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1 Introduction

By the standards of most forms of household investment that have been studied in rural areas of low-

income countries, the education of a household’s children has a very long time horizon. Successful

completion of a particular credential involves a series of day to day decisions that accumulate and

interact with each other over multiple years. These decisions, however, are complicated by the fact

that rural life is inherently risky. Children at times may be withdrawn from school to support farm

and household activities in the aftermath of adverse economic shocks. Given the complex nature

of the learning process and the uncertainties of rural life, one might reasonably expect forward

looking households to forgo such a long term project in favor of activities with less risky and more

immediate returns.

This paper sets out to explore the role of uncertainties about future schooling in investments

in current schooling. One specific mechanism that might drive such a relationship is the presence

of dynamic complementarity in the production of human capital. Dynamic complementarity arises

when schooling investments for a given child in different periods are complements in the production

of human capital (Cunha and Heckman, 2007), and implies that early period investments in human

capital have to be followed up by investments in later periods in order to make that early investment

productive.

In the presence of dynamic complementarity, variance in the level of schooling investments over

different time periods will affect the final stock of human capital via two distinct mechanisms.

First, any mean-preserving increase in the variance in investments made at different points in time

for a given child will reduce the final stock of human capital, as investments across periods are

not perfectly substitutable. We call this the ex post effect of variance. Second, if future school

investments are not known, households may be reluctant to invest in schooling in early periods, as

they are uncertain about the ability to capture the returns to this investment at later stages. We

call this the ex ante effect of variance.1

In order to understand the ex ante response to risk that can be attributed to dynamic com-

plementarities, we first develop a multi-period model of schooling investment and human capital

accumulation, in which negative shocks to household income reduce schooling investments and vice

versa, and parents anticipate variance in future incomes.2 We analytically derive the ex ante effect

1Note that we use the terms variance and risk interchangeably in this paper. As the literature usually refers to
risk effects as ex ante effects, and we wish to highlight the difference between ex ante and ex post effects, we use the
term variance where this distinction is particularly important.

2A reduction in study time in response to an economic shock might arise through a number of channels: Previous
work has shown that children have to drop-out of school in order to work (Jacoby and Skoufias, 1997; Beegle et al.,
2006; Duryea et al., 2007), and that households lack the financial resources to send children to school (see e.g. Jensen,
2000; Skoufias and Parker, 2006; Gubert and Robilliard, 2008; Bjorkman-Nyqvist, 2013). Finally, if adult household
members increase their labor supply in response to adverse economic shocks (as has been shown by Kochar, 1999;
Rose, 2001; Jayachandran, 2006) and home production takes up a substantial share in the time allocation of adults,
particularly of women, any increase in parental work time is likely to increase the need for children to work at home
(Skoufias, 1993; Ilahi, 2000; Shah and Steinberg, 2017). Note that any of these mechanisms is consistent with our
characterization of schooling investment as market good in the theoretical model, which we impose for reasons of
tractability.
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of variance on schooling investments by restricting our attention to a two-period version of the

model in which schooling investments in different periods are perfect complements and demand for

human capital is linear. We then solve the two-period version of the model numerically to illustrate

the ex ante effects of variance for more general assumptions about the elasticity of substitution in

production and the curvature in the demand for human capital. We show that the ex ante effect of

variance on school investments could be positive or negative, and that the sign of the effect depends

on the presence of dynamic complementarity in the demand for child human capital, i.e. whether

households invests more in schooling when the initial stock of human capital of a given child is

exogenously higher.

For our empirical analysis we leverage the three rounds of the Rural Economic and Demographic

Survey (REDS) collected in rural India between 1981 and 2008. These data are unique in that they

include detailed information on time allocation of children and of mothers for three seasons of the

year in each round. This allows us to construct the time a child allocates to studying (in school

and at home) per day, which is arguably a key schooling investment in contexts in which children

regularly support their families in household production. The REDS data are representative of rural

India in 1967 and span multiple decades, allowing us to use the long-term variability of rainfall

interacted with irrigation as a source of variation in risk within villages over time.

Our empirical strategy proceeds in two steps. First, to better understand the theoretical im-

plications of dynamic complementarity for an ex ante response to risk, we structurally estimate a

model of lifetime human capital accumulation using indirect inference (Gourieroux et al., 1993).

In this analysis we allow for heterogeneity across households in the utility return to child human

capital, for incomes to be correlated in the three seasons of the year, and for precautionary sav-

ings within the year but not across schools years. The analysis is identified using within village

variation over over the course of the year and makes primary use of the child time-use data. The

parameters of the auxiliary model are: the coefficients from a quadratic regression of third-period

study time on first and second period study time and the interaction thereof, the coefficients from a

quadratic regression of second-period study time on first period study time, the first two moments

of study time in each season, and the correlation coefficients in household income from agriculture

and labor between the three seasons. The auxiliary model parameters from the actual data match

the parameters from the simulated data well.

Our estimated structural parameters point to substantial dynamic complementarity in the de-

mand for child human capital, and imply that an increase in variance should reduce schooling

investments due to the presence of dynamic complementarities. We use the estimated model pa-

rameters to simulate the lifetime effect of variance on child schooling, and decompose this effect

into an ex ante and an ex post effect. We find that the ex ante effect explains a large share of the

simulated response to risk. The elasticity of final stock of human capital with respect to variance

is -0.15, 53-54% of which can be attributed to the ex ante response. We find an elasticity of school

investments with respect to variance of -0.15 to -0.18.

We then test the predictions of our model at the estimated parameter values by exploiting
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heterogeneity across villages in consumption variability, which we use as measure of risk. For

this purpose we combine the REDS data with monthly precipitation data (ERA5 reanalysis data)

obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). We start

by replicating results from previous studies on the role of rainfall shocks on agricultural incomes,

consumption, and — given the focus of this paper — on the time use of children. We then explicitly

test the empirical fit of different functional forms in the relationship between precipitation and

consumption, and show that — at least in our data — consumption can be best explained by log

rainfall interacted with the village level average of area under irrigation.

We use this specification to predict village-level risk. Specifically, we estimate the relationship

between household consumption per capita, rainfall, village-level agricultural area under irrigation,

and the interaction of these two variables. Using these estimates, we predict consumption outcomes

at the village level for each observed rainfall outcome, given the current share of area that is

irrigated. We then use the historical rainfall distribution to obtain the probability distribution

of rainfall outcomes, and then calculate the probability distribution of predicted consumption for

each village and round. Risk, finally, is defined as the variability in the distribution of predicted

consumption. This concept of risk exploits the fact that labor markets in rural India are localized

and largely dominated by agriculture over the time period we study. Hence, rainfall shocks not

only affect farmers’ consumption through on-farm production, they also affect consumption levels

of landless households who mostly engage in casual agricultural employment.

We use variation in this variable within villages over time to estimate the effect of risk on

study time, and find that risk significantly reduces the probability that children attend school.

These results are extremely robust to various specifications, including specifications that control

for household wealth and income, and state-specific shocks.

An important challenge in the reduced form estimation is to isolate the ex ante effect of variance

from any ex post effects. Due to dynamic complementarity, past variation in study time will

generally lead to lower levels of human capital than would be the case with lower variation but the

same mean. But an ex ante response would do the same, as parents choose to reduce investments

early on in order to avoid investing in child human capital without being able to capture the

returns to these investments later. Conditioning on the stock of child human capital would thus

underestimate the ex ante response to risk at any point in time. We isolate the ex ante effect by

conditioning on the recent history of rainfall shocks, which arguably controls for the cumulative ex

post effect of past shocks, but not for differences in the stock of child human capital that accrued

from the household’s ex ante responses in earlier grades. We also interact the history of the rainfall

shocks with a dummy that equals one if the child was of school-age in that particular year, thereby

allowing the effects of past shocks to be more pronounced for school-age children. Our results are

robust to these controls, suggesting that we are indeed observing an ex ante effect of variance.

Our findings imply that a 100% increase in our risk variable would reduce the probability that a

child attends school by 4-5%, which is smaller than but of the same order of magnitude as those

predicted from the structural model.
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We also perform a battery of robustness checks. We show that our results are not driven by

underlying differences in household or village characteristics, in the availability of schools, or in the

history of weather shocks, nor driven by differential time trends. Finally we explore the potential

for alternative explanations being the driver of our results. An important challenge for our analysis

is that precautionary savings might generate another kind of ex ante relationship between variance

and schooling investment. We explore this avenue, but cannot find any evidence that our results

are driven by a savings motive. Our results also do not seem to be driven by differences in the

returns to human capital, nor by differential fertility or gender-imbalances.

In order to assess the scope for public policy, we simulate the effects of an income-smoothing

policy, modeled after the National Rural Employment Guarantee Scheme (NREGS) in India, on

human capital investments. We estimate the extent to which NREGS reduces variability in con-

sumption and use this reduction in risk to simulate the program’s effect on child school attendance.

We find that a similar program, that held the level of wages fixed, would increase school attendance

by 1 percentage point.

The wage effects of such programs should not be ignored, however. Shah and Steinberg (2021)

and Li and Sekhri (2020) find negative effects of the NREGS on schooling using the rolled phase-in

of NREGS as a source of variation, and argue that the NREGS increased the opportunity costs of

time of adolescents and therefore led them to drop out of school at younger ages. Arguably a risk

mitigation effect could not be fully internalized by households at the early stages of the program

when implementation was spotty and long-term viability was unclear. It is unclear how the direct

effect of rising wages and the indirect effect of less variable incomes balance out in the longer term.

However, our results suggest the negative wage consequences for schooling of the NREGS might

be mitigated to the extent that the program is recognized as a reliable source of support during

periods of adverse shocks.

By combining the structural estimation of key model parameters with a more reduced-form

analysis of the effect of risk on child schooling, this paper is placed at the intersection of two im-

portant strands in the economics literature. We contribute to an exiting literature that explores

the determinants of human capital investments in low and middle income countries (see e.g. Fos-

ter and Rosenzweig, 1996; Glewwe and Jacoby, 2004; Jensen, 2010, 2012; Oster and Steinberg,

2013; Atkin, 2016; Shah and Steinberg, 2017). Most closely related to our work are the papers by

Fitzsimons (2007); Kazianga (2012) and Colmer (2021a). These papers explore the implications of

weather variability on schooling in Indonesia, Burkina Faso and Ethiopia, respectively, and focus

on precautionary savings motives in explaining the negative effect of risk on schooling (Fitzsimons,

2007; Kazianga, 2012), and the desire to diversify out of agriculture in explaining the positive effect

of risk on schooling (Colmer, 2021a). Our paper, in contrast, highlights the existence of dynamic

complementarities in the production of human capital, and investigates household investment de-

cisions in response to these. There is other work that focuses on how income realizations affect

schooling outcomes ex post in a setting where school investments at different points in time are

complementary (in particular Jacoby and Skoufias, 1997; Shah and Steinberg, 2017). However, we

4



are not aware of any work that considers the question from an ex ante perspective.

We also contribute to an emerging literature that seeks to structurally estimate the parameters

of the human capital production function, specifically the elasticity of inter-temporal substitution

in human capital investments (Cunha et al., 2010; Attanasio et al., 2020; Agostinelli and Wiswall,

2020; Attanasio et al., 2020). Most of this work uses detailed data on skills and investments to

estimate a fully dynamic model over the life-time of the child, and focuses on time-intervals of

several years. Our paper identifies the substitutability in investments from variation in schooling

investments over different time periods for a given child, which is arguably a useful alternative

in contexts in which skills are measured with considerable error. Perhaps more importantly, in

contrast to previous works, our structural parameters reveal what parents believe to be the true

production function, which is arguably the relevant object if one wishes to understand the parental

response to risk.3

The remainder of the paper proceeds as follows. Section 2 discusses the theoretical model.

Section 3 estimates the structural parameters of the model and generates predictions about the

effect of risk in rural India, and then empirically estimates the effect of risk on school attendance

and study time. Section 4 simulates the effect of the NREGS on the outcome of interest, and

Section 5 concludes.

2 A Model of Schooling Investment with Dynamic Complemen-

tarity in Human Capital Production and Risk

2.1 A general multi-period formulation

Our model emphasizes dynamic complementarity in the production function of child human capital.

Following the literature (Cunha and Heckman, 2007; Cunha et al., 2010; Attanasio et al., 2020),

we model the technology of human capital production to be constant elasticity of substitution,

with the stock of human capital after the end of the normal schooling period T being a function of

consecutive schooling investments sκ over that interval.4

Because T + 1 denotes the beginning of the post-schooling interval, we can define completed

human capital as

HT+1 =
T∑

κ=1

(νκs
ρ
κ)

1/ρ. (1)

3Of course, if parental beliefs are incorrect and one wishes to estimate the consequences of risk for achieved human
capital it is also necessary to know the true production function.

4To understand the ex ante effect of variance on schooling, it is helpful to treat child schooling investment as
a market good. An analogous model in which the only cost of schooling is the opportunity cost of foregone time
in home production is presented in appendix A.1. In that model, the parent responds to a negative income shocks
by supplying more labor in the labor market ex post (as in Kochar, 1999; Rose, 2001; Jayachandran, 2006), while
children are required to spend more time in home production (but not in the labor market). The two models are
isomorphic as long as the income effect of falling wages due to shocks dominates the substitution effect, which is what
we find empirically. We therefore work with the simpler model here.
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with the νκ ∈ [0, 1] and ρ ∈ (−∞, 1]. The degree of dynamic complementarity is entirely governed

by ρ, with σ = 1/(1−ρ) being the elasticity of substitution between school investments in different

periods κ. We further parametrize the νκ as a series of discount factors that sum to one reflecting

the different contributions of investment at different periods of a child’s life νκ = δT−κ∑T−1
τ=0 δτ

, where

δ < 1 implies that later contributions matter more than early contributions and conversely.

Parental utility starting from any period t is assumed to depend on the discounted flow of

current and future consumption as well as of the stock of human capital and of assets at T + 1.

Households have stochastic incomes and may save. Parents maximize expected utility in each

period by choosing school investment and net savings, with the remaining income being allocated

to consumption. In particular, maximized expected discounted utility at time t is:

Vt = max
sk,ak∀k={t,t+1,...T}

Et

[
T∑

κ=t

βκ−1u(cκ) + ζg(HT+1) + f(AT+1)|Ωt

]
s.t.

cκ ≤ yκ + θκ +Aκ − aκ − sκ∀κ. (2)

where cκ denotes consumption, β is the discount rate, and ζ is a scalar governing the utility return

to child human capital. The function g(H) captures curvature in the demand for human capital

and f(A) the demand for assets. The variable yκ denotes non-stochastic income and θκ is the

stochastic component of income. Information on the joint distribution of future income shocks is

captured by Ωt. Net saving is aκ and Aκ is the stock of savings at the beginning of κ. The stock

is updated in each period according to Aκ+1 = Aκ + aκ. Note that the choice variables at time t,

sk and ak for all k ≥ t are functions of future income realization over the period t to k as well as

the information at the beginning of time t. We omit this dependence for notational convenience.

It is helpful to consider this problem as a recursive one, in which the stock of human capital

Ht and the asset stock At at the start of each period t are state variables. To do this, however, we

need to construct intermediate measures of the stock of human capital Ht that conform with eq.

(1). In particular, we define

Ht+1 = (
1∑t−1

τ=0 δ
τ
(sρt +

t−1∑
κ=1

δκHρ
t ))

1/ρ (3)

Note that H2 = s1 and that recursive substitution of eq. (3) into itself yields eq. (1). Also,

the stock of human capital at the start of period t + 1 is a measure of human capital relative to

a period-specific standard, rather than something that accumulates over time. For example, for

constant sk = s∗, Ht+1 = s∗, not, for example, ts∗.

Substituting the budget constraint into the utility function, we can write this objective function
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recursively as:

Vt(Ht, At) = max
sk,ak∀k={t,t+1,...T}

u(yt + θt +At − at − st) + β Et+1 [Vt+1(Ht+1, At+1)|Ωt+1] . (4)

Note that the value function at time T+1 is the parametric function ζg(HT+1).

2.2 Special Case: Perfect Complements and Linear Demand

To illustrate the ex ante effect of variance in incomes on schooling investments, we write down a

simple two-period formulation of eq. (2) with u(c) = ln(c) and set aside discounting (β = 1). We

also mute savings, set the θ1 = 0, and assume that θ2 can take on two values [r,−r] for r > 0

with equal probability. This simplification has the advantage that it allows us to clearly isolate the

ex ante effect of variance by focusing on first-period schooling investments, and to abstract from

any additional effect of risk on schooling via a precautionary savings motive. We then proceed

in three steps: First, we present analytical solutions for the extreme case in which ρ → −∞ and

g(H) = H. Second, we numerically illustrate the effect of risk for intermediate values of ρ and

alternative specifications of g(H). Third, we show numerical solutions for an extended model that

incorporates precautionary savings in appendix A.2.5

A simplified two-period model has an objective function

V1 = max
s1,s2

ln(y1 − s1) + E1[ln(y2 + θ2 − s2) + ζg(H3)], (5)

and final stock of human capital given by

H3 = (νsρ1 + (1− ν)sρ2)
1/ρ. (6)

with ν = δ/(1 + δ). When first and second period school times are perfect complements H3 =

min{s1, s2}, second period schooling is never chosen to be higher than first-period investment. We

can distinguish two cases. In the first case, the realized income in the second period is sufficiently

high that the household chooses second-period schooling to be equal to first-period schooling but

would choose higher investment in period 2 if period 1 investment were exogenously higher. We

call this the binding case. In the second case, second-period income is sufficiently low that s2 < s1.

In this non-binding case second-period schooling would not be affected by an exogenous increase

in first period investment. For g(H) = H, we have the binding case if y2 + θ2 > s1 +
1
ζ , in which

case s2 = s1. Otherwise, s2 = y2 + θ2 − 1
ζ . Note that in the first (binding) case, child schooling

does not depend on the income shock, but in the second (non-binding) case, schooling increases

with the income shock (θ2).

By substituting optimal s2 into V1 and taking expectations over the assumed distribution of

5Allowing for savings essentially yields a negative predicted effect of risk throughout, which is consistent with the
notion of deterring investments in the presence of risk. Yet, in a model with savings, the expected value of second-
period (ex post) investment actually increases with variance, which is not what we find empirically. We also find no
evidence that risk increases or decreases savings across years in our context. We return to this point in Section 3.3.
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shocks, we can then write the maximand as a function of child school time in the first period only.

This expression is straightforward in the case that the variance of the shock is small enough so the

binding case is achieved — that is as long as things cannot be not so bad in the second period that

the household chooses to provide less schooling in period 2 than was chosen in the first period. In

particular, assuming we have an interior solution, we can differentiate with respect to s1. While

the resulting expression cannot be solved in closed form, we can write a series approximation (to

second order) in the size of the shock for small values of r:

s1 = y1 −
2

ζ
− ζ

4
r2 +O

(
r3
)

(7)

where we assume that y2 = y1 to keep the solution simple. This result shows clearly that first

period schooling is decreasing in the variance of the shock in the binding case.

On the other hand, if r is larger, such that s2 < s1 in the bad state of the world, s1 can be

approximated by

s1 = y1 −
3

ζ
+

1

3
r − 2ζ

27
r2 +O

(
r3
)
. (8)

This expression suggests that, at least for moderate values of r, first-period schooling could rise with

r.6 In the bad state, when s2 < s1, human capital depends only on second period investment given

the assumption of perfect complements. This result implies that the ex post return to first-period

schooling is zero and does not decline further with increasing variance. On the other hand, in

the good state, human capital depends on both first and second period schooling. As the variance

increases, the utility gain of additional schooling in the second period under the good state increases,

as does the ex post return to first-period investment. Thus, in expectation over both states, the

return to first-period investment rises in r.7

But interpreting these expressions is challenging because, one, they are approximations in r

for small r, and two, which equation applies depends itself on the magnitude of r. A numerical

simulation helps to clarify these issues. In figure 1, we graph s1, s2 by state, and E[H2] by the

standard deviation of the shock (σθ = r), assuming parameter values of y1 = 10, y2 = 10, and

ζ = 1.

For low values of r, second period investment equals first period investment, which then also

equals total human capital, regardless of the state of the world, and all three measures decline in

variance. At r ≈ 1.6 the measures divide. Now the household chooses s2 = s1 in the good state

of the world, but in the bad state s2 is lower than s1. Note that initial period investment is now

rising in r over this range. However, second period schooling falls with variance (and faster than

6However, note that in the bad state, s2 = y1 − r− 1/ζ such that it declines faster in r than s1 (and s2) increases
in r in the good state. Therefore, the expected value of second-period investment and thus expected human capital
is always declining in the variance the shock.

7This result has an analogy with respect to borrowing in the case of investment risk: increasing return variance
can increase the willingness to take a loan at a given interest rate because it raises the return in the good state and
does not decrease it in the bad state, because defaulting is the only option in the bad state throughout.
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s1 rises), such that the expected value of human capital declines with variance throughout. We

can think of this as a combination of an ex ante and ex post response in the presence of dynamic

complementarity. Clearly, for given first period investment, a given mean preserving increase in the

gap between school time in the good and bad states results in lower human capital accumulation as

would be the case in an ex post model. But the fact that first-period schooling is lower throughout

than in the no-variance case, and thus caps good-state investment, reflects the ex ante response.

Note that this pattern is the opposite of what would happen under a precautionary savings

motive. In a typical precautionary savings model, period one investment is a substitute for income

in the second period, and thus one avoids the downside risk by reducing consumption in the first

period as variance increases. For human capital with a complementary production function, first

period investment is a complement with second period investment. Thus one invests less in the

asset (human capital) when faced with greater risk.

2.3 The Effect of Risk for General Values of ρ and ϕ

While the case of perfect complements nicely illustrates the ex ante effect of risk, it imposes strong

assumptions of the production function of human capital. We therefore present numerical solutions

for more general values of ρ and curvature in the demand for child human capital.

Before we do this, we introduce a new concept, namely dynamic complementarity in the demand

for human capital. The demand for child human capital exhibits dynamic complementarity if

d2g(H3(s1, s2))/ds1ds2 > 0, so that an increase in first period schooling leads to an increase in the

marginal utility of second period schooling.

In particular, let ζ = 1 and the demand for child human capital being constant relative risk

aversion (CRRA):

g(H) =
1

1− ϕ
(H)1−ϕ, (9)

with ϕ ≥ 0.8 With g(H) as described by eq. (9) and a child human capital production function as

described by eq. (6), the demand for child human capital will exhibit dynamic complementarity if

and only if 1− ϕ− ρ > 0. To see this, substitute eq. (6) into (9), and consider the cross-derivative

with respect to s1 and s2:

d2g(H3(s1, s2))

ds1ds2
= (1− ϕ− ρ)H

(1−ϕ−2ρ)
3 (s1s2)

ρ−1ν(1− ν). (10)

For any 1 > ν > 0, s1 > 0 and s2 > 0, this expression is strictly positive as long as 1− ϕ− ρ > 0.

A few numerical examples illustrate the relationship between d2g(H3(s1, s2))/ds1ds2, ϕ and ρ.

For ϕ = 0, i.e. linear utility with respect to child human capital, there will always be dynamic com-

plementarity in demand, except in the extreme case where the human capital production function

exhibits perfect substitutability (ρ = 1). On the other hand for logarithmic utility (ϕ = 1), school

8At ϕ = 1, g(H) = ln(H).
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investments at different points in time will be dynamic complements if and only if the production

function exhibits dynamic complementarity (i.e. ρ < 0). Finally, with ϕ = 2 school investments at

different points in time will be dynamic complements for any ρ < −1.

Equipped with this insight, we numerically solve for optimal s1 at three representative values

of ϕ and at various values of ρ. In particular, we calculate optimal investment for three functional

forms of g(H): g(H) = H, g(H) = ln(H) and g(H) = −1/H, which correspond to the three values

of ϕ that were discussed above (i.e. ϕ = 0, ϕ = 1, ϕ = 2).9

Figure 2 shows the derivative of s1 with respect to r for these three functional forms and

−3.5 ≤ ρ < 0.8. Since we are plotting against ln(σ), the y-axis captures the Cobb-Douglas case.

As ln(σ) → 1.5, the production function approaches a simple additive function in school times,

i.e. the case of perfect substitutes. And as ln(σ) → −1.5, the human capital production function

exhibits increasing dynamic complementarity.

As can be seen, the numerical solutions suggest that the sign of the effect of an increase in r on

first-period human capital investment maps 1:1 with the presence of dynamic complementarity in

demand for human capital as described above. That is, with linear g(H) the predicted effect of risk

remains negative throughout, and approaches zero only as the human capital production function

exhibits perfect substitutability (ρ = 1). With concave g(H), this is no longer the case. Second

period risk will then affect the expected marginal utility of the human capital stock, and households

choose to invest more in first-period schooling in order to avoid very low stocks of human capital

for their children. If g(H) = ln(H), for example, first period schooling will increase in risk for all

ρ > 0. If g(H) = −1/H, the predicted effect of risk on human capital investments turns positive

at values of ρ > −1.10

In contrast, child human capital declines for almost all specifications in these simulations. Figure

3 presents the effect of an increase in r on the expected value of human capital for different

values of ϕ and ρ. Not surprisingly the largest effects are observed for linear preferences and

highly complementary inputs in the production function and the smallest effects (that turn weakly

positive) arise with a strong degree of risk aversion and very substitutable production. This latter

result arises because, with substitutability, human capital becomes a mechanism for precautionary

savings. In any case, there are moderate negative effects over much of the range. For example,

when the elasticity of substitution in human capital production is one, the effect of 0.1 increase in

r on E[H3] is -0.009 when ϕ = 1 and -0.026 when ϕ = 0.

Whether variance increases or decreases first-period investment, at least in a two-period model,

thus depends on the presence of dynamic complementarity in the demand for human capital. Dy-

namic complementarity in the demand for human capital is essentially a composite of the dynamic

complementarity in human capital production and the curvature in parental demand for child hu-

9Here we set y1 = y2 = 10, ζ = 1, ν = 1/2 and r = 1.
10Note, that the effect of an increase in risk is not constant in r. Importantly, with linear g, and values of r ≥ y1

2
,

the effect of risk on first-period human capital investment turns positive at very low values of ρ, which is analogous
to the case of perfect complements described above. The effect of risk on first-period school maintains its sign for
values of ϕ > 0. Numeric approximations for y1 = y2 = 10, ζ = 1, ν = 1/2 and r = 5 are depicted in figure C.1
(figures C.1 to C.7 are available in appendix C).
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man capital. While there is emerging consensus about the complementarity in the production, this

does not necessarily map perfectly with what parents believe to be the true parameter. Further-

more, the shape of human capital preferences is unclear, and — to the best of our knowledge — has

not been assessed empirically so far. Yet, deriving clear predictions on the effect of risk on human

capital investment remains impossible without an intuition about the values of ϕ and ρ. Below we

propose a novel approach for estimating these values.

3 Empirical Strategy and Results

Our empirical analysis proceeds in two steps. First, we structurally estimate the key model param-

eters. This allows us to generate predictions about the effect of risk on schooling investments in

the context we study. Second, we test the predictions empirically by exploiting the variation across

survey rounds in village-level irrigation, and income risk.

In both steps, we use the Rural Economic and Demographic Survey (REDS) data which were

collected in rural India in 1981-82, 1998-99 and 2007-08, which we combine with high-resolution

precipitation data (Copernicus Climate Change Service, 2017). Two unique features of the data

stand out relative to other datasets: First, the REDS covers an extensive time period and a variety of

geographic locations, allowing us to investigate the effects of changes in risk profiles over a long time

period. Second, the survey contains detailed time-use information, particularly the time allocated

to studying on a typical day, which is a key educational input in contexts in which children regularly

work on the farm or in the household. Information on time use is collected for all women in the

household and their children, and is available for three seasons of the year, which are also marked by

very different levels of agricultural activity. The reference months are: October/November (season

one), February (season two), and April/May (season three). We provide a detailed description of

the data in appendix B.11

3.1 Estimating Model Parameters

It is clear from the above analysis that the ex ante effect of income variance on, for example,

study time could be either positive or negative depending on the structural parameters of the

model. Moreover, it is not immediately clear that the insights from the two-period structure carry

over to a more realistic setting, where past shocks will have an effect on current levels of child

human capital even in the absence of an ex ante response. We therefore build on our theoretical

analysis to estimate the key parameters of a fully-dynamic structural model of human capital

accumulation with a particular emphasis on backing out the intertemporal elasticity of substitution

in the production function as perceived by the parents and the curvature in the demand for child

human capital, which are arguably the relevant objects if one wishes to understand the parental

response to risk.

11Summary statistics at the household level and the individual level are reported in Tables D.1 and D.2 (Tables
D.1 - D.36 are available in appendix D).
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3.1.1 Indirect Inference

We estimate the structural model parameters using an indirect inference procedure (Gourieroux

et al., 1993). Indirect inference is a minimum distance estimator. But instead of matching the

moments of the data directly, indirect inference identifies the parameters of the structural model by

matching the parameters of an auxiliary model generated from the theory to comparable parameters

generated from the data.

This approach to the structural analysis is importantly governed by the strengths and weak-

nesses of the REDS data. As noted, we have multiple observations of study time over a calendar

year for each child but the survey rounds themselves are widely spaced. While we thus can observe

how study time evolves over time for a slice of each child’s life, we do not observe a full trajectory

of study times over a full childhood. It is thus necessary to use the within-year information on a

cross-section of children from different grades to gain insight into the longer-run process of human

capital accumulation. In addition, we do not observe comprehensive measures of the stock of human

capital. As with most surveys we have years of schooling and whether someone is in school, but

these are far from perfect measures of acquired human capital, particularly in a context in which

social promotion may be important. What we do have is measures of inputs and, as our theory

suggests, inputs are indicative of the ex ante response to variance. Finally, while we have asset

data at the beginning of the survey year and an estimate of annual expenditures, we do not have

within-year measures of saving or consumption. We do, however, have seasonal information on crop

incomes and labor earnings that can be used to identify the pattern of income shock correlations

within the year.

3.1.2 Three-period Model of Schooling Investments

The structure of our general model presented in Section 2.1 provides a way to link the within-year

information across years. In particular, the CES production function implies that the intertemporal

elasticity of substitution between any two periods is the same.12 In addition, the assumed structure

of the ν parameters gives a way of projecting the relationship of study times observed across

different seasons within one grade to the relationship within another grade or across grades. It

seems plausible that the process of accumulation of child human capital over seasons (within the

school year) is informative about the process of human capital accumulation over a child’s lifetime

(across school years), as school curricula build on the content of previous grades, such that children

who fell behind in the past grade will also have more difficulties to keep up with the content in

the current grade, and throughout the entire schooling lifetime more generally (Das et al., 2022;

von Hippel and Hamrock, 2019).13 While we will use this longer-term structure in our projections

of the effects of risk on schooling over the child’s entire lifetime, we base our estimation of the

12Of course, this is an important restriction in that nearby periods may be more substitutable or more comple-
mentary than those at a longer interval.

13This structure also implies that the model ignores the effects of long school breaks or transitions to different
teachers and/or schools, which would typically happen between grades.
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key parameters on the problem faced in a single grade. We focus on the second grade, accounting

for optimal first-grade choices, because our model suggests it is in the early grades where ex ante

choices are most salient.

Our first step in linking the model to the data is to rewrite the recursive human capital equation,

without further loss of generality, into a function over three consecutive periods instead of a single

period as we did in eq. (3). The three periods may be thought of as consecutive seasons within the

same grade:

Ht+3 =

(
1∑t+1

τ=0 δ
τ
(st+2

ρ + δ st+1
ρ + δ2st

ρ +

t+1∑
τ=3

δτHt
ρ

) 1
ρ

. (11)

We also make four additional assumptions to address particular aspects of our setting and our

data. First, coincident with the idea that grain stocks are a primary source of liquid savings for

agricultural households and that such assets are generally depleted at the end of the crop-year

(Saha and Stroud, 1994; Waldman et al., 2020), we assume the stock of assets to be non-negative

and to fall to zero at the end of the crop-year, which coincides with the end of the school-year.

Within the year and subject to the zero constraint, however, we allow savings to be optimized

given income realizations and correlations within the year.14 Limiting attention to three seasons of

a single school year, where At = 0 at the beginning of the school year, we can write the objective

function recursively as follows:

Vt(Ht) = max
sk,ak∀k={t,t+1,t+2}

Et[u(yt + θt − st − at) + βu(yt+1 + θt+1 − st+1 + at − at+1)

+ β2u(yt+2 + θt+2 − st+2 + at+1) + β3Vt+3(Ht+3)|Ωt]. (12)

Second, we assume there are two types of households with varying utility return to child human

capital ζi for i ∈ {L,H}, that are observed with equal probability in the population. This approach,

in effect, approximates the distribution of heterogeneity with its first two moments.

Third, for given initial age t from the set Z0+
3 and stock of human capital Ht, we approximate

the value function Vt+3(Ht+3), with the parametric function ζi 1
1−ϕ(Ht+3)

1−ϕ. We recognize, of

course, that the assumed functional form for the value function cannot hold exactly at every grade,

as it could, for example, in a linear quadratic system. But as we will show in our simulation exercise

where we recursively construct the value functions of earlier grades, this assumption is a reasonable

approximation.

Fourth, because we wish to capture in a simple way the joint distribution of incomes in the

three seasons of the year, we restrict ourselves to the first two moments of the joint distribution

and assume the marginal distributions are the same by season. The implies that we need to fit

five features of the data (the mean and variance of the marginal distribution and the correlations

between each of the three incomes). We assume that income has three points of support with the

14Formally, At > 0∀t ∈ Z0+, At = 0∀t ∈ Z0+
3 , with Z0+ being the set of non-negative integers and Z0+

3 the set of
integers that are divisible by 3: Z0+

3 = {Z0+|t mod 3 = 0}.
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middle point being the mean of the high and low and set the marginal probabilities to specific

non-zero values that add to one, imposing that the marginal distribution is symmetric. We specify

fixed probabilities for high, medium and low incomes (3/8, 1/4, 3/8, respectively), but to ensure

robustness explore alternative probabilities as discussed in Section 3.1.5. The five parameters

capturing the joint distribution of incomes over the year are the high and low incomes yH = y + θ

and yL = y − θ and three parameters ω1, ω2, and ω3 that reflect the conditional probabilities of

high and low states in period 2 conditional on period 1, and in period 3 conditional on periods 2

and 1, respectively.

Setting β = 1 for now, this yields 10 structural parameters to estimate, described by Ψ =

[ζL,∆ζ, ϕ, σ, δ, yL,∆y, ω1, ω2, ω3], where we translated ρ into the elasticity of substitution σ =

1/(1− ρ) for ease of interpretation. Note that ∆ζ = ζH − ζL and ∆y = yH − yL.

3.1.3 Identification of Structural Model

Before turning to estimation, it is helpful to consider the issue of identification. While we incorpo-

rate a number of different bits of information from our data, a primary source of identification is the

relationship between the three endogenous study-time measures within the year. A central concern

is whether it is plausible that this relationship can help distinguish heterogeneity in preferences

from dynamic complementarity. With just two study-observations per child, this would seem to

be a fraught task. Heterogeneity in the utility return to child human capital across households

is going to lead to a positive correlation between study time at different points in time just as

would dynamic complementarity in the absence of heterogeneity. However, the presence of a third

observations makes a significant difference. Intuitively, dynamic complementarity yields different

implications for st+2 of variation in st − st+1 given st + st+1 than does heterogeneity.

To see this, consider the implications of the optimization problem in the third season of a given

grade t with δ = 1:

Vt+2 = ln(yt+2 + θt+2 − st+2 + at+1) +
ζ

(1− ϕ)
(Hρ

t + sρt + sρt+1 + sρt+2)
(1−ϕ)

ρ . (13)

If we then reparametrize so that sT = st + st+1 and sD = st − st+1 and implicitly differentiate the

first order condition for st+2 with respect to sT and sD we get the following:

∂st+2/∂sD

∂st+2/∂sT
=

(st/st+1)
ρ − (st/st+1)

(st/st+1)ρ + (st/st+1)
. (14)

The denominator of eq. (14) must be positive but the numerator will be positive or negative

depending on the sign of ρ and the ratio of the first and second schooling investments. In particular

if st > st+1, eq. (14) will be positive if ρ > 0 and negative otherwise. More generally, conditional

on the parameters, Ht, and yt, this ratio should depend only on the ratio of first and second period

school time within the grade. In short with dynamic complementarity unequal study time in seasons

one and two for the same average study time will yield lower human capital at the beginning of
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season three and thus reduce season three study time.

If there is heterogeneity in preferences, however, Ht will not be the same for all households

initially. This implies that the observed distribution of study times will be a mixture of multi-

ple type-specific distributions. While one cannot, therefore, identify ρ with information on the

distribution of s3 conditional on s1 and s2 alone, dynamic complementarity of this form imposes

substantial structure on how simple forms of heterogeneity can impact the joint distribution of s1,

s2, and s3.

Figure 4 presents a non-parametric smoothed version of season three school time as function of

s1 and s2 data, where we set t = 1 so the labels correspond to seasons. The two horizontal axes are

school time in the first two seasons and the the vertical axis is school time in the third season. Note

that the surface slopes upward toward the point where s1 and s2 are highest — higher inputs in the

first two seasons predict higher inputs in the third season. But also note that along a cross-section

where s1 + s2 is a constant, s3 rises when s1 and s2 are more different. In effect, for s1 > s2 the

slope of s3 is positive with respect to sT and with respect to sD. This suggests given eq. (14) that

ρ > 0. But if study time in different parts of the year are substitutes then it is not clear why s3

should be increasing convexly in sT , at least in the absence of heterogeneity. As we will see below

this discrepancy can be resolved by our estimated model.

3.1.4 Estimation of Structural Model

Denote by B(Ψ) the vector of parameters of the auxiliary model obtained by by numerically opti-

mizing over the choice of study time and savings over three seasons given the vector of structural

parameters Ψ and then summarizing the joint distribution of the resulting endogenous variables

with a series of regression coefficients and other combinations of moments. Also let B̂ be the the

corresponding combinations of moments from the actual data. The minimum distance estimator

chooses the parameters Ψ that minimize the squared difference between the two vectors, weighted

by the inverse of the variance-covariance matrix V of the estimated B̂,

(B(Ψ)− B̂)′V −1(B(Ψ)− B̂). (15)

The first set of parameters of the auxiliary model arise, as noted, from the relationship be-

tween season 3 study time and that in seasons 1 and 2. We focus, in particular, on a quadratic

approximation to this surface of the form

s3i = α0 + α1s1i + α2s2i + α3s
2
1i + α4s

2
2i + α5s1is2i + α′

6xi + ϵ3i, (16)

where xi denotes a vector of individual, household, and village characteristics. Empirical estimates

reveal a similar pattern to figure 4, which is very stable across various specifications (see table 1).15

15Note that we restrict this analysis to the 1998-99 and 2007-08 rounds of data. As we show in table D.3, the
results are identical when using all rounds of data. The results are also unaffected by controlling for household fixed
effects, or household-specific time trends, in the subset of panel households, see table D.4. Because season three could
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In particular, we see that third-period schooling is increasing and convex in the schooling of each

previous period but that the coefficient on the interaction between s1 and s2 is negative.

In addition to α1-α5 from eq. (16), our auxiliary model captures the relationship between first

and second period schooling, γ1 and γ2 as estimated from

s2i = γ0 + γ1s1i + γ2s
2
1i + γ′3xi + ϵ2i, (17)

as well as the first two moments of s1, s2 and s3.
16

As noted above, the pattern of correlations in income shocks across seasons within a year may

importantly influence the relationships between study times in different seasons. Thus the model,

in which incomes are determined by draws from a joint distribution of seasonal incomes as well as

endogenous study time choices on the part of the students should be able to match observed seasonal

income correlations. We could use actual income correlations for this purpose but given possible

measurement error in income and the fact that rainfall importantly drives income variation in a

rural monsoon economy, it seemed prudent to use correlations in predicted income based on rainfall

data. In particular, we note that rains not only affect the productivity of rainy season crops but

can influence soil moisture and aquifer depths that may be relevant in subsequent seasons. Farmers

also may respond to deficits in previous seasons by farming more or less extensively in subsequent

seasons, and this also may affect earnings of agricultural laborers. Thus, we first regress household

incomes from agriculture and labor by season on 16 months of lagged rainfall data. We then predict

income levels, standardize, and compute correlations between each of the three seasons’ incomes.17

Because these correlations will also incorporate any variation in child labor that is driven by rainfall

inclusive of that arising from dynamic complementarity, we match these moments with correlations

from the simulated data in income net of study hours, that is yt − st.

We construct the 13 parameters of the auxiliary model B̂ using the study times and measures of

seasonal income from the 1998-99 and 2007-08 rounds of data, as comparable empirical estimates of

incomes are not available in 1981-82. While estimating equations (16) and (17) in the actual data,

we also control for variables such as age and village characteristics that are relevant to the actual

data but are not explicitly modeled in the data generating process, which focuses on the allocation

process within a year for a child of given age. We calculate the variance-covariance matrix using

the jackknife resampling method, clustered at the level of village-by-round. We differentially weight

the estimates associated with eq. (16) by a factor of two, given its central role in identification as

discussed above, though results are broadly similar when we use equal weights.

Three points warrant attention when optimizing the theoretical model. First, while the esti-

overlap with summer vacations in southern states of India, but not in the northern states, we also test if our results
are robust to restricting our data to the northern states. We show in table D.5 that this is indeed the case. Finally,
our results are unaffected by slicing the sample along age groups or gender (see table D.6).

16Results of estimating eq. (17) are displayed in table D.7.
17Note that income from agriculture and labor are the only income sources available by season. Jointly these two

income sources make up for 90% (65%) of total household income in 1998-99 (2007-08). The results of regressing
seasonal income on monthly precipitation are displayed in table D.8 and the resulting correlation coefficients in table
2.
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mated data effectively have a continuous distribution, the simulated data will take on 54 values: 27

combinations of realized states and two types. For each type of household and set of realizations

of y in seasons 1, 2, and 3, we numerically solve for the optimal values of the state contingent and

type-specific si and ai given the parameter vector Ψ. We construct the vector of parameters B(Ψ)

by weighting observations in the simulated data for the endogenously determined probability of

observing each state. Second, because the ν parameters vary with grade, i.e. the stock of human

capital plays a larger role relative to investments in higher grades, it is necessary to estimate the

model assuming a particular grade. In our preferred specification, we use second grade as the

grade of choice. Referring to eq. (12), that means that t = 4 and the parametric value function is

V7(H7) = ζi 1
1−ϕ(H7)

1−ϕ. Third, at any given grade a child will have accumulated a certain stock

of human capital. This stock may be systematically different by grade, by parental type, and by

the history of shocks. To solve for optimal si, we need to make some assumption about the initial

stock. Building on the decision to estimate off of the second grade choice, we can recover H i
4 by

recursively solving for the value function at the beginning of period four V4(H4) given the estimated

structural parameters Ψ.18 With that value function at hand, we solve for state contingent si1, s
i
2,

si3 and E[H i
4]. The initial stock of human capital for each type H i

4 is then found by iterating over

starting values HH
4 and HL

4 and solving for Ψ until the predicted stock (in expectation) for each

type given Ψ matches with the starting values.

3.1.5 Structural Results

Of particular interest is the extent to which the model captures the basic structure of the data over

the relevant ranges. Table 2 presents the targeted parameters and the simulated parameters of the

auxiliary model. The coefficients are appropriately signed and largely of the correct magnitude.

More important than the specific coefficients is the ability of the model to capture the overall

pattern of the relationship between the three school times. Figure 5 provides a picture of the

quadratic surfaces for the regressions based on the actual (lighter) and simulated data (darker).

The horizontal axes are s1 and s2 and the vertical axis is s3. The basic shapes of the curve are

similar, with the simulated data lying above the actual data for high values of s2 but closely

coinciding elsewhere.

Table 3 presents the estimated parameter vector Ψ with standard errors, along with the sensitiv-

ity matrix Λ (Andrews et al., 2017) that describes how the matched moments (α and γ estimates)

map into the parameters of interest and thus illustrate the primary sources of identification for each

parameter of the model. Standard errors are calculated based on the variance-covariance matrix of

the estimates from the actual data.19

The estimates of the structural parameters (presented in Panel A) are relatively precise in

percentage terms. The elasticity of substitution (σ) is 0.290, which corresponds to a value of

18The procedure we use to recover the value function V4 is described in more detail in Section 3.1.6.
19If S = dB(Ψ)/dΨ′ and because our weighting matrix is V −1 sensitivity Λ = (S′V −1S)−1S′V −1 and the parameter

variance-covariance matrix is Σ = ΛV Λ′.

17



ρ = −2.45. There is thus a strong degree of complementarity in the production function. But

preferences over human capital are also quite concave. The important difference 1− ϕ− ρ = 1.951

indicating that demand is overall complementary. We also see substantial heterogeneity in demand

as the gap in the preference parameter ζ is 6.992, a difference of 132% over the lower value.

This substantial heterogeneity is responsible for the convex shape of the relationship between

study times across three seasons. To illustrate this point we shut down savings and income cor-

relations and plot the relationship between s3 and the earlier study times conditional on type in

figure 6. As expected given the presence of dynamic complementarity the surfaces for each type

is concave. However when we plot the surface that results from combining the two types into one

data set we recover a convex surface comparable to that observed in figure 4. The reason is, of

course, that the low type is over-represented at low values of s1 and s2, while the high type is

over-represented at higher values of s1 and s2.
20

There is also considerable uncertainty in income with the high income level being being 186%

above the low income level. Finally, the δ of 1.357 indicates that ν falls with age. Study time in

the early periods hence contributes relatively more to the final stock of child human capital.21

Panel B of table 3 presents the sensitivity matrix Λ as described above. The pattern suggests

a complex interrelationship between the coefficients from the auxiliary model and the structural

parameter estimates. There is little sense that one or more parameters is particularly ”identified

by” any one of the coefficients. It is notable that the utility return to human capital estimates

(both ζL and ∆ζ = ζH − ζL) are most strongly influenced by the moments (mean and standard

deviation) of study time in seasons two and three. Also, changes in all the coefficient values (αs

and γs) lead to decreases in the ζ terms. Likewise, increases in the coefficient estimates lead to

decreases in the estimate of the elasticity of substitution. The negative estimate of -0.031 for α5

and σ indicates that a one standard deviation increase (.005) in the negative season 1 × season 2

interaction would yield a 3.1% decrease in the elasticity of substitution. We also show in table D.9

that our results are unaffected by selecting alternative probabilities for the high, medium and low

incomes, or by using the inverse of the original variance-covariance matrix in eq. (15).

3.1.6 Ex ante and ex post Effects of Variance over the Child’s Lifetime

We can now turn to the central questions of interest, whether, one given the estimated parameters

of the model, an expansion in the variance of the effective income distribution would result in lower

investment in each period as well as in a lower stock of child human capital, and two how much of

any observed effects is attributable to ex ante risk.

We solve the longer-run problem recursively. We first use parameter estimates for ζ and ϕ to

construct the parametric value function VT+1(HT+1) = ζig(HT+1) at the end of normal schooling

20The fact that s3 for the combined curve falls below the low curve is a consequence of extrapolation using a
quadratic surface

21Note that this structure is likely heavily driven by the within-year nature of our data, and needs not extrapolate
beyond school years. It seems worthwhile pointing out that the estimated 1− ϕ− ρ does not change substantially if
we constrain δ ≤ 1 as shown in table D.9.
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years which we take as T = 27 seasons (9 grades x 3 seasons). Then using our estimated vector Ψ

and adjusting for age in the production function, we calculate VT−2(HT−2), that is expected utility

at the beginning of the last year of schooling for different values of HT−2 at the start of the grade

T − 2, and create a smooth function from the discrete values using a cubic spline. This estimate

of the empirical value function VT−2(HT−2) is then used given the existing parameters to find

VT−5(HT−5) at different values of HT−5 and then these values are also splined. This process is then

repeated for each grade down to the starting grade at school, t = 1. Note that V1 does not depend

on H1 because there is no previous human capital accumulation at that point by assumption.

The derivatives of these value functions with respect to initial Ht over the range of observed

human capital stocks are depicted in figure 7 for the low type (panel a) and for the high type

(panel b). Note that the there are small level shifts between the derivatives of V28 = ζig(H28)

(parametric value function) and of V7 (empirical value function at the end of grade 2), but that the

broad trend is well aligned. While this lends further credibility to our estimation strategy in which

we approximate the empirical value function V7(H7) with the parametric function ζig(H7), it also

highlights the challenges involved in selecting a particular grade for the structural estimation. To

further refine the match between what the empirical value function V7 should be (from solving the

model backwards) and what we actually estimate in the data (ζig(H7)), we iterate over ϕ until the

first derivatives of both correspond at the predicted end-of-second-grade stock with variance (6.9

for the low type and 10.3 for the high type, see table 4). We find that the first derivative of the

empirical value function V7 maps most closely with that of the estimated parametric value function

for a ϕ in V28 that is 0.394 and 0.297 units lower for the low and for the high type, respectively. Note

that these modifications imply even greater dynamic complementatity in demand: 1−ϕ−ρ ≈ 2.345

for the low type, and 2.248 for the high type. In figure 7, the derivative of the modified ζig(H28) is

shown by the black dash-dot line. The dashed and dotted curves are the marginal empirical value

functions from grades two through nine without variance and with variance, respectively. The solid

black line shows the derivative of the estimated parametric value function ζig(H7).

Equipped with these value functions, we then solve for optimal schooling investments in each

grade and the expected stock of human capital at the end of each grade. The expected final stock

of human capital is then obtained by recursively applying the grade-specific functions

HT+1 = HT+1(HT−2(HT−5(...H4(H1))...))) (18)

where the Ht+3(Ht) is the expected value of human capital at the end of the grade as a function

of the beginning-of-the-grade human capital given that study time is optimally chosen. A similar

exercise can then be carried out with a counterfactual distribution of incomes and a comparison

of these two measures describes the effect of variance on total human capital accumulation. This

difference combines the ex ante and ex post effects accumulated over the entire schooling lifetime.

To construct a measure of the ex ante effect across the school-going ages it is helpful to consider

the process of human capital accumulation for a child whose parent is forward-looking and responds

to income shocks by adjusting study time but who is naive in the sense that the parent does not
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anticipate future uncertainty. By construction this parent will not adjust schooling to variance ex

ante, and consequently any reductions in child human capital can be entirely attributed to ex post

effects. The ex post effects arise because variance in study times, keeping mean study time constant,

will lead to lower accumulated human capital in the presence of dynamic complementarity. If we

know the total decrease in human capital that arises from variance as well as how much of this

decrease is due to the ex post effect, then we can ascribe the difference to the ex ante effect.

Let Hk
t+3(H

k
t ) for k ∈ {v, nv,m} represent the expected end-of-grade human capital for parents

facing variance, facing no variance, and who are facing variance but are naive as described above,

respectively. At the end of any grade, the percentage difference in acquired human capital be-

tween the variance and no variance cases can be described by (Hnv
t+3(H

nv
t )−Hv

t+3(H
v
t ))/H

v
t+3(H

v
t ).

Substituting the first-order Taylor expansion of Hnv
t+3(H

nv
t ) around Hv

t into this formulation, gives:

Hnv
t+3(H

nv
t )−Hv

t+3(H
v
t )

Hv
t+3(H

v
t )

≈
Hnv

t+3(H
v
t )−Hv

t+3(H
v
t )

Hv
t+3(H

v
t )

+ ϵnvh
Hnv

t+3

Hv
t+3

Hnv
t −Hv

t

Hv
t

(19)

where

ϵnvh =
∂Hnv

t+3

∂Hv
t

Hv
t

Hnv
t+3

. (20)

A similar expression compares the human capital accumulation for the naive parent to that of the

sophisticated parent with variance

Hm
t+3(H

m
t )−Hv

t+3(H
v
t )

Hv
t+3(H

v
t )

≈
Hm

t+3(H
v
t )−Hv

t+3(H
v
t )

Hv
t+3(H

v
t )

+ ϵmh
Hm

t+3

Hv
t+3

Hm
t −Hv

t

Hv
t

. (21)

These expressions reflect the idea that the end-of-grade difference may be decomposed into two

components. The first term arises from the difference in optimal study times given the initial level

of child human capital and the second from the initial differences in child human capital (which

might grow smaller or larger over time). The ratio of eq. (21) to eq. (19) provides a measure of

the fraction of human capital loss due to the ex ante effect.

Recovering the ex ante effect requires an estimate of Hm
t+3(Ht): the end-of-grade stock of the

naive parent conditional on any Ht. One approach to estimating the Hm
t+3(Ht) would be to build

a behavioral model of the naive parent given the estimated parameters that would then generate

values of the stock of human capital for each grade. A convenient alternative is to use the fact

that a naive parent subject to variance will make approximately the same study-time choices in

expectation as the no-variance parent conditional on the initial stock of child human capital. To

see this, consider a first-order approximation to the study-time decision rule derived from the
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maximization of eq. (12) around θ̄ = 0 and Ω̄ = 0:22

s∗t (θ,Ω, H
v
t ) ≈ s∗t (0, 0, H

v
t ) +

∂s∗t
∂θ

θ +
∂s∗t
∂Ω

Ω. (22)

Evaluating this approximation at θ = 0 and Ω = 0 yields the no-variance study time: income does

not vary with the state of the world. Evaluating at the actual realizations of the shock θ and Ω = 0

yields naive study time: income does vary but parents assume that it does not. Finally, evaluating

at the actual θ and Ω yields the study time when income varies and this variation is anticipated.

Taking expectations yields:23

Et(s
m
t+τ ) ≈ snvt+τ . (23)

Differencing a first-order Taylor expansion of the production function around the study times of

the no-variance child evaluated at the study times of the naive child from the same approximation

evaluated at the study times of the variance child, approximates the difference in human capital

between the naive and variance cases:

H∗
t+3(H

v
t , s

m
t , s

m
t+1, s

m
t+2)−H∗

t+3(H
v
t , s

v
t , s

v
t+1, s

v
t+2) ≈

2∑
τ=0

∂H∗
t+3

∂snvt+τ

(smt+τ − svt+τ ), (24)

where H∗
t+3 denotes the production function. Taking expectations, substituting (23) and dividing

by Hv
t+3(H

v
t ) yields:

Hm
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v
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v
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where
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δ2−τsnvt+τ
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Finally, we can construct analogous expression to eq. (21) that illustrates the ex ante effect on

expected study time:

smt (Hm
t )− svt (H

v
t )

svt (H
v
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≈ snvt (Hv
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where
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t
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t
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. (28)

22Note that in slightly abuse of notation we treat Ω as a scalar here. We can think of this scalar as a parameter
that scales the underlying covariance matrix proportionately. For more detail on this decision rule, see Section 3.2.3.

23Analogously, it may be shown that ∂Hm
t+3/∂H

v
t ≈ ∂Hnv

t+3/∂H
v
t and ϵmh
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.
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This expressions says the total ex ante difference in study time in a given grade reflects the grade-

specific difference in study times for a given initial stock of human capital plus an effect that arises

from the difference in the initial stock of child human capital between the naive and sophisticated

parents faced with variance.

Each of the differences can be constructed by solving for optimal st, st+1, st+2 in each grade

and for the expected stock Ht+3 at the end of the grade (with variance and without variance)

conditional on the beginning-of-the-grade stock of human capital, and knowing δ and ρ (for which

we used the estimated values). In Table 4 we show these computations for each grade and both

types and using the predicted stock of child human capital with variance (in expectation) at the

beginning of the grade as starting point. Columns (9)–(12) show the cumulative total effect as well

as the cumulative ex ante effect of variance on Ht+3 and on st, respectively (tables D.10 and D.11

show similar calculations using various alternative beginning-of-the-grade human capital stocks Ht

for the low and for the high type, respectively.)

We find, using this approach, that reducing risk by 100% would increase child human capital

accumulated over the child’s entire schooling lifetime by 15% for both (low and high) types. Incor-

porating the information on the naive households we find that, for the low types, approximately

54% of that total effect can be attributed to the ex ante effect, yielding an ex ante elasticity of

child human capital with respect to variance of -0.08. The corresponding figures are 53% and -0.08

for the high types. To gauge the validity of our approach, we also calculate the final stock of

child human capital without variance and with variance (in expectation). Using these final stocks

to compute elasticities, rather than the linear approximations, yields an elasticity of child human

capital with respect to variance of -0.14 for both types. Reassuringly, the linear approximations

are not far off. The elasticity of school time with respect to variance is -0.18 for both types and

fairly constant throughout the child’s lifetime. About 72-73% of this effect can be attributed to an

ex ante response.

A few points regarding the decomposition are worth highlighting. First, the cumulative ex ante

effect of variance on the stock of child human capital and on study time declines slightly over time,

while the cumulative total effect on Ht+3 increases over time. This result is not surprising, as the

ex post effects increase over time as new shocks are realized. The ex ante effect in contrast can be

observed from the very first grade. By targeting a lower level of accumulated human capital from

the start they minimize the loss they might experience in the future should they experience an

adverse shock. Effectively, parents only start what they can finish. While there is some additional

ex ante under-investment in later grades, this gap is modest by comparison with that in the initial

grade. For example, for the low type this gap is 11% on average over the three seasons in grade

one but only 2% in grade seven, conditional on beginning-of-the-grade human capital.

Second, the fact that δ > 1 leads to a considerable decline in study times (both with and without

variance) with increasing grades. While we do observe some decline in study time with age in our

data, it seems that extrapolating the δ estimated within the school year to the whole school-age

period to learn about the allocation of study time across school years might be problematic —

22



and is indeed one reason that our estimation focused on an early grade. Two pieces of evidence,

however, show that our estimates of the effect of risk on schooling are not driven by this feature of

the data. For one, the estimate of 1−ϕ−ρ if we constrain δ ≤ 1 is 1.42, thus relatively close to the

1.95 obtained from the main estimates. Second, when we perform simulations of the life-time effect

of risk on the original set of structural parameters but setting δ = 1, the schooling time decline

disappears but the effects of risk are virtually unchanged (see table D.12).

3.2 Estimating the Effect of Risk on Schooling Investments

With these theoretical insights in hand, we are in a position to better interpret more direct estimates

of the effect of income risk on schooling in our data. Our concept of risk exploits three key

facts from rural India. First, agriculture is the dominant source of income for the majority of

households over the time period of our study, either through own agricultural production or through

casual agricultural employment. Second, agriculture is inherently risky. A large body of literature

has documented that agricultural yields, wages and employment levels in rural India are strongly

influenced by rainfall conditions (see e.g. Jayachandran, 2006; Shah and Steinberg, 2017; Kaur,

2019). High rainfall leads to good harvests, high demand for labor, and high wages. In contrast,

low rainfall levels lead to poor harvests, and low demand for agricultural labor.24 Third, the use of

irrigation in agricultural production expanded rapidly in rural India over the time-period covered

by our data, reducing the exposure to weather shocks in some places but not in others (Duflo and

Pande, 2007; Mondal et al., 2015; Ambika et al., 2016).25

3.2.1 Rainfall Shocks in Rural India

Before discussing the construction of our risk variable, we first show that rainfall shocks matter

economically in our context. In particular, we test if rainfall shocks affect agricultural income per

capita (in logs), consumption expenditures per capita (in logs), and — given the focus of this paper

— the time allocation of children per day to home production (own agricultural production and

household chores) and to studying (in school or at home).26 Similarly to previous studies that look

at the role of rainfall shocks in determining economic outcomes in India, we focus on variation in

relative rainfall (see e.g. Jayachandran, 2006; Shah and Steinberg, 2017; Kaur, 2019). Given the

structure of our data, we construct historical rainfall distributions for each village and estimate if

deviations from village average rainfall affect the outcomes of interest. Exploiting the exogenous

24More recent work also highlights the role of temperature on agricultural output in India: directly, because it
affects the pace of crop growth, and indirectly, because temperature influences the rate at which water evaporates
from the ground, and thus soil moisture levels (Mondal et al., 2015; Colmer, 2021b).

25Irrigation water in India mainly stems from two sources: dams (surface water irrigation) and bore-wells (ground-
water irrigation).

26Agricultural income is the total value of agricultural production corrected for (paid-out) operating expenses (but
not for the value of family labor or the rental value of owned machinery).
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nature of rainfall shocks, we estimate

yijst = β0 + β′1θjst + β2pjst +Σ3
n=1β2+nθjst−n + γj + ψst + ϵijst, (29)

where yijst is any of the outcome variables discussed above, observed in year i, village j, state s

and year t. θjst is a vector of dummies that indicate in which quintile of the historical rainfall

distribution (of each village) the current realization of rainfall is located. We also control for

the share of village agricultural area that is irrigated pjst, for rainfall (in log mms) in the last 3

years Σ3
n=1θjst−n, for village fixed effects γj , and for state-by-round of interview fixed effects ψst.

27

We report standard errors that are corrected to allow for clustering at the level of the grid cell

by round of interview, as well as Conley (1999) standard errors that allow for arbitrary spatial

auto-correlation (300km cut-off, Bartlett weights).28

We present the fitted values obtained from estimating eq. (29) in figure 8. In line with pre-

vious work, our findings suggest that low rainfall, measured as rainfall outcome that falls below

the 20th percentile of the historical rainfall distribution in a particular village, severely reduces

incomes from agricultural production and consumption expenditures, while rainfall above the 80th

percentile (60th percentile) of the historical rainfall distribution seems to increase agricultural out-

put (consumption), see panels A and B. We also find that low rainfall is associated with more

time spent in home production (i.e. own agricultural production or household chores), and less

time spent studying (in school or at home). Conversely, high rainfall (i.e rainfall above the 80th

percentile of the rainfall distribution) reduces the time spend in home production, and increases the

time spent studying (see panels C and D of figure 8). These effects are economically meaningful:

Moving from the lowest rainfall quintile to the highest rainfall quintile increases the time spent in

school on a typical day by a little over 40 minutes on average. These results differ from previous

work: Shah and Steinberg (2017) find that positive rainfall shocks are associated with lower school

attendance among children in rural India. Given that the rainfall-school effect reflects the sum of

opposite-signed income and substitution effects it is perhaps not surprising that the overall effect

will vary given different sampling schemes, time periods, and measures of educational investment.

In any case, what matters for our purpose is that rainfall affects the choice of study time, not the

sign of this effect.

3.2.2 Consumption Variability as Measure of Risk

After having established that rainfall shocks matter economically in our sample, we turn to devel-

oping a measure of risk. In order to do this, we need to move away from a relative measure of

rainfall to an absolute one. In other words, we need an estimate of the absolute effect of rainfall

(conditional on village characteristics) on the outcomes of interest. Given the growing importance

27When the dependent variable is child time use, we additionally control for age-by-gender and season-by-round of
interview fixed effects.

28We use the spatial-HAC standard error correction implemented by Hsiang (2010) and Colella et al. (2019). The
Conley standard errors are largely identical to standard errors clustered at the grid cell by round, c.f. table D.13.
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of irrigation in our context, we allow the absolute effect of rainfall to vary with the availability of

irrigation. We hypothesize that a higher the share of irrigated land in a village will mediate the

effect of rainfall shocks on household-level outcomes. This could happen because households are

more likely to have irrigation on their own land in villages with a high share of area under irrigation

or because (wages and employment in) casual agricultural employment will be less dependent on

good rainfall realizations (as only a small share of agricultural production in the village would be

solely rain-fed).

We estimate

yijst = β0 + β1θjst + β2pjst + β3θjstpjst +Σ3
n=1β3+nθjst−n + γj + ψst + ϵijst, (30)

where θjst now is the total precipitation in the current agricultural year (in log mms).29 All

remaining controls are defined as in eq. (29). yijst is the outcome of interest. As above, we estimate

the effect of rainfall on agricultural income per capita (in logs), and consumption expenditures per

capita (in logs). We also estimate the effect of rainfall on maternal time allocation to household

chores and to the labor market, and on the time children allocate to own agricultural production,

household chores, studying, and to leisure. In the time-use specifications, we disaggregate the

sample by gender (child-level), and control for age and for season-by-round (of interview) fixed

effects. Standard errors are again corrected to allow for arbitrary spatial auto-correlation.

Identification in this exercise relies on the exogenous nature of rainfall, and — because we are

interested in the coefficients on irrigation and on its interaction with rainfall — on the assumption

that irrigation at the village level is uncorrelated with the error term. The village fixed effect

removes any time invariant heterogeneity, but cannot control for unobserved time-varying shocks

that might affect the outcomes of interest and irrigation availability simultaneously. The identify-

ing assumption is violated — for instance — if unobserved shocks or underlying trends affect the

availability of irrigation at the village level as well as the covariance between consumption outcomes

and precipitation in this village. Under which conditions would these violations generate a negative

bias on the coefficient on the interaction term? If villages that are wealthier initially experience a

faster expansion in irrigation, and also have better means of self-insuring against shocks, then this

could bias our estimates. Similarly, unobserved shocks that improve self-insurance, and irrigation

availability, would generate a similar negative bias. In both cases this would not necessarily mean

that our risk variable does not capture risk, since improved self-insurance still generates a con-

sumption portfolio that is less exposed to shocks. More worrisome are violations of the identifying

assumption that might have direct or indirect effects on investments in child human capital through

other mechanisms than risk. An example could be that places that have experienced adverse cli-

matic conditions had to diversify out of agriculture. The few farmers that remain are profitable

only because they irrigate their land. These places would probably also display a lower correla-

tion between rainfall and consumption, but not because agricultural production became less risky.

29We show in tables D.14 and D.15 that specifications that use rainfall in levels or in squares do not fit the data
better than those that use the log of rainfall.
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And places with a more diversified economic structure probably also have higher returns to human

capital, which would incentivize parents to invest more in the human capital of their children. We

return to this point in the robustness checks.

Estimates of eq. (30) are reported in tables 5 and 6. In table 5, we present results with and

without controlling for village fixed effects to explore the robustness of our estimates. Controlling

for village fixed effects seems to attenuate the coefficients somewhat, but the interpretation remains

largely identical. Analogously to figure 8, we first explore the relationship between rainfall, irriga-

tion and agricultural income (cols. (1) and (2)). Our results suggest that higher rainfall increases

agricultural income; but that rainfall affects these outcomes to a smaller extent in villages with

high irrigation levels. Columns (3) and (4) show the relationship between rainfall, irrigation and

consumption expenditures. The effects are somewhat smaller, but more precisely estimated, and

suggest a similar relationship: higher rainfall increases consumption, but less so in villages with a

higher share of agricultural area that is irrigated. Consistent with the notion of an ex post labor

supply response by the parent, log rainfall is negatively (positively) associated with the time moth-

ers allocate to the labor market (household chores). Again these associations are weakened by the

availability of irrigation.30 Note, that we can only observe the time-allocation of the mother in our

data, not of the father. We can expect her response to affect children’s time allocation as long as

the mother’s response to shocks is not perfectly undone by the father’s response (i.e. the mother

increases her working hours but the father reduces working hours by exactly the same amount, and

vice versa).

The effects of rainfall on child time use are reported in table 6. For brevity, we only report esti-

mates that control for village fixed effects.31 Again, rainfall is negatively associated with children’s

time spent in own agricultural production and on household chores, and positively associated with

time spent in school or studying at home. As with mothers, the availability of irrigation at the

village level seems to weaken these associations. These findings are consistent with a model in

which parental and child time are substitutes in home production.32 While responses to shocks

seem to dominate in the farm-sector for boys, they are more pronounced in household chores for

girls (at least in absolute terms). The schooling effects, then, are roughly similar for boys and

girls (if anything slightly more pronounced for girls). Finally, we explore if rainfall shocks affect

the leisure time of children. We find weak evidence that boys’ leisure increases with rainfall, but

no evidence of an association between leisure and rainfall for girls. This suggests that boys can

reduce (increase) leisure time to some extent when faced with negative (positive) shocks, while girls

cannot.33

With the estimates of column (3) of table 5, we then simulate the variability of consumption for

30The coefficients are statistically significant only for time allocated to the labor market, not for household chores.
31The corresponding results without village fixed effects are largely identical, as reported in table D.16.
32We cannot observe paternal time allocation in our data. Given that the effect of maternal time allocated to

household chores is not statistically significant, while we still see strong responses of children, it seems likely that
fathers also reduce the time they spend on chores and on-farm.

33Note that leisure time includes sleep time.
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each household in our sample at a particular point in time.34 First, using the annual rainfall data

from 1979 to 2019, we calculate the probabilities of all rainfall outcomes per grid cell.35 Second,

we predict consumption expenditures per capita (in logs) for each rainfall outcome observed in our

data given the availability of irrigation in the village in a particular round of interview. Third, we

construct the probability distribution of consumption outcomes for each household in a particular

village and round of interview by multiplying the probability of each of these rainfall outcomes

with the predicted log consumption at that rainfall level (given irrigation). Fourth, we calculate

the interquartile range as well as the standard deviation of a household’s predicted log consumption

per capita as measures of risk.

Figure 9 illustrates our calculations. Panel A depicts the historical rainfall distribution of

all REDS villages, grouped by quartiles of the share of agricultural area that was irrigated in

1982. We can see small differences in the distribution of rainfall, but no clear link between the

distribution of rainfall and the availability of irrigation. Panels B to D, then, plot the distribution of

predicted consumption per capita (in logs) in the years 1981-82, 1998-99 and 2007-08, respectively.

Again the villages are grouped into quartiles of irrigation availability in 1981-82. As expected,

the villages with the highest levels of irrigation in 1981-82 show the least variability in predicted

consumption in that same year. In 1998/99 this general patterns seems to remain, although the

initial differences in terms of variance are somewhat attenuated. In 2007/08 then, the picture

looks substantially different with villages of the lower 3 quartiles (of initial irrigation) displaying

roughly similar variance in predicted consumption, while the villages in the highest quartile of

initial irrigation seem to have developed in an entirely different direction, displaying substantially

lower variability in consumption.

3.2.3 The ex ante Effect of Variance on Schooling

In a multi-period model with savings, the reduced form decision rule for schooling investments can

be described by

st = st(At, Ht, θt, yt,Ωt+1), (31)

where the Ωt+1 term captures how variance in future incomes affects current school time given

the stock of assets and human capital at the start of the period as well as current income.36 The

formulation in eq. (31) illustrates the challenges in estimating the ex ante effect of risk in any single

period: If the income process is stationary, future variability Ωt+1 will be the same as variability

in the past Ωt, and the stock of human capital at any point in time Ht will reflect the cumulative

34This approach is inspired by Dercon and Christiaensen (2011). We also use the estimates in column (4) to
calculate the risk variable, and repeat the main regression as robustness check. The results are largely identical, as
reported in table D.17.

35The probabilities are obtained by dividing the sample rainfall distribution in 0.025 intervals of annual log rainfall.
We then calculate the historical probability of village-level rainfall to fall in each of these intervals.

36The first derivative of eq. (4) with respect to st yields the first order condition: −u′(yt + θt + At − at − st) +

β Et+1

[
∂Vt+1(Ht+1,At+1)

∂Ht+1

∂Ht+1

∂st
|Ωt+1

]
= 0. A comparable first order condition can be obtained for saving.
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effects of past shocks (ex post effects) as well as past adjustments in study time to future income

variability (lagged ex ante effects).

For notational simplicity we focus on the values of t corresponding to the start of each crop/school-

year, that is, the set B of t such that mod (t, 3) = 1. If weather is i.i.d. across years but de-

pendent within year we can think of y and Ω as summarizing the mean and covariance of seasonal

incomes within a year. Because beginning-of-the-grade stock of human capital can be described by

Ht(Ωt, θt, yt, At−1, Ht−1) we can then rewrite the decision rule for each t ∈ B to

st = st(At, θt...θ1, y,Ω), (32)

which is obtained by recursive substitution. This formulation highlights that the ex ante effect can

be isolated by controlling for past shocks rather than Ht.

In order to quantify the ex ante effect of variance on child schooling, we estimate a linear

approximation to the decision rule described by in eq. (32). In particular, we estimate

sijst = β0 + β1Rjst + β′2Aijst + β3yijst +Σ3
n=0β4+nθjst−n +Xijst + γj + ψst + ξt + ϵijst, (33)

where the dependent variable sijst is the study time of child i, living in village j, and state s in

year t.37 We focus on extensive margin and intensive margin responses by using school attendance

(i.e. a dummy that equals one if study time is non-zero) and hours spent studying (in school and

at home) on a typical day of each season as dependent variables. We are particularly interested in

estimating β1, i.e. the effect of village-level risk Rjst on schooling.

Our specification controls for household income yijst and wealth Aijst. We use household income

per capita (in logs) during the reference period for yijst, and the value of all assets owned at the

beginning of the reference period (again in per capita terms and in logs), the area owned (per

capita, in log acres), and household size as measures of Aijst. We use annual precipitation (in log

mms) as measure of the shock θjst, and include the current realization, the realizations in the three

years prior to the survey, as well as the standard deviation of annual rainfall over these three years

as controls. We also interact the lagged rainfall realizations with a dummy that takes the value one

if the child was of school age (i.e. 6 and above) in that particular year in order to allow for past

rainfall realizations to matter more for older children, i.e. we add Σ3
n=1[θjst−n×1(SchoolAgeijst−n)]

to eq. (33). As noted above, controlling for these shocks allows us to isolate the ex ante response

to risk.

We also control for Xijst, a vector of age-by-gender fixed effects, that captures for example any

differences in the implicit price of schooling by age and gender (see appendix A.1). γj is a vector

of village fixed effects, ψst a vector of state-by-round (of interview) fixed effects, and ξt a vector of

season-by-round (of interview) fixed effects. This specification allows us to compare children of the

same age and gender from the same village, who are surveyed in different rounds. State-by-round

37Note the slight abuse of notation t here. We observe three seasons of study time for each child, and also control
for season-by-round of interview fixed effects ξt. Yet, risk, rainfall and state-by-round (of interview) fixed effects are
measures that remain constant within the year, and do not vary per child.
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of interview fixed effects control for aggregate shocks at the state level, and season-by-round effects

control for temporal variation in time allocation. The identifying assumption is that — conditional

on the control variables and the fixed effects — no other (unobserved) characteristics that determine

hours in school are correlated with our regressor of interest, i.e. risk. This assumption is quite

strong and we discuss several concerns about identification (and how we address these) in the

following section.

The term ϵijst reflects unobserved time-specific shocks to study time. We cluster our standard

errors at the level of the village by round of interview in all specifications (the level of variation of

our main regressor of interest). However, because our measure of consumption risk is not directly

observed but predicted for each village and round, these standard errors might not be correct. We

therefore additionally report p-values obtained from percentile-t cluster bootstrap (null-imposed,

999 replications) in which we re-sample at the village level. The risk variable is re-calculated

for every bootstrap sample, and the distribution of t-statistics is then obtained by regressing the

outcome of interest on a newly predicted risk variable in every bootstrap sample.38 Note that this

is a highly conservative approach, as entire villages, rather than individual observations, are being

re-sampled to calculate risk, and to estimate the effect of risk.

OLS estimates of extensive margin responses are reported in table 7. We add control variables

step-wise to gauge the sensitivity of our estimates to the choice of specification. We have seasonal

data for 22,767 children in the age group 6 to 15. We use two variables as proxies for risk: the

interquartile range (panel A), and the standard deviation of predicted log consumption (panel B).

Column (1) controls for village and for season-by-round of interview fixed effects, column (2) adds

rainfall controls to account for the effect of current and past shocks. In column (3), we additionally

interact each lag with a dummy that is unity if the child was of school age in that particular year.

This allows for the effects of shocks to differ by age. Column (4), then, adds wealth controls, and

column (5) adds state-by-round (of interview) fixed effects.

We find that risk considerably reduces study time at the extensive margin. The point estimates

are largely insensitive to the inclusion of any of the controls. According to the most conservative

estimates (column 5), a one standard deviation increase in the interquartile range of predicted log

consumption (0.030) reduces the probability that children attend school by 2.7 percentage points.

Likewise, an increase in the standard deviation of predicted log consumption by one standard

deviation (0.023) reduces the probability that children are in school by 2.3 percentage points. The

effect is statistically significant throughout: the percentile-t bootstrap p-values range from 0.028 to

0.081. These point estimates suggest that the elasticity of school attendance with respect to risk

ranges between -0.047 and -0.036, which is somewhat smaller than the elasticity that was predicted

from the structural estimates.

We explore the effect of risk on the study time (in school or at home) on a typical day in table

D.18. To isolate extensive margin responses from intensive margin responses, we estimate eq. (33)

38The percentile-t cluster bootstrap has a better asymptotic refinement than the simple pairs cluster bootstrap,
and seems more appropriate in a sample with a limited number of clusters (i.e. 242). For more details see Cameron
and Miller (2015).
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in OLS for the full sample of children, and for the sub-sample of children who have positive hours in

school. Our results suggest that changes in school time are driven by extensive margin responses,

and not by intensive margin responses. The estimated elasticity of study time with respect to

risk ranges between -0.050 and -0.037 when considering the full sample of children. These findings

imply that children are less likely to attend school due to risk, while there seems to be little scope

for adjusting the time in school at the intensive margin. This finding could be suggestive of an

(unmodeled) fixed cost of school attendance, such as travel or material costs, that causes households

to withdraw a child from school entirely when faced with higher risk. It could also be a sign for

limited flexibility on the side of the teacher, that forces children to withdraw from school entirely

rather than reducing hours.

We split the sample by gender and by age group to explore some heterogeneity in effect sizes in

table D.19. We find some differences in effect size by gender, with effects being more pronounced for

girls than for boys (and being statistically significant for girls only). This is in line with our earlier

finding that the effect of rainfall on school time is slightly stronger for girls than for boys, which

suggests that girls are exposed to higher risk of dropping out. It could also be interpreted as evidence

for differential parental preferences towards boys’ schooling.39 We find hardly any differences in

effect size by age group. If anything the effect of risk might be slightly more pronounced in older

age groups, but again the difference in effect size is very small. We also interact the risk variable

with age dummies to explore more nuanced changes by age in figure C.2. Again, the results suggest

that the effect of risk is more pronounced in older age groups, however, we find the strongest effects

at age 10, thus around the transition to middle school.

3.2.4 Accumulated Schooling

While we have demonstrated that analysis of study time is the best way to assess ex ante effects

of risk, it remains to be shown that these differences in investment translate into differences in

human capital acquisition or at least in some sort of credential. Study time may not effectively

raise completed schooling if promotion from grade to grade is not influenced by performance or

if reduced study time simply leads to delays in the time of completion. Of course, our structural

estimates of the production function estimates indicate how study time translates into future human

capital. But those estimates were based on input choice rather than observed outcomes and thus,

among other things, may reflect parental views of how human capital acquired rather than the

actual production process.

However, given the length of the REDS panel data set, it is possible to track individuals into

adulthood and thus to evaluate at least one measure of completed human capital. We focus on

adult men observed in 2007-08 round of REDS who were between 10 and 21 during one of the

previous survey rounds. In particular, risk observed in village in 1981-82 is used as explanatory

39An earlier draft of this paper used only the 2007-08 round of data and found effects of risk for girls but not not
for boys. The fact that we now find risk effects for boys and girls (when the data are pooled) might be due to gains
in precision (the sample size increased almost three-fold), or due to the fact that households were poorer in 1981-82
and 1998-99, which made it more difficult to protect boys from the adverse effects of risk.
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variable for men aged 35-46, and risk observed in village in 1998-99 is used for men aged 18-29.

Table 8 presents estimates of the effects of school-age consumption variability on primary school-

ing. Note that as these estimates focus on completed schooling they combine ex ante and ex post

effects. The first column uses village fixed effects and the second incorporates household fixed

effects and is thus restricted to panel households. The village fixed effects estimates suggest that

a one standard deviation increase in the interquartile range of predicted log consumption leads to

a 4.1 percent decline in the probability of completing primary school. The household fixed effects

estimates suggest a 7.7 percent decline. It is instructive that these are the same order of magnitude

of the declines in school attendance and study hours in percentage terms.

3.2.5 Robustness Checks

The identification strategy of his paper largely exploits differential changes over time in the avail-

ability of irrigation across villages as approximation for changes in risk.40 There are two major

reasons why this strategy might be inappropriate. First, village level irrigation (or any other vari-

able that correlates with irrigation) might have an effect on schooling decisions that does not work

through the risk portfolio of a household. For example, one would expect wealthier villages to

exhibit more irrigation and, consequently, lower consumption variability, while also investing more

in education. Similarly, differences in village characteristics that co-evolve with the availability of

irrigation might affect the supply side of education. Second, any endogeneity concerns about the

expansion of irrigation will necessarily also concern our risk variable.

We conduct several robustness checks to address these concerns. The first set of robustness

checks essentially seeks to rule out the possibility that we are not capturing risk but differences in

wealth, or in other household or village-level characteristics. We begin by exploring if household

characteristics are systematically associated with our measure of risk. In particular, we focus on

household income, consumption expenditures, asset ownership (as measure of household wealth),

savings accumulated during the reference period, whether the household is involved in agricultural

production, area owned, and maternal labor supply. As reported in table 9, we find some evidence

that households exposed to more risk may be slightly poorer. While the point estimates on income,

wealth and land ownership are not statistically significant, we do find significant negative effects

of risk on consumption expenditures per capita. This finding could be consistent with households

saving a higher share of their income if exposed to more risk, but we do not find this to be the

case, at least not for households that report positive savings over the reference period. It seems

more likely that these households are indeed somewhat poorer, and that consumption expenditures

are just more precisely measured than incomes.41 Finally, households exposed to more risk are no

40Remember that the construction of the risk variable from the availability of irrigation and the historical rainfall
distribution adds precision to our estimates (we specifically allow an increase in irrigation to have a differential
effect on schooling outcomes conditional on the amount of variance in each village’s rainfall distribution), but does
not introduce any additional source of variation (since we use the same rainfall distribution for all three rounds of
interviews).

41Note that we control for these measures in order to rule out the possibility that differences in wealth are driving
our results.
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more or less likely to be involved in agricultural production. And we do not find any evidence that

mothers in our sample are working more or less hours in the labor market due to risk.

We then explore whether school infrastructure, and village characteristics more generally, are

systematically co-evolving with our measure of risk. We focus on educational infrastructure because

we have to worry that any schooling response of children is driven by supply side constraints rather

than demand side factors. We find no evidence that risk is associated with a lower number of

primary, middle, lower secondary or higher secondary schools in a village. We also test if our

results are affected by controlling for the presence of primary, middle or secondary schools, and

find no change in the magnitude or statistical significance of the effect of risk (c.f. table D.20).

We take this as evidence that our results are not driven by the differential supply of education

infrastructure. We then address the concern raised in Section 3.2.2, namely that villages with

a higher share of irrigated land might be villages that have have diversified out of agriculture

(leaving rain-fed land largely uncultivated), and thus are less exposed to rainfall shocks. These

would also be places that invest more in education, if the returns to education are higher in the

non-agricultural sector than in the agricultural sector (as is typically assumed). In table D.21, we

show that the economic structure in places with more or less risk is not systematically different:

neither the share of households that are involved in agriculture, nor the share of income that is

generated in agriculture are affected by our risk variable. We also explore if these villages might

differ in the presence of factories, or in the number of villagers employed in factories, and find no

systematic differences. Finally, we explore if villages with higher risk experience differential access

to cooperatives or banks, and again find no evidence that this could be explaining our results.

One caveat with the exercise above is that all these variables might be measured with consid-

erable error, such that we are biased against finding any significant effects. Since we are using a

regressor that is calculated for the entire village we are somewhat limited in the amount of tests

that we can do. We can, however, explore if any variation within the village (in terms of risk

exposure) is pointing in a similar direction, after accounting for village-by-round of interview fixed

effects. In order to do this, we first restrict the sample to households that were observed and could

be matched in at least two rounds. We then augment equation (30) by an interaction term of

rainfall with the log of cash-equivalent savings (i.e. savings that can relatively easily be sold in the

case of a shock, such as jewelery or cattle). We these estimates, we predict consumption risk at the

household level, and re-estimate table 7 with the new risk variable. After controlling for household

fixed effects, for household-specific time-trends, and for village-by-round fixed effects, we still find a

large negative effect of risk on school attendance, that is statistically significant at the 0.1% level.42

42Results are reported in tables D.22, D.23 and D.24. While the effect of risk on education is clearly negative, and the
effect is robust to controlling for the standard controls, as well as for initial conditions multiplied by time fixed effects,
we cannot rule out that this household-level risk variable also captures other differences between households. Note
that the same risk variable seems to be negatively associated with land ownership, wealth, consumption expenditures
and with the probability of being engaged in agricultural production. Yet, it is reassuring to see that we find similar
associations within villages as we find across villages. We also exploit the panel data to control for household fixed
effects in the original specification, i.e. with village-level risk, and find that our results are robust to using this subset
of the data and to controlling for household fixed effects (see table D.25).
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Taken together, these results are consistent with the notion that we are indeed capturing ex

ante effects of variance, rather than some other underlying household or village characteristics that

correlate with our risk variable.

The second set of robustness checks seeks to address potential sources of endogeneity in the ex-

pansion of irrigation. Endogeneity could arise from differences in initial levels of risk that might put

villages on very different paths of agricultural production, wealth accumulation, and investments in

education. To address the concern that underlying trends are driving the contemporaneous effect

of risk on schooling, we conduct robustness checks in which we control for (non-linear) time trends

that vary with baseline levels of village average irrigation, education of the household head, income,

wealth, and land ownership, and our results are robust in four out of five specifications (c.f. table

D.26). We also slice our data to perform placebo tests. In particular, we regress current schooling

(in rounds 1981-82 and 1998-99) on future risk in table D.27, and find that these are unrelated.

Endogeneity could also arise from unobserved shocks that are not captured by rainfall nor by

state-by-round (of interview) fixed effects, and that simultaneously affect irrigation availability (and

therewith risk) at the village level and investments in education at the child level. Lagged negative

shocks, for example, could slow down investments in irrigation, and — through wealth effects —

also negatively affect investments in education. While we control for contemporaneous and lagged

rainfall in all our specifications, we might not be capturing the full effect of these shocks. We

therefore also explore if our results are robust to flexibly controlling for lagged (3 years) rainfall

and temperature. As we show in table D.28, this is indeed the case.43 It remains to be said,

however, that we cannot fully rule out the possibility that other unobserved shocks simultaneously

affect irrigation and schooling outcomes in ways that could bias our results.

3.3 Alternative Explanations

The results presented so far are consistent with the existence of dynamic complementarities in the

human capital production function. However, other mechanisms could also result in a negative

association between risk and human capital investments, leading us to erroneously attribute this

effect to dynamic complementarities. We analyze each of these explanations in detail to show that

they are unlikely to produce the results we are finding.

The first alternative explanation to the negative effect of risk on child schooling could be a

precautionary savings motive. Study time might be lower in high-risk villages, because parents

are less willing to spend their limited resources on education if concerned about next season’s

income and rather save more, or because parents are working more in order to accumulate savings,

and therefore spend less time on home production, which has to be taken on by the children of

the family. Ceteris paribus, this would increase the time children spend on household chores or

agricultural production, and reduce study time.44 However, the available empirical evidence does

43We cannot use more than three lags since the weather data we are using only goes back to 1979. We also show
that neither lagged, nor current or future rainfall is systematically related to our measure of consumption risk (c.f.
table D.29).

44That households tend to save more in the presence of uninsured risk is by now well established. However, it is
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not suggest that this is what is driving our results. As discussed previously, we do not find that

households save more year-to-year nor that women work more in areas with higher risk.45 While

year-to-year saving does not necessarily capture the mechanism we outlined above, the simulations

with savings showed clearly that the negative effect of risk would vary substantially over the year

(in particular ex ante and ex post to shocks) in a precautionary savings world, while it is mostly

constant over time if driven by dynamic complementarities. Empirically, we find the effect of risk

to be surprisingly constant over the three seasons of the year, with the most pronounced negative

effects de facto arising in season one (October/November), thus ex post to the main shock (i.e.

monsoon), see table D.30. This result is consistent with the dynamic complementarity mechanism,

yet less so with a savings motive.

And finally, liquidity (or savings) concerns should generally be less of concern in contexts like

India, where schooling is generally for free. Obviously, one-time expenditures for school material

or uniforms could be just as prohibitively expensive, but this seems not to be driving our results.

In table D.31, we allow the effect of risk on school attendance to vary by quartiles of consumption,

income, and wealth, and contrast the results with the average expenditures on education (per child),

and average income (per capita) in these subsamples. This exercise reveals that the effect of risk is

generally most pronounced in the poorest quartile. Yet, we also find effects of similar magnitudes

in the second and third quartiles of the consumption, income or wealth distributions, and in these

groups the share of income that is spent on education is substantially lower than in the poorest

quartile.

The second alternative explanation is that risk could negatively affect returns to human capital,

either through the economic structure or due to a reduced propensity to adopt technological inno-

vations, causing parents to invest less in the education of their children. We suggest two strategies

to address this concern. First, we test directly whether the wage return to education varies with

risk. Since we only observe wage data in the 2007-08 round of data, we restrict this exercise to

an analysis of cross-sectional associations. We regress log daily wages (averaged over all observed

activities for the individual) on risk interacted with the level of education, and on a number of

individual-level characteristics (results are reported in table D.32). We do not find any evidence

that risk in fact reduces the returns to education either for men or for women.46 To the contrary,

if anything evidence suggests that returns to education are positively associated with risk, which

suggests that diversification out of agriculture is higher in more risk prone areas or that risk prone

areas rely on production technologies that require higher levels of human capital. Second, for girls

unclear to which extent this affects labor supply decisions. Typically, the literature has looked at foregone current
consumption for the sake of higher (and more secure) future consumption (see e.g. Zeldes, 1989; Deaton, 1991). On
the other side, one might think that households would tend to work harder in order to accumulate higher savings. A
positive labor supply response to risk in the context of India was found by Rose (2001).

45Table 9 shows the effect of risk on savings and on maternal time allocation. Unfortunately, the same data
is not available for fathers, because the time-use questions are included in the demographic questionnaire (that is
administered to women exclusively).

46Of course, this approach does not account for other possible consequences of risk such as the returns to en-
trepreneurship or the returns to migration. But it is at least consistent with the idea that our effect of interest is not
driven by the return to schooling.
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at least, who are likely to leave the village following marriage, we can examine if the negative effect

of risk is driven by the level of risk in the village of birth or by the level of risk in the relevant

marriage market. The concern would be that risk is likely correlated across space, such that we

would be confounding the level of risk in the the village of origin with the level of risk in the

marriage market. We explore this idea by adapting a strategy from Foster and Rosenzweig (2001).

In particular, that paper uses a radius of 67km to define the marriage market (the 90th percentile

of the marriage distance). It then distinguishes the returns to human capital for boys (that in the

village) and the returns to human capital for girls (among sample villages in the broader marriage

market). In this paper, we control for the average risk among sample villages within 67km of each

village of interest. We exclude the village of interest from this mean and drop those villages in

which there are no other sample villages in the marriage market. As reported in table D.33, the

coefficient on marriage-market risk is close to zero and its inclusion does not substantially affect

the point estimate on the variable of interest. Thus, as posited in our model, the risk estimates

appear to reflect the consequences of risk during childhood rather than adulthood.

A third alternative explanation could be differences in fertility — or (gender specific) child

survival rates — that are due to risk. If households exposed to higher risk have more children,

they might consequently invest less in each of them. Likewise, a higher gender-imbalance might

increase (or reduce) investments in girls (and boys) due to selection effects or due to changes in

marriage-market returns. Yet, as reported in table D.34, we find no evidence that these mechanisms

are empirically meaningful in our data.

4 Simulating the Effect of the NREGS on Consumption Variabil-

ity and Schooling Investments

Given the magnitude of the effects of risk observed above, it seems worthwhile to explore potential

policy tools to mediate these. Obviously, any policy that helps farmers insure against agricultural

production risk, could be a viable option. But as Mobarak and Rosenzweig (2013) pointed out,

providing insurance to farmers might actually increase overall risk in village economies as farmers

become more risk taking in their production decisions. This would then be particularly harmful for

the poorest households with no own land and no access to agricultural insurance. An alternative

could be an workfare program, such as the Indian National Rural Employment Guarantee Scheme,

that was introduced in rural India in 2006.47

A workfare program like the NREGS can affect schooling decisions via two mechanisms: first, the

program could provide employment at higher wages than casual agricultural wages, which might

affect total labor supply and the amount of labor supplied to the private sector (with potential

general equilibrium effects on wages, as documented by Imbert and Papp (2015)). Second, such a

program could reduce consumption risk in rural areas, by providing employment at a fixed wage

47The National Rural Employment Guarantee Act is India’s flagship anti-poverty program; it entitles every house-
hold in rural India to a maximum of 100 days of employment per year at state minimum wages.
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independently of rainfall shocks. Assuming income effects of rainfall shocks dominate in the time

allocation of adults, the fact that wages do not fall during periods of need is likely to reduce the

magnitude of the labor supply response of households relative to the case in which there are negative

general equilibrium effects on wages. This effect should reduce the extent of the response among

children ex post to shocks. This lower response, in turn, increases the return to first-period school

time.

To understand the effectiveness of a workfare program in mediating the negative effects on

income risk on school attendance, we explore the follow-up data to the REDS collected between

2014 and 2016, and simulate the effect of the NREGS.48 This simulation is expected to shed light on

the importance of the second mechanism and is intended to complement existing empirical evidence

on the short-term impact of the NREGS on school enrollment, which estimates that the NREGS

decreased enrollment by 1-3.5 percentage points (Shah and Steinberg, 2021).49

Using the data from 1982 to 2016, we estimate the extent to which the presence of the NREGS, or

more specifically, the amount of employment generated by the NREGS per year, mediates the effect

of rainfall on household consumption. Formally, we re-estimate eq. (30), but now add employment

per capita (in person-days) generated in a given village by the NREGS and its interaction with

rainfall to the estimation. We find that a one unit increase in employment per capita, reduces the

effect of rainfall on consumption by 4.2 percentage points (see table D.36).

We use these results to predict the standard deviation of predicted log consumption at different

levels of NREGS employment per capita. At the mean of irrigation and the minimum of NREGS

employment (i.e. zero employment), an increase in NREGS employment by 2.24 days per capita

would reduce the standard deviation of log consumption by 34%.50 A reduction of risk by this

magnitude would increase the probability of attending school by 1.0 percentage points, according

to estimates presented in table 7, column (4).

Our simulation thus suggests that an employment guarantee such as the NREGS could have

positive effects on child school attendance by reducing consumption risk. However, as documented

by previous literature the NREGS had substantial wage effects, which seem to explain the negative

effect on school enrollment documented by Shah and Steinberg (2021) and Li and Sekhri (2020). If

the wage effect outweighs the risk reducing effect, or in other words, if the risk reducing effect is not

high enough to offset the negative effect of increasing wages, then an employment guarantee such

48Summary statistics of the SEPRI data are shown in table D.35. More details about these data are available in
appendix B.3.

49We expect that the risk mitigating effect of the NREGS is internalized by households only after a certain period
of time. Therefore this effect cannot be captured by impact evaluations that explore the sequenced phase-in of the
NREGS and which can thus only provide information about the immediate effects of the program. This simulation
is intended to provide insights about potential long-run effects associated with public works programs such as the
NREGS.

50We use 2.24 days of employment to make our results comparable to previous work. Imbert and Papp (2015)
and Shah and Steinberg (2021) use NSS data collected in 2004-05 (pre) and 2007-08 (post). In 2007-08, the NREGS
had been implemented in 330 (out of 625) rural districts of India, covering a population of 642 Million (projections
for March 2007). To get the population estimates, we apply the India-wide projected population growth rate to the
Census 2001 population count of these districts. That year, the total amount of employment-days created within the
NREGS was 1,435.9 Million (Ministry of Rural Development, 2012).
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as the NREGS decreases school attendance not only in the first years of program implementation,

but permanently.

5 Conclusions

This paper analyzes the joint effect of risk and dynamic complementarity on investments in human

capital, with a focus on the study time of children in rural India. The model developed in this

paper shows that parents respond to income variance by reducing schooling investments ex ante

if there is dynamic complementarity in the demand for child human capital, which is a function

of the curvature in the parental demand for child human capital and of the perceived dynamic

complementarity in the production of human capital.

Using indirect inference, we then estimate the structural parameters of the model exploiting —

in the auxiliary model — a surprisingly robust relationship in study times across seasons observed

in the data. Our results suggest that parents perceive a strong degree of dynamic complementarity

in child schooling, and exhibit substantial curvature in the demand for child human capital. The

estimated elasticity of intertemporal substitution in study times is 0.29 which is considerably smaller

that what has been found using other approaches. One possible reason is that because we focus

primarily on inputs, our estimates may reflect differences between parental perceptions about the

production function and the ‘true’ production function. While our results on accumulated human

capital are of the same order as are our study time results, suggesting this may not be an issue,

it is worth noting that, if present, such a gap would be important to understand. Any policy

intervention needs to account for the choices that parents make as well as the actual accumulation

process in order to generate desired effects. We would also note that our approach offers a way of

identifying parameters of interest even in contexts in which skills are measured with considerable

error.

We simulate the lifetime effect of variance on child schooling and decompose the overall effect

into ex ante and ex post components. We find that risk is expected to substantially reduce schooling

in this context and that a large share of this effect can be explained by an ex ante response.

Interestingly, because parents underinvest from the start the extent of ex post variation explains

only about half of the total effect.

Of course, the results of this simulation are sensitive to the assumption of i.i.d. shocks across

years. The results would likely be quite different if there were a substantial probability of a perma-

nent reduction, say, in the variance of income realizations at some later grade. However, we believe

the current model of the income process is a reasonable characterization of the income processes

faced by rural households in India over the period covered by our data. We also recognize that

there are other permanent shocks such as newly revealed information about the ability of a child or

about the long-term returns to human capital that could have additional — and potentially more

pronounced — effects.

We test the model’s predictions by exploiting village-level variation over time in the use of

37



irrigation in agriculture, and find strong evidence for a negative effect of risk on the probability

that children attend school.

These findings contribute to a better understanding of the consequences of dynamic comple-

mentarity in the production of human capital. Much of the literature to date on dynamic comple-

mentarity and schooling has emphasized the importance of early child interventions for eventual

schooling outcomes. Our results suggest that — in settings characterized by risk — such inter-

ventions may not automatically transfer into higher accumulated capital in the longer run unless

this exposure to risk is addressed directly. Even though the immediate human-capital returns to

subsequent investment will be higher, the longer term expected returns may still be low due to

concerns about the ability to follow through on those investments.

While direct schooling subsidies to at-risk children in later years may be the most direct means

of addressing this issue, other forms of insurance for households can play an important role. We

simulate the effect of the National Rural Employment Guarantee Scheme on the child schooling.

We estimate the extent to which NREGS reduces variability in consumption and use this reduction

to simulate the program’s effect on child study time. We find that the program would increase

school attendance by 1 percentage point, if it were holding the level of wages fixed. Of course, if

this result also raises child wages then the salutory effect of risk reduction may be offset by the

rising opportunity cost of schooling.

While our study focuses in particular on the problem of risk in low income rural areas, we believe

our results may have some relevance in other settings. Students, in any context, may underinvest

in studying at the start of the semester if they think there is a chance that they will not be able to

maintain that level of investment throughout the semester and thus do well on the exam. Similarly,

students engaged in college preparation may be importantly affected by the perceived risk that they

will not be able to fully finance the years of study needed to complete a degree. These questions

await further research.
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Figures

Figure 1: Risk, Study Time and Expected Human Capital
Notes: This figure presents numerical solutions to the optimal choice of s1, s2 by state and E[H3] by the standard
deviation of the shock (σθ = r), for a two-period model as described by eq. (5) with perfect complements and linear

g(H). Assumed parameter values are y1 = 10, y2 = 10, and ζ = 1.
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Figure 2: Numeric Approximation of the Effect of Risk on First Period Schooling
Notes: This figure presents numerical solutions to the derivative of s1 wrt to the standard deviation of the shock
(σθ = r), i.e. the ex ante effect of an increase in variance, for a two-period model as described by eq. (5) and for
various values of σ = 1/(1− ρ) and three specifications of g(H): g(H) = H, g(H) = ln(H) and g(H) = −1/H.

Assumed parameter values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.
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Figure 3: Numeric Approximation of the Effect of Risk on the Expected Value of Human Capital
Notes: This figure presents numerical solutions to the derivative of E(H3) wrt to the standard deviation of the

shock (σθ = r), i.e. the combined ex ante and ex post effect of an increase in variance, for a two-period model as
described by eq. (5) and for various values of σ = 1/(1− ρ) and three specifications of g(H): g(H) = H,

g(H) = ln(H) and g(H) = −1/H. Assumed parameter values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.
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Figure 4: Lowess-smoothed Study Time by Season
Notes: This figure plots the fitted values of a lowess-regression (bandwidth = 0.3, degree = 1) of s3 on s1 and s2.
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Figure 5: Study Time by Season: Model and Data Estimates
Notes: This figure plots the estimated quadratic relationship between s3 and s1 and s2 from the simulated data

(black) and actual data (grey). The parameter estimates (α1 − α5) are given by table 2.
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Figure 6: Study Time by Season and by Parental Type
Notes: This figure plots the estimated quadratic relationship between s3 and s1 and s2 for the high-type parent

(white), for the low-type parent (dark grey), and for both types combined (grey).
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Figure 7: First Derivatives of Parametric and of Empirical Value Functions at Various Grades

(a) Low type

(b) High type
Notes: This graph shows the first derivatives w.r.t. H of the estimated (grade 3) parametric value function

(ζig(H7)) and of the adjusted grade 9 parametric value function (ζig(H28)), as well as of the derived empirical
value functions from grade 2 (light grey) through grade 9 (dark grey). Dotted lines are no risk cases, dash-dot lines
are the cases with risk. Panel (a) shows the derivatives for the low type (ϕ = 1.105) and panel (b) for the high type

(ϕ = 1.202).
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Figure 8: Effect of Rainfall Shocks
Notes: The figures plot linear predictions and 95% confidence intervals from regressions of each outcome variable on
dummies for each quintile of the rainfall distribution. Each quintile dummy equals 1 if total annual rainfall in the

current agricultural year fell within the given quintile of the village’s usual rainfall distribution and equals 0
otherwise. Each regression controls for state-by-round of interview fixed effects, for the share of area that is

irrigated within a village, and for lagged rainfall (in log mms) in the past 3 years (2 years in Panel A). Panels C and
D additionally control for age-by-gender and season-by-round of interview fixed effects. Standard errors are

corrected to allow for clustering at the level of the grid cell by round of interview.
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Panel A: Total annual precipitation (log)

0
.0

05
.0

1
.0

15
.0

2
.0

25

8.4 8.6 8.8 9 9.2

Quartile 1 Quartile 2
Quartile 3 Quartile 4
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Panel C: Pred. consumption p.c. (log), 1999
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Figure 9: Distribution of Rainfall and Predicted Consumption by Quartiles of Baseline Irrigation
Notes: This figure plots the kernel densities of total annual rainfall (log), and predicted consumption expenditures
per capita (log) in REDS villages in the rounds 1981-82, 1998-99 and 2007-08. In all four graphs, the REDS villages

are split into quartiles of irrigation share in 1981-82.
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Tables

Table 1: Study Time across Seasons

(1) (2) (3) (4) (5)

Study time, season 1 0.573∗∗∗ 0.571∗∗∗ 0.571∗∗∗ 0.576∗∗∗ 0.568∗∗∗

(0.040) (0.039) (0.039) (0.039) (0.040)

Study time, season 1 (square) 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.025∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Study time, season 2 0.453∗∗∗ 0.471∗∗∗ 0.471∗∗∗ 0.473∗∗∗ 0.474∗∗∗

(0.041) (0.040) (0.040) (0.040) (0.041)

Study time, season 2 (square) 0.045∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Study time, season 1 × season 2 -0.080∗∗∗ -0.081∗∗∗ -0.081∗∗∗ -0.081∗∗∗ -0.082∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)

Rainfall controls N Y Y Y Y

Income, wealth, area, hh size, risk N N Y Y Y

State-by-round FE N N N Y Y

Village-by-round FE N N N N Y

Observations 17186 17186 17186 17186 17186
Adjusted R2 0.796 0.806 0.806 0.808 0.816

Notes: The dependent variable is study time in season 3. Each regression controls for village, round of
interview, and age-by-gender fixed effects. Rainfall controls are current and lagged rainfall in past 3 years
(in log mms). Income, wealth and area are measured in per capita terms (and are in logs). Risk is the
interquartile range of predicted log consumption. Sample is restricted to 1998-99 and 2007-08 rounds of
interview. Standard errors (in parentheses) are corrected to allow for clustering at the level of the village
by round of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2: Match of the Auxiliary Model

Auxiliary model parameter Symbol Target Simulated Difference

Effect of s1 on s3 α1 0.568 0.596 0.028

Effect of s2 on s3 α2 0.474 0.483 0.009

Effect of (s1)
2 on s3 α3 0.025 0.020 -0.006

Effect of (s2)
2 on s3 α4 0.044 0.066 0.022

Effect of (s1 × s2) on s3 α5 -0.082 -0.100 -0.018

Effect of s1 on s2 γ1 1.003 1.237 0.234

Effect of (s1)
2 on s2 γ2 -0.014 -0.028 -0.014

Mean of s1 µs1 6.860 7.065 0.205

Standard deviation of s1 σs1 2.884 3.179 0.294

Mean of s2 µs2 6.900 6.972 0.071

Standard deviation of s2 σs2 2.879 3.095 0.215

Mean of s3 µs3 6.608 6.810 0.202

Standard deviation of s3 σs3 2.905 3.371 0.465

Correlation (y2 − s2, y1 − s1) r1,2 0.260 0.307 0.047

Correlation (y3 − s3, y2 − s2) r2,3 0.286 0.459 0.172

Correlation (y3 − s3, y1 − s1) r1,3 -0.358 -0.217 0.141

Notes: Target parameter estimates α1 to α5 are given by table 1, col. (5), and γ1 and
γ2 by table D.7, col (5).
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Table 3: Estimated Structual Parameters and Sensitivity Matrix

Symbol ζL ∆ζ ϕ σ δ yL ∆y ω1 ω2 ω3

Panel A: Structural Parameters

Estimate 5.284 6.992 1.499 0.290 1.357 14.020 26.088 0.072 0.087 -0.023
0.831 1.408 0.074 0.007 0.015 0.198 0.826 0.008 0.005 0.006

Panel B: Sensitivity Matrix

α1 -0.101 -0.129 -0.025 -0.006 0.002 0.015 0.004 -0.002 -0.010 -0.021

α2 -0.148 -0.183 -0.035 -0.001 -0.006 0.024 0.009 -0.031 0.009 -0.081

α3 -0.171 -0.206 -0.045 -0.017 0.000 0.019 -0.003 -0.002 -0.015 -0.024

α4 -0.144 -0.158 -0.032 -0.025 -0.001 0.021 0.015 -0.054 0.006 -0.131

α5 -0.163 -0.174 -0.038 -0.031 0.001 0.022 0.012 -0.041 -0.015 -0.085

γ1 -0.090 -0.093 -0.039 -0.020 -0.006 -0.015 -0.043 0.028 0.035 -0.071

γ2 -0.113 -0.123 -0.044 -0.016 -0.006 -0.010 -0.041 0.026 0.032 -0.078

µs1 -0.138 -0.200 -0.045 0.016 -0.005 0.011 -0.033 0.026 0.022 -0.007

σs1 0.083 0.097 0.013 0.000 0.000 -0.024 -0.014 0.020 0.025 0.009

µs2 0.327 0.455 0.107 -0.050 0.024 -0.025 0.083 -0.105 -0.068 -0.074

σs2 0.153 0.228 0.070 -0.052 0.019 0.014 0.090 -0.085 -0.125 -0.056

µs3 -0.192 -0.252 -0.064 0.033 -0.019 0.010 -0.050 0.081 0.043 0.074

σs3 -0.238 -0.310 -0.083 0.053 -0.015 0.005 -0.068 0.064 0.091 0.036

r1,2 0.002 0.001 0.000 0.001 -0.001 -0.001 -0.004 0.070 0.010 0.007

r2,3 0.029 0.035 0.007 -0.005 0.002 -0.004 0.000 0.005 0.056 0.012

r1,3 0.049 0.064 0.016 -0.005 0.003 -0.001 0.011 -0.093 -0.012 -0.257

Notes: Parameters of the structural model Ψ = [ζL,∆ζ, ϕ, σ, δ, yL,∆y, ω1, ω2, ω3] are estimated by indirect
inference. ∆ζ = ζH − ζL, and ∆y = yH − yL. Standard errors are in parentheses. The parameters of
the auxiliary model are B̂ = [α1, α2, α3, α4, α5, γ1, γ2, µs1 , σs1 , µs2 , σs2 , µs2 , σs3 , r1,2, r2,3, r1,3]. The Sensitivity
Matrix is expressed in semi-elasticities multiplied with the standard deviation of the moment of B̂ so that the
elements of Λ can be interpreted as the relative change in the parameter of Ψ that can be attributed to a one
standard deviation change in the parameter of B̂.
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Table 4: Predicted Human Capital, Study Time and Elasticities with respect to Variance

Predicted levels Variance Elasticities
without variance with variance total ex ante

Grade t Ht Ht+3 st − st+2 Ht+3 st − st+2 var(st) Ht+3 st Ht+3 st
Panel A: Low-return household

1 1 n.a. 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175

2 4 6.929 6.580 5.866 6.339 5.510 0.589 -0.144 -0.183 -0.094 -0.167

3 7 6.339 6.032 4.498 5.933 4.303 0.301 -0.147 -0.180 -0.090 -0.154

4 10 5.933 5.696 3.466 5.646 3.346 0.162 -0.150 -0.186 -0.088 -0.150

5 13 5.646 5.471 2.662 5.442 2.586 0.090 -0.151 -0.190 -0.086 -0.146

6 16 5.442 5.314 2.049 5.296 1.998 0.051 -0.152 -0.183 -0.084 -0.138

7 19 5.296 5.203 1.577 5.191 1.541 0.029 -0.152 -0.183 -0.083 -0.136

8 22 5.191 5.122 1.212 5.114 1.187 0.017 -0.152 -0.185 -0.082 -0.135

9 25 5.114 5.064 0.931 5.058 0.913 0.010 -0.152 -0.184 -0.082 -0.133

Total 5.775 5.058 -0.142

Panel B: High-return household

1 1 n.a. 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150

2 4 10.232 9.854 9.005 9.488 8.463 1.624 -0.147 -0.185 -0.093 -0.169

3 7 9.488 9.094 6.994 8.944 6.688 0.839 -0.150 -0.182 -0.089 -0.156

4 10 8.944 8.630 5.432 8.556 5.246 0.442 -0.151 -0.180 -0.086 -0.146

5 13 8.556 8.320 4.209 8.278 4.088 0.242 -0.152 -0.179 -0.084 -0.140

6 16 8.278 8.104 3.253 8.078 3.171 0.135 -0.152 -0.179 -0.083 -0.136

7 19 8.078 7.950 2.510 7.933 2.452 0.076 -0.152 -0.177 -0.081 -0.132

8 22 7.933 7.839 1.934 7.827 1.893 0.044 -0.152 -0.176 -0.081 -0.129

9 25 7.827 7.758 1.488 7.750 1.459 0.025 -0.152 -0.175 -0.080 -0.127

Total 8.834 7.750 -0.140

Notes: Levels of st and Ht+3 are obtained from numerically solving the dynamic model for three seasons of each grade
as described by eq. (12) and parameter vector Ψ shown in table 3, and calculating the weighted average over 27 possible
combinations of yH , yM and yL for each type.
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Table 7: Effect of Risk on School Attendance

(1) (2) (3) (4) (5)

Panel A:
IQR of predicted log consumption -0.998∗∗ -1.025∗∗ -1.019∗∗ -0.969∗∗ -0.889∗

(0.297) (0.299) (0.299) (0.278) (0.302)
[0.039] [0.037] [0.036] [0.028] [0.057]

Treatment Mean 0.035 0.035 0.035 0.035 0.035
Treatment Std. Dev. 0.030 0.030 0.030 0.030 0.030

Adjusted R2 0.207 0.208 0.209 0.228 0.240

Panel B:
SD of predicted log consumption -1.154∗∗ -1.166∗∗ -1.158∗ -1.096∗∗ -1.006∗

(0.379) (0.388) (0.388) (0.358) (0.383)
[0.050] [0.050] [0.055] [0.045] [0.081]

Treatment Mean 0.027 0.027 0.027 0.027 0.027
Treatment Std. Dev. 0.023 0.023 0.023 0.023 0.023

Adjusted R2 0.207 0.208 0.208 0.228 0.239

Rainfall controls N Y Y Y Y

Rainfall by schoolage N N Y Y Y

Income, wealth, area, hh size N N N Y Y

State-by-round FE N N N N Y

Dep. Var. mean 0.762 0.762 0.762 0.762 0.762

Observations 68301 68301 68301 68301 68301

Notes: Each regression controls for village, season-by-round of interview, and age-by-gender fixed effects.
Rainfall controls are current and lagged rainfall in past 3 years (in log mms), and the standard deviation
of rainfall over the last three years. Rainfall by schoolage additionally interacts each rainfall lag with
a dummy that equals 1 of the child was 6 years or older in that year. Income, wealth and area are
measured in per capita terms (and are in logs). Standard errors (in parentheses) are corrected to allow
for clustering at the level of the village by round of interview. Percentile bootstrap-t p-values (null-
imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap
p-values.
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Table 8: Effect of risk on primary completion (male adults)

(1) (2)

Panel A:
IQR of predicted log consumption -1.104∗ -2.043∗

(0.496) (0.958)
[0.077] [0.089]

Treatment Mean 0.036 0.036
Treatment Std. Dev. 0.030 0.030

R2 0.234 0.711

Panel B:
SD of predicted log consumption -1.254 -2.280

(0.621) (1.173)
[0.108] [0.113]

Treatment Mean 0.028 0.028
Treatment Std. Dev. 0.023 0.023

R2 0.234 0.710

Dep. var. mean 0.800 0.800
Fixed Effects Village Household
Observations 7488 3396

Sample: Adult men observed in 2007-08 round of REDS.

Notes: Risk observed in village in 1981-82 is used as explanatory variable for men aged 35-46,
and risk observed in village in 1998-99 for men aged 18-29, hence we merge the level of risk at
ages between 10 and 21. Each regression controls for age and village fixed effects, and column (2)
additionally controls for household fixed effects. Standard errors (in parentheses) are corrected to
allow for clustering at the level of the village by round of interview. Percentile bootstrap-t p-values
(null-imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to
bootstrap p-values.
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Table 9: Effect of Risk on Economic Outcomes

Income Wealth Land Cons. exp Curr. savings Agr. prod. Mat. labor
(=1) supply

(1) (2) (3) (4) (5) (6) (7)

PANEL A:
IQR of predicted log consumption -2.018 -1.853 1.411 -1.513∗∗ -3.244 0.337 -3.427

(1.138) (0.841) (1.438) (0.429) (1.673) (0.286) (2.703)
[0.299] [0.141] [0.463] [0.024] [0.207] [0.406] [0.333]

Treatment Mean 0.035 0.035 0.035 0.035 0.035 0.035 0.035
Treatment Std. Dev. 0.030 0.030 0.030 0.030 0.030 0.030 0.030

Adjusted R2 0.147 0.287 0.209 0.347 0.277 0.171 0.305

PANEL B:
SD of predicted log consumption -2.328 -2.326 2.313 -1.985∗∗ -3.634 0.624 -3.168

(1.356) (1.089) (1.763) (0.563) (2.162) (0.391) (3.508)
[0.292] [0.167] [0.339] [0.030] [0.261] [0.290] [0.507]

Treatment Mean 0.027 0.027 0.027 0.027 0.027 0.027 0.027
Treatment Std. Dev. 0.023 0.023 0.023 0.023 0.023 0.023 0.023

Adjusted R2 0.147 0.287 0.209 0.347 0.277 0.171 0.305

Dependent variable mean ln(16688) ln(31314) ln(0.778) ln(11274) ln(7090) 0.789 3.044
Observations 20445 20445 20445 20445 11496 20445 33486

Notes: Income, land owned, wealth (value of all assets owned), consumptions expenditures and savings (if > 0) are expressed in per capita terms and
logs. Maternal labor supply is in hours per day for three seasons. Each regression controls for village, state-by-round of interview fixed effects, and for
current and lagged rainfall in past 3 years (1 years in cols. (1) and (6), in log mms), and for the standard deviation of rainfall over the last three years.
Col. (6) additionally controls for age and for season-by-round of interview fixed effects. Standard errors (in parentheses) are corrected to allow for
clustering at the level of the village by round of interview. Percentile Bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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A Mathematical Appendix

A.1 Incorporating child home production

A model that fits our data better links risk and schooling via the time children allocate to home
production. While the share of time that children in our sample allocate to the labor market is
declining strongly over time, we find that boys and girls allocate time to household chores and to
own agricultural production throughout. Importantly, this time-allocation seems to be responsive
to rainfall shocks (with children spending more time on these activities when faced with a negative
income shock).

To generate this pattern in the absence of a child labor market, we incorporate a home produced
good in the model, as well an ex post labor supply response to income shocks on the part of the
parent. The idea is that parents supply more labor to the labor market in the face of an adverse
shock to cope with the shock, as found by Kochar (1999); Rose (2001); Jayachandran (2006) and
— at least for mothers — also in our data.51 As long as there is substitution between the parent’s
and the child’s time in home production, the opportunity cost of time of the child must rise during
bad periods even though the child is unlikely to be active in the labor market (Skoufias, 1993; Ilahi,
2000).

The single-period utility function u over the market-produced good cmt and the home-produced
good cht is assumed to be log Cobb-Douglas with share parameter α:

Ut = u(cmt , c
h
t ) = α ln cmt + (1− α) ln cht . (A.1)

Market goods are purchased using cash income that is earned by the parent with wage wt and a
time allocation of T a−hat , where T a is her time endowment and hat is the time spent by the parent
in home production,

cmt = It + θt + wt(T
a − hat ). (A.2)

It is the non-stochastic part of income (for example non-labor income), and θt is a shock realized
at time t. Consumption of the home-produced good is linear in the allocation of time by the parent
hat and the child hct ,

cht = hat + ηhct , (A.3)

where η captures the relative productivity of the child in home production. School time, then,
is the difference between the child’s time endowment T c and the amount of time spent in home
production:

hct = T c − st (A.4)

Parental time at home in each period is:

hat = (1− α)T a − αηhc1 +
(1− α)

wt
(It + θt). (A.5)

The result is decreasing in the child’s home time and the wage, and increasing in the income
endowment and shock. With a more favorable shock or a lower wage, the parent spends less time

51As described in the empirical section, we do not observe paternal time use.
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in the labor market and more time at home. If we then define

yt = T a + ηT c +
(It + θt)

wt
, (A.6)

we can rewrite eq. (A.1) to get a period utility that corresponds to that used in our initial model
plus a constant, in which the price of schooling now varies with η

Ut = (1− α) ln(1− α) + α ln(wt) + α ln(α) + ln(yt − ηst) (A.7)

In the theoretical section, we normalize η to 1 without loss of generality. In the empirical analysis,
we control for a vector of age-by-gender fixed effects to capture any differences in the price of
schooling that can be attributed to η. Note that wt appears as additive component in eq. (A.7)
but not in the the main model. As wages fluctuate with rainfall, a rainfall shock (i.e. θ is negative)
would reduce wages and labor supply in eq. (A.5), which could counteract the positive direct effect
of the shock on parental labor supply. Empirically, this effect seems to be minimal, however, as
parents do respond to rainfall shocks by increasing labor supply (such that the income effect of the
shock must be dominating the wage effect). We therefore believe that treating wt as a constant is
a reasonable approximation in this context.

A.2 Incorporating savings

If we extend the simple two-period model to allow for savings or borrowings in period one against
period two, the objective function becomes

v1 = max
s1,s2

ln(y1 − s1 − a1) + E1[ln(y2 + θ2 + a1 − s2) + ζg(H3)], (A.8)

where a1 is the amount saved or borrowed in period one, and we abstract from the interest rate (i.e
we assume it equals 1). Note that this formulation does not allow the household to borrow beyond
period 2. We again solve this expression numerically for various ρ and three functional forms of
g(H). As before, we use parameter values of y1 = y2 = 10, r = 1, ν = 1/2, ζ = 1.

We now find a negative effect of risk on first-period schooling over all values of ϕ and ρ as
depicted in Figure C.3. This can be explained by a additional income-smoothing mechanism, that
encourages households to save in the first period, in order to smooth consumption in the second
period. Yet, this effect reverses in the second period, where the effect of risk on the expected value
of second period schooling is positive except for very small ρ (see Figure C.4). The net effect on
total human capital, finally, is exactly identical to the case without savings (see Figure C.5).

This exercise highlights the importance of distinguishing a negative effect of risk on first-period
schooling that is due to income smoothing from a negative effect of risk that is due to dynamic
complementarity. Yet, it also identifies a potential strategy to distinguish both mechanisms: While
the effect of risk on schooling is positive in expectation ex post to shocks in a situation where the ex
ante negative effect is driven by income smoothing concerns, it continues to be negative throughout
for very concave preferences over human capital and no savings (see figure C.6). For log-utility and
for linear preferences, the predicted effect of risk on the expected value of s2 turns positive for
moderate complementarity in production, but remains close to zero throughout.
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B Data Appendix

B.1 REDS Data

Our primary data set is the Rural Economic and Demographic Survey (REDS). The REDS is the
follow-up survey of the Additional Rural Incomes Survey (ARIS), which was carried out between
1969 and 1971. The ARIS sample was designed to represent the rural population of India across
17 major states, and covers 4,527 households in 259 villages. The REDS expanded the thematic
coverage of the ARIS, and in addition to revisiting the original ARIS households, increased the
sample size by randomly sampling additional households from the same villages. The REDS data
were collected in 1981-82, 1998-99, and 2007-08.52 We use data from all three REDS rounds, but
restrict the sample to the 242 villages from which data were collected consistently.53 Because the
sample size increased substantially over time, we re-weight all observations to give equal weight to
each of the three survey rounds.

The REDS is particularly suited for the analysis proposed here, as it collects detailed information
on time use for all women in the household and their children (linked through a mother identifier).
This information refers the hours per day allocated to an extensive list of activities on a typical
day, and is collected for three seasons of the year, which are also marked by very different levels of
agricultural activity. The reference months are: October/November (season one), February (season
two), and April/May (season three).54 Importantly, this data explicitly differentiates between time
in school, time allocated to household chores, to farm work, to the labor market and to leisure.

We restrict the sample to households with complete information on village irrigation, and on
household consumption consumption and income. This sample consists of 4,704 households in 1981-
82, 7,148 households in 1998-999 and 8,593 households in 2007-08. Table D.1 reports summary
statistics for these households. In order to use the available information efficiently, we use this
sample to estimate the effect of shocks on household level outcomes, and to calculate the risk
variable.

During the time period we study, agriculture is the dominant source of income for the majority of
households in rural India, either through own agricultural production or through casual agricultural
employment. In the REDS sample, the share of households involved in agricultural production
decreased from 86% in 1982 to 71% in 2007-08. Yet, even in 2007-08, total household income
still consists to 57% of income from casual employment in agriculture and from own agricultural
production (see Table D.1).55

Over this time period, the share of the net area cultivated that is under irrigation has increased
from 51% to 60% in our sample (see Table D.1). This is higher than the national average, but
follows similar trends: According to the Directorate of Economics and Statistics, the share of the
net area sown that is under irrigation at the national level increased from 28% in 1980-81 to 45%
in 2007-08 (Directorate of Economics and Statistics, 2019).

52A reduced version of the questionnaire was also administered between 2014 and 2016. This survey did not collect
information on time allocation, but can be used to simulate the effects of NREGS in Section 5.

53Due to ongoing conflict, no data were collected in Jammu & Kashmir in the 1998-99 and 2007-08 round of
interviews (11 villages), and in Assam in the 1981-81 and 2007-08 round of interviews (8 villages). The 242 villages
for which data were collected in all three rounds are distributed across 15 states (17 states since the foundation of
Chhattisgarh and Jharkhand in 2000).

54As such, season one corresponds to the harvest period of rice (and planting period of wheat). Season two is the
slack season, and season three the planting period of rice (and harvest period of wheat). In 2007-08, the questionnaire
did not make reference to precise months.

55The agricultural year in India typically lasts from July to June, and the main harvest is strongly influenced by
the onset of the monsoon and precipitation levels during the monsoon. The monsoon onset varies across places in
India, but is usually between May and July, and its end is mostly around September or October.
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In our main analysis, then, we focus on all children aged 6 to 15 with complete information on
time allocation across all three seasons. We focus on the age group 6 to 15 because most children
still live at home at this age, and because the questionnaire only collects this information for women
in the household and her own (co-resident) children (not her sons or daughters in-law) in 1981-82
and in 1998-99. By restricting ourselves to younger ages, we seek to minimize any selection bias
that could arise if children with low education were more likely to leave the house at younger ages
(e.g. in order to get married). Because not all households have children in this age group, the
child sample comprises 5,581 children from 2,388 households in 1981-82, 8,424 children from 3,818
households in 1998-99, and 8,762 children from 4,472 households in 2007-08. The unit of observation
in the main estimation is the child by agricultural season and round of interview, resulting in a
final sample size of 68,301 observations. Child-by-season level summary statistics are reported in
Table D.2. Note that is is not possible to track individuals across time in the REDS data. While
we can follow a subset of households over time (and control for household fixed effects in part of
the analysis), we cannot control for individual fixed effects.

Achieving universal education has been the declared goal of Indian governments since indepen-
dence. The Right to Education Act of 2002 declares free and compulsory education a fundamental
right of children aged 6 to 14. Since then, substantial improvements have been made in the enroll-
ment rates of boys and girls and in closing the gender gap in primary school enrollment, which are
also reflected in our data. In the REDS sample, the share of boys aged 6 to 15 that are attending
school increased from 68% in 1981-81 to 93% in 2007-08. Likewise, the share of girls that are
attending school increased from 53% to 91% in the same age group.56

The time use data presented in Table D.2 shows that boys and girls spend most of the day
in school but that other activities are important, too. Boys in our sample spend on average 5.5
(7.1) hours per day in school or studying in 1981-82 (2007-08). They also spend an average of 2.9
(1.0) hours per day on household chores, and 1.6 (0.1) hours per day working on-farm or on the
labor market. Girls spend slightly less time in school (4.2 hours per day in 1981-82 and 6.9 hours
in 2007-08), and more time on household chores (4.8 hours per day in 1981-82 and 1.3 hours in
2007-08). As found in previous work, agricultural work and wage work are a little less relevant for
girls: they spend about 1.1 (0.1) hours per day these activities in 1981-82 (2007-08). In terms of
leisure, finally, we do not observe substantial differences between boys and girls, but an increase in
time allocated to leisure over time.57 In figure C.7, we graph the average time children spend on
different activities on a typical day by age and gender.

B.2 Weather Data

To obtain precise rainfall data, we merge our data with ERA5 (reanalysis) monthly averaged pre-
cipitation data (Copernicus Climate Change Service, 2017). ERA5 is the fifth generation reanalysis
for the global climate and weather by the European Center for Medium-Range Weather Forecasts
(ECMWF). The data is available since 1979, and in grid cells of 0.25x0.25 degrees (approximately
31x31 km). We calculate total annual rainfall in Millimeters, and merge the data point that is
closest to the village centroid.

56Note that these figures are likely smaller than actual enrollment rates, because this variable captures whether
a child is actually attending school in a given time period. Also, the reference period of season three (April/May)
could overlap with summer vacations in the southern states of India.

57Note, that the questionnaire changed in how it elicited leisure over survey rounds. Leisure includes sleep time in
all cases, but in the rounds 1981-82 and 1998-99, the questionnaire only accounts for hours between 04:00 and 24:00,
whereas the 2007-08 questionnaire accounts for 24 hours. Thus by construction, leisure should be around 4 hours
higher in 2007-08.
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Some villages fall in the same cell, resulting in 195 unique data points per round of interview.
We merge the precipitation data by the agricultural year to explain agricultural production and
income, i.e. we use May 1998 to April 1999 rainfall to explain agricultural income, area cultivated
and yields of the agricultural year 1998-99, and so forth. Note, that the consumption module and
the time use module in the REDS do not refer to the last agricultural year, but to the last 12
months prior to the interview (except in 1998-99, where the consumption module also refers to the
AY 1998-99). We therefore merge precipitation data of the current year, i.e. May 1982 to April
1983, for interviews conducted in the fall of 1982, and so forth. Apart from generating the best fit,
this seems sensible because the bulk of household consumption consists of food products, and food
consumption is typically extrapolated from last month’s consumption to the entire year.

B.3 SEPRI Data

The Socio-Economic Profiles of Rural Households in India (SEPRI) data of 2014 and 2016 is a
follow-up survey to the REDS. It that was collected in 13 states of India: Andhra Pradesh, Bihar,
Chhattisgarh, Gujarat, Haryana, Jharkhand, Madhya Pradesh, Maharashtra, Orissa, Rajasthan,
Tamil Nadu, Uttar Pradesh, and West Bengal.

It samples the entire population of the REDS survey villages, but applies a questionnaire that
is considerably shorter than the REDS. We drop Gujarat from the analysis because information
about the NREGS was not collected for all villages in that state. The rainfall data covers the
agricultural year 2012/13 for interviews conducted in 2014, and the agricultural year 2014/15 for
interviews conducted in 2016. We also use a one year lag of employment generation within the
NREGS (captured in the village questionnaire) to minimize concerns about reverse causality.
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C Supplementary Figures

Figure C.1: Numeric Approximations of the Effect of Risk on First Period Schooling with High
Risk
Notes: This figure presents numerical solutions to the derivative of s1 wrt to the standard deviation of the shock
(σθ = r), i.e. the ex ante effect of risk, for a two-period model as described by eq. (5) and for various values of

σ = 1/(1− ρ) and three specifications of g(H): g(H) = H, g(H) = ln(H) and g(H) = −1/H. Assumed parameter
values are y1 = 10, y2 = 10, ν = 1/2, r = 5 and ζ = 1.
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Figure C.2: Effect of Risk on School Attendance by Age
Notes: This figure plots the age-specific coefficients of risk and 90% confidence intervals from a regression of school
attendance on risk interacted with dummies for each age. The regression controls for village, season-by-round of
interview and gender fixed effects, for current and for lagged rainfall in the past 3 years (in log mms), and the
standard deviation of rainfall over the last 3 years. The regression also controls for income, wealth and area (all

measured in per capita terms, in logs) and for household size. Standard errors are corrected to allow for clustering
at the level of the grid cell by round of interview.
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Figure C.3: Numeric Approximations of the Effect of Risk on First Period Schooling with Savings
Notes: This figure presents numerical solutions to the derivative of s1 wrt to the standard deviation of the shock

(σθ = r), i.e. the ex ante effect of risk, for a two-period model that allows for precautionary savings as described by
eq. (A.8) and for various values of σ = 1/(1− ρ) and three specifications of g(H): g(H) = H, g(H) = ln(H) and

g(H) = −1/H. Assumed parameter values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.
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Figure C.4: Numeric Approximations of the Effect of Risk on Expected Second Period Schooling
with Savings
Notes: This figure presents numerical solutions to the derivative of E[s2] wrt to the standard deviation of the shock
(σθ = r), i.e. the ex post effect of risk, for a two-period model with precautionary savings as described by eq. (A.8)

and for various values of σ = 1/(1− ρ) and three specifications of g(H): g(H) = H, g(H) = ln(H) and
g(H) = −1/H. Assumed parameter values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.
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Figure C.5: Numeric Approximations of the Effect of Risk on Final Human Capital with Savings
Notes: This figure presents numerical solutions to the derivative of E[H3] wrt to the standard deviation of the shock
(σθ = r), i.e. the combined ex ante and ex post effect of risk, for a two-period model with precautionary savings as

described by eq. (A.8) and for various values of σ = 1/(1− ρ) and three specifications of g(H): g(H) = H,
g(H) = ln(H) and g(H) = −1/H. Assumed parameter values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.
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Figure C.6: Numeric Approximations of the Effect of Risk on Expected Second Period Schooling
— No Savings
Notes: This figure presents numerical solutions to the derivative of E[s2] wrt to the standard deviation of the shock

(σθ = r), i.e. the ex post effect of risk, for a two-period model as described by eq. (5) and for various values of
σ = 1/(1− ρ) and three specifications of g(H): g(H) = H, g(H) = ln(H) and g(H) = −1/H. Assumed parameter

values are y1 = 10, y2 = 10, ν = 1/2, r = 1 and ζ = 1.

11



0
5

10
15

20
C

hi
ld

 T
im

e 
U

se

6 7 8 9 10 11 12 13 14 15
Age

Study Chores
Own-farm Labor m.
Leisure

Panel A: Girls

0
5

10
15

20
C

hi
ld

 T
im

e 
U

se

6 7 8 9 10 11 12 13 14 15
Age

Study Chores
Own-farm Labor m.
Leisure

Panel B: Boys

Figure C.7: Time-Use of Children by Gender and Age
Notes: This figure shows the average reported time use of children in hours per day by age and gender.
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Table D.2: Individual Characteristics

1981-82 1999-99 2007-08
Mean SD Mean SD Mean SD

PANEL A: Boys

Age 10.4 2.79 10.2 2.81 10.9 2.76
Attending school 0.68 0.47 0.81 0.39 0.93 0.25
Hours per day: wage work 0.78 2.26 0.27 1.15 0.10 0.89
Hours per day: on-farm agriculture 0.85 2.56 0.13 0.83 0.037 0.42
Hours per day: household chores 2.91 3.56 1.69 2.37 1.04 1.56
Hours per day: studying 5.45 4.22 6.88 3.70 7.08 2.62
Hours per day: leisure 8.87 3.70 11.0 3.57 14.3 1.40

Observations 9048 13440 14517

PANEL B: Girls

Age 10.2 2.78 10.2 2.79 10.8 2.77
Attending school 0.53 0.50 0.74 0.44 0.91 0.29
Hours per day: wage work 0.53 1.82 0.26 1.10 0.058 0.65
Hours per day: on-farm agriculture 0.57 2.02 0.11 0.73 0.011 0.21
Hours per day: household chores 4.75 4.39 2.48 2.95 1.33 1.84
Hours per day: studying 4.19 4.31 6.23 4.01 6.89 2.81
Hours per day: leisure 8.76 3.85 10.9 3.82 14.2 1.48

Observations 7695 11832 11769

PANEL C: Mothers

Age of mother 34.9 6.90 34.3 6.65 36.0 7.27
Number of children born alive to mother 4.88 2.21 3.53 1.67 3.35 1.67
Hours per day: wage work 1.54 2.98 1.54 2.81 1.29 2.85
Hours per day: on-farm agriculture 2.39 3.55 1.43 2.32 0.88 1.96
Hours per day: household chores 9.38 3.78 9.71 2.93 7.92 2.83

Observations 7806 12504 13176

Notes: The unit of observation is the individual by season.
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Table D.3: Study Time Across Seasons (All Interview Rounds)

(1) (2) (3) (4) (5)

Study time, season 1 0.663∗∗∗ 0.667∗∗∗ 0.666∗∗∗ 0.679∗∗∗ 0.689∗∗∗

(0.044) (0.045) (0.046) (0.048) (0.048)

Study time, season 1 (square) 0.019∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.019∗∗∗ 0.018∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Study time, season 2 0.361∗∗∗ 0.359∗∗∗ 0.357∗∗∗ 0.344∗∗∗ 0.337∗∗∗

(0.049) (0.050) (0.050) (0.052) (0.054)

Study time, season 2 (square) 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.050∗∗∗ 0.051∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)

Study time, season 1 × season 2 -0.079∗∗∗ -0.079∗∗∗ -0.079∗∗∗ -0.081∗∗∗ -0.082∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)

Rainfall controls N Y Y Y Y

Income, wealth, area, hh size, risk N N Y Y Y

State-by-round FE N N N Y Y

Village-by-round FE N N N N Y

Observations 22767 22767 22767 22767 22767
Adjusted R2 0.811 0.818 0.819 0.823 0.834

Notes: The dependent variable is study time in season 3. Each regression controls for village, round of
interview, and age-by-gender fixed effects. Rainfall controls are current and lagged rainfall in past 3 years
(in log mms). Income, wealth and area are measured in per capita terms (and are in logs). Risk is the
interquartile range of predicted log consumption. Standard errors (in parentheses) are corrected to allow
for clustering at the level of the village by round of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.4: Study Time Across Seasons (Panel Households Only)

(1) (2) (3) (4) (5)

Study time, season 1 0.603∗∗∗ 0.604∗∗∗ 0.604∗∗∗ 0.557∗∗∗ 0.557∗∗∗

(0.048) (0.048) (0.048) (0.065) (0.066)

Study time, season 1 (square) 0.019∗∗∗ 0.019∗∗∗ 0.019∗∗∗ 0.018∗∗∗ 0.016∗∗

(0.005) (0.005) (0.005) (0.007) (0.007)

Study time, season 2 0.438∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.535∗∗∗ 0.548∗∗∗

(0.049) (0.050) (0.050) (0.067) (0.069)

Study time, season 2 (square) 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.030∗∗∗ 0.027∗∗∗

(0.005) (0.005) (0.005) (0.007) (0.007)

Study time, season 1 × season 2 -0.075∗∗∗ -0.075∗∗∗ -0.075∗∗∗ -0.068∗∗∗ -0.066∗∗∗

(0.006) (0.006) (0.006) (0.009) (0.009)

Rainfall controls N Y Y Y Y

Income, wealth, area, hh size, risk N N Y Y Y

Household-specific time trend N N N Y Y

Village-by-round FE N N N N Y

Observations 18404 18404 18404 18404 18403
Adjusted R2 0.860 0.860 0.860 0.895 0.893

Notes: The dependent variable is study time in season 3. Each regression controls for household, state-
by-round of interview, and age-by-gender fixed effects. Rainfall controls are current and lagged rainfall
in past 3 years (in log mms). Income, wealth and area are measured in per capita terms (and are in
logs). Risk is the interquartile range of predicted log consumption. Sample is restricted to households
that are observed at least twice across the REDS rounds 1981-82, 1998-99, 2007-08. Standard errors
(in parentheses) are corrected to allow for clustering at the level of the village by round of interview. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.5: Study Time Across Seasons (Northern States only)

(1) (2) (3) (4) (5)

Study time, season 1 0.721∗∗∗ 0.721∗∗∗ 0.721∗∗∗ 0.744∗∗∗ 0.757∗∗∗

(0.052) (0.054) (0.054) (0.057) (0.057)

Study time, season 1 (square) 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)

Study time, season 2 0.305∗∗∗ 0.309∗∗∗ 0.306∗∗∗ 0.275∗∗∗ 0.262∗∗∗

(0.062) (0.063) (0.063) (0.066) (0.068)

Study time, season 2 (square) 0.054∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.057∗∗∗ 0.058∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Study time, season 1 × season 2 -0.081∗∗∗ -0.081∗∗∗ -0.081∗∗∗ -0.084∗∗∗ -0.084∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Rainfall controls N Y Y Y Y

Income, wealth, area, hh size, risk N N Y Y Y

State-by-round FE N N N Y Y

Village-by-round FE N N N N Y

Observations 13982 13982 13982 13982 13982
Adjusted R2 0.809 0.810 0.810 0.815 0.825

Notes: The dependent variable is study time in season 3. Each regression controls for village, round of interview,
and age-by-gender fixed effects. Rainfall controls are current and lagged rainfall in past 3 years (in log mms).
Income, wealth and area are measured in per capita terms (and are in logs). Risk is the interquartile range of
predicted log consumption. Sample is restricted to northern states of India, i.e. we drop Karnataka, Kerala,
Tamil Nadu, Andhra Pradesh, and Maharashtra. Standard errors (in parentheses) are corrected to allow for
clustering at the level of the village by round of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.6: Study Time Across Seasons by Gender and Agegroup

Boys Girls Age ