In this estimation procedure one excludes the interval ሺܭ െ ܭ,ߜ    .ሻߜ

The excess bunching is measured as the actual number of observations in the bunching interval 

divided by the number predicted by the estimated counterfactual density ത݄ along the extended 

first segment.   
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The identification problem is that ଵ݂
ഥ  is unknown. The density of taxable income along 

the extended first segment is not identified because all of those individuals who would have 

located there are now grouped at the kink. Furthermore, the value of ଵ݂ഥ  may be any nonnegative 

number, implying that the taxable income elasticity may be any non-negative number. In this 

sense the kink probability provides no information about the taxable income elasticity when 

there are no restrictions on the taxable income density.  

Imposing smoothness and endpoint restrictions does not help with identification. We 

can fix ଵ݂ሺܭሻ and ଵ݂ሺܭ   ሻ and their derivatives of all orders and still obtain any value ofܣ߂

 ଵ݂ሺܽሻ݀ܽ
ା௱
  by varying ଵ݂ሺܽሻ on the interior of the interval. Therefore, the taxable income 

elasticity may be anything depending on the value of the integral, so that the kink provides no 

information about the taxable income elasticity, even when the density satisfies endpoint 

restrictions and is continuously differentiable of all orders.  

We have shown nonidentification of a discrete version of the taxable income elasticity, 

sometimes referred to as an arc elasticity. In the next section we will show that nonidentification 

also holds for the isoelastic model.     

 

3. Nonidentification with Taxable Income Function  ൌ  ࢼࣂ࣋

In this section we show that the taxable income elasticity is not identified from bunching 

for the isoelastic utility specification of Saez (2010). We continue to proceed under the 

assumption that there are no optimization errors. In the next section we will consider 

optimization errors. We also assume the taxable income elasticity is the same for everyone. 

Using these assumptions will bias the setup towards identification. Still, even with these strong  

restrictive assumptions we show that the bunching estimator cannot identify the taxable income 

elasticity. We also show that the bunching estimator of Saez (2010) is based on a linear density 

assumption. 
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The isoelastic utility function as used in Saez (2010) to derive the bunching estimator 

is: 

                                
1

1

, ,
1

1

A
U C A C







 

   
 

, 0   , 0  .              (4) 

Maximizing this utility function subject to a linear budget constraint with slope θ gives the 

taxable income function ܣ ൌ  ఉ; the taxable income elasticity will be constant and is givenߠߩ

by β. There are no income effects. The variable ρ represents unobserved individual 

heterogeneity in preferences. It is the variation in ρ that generates a distribution of income along 

a budget constraint. We note that A is increasing in  , ρ and θ for 0,  ߩ   0, ߠ  0  

 Given the kink point ܣ ൌ  ଵ of the segment before the kink and the slopeߠ the slope ,ܭ

 ,ଶ of the segment after the kink, we can calculate the size of the bunching window for ρߠ

meaning the interval of  ρ for which taxable income A will be at the kink. The highest value of 

ρ giving a tangency solution on the first segment is given by the relation ܭ ൌ ଵߠߩ
ఉ, and the 

lowest value of ρ giving a tangency solution on the second segment is given by ܭ ൌ ଶߠߩ
ఉ. The 

bunching window in terms of ρ is therefore given by ሾߠܭଵ
ିఉ, ଶߠܭ

ିఉሿ, so the kink probability is 

ܤ ൌ Prሺܣ ൌ ሻܭ ൌ  ߶ሺߩሻ݀ߩ
ఏమ

షഁ

ఏభ
షഁ ,   (5) 

where ߶ሺߩሻ is the density of ρ.  

Here we can clearly see the identification problem. The size of the bunching window is 

increasing in β, which implies that for a given preference distribution, the bunching itself is 

increasing in β. This is the main idea behind the bunching estimator; the higher the taxable 

income elasticity, the more bunching there will be. However, it is also true that for a given 

taxable-income elasticity, the larger the mass of the preference distribution located in the 

bunching window, the larger the bunching will be. Hence, for a given value of the taxable-



 
 

13 
 

income elasticity, the amount of bunching can vary a lot depending on the shape of the 

preference distribution.  

The bunching window in terms of ρ is well defined. The bunching window in terms of 

taxable income depends on how we define the counterfactual budget constraint. In the bunching 

literature it is assumed the extended first segment is the counterfactual. In this case the bunching 

window will be  1 2, /A K K    , to the right of the kink as shown in Figure 1. This definition 

of the counterfactual is, of course, quite arbitrary. One could just as well consider the extended 

second segment to be the counterfactual. In this case the bunching window would be to the left 

of the kink.  Or, we could let the counterfactual be a linear budget constraint passing through 

the kink point with a slope intermediate between 1  and 2 . In this case the bunching window 

would be partly to the left and partly to the right of the kink. Our analysis shows there is no 

need to introduce a counterfactual. However, to relate our analysis to the bunching literature 

we introduce a counterfactual and consider the extended first segment to be the counterfactual 

budget constraint.  

To illustrate nonidentification we will construct two data generating processes (dgp:s) 

that generate identical distributions of taxable income around a kink in a budget constraint, 

although the underlying preferences represent different taxable income elasticities. Since the 

bunching estimator only uses information on the income distribution around the kink, the 

bunching estimator must give the same estimate for the two data generating processes, although 

they represent different taxable income elasticities. This shows that the bunching estimator 

cannot identify the taxable income elasticity.  

We assume individuals maximize utility subject to a budget constraint with a kink at 

A K  and slope 1  before the kink and 2  after the kink. Let the first dgp be defined by the 

cumulative distribution function   ,  ,   for the preference parameter and an 

elasticity  . Let us denote by 1  the highest ρ that gives a tangency on the first segment and 
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by 2  the lowest ρ that gives a tangency on the second segment. Then for  1,    there 

will be a tangency solution on the first segment, a kink solution at A K  for  1 2,    and 

a tangency on the second segment for  2 ,   . Since the taxable income for a linear budget 

set is given by A  , it follows by Theorem 2 of Blomquist et al. (2015) that the cumulative 

distribution function for taxable income on the first segment is given by 

     1
1 1 1( ) Pr Pr / / ,F A A A A             and the pdf for A  is 

   1
1

1

1
/f A A 




 


 for  ,A A K  where 1A  . Similarly, the cumulative distribution 

function for [ , )A K A , where 2A  ,  on the second segment is  2
2Pr( )F A A 

   2 2Pr / / ,A A         and the pdf is    2
2

2

1
/f A A 




 


 . The probability that 

taxable income is at the kink is given by  

           
2

2

1
1

2 1
2 1

K

K

B v dv v dv K K F K F K



 



 
 

 

   




        .        (6) 

This is the basic bunching equation for the constant elasticity utility function from equation (4).  

The second data generating process is defined by the cumulative distribution function 

  ,  ,    for the preference parameter and an elasticity    . Following the 

procedure used above we can derive the cumulative distribution function 1( )G A    1/ ,A  

and the pdf is    1
1

1

1
/g A A 




 


   for taxable income on the first segment. Likewise we 

derive the cumulative distribution function    2
2/G A A    and the pdf  

   2
2

2

1
/g A A 




 


  for the second segment. The probability that taxable income is at the 

kink is given by            
2

2

1
1

2 1
2 1

K

K

v dv v dv K K G K G K



 



 
 

 

   




       . 

We want the two data generating processes to generate identical distributions of taxable 

income at and around the kink? For this to be true we must have      1 1 , ,F A G A A A K  , 
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     2 2 , , ,F A G A A K A   and there must be the same mass at A K . To ensure that the 

two dgp:s are defined on the same intervals we must set 1 1A      , implying 

1
     . We must set 1 1

1 1K        , implying 1 1
1

      , 2 2
2 2K         

implying 2 2
1

      and finally 2 2A      , implying  2
     . The requirement 

   1 1 ,F A G A   ,A A K implies    1 1 1/ / ,A A              ,A A K and vice 

versa. The requirement      2 2 , ,F A G A A K A   implies    2 2 2/ / ,A A             

 ,A K A  and vice versa.  Finally for  Pr A K  to be the same for the two dgp:s we must 

have    
2 2

1 1

K K

K K

v dv v dv

  

  

 

 

 
 

 

  .  In the derivation of the bunching formula Saez (2010) 

assumes that the distribution of taxable income along the extended segment 1 is smooth, we 

therefore require the pdf:s  f A  and  g A  to be continuous. A necessary condition for this to 

hold is that the pieces that give the kink solution connect smoothly to the distributions for 

segments 1 and 2.  

We have shown how to construct two data generating processes that generate identical 

taxable income distributions along a kinked budget constraint, although the two taxable income 

functions have different taxable income elasticities. This shows that the bunching estimator 

cannot identify the taxable income elasticity.  

In much of the bunching literature an essential part of the estimating procedure is to get 

an estimate of ݂ሺܽሻ along the extended first segment using information on the distribution of 

taxable income around the kink. Chetty et al. (2011) suggests a procedure that has become 

popular. It is therefore worth noting that although the two data generating processes defined 

above, by construction, give rise to identical income distributions along the kinked budget 
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constraint, the dgp:s imply different distributions of taxable income along the extended first 

segment. For dgp 1 the bunching window will be  1 2, /A K K     , and for this interval there 

is no information on the distribution of A , since the 'A s  along the extended first segment are 

all stacked up at the kink. The distribution could be anything.  The distribution of A  after 

1 2/K       will be  1

1

1
/A 




 


. For the second dgp the bunching window will be 

 1 2, /A K K     , and in this window the density might be anything. The distribution after 

1 2/K       will be   1

1

1
/A 




 


. Since we have constructed the dgp:s so that the 

distributions of taxable income are the same along the kinked budget constraint we have the 

relations    1 1 1/ / ,A A             ,A A K and    2 2 2/ / ,A A              

 ,A K A  .  However, these relations do not imply any relations between  1

1

1
/A 




 


and 

 1

1

1
/A 




 


along the extended first segment. This implies that from the data around the 

kinked budget constraint we can neither identify what the distribution of taxable income along 

the extended segment would be nor identify what the bunching window would be. For example, 

if 1 21000, 0.5, 0.7K     , 1, 0.2     the bunching window along the extended first 

segment would be  1000,1400  for the first dgp and  1000,1070  for the second dgp. Any 

attempt to estimate the density ଵ݂ሺܽሻ along the extended first segment from knowledge of the 

distribution of taxable income around the kink is therefore doomed to fail. 

Using analogous reasoning we can show why any positive number will be the taxable 

income elasticity for some distribution of heterogeneity. Let ܾ  0 denote a possible value of 

β. We now construct a distribution function Φሺߩሻ of heterogeneity such that the taxable income 
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distribution for elasticity ܾ and heterogeneity Φሺߩሻ	is the distribution function ܨሺܽሻ from the 

data. Let Φሺߩሻ ൌ ଵߠ൫ܨ
ߩ൯ for ߩ ൏ ଵߠ

ିܭ and let Φሺߩሻ ൌ ଶߠ൫ܨ
ߩ൯ for ߩ  ଶߠ

ିܭ. Suppose that 

the taxable income for a linear budget set is ߠߩ .  By Theorem 2 of Blomquist et al. (2015), on 

the lower segment where ܽ ൏ ଵߠߩthe distribution of taxable income will be Pr൫ ܭ
  ܽ൯ ൌ

Φ൫ߠଵ
ିܽ൯ ൌ ܽ ሺܽሻ. Similarly, on the upper segment whereܨ   the distribution of taxable ,ܭ

income will Pr൫ߠߩଶ
  ܽ൯ ൌ Φ൫ߠଶ

ିܽ൯ ൌ ଵߠ ሺܽሻ. Forܨ
ିܭ  ߩ  ଶߠ

ିܭ let Φሺߩሻ be any 

differentiable, monotonic increasing function such that Φሺߠଵ
ିܭሻ ൌ lim

→,ழ
  ሺܽሻ andܨ

Φሺߠଶ
ିܭሻ ൌܨሺܭሻ. Then by construction, have 

  Φ൫ߠଶ
ିܭ൯ െ Φ൫ߠଵ

ିܭ൯ ൌ ሻܭሺܨ െ lim
→,ழ

ሺܽሻܨ ൌ Prሺܣ ൌ   ,ሻܭ

where the last equality holds by standard results for cumulative distribution functions. Also, we 

can choose Φሺߩሻ so its derivatives of any order match those of ܨሺߠଵ
ߩሻ at  ߩ ൌ ଵߠ

ିܭ and those 

of ܨሺߠଶ
ߩሻ at  ߩ ൌ ଶߠ

ିܭ. Thus we have the following result: 

 

THEOREM 1: Suppose that the CDF Fሺܽሻ of taxable income A is continuously differentiable 

of order D to the right and to the left at K and ܤ ൌ Prሺܣ ൌ ሻܭ  0.		 Then for any β there exists 

Φሺߩሻ	such that the CDF of taxable income obtained by maximizing the utility function in 

equation (4) equals ܨሺܽሻ, and Φሺߩሻ	is continuously differentiable of order D. 

 

Theorem 1 shows that for any possible taxable income elasticity we can find a 

heterogeneity distribution such that the CDF of taxable income for the model coincides with 

that for the data.  Furthermore, we can do this with a heterogeneity CDF that matches 

derivatives to any finite order of the CDF of heterogeneity implied by the data. Thus the failure 

of identification of the taxable income elasticity from one budget set is complete, in the sense 



 
 

18 
 

that it has no information about the elasticity, when the distribution of heterogeneity is 

unrestricted.  

 We can see from equation (5) why the density ߶ሺߩሻ must be completely specified in the 

bunching interval in order to estimate the taxable income elasticity from the kink probability. 

If ߶ሺߩሻ depended on any unknown parameters then equation (5) could result in multiple values 

of the elasticity.  

 The Saez (2010) estimator is based on two assumptions: that ߶ሺߩሻ is continuous so that 

the density at the bunching endpoints can be estimated from the linear segments and that the 

density is linear in the bunching interval. By continuity its value at endpoints can be obtained 

from the density of taxable income. Let ݂ିሺܭሻ and ݂ାሺܭሻ denote the limit of the density of 

taxable income at the kink K from the left and from the right, respectively. Let ߩ ൌ ଵߠܭ
ିఉ and 

ߩ ൌ ଶߠܭ
ିఉ be the endpoints of the bunching interval. Accounting for the Jacobian of the 

transformation ܽ ൌ ଵߠߩ
ఉ we have ߶ሺߩሻ ൌ 	݂ିሺܭሻߠଵ

ఉ and ߶ሺߩሻ ൌ 	݂ାሺܭሻߠଶ
ఉ. Assuming that 

߶ሺߩሻ is linear on the bunching interval we then have  

ܤ ൌ න ߶
ఘ

ఘ
ሺߩሻ݀ݐ ൌ

1
2
ቂ߶ ቀߩቁ  ߶ሺߩሻቃ ቀߩ െ ቁߩ ൌ

1
2
ቂ݂ିሺܭሻߠଵ

ఉ  ݂ାሺܭሻߠଶ
ఉቃቀߠܭଶ

ିఉ െ ଵߠܭ
ିఉቁ 

ൌ
ܭ
2
ൣ ݂

ିሺܭሻ  ݂
ାሺܭሻሺߠଵ/ߠଶሻିఉ൧ൣሺߠଵ/ߠଶሻఉ െ 1൧. 

This is the estimating equation found in equation (5) of Saez (2010). 

Here we see that the Saez (2010) formula for the taxable income elasticity corresponds 

to imposing linearity on the heterogeneity density over the bunching interval ቀߩ,  ቁ. We couldߩ

obtain an analogous formula for the elasticity for other functional forms. Chetty et al. (2011) 

uses a polynomial. The elasticity estimate will generally vary with the choice of functional form 

of the heterogeneity density. Every bunching elasticity estimator is based on assuming a form 

of the heterogeneity density over the bunching interval.  
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Above we assumed that the taxable income elasticity is the same for each individual. 

The analysis can be extended to the case with heterogeneous taxable income elasticity. Suppose 

we have a utility function as defined by equation (4) and a kinked budget constraint with a kink 

at ܣ ൌ ଵߠ and slopes ܭ  ,ߚଶ. A pdf  ߶ሺߠ  ሻ along theܣሻ will then imply a unique pdf ݂ሺߩ

kinked budget constraint. However, the reverse is not true. One cannot deduce the distribution 

߶ሺߚ,  ሻ from knowledge of ݂ሺܽሻ. In fact, there is an infinity of probability density functionsߩ

߶ሺߚ,  These different pdfs would generate		ሻ that could have generated the given pdf  ݂ሺܽሻ.ߩ

different distributions ଵ݂ሺܣሻ along the extended first segment. The argument is applicable to 

other utility functions with two or more parameters; having a more general model must make 

identification more difficult. 

    

4. Optimization Errors 

To illustrate how optimization errors threaten identification of the taxable income 

elasticity we use an example. Let us consider two data-generating processes defined by different 

taxable income elasticities ߚଵ   ሻ of theߩଶ, but with the same unknown distribution ߶ሺߚ

heterogeneous preference parameter.  This gives rise to two distinct distributions of taxable 

income around a kink. Since the distributions of ρ are the same for the two dgps the bunching 

around the kink would be larger for the dgp with the greater taxable income elasticity. Hence, 

the two dgps would not be observationally equivalent.   However, assume that there is a random 

additive optimization error so that the realized taxable income is ܣ ൌ ௗܣ   ௗ isܣ where ,ߝ

desired taxable income and A is realized taxable income. Suppose the pdf for the optimization 

error for the first data generating process is given by ߛଵሺߝሻ and by the resulting cumulative 

distribution ܨଵሺܣሻ,  then we can find another distribution  ߛଶሺߝሻ that gives rise to a cumulative 

distribution ܨଶሺܣሻ and such that ܨଵሺܣሻ and ܨଶሺܣሻ are identical. Hence, the existence of 

optimization errors can make the taxable income elasticity unidentifiable. 
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Why are there optimization errors? In a sense, the term “optimization error” is a 

misnomer. In our models we usually assume individuals can locate at any point on the budget 

constraint without any adjustment costs. In reality only some points on the budget constraint 

might be available and often there are (short run) costs to changing behavior. If we described 

the budget constraint correctly there would be no optimization errors. However, in many cases 

it would not be feasible, or would be too costly, to describe all the details of the constraint set. 

The common modeling technique therefore is to use a simplified description of the choice set 

and denote the difference between the choice predicted by the model and the actual choice as 

an optimization error.3  Another reason for what we often denote an optimization error is due 

to the fact that the utility function estimated by the scholar is not the utility function that the 

individual maximizes. In the absence of adjustment costs, it could be the case that the individual 

is at his optimum. However, there would still be a difference between the choice predicted by 

our model and the actual point chosen by the individual. This difference is really a specification 

error, but we usually refer to it as an optimization error. 

Scholars in our profession have long been aware of adjustment costs and optimization 

errors. This is, for example, reflected in the vocabulary short- and long-run elasticities. The idea 

is that in the short run adjustment costs are high, but in the long run individuals can adapt to 

changes in the budget constraint. At each point in time different individuals face different 

adjustment costs and have different optimization errors. A common way to reflect this reality 

has been to model these optimization errors as an additive component in a regression function, 

assuming a continuous distribution of the optimization error (adjustment cost) with mean zero 

and zero correlation with explanatory variables.4 

                                                            
3 Sometimes there are also be measurement errors, which often are hard to distinguish from optimization errors.   
4 See e.g., Burtless and Hausman (1978), Hausman (1979) and Hausman (1985). 
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Here we will discuss four different reasons optimization errors can arise. The first is 

because of hours constraints, implying that only a limited number of points can be chosen on 

the budget constraint. The second concerns short-term optimization errors due to unforeseen 

events.  The third is due to changes in individuals’ preference parameters. The fourth, which is 

what Chetty (2012) discusses, is the case where there has been a change in the tax schedule.5 

The possibility of constraints on hours of work has long been studied in the labor-supply 

literature. One of the most popular models in this literature is a discrete-choice model of labor 

supply (Van Soest (1995)). In this model a set of discrete alternatives or jobs represents the 

budget set. These models are often estimated by the Conditional Multinomial Logit model. 

Translated to the taxable income framework, it would imply that only a finite number of points 

is available on the (kinked) budget constraint. Since in the taxable income literature model we 

assume that individuals can choose any point on the budget constraint, if in fact only a finite 

number of points can be chosen, there would be a difference between the choices indicated by 

our model and the actual choices; there would be optimization errors.6    

Let us move on to the second case. An individual might at the beginning of the tax year 

plan for a certain taxable income, then, due to unforeseen events, that taxable income might 

become somewhat different. Something happens and in the short run, the remainder of the tax 

year, the individual cannot accommodate the random event. Unforeseen bonus paychecks, 

better health than expected or assigned overtime are examples of positive shocks. Unexpected 

sicknesses, a temporary layoff, new extended vacation plans because of a new love are 

                                                            
5 Chetty (2012) develops a method to set bounds on structural elasticities, when estimates have been obtained from 
data generated with different budget constraints. His method to set bounds is therefore not applicable to estimates 
obtained from the bunching estimator, which uses data from a single budget constraint. 

6 Chetty et al. (2011) also discuss the importance of restrictions on hours of work and how this leads to 
optimization errors.  
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examples that would result in a negative shock in taxable income.  We could possibly represent 

the distribution of this type of optimization error by a symmetric distribution with mean zero.   

Now we consider the third case. The utility function that we have used above, and will 

use in the simulations presented in the next section, is a heroic simplification. However, we can 

make it slightly more flexible by letting the preference parameter ρ be a function of variables 

like ability (productivity), health, age, number of small children, marriage status, work status 

of spouse, and so on. At each point in time, we have some individuals who have had a recent 

change in one of the variables affecting the preference parameter and therefore want to change 

their taxable income. If the individual’s adjustment cost is low, the individual will change his 

taxable income and for this person there would be no optimization error. For another person the 

present adjustment cost might be so large that the person does not change his/her taxable 

income; there would be an optimization error. However, the adjustment cost might change over 

time. For example, if the change in taxable income only could be achieved by moving to another 

living place, the adjustment cost could be in the form of children going to high school who do 

not want to move away from friends. There would be an optimization error. Once the children 

finish high school, the adjustment cost is low and a change in taxable income could take place, 

and there would be no optimization error.  The kind of optimization error just described could 

possibly be represented by a random variable with a symmetric pdf with mean zero.  Note that 

even if the distribution of preferences does not change in the population, for single individuals 

it will, implying that the occurrence of optimization errors will not fade over time. 

In the fourth case we consider a change in the tax system. There might have been a move 

of a kink point or a change in a marginal tax rate, which would change the slope of a linear 

segment of the budget constraint. To be concrete we will consider a change in the tax rate for a 

segment above a kink, and we assume individuals before the tax change were at their optima.  

Suppose there has been an increase in the marginal tax so that the slope of the linear segment 
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decreases. Assuming zero income effects, this means that some individuals located on the 

segment would like to move to the kink, and others on the segment would like to decrease their 

taxable income along the segment. That is, all individuals that want to change their taxable 

income would like to decrease it. Some might be able to do that, but in the short- to medium-

run, some would be stuck at the present level of taxable income, resulting in positive 

optimization errors. The resulting distribution of optimization errors would have a mean greater 

than zero and be downward truncated at zero. Moreover, it would only be those with their 

optimum at or above the kink point that would encounter this type of optimization error. This 

type of optimization error would lead to fewer observations at and above, close to the kink, and 

a lower estimate of the taxable income elasticity. In the simulations we will use a normal 

distribution with a downward truncation at zero to represent this type of optimization error. The 

opposite case, with a decrease in the marginal tax and an increase in the slope of the segment 

above the kink, means that some individuals would like to move out from the kink point to a 

tangency solution on the segment, while others would like to move up the segment. In the short 

to medium run some might not be able to increase their actual taxable income, implying that 

they would have negative optimization errors with an upward truncation at zero. This type of 

optimization error leads to more observations at the kink and close to the kink, above the kink, 

and a higher estimate of the taxable income elasticity. In the simulations we will use a normal 

distribution with an upward truncation at zero to represent this type of optimization error. 

Hence, when there are optimization errors due to a change in the marginal tax rate the 

distributions of optimization errors are quite different depending on whether the most recent 

tax change had been in the form of an increase or a decrease in marginal tax rate. 
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5. A Simulation Exercise 

We present simulations that show how, for a given taxable income elasticity, the 

bunching estimates will vary as we make simple variations in the preference distribution and 

allow for various types of optimization errors. 

To generate the data we use the quasilinear utility function given by equation (4). We 

use a budget constraint with a kink at 1000, a marginal tax of 0.3 before the kink and 0.5 after 

the kink. This is a large kink which, according to the literature, should help identify the taxable 

income elasticity. So as to avoid the issue of sampling variation we generate income 

distributions with two million observations. We tried different seeds for the random number 

generator. Estimates differ at most in the third decimal. To obtain the bunching estimates we 

used the program bunchr, written by Itai Trilnick in the programming language R.7  

In our simulations we illustrate how the bunching estimator, for a given value of the 

taxable income elasticity, will vary as we change the preference distribution. We can change 

the preference distribution in many ways; we can change the general shape, the center of the 

location and the variance. Here we will keep the center of location constant as well as the 

general shape. We will see how the bunching estimate changes as we flatten the distribution 

and thereby decrease the mass in the bunching window. We set the taxable income elasticity to 

0.2, which gives the bunching window in terms of taxable income ሺܭ, ܭ  ሻܣ߂ ൌ

ሺ1000, 1070	ሻ. Expressed in terms of the preference parameter the bunching window is 

approximately (1074,1149). We centered the preference distribution at 1100 and represent the 

preference distribution with a mixed normal ߶ሺߩሻ ൌ ߨ ∙ ݊ሺ1100, 10ଶሻ  ሺ1 െ ሻߨ ∙

݊ሺ1100, 140ଶሻ, ߨ ∊ ሺ0,1ሻ. As we vary π from 0.9 down to 0.1 the distribution will flatten, and 

the mass in the bunching window will decrease. In the table the top row shows the five different 

combinations of π, ሺ1 െ  ሻ used. The second row shows how results vary as we change theߨ

                                                            
7 The program can be accessed via the link https:/CRAN.R-project.org/package=bunchr . 
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proportions and there are no optimization errors. We see that the estimates vary from around 

0.6 down to 0.19, depending on how large the part of the preference distribution that is in the 

bunching window is. The simulations illustrate that, even in the absence of optimization errors, 

the bunching estimator cannot identify the taxable income elasticity. 

Rows 3 and 4 show results when we have added optimization errors drawn from a 

normal distribution with mean zero and standard deviations of 25 and 50 respectively. We see 

that adding this type of optimization error yields estimates of an order of magnitude smaller. In 

the fifth row we have only added optimization errors to taxable incomes at the kink or above, 

and all the optimization errors are positive. These optimization errors represent the optimization 

errors that would result if there had been a recent decrease in the slope of the second segment 

and not all individuals have been able to change their taxable income. These optimization errors 

mean that we observe fewer observations in the bunching window, resulting in lower estimates. 

This is borne out in the simulations. In the sixth row we illustrate what happens if there are the 

type of optimization errors that would arise if there had been a recent increase in the slope of 

the second segment and not all individuals have been able to change their taxable income. 

Negative optimization errors are added to taxable incomes above the kink, but there is a 

truncation so that no one falls below the kink because of the optimization error. By and large 

these optimization errors do not affect the estimates much.  
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TABLE: Simulations with mixed normals 

   ;  1    0.9   ;  0.1 0.7   ;   0.3 0.5   ;   0.5 0.3  ;   0.7 0.1  ;   0.9 

   0.598 0.500  0.402  0.302  0.192 

1
ˆ

opterror   
0.075 0.081 0.080 0.074 0.058 

2
ˆ

opterror
 
  0.012 0.013  0.011  0.010  0.008 

3
ˆ

opterror
  

0.0 0.013 0.035 0.077 0.065 

4
ˆ

opterror
 

0.530 0.462 0.394 0.306 0.238 

መߚ  no optimization errors; ߚመ௧ଵ symmetric optimization errors, mean zero, std 25;   

 መ௧ଶߚ
symmetric optimization errors, mean zero, std 50; ߚመ௧ଷ negative asymmetric 

optimization errors; ߚመ௧ସ 
positive asymmetric optimization errors.  

 

To summarize the results of the simulations shown in the table: all data have been 

generated with a utility function which implies a taxable income elasticity of 0.2. The 

simulations illustrate that, even in the absence of optimization errors the bunching estimator 

cannot identify the taxable income elasticity. Adding optimization errors in general makes the 

bunching estimates much smaller.  Depending on the distribution of preferences and 

optimization errors the estimates vary between 0.0 and around 0.6. The estimates are all over 

the place. 

  

̂
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6. Bounds from Monotonicity 

In Section 3 we showed that if the heterogeneity density is unrestricted, except for 

smoothness conditions, then a kink, and even the entire distribution of taxable income from a 

single budget set, provides no information about the taxable income elasticity. If the 

heterogeneity density is restricted in some way then it is possible to learn some things about the 

taxable income elasticity. In this Section we consider what can be learned when the 

heterogeneity density is monotonic over the bunching interval. Monotonicity might be a 

reasonable assumption in ranges where the taxable income density seems to be increasing away 

from the kink.  

To show how monotonicity of the heterogeneity density ߶ሺߩሻ over the bunching interval 

can bound the elasticity, let ܽℓ and ܽ௨ denote lower and upper endpoints for a taxable income 

interval that includes the kink, where excess bunching may occur.  Let ߩℓ ൌ ܽℓߠଵ
ିఉ and ߩ௨ ൌ

ܽ௨ߠଶ
ିఉ denote corresponding lower and upper endpoints for ρ and 

݂ିሺܽℓሻ ൌ lim
→ℓ,ழℓ

݂ሺܽሻ,			݂ାሺܽ௨ሻ ൌ lim
→ೠ,வೠ

݂ ሺܽሻ. 

Consider the two functions 

ሻߚሺିܦ ൌ ݂ିሺܽℓሻ ܽ௨ ቀ
ఏభ
ఏమ
ቁ
ఉ
െ ܽℓ൨ , ሻߚାሺܦ ൌ ݂ାሺܽ௨ሻ ܽ௨ െ ܽℓ ቀ

ఏమ
ఏభ
ቁ
ఉ
൨.  

We have the following result: 

 

THEOREM 2: If ߶ሺߩሻ is monotonic on ሾߩℓ,  ௨ሿ then the taxable income elasticity satisfiesߩ

  min	ሼିܦሺߚሻ, ሻሽߚାሺܦ  Pr	ሺ ܽ௨  ܣ  ܽℓሻ  ,ሻߚሺିܦሼ	ݔܽ݉  ሻሽ.        (7)ߚାሺܦ

If Pr	ሺ ܽ௨  ܣ  ܽℓሻ ൏ min	ሼିܦሺ0ሻ,  .satisfying equation (7) ߚ ାሺ0ሻሽ then there is noܦ

Otherwise the set of all nonnegative ߚ satisfying equation (7) is a subset of  ሾ0,∞ሻ. 
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For estimation we just plug in nonparametric estimators መ݂ିሺܽℓሻ and መ݂ାሺܽ௨ሻ to obtain  

ሻߚିሺܦ ൌ መ݂ିሺܽℓሻൣܽ௨ሺߠଵ/ߠଶሻఉ െ ܽℓ൧, 

ሻߚାሺܦ ൌ መ݂ାሺܽ௨ሻൣܽ௨ െ ܽℓሺߠଶ/ߠଵሻఉ൧. 

Estimated bounds for β are ߚመℓ and ߚመ௨ that solve 

max൛ܦି൫ߚመℓ൯, መℓ൯ൟߚା൫ܦ ൌ ܲ ,min൛ܦି൫ߚመ௨൯, መ௨൯ൟߚା൫ܦ ൌ ܲ. 

Standard errors for these bounds are given in the Appendix. 

 As an example we apply these bounds to the kink at zero taxable income for married 

tax filers shown in Panel A of Figure 7 of Saez (2010). We take the lower endpoint of the excess 

bunching interval to be ܽ ℓ ൌ െ5000 and the upper endpoint to be ܽ ௨ ൌ 5000. We approximate 

the graph by a function that is linear between each of the following pairs of points:  

 ሺെ5000, .21ሻ, ሺെ2500, .35ሻ, ሺ0, .44ሻ, ሺ2000, .35ሻ, ሺ5,000, .35ሻ. 

We take the taxable income density over (-5000,5000) to be the piecewise-linear function 

connecting these points, up to scale. We also take መ݂ିሺܽℓሻ ൌ .21	and መ݂ାሺܽ௨ሻ ൌ .35.	The 

estimated taxable income elasticity bounds under monotonicity as described above are  

መℓߚ ൌ መ௨ߚ  ,0 ൌ 3.85. 

These bounds are very wide. Thus, for the married filers in Panel A of Figure 7 of Saez (2010), 

bounds based on monotonicity of the heterogeneity density do not provide much information. 

Bounds based on monotonicity of the heterogeneity pdf can be quite wide when ݂ିሺܽℓሻ 

and ݂ାሺܽ௨ሻ are far apart, as in the example from the previous paragraph.  One could construct 

tighter bounds by putting more restrictions on the heterogeneity pdf, such as concavity. 

However, all such bounds are based entirely on supposition. As we have discussed the data 
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provides no information on the heterogeneity density for individuals at the kink. Thus, 

information about the density at the kink must come from a source other than the data. One 

could extrapolate properties of the kink density from the observed distribution of taxable 

income, but such extrapolation necessarily is based on information other than the data. As we 

continue to emphasize, the heterogeneity density for individuals at the kink is not identified. 

 

7. Identification 

Given the identification difficulties for bunching it seems important to consider what 

will identify the taxable elasticity.  We know from Section 3 that some variation in the budget 

set is required, even in the case of scalar separable heterogeneity and a parametric utility 

function.  In this section we consider how much budget set variation suffices for identification.  

