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ABSTRACT
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1 Motivation

It is clear that our attention is limited. When choosing, say, a bottle of wine for dinner, we

think about just a few consideration (the price and the quality of the wine), but not about the

myriad of components (for example, future income, the interest rate, the potential learning

value from drinking this wine) that are too minor. Still, traditional rational economics

assumes that we process all the information that is freely available to us.

Modifying this assumption is empirically relevant, theoretically doable, and has great

consequences in making economics more psychologically realistic, understanding markets,

and designing better policies. This chapter is a user-friendly introduction to this research.

The style of this chapter is that of a graduate course, with pedagogical, self-contained deriva-

tions.1 We will proceed as follows.

Section 2 is a high-level level overview. I use a simple framework to model the behavior

of an inattentive consumer. Attention is parametrized by a value m, such that m = 0

corresponds to zero attention (hence, to a very behavioral model) and m = 1 to full attention

(hence, to the traditional rational model). At a formal level, this simple framework captures

a large number of behavioral phenomena: inattention to prices and to taxes; base rate

neglect; inattention to sample size; over- and underreaction to news (which both stem from

inattention to the true autocorrelation of a stochastic time series); local inattention to details

of the future (also known as “projection bias”); global inattention to the future (also known

as hyperbolic discounting). At the same time, the framework is quite tractable. I also use

this framework to discuss the psychology of attention.

Once this framework is in place, Section 3 discusses methods used to measure inattention

empirically: from observational ones like eye-tracking to some that more closely approach a

theoretical ideal.2 I then survey concrete findings in the empirics of attention. Measuring

attention is still a hard task – roughly, a new good measure of attention is rewarded with a

publication in the American Economic Review. I synthesize this literature. On average, the

attention parameter estimated in the literature is 0.44, roughly halfway between the very

behavioral and the very rational. Sensibly, attention is higher when the incentives to pay

attention are stronger, as shown in Figure 1.

The survey then takes a more theoretical turn, and explores in greater depth the de-

terminants of attention. In Section 4, I start with the most tractable models, those that

yield deterministic predictions (that is, for a given situation, there is a deterministic action).

Some models rely on the plain notion that more important dimensions should be more given

more attention – this is plain, but not actually trivial to capture in a clean model. Some

1Other surveys exist. DellaVigna (2009) offers a broad and readable introduction to measurement, in
particular in inattention, and Caplin (2016) offers a review, from a more information-theoretic point of view.

2I positioned this section early in the survey because many readers are interested in the measurement of
attention. While a small fraction of the empirical discussion uses some notions from the later theoretical
analysis, I wished to emphasize that much of it simply relies on the basic framework of Section 2.
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other models put the accent on proportional thinking rather than absolute thinking: in this

view, people pay more attention to relatively more important dimensions.

Section 5 then covers models with stochastic decision – given an objective situation,

the prediction is a probability distribution over the agents’ actions. These are inherently

more complex models. We will cover random choice models, as well as the strand of the

literature in which agents pay to acquire more precise signals. We will then move on to the

entropy-based penalty that has found particular favor among macroeconomists.

What are the consequences of introducing behavioral inattention into economic models?

This chapter reviews many such implications, in industrial organization, taxation, macroe-

conomics, and other areas. Section 6 presents something elementary that yet helps unify

all this: a behavioral version of the most basic chapter of the microeconomics textbook à la

Varian (1992), including consumer theory, and Arrow-Debreu. As most of rational economics

builds on these pillars, it is useful to have a behavioral version of them.

Much until now was static. Section 7 moves on to dynamic models. The key pattern

there is that of delayed reaction: people react to novel events, but with some variable

lag. Sometimes, they do not attend to a decision altogether – we have then a form of

“radical inattention”. Useful approaches in this domain include models that introduce costs

from changing one’s action, or costs from changing one’s thinking (these are called “sticky

action” and “sticky information” models, respectively). We will also discuss models of “habit

formation”, and models in which agents optimally choose how to acquire information over

time. We will understand the benefits and drawbacks of each of these various models.

Finally, Section 8 proposes a list of open questions. The appendices give mathematical

complements and additional proofs.

Notation I will typically use subscripts for derivatives, e.g. fx (x, y) = ∂
∂x
f (x, y), except

when the subscript is i or t, in which case it is an index for a dimension i or time t.

I differentiate between the true value of a variable x, and its subjectively perceived value,

xs (the s stands for: demand given “subjectively perceived value”, or sometimes, the value

given by salience or sparsity).

2 A Simple Framework for Modeling Attention

In this section I discuss a simple unifying framework for thinking about behavioral inattention

in economic modeling, and I argue that this simple structure is useful in unifying several

themes of behavioral economics, at least in a formal sense. I start from a basic example of

prior-anchoring and adjustment toward perceived signals in a model with Gaussian noise,

and then move to a more general model structure that captures behavioral inattention in a

deterministic fashion.
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2.1 An introduction: Anchoring and adjustment via Gaussian sig-

nal extraction

Suppose there is a true value x, drawn from a Gaussian distribution N
(
xd, σ2

x

)
, where xd is

the default value (here, the prior mean) and variance σ2
x. However, the agent does not know

this true value, and instead she receives the signal

s = x+ ε (1)

where ε is drawn from an independent distribution N (0, σ2
ε). The agent takes the action a.

The agent’s objective function is u (a, x) = −1
2

(a− x)2, so that if she’s rational, the agent

wants to take the action that solves: maxa E
[
−1

2
(a− x)2 |s

]
. That is, the agent wants to

guess the value of x given the noisy signal s. The first-order condition is

0 = E [− (a− x) |s] = E [x | s]− a

so that the rational thing to do is to take the action a (s) = x̂ (s), where x̂ (s) is the expected

value of x given s,

x̂ (s) = E [x | s] = ms+ (1−m)xd (2)

with the dampening factor3

m =
σ2
x

σ2
x + σ2

ε

∈ [0, 1] . (3)

Equation 2 says that the agent should anchor at the prior mean xd, and partially adjust

(with a shrinkage factor m) toward the signal s. The average action ā (x) := E [a (s) |x] is

then:

ā (x) = mx+ (1−m)xd. (4)

This is akin to the psychology of “anchoring and adjustment”. As Tversky and Kahneman

(1974, p. 1129) put it: “People make estimates by starting from an initial value that is

adjusted to yield the final answer [...]. Adjustments are typically insufficient”. Here, agents

start from the default value xd and on expectation adjusts it toward the truth x. Adjustments

are insufficient, as m ∈ [0, 1], because signals are generally imprecise.

Most models are variants or vast generalizations of the model in equation (4), with

different weights m (endogenous or not) on the true value. A first class of models eliminates

the noise, as not central, at least for the prediction of the average behavior (see Section 4).

A second keeps the noise as central – which often leads to more complicated models (see

Section 5).

Before discussing these variants and generalizations, I will present a simple formal frame-

3The math used here should be familiar, but a refresher is given in Appendix A.
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work for modeling inattention.

2.2 Models with deterministic attention and action

Most models of inattention have the following common structure. The agent should maximize

max
a
u (a, x) (5)

where, as before, a is an action (possibly multidimensional), and x is a vector of “attributes”,

e.g. price innovations, characteristics of goods, additional taxes, deviations from the steady

state and so on. So a rational agent will choose ar (x) = argmaxa u (a, x).

The behavioral agent replaces this by an “attention-augmented decision utility”,

max
a
u (a, x,m) (6)

where m is a vector that will characterize the degree of attention. She takes the action

a (x,m) = argmax
a

u (a, x,m) .

In inattention models, we will very often take (as in Gabaix and Laibson 2006; Chetty,

Looney, and Kroft 2009; DellaVigna 2009; Gabaix 2014)4

u (a, x,m) = u
(
a,m1x1 + (1−m1)xd1, . . . ,mnxn + (1−mn)xdn

)
. (9)

This is as if xi is replaced by the subjectively perceived xi :

xsi := mixi + (1−mi)x
d
i , (10)

with an attention parameter mi ∈ [0, 1], and where xdi is the “default value” of variable i.

When mi = 0, the agent “does not think about xi”, i.e. replaces xi by xsi = 0; when mi = 1,

she perceives the true value (xsi = xi). We call m = (mi)i=1...n the attention vector.

The default xdi is typically the prior mean of xi. However, it can be psychologically

4Some other models (e.g. Bordalo, Gennaioli, and Shleifer 2013, reviewed below in section 4.2), take the
form

u (a, x,m) = u (a,ma1x1, . . . ,manxn) (7)

where the attention parameters depend on the goods and the action, so that m has dimensions A×n, where
A is the number of goods. We keep a simpler form now, as it allows us to use continuous actions (so A =∞)
and take derivatives with respect to x. Also, the attention parameter m is often placed “outside the utility”,
as in

u (a, x,m) = mu (a, x) + (1−m)u
(
a, xd

)
(8)

Still, in most cases with continuous actions placing the m inside the utility function makes the model more
tractable.
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more sophisticated. For instance, if the mean price of good i is E [xi] = $10.85, then the

normatively simplest default is xdi = E [xi] = $10.85. But the default might be a truncated

price, e.g. xdi = $10 (see Lacetera, Pope, and Sydnor, 2012).

To fix ideas, take the following quadratic example:

u (a, x) = −1

2
(a−

n∑
i=1

bixi)
2. (11)

Then, the traditional optimal action is

ar (x) =
n∑
i=1

bixi, (12)

where the r superscript is as in the traditional rational actor model. For instance, to choose

a, the decision maker should consider not only innovations x1 in her wealth, and the deviation

of GDP from its trend, x2, but also the impact of interest rate, x10, demographic trends in

China, x100, recent discoveries in the supply of copper, x200, etc. There are, say, n > 10, 000

factors that should in principle be taken into account. A sensible agent will “not think” about

most of these factors, especially the less important ones. We will formalize this notion.

After attention m is chosen, the behavioral agent optimizes under her simpler represen-

tation of the world, i.e. choose

as =
n∑
i=1

bimixi,

so that if mi = 0, she doesn’t pay attention to dimension i.

2.3 Unifying behavioral biases: Much of behavioral economics re-

flects a form of inattention

Let us see some examples that will show how this form captures – at a formal level at least –

many themes of behavioral economics. This exercise illustrates that many behavioral biases

share a common structure: people anchor on a simple perception of the world, and partially

adjusts toward it. Conceptually, there is a “true model”, and there is a “default, simple

model” that spontaneously comes to mind. Attention m parameterizes the particular convex

combination of the default and true models that corresponds to the agent’s perception.5

5This feeling of unity of behavioral economics is not universal, but I find it useful to make a case for it
in this chapter. Gabaix (2014, Online Appendix, Section 9.A) contains an early version of this list, with a
fuller treatment some of the biases below, including the endogenization of attention m.
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2.3.1 Inattention to true prices and shrouding of add-on costs

Let us illustrate the misperception of numbers in the context of prices. We start from a

default price pd. The new price is p, while the price perceived by the agent is

ps (p,m) = mp+ (1−m) pd. (13)

Hence, take the case without income effect (see Section 6.1.1 for the case with income

effects), where the rational demand is cr (p) . Then, the demand of a behavioral agent is

cs (p) = cr (ps (p,m)) . So, the sensitivity of demand to price is cs (p)′ = mcr (ps)′. The

demand sensitivity is muted by a factor m.

We can also reason in logarithmic space, so that the perceived price is:

ps = (p)m
(
pd
)1−m

. (14)

In general, the psychology of numbers (Dehaene 2011) shows that the latter formulation

(in log space) is psychologically more accurate. This formulation is sometimes used in Gabaix

(2014) and Khaw, Li, and Woodford (2017) – the latter formulation is a stochastic one, and

explores how the model’s stochasticity is useful to match the empirical evidence.

Similar reasoning applies to the case of goods sold with separate add-ons. Suppose that

the price of a base good is p, and the price of an add-on is p̂. The consumer might only

partially see the add-on, such that she perceives the add-on cost to be p̂s = mp̂. As a result,

the myopic consumer perceives total price to be only p + mp̂, while the full price is p + p̂.

Such myopic behavior allows firms to shroud information on add-on costs from consumers

in equilibrium (Gabaix and Laibson 2006).

2.3.2 Inattention to taxes

Suppose that the price of a good is p, and the tax on that good is τ . Then, the full price

is q = p + τ . But a consumer may pay only partial attention to the tax, so the perceived

tax is τ s = mτ , and the perceived price is qs = p + mτ . Chetty, Looney, and Kroft (2009)

develop this model, develop the theory of tax incidence, and measure attention to sales taxes

in routine consumer purchases. Mullainathan, Schwartzstein, and Congdon (2012) offer an

overview of behavioral public finance, and Farhi and Gabaix (2017) provide a systematic

theory of optimal taxation (encompassing the Ramsey, Pigou and Mirrlees problems) with

misperceptions and other biases.

2.3.3 Neglected risks

Suppose that the probability of a bad state of the world happening is p. The perceived

probability is ps = mp, if the default probability is pd = 0. This generates underreaction to

10



neglected risks (Gennaioli, Shleifer, and Vishny 2012).

2.3.4 Hyperbolic discounting: inattention to the future

In an intertemporal choice setting, suppose that true utility is U0 =
∑∞

t=0 δ
tut, and call

U1 =
∑∞

t=1 δ
t−1ut the continuation utility, so that

U0 = u0 + δU1. (15)

A present-biased agent (Laibson 1997; O’Donoghue and Rabin 1999) will instead see a

perceived utility

U s
0 = u0 +mδU1. (16)

The parameter m is equivalent here to the parameter β in the hyperbolic discounting

literature.6

Still, the normative interpretation is different. If the m = β is about misperception, then

the favored normative criterion is to maximize over the preferences of the rational agents,

i.e maximize u0 + δU1 (Bernheim and Rangel 2009; Farhi and Gabaix 2017). In contrast,

with hyperbolic discounting or a planner-doer model (Thaler and Shefrin 1981; Fudenberg

and Levine 2012) the welfare criterion is not so clear as one needs to trade off the utility of

several “selves”.

2.3.5 Prospect theory: Inattention to the true probability

There is a literature in psychology (but not widely known by behavioral economists) that

finds that probabilities are mentally represented in “log odds space”. Indeed, in their survey

Zhang and Maloney (2012) assert that this perceptual bias is “ubiquitous” and gives a unified

account of many phenomena. If p ∈ (0, 1) is the probability of an event, the log odds are

q := ln p
1−p ∈ (−∞,∞). Then, people may misperceive numbers as in (2) and (4), i.e. their

median perception is7

qs = mq + (1−m) qd. (17)

Then, people transform their perceived log odds qs = ln ps

1−ps into a perceived probability

ps = 1
1+e−qs

, that is

ps = π (p) =
1

1 +
(

1−p
p

)m (
1−pd
pd

)1−m , (18)

which is the median perception of a behavioral agent: we have derived a probability weighting

6Gabaix and Laibson (2017) develop an interpretation of discounting via cognitive myopia much along
these lines.

7I use the median, because perception contains noise around the mean, and the median is more tractable
when doing monotonous non-linear transformations.
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function π (p). This yields overweighting of small probabilities (and symmetrically under-

weighting of probabilities close to 1). Psychologically, the intuition is as follows: a probability

of 10−6 is just too strange and unusual, so the brain “rectifies it” by dilating it toward a

more standard probability such as pd ' 0.36, and hence overweighting it.8 This is exactly

as in the simple Gaussian updating model of Section 2.1, done in the log odds space. This

gives a probability weighing function much like in prospect theory (Kahneman and Tversky

1979). This theme is pursued (with a different functional form, not based on the psychology

of the log odds space surveyed in Zhang and Maloney 2012) by Steiner and Stewart (2016).9

Putting the two themes above (distortions of payoff and distortions of probability) to-

gether, we get something much like prospect theory (see also Woodford 2012 for the distor-

tions of payoffs). How to obtain loss aversion? To get it, we’d need to assume a “pessimistic

prior”, saying that the typical gamble in life has negative expected value. For instance the

default probability for loss events is higher than the default probability in gains events. This

will create loss aversion.

This thinking is all somewhat ex-post. Still, with this perspective, we can at least imag-

ine why nature made people prospect-theoretic – and indeed, why we should make robots

prospect-theoretic if their perceptions were noisy: they would misperceive payoffs and proba-

bilities (because of the inherent noisiness of the intuitive treatment of numbers in the mind),

and they would do so in an environment where gambles have in general negative expected

values. Optimal correction of such features creates respectively: diminishing sensitivity, dis-

tortion of probabilities, and loss aversion. This generates a set of predictions much akin to

those of prospect theory.

There is a tension. There is a tendency to neglect lots of small probability events in the

“editing phase” of Kahneman and Tversky (1979), where agents decides which states of the

world to take into account at all; and to overestimate them in the decision phase. This is the

kind of tension that irks non-behavioral economists, and embarrasses behavioral economists.

Using endogenous attention and sparsity, though, this tension can be solved.10

8Here I take pd ' 0.36 as this is the crossover value where p = ps in Prelec’s (1998) survey.
9We will see Bordalo, Gennaioli, and Shleifer’s (2012) theory, which is more distantly related, in Section

4.2.
10This editing phase could be accounted for in the following way, along the lines of material of section 4.1.1.

In the “first cut editing phase”, the agent does as in Step 1 of the sparse max (Proposition 4.1), but with
pdi = 0, and with psi = mipi. This yields the set of events i to which the agent does pay attention (mi > 0);
those are the events that are “important” for the decision at hand. Hence, as the end of this first Step 1, the
agent has an “edited model”, where non-surviving probabilities set to 0. Then, in the second phase, which
could be called “behavioral decision making in a pre-simplified world” the agents does a regular sparse max
of Proposition 4.1 (including a new Step 1, on the edited model, with a positive default probability, as in
18). This description seems to account reasonably well for the “editing phase” of prospect theory, of which
Kahneman and Tversky (1979) gave a verbal rather than algorithmic description. A systematic exploration
of that model would be interesting.
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2.3.6 Overconfidence: Inattention to my true ability

If x is my true driving ability, with overoptimism my prior xd may be a high ability value;

perhaps the ability of the top 10% of drivers. Rosy perceptions come from this high default

ability (for myself), coupled with behavioral neglect to make the adjustment. A related bias

is that of “overprecision”, in which I think that my beliefs are more accurate than they

are: then x is the true precision of my signals, and xd is a high precision. There are other

explanations for overconfidence and overprecision, e.g. motivation or signaling (Bénabou

and Tirole 2002).

2.3.7 Cursedness: Inattention to the conditional probability

In a game theoretic setting, Eyster and Rabin (2005) derive the equilibrium implications of

cursedness, a behavioral bias whereby players underestimate the correlation between their

strategies and those of their opponents. The structure is formally similar, with cursedness χ

being 1−m: the agent forms a belief that is an average of m times to the true probability,

and 1−m times a simplified, näıve probability distribution.

