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1 Introduction

Much has been written on the automation of routine and manual tasks, where machines, com-

puters and robots replace white-collar and blue-collar workers typically in middle and low-wage

occupations (e.g., Autor, Levy and Murnane, 2003; Goos and Manning, 2007; Michaels, Na-

traj and Van Reenen, 2014, Acemoglu and Restrepo, 2017). In this traditional view, high-skill

workers are shielded from automation because they specialize in more complex tasks requiring

human judgment, problem-solving, analytical skills or various soft skills. However, recent ad-

vances in artificial intelligence cast doubt on this narrative. The automation of the complex

tasks in which high-skill workers specialize—what we refer to as “high-skill automation”—is on

its way to becoming a potent force in the US labor market. The new generation of artificial

intelligence technology, in conjunction with advances in big data and machine learning, already

has the potential to perform many tasks in which human judgment was previously thought to be

indispensable. Occupations facing (partial) automation from advances in artificial intelligence

include accounting, mortgage origination, management consulting, financial planning, parale-

gals, and various medical specialities including radiology, general practice or even surgery. A

recent McKinsey study, for instance, concludes that:1

“a significant percentage of the activities performed by even those in the highest-

paid occupations (for example, financial planners, physicians, and senior executives)

can be automated by adapting current technology.”

In another of its reports, McKinsey declares “The end of managers’ comparative advantage,”

and gives the example of a Hong Kong venture-capital firm that has appointed a decision-making

algorithm to its board of directors. It points to “The most impressive examples of machine

learning substituting for human pattern recognition— such as the IBM supercomputer Watson’s

potential to predict oncological outcomes more accurately than physicians by reviewing, storing,

and learning from reams of medical-journal articles. . . ”.2 Silicon Valley entrepreneur and author

Martin Ford similarly asserts:3

“It’s not just about lower-skilled jobs either. People with college degrees, even

professional degrees, people like lawyers are doing things that ultimately are pre-

dictable. A lot of those jobs are going to be susceptible over time.”

Despite this rapid and potentially transformative rise of high-skill automation, there is

relatively little work studying its labor market implications. This paper is a first attempt to

1http://www.mckinsey.com/business-functions/business-technology/our-insights/four-fundamentals-of-

workplace-automation
2http://www.mckinsey.com/global-themes/leadership/manager-and-machine
3http://www.wired.com/brandlab/2015/04/rise-machines-future-lots-robots-jobs-humans/
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develop a simple framework incorporating both the more traditional automation of routine and

manual jobs—what we refer to as “low-skill automation”—and high-skill automation.

We extend the task-based models originally developed in Acemoglu and Autor (2011) and

Acemoglu and Restrepo (2016), which in turn build on Zeira (1998) and Acemoglu and Zilibotti

(2000). In our model, a continuum of tasks can be performed by low-skill labor, high-skill labor

or capital. Crucially, the range of tasks that can be performed by capital expands due to two

types of automation technologies. Low-skill automation expands the range of tasks that capital

can perform at the low end of the complexity distribution of tasks.4 The second, corresponding

to high-skill automation, is the new element in our model, and is based on the assumption that

new developments in artificial intelligence allow capital to compete against high-skill labor in

complex tasks.

This framework departs from existing models not only in allowing for two types of au-

tomation, but also in considering an environment in which there is no simple “comparative

advantage” (or single crossing) across factors and tasks. In Acemoglu and Autor (2011) and

Acemoglu and Restrepo (2016), as well as in models in the assignment literature, such as Sat-

tinger (1975), Teulings (1995) and Costinot and Vogel (2011), there is a simple comparative

advantage ranking, where some workers are proportionately more productive relative to others

in more complex tasks. To study high-skill automation one needs to generalize this structure

and allow for a richer pattern of comparative advantage, where capital not only has a compara-

tive advantage at routine and manual tasks with low complexity, but also at complex tasks that

would be produced by high-skill labor otherwise.5 The development of a tractable framework

with a richer comparative advantage structure for capital is one of the main contributions of

our paper.6

4 Low-skill automation here refers to the more traditional automation of routine and manual jobs, even

though some routine tasks often involve non-trivial skill requirements, and some basic tasks have not been

much affected by automation at all (e.g., personal services). Likewise, low-skill labor refers here to blue-collar

and white-collar workers that tend to specialize in the routine and manual tasks that have been more prone to

automation in the last 30 years (e.g., clerks, bookkeepers, accountants, welders, assemblers). Thus, we abstract

from the role of personal service jobs performed by low-skill workers, and that have not been much affected by

automation at all (Autor and Dorn, 2013).
5The possibility that automation takes place across a disjoint set of tasks is important to model the possibility

that fairly complex functions involved in financial planning, accounting, management or medical occupations can

be automated while other tasks of middle complexity (including various functions in manufacturing, construction

and personal communication) remain non-automated.
6A recent paper by Feng and Graetz (2016) also makes a related contribution. They argue that human

labor has a comparative advantage not only in non-routine tasks but also in intuitive tasks with few training

requirements—a phenomenon known as Moravec’s paradox. Relatedly, Hemous and Olsen (2016) model the

interplay between automation and horizontal innovations in the context of endogenous growth.
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We start with a static economy with a given supply of capital as well as inelastically supplied

low-skill and high-skill labor. We first establish the existence of an equilibrium in this economy,

and characterize the potential assignments of tasks to factors. The most novel pattern—and

the one that is a direct consequence of the richer structure of comparative advantage that we

introduce—is one in which capital performs both the least complex tasks (where it directly

competes with low-skill labor) and a disjoint range of more complex tasks (where it directly

competes with high-skill labor).

We then characterize the implications of low-skill automation, which corresponds to an

expansion in the set of tasks that can be performed by capital at the bottom of the distribution,

and high-skill automation, which corresponds to an expansion in the set of tasks that can be

performed by capital towards the higher end of the distribution. We show that both types of

automation create two distinct impacts: a displacement effect and a productivity effect. The

displacement effect, by taking away tasks from the directly affected factor, harms the labor

market fortunes of that factor; while the productivity effect tends to increase the wages of

all factors. We then demonstrate that the total impact of either type of automation on the

wages of low-skill and high-skill labor is given by the sum of its displacement and productivity

effects. When the displacement effect dominates, factors affected by automation experience a

decline in their wages. Most interestingly, the displacement caused by automation also creates

ripple effects. High-skill automation displaces high-skill labor, which may then compete with

low-skill labor in other tasks, and displace this latter group. Because of these ripple effects,

automation could depress the wages of not just the affected factor, but of both factors. For

instance, high-skill automation can reduce the real wages of both low-skill and high-skill labor.

Nevertheless, the displacement effect on the directly affected group is always greater, and thus

low-skill automation increases the inequality between high-skill and low-skill labor, while high-

skill automation has the opposite effect.7

After this analysis, we turn to the “long-run” implications of automation, and allow for

capital accumulation to restore the price of capital to its long-run level.8 In the long run,

the productivity effect becomes stronger. This is for the intuitive reason that automation, by

increasing the demand for capital, increases the price of capital in the short run, which dampens

the potential productivity gains that can be obtained by substituting the cheaper capital for

the more expensive labor in the automated tasks. In the long run, the price of capital remains

7 This result echoes the work of Ehrlich and Kim (2015), who explore how migrants compete not only against

low-skill natives in some segments of the market, but also against high-skill natives in others. In their setting,

immigrants displace workers in some industries, and depending on which workers they directly substitute,

increase or reduce inequality. As in our context, skilled immigrants also create a productivity effect.
8To economize on space, we do this without explicitly allowing for dynamics, though doing this is straightfor-

ward as in Acemoglu and Restrepo (2016). Note, however, that in contrast to that paper, we do not endogenize

technological change or the speed of automation (or the creation of new tasks).
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constant, and thus there will be greater productivity gains. It is for this reason that in Acemoglu

and Restrepo (2016), automation was found to always increase wages in the long run. Here,

with two types of labor and two types of automation, we find that automation increases the

wage bill in the long run, but might still have a negative impact on the wages of the type of

labor that it directly displaces.

In addition to the theoretical literature on task-based models and assignment models, which

we have already discussed, our paper is related to the empirical literature on the effects of

automation and robotics on the labor market. Autor, Levy and Murnane (2003) documented

the decline of employment in jobs comprising routine tasks, and argue that these shifts reflect

the computerization of such tasks. Michaels, Natraj and Van Reenen (2014) show that the

replacement of routine tasks by ICT technologies caused a decline in employment opportunities

for middle-skill workers.9 In Acemoglu and Restrepo (2017), we document that, from 1990 to

2007, U.S. commuting zones that harbored industries more exposed to the use of industrial

robots experienced a significant decline in employment and real wages. The negative effects

concentrate on blue-collar workers in the lower end of the skill distribution. Relatedly, using a

panel of industries in 17 countries from 1993 to 2007, Graetz and Michaels (2015) show that

investments in industrial robots were associated with faster productivity growth and higher

wages, but also created some negative effects on employment for low-skill and middle-skill

workers. Overall, the evidence on the impact of the automation of routine tasks and the use of

industrial robots is in line with the theoretical implications of our model regarding “low-skill”

automation.

The rest of the paper is organized as follows. Section 2 introduces our model. Section 3

characterizes the short-run equilibrium (where the supply of capital is taken as given), and

highlights the different types of configurations that can arise. Of those, we focus on a situation

in which capital competes directly both against low-skill and high-skill labor. Section 4 char-

acterizes the impact of automation on factor prices and inequality. In Section 5, we study the

long-run equilibrium of this model. The main difference in this case is that the productivity

effect is amplified by the induced accumulation of capital following automation. As a result,

automation cannot reduce the wages of both types of labor in the long run, though it can still

depress the wage of the directly affected factor. Section 6 returns to the other types of equilibria

of the model and shows that they do not permit the simultaneous impact of automation on

both low-skill and high-skill labor. Section 7 concludes, while the Appendix contains the proofs

omitted from the text.

9Other empirical studies on the impact of the automation and computerization of routine tasks include Goos

and Manning (2007), Acemoglu and Autor (2011), Autor and Dorn (2013), Jaimovic and Siu (2014), Foote and

Ryan (2014), Goos, Manning and Salomons (2014), Autor, Dorn and Hanson (2015), and Gregory, Salomons

and Zierahn (2016).
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2 A Model of Low-Skill and High-Skill Automation

We consider a static economy with a unique final good Y , produced by combining a continuum

1 of tasks y(i) with an elasticity of substitution σ ∈ (0,∞):

Y =

(
∫ 1

0

y(i)
σ−1
σ di

)

σ
σ−1

. (1)

The final good is produced competitively. Consumer utility is defined over the unique final

good, and we normalize its price to 1.

Final good producers can produce each task with machines (capital) or labor, and there

are two types of labor, high- and low-skill. All tasks can be produced by both types of labor,

though they have different productivities in each task. In particular, one unit of high-skill labor

can produce γH(i) units of task i, and one unit of low-skill labor can produce γL(i) units of task

i. Throughout we assume that these productivities satisfy the following (strict) comparative

advantage structure:

Assumption 1 (Comparative advantage assumption) γH(i), γL(i) and γH(i)/γL(i) are

continuous and strictly increasing.

Combined with pattern of productivity of machines across tasks specified in the next para-

graph, the feature that γH and γL are increasing enables us to determine the allocation of

tasks between capital and labor in a tractable manner.10 That their ratio is strictly increas-

ing implies that high-skill labor has (strict) comparative advantage relative to low-skill labor

in higher-indexed tasks, which is a feature shared with Sattinger (1975), Teulings (1995), Ace-

moglu and Autor (2011), Costinot and Vogel (2011), and Acemoglu and Restrepo (2016) among

others. Continuity is imposed for simplicity.

In contrast to these papers, however, we depart from the “supermodular” comparative

advantage structure across all factors. Namely, in these papers the productivities of any two

factors across tasks satisfy an increasing differences (or single crossing) assumption.11 Yet, such

a structure implies that capital could not effectively compete against both types of labor, and

this would not allow an interesting analysis of simultaneously ongoing low-skill and high-skill

10Nothing fundamental changes if we make these schedules decreasing and also assume that the productivity

of machines is decreasing even more steeply. The structure with the productivity of machines taking the form

of a step function and γ
H

and γ
L
increasing greatly simplifies the exposition.

11This is true of Acemoglu and Restrepo’s (2016) model with two types of labor and capital, of Sattinger’s

(1975), Teulings’s (1995) and Costinot and Vogel’s (2011) assignment models with a continuum of tasks and

skills, and of Acemoglu and Autor’s (2011) baseline model with three types of labor. The latter paper then

introduces automation of “middling” tasks, but in doing so, assumes that there are no other tasks in which

capital can be used and that it is sufficiently cheap to take over all the tasks which are technologically automated.
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automation. We therefore abandon the supermodular comparative advantage structure across

all factors and tasks by assuming that there exists J ∈ (0, 1) such that, when automated, tasks

i < J can be produced with capital with productivity 1, while tasks i ≥ J can be produced with

capital with productivity γK ≥ 1. (Looking from the viewpoint of capital, we will sometimes

refer to tasks i < J as “simple” tasks, and to i ≥ J as “complex” tasks). We think of the

tasks i < J as routine tasks that have been automated in the last 30 years through the use of

information processing technologies or industrial robots. Tasks i ≥ J , on the other hand, are

complex tasks that are in the early stages of automation via artificial intelligence, big data and

a new phase of robotics. When γK > 1, capital will be able to compete simultaneously against

high-skill labor in some complex tasks and against low-skill labor in simpler tasks.

Not all tasks can be automated, however. As in Acemoglu and Restrepo (2016), we dis-

tinguish between technologically automated tasks, which can be automated if profitable, and

tasks automated in equilibrium. We assume that there exists a pair of threshold IL ∈ (0, J)

and i ∈ [J, IH ] such that the tasks i ∈ [0, IL] and i ∈ [J, IH ] are technologically automated.

They will be automated in equilibrium, if it is profitable for them to be produced with capital

at the prevailing factor prices. Regardless of factor prices, the tasks in (IL, J) and (IH , 1] must

be produced with labor.

We summarize the above discussion by writing the technologically-feasible combinations of

factors to produce different tasks, given by

y(i) =























γH(i)h(i) + γL(i)l(i) + k(i) if i ∈ [0, IL],

γH(i)h(i) + γL(i)l(i) if i ∈ (IL, J),

γH(i)h(i) + γL(i)l(i) + γKk(i) if i ∈ [J, IH ],

γH(i)h(i) + γL(i)l(i) if i ∈ (IH , 1].

(2)

Here, h(i), l(i) and k(i) denote the total quantities of high-skill labor, low-skill labor and capital

utilized in the production of task i, respectively.

We start by assuming that all factors are supplied inelastically, and denote the supply of

high-skill labor by H , of low-skill labor by L and of capital by K.

3 Equilibrium

A short-run equilibrium is defined by factor prices—wages and a capital rental rate—of high-

skill labor, low-skill labor and capital, WH ,WL and R, such that final good producers minimize

costs and the three factor markets clear. Since final good producers are competitive and have

access to a constant returns to scale production function, cost minimization is equivalent to

profit maximization.
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We now characterize the equilibrium allocation of tasks to factors in this economy. Through-

out, to simplify our notation, we assume that when indifferent between using capital or labor,

a firm produces with capital. Likewise, when indifferent between using high or low-skill labor,

a firm produces with high-skill labor.12

Proposition 1 (Equilibrium existence) Suppose that Assumption 1 holds. For anyH,L,K >

0 there is a unique equilibrium.13 The equilibrium is characterized by thresholds I∗L ∈ [0, IL],

I∗H ∈ [J, IH ] and M ∈ (I∗L, 1) such that:

• capital produces the tasks in [0, I∗L] ∪ [J, I∗H ];
14

• high-skill labor produces the tasks in [M, 1] that are not produced with capital;

• and low-skill labor produces the tasks in [0,M) that are not produced with capital.

Moreover, the threshold M is given by

WL

γL(M)
=

WH

γH(M)
. (3)

Proof. See the Appendix.

The main idea of this proposition is that, to minimize the cost of production, tasks will be

allocated to factors depending on their comparative advantage. Our structure of comparative

advantage implies that capital produces at most two disjoint sets of tasks [0, I∗L]∪ [J, I∗H ] (recall

that one of these sets could be empty), and that there is a threshold M given by equation (3)

defining which of the remaining tasks are allocated to low-skill and high-skill labor.

This result can be illustrated diagrammatically. Figure 1 plots the resulting allocations of

tasks to factors when capital performs two disjoint sets of tasks. In the figure, WL

γL(i)
and WH

γH (i)
are

the effective cost of producing task i with low-skill and high-skill labor, respectively. Likewise,

R for i ≤ IL and R
γK

for J ≤ i ≤ IH is the effective cost of producing these different ranges

of tasks with capital. In equilibrium, tasks will be allocated to factors that have the lowest

effective cost of producing them.

In the first two panels, we present the cases in which M ∈ (J, I∗H) and M ∈ (I∗L, J),

respectively. In these two cases, wages and the interest rate are such that low-skill labor

12This choice does not affect the results because firms are indifferent between producing with different factors

in a set of tasks of measure zero.
13Uniqueness here is under the tie-breaking assumption specified before the proposition. Without this assump-

tion, we can instead establish “essential uniqueness,” meaning that the equilibrium allocation will be uniquely

determined except at a finite number of threshold tasks at which firms are indifferent between using different

factors.
14Here, we adopt the convention that, when I∗

L
= 0, capital only produces the tasks in [J, I∗

H
]. Likewise, when

I∗
H

= J , capital only produces the tasks in [0, I∗
L
]. In equilibrium, only one of these sets can be empty.
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specializes in low-indexed tasks and high-skill labor in high-indexed tasks. Capital performs

some of the least complex tasks in [0, I∗L] because for i ≤ J , its comparative advantage relative

to low-skill labor is in lower complexity tasks. Crucially, capital also performs some complex

tasks in [J, I∗H ]. The difference between these two cases is merely in whether high-skill labor

produces only tasks above those allocated to capital, or whether it straddles the set of complex

tasks allocated to capital. The final panel presents the case in which M ∈ (I∗H , 1). Here, capital

also produces two disjoint sets of tasks, but it is in direct competition with low-skill labor in

both.

In all of the above cases, the thresholds I∗L and I∗H , which we introduced in Proposition

1, capture the possibility that not all technologically automated tasks will be produced with

capital in equilibrium. As already noted, whether this is the case or not depends on factor

prices. For instance, we could have that I∗L < IL if the price of capital is sufficiently high, and

consequently, firms would rather produce task IL with low-skill labor even if it is possible to

do so with capital. If this is the case, a further increase in IL, corresponding to an expansion

of the set of tasks that are technologically automated, will have no impact on the equilibrium

allocation (and thus on prices). The same is true for an increase in IH when I∗H < IH .

Throughout the paper, we will center our analysis around the cases in which capital performs

two (non-empty) disjoint sets of tasks, and M ∈ (I∗L, I
∗
H), shown in the first two panels of Figure

1. These equilibria capture the more interesting situation in which one form of automation

directly competes against low-skill workers and another form of automation directly competes

against high-skill workers. We turn to the remaining types of equilibrium where automation

only competes directly against a single type of labor in Section 6. Moreover, because our

objective is to understand how changes in automation impact wages and inequality, we focus

on the case where I∗H = IH and I∗L = IL. Proposition A1 in the Appendix shows that there

exists a threshold ρ and a threshold K(H,L) that is nondecreasing in H and L, such that, for

H/L > ρ and K > K(H,L), the equilibrium features M ∈ (IL, IH), and I∗L = IL, I
∗
H = IH .

Thus, until Section 6, we impose the following assumption on factor supplies:

Assumption 2 The supplies of labor and capital, H,L,K, satisfy H/L > ρ and K > K(H,L).

The condition H/L > ρ ensures that

WL

γL(IH)
>

WH

γH(IH)
, (4)

and so M < IH—high-skill labor is abundant and will face the competition of automation in

the production of tasks near IH . In addition, for a given H,L, the condition K > K(H,L)

ensures that capital is abundant and cheap relative to both types of labor, and so it is cheaper

8



to produce task IH and IL, respectively, with capital:

WH

γH(IH)
>

R

γK

WL

γL(IL)
>R. (5)

Let min{J,M} denote the minimum threshold where either there is a switch from simple to

complex tasks or the effective costs of production by low-skill and high-skill labor are equated.

Under Assumption 2, capital performs the tasks in [0, IL]∪ [J, IH ], low-skill labor performs the

tasks in (IL,min{J,M}), and high-skill labor performs the tasks in [min{J,M}, J) ∪ (IH , 1].

(Note that when M ≥ J the set [min{J,M}, J) is empty.)

Given the allocation of tasks to factors derived above, we can determine the equilibrium

prices of a task as the minimum effective cost of producing it:

p(i) =



































R if i ∈ [0, IL],
WL

γL(i)
if i ∈ (IL,min{J,M}),

WH

γH (i)
if i ∈ [min{J,M}, J),

R
γK

if i ∈ [J, IH ],
WH

γH (i)
if i ∈ (IH , 1].

(6)

Using these task prices p(i), the equilibrium quantity of task i can be determined from the

cost-minimization problem of final good producers as

y(i) = Y p(i)−σ. (7)

Equations (6) and (7) combined imply that the demand for capital in each simple automated

task is Y R−σ; the demand for capital in each complex automated task is Y γσ−1
K R−σ; the demand

for low-skill labor in each task performed by this factor is Y γL(i)
σ−1W−σ

L ; and the demand for

high-skill labor in each task performed by this factor is Y γH(i)
σ−1W−σ

H . Integrating these

demands over the range of tasks assigned to the relevant factor, we find that factor-market

clearing conditions take the form

Y ΓHW
−σ
H =H, Y ΓLW

−σ
L =L, Y ΓKR

−σ =K.

where, to simplify notation, we have defined the effective shares of high-skill labor, low-skill

labor and capital as

ΓH =

∫ J

min{J,M}

γH(i)
σ−1di+

∫ 1

IH

γH(i)
σ−1di,

ΓL =

∫ min{J,M}

IL

γL(i)
σ−1di, (8)

ΓK =IL + (IH − J)γσ−1
K .
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Why we refer to these objects as effective shares will be clarified below by equation (9).

The following proposition provides explicit expressions for equilibrium factor prices as func-

tions of the thresholds IH , IL, J and M (where the last one is the only endogenous threshold

determined in equilibrium).

Proposition 2 (Equilibrium characterization) Suppose that Assumptions 1 and 2 hold.