The elasticity cannot be identified only by variation in the kinks, even from multiple 

budget sets.  Intuitively, the order condition is still not satisfied if only information about kinks 

is used.  Note that each kink probability is just one number.  Each kink probability will depend 

on the pdf of heterogeneity over an interval.  Except in rare cases, each interval will have some 

part that is not shared by all other kinks.  Varying the pdf over that interval will allow the kink 

probability to be anything for any elasticity. Thus, kinks from multiple budget sets are generally 

no more informative than a single kink.  

To identify the elasticity β in equation (4) it can suffice to have just two budget sets.  An 

order condition again provides insight.  If there are two budget sets the data identifies two 

functions, the CDF of taxable income along each of the two budget sets.  In the utility 

specification of equation (4) there is one unknown function, the CDF of ρ, and one unknown 

parameter, the taxable income elasticity β.  Two functions can be more than enough to identify 
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one function and one parameter.  In fact, the taxable income elasticity can be overidentified and 

strong restrictions imposed on the distribution of taxable income across the two budget sets. 

We give an identification result for the isoelastic specification when there are two 

convex budget sets. We again utilize the results of Blomquist et al. (2015) that characterize 

choice with convex budget sets in terms of choice for linear budget sets. Let ߠሺܽሻ and ߠ෨ሺܽሻ 

denote the slope from the right of the budget frontier for each of the budget sets, i.e. the net-of- 

tax rate for a small increase in taxable income (which exists by concavity of the budget frontier; 

see Rockafellar, 1970, pp. 214-215). Let ܨሺܽሻ and ܨ෨ሺܽሻ be the corresponding distributions of 

taxable income for the two budget sets. Since the choice for a linear budget set is ߠߩఉ it follows 

by Theorem 2 of Blomquist et al. (2015) that 

ሺܽሻܨ ൌ Prሺܣ  ܽሻ ൌ Pr൫ߠߩሺܽሻఉ  ܽ൯ ൌ Φ൫ܽߠሺܽሻିఉ൯, ෨ሺܽሻܨ ൌ Φ൫ܽߠ෨ሺܽሻିఉ൯. 

Here we see that the two distributions are the same except for a scalar multiple of the taxable 

income ܽ.	 Changing the tax rate simply scales up or down the taxable income for a linear 

budget set with the amount of the scale adjustment determined by ߚ. We can use this feature to 

obtain ߚ from the size of the scale adjustment when the tax rate changes.  

THEOREM 3: If taxable income is chosen by maximizing isoelastic utility, ߔሺߩሻ is continuous 

and strictly monotonically increasing on ሺ0,∞ሻ, and there exists ܽ and ܽ such that ܨሺܽሻ ൌ

෨ሺܨ ܽሻ and  ߠሺܽሻ ് ෨ሺߠ	 ܽሻ then  

ߚ ൌ
ln ቀ

ܽ
ܽቁ

ln ൬ߠ
෨ሺ ܽሻ
ሺܽሻ൰ߠ

. 

Here we see that ߚ  is identified from any pair of taxable incomes ܽ and ܽ with the same value 

of the distribution for the first and second budget sets but a different marginal tax rate. Note 

that ܨሺܽሻ ൌ ෨ሺܨ ܽሻ is the same as Φ൫ܽߠሺܽሻିఉ൯ ൌ Φ൫ ܽߠ෨ሺ ܽሻିఉ൯, which means that ܽ and ܽ 
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correspond to the same point in the distribution of ߩ. Also, since ߔሺߩሻ is strictly monontonic, 

the same point in the distribution of ߩ could be thought of as the same value of ߩ, i.e. as the 

same type of individual. Therefore, the identification assumption of this result is that there is 

an individual type that faces different marginal tax rates at the values of taxable income chosen 

in the respective budget sets. This is an intuitive condition for identification of the taxable 

income elasticity, that the budget sets vary in such a way that some individual faces different 

marginal tax rates under their choice for the two budget sets.  

 One example is provided by two piecewise linear budget sets with one kink that is the 

same, with common ߠଵ up to the kink K, and different slopes ߠଶ > ߠ෨ଶ respectively, beyond the 

kink. Here identification follows easily. Consider any ܽ  ሻܭሺܨ By .ܭ ൏ ሻܭ෨ሺܨ ൏ 1 and ߔሺߩሻ 

strictly monotonic and continuous there is ܽ  ܽ such that ܨሺܽሻ ൌ ෨ሺܨ ܽሻ, so by Theorem 3 we 

have	ߚ ൌ ln ቀ



ቁ /ln ቀ

ఏ෩మ
ఏమ
ቁ . Indeed, such an  a  exists for any ܽ   so that there is a continuum ܭ

of identifying equations for ߚ. In this example the elasticity is highly overidentified. 

 Another example is provided by two piecewise linear budget sets each with one kink, 

where the two tax rates are the same but the second kink ܭ෩ is different than the first kink ܭ, say 

ܭ ൏ ,ܭ෩. The slope from the right of these two budget sets differ only in the interval ሾܭ  .෩ሻܭ

Thus, to apply Theorem 3 there must exist ܽ < ܽ , both in [ܭ,ܭ෩ሻ, with ܨሺܽሻ ൌ ෨ሺܨ ܽሻ. We can 

generalize this condition slightly for the purposes of this example. Let ܨ෨ି ൫ܭ෩൯ ൌ 	 lim
→෩,ழ෩

 .෨ሺܽሻܨ

It turns out that ߚ will be identified if and only if ܨ෨ି ൫ܭ෩൯   ሻ. Intuitively, identificationܭሺܨ

holds when some individual who was on the linear segment beyond the original kink ܭ, or just 

on the border of that, experiences a tax change. This would occur when the new kink ܭ෩ is at or 

beyond the end ܭ  ∆A of the extended first segment shown in Figure 1. If ܨ෨ି ൫ܭ෩൯ ൏  ሻ thenܭሺܨ

the new kink will be left of the end of the extended first segment, so there will be no individual 
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for whom there must be a change in the tax rate across budget sets. The following result gives 

a full analysis of this example.  

THEOREM 4: Suppose that taxable income is chosen by maximizing isoelastic utility and ߔሺߩሻ 

is continuous and strictly monotonically increasing on ሺ0,∞ሻ. If ܨ෨ି ൫ܭ෩൯   ሻ then there is aܭሺܨ

unique ܽ∗  ሺܽ∗ሻܨ with ܭ ൌ ෨ିܨ ൫ܭ෩൯ and ߚ ൌ ݈݊ ቀ
෩

∗
ቁ /݈݊	ሺ

ఏభ
ఏమ
ሻ. If ܨ෨ି ൫ܭ෩൯ ൏ ሻ then  βܭሺܨ  bത ൌ

ln ቀ
෩


ቁ /ln	ሺ

ఏభ
ఏమ
ሻ and for any b with b  bത there exists Λሺߩሻ	such that when β ൌ ܾ and Λሺߩሻ is the 

heterogeneity CDF the CDF of taxable income is equal to ܨሺܽሻ for the budget set with kink ܭ 

and equal to ܨ෨ሺܽሻ for the budget set with kink ܭ෩.  