2.3.8 Projection bias: Inattention to future circumstances by anchoring on

present circumstances

Suppose that I need to forecast xt, a variable at time t. I might use its time-zero value as

an anchor, i.e. xdt = x0. Then, my perception at time zero of the future variable is

xst = mxt + (1−m)x0, (19)

hence the agent exhibits projection bias. See also Loewenstein, O’Donoghue, and Rabin

(2003) for the basic analysis, and Busse, Knittel, and Zettelmeyer (2013a) for empirical

evidence in support of this.

2.3.9 Base-rate neglect: Inattention to the base rate

In base-rate neglect (Tversky and Kahneman 1974) the true base probability P is replaced

by P s (y) = mP (y) + (1−m)P d (y), where P d (y) is a uniform distribution on the values of

y.

2.3.10 Correlation neglect

Another way to simplify a situation is to imagine that random variables are uncorrelated,

as shown by Enke and Zimmermann (forthcoming). To formalize this, let us say that the

true probability of variables y = (y1, . . . , yn) is a joint probability P (y1, ..., yn), and the

(marginal) distribution of yi is Pi (yi). Then the “simpler” default probability is the joint
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density assuming no correlation P d (y) = P1 (y1) . . . Pn (yn). Correlation neglect is captured

by a subjective probability P s (y) = mP (y) + (1−m)P d (y).

2.3.11 Insensitivity to sample size

Tversky and Kahneman (1974) show the phenomenon of “insensitivity to sample size”. One

way to model this is as follows: the true sample size N is replaced by a perceived sample

size N s =
(
Nd
)1−m

Nm, and agents update based on that perceived sample size.

2.3.12 Insensitivity to predictability / Misconceptions of regression to the mean

/ Illusion of validity: Inattention to the stochasticity of the world

Tversky and Kahneman (1974) report that, when people see a fighter pilot’s performance,

they fail to appreciate reversion to the mean. Hence, if the pilot does less well the next time,

they attribute this to lack of motivation, for instance, rather than reversion to the mean.

Call x the pilot’s core ability, and st = x+εt the performance on day t, where εt is an i.i.d.

Gaussian noise term and x is drawn from a N (0, σ2
x) distribution. Given the performance st

of, say, an airline pilot, an agent predicts next period’s performance (Tversky and Kahneman

1974). Rationally, she predicts x̄t+1 := E [xt+1 | xt] = λxt with λ = 1
1+σ2

ε/σ
2
x
.

However, a behavioral agent may “forget about the noise”, i.e. in her perceived model,

Vars (ε) = mσ2
ε . If m = 0, they don’t think about the existence of the noise, and answer

yst+1 = yt. Such agent will predict:

x̄st+1 =
1

1 + mσ2
ε

σ2
a

xt.

Hence, very behavioral agents (with m = 0), who fully ignore the stochasticity of the

world, will just expect the pilot to do next time as he did last time.

2.3.13 When will see see overreaction vs. underreaction?

Suppose that a variable yit follows a process yi,t+1 = ρiyit + εit, and εit an i.i.d. innovation

with mean zero. The decision-maker however has to deal with many such processes, with

various autocorrelations, that are ρd on average. Hence, for a given process, she may not

fully perceive the autocorrelation, and instead use the subjectively perceived autocorrelation

ρsi , as in

ρsi = mρi + (1−m) ρd. (20)

That is, instead of seeing precisely the fine nuances of many AR(1) processes, the agent

anchors on a common autocorrelation ρd, and then adjusts partially toward the true auto-

correlation of variable yit, which is ρi. The agent’s prediction is Est [yi,t+k] = (ρsi )
k yi,t, so
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that

Est [yi,t+k] =

(
ρsi
ρi

)k
Et [yi,t+k]

where Est is the subjective expectation, and Et is the rational expectation. Hence, the agent

exhibits overreaction for processes that are less autocorrelated than ρd, as
ρsi
ρi

> 1, and

underreaction for processes that are more autocorrelated than ρd, as
ρsi
ρi
< 1.11

For instance, if the growth rate of a stock price is almost not autocorrelated, and the

growth rate of earnings has a very small positive autocorrelation, people will overreact to

past returns by extrapolating too much (Greenwood and Shleifer 2014). On the other hand,

processes that are quite persistent (say, inflation) will be perceived as less autocorrelated

than they truly are, and agents will underreact by extrapolating too little (as found by

Mankiw, Reis, and Wolfers 2003).12

2.3.14 Left-digit bias: Inattention to non-leading digits

Suppose that a number, in decimal representation, is x = a + b
10

, with a ≥ 1 and b ∈ [0, 1).

An agent’s perception of the number might be

xs = a+m
b

10
(21)

where a low value of m ∈ [0, 1] indicates left-digit bias. Lacetera, Pope, and Sydnor (2012)

find compelling evidence of left-digit bias in the perception of the mileage of used cars sold

at auction. I review this in greater detail in Section 3.2.5.

2.3.15 Exponential growth bias

Many people appear to have a hard time compounding interest rates, something that Stango

and Zinman (2009) call the exponential growth bias. Here, if x = (1 + r)t is the future value

of an asset, then the simpler perceived value is xd = 1 + rt, and the perceived growth is just

xs = mx+ (1−m)xd.

2.3.16 Taking stocks of all these examples

All these examples, I submit, illustrate that the very simple framework above allows one

to think in a relatively unified way about a wide range of behavioral biases, at least in

their formal structure. There are four directions in which such baseline examples can be

11This sort of model is used in Gabaix (2016a,b).
12As of now, this hypothesis for the origin of under/overreaction has not been tested, but it seems plausible

and has some indirect support (e.g. from Bouchaud, Krueger, Landier, and Thesmar 2016). A meta-analysis
of papers on under/overreaction, perhaps guided by the simple analytics here, would be useful. There are
over ways to generate over / underreaction, e.g. Daniel, Hirshleifer, and Subrahmanyam (1998), which relies
on investor overconfidence about the accuracy of their beliefs, and biased self-attribution.
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extended, all of them worthwhile. Here I give a brief outline of these four directions, along

with a number of examples that are discussed at greater length in later sections of this

survey:

1. In the “theoretical economic consequences” direction, economists work out the conse-

quences of that partial inattention, e.g. in market equilibrium, or in the indirect effects

of all this.

2. In the “empirical economic measurement” direction, researchers estimate attention m:

see if it is full or not, and, even better, measure it.

3. In the “basic psychology” direction, researchers think more deeply about the “default

perception of the world”, i.e. what an agent perceives spontaneously. Psychology helps

determine this default.13

4. In the “endogenization of the psychology” part, attention m is endogenized. This can

be helpful, or not, in thinking about the two points above. Typically, endogenous

attention is useful to make more refined predictions, though most of those remain to

be tested. In the meantime, a simple quasi-fixed parameter like m is useful to have,

and allows for parsimonious models – a view forcefully argued by Rabin (2013).

2.4 Psychological underpinnings

Here is a digest of some features of attention from the psychology literature. Pashler (1998)

and Styles (2006) offer book-length surveys on the psychology of attention, in particular in

perception.

2.4.1 Conscious versus unconscious attention

Systems 1 and 2. Recall the terminology for mental operations of Kahneman (2003), where

“system 1” is the intuitive, fast, largely unconscious and parallel system, while “system 2”

is the analytical, slow, conscious system.

System 2, working memory, and conscious attention. It is clear that we do not handle

thousands of variables when dealing with a specific problem. For instance, research on

working memory documents that people handle roughly “seven plus or minus two” items

(Miller 1956). At the same time, we do know – in our long term memory – about many

variables, x. Hence, we can handle consciously relatively few mi that are different from 0.14

System 1 / Unconscious attention monitoring. At the same time, the mind contemplates

unconsciously thousands of variables xi, and decides which handful it will bring up for

13It would be nice to have a “meta-model” for defaults, unifying the superficial diversity of default models.
14In attentional theories, System 1 chooses the attention (e.g. as in Step 1 in Proposition 4.1), while the

decision is done by System 2 (as in Step 2 in the same Proposition).
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conscious examination (that is, whether they should satisfy mi > 0). For instance, my

system is currently monitoring if I’m too hot, thirsty, low in blood sugar, but also in the

presence of a venomous snake, and so forth. This is not done consciously. But if a variable

becomes very alarming (e.g. a snake just appeared), it will be “brought to consciousness” –

that is, to the attention of system 2. Those are the variables with an mi > 0.

2.4.2 Reliance on defaults

What guess does one make when there is no time to think? This is represented by the case

m = 0: then, variables x are are replaced by their default value (the Bayesian analogue of

the default is the “prior”). This default model (m = 0), and the default action ad (which is

the optimal action under the default model) corresponds to “system 1 under extreme time

pressure”. The importance of default actions has been shown in a growing literature (e.g.

Madrian and Shea 2001; Carroll, Choi, Laibson, Madrian, and Metrick 2009).15 Here, the

default model is very simple (basically, it is “do not think about anything”), but it could be

enriched, following other models (e.g. Gennaioli and Shleifer 2010).

2.4.3 Other themes

If the choice of attention is largely unconscious, this leads to the curious choice of “attentional

blindness”. The now canonical experiment for this is the gorilla experiment of Simons and

Chabris (1999). When asked to perform a time-consuming task, subject often didn’t see a

gorilla in the midst of the experiment.

Another theme – not well integrated by the economics literature, is the “extreme seriality

of thought” (see Huang and Pashler 2007): in the context of visual attention, it means that

people can process things only one color at the time. In other contexts, like the textbook

rabbit / duck visual experiment, it means that one can see a rabbit or a duck in a figure, but

not both at the same time. From an economic point of view, serial models that represent the

agent’s action step by step tend to be complicated but instructive (Rubinstein 1998; Gabaix,

Laibson, Moloche, and Weinberg 2006; Caplin, Dean, and Martin 2011; Fudenberg, Strack,

and Strzalecki 2017), so that more “outcome based models”, that directly give the action

rather than the intermediary steps, can be useful.

15This literature shows that default actions matter, not literally that default variables matters. One
interpretation is that the action was (quasi-)optimal under some typical circumstances (corresponding to
x = 0). An agent might not wish to think about extra information (i.e., deviate from x = 0), and hence
deviate from the default action.
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3 Measuring Attention: Methods and Findings

I now turn to the literature on the empirical measurement of attention. I first provide a

broad taxonomy of the approaches taken in the literature, and then discuss specific empirical

findings. The recent empirical literature in inattention has greatly advanced our ability to

understand behavioral biases quantitatively, such that we can now begin to form a synthesis

of these results. I present such a synthesis at the end of this section.

3.1 Measuring attention: Methods

There are essentially five ways to measure attention:16

1. Deviations from an optimal action.

2. Deviations from normative cross-partials, e.g. from Slutsky symmetry.

3. Physical measurement, e.g. eye-tracking.

4. Surveys: eliciting people’s beliefs.

5. Qualitative measures: impact of reminders, of advice.

As we shall see, methods 3-5 can show that attention is not full (hence, help reject the näıve

rational model), and 1 and 2 truly measure attention (i.e., measure the parameter m).17

3.1.1 Measuring inattention via deviation from an optimal action

Suppose the optimal action function is aBR (x) = ar (mx), so the derivative with respect to

x is aBRx (x) = marx (mx). Therefore attention can be measured as18

m =
aBRx
arx

.

Hence, the attention parameter m is identified by the ratio of the sensitivities to the

signal x of the boundedly-rational action function aBR and of the rational action function

ar. This requires knowing the normatively correct slope, arx. How does one do that?

16This classification builds on DellaVigna’s (2009).
17Here, I define measuring attention as measuring a parameter m like in the simple model of this chapter,

or its multidimensional generalization m1, ...,mn. However, one could wish to estimate a whole distribution
of actions (i.e., a (x) being a random variable, perhaps parametrized by some m). This is the research
program in Caplin and Dean (2015); Caplin, Dean, and Leahy (2016). This literature is more conceptual
and qualitative at this stage, but hopefully one day it will merge with the more behavioral literature.

18To be very precise, m (x) =
aBRx (x)
arx(mx)

. So, one can get m assuming small deviations x (so that we measure

the limit m (0)), or the limit of a linearized rational demand ar (x) .
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1. This could be done in a “clear and understood” context, e.g. where all prices are very

clear, perhaps with just a simple task (so that in this environment, m = 1), which

allows us to measure arx. This is the methodology used by Chetty, Looney, and Kroft

(2009), Taubinsky and Rees-Jones (2017), and Allcott and Taubinsky (2015), that we

will review in Section 3.2.1.

2. Sometimes, the “normatively correct answer” is the attention of experts. Should one

buy generic drugs (e.g. aspirins) or more expensive “branded drugs” – with the same

basic molecule? For instance, to find out the normatively correct behavior, Bronnen-

berg, Dubé, Gentzkow, and Shapiro (2015) look at the behavior of experts – health

care professionals – and find that they are less likely to pay extra for premium brands.

We shall review the practical methods later.19

3.1.2 Deviations from Slutsky symmetry

We will see below (Section 6.1.2) that deviations from Slutsky symmetry allow one in prin-

ciple to measure inattention. Aguiar and Riabov (2016) and Abaluck and Adams (2017)

use this idea to measure attention. In particular, Abaluck and Adams (2017) show that

Slutsky symmetry should also hold in random demand models. Suppose the utility for good

i is vi = ui − βpi, and the consumer chooses a = argmaxi (ui − βpi + εi), where the εi are

arbitrary noise terms (still, with a non-atomic distribution), which could even be correlated.

The probability of choosing i is ci (p) = P (ui − βpi + εi = maxj uj − βpj + εj). Define the

Slutsky term Sit = ∂ci
∂pj

. Then, it turns out that we have Sij = Sji again, under the ra-

tional model. So, with inattention to prices, and cs (p) = cr
(
Mp+ (1−M) pd

)
, where

M = diag (m1, . . . ,mn) is the diagonal matrix of attention, we have

Ssij = Srijmj

exactly like in the basic model. Abaluck and Adams (2017) explore this and similar relations

to study the inattention to complex health care plans. It is nice to see how an a priori

abstruse idea (the deviation from Slutsky symmetry in limited attention models , as in

Gabaix 2014) can lead to concrete real-world measurement of the inattention to health-care

plans characteristics.

3.1.3 Process tracking: Mouselab, eye tracking, pupil dilatation, etc.

A popular way to measure activity is with a process-tracing experiment commonly known

as Mouselab (Payne, Bettman, and Johnson 1993; Gabaix, Laibson, Moloche, and Weinberg

19In some cases, the context-appropriate attention parameter m is quite hard to measure. So, people use
a “portable already-estimated parameter”, e.g. m = β = 0.7 for hyperbolic discounting.
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2006), or with eye tracking methods. In Mouselab, subjects need to click on boxes to see

which information they contain. In eye tracking (Reutskaja, Nagel, Camerer, and Rangel

2011), researchers can follow which part of the screen subjects look at. There are other

physiological methods of measurement as well, such as measuring pupil dilation (Kahneman

1973). See Schulte-Mecklenbeck et al. (2017) for a recent review.

Those measures are useful, but they are not entirely ideal, as they measure attentional

inputs, not attention itself.20 To see this, conceptually, call T the time spend on dimension

i – time here is a stand in for other measures, e.g. time gazing at the dimension, fMRI

intensity, pupil dilatation, and so forth. Then, we could model the “attention processing

function” as a function of time:

m = f (T ) .

Hence, time spent is an input in the attention production function, but it is not attention

per se. Also, given attention is limited on a scale [0, 1] , and time T is unbounded, the function

f cannot be linear. In addition, the function must be modulated by some “mental effort”,

let’s call it M , as in:

m = f (T,M) .

For instance, a student may look at a whole lecture (T = 80 minutes), but still not really

exert effort (low M), so that the total amount learned (indexed by m) is very low. It would

be great to measure the production function of attention, f (T,M).

Arieli, Ben-Ami, and Rubinstein (2011) use an eye-tracking experiment to trace the de-

cision process of experiment participants in the context of choice over lotteries, and find

that that individuals rely on separate evaluations of prizes and probabilities in making their

decisions. Krajbich and Rangel (2011) find that the drift-diffusion model is a good predictor

of choice and reaction times when subjects are faced with choices over two or three alter-

natives. Lahey and Oxley (2016), using eye tracking techniques, examine recruiters, and

see what information they look at in resumes, in particular from white vs African-American

applicants. Bartoš, Bauer, Chytilová, and Matějka (2016) provide theory and evidence on

how statistical discrimination guides information acquisition.

3.1.4 Surveys

One can also elicit a measurement of attention via surveys. Of course, there is a difficulty.

Take an economist. When surveyed, she knows the level of interest rate. But that doesn’t

mean that she actually takes the interest rate into account when buying a sweater – so as to

20There is another difficulty. The lab evidence is not necessarily directly analogous to the way people make
big decisions, like deciding which college to attend. I may attend to information about college A on one day,
and to information about college B on another, but over time I attend to a lot of diverse information before
I make my choice, and I may even keep notes of what I considered salient while I was attending. That is
different than the one-shot multifaceted information arrival typically studied in the lab.
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satisfy her rational Euler equation for sweaters. Hence, if people show ignorance in a survey,

it is good evidence that they are inattentive. However, when they show a good knowledge, it

does not mean that they actually take into account the variable in their decision. Information,

as measured in surveys, is an input into attention, but not the actual attention metric.21

For instance, a number of researchers have found that, while people know their average

tax rate, they often don’t know their marginal one, and often use the average tax rate as a

default proxy for the marginal tax rate (De Bartolomé 1995; Liebman and Zeckhauser 2004).

3.1.5 Impact of reminders, advice

If people don’t pay attention, perhaps a reminder will help. In terms of modeling, such a

reminder could be a “free signal”, or an increase in the default attention md
i to a dimension.

A reminder could come, for instance, from the newspaper. Huberman and Regev (2001)

show how a New York Times article creates a big impact for one company’s stock price.

It is not completely clear how that generalizes. There is also evidence that reminders have

an impact on savings (Karlan, McConnell, Mullainathan, and Zinman 2016) and medical

adherence (Pop-Eleches et al. 2011).

Hanna, Mullainathan, and Schwartzstein (2014) provide summary information to seaweed

farmers. This allows them to improve their practice, and achieve higher productivity. This

is consistent with a model in which farmers were not optimally using all the information

available to them. For instance, this could be described by a model such as Schwartzstein’s

(2014). In this model, if an agent is pessimistic about the fact that some piece of information

is useful, she won’t pay attention to it, so that she won’t be able to realize that it is useful.

Knowledge about the informativeness of the piece of information (σ2
xi
a2
xi

in equation 31)

leads to paying more attention, and better learning.

Again, this type of evidence clearly shows that attention is not full, although it doesn’t

measure it.

3.2 Measuring attention: Findings

Now that we have reviewed the methods, let us move to specific findings on attention.

3.2.1 Inattention to taxes

People don’t fully pay attention to taxes, as the literature has established, using the method-

ology of Section 3.1.1. The first experimental measure of attention to taxes was (to the best

of my knowledge) in Chetty, Looney, and Kroft (2009) using a field experiment. Chetty,

21In terms of theory, when asked about the “what is the interest rate”, I know the interest rate matters a
great deal. When asked “what’s the best sweater to buy”, the interest rate does not matter much (Gabaix
2016a).
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Looney, and Kroft (2009) find a mean attention of between 0.06 (by computing the ratio

of the semi-elasticities for sales taxes, which are not included in the sticker price, vs. ex-

cise taxes, which are included in the sticker price) and 0.35 (computing the ratio of the

semi-elasticities for sales taxes vs. more salient sticker prices).

Taubinsky and Rees-Jones (2017) design an online experiment and elicit the maximum tag

price that agents would be willing to pay when there are no taxes or when there are standard

taxes corresponding to their city of residence. The ratio of these two prices is 1 +mτ , where

τ is the tax. This allows the estimation of tax salience m. Taubinsky and Rees-Jones (2017)

find (in their standard tax treatment)22 that E [m] = 0.25 and Var (m) = 0.13. So, mean

attention is quite small, but the variance is high. The variance of attention is important,

because when attention variance is high, optimal taxes are generally lower (Farhi and Gabaix

2017) – roughly, because heterogeneity in attention creates heterogeneity in response, and

additional misallocations, which increase the dead-weight cost of the tax.

3.2.2 Shrouded attributes

It is intuitively clear that many people won’t pay attention to “shrouded attributes”, such as

“surprise” bank fees, minibar fees, shipping charges, and the like (Ellison 2005; Gabaix and

Laibson 2006; Ellison and Ellison 2009). Gabaix and Laibson (2006) work out the market

equilibrium implication of such attributes with näıve consumers – e.g. consumers who are

not paying attention to their existence when buying the “base good” product. In particular,

if there are enough näıves there is an inefficient equilibrium where shrouded attributes are

priced much above marginal costs. In this equilibrium, näıve consumers are “exploited”, to

put it crudely: they pay higher prices and subsidize the non-näıves.

There is a growing field literature measuring the effects of such fees and consumers’ inat-

tention to them. Using both a field experiment and a natural experiment, Brown, Hossain,

and Morgan (2010) find that consumers are inattentive to shrouded shipping costs in eBay

online auctions. Grubb (2009) and Grubb and Osborne (2015) show that consumers don’t

pay attention to sharp marginal charges in three-part tariff pricing schemes,23 and predict

their future demand with excessive ex-ante precision – for example, individuals frequently

exhaust their cellular plans’ usage allowance, and incur high overage costs. Jin, Luca, and

Martin (2017) use a series of laboratory experiments to show that in general consumers form

overly optimistic expectations of product quality when sellers choose not to disclose this

information – showing that people are indeed behavioral rather than Bayesian (a Bayesian

22They actually provide a lower bound on variance, and for simplicity we take it here to be a point estimate.
23Three-part tariffs are pricing schemes in which a seller offers a good or a service for a fixed fee that comes

with a certain usage allowance, as well as a per-unit price that applies to all extra usage in excess of that
allowance. One common example is cellphone plans: cellphone carriers commonly offer a certain amount of
call minutes and data usage for a fixed price, but charge an extra marginal fee once consumers exceed the
allotted quota.
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agent should be suspicious of any non-disclosed item, rather than just ignore it like a behav-

ioral agent). This literature works in a healthy interplay with a theoretical literature probing

deeper into firms’ incentives to hide these attributes (Heidhues and Kőszegi 2010, 2017), and

a related literature modeling competition with boundedly rational agents (Spiegler 2011; Ti-

role 2009; Piccione and Spiegler 2012; De Clippel, Eliaz, and Rozen 2014). The companion

survey on Behavioral Industrial Organization, by Paul Heidhues and Botond Kőszegi, in this

volume, details this.

3.2.3 Inattention in health plan choices

There is mounting evidence for the role of confusion and inattention in the choice of health

care plans. McFadden (2006) contains an early discussion of consumers’ misinformation in

health plan choices, particularly in the context of Medicare Part D elections. Abaluck and

Gruber (2011) find that people choose Medicare plans more often if premiums are increased

by $100 than if expected out of pocket cost is increased by $100. Handel and Kolstad (2015)

study the choice of health care plans at a large firm. They find that poor information about

plan characteristics has a large impact on employees’ willingness to pay for the different plans

available to them, on average leading them to overvalue plans with more generous coverage

and lower deductibles. This study shows very clearly a mistake in an important economic

context. Abaluck and Adams (2017) show that consumers’ inertia in health plan choices is

largely attributable to inattention.

3.2.4 Inattention to health consequences

It is intuitively clear that we do not always attend to the health consequences of our choices.

But how big is this effect? One approach is postulate hyperbolic discounting, and import the

parameter m = β ' 0.7 into the model (e.g. Gruber and Kőszegi 2001). Allcott, Lockwood,

and Taubinsky (2017) make further progress by using a specially designed survey measuring

temptation and health knowledge.

3.2.5 People use rounded numbers when thinking about the mileage of used

cars

Lacetera, Pope, and Sydnor (2012) estimate inattention via buyers’ “left-digit bias” in evalu-

ating the mileage of used cars sold at auction. Call x the true mileage of a car (i.e., how many

miles it already drove), and xd the mileage rounded to the leading digit, and let r = x− xd
be the “mileage remainder” For instance, if x = 12, 345 miles, then xd = 10, 000 miles

and r = 2, 345 miles, and the perceived mileage is xs = xd + m
(
x− xd

)
. Lacetera, Pope,

and Sydnor (2012) estimate a structural model for the perceived value of cars of the form

V = −f (xs (x,m)). They find a mean attention parameter of m = 0.69. Busse, Lacetera,

23



Pope, Silva-Risso, and Sydnor (2013b) break down this estimate along covariate dimensions,

and find that attention is lower for older and cheaper cars, and lower for lower-income retail

buyers.

This is a very nice study, as it offers high quality data. It would be nice to see if it

matches the quantitative predictions of models discussed in this survey (for example, that

in equation 31).

3.2.6 When people buy cars, do they pay full attention to the present value of

gasoline expenses?

When you buy a car, you should pay attention to both the sticker price of the car, and

the present value of future gasoline payments. But it is very conceivable that some people

will pay less than full attention to the future value of gas payments: the full price of the

car pcar+pgas will be perceived as mcarpcar+mgaspgas. Two papers explore this, and have

somewhat inconsistent findings. Allcott and Wozny (2014) find indeed partial inattention to

gas prices: their estimate is mgas

mprice
= 0.76. However, Busse, Knittel, and Zettelmeyer (2013a)

find that they cannot reject the null hypothesis of equal attention, mgas

mprice
= 1. One hopes

that similar studies, perhaps with data from other countries, will help settle the issue. One

can conjecture that people likewise do not fully pay attention to the cost of car parts – this

remains to be seen.

3.2.7 Inattention in finance

There is now a large amount of evidence of partial inattention in finance. This is covered in

greater depth in the companion chapter on Behavioral Finance, by Nick Barberis. Here are

some samples from this literature.

Hirshleifer, Lim, and Teoh (2009) find that when investors are more distracted (as there

are more events that day), inefficiencies are stronger: for instance, the post-earnings an-

nouncement drift is stronger.

DellaVigna and Pollet (2007) find that investors have a limited ability to incorporate

some subtle forces (predictable change in demand because of demographic forces) into their

forecasts, especially at long horizons. DellaVigna and Pollet (2009) show that investors are

less attentive on Fridays: when companies report their earnings on Fridays, the immediate

impact on the price (as a fraction of the total medium run impact) is lower. Hirshleifer, Lim,

and Teoh (2009) show how investors are less attentive to a given stock when there are lots

of other news in the market.

Cohen and Frazzini (2008) find that investors are quick at pricing the “direct” impacts on

an announcement, but slower at pricing the “indirect” impact (e.g. a new plane by Boeing

gets reflected in Boeing’s stock price, but less quickly in that of Boeing’s supplier network).
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Baker, Pan, and Wurgler (2012) find that when thinking about a merger or acquisition

price, investors put a lot of attention on recent (trailing 52 weeks) prices. This has real

effects: merger waves occur when high returns on the market and likely targets make it

easier for bidders to offer a peak price. This shows an intriguing mix of attention to a

partially arbitrary price, and its use as an anchor in negotiations and perhaps valuations.

Malmendier and Nagel (2011) find that generations who experienced low stock market

returns invest less in the stock market. People seem to put too much weight on their own

experience when forming their beliefs about the stock market.

This literature is growing fast. It would be nice to have more structural models, predicting

in a quantitative way the speed of diffusion of information.

3.2.8 Evidence of reaction to macro news with a lag

There is much evidence for delayed reaction in macro data. Friedman (1961) talks about

“long and variable lags” in the impacts of monetary stimulus. This is also what motivated

models of delayed adjustment, e.g. Taylor (1980). Empirical macro research in the past

decades has frequently found that a variable (e.g. price) reacts to shocks in other variables

(e.g. nominal interest rate) only after a significant delay.

Delayed reaction is confirmed by the more modern approaches of Romer and Romer

(1989) and Romer and Romer (2004), who identify monetary policy shocks using the nar-

rative account of Federal Open Market Committee (FOMC) Meetings24 and find that the

price level would only start falling 25 months after a contractionary monetary policy shock.

This is confirmed also by more formal econometric evidence with identified VARs. Sims

(2003) notes that in nearly all Vector Autoregression (VAR) studies, a variable reacts

smoothly and with delay when responding to shocks in other variables, but contempora-

neously and significantly different from zero when responding to its own shocks. Such find-

ing is robust in VAR specifications of various sizes, variable sets, and identification method

(Leeper, Sims, and Zha 1996; Christiano, Eichenbaum, and Evans 2005). While it is feasi-

ble to generate delayed response using adjustment costs, large adjustment cost would imply

that a variable’s reactions to all shocks are smooth, contradicting the VAR evidence that

responses to own shocks tend to be large. A model of inattention, however, can account for

both phenomena simultaneously.

Finally, micro survey data suggest that macro sluggishness is not just the result of delayed

action, but rather the result of infrequent observation as well. Alvarez, Guiso, and Lippi

(2012) and Alvarez, Lippi, and Paciello (2017) provide evidence of infrequent reviewing of

portfolio choice and price setting, respectively, with clean analytics (see also Abel, Eberly,

and Panageas 2013 for a sophisticated model along those lines). A median investor reviews

24The intended interest rate changes identified in accounts of FOMC Meetings are further orthogonalized
by relevant variables in Fed’s information set (Greenbook Forecasts), making it plausibly exogenous.
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her portfolio 12 times and makes changes only twice annually, while a median firm in many

countries reviews price only 2-4 times a year.

3.3 Attention across stakes and studies

Attention over many studies Table 1 and Figure 1 contain a synthesis of ten measure-

ments of attention – I selected all the studies I could find that measured attention (i.e., gave

an estimate of the parameter m). They are a tribute to the hard work of many behavioral

economists. I am sure they will be enriched over time.

Table 1 shows point estimates of the attention parameter m in the literature discussed

in this survey. For each distinct study or experimental setting, I report the most aggregated

available estimates. In each of these studies, m is measured as the degree to which individuals

underperceive the value of an opaque add-on attribute τ to a quantity or price p, such that

the subjectively perceived total value of the quantity is ps(m) = p+mτ

Correspondingly, for each economic setting I show the estimated ratio of the values p

and τ , which is a measure of the relative significance of the add-on attribute τ . Appendix

B outlines the details of the methodology used to compile this data. Figure 1 plots the

point estimates of m against the estimated value of τ/p. In addition to this cross-study

data, Figure 1 plots a second set of intra-study data points from Busse, Lacetera, Pope,

Silva-Risso, and Sydnor (2013b), who offer very precise estimates of attention broken down

along covariate dimensions. By looking at subsamples of Busse, Lacetera, Pope, Silva-Risso,

and Sydnor’s (2013b) dataset of more than 22 million of used car transactions, we are able to

effectively highlight the co-movement between m and the relative importance of the add-on

attribute.

Calibrating the attention function Figure 1 additionally shows a calibration of an

attention model in which estimated attention m̂ as a function of the attribute’s relative

importance τ/p is25

m̂ = Aα
([

τ/p

κ̄

]2
)

(22)

where Aα is an attention function, which will be derived in detail in Section 4.1.1. For now,

the reader can think of the attention function Aα as the solution to a problem in which an

agent chooses optimal attention m subject to the tradeoff between the penalty resulting from

inattention and the cost of paying attention. For this calibration, I allow the attention cost

25Things are expressed in terms of the “scale free cost” κ̄ (see Gabaix 2016a, Sections 4.2 and 10.2, which
conjectures that “a reasonable parameter might be κ̄ =5%”), which is unitless, so potentially portable across

contexts. It means that agents don’t think attributes τ whose relative importance
∣∣∣ τp ∣∣∣ is less than κ̄. It also

justifies the scaling τ
p , where the “natural scale” of the decision is p.
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Table 1: Attention estimates in a cross-section of studies. This table shows point
estimates of the attention parameter m in a cross-section of recent studies, alongside the
estimated relative value of the opaque add-on attribute with respect to the relevant good
or quantity (τ/p). I report the most aggregated available estimates for each distinct study
or experimental setting. The quantity τ is the estimated mean value of the opaque good or
quantity against which m is measured; the quantity p is the estimated mean value of the good
or quantity itself, exclusive of the opaque attribute. Appendix B describes the construction
methodology and details. Studies are arranged by their τ/p value, in descending order.

Study Good or
Quantity

Opaque Attribute Attention
Estimate
(m)

Attribute
Importance
(τ/p)

Allcott and Wozny
(2014)

Expense associated
with car purchase

Present value of future
gasoline costs

0.76 0.58

Hossain and
Morgan (2006)

Price of CDs sold
at auction on eBay

Shipping costs 0.82 0.38

DellaVigna and
Pollet (2009)

Public company
equity value

Value innovation due
to earnings
announcements

0.54 0.30

DellaVigna and
Pollet (2009)

Public company
equity value

Value innovation due
to earnings
announcements that
occur on Fridays

0.41 0.30

Hossain and
Morgan (2006)

Price of CDs sold
at auction on eBay

Shipping costs 0.55 0.24

Lacetera, Pope,
and Sydnor (2012)

Mileage of used
cars sold at auction

Mileage left-digit
remainder

0.69 0.10

Chetty, Looney,
and Kroft (2009)

Price of grocery
store items

Sales tax 0.35 0.07

Taubinsky and
Rees-Jones (2017)

Price of products
purchased in
laboratory
experiment

Sales tax 0.25 0.07

Chetty, Looney,
and Kroft (2009)

Price of retail beer
cases

Sales tax 0.06 0.04

Brown, Hossain,
and Morgan (2010)

Price of iPods sold
at auction on eBay

Shipping costs 0.00 0.03

Mean — — 0.44 0.21

Standard
Deviation

— — 0.28 0.18
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Figure 1: Attention point estimates (m) vs. relative value of opaque attribute
(τ/p), with overlaid calibrated attention function. This figure shows (circles) point
estimates of the attention parameter m in a cross-section of recent studies (shown in Table
1), against the estimated relative value of the opaque add-on attribute with respect to the
relevant good or quantity (τ/p). A value m = 1 corresponds to full attention, while m = 0
implies complete inattention. The overlaid curve (black curve) shows the corresponding cal-
ibration of the quadratic-cost attention function in (23), where we impose α = 1 and obtain
calibrated cost parameters κ̄ = 3.0%, q = 20.4 via nonlinear least squares. Additionally,
for comparison, we plot analogous data points (triangles) for subsamples from the study
of Busse, Lacetera, Pope, Silva-Risso, and Sydnor (2013b), who document inattention to
left-digit remainders in the mileage of cars sold at auction, broken down along covariate di-
mensions. Each data point in the latter series corresponds to a subsample including all cars
with mileages within a 10,000 mile-wide bin (e.g., between 15,000 and 25,000 miles, between
25,000 miles and 35,000 miles, and so forth). For each mileage bin, we include data points
from both retail and wholesale auctions.
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function to depend quadratically on m, to a degree parameterized by the scalar parameter

q ≥ 0, such that the attention function is given by the following variant of (30),

Aα(σ2) := sup

[
arg min

m∈[0,1]

1

2
(1−m)2 σ2 +

(
m+ qm2

)α]
(23)

where the parameter q was useful to capture the curvature of the attention function. In

order to retain both continuity and sparsity of the attention function (23), I impose the

restriction α = 1, and estimate the cost parameters κ̄ and q on the cross-study data via

nonlinear least squares, according to the model in (22), which yields calibrated parameters

κ̄ = 3.0%, q = 20.4.

4 Models of Endogenous Attention: Deterministic Ac-

tion

We have seen how attention can be modeled in a simple way, and that it can be measured. In

this section, we will study some models that endogenize attention. They are deterministic,

and differ in emphasis. The sparsity model of Section 4.1 emphasizes the absolute impor-

tance of effects. The salience model of section 4.2 is instead mostly interested in relative

importance.

4.1 Paying more attention to more important variables: The spar-

sity model

The model in Gabaix (2014) aims at a high degree of applicability – to do so, it presents a

generalization of the max operator used in economics, where agents can be less than fully

attentive. This helps write a behavioral version of basic textbook microeconomics (Section

6), of the basic theory of taxation (Farhi and Gabaix (2017), which also uses more general

models), of basic dynamic macroeconomics (Gabaix (2016a)), and macroeconomic fiscal and

monetary policy (Gabaix (2016b)).

The agent agent faces a maximization problem which is, in its traditional version, maxa u (a, x)

subject to b (a, x) ≥ 0, where u is a utility function, and b is a constraint. In this section I

present a way to define the “sparse max” operator defined and analyzed in Gabaix (2014):26

smax
a

u (a, x) subject to b (a, x) ≥ 0, (24)

which is a less than fully attentive version of the “max” operator. Variables a, x and function

26I draw on fairly recent literature on statistics and image processing to use a notion of “sparsity” that
still entails well-behaved, convex maximization problems (Tibshirani 1996, Candes and Tao 2006).
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b have arbitrary dimensions.27

The case x = 0, will sometimes be called the “default parameter.” We define the default

action as the optimal action under the default parameter: ad := arg maxa u (a, 0) subject to

b (a, 0) ≥ 0. We assume that u and b are concave in a (and at least one of them strictly

concave) and twice continuously differentiable around
(
ad, 0

)
. We will typically evaluate the

derivatives at the default action and parameter, (a, x) =
(
ad, 0

)
.

4.1.1 The sparse max: First, without constraints

For clarity, we shall first define the sparse max without constraints, i.e. study smaxa u (a, x).

Motivation for optimization problem The agent maximizing (6) will take the action

a (x,m) := arg max
a
u (a, x,m) (25)

and she will experience utility v (x,m) = u (a (x,m) , x). Let us posit that attention creates

a psychic cost, parametrized by

C (m) = κ
∑
i

mα
i

with α ≥ 0. The case α = 0 corresponds to a fixed cost κ paid each time mi is non-zero.

The parameter κ ≥ 0 is a penalty for lack of sparsity. If κ = 0, the agent is the traditional,

rational agent model.

So it would be sensible to allocate attention m as:

max
m

E [u (a (x,m) , x)]− C (m) . (26)

However, ever since Simon (1955), many researchers have seen that problem (26) is very

complicated – more complex than the original problem (that’s the “infinite regress” problem).

The key step of the sparse max is that the agent will solve a version of this problem.

Definition 4.1 (Sparse max – abstract definition). In the sparse max, the agents does two

things. In Step 1, she solves the optimal problem (26), but in a simplified version: (i) she

replaces her utility by a linear-quadratic approximation, and (ii) imagines that the vector x

is drawn from a mean 0 distribution, with no correlations, but the accurate variances. In

Step 2, she picks the best action, (25).

To to see this analytically, we introduce some notation. The expected size of xi is

σi = E [x2
i ]

1/2
, in the “ex ante” version of attention. In the “ex post allocation of attention”

version, we set σi := |xi|. We define axi := ∂a
∂xi

:= −u−1
aa uaxi , which indicates by how much a

change xi should change the action, for the traditional agent. Derivatives are evaluated at

27We shall see that parameters will be added in the definition of sparse max.
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the default action and parameter, i.e. at (a, x) =
(
ad, 0

)
. We call V (m) = E [u (a (x,m) , x)]

the expected consumption utility. Then, a Taylor expansion shows that we have, for small

x (call ι = (1, . . . ,1) the vector corresponding to full attention, like the traditional agent):

V (m)− V (ι) = −1

2

∑
i,j

(1−mi) Λij (1−mj) + o
(
σ2
)
, (27)

defining Λij := −σijaxiuaaaxj , σij := E [xixj] and σ2 = ‖(σ2
i )i=1...n‖.28 The agent drops the

non-diagonal terms (this is an optional, but useful, feature of the sparse max). The agent

entertaining the simplified problem of Definition 4.1 will want to solve:

m∗ = arg min
m∈Rn

1

2

n∑
i=1

(1−mi)
2 Λii + κ

n∑
i=1

mα
i . (28)

The attention function To build some intuition, let us start with the case with just one

variable, x1 = x. Then, problem (28) becomes:

min
m

1

2
(1−m)2 σ2 + κ |m|α . (29)

Attention is m = Aα
(
σ2

κ

)
, where the “attention function” Aα is defined as29

Aα
(
σ2
)

:= sup

[
arg min

m∈[0,1]

1

2
(1−m)2 σ2 +mα

]
. (30)

Figure 2 plots how attention varies with the variance σ2 for fixed, linear and quadratic

cost: A0 (σ2) = 1σ2≥2, A1 (σ2) = max
(
1− 1

σ2 , 0
)
, A2 (σ2) = σ2

2+σ2 .

We now explore when as indeed induces no attention to many variables.30

Lemma 4.1 (Special status of linear costs). When α ≤ 1 (and only then) the attention

function Aα (σ2) induces sparsity: when the variable is not very important, then the attention

weight is 0 (m = 0). When α ≥ 1 (and only then) the attention function is continuous.

Hence, only for α = 1 do we obtain both sparsity and continuity.

For this reason α = 1 is recommended for most applications. Below I state most results

in their general form, making clear when α = 1 is required.31

28The Taylor expansions is for small noises in x, rather than for m close to 1.
29That is: Aα

(
σ2
)

is the value of m ∈ [0, 1] that minimizes 1
2 (1−m)

2
σ2 + mα (as conveyed by the

arg min), taking the highest m if there are multiple minimizers (as conveyed by the sup).
30Lemma 4.1 has direct antecedents in statistics: the pseudo norm ‖m‖α = (

∑
i |mi|α)

1/α
is convex and

sparsity-inducing iff α = 1 (Tibshirani 1996).
31The sparse max is, properly speaking, sparse only when α ≤ 1. When α > 1, the abuse of language

seems minor, as the smax still offers a way to economize on attention. Perhaps smax should be called a
“bmax” or behavioral / boundedly rational max.
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Figure 2: Three attention functions A0,A1,A2, corresponding to fixed cost, linear cost and
quadratic cost respectively. We see that A0 and A1 induce sparsity – i.e. a range where
attention is exactly 0. A1 and A2 induce a continuous reaction function. A1 alone induces
sparsity and continuity.

The sparse max: Values of attention

Proposition 4.1 The sparse max is done in two steps.

Step 1: Choose the attention vector m∗, which is optimally equal to:

m∗i =Aα
(
σ2
i |axiuaaaxi| /κ

)
, (31)

where A : R→ [0, 1] is the attention function expressed in (30), σ2
i is the perceived variance

of x2
i , axi = −u−1

aa uai is the traditional marginal impact of a small change in xi, evaluated at

x = 0, and κ is the cost of cognition.

Step 2: Choose the action

as = arg max
a
u (a, x,m∗) . (32)

Hence more attention is paid to variable xi if it is more variable (high σ2
i ), if it should

matter more for the action (high |axi|), if an imperfect action leads to great losses (high

|uaa|), and if the cost parameter κ is low.

The sparse max procedure in (31) entails (for α ≤ 1): “Eliminate each feature of the

world that would change the action by only a small amount” (i.e., when α = 1, eliminate

the xi such that
∣∣∣σi · ∂a∂xi ∣∣∣ ≤ √

κ
|uaa|). This is how a sparse agent sails through life: for

a given problem, out of the thousands of variables that might be relevant, he takes into

account only a few that are important enough to significantly change his decision.32 He also

devotes “some” attention to those important variables, not necessarily paying full attention

32To see this formally (with α = 1), note that m has at most
∑
i b

2
iσ

2
i /κ non-zero components (because

mi 6= 0 implies b2iσ
2
i ≥ κ). Hence, when κ increases, the number of non-zero components becomes arbitrarily

small. When x has infinite dimension, m has a finite number of non-zero components, and is therefore sparse

(assuming E
[
(ar)

2
]
<∞).

32



to them.33

Let us revisit the initial example.

Example 1 In the quadratic loss problem, (11), the traditional and the sparse actions are:

ar =
∑n

i=1 bixi, and

as =
n∑
i=1

mibixi, mi = Aα
(
b2
iσ

2
i /κ
)
. (33)

Proof : We have axi = bi, uaa = −1, so (31) gives mi = Aα (b2
iσ

2
i /κ). �

4.1.2 Sparse max: Full version, allowing for constraints

Let us now extend the sparse max so that it can handle maximization under K(= dim b)

constraints, problem (24). As a motivation, consider problem

max
c1,...,cn

u (c1, ..., cn) subject to p1c1 + ...+ pncn ≤ w. (34)

We start from a default price pd. The new price is pi = pdi + xi, while the price perceived by

the agent is psi (m) = pdi +mixi, i.e.34

psi (pi,m) = mipi + (1−mi) p
d
i .

How to satisfy the budget constraint? An agent who underperceives prices will tend

to spend too much – but he’s not allowed to do so. Many solutions are possible, but the

following makes psychological sense and has good analytical properties. In the traditional

model, the ratio of marginal utilities optimally equals the ratio of prices: ∂u/∂c1
∂u/∂c2

= p1
p2

. We

will preserve that idea, but in the space of perceived prices. Hence, the ratio of marginal

utilities equals the ratio of perceived prices:35

∂u/∂c1

∂u/∂c2

=
ps1
ps2
, (35)

i.e. u′ (c) = λps, for some scalar λ.36 The agent will tune λ so that the constraint binds, i.e.

the value of c (λ) = u′−1 (λps) satisfies p · c (λ) = w.37 Hence, in step 2, the agent “hears

33There is anchoring with partial adjustment, i.e. dampening. This dampening is pervasive, and indeed
optimal, in “signal plus noise” models (more on this later).

34The constraint is 0 ≤ b (c,x) := w −
(
pd + x

)
· c.

35Otherwise, as usual, if we had ∂u/∂c1
∂u/∂c2

>
ps1
ps2

, the consumer could consume a bit more of good 1 and less

of good 2, and project to be better off.
36This model, with a general objective function and K constraints, delivers, as a special case, the third

adjustment rule discussed in Chetty, Looney, and Kroft (2007) in the context of consumption with two goods
and one tax.

37If there are several λ, the agent takes the smallest value, which is the utility-maximizing one.
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clearly” whether the budget constraint binds.38 This agent is boundedly rational, but smart

enough to exhaust his budget.

We next generalize this idea to arbitrary problems. This is heavier to read, so the reader

may wish to skip to the next section. We define the Lagrangian L (a, x) := u (a, x) + λd ·
b (a, x), with λd ∈ RK

+ the Lagrange multiplier associated with problem (24) when x = 0

(the optimal action in the default model is ad = arg maxa L (a, 0)). The marginal action

is: ax = −L−1
aaLax. This is quite natural: to turn a problem with constraints into an

unconstrained problem, we add the “price” of the constraints to the utility.39

Definition 4.2 (Sparse max operator with constraints). The sparse max, smaxa|κ,σ u (a, x)

subject to b (a, x) ≥ 0, is defined as follows.

Step 1: Choose the attention m∗ as in (28), using Λij := −σijaxiLaaaxj , with axi =

−L−1
aaLaxi. Define xsi = m∗ixi the associated sparse representation of x.

Step 2: Choose the action. Form a function a (λ) := arg maxa u (a, xs) + λb (a, xs).

Then, maximize utility under the true constraint: λ∗ = arg maxλ∈RK+ u (a (λ) , xs) subject to

b (a (λ) , x) ≥ 0. (With just one binding constraint this is equivalent to choosing λ∗ such

that b (a (λ∗) , x) = 0; in case of ties, we take the lowest λ∗.) The resulting sparse action is

as := a (λ∗). Utility is us := u (as, x).

Step 2 of Definition 4.2 allows quite generally for the translation of a boundedly rational

maximum without constraints, into a boundedly maximum with constraints. To obtain

further intuition on the constrained maximum, we turn to consumer theory.

Consequences for consumption Section 6.1.1 develops consumer demand from the

above procedure, and contains many examples. For instance, Proposition 6.1 finds that

the Marshallian demand of a behavioral agent is

cs (p, w) = cr (ps, w′) , (36)

where the as-if budget w′ solves p · cr (ps, w′) = w, i.e. ensures that the budget constraint is

hit under the true price.

Determination of the attention to prices, m∗. The exact value of attention, m, is not

essential for many issues, and this subsection might be skipped in a first reading. Recall

that λd is the Lagrange multiplier at the default price.40

38See footnote 52 for additional intuitive justification.
39For instance, in a consumption problem (34), λd is the “marginal utility of a dollar”, at the default

prices. This way we can use Lagrangian L to encode the importance of the constraints and maximize it
without constraints, so that the basic sparse max can be applied.

40λd is endogenous, and characterized by u′
(
cd
)

= λdpd, where pd is the exogenous default price, and cd

is the (endogenous) optimal consumption as the default. The comparative statics hold, keeping λd constant.
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Proposition 4.2 (Attention to prices). The sparse agent’s attention to price i is: m∗i =

Aα
((

σpi
pdi

)2

ψiλ
dpdi c

d
i /κ

)
, where ψi is the price elasticity of demand for good i.

Hence attention to prices is greater for goods (i) with more volatile prices (
σpi
pdi

), (ii)

with higher price elasticity ψi (i.e. for goods whose price is more important in the purchase

decision), and (iii) with higher expenditure share (pdi c
d
i ). These predictions seem sensible,

though not extremely surprising. What is important is that we have some procedure to pick

the m, so that the model is closed. Still, it would be interesting to investigate empirically

the prediction of Proposition 4.2.

Many more consequences will emerge in Section 6.

4.2 Proportional thinking: The salience model of Bordalo, Gen-

naioli, Shleifer

In a series of papers, Bordalo, Gennaioli, and Shleifer (2012; 2013; 2015) introduce a model

of context-dependent choice in which attention is drawn toward those attributes of a good

that are salient – that is, attributes that are particularly unusual with respect to a given

reference frame.

4.2.1 The salience framework in the absence of uncertainty

The theory of salience in the context of choice over goods is developed in Bordalo, Gennaioli,

and Shleifer (2013). In a general version of the model, the decision-maker chooses a good

from a set C = {xa} a=1,...,A of A > 1 goods. Each good in the choice set C is a vector xa =

(xa1, . . . , xan) of attributes xai which characterize the utility obtained by the agent along a

particular dimension of consumption. In the baseline case without behavioral distortions, the

utility of good a is separable across consumption dimensions, with relative weights (bi)i=1,...,n

attached to each dimension, such that u(a) =
∑n

i=1 bixai. Each weight bi captures the

relative significance of a dimension of consumption, absent any salience distortions. In the

boundedly rational case, the agent’s valuation of good a instead gets the subjective (or

salience-weighted) utility:

us(a) =
n∑
i=1

bimaixai (37)

where mai is a weight capturing the extent of the behavioral distortion, which is determined

independently for each of the good’s attributes. The distortion mai of the decision weight bi

is taken to be an increasing function of the salience of attribute i for good a with respect

to a reference point x̄i. Bordalo, Gennaioli, and Shleifer (2013) propose using the average

value of the attribute among goods in the choice set as a natural reference point, that is

x̄i = 1
A

∑A
a=1 xai.
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Formally, the salience of xai with respect to x̄i is given by σ(xai, x̄i), where the salience

function σ satisfies the following conditions:

Definition 4.3 The salience function σ : R× R→ R satisfies the following properties:41

1. Ordering. If [x, y] ⊂ [x′, y′] ∈ R, then σ(x, y) < σ(x′, y′).

2. Diminishing Sensitivity. If x, y ∈ R>0, then for all ε > 0, σ(x+ ε, y + ε) < σ(x, y).

3. Reflection.42 If x, y, x′, y′ ∈ R>0, then σ(x, y) < σ(x′, y′) if and only if σ(−x,−y) <

σ(−x′,−y′).

According to these axioms, the salience of an attribute increases in its distance to that

attribute’s reference value, and decreases in the absolute magnitude of the reference point.

The agent focuses her attention on those attributes that depart from the usual, but any given

difference in an attribute’s value is perceived with less intensity when the magnitude of values

is uniformly higher. The reflection property guarantees a degree of symmetry between gains

and losses. A tractable functional form that satisfies the properties in Definition 4.3 is

σ(x, y) =
|x− y|

|x|+ |y|+ θ
(38)

with θ ≥ 0. This functional form additionally is symmetric in the two arguments x, y.

The model is completed by specifying how the salience values σ translate into the distortion

weights mai. Letting (rai)i=1,...,n be the ranking of good a’s attributes according to their

salience (where rank 1 corresponds to the most salient attribute), Bordalo, Gennaioli, and

Shleifer (2013) propose the functional form

mai =
δrai∑n
j=1 δ

raj
(39)

where the parameter δ ∈ (0, 1] measures the strength of the salience distortion. In the case

δ = 1 we recover the fully rational agent, while in the limit case δ → 0 the agent only attends

to the attribute that is most salient.43

41In Bordalo, Gennaioli, and Shleifer (2013), the additional axiom that σ is symmetric is introduced. Since
the assumption of symmetry is relaxed in the case of choice among multiple goods, with multiple attributes,
for expository purposes I omit it in Definition 4.3.

42This property is only relevant if σ admits both negative and positive arguments. This is discussed in
further depth in Bordalo, Gennaioli, and Shleifer (2012).

43The distortion function (39) can exhibit discontinuous jumps. An alternative specification introduced in
Bordalo, Gennaioli, and Shleifer (2015) that allows for continuous salience distortions is

mai =
exp {(1− δ)σ(xai, x̄i)}∑n
j=1 exp {(1− δ)σ(xaj , x̄j)}
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To see this model of salience in action, consider the case of a consumer choosing between

two bottles of wine, with high (H) and low (L) quality, in store or at a restaurant. The two

relevant attributes for each good a ∈ {H,L} are quality qa and price pa. Suppose that utility

in the absence of salience distortions is Ua = qa− pa. The quality of bottle H, qH = 30, is 50

percent higher than the quality of bottle L, qL = 20. At the store, bottle H retails for $20,

while bottle L retails for $10. At the restaurant, each bottle is marked up and the prices are

$60 and $50, respectively. When is the consumer likely to choose the more expensive bottle?

While in the absence of salience distortions the agent is always indifferent between the

two bottles, salience will tilt the choice in one or the other direction depending on the choice

context. Taking the reference point for each attribute to be its average in the choice set, at

the store we have a “reference good” (q̄s,p̄s) = (25, 15), while at the restaurant we have a

reference good (q̄r, p̄r) = (25, 55). Under the functional form in (38), we can readily verify

that in the store price is the more salient attribute for each wine, while at the restaurant

quality is. Hence in the store the consumer focuses her attention on price and chooses the

cheaper wine, while at the restaurant the markup drives attention away from prices and

toward quality, leading her to choose the higher-end wine.

Bordalo, Gennaioli, and Shleifer (2015) further embed the salience-distorted preference

structure over price and quality into a standard model of market competition. This yields a

set of predictions that depart from the rational benchmark, as firms strategically make price

and quality choices so as to tilt the salience of these attributes in their favor.

4.2.2 Salience and choice over lotteries

Bordalo, Gennaioli, and Shleifer (2012) develop the salience model in the context of choice

over lotteries. The framework is very similar to the one discussed for the case in which we

have no uncertainty. The decision-maker is to choose among a set C of A > 1 lotteries.

We let S be the minimal state space associated with C, defined as the set of distinct payoff

combinations that occur with positive probability. The state space S is assumed to be

discrete, such that each state of the world i ∈ S occurs with known probability πi. The

payoff of lottery a in state of the world i is xai. Absent any salience distortions, the value of

lottery a is u(a) =
∑

i∈S πiv(xai). Under salient thinking, the agent distorts the true state

probabilities and correspondingly assigns utility

uBR(a) =
∑
i∈S

πimaiv(xai) (40)

to lottery a, where the distortion weights mai are increasing in the salience of state i. Bordalo,

Gennaioli, and Shleifer (2012) propose evaluating the salience of state i in lottery a by

weighing its payoff against the average payoff yielded by the other lotteries in the same state

of the world, meaning that the salience is given by σ(xai, x̄i), where x̄i = 1
A−1

∑
ã∈C: ã6=a xãi.
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The salience model of choice under uncertainty presented in this section accounts for

several empirical puzzles, including the Allais paradoxes, yielding tight quantitative predic-

tions for the circumstances under which such choice patterns are expected to occur. For a

concrete example, we consider the “common-consequence” Allais paradox as presented in

Bordalo, Gennaioli, and Shleifer (2012).44 In this version of the common-consequence Allais

paradox, originally due to Kahneman and Tversky (1979), experiment participants are asked

to choose between the two lotteries

L1(z) = (2500, 0.33; 0, 0.01; z, 0.66)

L2(z) = (2400, 0.34; z, 0.66)

for varying levels of the common consequence z. In a laboratory setting, when the common

consequence z is high (z = 2400), participants tend to exhibit risk-averse behavior, preferring

L2(2400) to L1(2400). However, when z = 0 most participants shift to risk-seeking behavior,

preferring L1(0) to L2(0). This empirical pattern is not readily accounted for by the standard

theory of choice under uncertainty, as it violates the axiom of independence.

In order to see how the salience model accounts for the Allais paradox, we need only

derive the conditions that determine the preference ranking over lotteries in the two cases

z = 2400 and z = 0. For this example, we assume the linear value function v(x) = x and we

take σ to be symmetric in its arguments, such that for all states i ∈ S we have homogeneous

salience rankings in the case of choice between two lotteries a, ã – that is, rai = rãi := ri.

We further assume the distortion function is defined analogously to (2). These conditions

yield the following necessary and sufficient criterion for lottery a to be preferred in a choice

between a and ã:

∑
i∈S

δriπi[v(xai)− v(xãi)] > 0. (41)

When z = 2400, the minimum state space for the lotteries in the choice set is S =

{(2500, 2400), (0, 2400), (2400, 2400)} which from the ordering and diminishing sensitivity

properties of σ yields the salience rankings

σ(0, 2400) > σ(2500, 2400) > σ(2400, 2400).

By criterion (41), in order to account for the preference relation L2(2400) � L1(2400) it

must then hold be that

.01 (2400)− .33δ (100) > 0,

which is true whenever δ < .73. Intuitively, for low enough δ the agent focuses her attention

44For experimental support of salience theory, see also Mormann and Frydman (2016).
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on the salient downside of 0 in L1(0), which lowers her valuation of it. By an analogous

argument, when z = 0 a necessary and sufficient condition for L1(0) � L2(0) is that δ ≥ 0.

Hence the Allais paradox is resolved for δ ∈ [0, .73), when the decision-maker exhibits salience

bias of great enough significance.

4.3 Other themes

4.3.1 Attention to various time dimensions: “Focusing”

The model of focusing of Kőszegi and Szeidl (2013) expresses a shrinkage assumption similar

to that of sparsity (Section 4.1), but with a different emphasis in applications, and a focus

on additive problems. Assuming that the decision-maker focuses her attention on those

dimensions of the choice problem that are of primary order – which Kőszegi and Szeidl

(2013) take to be the attributes along which her options vary by the largest amount. Given

a choice set C = {xa}a=1...A of A > 1 actions that yield utilities (xai)i=1...n along n dimensions,

the decision-maker departs from the rational benchmark u(a) =
∑n

i=1 xai by distorting the

importance of each consumption dimension in a degree that is increasing in the latitude of the

options available to her in that dimension. Formally, we capture the range σi of dimension

i as the range (one could imagine another way, e.g. the standard deviation of the xai across

actions a)

σi = max
a
xai −min

a
xai. (42)

Subjectively perceived utility is:

us(a) =
n∑
i=1

mixai, (43)

where the attention weight is

mi = A(σi) (44)

and is increasing in the range of outcomes σi, and A is an attention function. Intuitively,

the decision-maker attends to those dimensions of the problem in which her choice is most

consequential, and we have A′(σ) > 0. Hence, we obtained the formulation related to

sparsity, though it does not use its general apparatus, e.g. the nonlinear framework and

microfoundation for attention.

In the context of consumer finance, the focusing model explains why consumers occasion-

ally choose expensive financing options even in the absence of liquidity constraints. Suppose

an agent is buying a laptop, and has the option of either paying $1000 upfront, or enrolling

in the vendor’s financing plan, which requires 12 future monthly payments of $100. For

simplicity, we assume no time-discounting and linear consumption disutility from monetary

payments. We also take consumption in each period of life to be a separate dimension of
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the choice problem. The agent therefore choose between two actions a1, a2 yielding pay-

off vectors x1 = (−1000, 0, . . . , 0) and x2 = (0,−100, . . . ,−100) respectively. The vector

of utility ranges is therefore σ = (1000, 100, . . . , 100), such that the prospect of a large

upfront payment attracts the agent’s attention more than the repeated but small subse-

quent payments. The choice-relevant comparison is between us(a1) = −A(1000) · 1000 and

us(a2) = −A(100) · 1200. As long as A(1000)
A(100)

> 1.2, the agent will choose the more expen-

sive monthly payment plan, even though she does not discount the future or face liquidity

constraints. Relatedly, Kőszegi and Szeidl (2013) also demonstrate how the model explains

present-bias and time-inconsistency in preferences in a generalized intertemporal choice con-

text.

Bushong, Rabin, and Schwartzstein (2016) develop a related model, where however A(σ)

is decreasing in σ, though σA(σ) is increasing in σ. This tends to make the agent relatively

insensitive to the absolute importance of a dimension. Interestingly, it tends to make predic-

tions opposite to those of Kőszegi and Szeidl (2013), Bordalo, Gennaioli, and Shleifer (2013)

and Gabaix (2014). The authors propose that this is useful to understand present bias, if

“the future” is lumped in one large dimension in the decision-making process.

4.3.2 Motivated attention

The models discussed in this section do not feature motivated attention (a close cousin of

motivated reasoning) – e.g. the fact that I might pay more attention to things that favor

me (a self-serving bias), and avoid thinking about depressing thoughts. There is empirical

evidence on this, for instance Olafsson and Pagel (2017) find that people are more likely

to look at their banking account when it is flush than when it is low, an “ostrich effect”.

The evidence is complex: in loss aversion, people pay more attention to losses than gains,

something prima facie opposite to a self-serving bias. Hopefully future research will clarify

this.

A simple model of that would be the following. Call v (x) = maxa u (a, x). Then, paying

attention mi to dimension i has a psychic cost κmotvxixi. Another, related model, is that

attention to variable i is

mi = A
(
vxixi
κmot

)
(45)

such that I pay more attention to things that favor more (increase my utility). Yet another

model is that people might be monitoring information but are mindful of their loss aversion,

i.e. avoid “bad news”, along the lines of Kőszegi and Rabin (2009), Olafsson and Pagel

(2017) and Andries and Haddad (2017).
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4.3.3 Other decision-theoretic models of bounded rationality

In the spirit of “model substitution”, interesting work of the “bounded rationality” tradition

include Jehiel’s (2005) analogy-based equilibrium (which has generated a sizable literature),

and work of Compte and Postlewaite (2017).

4.4 Limitation of these models

These models are of course limited. Why do we pay attention to funny stories, to cherished

photos? Presumably, because of the enjoyment value. This is not captured above.45

Likewise, these models do not feature a refined “cost” of attention – e.g. why it’s harder

to pay attention to tax changes than a funny story. This is not modeled.

Attention can be controlled, but not fully. For instance, consider someone who had a bad

breakup, and can’t help thinking about it during an exam. That doesn’t seem fully optimal,

but (in the same way that paying attention to pain is generally useful, but one would like

to be able to stop paying attention to pain once under torture), this may be optimal given

some constraints on the design of attention.

Rather than seeing those objection as fatal flaws, we shall see them as interesting research

challenges.

5 Models with Stochastic Attention and Choice of Pre-

cision

We now move on to models with noisy signals. They are more complex to handle, as they

provide a stochastic prediction, not a deterministic one. There are pros and cons to that.

One pro is that economists can stick to optimal information processing. In addition, the

amount of noise may actually be a guide to the thought process, hence might be a help

rather than a hindrance: see Glimcher (2011) and Caplin (2016). The drawback is basically

the complexity of this approach – these models become quickly intractable.

Interestingly, much of the neuroeconomics (Glimcher and Fehr 2013) and cognitive psy-

chology (Gershman, Horvitz, and Tenenbaum 2015) literatures sees the brain as an optimal

information processor. Indeed, for low-level processes (e.g. vision), the brain may well be

optimal, though for high-level processes (e.g. dealing with the stock market) it is not directly

optimal.

45Enjoying a story give me pleasure, but not the sort of utility captured in the “motivated attention”
above – which rests on paying attention to variables (such as my driving ability) that make me seem better
to myself or others.
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5.1 Bayesian models with choice of information

There are many Bayesian models in which agents pay to get more precise signals. An early

example is Verrecchia (1982): agents pay to receive more precise signals in a financial market.

In Geanakoplos and Milgrom (1991), managers pay for more information. They essentially all

work with linear-quadratic settings – otherwise the task is intractable. In the basic problem

of Section 2.1, the expected loss is

E
[
max
a

E
[
−1

2
(a− x)2 |s

]]
= −1

2
(1−m)σ2

x

so that the agent’s problem is:

max
τε
−1

2
(1−m)σ2

x − κG (τε) subject to m =
τ

1 + τ

where τ = σ2
x

σ2
ε

is the relative precision of the signal, and G is the cost of precision, which is

increasing. This can be equivalently reformulated as:

max
m
−1

2
(1−m)σ2

x − κg (m)

by defining g (m) appropriately (g (m) := G
(

m
1−m

)
). So, we have a problem very much like

(29).

This allows us to think the optimal choice of information. When actions are strate-

gic complements, you can get multiple equilibria in information gathering (Hellwig and

Veldkamp 2009). When action are strategic substitutes, you often obtain specialization in

information (Van Nieuwerburgh and Veldkamp 2010). More generally, rational informa-

tion acquisition models do seem to predict qualitatively relevant features of real markets

(Kacperczyk, Van Nieuwerburgh, and Veldkamp 2016).

5.2 Entropy-based inattention

How to handle non-Gaussian variables? Sims (1998, 2003) proposed the entropy penalty,

kindling the interest of many macroeconomists and in this way helping make macroeco-

nomics more realistic. An advantage of that entropy-based penalty is that it applies to all

distributions. This generality comes at a cost, but first let’s review some information theory.

Sims called this technique “rational inattention”. This name has proved confusing, as

Sims really proposed an entropy-based penalty, not at all the general notion that attention

allocation responds to incentives, which vastly predates the 2000s. “Rational inattention”

ought to refer to a much more ancient idea dating back at least to Stigler (1961), where

agents maximize utility subject to the cost of acquiring information, so that information
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and attention responds to costs and benefits. There are many papers under that vein, e.g.

Verrecchia (1982); Geanakoplos and Milgrom (1991). Hence, a term such as “entropy-based

inattention” seems like a proper name for the literature initiated by Sims.

5.2.1 Information theory: A crash course

Here is a brief introduction to information theory, as done by Shannon (1948). The basic

textbook for this is Cover and Thomas (2006).

Discrete variables Take a random variable X with probability pi of a value xi. Through-

out, we will use the notation f to refer to the probability mass function of a given random

variable (when discrete), or to its probability density function (when continuous). Then the

entropy of X is defined as

H (X) = −E [log f (X)] = −
∑
i

pi log pi

so that H ≥ 0 (for a discrete variable; it won’t be true for a continuous variable). In the

case where uncertainty between outcomes is greatest, X can take n equally probable values,

pi = 1
n
. This distribution gives the maximum entropy,

H (X) = log n

which illustrates that higher uncertainty yields higher entropy.

This measure of “complexity” is really a measure of the complexity of communication,

not of finding or processing information. For instance, the entropy of a coin flip is log 2 – one

bit if we use the base 2 logarithm. But also, suppose that you have to calculate the value

of the 1000th decimal in the binary expansion of
√

17. Then, the entropy of that is again

simply log 2. This is the not the cost of actually processing information (which is a harder

thing to model), just the cost of transmitting the information.

Suppose we have two independent random variables, with X = (Y, Z). Then, fX (y, z) =

fY (y) fZ (z) so

H (X) = −E [log f (X)] = −E
[
log
(
fY (Y ) fZ (X)

)]
= −E

[
log fY (Y ) + log fZ (X)

]
H (X) = H (Y ) +H (Z) . (46)

This shows that the information of independent outcomes is additive. The next concept

is that of mutual information. It is defined by the reduction of entropy of X when you know
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Y :

I (X, Y ) = H (X)−H (X|Y )

= −E [log p (X)] + E [log p (X|Y )] = −E [log p (X)] + E
[
log

p (X, Y )

p (Y )

]
= −E [log p (X) + log p (Y )] + E [log p (X, Y )]

= H (X) +H (Y )−H (X, Y ) = I (Y,X) ,

and so it follows that mutual information is symmetric. The next concept is the Kullback-

Leibler divergence between two distributions p, q,

D (p‖q) = EP
[
log

p (X)

q (X)

]
=
∑
i

pi log
pi
qi
. (47)

Note that the Kullback-Leibler divergence is not actually a proper distance, sinceD (p‖q) 6=
D (q‖p), but it is similar to a distance – it is nonnegative, and equal to 0 when p = q.

Hence, we have:

I (X, Y ) = D
(
p (x, y) ‖pX (x) pY (y)

)
=
∑
x,y

p (x, y) log
p (x, y)

p (x) q (y)
. (48)

In other terms, mutual information I (X, Y ) is the Kullback-Leibler divergence between

the full joint probability p (x, y) and its “decoupled” approximation p (x) q (y).

Continuous variables With continuous variables with density p (x), entropy is defined

to be:

H (X) = −E [log f (X)] = −
∫
f (x) log f (x)

with the convention that f (x)logf (x) = 0 if f (x) = 0. For instance, If X is a uniform [a, b],

then f (x) = 1
b−a1x∈[a,b] and

H (X) = log (b− a) (49)

which shows that we can have a negative entropy, (H (X) < 0) with continuous variables.

If Y = a+ σX, then because fY (y) dy = fX (x) dx, i.e. fY (y) = 1
σ
fX (x), we have

H (Y ) = −E
[
log fY (Y )

]
= −E

[
log fX (X)

]
+ log σ

H (Y ) = H (X) + log σ (50)

so with continuous variables, multiplying a variable by σ increases its entropy by log σ.

44



The entropy of a Gaussian N (µ, σ2) variable is, as shown in Appendix A,

H (X) =
1

2
log σ2 +

1

2
log (2πe) (51)

and for a multi-dimensional Gaussian with variance-covariance matrix V , the entropy is

H (X) =
1

2
log (detV ) + n log (2πe) (52)

which is analogous to the one-dimensional formula, but σ2 is replaced by detV .

Mutual information in a Gaussian case So, suppose X, Y are jointly Gaussian with

correlation ρ. Then, their mutual information is

I (X, Y ) =
1

2
log

1

1− ρ2
(53)

so that the mutual information is increasing in the correlation.

5.2.2 Using Shannon entropy as a measure of cost

Sims (2003) proposed the following problem. Suppose the agent does maxa u (a, x) in the

traditional version. In the Sims version, the agent will pick a stochastic action A drawn from

an endogenously chosen density q (a|x) – i.e., the probability density of a given the true state

is x – where q is chosen by the optimization problem

max
q(a|x)

E
∫
u (a, x) q (a|x) f (x) da dx s.t. I (A,X) ≤ K. (54)

That is, the agent instructs some black box to give him a stochastic action: the box sees

the true x, and then returns a noisy prescription q (a|x) for his action. Of course, the nature

of this black box is a bit unclear, but may be treated as some thought process.46

To get a feel for this problem, consider the case where x ∼ N (0, σ2), and u (a, x) =

−1
2

(a− x)2. The solution is close to that in Section 2.1: the agent receives a noisy signal

s = x+ ε, and takes the optimal action a = E [x|s] = mx+mε. The analytics in (82) shows

that ρ2 = corr (a, x)2 = m, and using equation (53), the mutual information is I (S,A) =
1
2

log 1
1−m . Saturating the constraint in (54), I (S,A) = K, which gives:

m = 1− e−2K

46In the Shannon theory, this nature is clear. Originally, the Shannon theory is a theory of communication.
Someone has information x at one end of the line, and needs to communicate information a at the other end
of the line. Under some consideration developed in the Shannon theory, the cost is captured by the mutual
information I (A,X).
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So, we get a solution like the basic problem of Section Section 2.1, with a special cost

function.

Now, let us see the multidimensional version, with the basic quadratic problem 11

u (a, x) = −1
2
(a −∑n

i=1 bixi)
2. We assume that the xi are uncorrelated, jointly Gaussian,

that var (xi) = σ2
i . Then, one can show that the solution takes the form:47

aSims = m
∑
i

bixi + η (55)

with a η orthogonal to the x. Let us contrast this to the answer of sparsity, (33) gives

as =
n∑
i=1

mibixi (56)

so that the agent can pay more attention to source 1 than to source 10 (if m1 > m10). Hence,

with the global entropy constraint of Sims obtain uniform dampening across all variables (i.e.

mi = m for all i in equation (55)) – not source-specific dampening as in (33)-(56).48

One advantage is that we have a universally applicable measure of the cost of infor-

mation. However, the cost is that it’s not particularly psychologically founded. Relatedly,

the procedure is generically quite intractable. For instance, in Jung, Kim, Matejka, and

Sims (2015), the solution has atoms – it is non-smooth. One needs a computer to solve it.

Those problems can be mathematically fascinating, but they seem to lead us away from a

behavioral account of what people actually do.49

Still, at a minimum great virtue of the entropy-based approach is that it has attracted

the energy of many economists, especially in macro (Maćkowiak and Wiederholt 2009, 2015;

Veldkamp 2011; Khaw, Stevens, and Woodford 2016). Many depart from the “global entropy

penalty,” which allows one to have source-specific inattention. But then, there is no real rea-

son to stick to the entropy penalty in the first place–other cost functions will work similarly.

Hence researchers keep generalizing the Shannon entropy, for instance Caplin, Dean, and

Leahy (2017).

5.3 Random choice via limited attention

5.3.1 Limited attention as noise in perception: Classic perspective

A basic model is the random choice model. The consumer must pick one of n goods. Utility

is vi, drawn from a distribution f (v) . In the basic random utility model à la Luce-McFadden,

47The solution is left as an exercise for the reader.
48There is a “water-filling” result in information theory that generates source-dependent attention, but it

requires different channels, not the Sims unitary attention channel.
49This is can be seen as a drawback, but Matějka (2016) proposes that this can be used to model pricing

with a discrete set of prices.
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the probability of choosing vi is

pi =
eσvi∑
j e

σvj
. (57)

The classic microfoundation is the following. Agents receive a signal

si = vi + σεi (58)

where the εi are i.i.d. with a Gumbel distribution, P (εi ≤ x) = e−e
−x

. The idea is that εi

is noise in perception, and perhaps it could be decreased actively by agents, or increased by

firms.