Then, equilibrium output and factor prices as functions of the thresholds can be expressed as

Y =
(

Γ
1
σ

HH
σ−1
σ + Γ

1
σ

LL
σ−1
σ + Γ

1
σ

KK
σ−1
σ

)

σ
σ−1

, (9)

and

WH =Y
1
σΓ

1
σ

HH
− 1

σ , WL =Y
1
σΓ

1
σ

LL
− 1

σ , R =Y
1
σΓ

1
σ

KK
− 1

σ , (10)

where ΓH , ΓL and ΓK are given by (8). Moreover, factor prices satisfy the ideal price condition

ΓHW
1−σ
H + ΓLW

1−σ
L + ΓKR

1−σ = 1, (11)

and the endogenous threshold M is given implicitly by the unique solution in the interval (IL, IH)

to the equation (3)
(

ΓH

ΓL

L

H

)
1
σ

=
γH(M)

γL(M)
. (12)

Proof. See the Appendix.

This proposition clarifies why we refer to the terms ΓH , ΓL and ΓK as effective shares—

they correspond to (endogenous versions of) the distribution parameters in the derived constant

elasticity of substitution aggregate production function in equation (9). Note also that the ideal

price condition follows as an additional equilibrium condition, since we chose the final good as

numeraire.

The unique equilibrium value for M in Proposition 2 is implicitly defined by the solution to

equation (12). As shown in Figure 2, the fact that this equation has a unique solution follows

by observing that the right-hand side is a strictly increasing function of M , while the left-hand

side is a nonincreasing function of M , which becomes constant for M ≥ J . The condition

H/L > ρ—which we assume to hold throughout—ensures that these two curves intersect for

M ∈ (IL, IH). The figure also presents the allocation of tasks to factors depending on whether

M ≶ J .

The effective shares in the CES aggregator in equation (9) depend on the technology pa-

rameters IH and IL. Thus, Proposition 2 also shows that the task framework provides a richer

view of technology, where we are not limited to the usual factor-augmenting technologies, but

we could also think of changes in effective shares as being driven by technology. This general

conception of technology generates many of the new possibilities that we explore in the follow-

ing section, such as the possibility that automation may reduce all workers’ wages in the short

run.
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4 The Effect of Automation on Factor Prices

In this section we explore the effects of low-skill and high-skill automation. Our analysis is

simplified by a straightforward consequence of equation (10): the impact of either type of

automation on factor prices (WH , WL and R) can be decomposed into a displacement and a

productivity effect. To see this, we totally differentiate (10) to obtain

σ
dWH

WH

=
dΓH

ΓH

+
dY

Y
σ
dWL

WL

=
dΓL

ΓL

+
dY

Y
σ
dR

R
=
dΓK

ΓK

+
dY

Y
.

Here dΓH

ΓH
, dΓL

ΓL
and dΓK

ΓK
designate the displacement effects, while dY

Y
designates the productivity

effect. These expressions imply that the impact of technological change in general, and of the

two types of automation in particular, works by changing the effective shares and the overall

level of production in the economy—through the terms dΓH

ΓH
, dΓL

ΓL
, dΓK

ΓK
and dY

Y
.

Intuitively, the displacement effect matters because as tasks are reallocated away from a

factor, there is a powerful downward pressure on the price of that factor; the reason is that

such displacement pushes more of that factor to work in the remaining tasks, running into a

downward-sloping demand for these tasks. The productivity effect arises from the fact that

automation involves substituting cheaper capital for labor (and we know that capital has to be

cheaper, since otherwise it would not have been profitable for firms to use capital instead of

labor). Such substitution increases productivity and output in the economy. Because tasks are

q-complements in the production of the final good, the increase in output raises the demand

for all tasks, and hence the price of all factors.

In the next two propositions, we characterize how the two types of automation shape first

the displacement effects and then the productivity effects.

Proposition 3 (Displacement effects of technology) Suppose that Assumptions 1 and

2 hold. Let ε =
γ′

H
(M)

γH (M)
−

γ′

L
(M)

γL(M)
≥ 0 be the quasi-elasticity of the comparative advantage schedule.

Automation has the following effects on output:15

1. An increase in IL by dIL > 0—corresponding to low-skill automation—has the following

impacts on effective shares: dΓK

dIL
= 1,

dΓL

dIL
=











−γL(IL)
σ−1 < 0 if M ≥ J

−γL(IL)
σ−1

σε+
γH (M)σ−1

ΓH

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 0 if M < J,

15To economize on notation, we do not explicitly cover the case in which M = J , because the left and the

right derivatives are different at this point. It can be shown that when dIL > 0, dΓL/dIL and dΓH/dIL are

identical in this case to the expressions for M > J , and when dIL < 0, they are identical to the expressions for

M < J . Conversely, when dIH > 0, dΓH/dIH and dΓL/dIH are given by the expressions for M < J , and when

dIH < 0, they are given by the expressions for M > J .
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and

dΓH

dIL
=











0 if M ≥ J

−γL(IL)
σ−1

γH (M)σ−1

ΓL

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 0 if M < J.

2. An increase in IH by dIH > 0—corresponding to high-skill automation—has the following

impact on effective shares: dΓK

dIH
= γσ−1

K ,

dΓH

dIH
=











−γH(IH)
σ−1 < 0 if M > J

−γH(IH)
σ−1

σε+
γL(M)σ−1

ΓL

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 0 if M ≤ J,

and

dΓL

dIH
=











0 if M > J

−γH(IH)
σ−1

γL(M)σ−1

ΓH

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 0 if M ≤ J.

Proof. The proof follows by differentiating (8), and then substituting the derivatives involving

M using the implicit function theorem applied to equation (12). The full proof is presented in

the Appendix.

The main takeaway from this proposition is that both types of automation displace labor and

reduce the set of tasks performed by workers. Namely, automation reduces the share of tasks

performed by low-skill labor, and high-skill automation reduces the share of tasks performed

by high-skill labor.

Importantly, when M < J , both types of automation create ripple effects, also reducing the

effective shares of the other type of labor.16 For example, when M < J , low-skill automation

displaces low-skill labor from tasks it previously performed, and these workers then compete

for and take over some of the tasks previously performed by high-skill labor. Likewise, when

M < J , high-skill automation reduces not only the effective share of high-skill labor but also

that of low-skill labor. These ripple effects do not arise when M > J , because the two types

of labor do not compete directly (the sets of tasks they produce are always buffered by tasks

produced by capital). The ripple effects also disappear when ε → ∞—so that around the

threshold task M , there is a very strong comparative advantage of high-skill labor in more

complex tasks and of low-skill labor in simpler tasks. Intuitively, in this case, though the two

types of labor do compete for the production of tasks around M , they are such poor substitutes

that the ripple effects evaporate. Conversely, when ε → 0, the comparative advantage of one

type of labor relative to the other around the threshold task M is very small, and the ripple

effects are maximized.

16In fact, as indicated in footnote 15, an increase in IH also creates ripple effects when M = J .
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Proposition 4 (Productivity effect of technology) Suppose that Assumptions 1 and

2 hold.

1. An increase in IL by dIL > 0—corresponding to low-skill automation—increases aggregate

output by

1

Y

dY

dIL
=

1

σ − 1

(

R1−σ −

(

WL

γL(IL)

)1−σ
)

> 0.

2. An increase in IH by dIH > 0—corresponding to high-skill automation—increases aggre-

gate output by

1

Y

dY

dIH
=

1

σ − 1

(

(

R

γK

)1−σ

−

(

WH

γH(IH)

)1−σ
)

> 0.

Proof. The proof follows by differentiating (9). The full argument is presented in the Ap-

pendix.

This proposition thus shows that there are productivity gains from both types of automation,

helping to contribute to higher wages for both types of labor (or higher prices for all factors).

Notably this is true regardless of whether M ≶ J .