This result shows that not every pair of budget sets will serve to identify the taxable income 

elasticity, even for isoelastic utility. It is interesting to note that a shift in the kink does provide 

at least some information in the form of a lower bound on the elasticity, where that lower bound 

is larger the bigger the shift in the kink and the bigger the ratio of the two tax rates. Of course 

as the shift gets larger one would also move towards a situation where the elasticity is point 

identified. Also, a shift in the kink implies strong, testable restrictions on the CDF of taxable 

income, that it coincides for each budget set for ܽ ൏ ܽ and ܭ   ෩. This restriction is aܭ

consequnce of scalar heterogeneity and no income effect. 

It would be useful to have identification conditions for specifications more general than 

the isoelastic case. One more general specification has taxable income for a linear budget set 

given by ܣ ൌ  ሻ is an unknown, strictly monotonic increasing function. Hereߠሻ where ݄ሺߠሺ݄ߩ

variation in budget sets can identify ݄ሺߠሻ up to scale at values of ߠ corresponding to different 

budget sets.  

THEOREM 5: If ߔሺߩሻ is continuous and strictly monotonic increasing and there exists ܽ and 

ܽ such that ܨሺܽሻ ൌ ෨ሺܨ ܽሻ and  ߠሺܽሻ ് ෨ሺߠ	 ܽሻ  then    
ሺఏ෩ሺሻሻ

ሺఏሺሻሻ
ൌ




. 
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This result allows us to identify taxable income effects that scale the taxable income according 

to the net of tax rate ߠ in the model ܣ ൌ  ሻ. These effects would be for discrete tax changesߠሺ݄ߩ

corresponding to rates along the two budget sets. Obtaining continuous tax effects for small tax 

changes would require continuous variation in piecewise linear budget sets. 

Although the specification ܣ ൌ  ”ሻ is nonparametric it still has the strong “scalingߠሺ݄ߩ

property, where changes in the tax rate shift the scale of taxable income. To obtain models that 

are not restricted in this way one needs to allow heterogeneity to enter in a more general way 

than multiplicatively. For instance, one could let both ߩ and ߚ vary over individuals, giving a 

linear random coefficients specification lnሺܣሻ ൌ lnሺߩሻ   are ߚ ሻ andߩሻ, where both lnሺߠሺ	lnߚ

random. If the budget sets were linear then a least squares regression of 	lnሺܣሻ on a constant 

and lnሺߠሻ would identify the expected elasticity, as is well known. If the budget sets are 

nonlinear then identification of the expected elasticity would be more difficult. The most 

general case, with heterogeneity that could affect the taxable income in any way, is considered 

in Blomquist et al. (2015). 

 
7. Summary  

In this paper we first described the bunching estimation procedure of Saez (2010). We then 

showed nonidentification of the taxable income elasticity when the distribution of heterogeneity 

is unrestricted. For this purpose we used both a diagrammatic, non-parametric example and 

theoretical analysis showing a kink is not informative about the taxable income elasticity, even 

if one is willing to assume a parametric utility function of the type used in Saez (2010). The 

failure of identification of the taxable income elasticity from one budget set is complete in the 

sense that it has no information about the elasticity when the distribution of heterogeneity is 

unrestricted. The fundamental reason for this lack of identification is that movements along one 

budget set correspond to variations across individuals so that one cannot separate heterogeneity 



 
 

34 
 

effects from price effects. We also showed that optimization errors hinder identification of the 

taxable income elasticity.  

If one is willing to put restrictions on the heterogeneity distribution then bunching can 

be informative about the taxable income elasticity. We showed that the Saez (2010) estimator 

corresponds to assuming that the heterogeneity density is linear over the kink. Linearity of the 

heterogeneity density seems a strong restriction on which to hang identification of the taxable 

income elasticity. Bounds on the taxable income elasticity can be obtained if the heterogeneity 

density is restricted or known not to be too variable. For example, we show how to derive 

bounds if one is willing to assume that the heterogeneity distribution is monotonic. However, 

applying these results to the data in Saez (2010) gives very wide bounds.  

We performed a small simulation exercise where, for a given taxable income elasticity, 

we varied the heterogeneity distribution. We also studied the effect of adding various types of 

optimization errors. The simulations verify that the bunching estimator cannot identify the 

taxable income elasticity even in the absence of optimization errors. Adding optimization errors 

in general gives estimates an order smaller in magnitude.    

 The negative results on the possibility of identifying the taxable income from bunching 

around a single kink raise the question, how can the taxable income elasticity be identified? We 

show that using bunching from several kinks does not help. However, variation in budget sets 

can be used to identify the taxable income elasticity. We show that, given that one is willing to 

put functional form restrictions on the utility function, such as Saez (2010)’s quasilinear form, 

the distribution of taxable income along linear segments provides strong identifying 

information without optimization errors. With optimization errors and preference heterogeneity 

there are estimation methods using variation in budget constraints that can be used to identify 

slope effects. It is true that most studies using such methods have used parametric assumptions 

for the errors as well as for the utility function. However, Blomquist and Newey (2002) 
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developed a non-parametric model that fully allows for measurement errors, optimization errors 

and preference heterogeneity and used this estimator to evaluate the labor supply effect of the 

Swedish tax reform. This model was shown to work with general heterogeneity and was 

extended to the taxable income setting in Blomquist et al. (2015).  Manski (2014) discussed 

identification of policy effects via identification of preferences. Kline and Tartari (2016) used 

experimental variation in budget sets to nonparametrically partially identify important effects. 

Variation in budget sets in practice often means that one uses data from several points in time, 

implying that one must have some way to account for exogenous productivity growth.8   

 

Appendix: Proofs of Theorems 

Proof of Theorem 1: Given preceding the statement of Theorem 1.  Q.E.D. 

Proof of Theorem 2: Monotonicity implies that for ߩ ∊ ሺߩℓ,  ,௨ሻߩ

 minሼ߶ሺߩℓሻ, ߶ሺߩ௨ሻሽ  ߶ሺߩሻ  maxሼ߶ሺߩℓሻ, ߶ ሺߩ௨ሻሽ.  

Also, ߶ሺߩℓሻ and ߶ሺߩ௨ሻ are given by ߶ሺߩℓሻ ൌ ݂ିሺܽℓሻߠଵ
ఉ, ߶ሺߩ௨ሻ ൌ ݂ାሺܽ௨ሻߠଶ

ఉ. The first 

conclusion of Theorem 2 then follows by 

ܲ ൌ Prሺܽℓ  ܣ  ܽ௨ሻ ൌ න ߶ሺߩሻ݀ߩ
ఘೠ

ఘℓ

	 ሺߩ௨ െ ,ℓሻߩℓሻmaxሼ߶ሺߩ ߶ሺߩ௨ሻሽ

ൌ ቂܽ௨ߠଶ
ିఉ െ ܽℓߠଵ

ିఉቃmaxቄ݂ିሺܽℓሻߠଵ
ఉ, ݂ାሺܽ௨ሻߠଶ

ఉቅ ൌ maxሼିܦሺߚሻ,  ,ሻሽߚାሺܦ

ܲ  minሼିܦሺߚሻ, ାܦ ሺߚሻሽ. 

                                                            
8 The issue of exogenous productivity growth is a problem for studies of taxable income, not studies of hours of 
work. 
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Note that both ିܦሺߚሻ and ܦାሺߚሻ are strictly monotonic increasing in β, so both 

maxሼିܦሺߚሻ, ାܦ ሺߚሻሽ and minሼିܦሺߚሻ,   ,ሻሽ are as well.  Also, at β = 0ߚାሺܦ

ሺ0ሻିܦ ൌ ݂ିሺܽℓሻሺܽ௨ െ ܽℓሻ, ାሺ0ሻܦ ൌ ݂ାሺܽ௨ሻሺܽ௨ െ ܽℓሻ. 

As long as 

ܲ  maxሼ݂ିሺܽℓ	ሻ, ݂ାሺܽ௨ሻሽሺܽ௨ െ ܽℓሻ, 

then by strict monotonicity of ିܦሺߚሻ and ܦାሺߚሻ in β there will be unique ߚℓ and ߚ௨ satisfying 

maxሼିܦሺߚℓሻ, ℓሻሽߚାሺܦ ൌ ܲ,	minሼିܦሺߚ௨ሻ, ௨ሻሽߚାሺܦ ൌ ܲ, 

such that the above inequality is satisfied for all  ߚ ∊ ሾߚℓ,  ௨ሿ. Ifߚ

minሼ݂ିሺܽℓሻ, ݂ାሺܽ௨ሻሽ ሺܽ௨ െ ܽℓሻ ൏ ܲ ൏ maxሼ݂ିሺܽℓሻ, ݂ାሺܽ௨ሻሽሺܽ௨ െ ܽℓሻ 

then we can take ߚℓ ൌ 0.      Q.E.D. 

Proof of Theorem 3: Note that ܨሺܽሻ ൌ ෨ሺܨ ܽሻ implies Φ൫ܽߠሺܽሻିఉ൯ ൌ Φ൫ ܽߠ෨ሺ ܽሻିఉ൯, which 

implies ܽߠሺܽሻିఉ ൌ ܽߠ෨ሺ ܽሻିఉ by Φሺߩሻ strictly monotonic. Taking logs and solving gives the 

result. Q.E.D. 

Proof of Theorem 4: Proof of Theorem 4: Note first that the right slope of the two budget sets 

are equal, and hence ܨሺܽሻ ൌ ܽ ෨ሺܽሻ, at anyܨ ∈ ሾ0, ሻܭ ∪ ሾܭ෩,∞ሻ. Also, ܨሺܭሻ ൌ Φቀߠଶ
ିఉܭቁ. Also, 

෨ሺܽሻܨ ൌ Φቀߠଶ
ିఉܽቁ for ܽ ൏ ෨ିܨ ෩ so thatܭ ൫ܭ෩൯ ൌ 	Φቀߠଵ

ିఉܭ෩ቁ. Next, consider the case with 

෨ିܨ ൫ܭ෩൯  ܽ ሻ. Note that forܭሺܨ  ሺܽሻܨ we have ܭ ൌ Φቀߠଶ
ିఉܽቁ so that ܨ൫ܭ෩൯ ൌ Φቀߠଶ

ିఉܭ෩ቁ 

Φቀߠଵ
ିఉܭ෩ቁ ൌ ෨ିܨ ൫ܭ෩൯. It follows by continuity and strict monotonicity of ߔሺߩሻ that there exists 

a unique ܽ∗ ∈ ሾܭ, ଶߠ෩ሻ with Φቀܭ
ିఉܽ∗ቁ ൌ ሺܽ∗ሻܨ ൌ ෨ିܨ ൫ܭ෩൯ ൌ 	Φቀߠଵ

ିఉܭ෩ቁ, the first conclusion.  
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This equality implies ߠଶ
ିఉܽ ൌ ଵߠ

ିఉܭ෩. Taking logs and solving for β gives the second 

conclusion.  

Next, consider the case with ܨ෨ି ൫ܭ෩൯ ൏ ଵߠ ሻ. This inequality implies thatܭሺܨ
ିఉܭ෩ ൏

ଶߠ
ିఉܭ.  Taking logs gives the third conclusion. Now consider any b  bത, or equivalently 

ଵߠ
ିܭ෩ ൏ ଶߠ

ିܭ.  Let  Λሺߩሻ ൌ ଵߠ෨൫ܨ
ߩ൯ for ߩ ൏ ଵߠ

ିܭ෩, Λሺߩሻ ൌ ଶߠ൫ܨ
ߩ൯ for ߩ  ଶߠ

ିܭ, and for  

ଵߠ
ିܭ෩ ൏ ߩ ൏ ଶߠ

ିܭ let Λሺߩሻ be any increasing, continuous function that is continuous at ߠଵ
ିܭ෩ 

and 	ߠଶ
ିܭ. Consider the taxable income distribution when the taxable income elasticity is b 

and the CDF of heterogeneity is Λሺߩሻ. Note that for the first budget set and ܽ ൏  we have ܭ

Prሺܣ  ܽሻ ൌ Λሺߠଵ
ିܽሻ ൌ ෨ሺܽሻܨ ൌ ܽ ሺܽሻ, while forܨ  ܣPrሺ ,ܭ  ܽሻ ൌ Λሺߠଶ

ିܽሻ ൌ  .ሺܽሻܨ

Also, for the second budget set and ܽ ൏ ܣ෩ we have Prሺܭ  ܽሻ ൌ Λሺߠଵ
ିܽሻ ൌ   ෨ሺܽሻ, while forܨ

ܽ  ෩ܭ  ܣwe have Prሺ ܭ  ܽሻ ൌ Λሺߠଶ
ିܽሻ ൌ ሺܽሻܨ ൌ  ෨ሺܽሻ. Thus, when the taxable incomeܨ

elasticity is any ܾ  bത we have constructed a heterogeneity distribution where taxable income 

has the same distribution as the true distribution, for both budget sets. Q.E.D. 

Proof of Theorem 5: Note that ܨሺܽሻ ൌ ෨ሺܨ ܽሻ implies Φሺ݄ܽሺߠሺܽሻሻሻ ൌ Φ൫ ݄ܽሺߠ෨ሺܽሻሻ൯, which 

implies ݄ܽሺߠሺܽሻሻ ൌ ݄ܽሺߠ෨ሺܽሻሻ by Φሺߩሻ strictly monotonic. Solving gives the result.  Q.E.D. 
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