Agents have diffuse priors on vi. Hence, they choose the good j with the highest signal

st, pi = P
(
i ∈ argmaxj sj

)
. With Gumbel noise, this leads (after some calculations as in e.g.

Anderson, De Palma, and Thisse 1992) to (57). When the noise size σ is higher, there is

more uncertainty; when σ → ∞, then pi → 1
n
. The choice is completely random. When the

cost κ is 0, then the agent is the traditional, rational agent.

This is a useful model, because it captures in a simple way “noisy perceptions”. It has

proven very useful in industrial organization (e.g. Anderson, De Palma, and Thisse 1992) –

where the typical interpretation is “rational differences in tastes”, rather than “noise in the

perception”. It can be generalized in a number of ways, including with correlated noises, and

non-Gumbel noise (Gabaix et al. 2016). This is useful to see thing like: what’s the equilibrium

price, when consumers are confused? Then, the equilibrium price markup (defined as price

minus cost) is generally proportional to σ, the amount of noise. For a related model with

two types of agents, see Carlin (2009).

5.3.2 Random choice via entropy penalty

Matějka and McKay (2015) derive a entropy-based foundation for the logit model. In its

simplest form, the idea is as follows. The consumer must pick one of n goods. Utility is

vi, drawn from a distribution f (v) . The endogenous probability of choosing i is pi. The

problem is to maximize utility subject to a penalty for having an inaccurate probability:

max
(pi(v))i=1...n

E

[∑
i

pi (v) vi

]
− κD

(
P‖P d

)
where the expectation is taken over the value of v, and D

(
P‖P d

)
is the Kullback-Leibler

distance between the probability and a default probability, P d. Hence, we have a penalty

for a “sophisticated” probability distribution that differs from the default probability.50 So,

50The math is analogous to the basic derivation of the “Boltzmann distribution” familiar to statistical
mechanics. Maximizing the entropy H (P ) subject to a given energy constraint

∑
i pivi = V yields a

distribution pi = e−βvi∑
j e

−βvj for some β.
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the Lagrangian is

L =

∫ ∑
i

pi (v) vif (v) dv − κ
∫ [∑

i

pi (v) log
pi (v)

pdi

]
f (v) dv − µ (v)

(∑
pi (v)− 1

)
.

Differentiation with respect to pi (v) gives 0 = vi − κ(1 + log pi(v)

pdi
) − µ (v), i.e.pi (v) =

pdi e
vi/κK (v) for a value K (v). Ensuring that

∑
i pi (v) = 1 gives

pi (v) =
pdi e

vi/κ∑
j p

d
je
vj/κ

. (59)

Matějka and McKay’s setup (2015) actually gives the default: max(pdi )
E
[
log
(∑

i p
d
i e
vi/κ
)]

s.t.
∑

i p
d
i = 1. So, when the vi are drawn drawn from the same distribution, pdi = 1/n.

In some cases, some options will not even be looked at, so pdi = 0. This gives a theory of

consideration sets. See Caplin, Dean, and Leahy (2016). This in turn helps explore dynamic

problems, as in Steiner, Stewart, and Matějka (2017).

6 A Behavioral Update of Basic Microeconomics: Con-

sumer Theory, Arrow-Debreu

Here I present a behavioral version of basic microeconomics, based on limited attention. It

is based on Gabaix (2014). Its structure does not, however, depends on the details of the

endogenization of attention (i.e. from sparsity or some other procedure). Hence, the effect

works for a host of behavioral models, provided they generate some inattention to prices.

6.1 Textbook consumer theory: A behavioral update

6.1.1 Basic consumer theory: Marshallian demand

We are now ready to see how textbook consumer theory changes for this less than fully

rational agent. The consumer’s Marshallian demand is:

c (p, w) := arg max
c∈Rn

u (c) subject to p · c ≤ w (60)

where c and p are the consumption vector and price vector. We denote by cr (p, w) the

demand under the traditional rational model, and by cs (p, w) the demand of a behavioral

agent (the s stand for: demand given “subjectively perceived prices”).

The price of good i is pi = pdi + xi, where pdi is the default price (e.g., the average price)
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and xi is an innovation. The price perceived by a behavioral agent is psi = pdi +mixi, i.e.:

psi (m) = mipi + (1−mi) p
d
i . (61)

When mi = 1, the agent fully perceives price pi, while when mi = 0, he replaces it by the

default price.51

Proposition 6.1 (Marshallian demand). Given the true price vector p and the perceived

price vector ps, the Marshallian demand of a behavioral agent is

cs (p, w) = cr (ps, w′) , (62)

where the as-if budget w′ solves p · cr (ps, w′) = w, i.e. ensures that the budget constraint is

hit under the true price (if there are several such w′, take the largest one).

To obtain intuition, we start with an example.

Example 2 (Demand by a behavioral agent with quasi-linear utility). Take u (c) =

v (c1, ..., cn−1) + cn, with v strictly concave. Demand for good i < n is independent of wealth

and is: csi (p) = cri (ps).

In this example, the demand of the behavioral agent is the rational demand given the

perceived price (for all goods but the last one). The residual good n is the “shock absorber”

that adjusts to the budget constraint. In a dynamic context, this good n could be “savings”.

Here it is a polar opposite.

Example 3 (Demand proportional to wealth). When rational demand is proportional to

wealth, the demand of a behavioral agent is: csi (p, w) =
cri (p

s,w)

p·cr(ps,1)
.

Example 4 (Demand by behavioral Cobb-Douglas and CES agents). When u (c) =∑n
i=1 αi ln ci, with αi ≥ 0, demand is: csi (p, w) = αi

psi

w∑
j αj

pj
ps
j

. When instead u (c) =∑n
i=1 c

1−1/η
i / (1− 1/η), with η > 0, demand is: csi (p, w) = (psi )

−η w∑
j pj(psj)

−η .

More generally, say that the consumer goes to the supermarket, with a budget of w =

$100. Because of the lack of full attention to prices, the value of the basket in the cart

is actually $101. When demand is linear in wealth, the consumer buys 1% less of all the

goods, to hit the budget constraint, and spends exactly $100 (this is the adjustment factor

1/p · cr (ps, 1) = 100
101

). When demand is not necessarily linear in wealth, the adjustment

51More general functions psi (m) could be devised. For instance, perceptions can be in percentage terms,
i.e. in logs, ln psi (m) = mi ln pi+(1−mi) ln pdi . The main results go through with this log-linear formulation,

because in both cases,
∂psi
∂pi |p=pd

= mi.
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is (to the leading order) proportional to the income effect, ∂cr

∂w
, rather than to the current

basket, cr. The behavioral agent cuts “luxury goods”, not “necessities”.52

6.1.2 Nominal illusion, asymmetric Slutsky matrix, and inferring attention

from choice data

Recall that the consumer “sees” only a part mj of the price change (eq. 61). One consequence

is nominal illusion.

Proposition 6.2 (Nominal illusion) Suppose that the agent pays more attention to some

goods than others (i.e. the mi are not all equal). Then, the agent exhibits nominal illusion,

i.e. the Marshallian demand c (p, w) is (generically) not homogeneous of degree 0.

To gain intuition, suppose that the prices and the budget all increase by 10%. For a

rational consumer, nothing really changes and he picks the same consumption. However,

consider a behavioral consumer who pays more attention to good 1 (m1 > m2). He perceives

that the price of good 1 has increased more than the price of good 2 has (he perceives that

they have respectively increased by m1 · 10% vs m2 · 10%). So, he perceives that the relative

price of good 1 has increased (pd is kept constant). Hence, he consumes less of good 1, and

more of good 2. His demand has shifted. In abstract terms, cs (χp, χw) 6= cs (p, w) for

χ = 1.1, i.e. the Marshallian demand is not homogeneous of degree 0. The agent exhibits

nominal illusion.

The Slutsky matrix The Slutsky matrix is an important object, as it encodes both

elasticities of substitution and welfare losses from distorted prices. Its element Sij is the

(compensated) change in consumption of ci as price pj changes:

Sij (p, w) :=
∂ci (p, w)

∂pj
+
∂ci (p, w)

∂w
cj (p, w) . (63)

With the traditional agent, the most surprising fact about it is that it is symmetric:

Srij = Srji. Kreps(2012, Chapter 11.6) comments: “The fact that the partial derivatives are

identical and not just similarly signed is quite amazing. Why is it that whenever a $0.01

rise in the price of good i means a fall in (compensated) demand for j of, say, 4.3 units, then

a $0.01 rise in the price of good j means a fall in (compensated) demand for i by [...] 4.3

units? [...] I am unable to give a good intuitive explanation.” Varian (1992, p.123) concurs:

52For instance, the consumer at the supermarket might come to the cashier, who’d tell him that he is over
budget by $1. Then, the consumer removes items from the cart (e.g. lowering the as-if budget w′ by $1),
and presents the new cart to the cashier, who might now say that he’s $0.10 under budget. The consumers
now will adjust his consumption a bit (increase w′ by $0.10). This demand here is the convergence point
of this “tatonnement” process. In computer science language, the agent has access to an “oracle” (like the
cashier) telling him if he’s over- or under budget.
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“This is a rather nonintuitive result.” Mas-Colell, Whinston, and Green (1995, p.70) add:

“Symmetry is not easy to interpret in plain economic terms. As emphasized by Samuelson

(1947), it is a property just beyond what one would derive without the help of mathematics.”

Now, if a prediction is non-intuitive to Mas-Colell, Whinston, and Green, it might require

too much sophistication from the average consumer. We now present a less rational, and

psychologically more intuitive, prediction.

Proposition 6.3 (Slutsky matrix). Evaluated at the default price, the Slutsky matrix Ss is,

compared to the traditional matrix Sr:

Ssij = Srijmj, (64)

i.e. the behavioral demand sensitivity to price j is the rational one, times mj, the salience of

price j. As a result the behavioral Slutsky matrix is not symmetric in general. Sensitivities

corresponding to “non-salient” price changes (low mj) are dampened.

Instead of looking at the full price change, the consumer just reacts to a fraction mj of it.

Hence, he’s typically less responsive than the rational agent. For instance, say that mi > mj,

so that the price of i is more salient than price of good j. The model predicts that
∣∣Ssij∣∣ is

lower than
∣∣Ssji∣∣: as good j’s price isn’t very salient, quantities don’t react much to it. When

mj = 0, the consumer does not react at all to price pj, hence the substitution effect is zero.

The asymmetry of the Slutsky matrix indicates that, in general, a behavioral consumer

cannot be represented by a rational consumer who simply has different tastes or some adjust-

ment costs. Such a consumer would have a symmetric Slutsky matrix.

To the best of my knowledge, this is the first derivation of an asymmetric Slutsky matrix

in a model of bounded rationality.53

Equation (64) makes tight testable predictions. It allows us to infer attention from choice

data, as we shall now see.54

Proposition 6.4 (Estimation of limited attention). Choice data allows one to recover the

attention vector m, up to a multiplicative factor m. Indeed, suppose that an empirical Slutsky

matrix Ssij is available. Then, m can be recovered as mj = m
∏n

i=1

(
Ssij
Ssji

)γi
, for any (γi)i=1...n

such that
∑

i γi = 1.

Proof : We have
Ssij
Ssji

=
mj
mi

, so
∏n

i=1

(
Ssij
Ssji

)γi
=
∏n

i=1

(
mj
mi

)γi
=

mj
m

, for m :=
∏n

i=1m
γi
i .�

53Browning and Chiappori (1998) have in mind a very different phenomenon: intra-household bargaining,
with full rationality. Their model adds 2n+O (1) degrees of freedom, while sparsity adds n+O (1) degrees
of freedom.

54The Slutsky matrix does not allow one to recover m: for any m, Ss admits a dilated factorization
Ssij =

(
m−1Srij

)
(mmj)). To recover m, one needs to see how the demand changes as pd varies. Aguiar and

Serrano (2017) explore further the link between Slutsky matrix and bounded rationality.
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The underlying “rational” matrix can be recovered as Srij := Ssij/mj, and it should be

symmetric, a testable implication.55 There is a literature estimating Slutsky matrices, which

does not yet seem to have explored the role of non-salient prices.

It would be interesting to test Proposition 6.3 directly. The extant evidence is qualita-

tively encouraging, via the literature on obfuscation and shrouded attributes (Gabaix and

Laibson 2006, Ellison and Ellison 2009) and tax salience.56 Those papers find field evidence

that some prices are partially neglected by consumers.

Marginal demand

Proposition 6.5 The Marshallian demand cs (p, w) has the marginals (evaluated at p =

pd): ∂cs

∂w
= ∂cr

∂w
and

∂csi
∂pj

=
∂cri
∂pj
×mj −

∂cri
∂w

crj × (1−mj) . (65)

This means that, though substitution effects are dampened, income effects ( ∂c
∂w

) are

preserved (as w needs to be spent in this one-shot model).

6.2 Textbook competitive equilibrium theory: A behavioral up-

date

We next revisit the textbook chapter on competitive equilibrium, with a less than fully ratio-

nal agent. We will use the following notation. Agent a ∈ {1, ..., A} has endowment ωa ∈ Rn

(i.e. he is endowed with ωai units of good i), with n > 1. If the price is p, his wealth is

p · ωa, so his demand is Da (p) := ca (p,p · ωa). The economy’s excess demand function is

Z (p) :=
∑A

a=1 D
a (p)− ωa. The set of equilibrium prices is P∗ :=

{
p ∈ Rn

++ : Z (p) = 0
}

.

The set of equilibrium allocations for a consumer a is Ca := {Da (p) : p ∈ P∗}. The equilib-

rium exists under weak conditions laid out in Debreu (1970).

6.2.1 First and second welfare theorems: (In)efficiency of equilibrium

We start with the efficiency of Arrow-Debreu competitive equilibrium, i.e. the first funda-

mental theorem of welfare economics.57 We assume that competitive equilibria are interior,

55Here, we find again a less intuitive aspect of the Slutsky matrix.
56Chetty, Looney, and Kroft (2009) show that a $1 increase in tax that is included in the posted prices

reduces demand more than when it is not included. Anagol and Kim (2012) found that many firms sold
closed-end mutual funds because they can charge more fees by ‘initial issue expense’ (which can be amortized,
so is not visible to customers) than by ‘entry load’ (a more obvious one time charge). In an online auction
experiment. Greenwood and Hanson (2014) estimate an attention m = 0.5 to competitors’ reactions and
general equilibrium effects.

57This chapter does not provide the producer’s problem, which is quite similar and is left for a companion
paper (and is available upon request). Still, the two negative results in Propositions 6.6 and 6.7 apply to
exchange economies, hence apply a fortiori to production economies.
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and consumers are locally non-satiated.

Proposition 6.6 (First fundamental theorem of welfare economics revisited: (In)efficiency

of competitive equilibrium). An equilibrium is Pareto efficient if and only if the perception

of relative prices is identical across agents. In that sense, the first welfare theorem generally

fails.

Hence, typically the equilibrium is not Pareto efficient when we are not at the default

price. The intuitive argument is very simple (the appendix has a rigorous proof): recall

that given two goods i and j, each agent equalizes relative marginal utilities and relative

perceived prices (see equation 35):

uaci
uacj

=

(
psi
psj

)a
,

ubci
ubcj

=

(
psi
psj

)b
, (66)

where
(
psi
psj

)a
is the relative price perceived by consumer a. Furthermore, the equilibrium is

efficient if and only if the ratio of marginal utilities is equalized across agents, i.e. there are

no extra gains from trade, i.e.
uaci
uacj

=
ubci
ubcj

. (67)

Hence, the equilibrium if efficient if and only if any consumers a and b have the same

perceptions of relative prices (
(
psi
psj

)a
=
(
psi
psj

)b
).

The second welfare theorem asserts that any desired Pareto efficient allocation (ca)a=1...A

can be reached, after appropriate budget transfers (for a formal statement, see e.g., Mas-

Colell, Whinston, and Green 1995, section 16.D). The next Proposition asserts that it gener-

ally fails in this behavioral economy. The intuition is as follows: typically, if the first welfare

theorem fails, then a fortiori the second welfare theorem fails, as an equilibrium is typically

not efficient.

Proposition 6.7 (Second theorem of welfare economics revisited). The second welfare the-

orem generically fails, when there are strictly more than two consumers or two goods.

6.2.2 Excess volatility of prices in an behavioral economy

To tractably analyze prices, we follow the macro tradition, and assume in this section that

there is just one representative agent. A core effect is the following.

Bounded rationality leads to excess volatility of equilibrium prices. Suppose that there

are two dates, and that there is a supply shock: the endowment ω (t) changes between t = 0

and t = 1. Let dp = p (1) − p (0) be the price change caused by the supply shock, and

consider the case of infinitesimally small changes (to deal with the arbitrariness of the price

level, assume that p1 = pd1 at t = 1). We assume mi > 0 (and will derive it soon).
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Offer Curve: Sparse agent

Figure 3: This Figure shows the agent’s offer curve: the set of demanded consumptions
c (p,p · ω), as the price vector p varies. The left panel is the traditional (rational) agent’s of-
fer curve. The right panel is the behavioral agent’s offer curve (in gray): it is a 2-dimensional
surface.

Proposition 6.8 (Bounded rationality leads to excess volatility of prices). Let dp[r] and

dp[s] be the change in equilibrium price in the rational and behavioral economies, respectively.

Then:

dp
[s]
i =

dp
[r]
i

mi

, (68)

i.e., after a supply shock, the movements of price i in the behavioral economy are like the

movements in the rational economy, but amplified by a factor 1
mi
≥ 1. Hence, ceteris paribus,

the prices of non-salient goods are more volatile. Denoting by σki the price volatility in the

rational (k = r) or behavioral (k = s) economy, we have σsi =
σri
mi

.

Hence, non-salient prices need to be more volatile to clear the market. This might

explain the high price volatility of many goods, such as commodities. Consumers are quite

price inelastic, because they are inattentive. In a behavioral world, demand underreacts to

shocks; but the market needs to clear, so prices have to overreact to supply shocks.58

6.2.3 Behavioral Edgeworth box: Extra-dimensional offer curve

We move on to the Edgeworth box. Take a consumer with endowment ω ∈ Rn. Given a

price vector p, his wealth is p ·ω, and so his demand is D (p) := c (p,p · ω) ∈ Rn. The offer

curve OC is defined as the set of demands, as prices vary: OC :=
{
D (p) : p ∈ Rn

++

}
.59

Let us start with two goods (n = 2). The left panel of Figure 3 is the offer curve of

the rational consumer: it has the traditional shape. The right panel plots the offer curve

58Gul, Pesendorfer, and Strzalecki (2017) offer a very different model leading to volatile prices, with a
different mechanism linked to endogenous heterogeneity between agents.

59One can imagine in the background a sequence of i.i.d. economies with a stochastic aggregate endowment,
as in section 6.2.4. That would generate the average price (hence a default price), and a variability of prices
(which will lead to the allocation of attention).
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of a behavioral consumer with the same basic preferences: the offer curve is the gray area.

The offer curve has acquired an extra dimension, compared to the one-dimensional curve

of the rational consumer. The OC is a now two-dimensional “ribbon”, with a pinch at the

endowment; if mistakes are unbounded, the OC is the union of quadrants north-west or

south-east of ω.60

What is going on here? In the traditional model, the offer curve is one-dimensional: as

demand D (p) = c (p,p · ω) is homogeneous of degree 0 in p = (p1, p2), only the relative

price p1/p2 matters. However, in the behavioral model, demand D (p) is not homogeneous

of degree 0 in p any more: this is the nominal illusion of Proposition 6.2. Hence, the offer

curve is effectively described by two parameters (p1, p2) (rather than just their ratio), so it

is 2-dimensional (the online appendix has a formal proof in section XII).61 Note that this

holds even though the Marshallian demand is a nice, single-valued function.

In the traditional model, equilibria are the intersection of offer curves. However, this is

typically not the case here, as we shall now see.

6.2.4 A Phillips curve in the Edgeworth box

In the traditional model with one equilibrium allocation, the set of equilibrium prices P∗ is

one-dimensional (P∗ = {χp : χ ∈ R++}), and Ca is just a point, Da (p).62

In the behavioral setup, P∗ is still one-dimensional.63 However, to each equilibrium price

level corresponds a different real equilibrium. This is analogous to a “Phillips curve”: Ca has

dimension 1.

To fix ideas, it is useful to consider the case of one rational consumer and one behavioral

consumer.

Proposition 6.9 Suppose agent a is rational, and the other agent is behavioral with m1 =

1,m2 = 0, and two goods. The set Ca of a’s equilibrium allocations is one-dimensional: it is

equal to a’s offer curve.

Suppose we start at a middle point of the curve in Figure 4, right panel. Suppose for

concreteness that consumer b is a worker, good 2 is food, and good 1 is “leisure,” so that

when he consumes less of good 1, he works more. Let us say that m1 > m2; he pays keen

attention to his nominal wage, p1, and less to the price of food, p2. Suppose now that

60A point c in the OC must be in the two quadrants north-west or south-east of ω (otherwise, we would
have c� ω or c� ω; however, there is a p s.t. p · c = p · ω: a contradiction).

61This “2-dimensional offer curve” is distinct from the previously-known “thick indifference curve”. The
latter arises when the consumer violates strict monotonicity (i.e. likes equally 5.3 and 5.4 bananas), is not
associated to any endowment or prices, and has no pinch. The behavioral offer curve, in contrast, arises
from nominal illusion, needs an endowment and prices, and has a pinch at the endowment.

62More generally, equilibria consist of a finite union of such sets, under weak conditions given in Debreu
(1970).

63By Walras’ law, P∗ = {p : Z−n (p) = 0}, where Z−n = (Zi)1≤i<n. As Z−n is a function Rn++ → Rn−1,
P∗ is generically a one-dimensional manifold.
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Figure 4: These Edgeworth boxes show competitive equilibria when both agents have Cobb-
Douglas preferences. The left panel illustrates the traditional model with rational agents:
there is just one equilibrium, ca. The right panel illustrates the situation when type a is
rational, and type b is boundedly rational: there is a one-dimensional continuum of compet-
itive equilibria (one for each price level) – a “Phillips curve.” Agent a’s share of the total
endowment (ωa) is the same in both cases.

the central bank raises the price level. Then, consumer b sees that his nominal wage has

increased, and sees less clearly the increase in the price of good 2. So he perceives that his

real wage (p1
p2

) has increased. Hence (under weak assumptions) he supplies more labor: i.e.,

he consumes less of good 1 (leisure) and more of good 2. Hence, the central bank, by raising

the price level, has shifted the equilibrium to a different point.

Is this Phillips curve something real and important? This question is debated in macroe-

conomics, with an affirmative answer from New Keynesian analyses (Gaĺı 2011). Standard

macro deals with one equilibrium, conditioning on the price level (and its expectations).

To some extent, this is what we have here. Given a price level, there is (locally) only one

equilibrium (as in Debreu 1970), but changes in the price level change the equilibrium (when

there are some frictions in the perception or posting of prices). This is akin to a (temporary)

Phillips curve: when the price level goes up, the perceived wage goes up, and people sup-

ply more labor. Hence, we observe here the price-level dependent equilibria long theorized

in macro, but in the pristine and general universe of basic microeconomics. One criticism

of the influential Lucas (1972) view is that inflation numbers are in practice very easy to

obtain, contrary to Lucas’ postulate. This criticism does not apply here: behavioral agents

actively neglect inflation numbers, which means the Phillips curve effect is valid even when

information is readily obtainable.

6.3 What is robust in basic microeconomics?

I gather what appears to be robust and not robust in the basic microeconomic theory of

consumer behavior and competitive equilibrium – when the specific deviation is a sparsity-

seeking agent. I use the sparsity benchmark not as “the truth,” of course, but as a plausible
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extension of the traditional model, when agents are less than fully rational.

Propositions that are not robust

Tradition: There is no money illusion. Behavioral model: There is money illusion: when

the budget and prices are increased by 5%, the agent consumes less of goods with a salient

price (which he perceives to be relatively more expensive); Marshallian demand c (p, w) is

not homogeneous of degree 0.

Tradition: The Slutsky matrix is symmetric. Behavioral model: It is asymmetric, as

elasticities to non-salient prices are attenuated by inattention.

Tradition: The offer curve is one-dimensional in the Edgeworth box. Behavioral model:

It is typically a two-dimensional pinched ribbon.64

Tradition: The competitive equilibrium allocation is independent of the price level. Be-

havioral model: Different aggregate price levels lead to materially different equilibrium allo-

cations, like in a Phillips curve.

Tradition: The Slutsky matrix is the second derivative of the expenditure function. Be-

havioral model: They are linked in a different way.

Tradition: The Slutsky matrix is negative semi-definite. The weak axiom of revealed

preference holds. Behavioral model: These properties generally fail in a psychologically

interpretable way.

Small robustness: Propositions that hold at the default price, but not away

from it, to the first order

Marshallian and Hicksian demands, Shephard’s lemma and Roy’s identity: the values of

the underlying objects are the same in the traditional and behavioral model at the default

price,65 but differ (to the first order in p − pd) away from the default price. This leads to

a U-shape of errors in welfare assessment (in an analysis that does not take into account

bounded rationality) as a function of consumer sophistication, because the econometrician

would mistake a low elasticity due to inattention for a fundamentally low elasticity.

Greater robustness: Objects are very close around the default price, up to

second order terms

Tradition: People maximize their “objective” welfare. Behavioral model: people maxi-

mize in default situations, but there are losses away from it.

Tradition: Competitive equilibrium is efficient, and the two Arrow-Debreu welfare the-

orems hold. Behavioral model: Competitive equilibrium is efficient if it happens at the

default price. Away from the default price, competitive equilibrium has inefficiencies, unless

all agents have the same misperceptions. As a result, the two welfare theorems do not hold

in general.

64When the prices of the two goods change, in the traditional model only their ratio matters. So there is
only one free parameter. However, as a behavioral agent exhibits some nominal illusion, both prices matter,
not just their ratio, and we have a two-dimensional curve.

65The default price is the price expected by a fully inattentive agent.
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The values of the expenditure function e(p, u) and indirect utility function v (p, w) are

the same, under the traditional and behavioral models, up to second order terms in the price

deviation from the default (p− pd).66

Traditional economics gets the signs right – or, more prudently put, the signs predicted

by the rational model (e.g. Becker-style price theory) are robust under a sparsity variant.

Those predictions are of the type “if the price of good 1 does down, demand for it goes

up”, or more generally “if there’s a good incentive to do X, people will indeed tend to do

X,”67,68 Those sign predictions make intuitive sense, and, not coincidentally, they hold in

the behavioral model:69 those sign predictions (unlike quantitative predictions) remained

unchanged even when the agent has a limited, qualitative understanding of his situation.

Indeed, when economists think about the world, or in much applied microeconomic work, it

is often the sign predictions that are used and trusted, rather than the detailed quantitative

predictions.

7 Allocation of Attention over Time

The models so far were static. We now move on to models that discuss the allocation of at-

tention over time. One important theme is that on impact with a new piece of information,

people are quite inattentive, but over time people adjust to the news – a form of “slug-

gishness”. I cover different ways to generate sluggishness, particularly over time. They are

largely substitutes for inattention from a modeling standpoint, but they generate sometimes

different predictions, as we shall see.

7.1 Generating sluggishness: Sticky action, sticky information,

and habits

7.1.1 Sticky action and sticky information

The most common models are those of sticky action and sticky information. In the sticky

action model, agents need to pay a cost to change their action. In the sticky information

model, agents need to pay a cost to change their information. Sticky action has been ad-

vocated in macroeconomics by Calvo (1983) and Caballero (1995), and in a finance context

66The above points about second-order losses are well-known (Akerlof and Yellen 1985), and are just a
consequence of the envelope theorem. I mention them here for completeness.

67Those predictions need not be boring. For instance, when divorce laws are relaxed, spouses kill each
other less (Stevenson and Wolfers 2006).

68This is true for “direct” effects, though not necessarily once indirect effects are taken into account. For
instance, this is true for compensated demand (see the part on the Slutsky matrix), and in partial equilibrium.
This is not necessarily true for uncompensated demand (where income effects arise) or in general equilibrium
– though in many situations those “second round” effects are small.

69The closely related notion of strategic complements and substitutes (Bulow, Geanakoplos, and Klemperer
1985) is also robust to a sparsity deviation.
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by Duffie and Sun (1990). Sticky information has been advocated in macro by Gabaix and

Laibson (2002), Carroll (2003), and then by Mankiw and Reis (2002), Reis (2006a), and nu-

merous authors since. Coibion and Gorodnichenko (2015) finds evidence for slow adjustment

to information. Intuitively, this generates sluggishness in the aggregate action. To see this,

consider the following tracking problem. The agent should maximize

V =
∞∑
t=0

βtu (at, xt) (69)

u (a, x) = −1

2
(a− x)2 (70)

where at is a decision variable, and xt an exogenous variable satisfying:

xt+1 = ρxt + εt+1 (71)

with |ρ| ≤ 1. In the frictionless version, the optimal action at date t is:

art = xt.

Simple case: Random walk To keep the math simple, take ρ = 1 at first. Consider

first the “sticky action” case. We will consider two benchmarks. In the “Calvo” model (like

in the pricing model due to Calvo (1983)) the agent changes her action only with a Poisson

probability 1 − θ at each period. In the “fixed delay D” model (as in Gabaix and Laibson

2002; Reis 2006a), the agent changes her action every D periods. Both models capture that

the action is changed with a lag.

Call aAt,s (respectively aIt,s) the action of an agent at time t, who re-optimized her action

(respectively, who refreshed her information) s periods ago, in the sticky Action model

(respectively, I nformation). Then

aAt,s = art−s = xt−s

and

aIt,s = Et−s [art ] = xt−s.

Hence, in the random walk case, sticky action and sticky information make the same

prediction. However, when we go beyond the random talk, predictions are different (see

Section A.2).

So, consider the impact of a change in εt in xt, on the aggregate action

āt =
∞∑
s=0

f (s) at,s.
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In the Calvo model, f (s) = (1− θ) θs. In the “fixed delay D” model, f (s) = 1
D

10≤s<D.

Look at at (εt, εt−1, ...), and Et dāt+Tdεt
. Then:

Et
[
dāt+T
dεt

]
=

T∑
s=0

f (s) =: F (T )

with

F (T ) = 1− θT+1 (72)

in the Calvo model; and

F (T ) = min

(
T + 1

D
, 1

)
in the updating-every-D periods model. Hence, we have a delayed reaction. This is the first

lesson. Models with sticky action, and sticky reaction, generate a sluggish, delayed response

in the aggregate action.

Put another way, in the Calvo model, aggregate dynamics are:

āt
A = θāAt−1 + (1− θ)xt (73)

and they are the same (in the random walk case that we are presently considering) in the

sticky information case.

7.1.2 Habit formation generates inertia

Macroeconomists who want to generate inertia often use habits. That is, instead of a utility

function u (at, xt) , one uses a utility function

v (at,, at−1, xt) := u

(
at − hat−1

1− h , xt

)
(74)

where h ∈ [0, 1) is a habit parameter. This is done in order to generate stickiness. To see

how, consider again the targeting problem (69), but with no frictions except for habit:

max
at
−
∞∑
t=0

βt
(
at − hat−1

1− h − xt
)2

.

The first best can be achieved simply by setting the square term to 0 at each date, e.g.
at−hat−1

1−h − xt = 0. That is,

at = hat−1 + (1− h)xt (75)

which is exactly an AR(1) process, like (73), replacing θ by h. This is a sense in which a

habit model can generate the same behavior as a sticky action / information model. In more

general setups, the correspondence is not as perfect, but it qualitatively carries over.
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Macroeconomists have used this habit model to generate inertia in consumption, and

even in investment – see Christiano, Eichenbaum, and Evans (2005). Havranek, Rusnak,

and Sokolova’s (2017) meta-analysis finds a median estimate of h = 0.5 for macro studies,

and h = 0.1 for micro studies. The discrepancy is probably due to the fact that at the micro

level there is so much volatility of consumption, that this is only consistent with a small

degree of habit formation. In macro studies, aggregate consumption is much smoother, so

aggregate sluggishness to the reaction to information results in a higher measured h.

Of course, for normative purposes the analysis is completely different. In the habit model

above, the agent achieves the first best utility. However, in the sticky information model,

if the agent could remove her friction (e.g. lower the stickiness θ to 0), she would do it.

In a more complex macro model, the same holds. Likewise for optimal retirement savings

policy, the specific reason for people’s sensitivity to default matters a great deal (Bernheim,

Fradkin, and Popov 2015).

Which is true? Most macroeconomists, privately, acknowledge that habits are basically

just a device to generate stickiness. Still, scientific evidence would be nice. Carroll, Crawley,

Slacalek, Tokuoka, and White (2017) argue that stickiness is indeed about inattention, rather

than habits.

7.1.3 Adjustment costs generate inertia

Adjustment costs also generate inertia. Suppose that the problem is

max
at
−
∞∑
t=0

βt[(at − xt)2 + κ (at − at−1)2]

such that the first order condition with respect to at is

at − xt + κ (at − at−1)− βκ (Etat+1 − at) = 0 (76)

so we obtain a second order difference equation. When xt is a random walk, we have

at = θat−1 + (1− θ)xt (77)

where θ solves θ = κ
κ+1+βκ(1−θ) .

70So, θ is 0 when κ = 0, and θ = 1 as κ→∞.

Hence again, adjustment costs yield an isomorphic behavior, but with a more complex

mathematical result, as θ has to be solved for.

70Proof: we use (77), which gives Eat+1 − at = (1− θ) (xt − at). Then, we plug it into 76, using

0 = at − xt + κ (at − at−1)− βκ (Eat+1 − at)
= (1 + βκ (1− θ)) (at − xt) + κ (at − at−1)

which gives the expression for θ.
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7.1.4 Observable difference between inattention vs. habits / adjustment costs:

Source-specific inattention

Both inattention and habits / adjustment costs create delayed reaction. But we can dif-

ferentiate between them as follows. Inattention (of the sticky information kind) creates

source-specific under-reaction, whereas adjustment costs (or the sticky action model) create

uniform under-reaction. Let us see this in a one-period model. Inattention creates an action:

a =
∑
i

mibixi.

In an adjustment cost model, the agent solves maxa− (a−∑i bixi)
2−κ (a− a−1)2, which

yields an action:

a = mar + (1−m) a−1 (78)

with m = 1
1+κ

. This is a uniform dampening, across all dimensions i. Likewise, a habit

max
a
u

(
a− ha−1

1− h , x

)
creates the same expression (78) for the action, this time with m = 1− h.

7.1.5 Dynamic default value

Within behavioral models, a simple way to model dynamic attention is via the default value.

For instance, the default value could jump to the optimal default value, with some Poisson

probability, much as in the sticky information model. In a Bayesian context, the “prior”

could be updated with some Poisson probability.

7.2 Optimal dynamic inattention

How to optimize the allocation of attention? The agent minimizes the following objective

function over the information acquisition policy, in which a denotes a state-contingent policy:

V (a, β) = −E
[∑
t≥0

(1− β) βt
(

1

2
(at − xt)2 + κCt

)]

where Ct = 1 if a cost is paid, 0 otherwise. Here, to simplify calculations and concentrate on

the economics, we take the “timeless perspective”, and take the limit β → 1. That is, the

agent maximizes, over the adjustment policy, V (a) = limβ→1 V (a, β), that is

V (a) = −E
[

1

2
(at − xt)2 + κCt

]
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which is the average consumption loss plus a penalty for the average cost of looking up

information.71

If the information is s periods old, then at,s − xt =
∑s

u=1 εt−u, so

E
[
(at,s − xt)2] = sσ2

hence, the losses from misoptimization are:

E
[
(at − xt)2] = σ2E [T ] = σ2D − 1

2
for the D-period model,

E
[
(at − xt)2] = σ2 θ

1− θ for the Calvo model.

Now, we calculate72

E [Ct] =
1

D
for the D-period model,

E [Ct] = 1− θ for the Calvo model,

so that the optimal reset time solves, in the D period model:

min
D

1

2
σ2D − 1

2
+ κ

1

D

i.e. a frequency of price adjustments

1

D
=

σ

2
√
κ

(79)

as in Gabaix and Laibson 2002; Reis 2006a; Alvarez, Lippi, and Paciello 2011; Reis 2006b.

Likewise, in the Calvo model, the optimal frequency θ is

min
θ

1

2
σ2 θ

1− θ + κ (1− θ)

i.e. the frequency of price adjustments is

1− θ = min

(
σ√
2κ
, 1

)
. (80)

71Indeed, as limβ→1

∑
t≥0 (1− β)βtXt = E [Xt] if X is an “ergodic” process.

72In the D model, the information is looked up every D periods. In the Calvo model, the probability of
looking up the information next period is 1− θ.
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The same generalizes to the case where the signal has n components. Suppose that

xt =
∑
i

xit

xit = xi,t−1 + εit

and reset costs are κi. Then the average per-period loss is

∑
i

[
1

2
σ2
i

Di − 1

2
+ κi

1

Di

]
so that the frequency at which agents look up source i is

1

Di

=
σi

2
√
κi
. (81)

I do know not of systematic evidence on this, although the research on this topic is

progressing vigorously (e.g. Alvarez, Lippi, and Paciello 2011; Alvarez, Gonzalez-Rozada,

Neumeyer, and Beraja 2016).

7.3 Other ways to generate dynamic adjustment

7.3.1 Procrastination

Another way to generate sluggishness is to use procrastination, as in Carroll, Choi, Laibson,

Madrian, and Metrick (2009). In this view, agents hope to act, but procrastinate for a

long time. A related issues is forgetting and lapsed attention. For instance, Ericson (2017)

finds that an important factor is that people overestimate the likelihood that they will at all

remember that they have to make a decision, which amplifies sluggishness (see also Ericson

2011).

7.3.2 Unintentional inattention

Most models are about fairly “intentional” attention – agents choose to pay attention

(though, given attention is dictated more so by System 1 than by System 2, in the language

of Kahneman (2003), the distinction isn’t completely clear cut). If unintentional inattention

is the first-order issue, how do we model that? A simple way would be to say that the agent

has the wrong “priors” over the importance of variable xi. That is, in truth σi is high, but

the agent thinks that σi is low – for instance, at the allocation of attention stage the agent

thinks that an employer’s retirement savings match rate is small. Concretely, at Step 1 in

Proposition 4.1, the agent might have too low a perception of σi. One could imagine an

iterated allocation problem, where the agent also optimizes over his perception of the costs

and benefits.
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7.3.3 Slows accumulation of information with entropy-based cost

Sims (1998) was motivated by evidence for sluggish adjustment. Maćkowiak and Wiederholt

(2009, 2015) pursue that idea in macroeconomics – while breaking the unitary entropy of

Sims, such that agents are allowed to have heterogeneous attention to different news sources.

The dynamics are much more complex to derive, but are not unrealistic.

7.4 Behavioral macroeconomics

There has been a recent interest in behavioral macroeconomics. It is too early to present

a comprehensive survey of this literature. Themes includes rules of thumb (Campbell and

Mankiw 1989), limited information updating (Caballero 1995, Gabaix and Laibson 2002,

Mankiw and Reis 2002, Reis 2006a), and noisy signals (Sims 2003, Maćkowiak and Wieder-

holt 2015). A small but growing literature in theoretical macroeconomics draws consequences

for general equilibrium and policy from features like inattention and imperfect information

(Woodford 2013; Garćıa-Schmidt and Woodford 2015; Angeletos and Lian 2017, 2016; Farhi

and Werning 2017; Bordalo, Gennaioli, and Shleifer 2016). For instance, Gabaix (2016b)

presents a behavioral version of the textbook New Keynesian model, which gives a way to

model monetary and fiscal policy with behavioral agents. We can expect this literature to

grow in the future.

8 Open Questions and Conclusion

The field of inattention has become extremely lively. Here are some important open issues.

We need more measures of inattention This survey showed a number of measure

of attention (Section 3.3). Currently, to produce one good measure of attention m, we need

a full paper. It would be nice to scale up production – in particular, to always attempt to

provide a quantitative measure of attention, rather than a demonstration that it is not full.

In particular, can we relate the “physical measures of inputs to attention” (e.g. eye-tracking)

to attention itself (see Section 3.1.3)?

Investigating Varian in the lab Let us ponder the difference between a physics

textbook and a microeconomics textbook. In physics textbooks, assertions and results (e.g.

force = mass times acceleration) have been verified exquisitely in the lab. Not so in eco-

nomics. You open, say, Varian (1992) or Mas-Colell, Whinston, and Green (1995), and see

many assertions and predictions, with very few experimental counterparts – and indeed, one

suspects that the assertions will actually be wrong if they are to be tested. It would be great
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to make economics more like physics. To do so, it seems important to experimentally inves-

tigate basic microeconomics (à la Varian 1992) in the lab. The material in Section 6 gives

a behavioral counterpart of the major parts of basic microeconomics, including directions

in which inattention will modify the rational predictions. It would be a great advance to

implement a procedure to investigate its predictions empirically.

The challenges are: (i) to implement a notion of “clearly perceived” and “more opaque”

prices, (ii) measure attention m, and (iii) implement in a roughly naturalistic way the basic

problem (60). The rewards would be very nice, as we’d have a worked-out and tested

counterpart of basic microeconomics.

When you look at Mas-Colell, Whinston, and Green (1995), you see that a few chapters

have been extensively investigated (for example, expected utility, with prospect theory as a

benchmark), or basic game theory, with some behavioral models as an alternative (Camerer

2003). But other chapters, such as basic microeconomics of the consumer-theory / Arrow-

Debreu style, have been investigated very little – as a result, I think, of the lack of a clean

behavioral alternative, a gap that is now filled (see Section 6). Such a study would be drier

than, say, work on discrimination or fairness, but useful for economics.73 Hopefully that

imbalance will be corrected.

We need more experimental evidence on the determinants of attention There

are now several theories of attention, but measurement is somewhat lagging in refinement.

What’s the cost of inattention? Could we get some sense of the shape of the cost, and of the

attention function (e.g. that in Figure 1)? At a more basic level, the global-entropy con-

straint à la Sims predicts a unitary attention, as in equation (55), without source-dependent

inattention. Other models, e.g. behavioral models and older models where people pay

for precision (Verrecchia 1982; Veldkamp 2011), predict source-dependent inattention, as in

(33). Other theories emphasize the fact that attention is commodity- and action-dependent

(Bordalo, Gennaioli, and Shleifer 2013). Empirical guidance would be useful.

More structural estimation The early papers found evidence for imperfect attention,

with large economic effects. A more recent wave of papers has estimated inattention – its

mean, variance, and how it varies with income, education and the like. A third generation

of papers might estimate more structurally models of inattention, to see if the predictions

do fit, and perhaps suggest newer models.

73There is a literature estimating Garp and Afriat’s theorem, but it is generally not guided by a specific
behavioral alternative, so that “rejection of rationality” usually gives little guidance to a behavioral alter-
native. See Aguiar and Serrano (2017) for progress on this, and the references therein to this strand of
literature.
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Using this to do better policy: generating attention All this work may lead to

progress in how to generate attention, e.g. for policy. Making consumers more rational is

difficult even when the right incentives are in place – for example, consumers overwhelmingly

fail to minimize fees in allocating their portfolios (Choi, Laibson, and Madrian 2009). The

work on nudges (Thaler and Sunstein 2008) is based on psychological intuition rather than

quantified principles. Also, knowing better “best practices” for disclosure would be helpful.

Firms are good at screening for consumer biases (Ru and Schoar 2016), but public institutions

less so, and debiasing is quite hard.

More work on the consequences of inattention Work on the consequences of

inattention for markets outcomes and public policy will continue.
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A Appendix: Further Derivations and Mathematical

Complements

A.1 Further Derivations

Basic signal-extraction problem (Section 2.1) We have s = x + ε. So E [x|s] = ms,

with m = Cov(x,s)
Var(s)

= vx
vs

, with vx = σ2
x and vε = σ2

ε . Hence, the optimal a = E [x|s] is

a = ms = mx+mε. A little bit of algebra gives vε = vs − vx = vx
(

1
m
− 1
)

and

Var (mε) = m2vε = m (1−m) vx

so a is distributed as:

a = mx+
√
m (1−m)ηx (82)

where ηx is another draw from the distribution of x. This implies Var (a) = mVar (x), and

E
[
(a− x)2] = (1−m)σ2

x.

Derivation of the losses from inattention (equation 27) Let us start with a 1-

dimensional action, with a utility function u (a) . Call a∗ the optimum. But the agent does

a = a∗+ â, where â is a deviation (perhaps coming from inattention). Then utility losses are

L (â) := u (a∗ + â)− u (a) .

Let’s do a Taylor expansion,

La (â) = u′ (a∗ + â) , Laa (â) = u′′ (a∗ + â)

L (â) = L (0) + La (0) â+
1

2
Laa (0) â2 + o

(
â2
)

which implies L (0) = La (0) = 0. Hence:

L (â) =
1

2
uaa (0) â2 + o

(
â2
)
.

Next, for a small x, the deviation is

â = a∗ (xs)− a∗ (x) = ax (xs − x) + o (x) = ax (m− 1)x+ o (x)

hence, for a one-dimensional x, the loss is:

2L (x) = uaa (a∗ (x)) â2 + o
(
â2
)

= uaa (a∗ (0)) â2 + o
(
â2
)

= uaaa
2
xx

2 (1−m)2 + o
(
|x|2
)
.
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With an n−dimensional x, the math is similar, with matrices:

â = a∗ (xs)− a∗ (x) = ax (xs − x) = ax (M − I)x+ o (x)

with M = diag (m1, ...,mn), I the identify matrix of dimension n. So, neglecting o
(
‖â‖2)

terms,

2L = â′uaa (0) â+ o
(
‖â‖2) = x′ (I −M)′ a′xuaa (0) ax (I −M)x

= −
∑
i,j

(1−mi)xia
′
xi
uaa (0) axjxj (1−mj)

= −
∑
i,j

(1−mi) Λ̃ij (1−mj) = − (ι−m) Λ̃ (ι−m)′

Λ̃ij = −xia′xiuaa (0) axjxj, ι := (1, ..., 1) .

We then obtain (27) by taking expectations.

Derivation of the entropy of Gaussian variables (Section 5.2.1) The entropy doesn’t

depend on the mean, so we normalized it to 0.

One dimension. The density is f (x) = e
− x2

2σ2√
2πσ2

, so

H (X) = −E [log f (X)] = −E
[
− x2

2σ2
− 1

2
log
(
2πσ2

)]
=

1

2
+

1

2
log
(
2πσ2

)
=

1

2
log σ2 +

1

2
log (2πe) .

Higher dimensions. The density is f (x) = e−
1
2x
′V−1x

(2π)n/2(detV )1/2
, where V = E [XX ′] is the

variance covariance matrix. Using the notation |V | = detV , and Tr for the trace, we first

note

E
[
x′V −1x

]
= E

[
Tr
(
x′V −1x

)]
= E

[
Tr
(
xx′V −1

)]
= TrE

[
xx′V −1

]
= TrE

[
V V −1

]
= Tr In = n.

Then, the entropy is

H (X) = −E [log f (X)] = −E
[
−n

2
log (2π)− 1

2
log |V | − 1

2
x′V −1x

]
=

1

2
log ((2π)n |V |) +

n

2
=

1

2
log ((2πe)n |V |) .
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Mutual information of two Gaussian variables (Section 5.2.1) Suppose X, Y are

jointly Gaussian, with variance-covariance matrix V =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
, where ρ =

corr (X, Y ). Then, detV = σ2
Xσ

2
Y (1− ρ2), so

H (X, Y ) =
1

2
log (detV ) + n log (2πe)

and using (51) gives

I (X, Y ) = H (X) +H (Y )−H (X, Y ) = −1

2
log
(
1− ρ2

)
.

Proof of Proposition 6.1 From Definition 4.2, the optimum satisfies: u′ (c) = λps for

some λ. Hence, this consumption is the consumption of a rational agent facing prices ps,

and wealth w′ = ps · c.

Proof of Proposition 6.3 Here I show only the proof in the most transparent case – see

the original paper for the general case. Utility is u (c) = U (C) + cn, where C = (c1, ..., cn−1),

and the price of good n is 1 and correctly perceived. Then, demand satisfies u′ (c) = λps.

Applying this to the last good gives 1 = λ. So, demand for the other goods satisfies

U ′ (C) = P s, where P = (p1, . . . , pn) . Differentiating w.r.t. P, U ′′ (C)Cs
P = M , where

M = diag (m1, . . . ,mn−1) is the vector of attention to prices. Now, the Slutsky matrix (for

the goods 1, . . . , n− 1) is Ss = Cs
P = U ′′−1 (C)M , as all the income effects are absorbed by

the last good (∂ci
∂w

= 0 for i < n). As a particular case where M = I, the rational Slutsky

matrix is Sr = U ′′−1 (C). So, we have Ss = SrM.

Proof of Proposition 6.5 The part ∂cs

∂w
= ∂cr

∂w
follows from Proposition 6.1: at the default

prices p = ps, so cs
(
pd, w

)
= cr

(
pd, w

)
, which implies ∂cs

∂w
= ∂cr

∂w
. Then, the definition of

the Slutsky matrix and Proposition 6.3 imply (65).

Proof of Proposition 6.8 In an endowment economy, equilibrium consumption is equal

to the endowment, c (t) = ω (t). We have ui(c(t))
u1(c(t))

=
psi (t)

ps1(t)
for t = 0, 1: the ratio of marginal

utilities is equal to the ratio of perceived prices – both in the rational economy (where

perceived prices are true prices) and in the behavioral economy (where they’re not). Us-

ing ps1 (t) = pr1 (t) = p1 (0), that implies that the perceived price needs to be the same in

the behavioral and rational economy:
(
p

[s]
i (t)

)perceived

= p
[r]
i (t). Thus, we have midp

[s]
i =

d

[(
p

[s]
i

)perceived
]

= dp
[r]
i , i.e. dp

[s]
i = 1

mi
dp

[r]
i .
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A.2 Mathematical Complements

Here I provide some mathematical complements.

Dynamic attention: Beyond the random walk case Here I expand on Section 7.1,

beyond the random cases which made the analytics very transparent. I consider the case

(71) with ρ not necessarily equal to 1. The sticky action is a bit more delicate to compute.

Consider an agent who can change her action at time t. At period t + s, she will still have

to perform action aAt,s = aAt,0 with probability θs (we use the Calvo formulation here). Hence,

the optimal action at t satisfies

max
a
−Et

∞∑
s=0

βsθs (a− xt+s)2 .

The first order condition is

Et
∞∑
s=0

βsθs (a− xt+s) = 0

i.e. 1
1−βθa−

∑∞
s=0 β

sθsEt [xt+s] = 0, i.e. a = aAt,0 with

aAt,0 = (1− βθ)Et
∞∑
s=0

βsθsEt [xt+s] . (83)

In the AR(1) case, Et [xt+s] = ρsxt, and

aAt,0 =
1− βθ
1− βθρxt. (84)

In the sticky information model, the problem is, for each period t,

max
aIt,s

−Et−s
(
aIt,s − xt

)2

which yields

aIt,s = Et−s [xt] . (85)

Hence, we see that the two models are generally different – even though they generate

the same predictions in the random walk case.
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B Appendix: Data Methodology

This appendix outlines the details of the methodology used to compile the data in Table 1

and Figure 1, which present point estimates of the attention parameter m in a cross-section

of recent studies, alongside the estimated relative value of the opaque add-on attribute with

respect to the relevant good or quantity (τ/p).

• In the study of Allcott and Wozny (2014), we take τ to be the standard deviation

of the present discounted value of future gasoline costs in the authors’ sample; p is

correspondingly the standard deviation of vehicle price, such that τ = $4, 147 and

p = $9, 845. The point estimate for m is as reported by the authors.

• Hossain and Morgan (2006) and Brown, Hossain, and Morgan (2010) both conduct a

series of paired experiments by selling various goods on eBay and varying the shrouded

shipping costs. This setup allows us to deduce the implied degree of inattention,

following the same methodology as in DellaVigna (2009). We consider auction pairs

in which the auction setup and the sum of reserve price are held constant, while the

shipping cost is altered. As in DellaVigna (2009), we assume buyers are bidding their

true willingness to pay in eBay’s second price auctions, such that their bid is b = p+mτ ,

where p is the buyer’s valuation of the object and τ is the shipping cost. Seller’s revenue

is p+(1−m)c. Under this model, the ratio of the difference in revenues to the difference

in shipping costs across the two auction conditions corresponds to the quantity 1−m.

The estimates for the attention parameter m in the experiments of Hossain and Morgan

(2006) are as reported in DellaVigna (2009). We use the same methodology to derive

the analogous estimate for the eBay Taiwan field experiment of Brown, Hossain, and

Morgan (2010). The raw implied estimate for the latter experimental setting is negative

(m = −0.43), as the mean revenue difference between the two auction conditions is

greater than the difference in shipping costs. For consistency with the definition of m

and in order to account for measurement error, we constrain the final implied estimate

of m to the interval [0, 1].

Given that each estimate of m is inferred from a set of two paired auctions, the value

p of the good under auction is defined as average revenue minus shipping costs across

the two auction conditions. The value τ of the opaque attribute is analogously defined

as the average shipping cost across the two auction conditions.

• For the study of DellaVigna and Pollet (2009) we take τ/p to be the ratio of the stan-

dard deviation of abnormal returns at earnings announcement to abnormal returns for

the quarter, pooled across all weekdays and computed following the methodology in

DellaVigna and Pollet (2009). The quarterly cadence is chosen to match the frequency
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of earnings announcements in the authors’ sample. The return at earnings announce-

ment is for two trading days from the close of the market on the trading day before the

earnings announcement to the close of the trading day after the earnings announce-

ment. The standard deviation of the abnormal returns at earnings announcement is

0.0794. The standard deviation of the abnormal returns for the quarter, starting from

the close of the market on the trading day before the earnings announcement and con-

tinuing to the close of the market on trading day 60 after the announcement, is 0.2651.

The estimates for the attention parameter m are as in DellaVigna (2009).

• In the case of Lacetera, Pope, and Sydnor (2012), τ is taken to be the average mileage

remainder in the sample, which is approximately 5, 000, per correspondence with the

authors. The quantity p is obtained by subtracting τ = 5, 000 from the mileage of

the median car in the sample, which is 56, 997. Hence p = 51, 997. The estimate for

m is as reported by the authors in the full-sample specification that includes all car

transactions, pooled across fleet/lease and dealer categories.

• For the field experiment of Chetty, Looney, and Kroft (2009), we take τ/p to be the

relevant sales tax rate of 7.38%. Correspondingly, for the natural experiment of Chetty,

Looney, and Kroft (2009) we take τ/p to be 4.30%, which is the mean sales tax rate

for alcoholic products across U.S. states as reported by the authors. The estimates for

the attention parameter m are as reported by the authors.

• For the study of Taubinsky and Rees-Jones (2017), we analogously let τ/p be the sales

tax rate applied in the laboratory experiment, which is 7.31%. The estimate for the

attention parameter m is as reported by the authors for the standard-tax sample.

• Figure 1 additionally shows data points from Busse, Lacetera, Pope, Silva-Risso, and

Sydnor (2013b), who measure inattention to left-digit remainders in the mileage of used

cars in auctions along several covariate dimensions. Each data point corresponds to a

subsample of cars with mileages within a 10,000 mile-wide bin (e.g., between 15,000

and 25,000 miles, between 25,000 and 35,000 miles, and so forth). Data is available for

two data sets, one including retail auctions and one including wholesale auctions. For

each mileage bin, we include data points from both of these data sets. The estimates

of m are as reported by the authors. The metric τ/p is the average ratio of mileage

remainder to true mileage net of mileage remainder in the subsamples. As this ratio is

most readily available for the data set of wholesale car auctions, we compute the τ/p

estimates on subsamples of the wholesale data set only, under the assumption that the

mileage distribution is not systematically different across the two data sets. We do not

expect substantive impact on our results from this assumption.
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Kőszegi, Botond, Rabin, Matthew, 2009. Reference-dependent consumption plans. The

American Economic Review 99 (3), 909–36.
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