Another noteworthy result in Proposition 4 is a quantification of the extent of productivity

effects. In particular, the greater is the gap between WH

γH (IH )
− R

γK
, or the gap between WL

γL(IL)
− R

γK
,

the greater are the cost savings by substituting capital for the more expensive labor factor,

and the greater is the productivity effect (Assumption 2 guarantees that both of these gaps

are positive). This observation also implies that as WL

γL(IL)
↓ R, productivity gains—and thus

the productivity effect—from low-skill automation disappear; likewise as WH

γH(IH )
↓ R

γK
, the

productivity effect from high-skill automation disappears.

As already observed above, the impact of automation on wages can be directly obtained

by combining the displacement and productivity effects. In general, since these two effects go

in opposite directions, we cannot unambiguously determine the impact of automation on all

factor prices. Nevertheless, it is possible to characterize when one effect will dominate. Though

there are various different ways of doing this, here we emphasize the role of the gap between the

effective cost of production by capital and labor inputs. Since the price of capital (the rental

rate) will be higher when capital is more scarce, this leads to a comparison in terms of the level

of capital stock in the economy as shown in the next proposition.

Proposition 5 (Factor prices and automation) Suppose that Assumptions 1 and 2 hold.

Then for a fixed H,L there exist thresholds K(H,L) < KL < KL and K(H,L) < KH < KH

such that:17

17We do not give the comparative statics in the cases in which the capital stock, K, is exactly equal to the

thresholds to shorten the proposition. As is evident from the rest of the proposition, in these cases, it will have

no effect on the price of one of the factors.
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1. When M < J , low-skill automation (an increase in IL) has the following effects on wages:

• if K ∈ (K(H,L), KL), it reduces both WH and WL.

• if K ∈ (KL, KL), it reduces WL and increases WH .

• if K > KL, it increases both WH and WL.

Also again when M < J , high-skill automation (an increase in IH) has the following

effects on wages:

• if K ∈ (K(H,L), KH), it reduces both WH and WL.

• if K ∈ (KH , KH), it reduces WH and increases WL.

• if K > KH , it increases both WH and WL.

2. If, on the other hand, M > J , we have that:

• if K > KL, low-skill automation increases both WH and WL, and if K < KL, it

reduces WL and increases WH .

• Similarly, if K > KH , high-skill automation increases both WH and WL, and if

K < KH , it reduces WH and increases WL.

3. Both types of automation always increase the rental rate of capital, R.

Proof. See the Appendix.

This proposition is one of the main results of the paper. First, it shows that, when the price

of capital (the rental rate) is high relative to wages, automation directed to a particular type

of labor reduces the wage rate of that type of labor—so low-skill automation reduces low-skill

wages and high-skill automation reduces high-skill wages. This result is reversed, however,

when the productivity effect is sufficiently powerful, which, as shown in Proposition 4, happens

when capital is sufficiently abundant and the price of capital (the rental rate) is low. Second,

this proposition also demonstrates the implications of the ripple effect, which was noted in our

discussion of Proposition 3. When there is a ripple effect (M < J) and when the productivity

effect is not too powerful, low-skill automation also reduces high-skill wages and high-skill

automation also reduces low-skill wages. This result, which to the best of our knowledge is

unique to the framework with the two types of automation developed here, is important in

highlighting how very specific types of automation technologies can depress wages throughout

the wage distribution.

Nevertheless, the effects of the two types of automation technologies on inequality, which in

our model is given by the ratio of high-skill to low-skill wages and is proportional to ω =
(

WH

WL

)σ

,

always goes in the intuitive direction as shown in the next proposition for factor prices.
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Proposition 6 (Automation and inequality) Suppose that Assumptions 1 and 2 hold.

1. Low-skill automation increases wage inequality, i.e.,

1

ω

dω

dIL
=







γL(IL)
σ−1

ΓL
> 0 if M ≥ J

γL(IL)
σ−1

ΓL

σε

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

> 0 if M < J.

2. High-skill automation reduces wage inequality, i.e.,

1

ω

dω

dIH
=







−γH (IH)σ−1

ΓH
< 0 if M > J

−γH(IH )σ−1

ΓH

σε

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 0 if M ≤ J.

Proof. The proof follows from differentiating the expression ω = ΓH

ΓL

L
H
.

One noteworthy feature is that the effect of either type of automation on wage inequality is

lower when M < J (for σε

σε+
γH (M)σ−1

ΓH
+

γL(M)σ−1

ΓL

< 1), because in this case there are ripple effects

on the wages of the factor that are not directly affected by automation, and this limits the

impact on inequality. In fact, when M < J , we can also see that as ε → 0, the ripple effects

become so powerful (because there is little comparative advantage protecting the factor not

directly affected by automation) that the impact of both types of automation on inequality

vanishes.

Propositions 3, 4, 5 and 6 provide a new perspective on what to expect from technologi-

cal developments that automate tasks performed by high-skill workers. High-skill automation

increases productivity and reduces inequality. But importantly, it might indirectly hurt low-

skill workers by pushing more skilled ones to compete against them in simpler tasks. These

predictions resemble the reversal in the demand for skills and conginitive tasks documented by

Beaudry, Green and Sands (2016). The reversal started in 2000, but has accelerated in recent

years. Interestingly, the reversal has been accompanied by a movement of high-skill workers

down the skill ladder, displacing low-skill workers in less skill-intensive jobs (see also Modes-

tino, Shoag and Ballance, 2016)). This cascading pattern is reminiscent of the ripple effects

that arise in our model when M < J .

The empirical evidence on the impact of the use of industrial robots in manufacturing

and the automation of routine tasks, described in the Introduction, is broadly in line with

the implications of our model regarding low-skill automation. For instance, in Acemoglu and

Restrepo (2017) we document that industrial robots tend to reduce employment and wages in

the most exposed local labor markets, but these effects are significantly more pronounced for

low-skill workers in blue-collar jobs. Nevertheless, the evidence also supports the ripple effects

that arise in our model when M < J as we find negative effects on workers higher up the skill

ladder as well.
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5 Long-Run Equilibrium

We have so far assumed that capital is in fixed supply. It is straightforward to embed this model

in a dynamic setting in which a representative household maximizes its intertemporal utility

(e.g., as in Acemoglu and Restrepo, 2016). An immediate implication of that setup is that

a long-run steady-state equilibrium requires that the interest rate and thus the rental rate of

capital is constant. Here, to economize on space, we study the long-run equilibrium by simply

imposing that the rental rate of capital is constant at some level Rℓ and the stock of capital

adjusts to maintain this level.

More formally, a long-run equilibrium is given by high-skill and low-skill wages, WH and

WL, and a level of capital stock K, such that the final good producers maximize profits, the

three factor markets clear, and R = Rℓ. Because we now have an elastic supply of capital, the

equivalent of Assumption 2 now becomes:

Assumption 2′ The supplies of labor and capital, H,L, satisfy H/L > ρ and Rℓ < R(H,L).

Here, the threshold R(H,L) is nonincreasing inH,L and ensures that the endogenous supply

of capital satisfies K > K(H,L).

The analysis in this case is very similar to our short-run equilibrium, with the only dif-

ference that the productivity effect is strengthened because the rental rate is constant at Rℓ

and the stock of capital changes in response to changes in technology and other parameters.

Consequently, the productivity effect can now be expressed as

σ
dWH

WH

=
dΓH

ΓH

+
dY

Y

∣

∣

∣

∣

Kfixed

+ sK
dK

K
(13)

σ
dWL

WL

=
dΓL

ΓL

+
dY

Y

∣

∣

∣

∣

Kfixed

+ sK
dK

K
,

where sK ∈ (0, 1) is the share of capital in national income, and dY
Y

∣

∣

Kfixed
denotes the fixed-

capital productivity effect characterized in the previous section. The term sK
dK
K

corresponds

to the additional productivity gains due to the induced change in the capital stock.

Proposition 7 (The productivity effect in the long run) Suppose that Assumptions

1 and 2′ hold. In the long-run equilibrium:

1. Low-skill automation increases the capital stock by

1

K

dK

dIL
=

1

1− sK

(

1

ΓK

dΓK

dIL
+

1

Y

dY

dIL

∣

∣

∣

∣

Kfixed

)

> 0.
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2. High-skill automation increases the capital stock by

1

K

dK

dIH
=

1

1− sK

(

1

ΓK

dΓK

dIH
+

1

Y

dY

dIH

∣

∣

∣

∣

Kfixed

)

> 0.

Proof. The results follow by implicitly differentiating the capital market clearing condition

KRσ
ℓ = ΓKY .

Recalling that the increases in the capital stock multiplied by the share of capital in national

income, sK , give the additional productivity effect in this case, we directly obtain the main result

of this section in the next proposition.

Proposition 8 (Wages in the long run) Suppose that Assumptions 1 and 2′ hold. In the

long-run equilibrium, both types of automation raise the total wage bill, W = WLL+WHH. In

particular:

dW

dIL
=

dY

dIL

∣

∣

∣

∣

Kfixed

> 0 and
dW

dIH
=

dY

dIH

∣

∣

∣

∣

Kfixed

> 0.

Thus, high-skill automation always increases low-skill wages and low-skill automation always

increases high-skill wages. Moreover, when M < J and ε is sufficiently high, both wages

increase from either type of automation.

Proof. The Appendix presents the derivation for the formulas for dW
dIL

and dW
dIH

.

Because in the long-run both types of automation increase the wage bill WLL + WHH ,

automation cannot simultaneously reduce both low-skill and high-skill wages. Thus, high-skill

(low-skill) automation always increases low-skill (high-skill) wages.

For the second part of the proposition, observe from Proposition 6 that when M < J and

ε → ∞, inequality does not increase, and thus for ε sufficiently high, neither wage could fall as

a result of automation.

There are several important implications of this proposition. First, it shows that both

wages cannot be reduced by automation. This result is closely related to that in Acemoglu

and Restrepo (2016), that automation cannot reduce wages in the long run in a model with

only one type of labor. In fact, as we have just seen, its proof first establishes that the total

wage bill always goes up with automation. Second, and more importantly for our focus and

differently from Acemoglu and Restrepo (2016), it establishes that the factor directly affected

by automation can lose even in the long run. This is because the productivity effects created

by automation are shared by both types of labor, whereas the negative displacement effects are

borne only by the directly affected factor.

A third implication of this proposition is also noteworthy. Because automation at first

pushes up the share of capital in national income (as it will increase the rental rate) and may
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also increase wage inequality, a natural policy reaction may be to tax capital (e.g., Piketty,

2014). Proposition 8, however, implies that this has the potential to be counterproductive.

Automation tends to have a more positive effect on wages in the long run than in the short

run because capital accumulates in response to the increased demand for capital. Taxing and

discouraging further accumulation of capital would stop these beneficial effects in their tracks.

6 Equilibrium in Other Cases

In this section, we briefly describe the impact of automation on the allocation of tasks to factors

and factor prices.

In the remaining cases, we have one of two possible situations.

First, we could have that capital directly competes against low-skill labor only. This will be

the case when capital produces tasks in [0, I∗L] only, and M > I∗L > 0; when capital produces

tasks in [0, I∗H ] only, and M > I∗H > J ; or when capital produces tasks in [0, I∗L] ∪ [0, I∗H ] only,

and M > I∗H > J and I∗L > 0. In all these cases, automation (an increase in IL or IH) only

takes away tasks previously assigned to low-skill labor. The analysis is essentially identical to

the one developed in Acemoglu and Restrepo (2016), where we show that automation always

increases inequality. In addition, displaced low-skill workers then compete against high-skill

workers assigned to more complex tasks, thus ripple effects are still present. As in our analysis

in Section 4, when the productivity effect is small (for example, because capital is scarce),

automation not only reduces low-skill wages, but may even depress high-skill wages. However,

because automation always increases inequality, the long-run effect of automation on high-skill

wages is always positive. To summarize, both types of automation have the exact same impact

as low-skill automation in Section 4, but there is no equivalent of high-skill automation, and

thus no room for the simultaneous analysis of low- and high-skill automation.

Alternatively, we could have that capital directly competes against high-skill labor only.

This will be the case when capital produces tasks in [J, I∗H ] only, and M < I∗H . Here, high-skill

automation has the same impact as in our analysis in Section 4, but there is no equivalent

automation of low-skill jobs.

7 Conclusion

This paper developed a task-based model in which high- and low-skill workers compete against

machines in the production of different tasks. In contrast to other models in the literature,

we have allowed for both low-skill and high-skill automation. The former corresponds to tasks

previously performed by low-skill labor being taken over by machines, while the latter involves

what is arguably a new phase of automation in which machines start competing in tasks in which
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high-skill workers specialize. Our model incorporates both types of automation by departing

from the simple structure of comparative advantage adopted by most other models in this

genre—so that capital might end up performing two disjoint sets of tasks, one competing

against low-skill labor and the other one against high-skill labor.

After characterizing the different types of equilibria that can arise in this setup, we focus

on the cases in which capital does indeed compete against both types of labor. In these cases,

improvements in automation technology directly affect either one or the other type of labor.

We show that automation always displaces the type of labor it directly affects, depressing

its wage. Counteracting this, it also creates a positive productivity effect, pushing up the

price of all factors. The net impact of automation on the directly affected factor depends on

the balance between the displacement and productivity effects, which is in turn shaped by

the gap between the effective cost of producing marginal tasks by labor versus capital. The

simplest characterization of whether the displacement or the productivity effect dominates,

then, depends on how large the capital stock is (and thus how high is the rental rate of capital).

Importantly, we also establish that both types of automation may create ripple effects, further

displacing the type of labor that is not directly affected. The major implication of the ripple

effects for us is that automation may reduce the wage of not just the factor it directly affects,

but of other imperfectly substitutable factors—put differently, either type of automation can

depress the real wage of both high-skill and low-skill labor. Though the effects of automation on

wages are potentially ambiguous, we also establish that it always has an unambiguous impact

on inequality. In particular, low-skill automation always increases wage inequality, whereas

high-skill automation always reduces it.

Finally, we extend our model to allow for the adjustment of the stock of capital to changes

in technology. In such a “long-run equilibrium,” automation induces further accumulation of

capital and thus amplifies the productivity effect. As a result, we show that automation cannot

reduce the real wage of both types of labor, but may still depress the wage of the directly

affected factor.

We view our paper as a contribution to the analysis of how different types of automation

technologies, which are arguably permeating our lives even more deeply, will impact the labor

market. Many promising research areas are open for future work. Here we mention a few.

1. We took one simple departure from the common, supermodular structure of task-based

or assignment models by allowing capital not to have a strict comparative advantage

relative to labor. Much richer forms of comparative advantage can be studied beyond the

one we have utilized here. The difficulty is to obtain a tight characterization of both the

assignment of tasks to factors and factor prices.

2. Automation technology has been assumed to be entirely exogenous, and we have also

taken the set of tasks that labor can perform to be given exogenously. In Acemoglu and
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Restrepo (2016), both of these assumptions are relaxed, which allows for an analysis of how

different types of technological shocks trigger further technological responses. Extending

that type of analysis to our richer framework is an interesting step for future work.

3. We have followed other task-based models in assuming that tasks can be fully unbundled.

One of the important effects of new information and communication technologies is to

increase the extent to which tasks can be unbundled, and simultaneously studying this

process together with the impact of automation technologies appears as a fruitful area for

research as well.

4. Our framework does not make any policy recommendations, because we have not modeled

various labor market imperfections that might interact with automation, and as a result,

the equilibrium in our model is Pareto optimal. Acemoglu and Restrepo (2016) show that

when there is a gap between wages and the opportunity cost of labor, automation may

reduce welfare and even aggregate output. A similar approach can be developed in the

context of our model here, and the welfare implications of different types of automations

would depend on the gap between the wage of affected workers and their opportunity

cost of labor. For instance, if this gap is greater for high-skilled workers (for example,

because these workers have greater bargaining power), high-skill automation may have

more negative welfare consequences than low-skill automation.

5. Last but not least, our analysis has been purely theoretical. How different types of

automation technologies impact wages, unemployment and inequality is an important

area for research, and one we are pursuing in ongoing work, Acemoglu and Restrepo

(2017).
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Appendix

Proof of Proposition 1: The second welfare theorem applies in this competitive economy.

Thus it is sufficient to focus on Pareto optimal allocations, which are those that maximize total

output.

We start by showing that, in every potential Pareto optimal allocation, the levels of produc-

tion of all tasks, y = [y(i)]1i=0, are uniquely determined. In any Pareto optimal allocation, the

level of y that maximizes aggregate output, Y , subject to the constant returns to scale produc-

tion function (2), and the resource constraints,
∫ 1

0
l(i)di = L,

∫ 1

0
h(i)di = H and

∫ 1

0
k(i)di = K.

Uniqueness of the solution, y∗ follows because the production function is strictly quasi-concave.

To see that the production function is strictly quasi-concave, let us express it as Y = f ◦ g,

with f(x) = x
σ

σ−1 and

g(y) =

∫ 1

0

y(i)
σ−1
σ di.

When σ > 1, the function g is an integral of strictly concave functions, and is thus itself strictly

concave. Because Y is a strictly increasing transform, f , of a strictly concave function, it

is strictly quasi-concave in y. Likewise, when σ < 1, the function g is an integral of strictly

convex functions, and is thus itself strictly convex. Because in this case Y is a strictly decreasing

transform of a strictly convex function, it is strictly quasi-concave in y. Finally, when σ = 1

we have that f(x) = exp(x) and g(y) =
∫ 1

0
ln(y(i))di, so the same argument presented above

applies. This establishes the uniqueness of y∗ in any Pareto optimal allocation, and thus in any

equilibrium.

Let x(i) = (l(i), h(i), k(i)), and x = [x(i)]1i=0. Suppose that there are two different Pareto

optimal allocations x and x′. Because y∗ is uniquely determined, we must have

y∗(i) = l(i)γL(i) + h(i)γH(i) + k(i)γK(i) = l′(i)γL(i) + h′(i)γH(i) + k′(i)γK(i).

This equality implies that either x(i) = x′(i), or there are several combinations of {l(i), h(i),

k(i)} that yield the same output. The latter case implies that the final good producer of task

i must be indifferent between producing this task using different factor proportions, which

is not possible given the assumption that when indifferent between using capital or labor, a
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firm produces with capital, and when indifferent between using high or low-skill labor, a firm

produces with high-skill labor. Thus, we must have that x(i) = x′(i) for all i ∈ [0, 1], and there

is a unique Pareto optimal allocation x.

Because γH(i) and γL(i) are (strictly) increasing, the set of tasks performed by capital can

only take the form [0, I∗L] ∪ [J, I∗H ] with I∗L ∈ [0, IL] and I∗H ∈ [J, IH ]. As in the main text, we

adopt the convention that, when I∗L = 0, capital only produces the tasks in [J, I∗H ]. Likewise,

when I∗H = J , capital only produces the tasks in [0, I∗L]. Also, the market-clearing condition for

capital implies that it must perform a range of tasks with positive measure. Thus, I∗L = 0 and

I∗H = J cannot hold simultaneously.

Next, let M denote the smallest index i such that task i can be more cheaply produced

with high-skill labor than low-skill labor. It follows that low-skill labor can only produce the

tasks in [0,M) that are not produced by capital; while high-skill labor can only produce tasks

in [M, 1] that are not produced by capital.

To conclude the proof, note that low-skill labor must perform some positive measure set of

tasks (otherwise its market clearing condition would be violated). Thus, we must have that

M > I∗L as stated in the proposition. �

Proposition A1 There exist a threshold ρ and a threshold K(H,L) nondecreasing in H,L,

such that, for H/L > ρ and K > K(H,L), the unique equilibrium features I∗H = IH , I
∗
L = IL,

and M ∈ (IL, IH).

Proof. Consider an allocation of tasks to factors where capital performs the tasks in [0, IL] ∪

[J, IH ]; low-skill labor performs the tasks in (IL,min{J,M}); and high-skill labor performs the

tasks in [min{J,M}, J) ∪ (IL, 1]. The factor prices that support this allocation are given by

equation (10).

This allocation minimizes the cost of production, and thus corresponds to the unique equi-

librium of the model, if and only if the conditions (5) and (4) hold.

We now show that these conditions are satisfied when the supply of factors satisfy the

restrictions provided in the proposition.

First, we show that in this allocation, the wage to rental rate ratios, WH/R and WL/R, are

decreasing in the supply of high-skill, H , and low-skill, L, labor, respectively, and increasing in

K. We have that
WH

R
=

(

ΓH

H

)
1
σ
(

K

ΓK

)
1
σ

. (14)

If M > J , so that ΓH is constant, WH/R is decreasing in H . Otherwise, if M < J , an increase

in H shifts the left-hand side of equation (12) down in the second panel of Figure 2, reducing

M . From (8), the decline in M also increases ΓH and reduces ΓL. From equation (12), we also

have
ΓH

H
=

(

γH(M)

γL(M)

)σ
ΓL

L
,

23



which implies that, as ΓL declines ΓH/H also declines in response to an increase in H in the

region where M < J . Then from (14), WH/R is also decreasing in H . An analogous argument

establishes that WL

R
is decreasing in L.

Moreover, equation (14) shows that the wage to rental rate ratios, WH/R and WL/R, are

also increasing in the stock of capital K.

It follows that there exist a threshold K(H,L) such that the inequalities in (5) hold for

K > K(H,L). Moreover, because the wage to rental rate ratios, WH/R and WL/R, are

decreasing in the supply of high-skill, H , and low-skill, L, labor, respectively, the threshold

K(H,L) is nondecreasing.

To establish the existence of ρ we show that, in this allocation, the wage ratio WH/WL is

decreasing in H/L. From (10), we have

WH

WL

=

(

ΓH

ΓL

L

H

)
1
σ

=
γH(M)

γL(M)
.

Thus, when M > J and ΓL and ΓH are constant, this expression shows that WH/WL is

decreasing in H/L. When M < J , the increase in H/L shifts the left-hand side of equation

(12) down in the second panel of Figure 2, once again reducing M , establishing the desired

result.

Because WH/WL is decreasing in H/L, it follows that there exists a threshold ρ such that

the condition (4) holds. This condition ensures that M < IH , completing the proof of the

proposition. (Note that proposition 1 guarantees that M > IL.)

Proof of Proposition 2: Substituting for factor prices from equation (10) into the ideal

price index condition, equation (11), we obtain

1 =ΓHW
1−σ
H + ΓLW

1−σ
L + ΓKR

1−σ

=ΓH

(

Y ΓH

H

)
1−σ
σ

+ ΓL

(

Y ΓL

L

)
1−σ
σ

+ ΓK

(

Y ΓK

K

)
1−σ
σ

=Y
1−σ
σ

(

Γ
1
σ

HH
σ−1
σ + Γ

1
σ

LL
σ−1
σ + Γ

1
σ

KK
σ−1
σ

)

,

which confirms equation (9). As already noted in the proof of Proposition A1, (12) follows

immediately by combining (10) and (3). The fact that equation (12) has a unique solution for

M follows by observing that, from Assumption 1, the right-hand side is an strictly increasing

function of M , while the left-hand side is nonincreasing in M .

The condition x > H/L > x—which is assumed to hold throughout—ensures that the

curves intersect at some interior M ∈ (IL, IH). To see this, notice that the condition H/L > x

guarantees that at IH we have:

γH(M)

γL(M)
>

(

ΓH

ΓL

L

H

)
1
σ

.
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Likewise, the condition x > H/L guarantees that at IL we have:

γH(M)

γL(M)
<

(

ΓH

ΓL

L

H

)
1
σ

.

Thus, the left and right-hand side of equation (12) cross at a unique point, M , in the interval

(IL, IH), completing the proof. �

Proof of Proposition 3: When M > J , the formulae for the displacement effects follow

straightforwardly by differentiating the expressions for ΓH and ΓL in equation (8). When

M < J , we also need to take into account the change in M . Differentiating equation (12), we

obtain
dΓH

ΓH

−
dΓL

ΓL

= σεdM. (15)

Moreover, when M < J , a change of low-skill automation by dIL changes the effective labor

shares by

dΓL = −γ(IL)
σ−1dIL + γL(M)σ−1dM

dΓH = −γH(M)σ−1dM. (16)

Solving equations (15) and (16), we obtain the formula provided in the proposition for dΓL

dIL

and dΓH

dIL
for the case where M < J . Likewise, when M < J , a change of high-skill automation

by dIH changes labor shares by

dΓH = −γ(IH)
σ−1dIH − γH(M)σ−1dM

dΓL = γL(M)σ−1dM. (17)

Solving equations (15) and (17), we obtain the formulae in the proposition for dΓL

dIH
and dΓH

dIH
for

the case where M < J . �

Proof of Proposition 4: We present the proof for a change in low skill automation, dIL.

The proof for a change in high-skill automation is entirely analogous, and is omitted.

Differentiating the expression for total output we obtain

dY =
1

σ − 1
Y

1
σ

(

Γ
1−σ
σ

H H
σ−1
σ

dΓH

dIL
+ Γ

1−σ
σ

L L
σ−1
σ

dΓL

dIL
+ Γ

1−σ
σ

K K
σ−1
σ

dΓK

dIL

)

1

σ − 1
Y

(

(Y ΓH)
1−σ
σ H

σ−1
σ

dΓH

dIL
+ (Y ΓL)

1−σ
σ L

σ−1
σ

dΓL

dIL
+ (Y ΓK)

1−σ
σ K

σ−1
σ

dΓK

dIL

)

1

σ − 1
Y

(

W 1−σ
H

dΓH

dIL
+W 1−σ

L

dΓL

dIL
+R1−σ dΓK

dIL

)

.

Plugging the expressions derived in Proposition 3 for the terms dΓH

dIL
, dΓL

dIL
and dΓK

dIL
yields the

desired expressions, completing the proof of Proposition 4. �
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Proof of Proposition 5: We present the proof for low-skill automation. The argument

for high-skill automation is entirely analogous, and is omitted.

Consider the productivity effect PEL(K) = 1
Y

dY
dIL

, written as an implicit function of the

capital stock, K, and whose expression was derived in Proposition 4,

PEL(K) =
1

σ − 1

(

R1−σ −

(

WL

γL(IL)

)1−σ
)

.

We now show that the productivity effect PEL(K) increases with the capital stock, K, and

that as K becomes smaller, PEL converges to zero. To prove this, notice that an increase in

capital reduces the rental rate of capital by

dR

R
= −

1

σ
(1− sk)

dK

K
,

while it increases low-skill wages by

dWL

WL

=
1

σ
sk
dK

K
.

Moreover, as K → 0 we have that WL/R → 0. Thus, as K declines, we necessarily reach a

point in which PEL(K) = 0.

To finalize the proof, we start by considering the case M < J . Proposition 3 shows that, in

this case, both types of labor are affected by a strictly negative displacement effect. Moreover,

the proposition shows that
1

ΓL

dΓL

dIL
<

1

ΓH

dΓH

dIL
< 0.

Thus, the negative displacement effect on low-skill labor is stronger than the ripple effect on

high-skill labor.

We now make use of these properties of the function PEL(K) to define the thresholds KL

and KL. Because the capital stock does not change the size of the displacement and ripple

effects, it follows that there exist two thresholds KL > KL such that:

PEL(KL) =−
1

ΓH

dΓH

dIL
> 0 PEL(KL) =−

1

ΓL

dΓL

dIL
> 0.

These thresholds satisfy the properties stated in Proposition 5.

Finally, when M > J , Proposition 3 shows that

1

ΓH

dΓH

dIL
= 0.

Thus, for high-skill labor we have that PEL(K) > − 1
ΓH

dΓH

dIL
= 0 for all K and the threshold

KL is not defined.
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We complete the proof by noting that low-skill automation always increases R because, in

this case, the productivity and displacement effects are both strictly positive. �

Proof of Proposition 6: The proof follows from differentiating the expression ω = ΓH

ΓL

L
H
,

and then using the formulas derived in Proposition 3. �

Proof of Proposition 7: We present the proof for low-skill automation. The argument

for high-skill automation is entirely analogous, and is omitted.

The endogenous capital stock satisfies

K = ΓKY R−σ
ℓ .

Totally differentiating separation, we obtain

1

K

dK

dIL
=

1

ΓK

ΓK

dIL
+

1

Y

dY

dIL

∣

∣

∣

∣

Kfixed

+
1

Y

dY

dK

dK

dIL

=
1

ΓK

ΓK

dIL
+

1

Y

dY

dIL

∣

∣

∣

∣

Kfixed

+ sk
1

K

dK

dIL

=
1

1− sk

(

1

ΓK

ΓK

dIL
+

1

Y

dY

dIL

∣

∣

∣

∣

Kfixed

)

,

which yields the desired result. �

Proof of Proposition 8: We present the derivation for low-skill automation. The argu-

ment for high-skill automation is entirely analogous, and is omitted.

Totally differentiating the ideal price condition, equation (11), we obtain

ΓLW
1−σ
L

1

WL

dWL

dIL
+ ΓHW

1−σ
H

1

WH

dWH

dIL
=

1

σ − 1

(

R1−σ −

(

WL

γL(IL)

)1−σ
)

.

Let sL and sH be the shares of low-skill and high-skill labor in national income, respectively.

Note that ΓLW
1−σ
L = sL and ΓHW

1−σ
H = sH . Thus, automation raises the total wage bill by

sL
1

WL

dWL

dIL
+ sH

1

WH

dWH

dIL
=

1

σ − 1

(

R1−σ −

(

WL

γL(IL)

)1−σ
)

> 0.

The desired result follows by noting that the left-hand side is equal to 1
Y

dW
dIL

, and the right-hand

side is equal to 1
Y

dY
dIL

∣

∣

∣

Kfixed
.

An alternative derivation uses the accounting identity RℓK +W = Y . Differentiating this

identity we obtain

R · dK + dW = dY |Kfixed +R · dK,

which implies that

dW = dY |Kfixed ,

also establishing the same result. �
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Figure 1: Cost-minimizing allocation of factors to tasks when capital produces two disjoint

(and non-empty) sets of tasks. The top panel depicts an equilibrium in which M ∈ (J, I∗H).

The middle panel depicts an equilibrium in which M ∈ (I∗L, J). The bottom panel shows an

equilibrium in which M ∈ (I∗H , 1).
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Figure 2: Equilibrium value for M when Assumption 2 holds. The left panel depicts the case

in which M ∈ (IL, J), while the right panel is for the case in which M ∈ (J, IH).
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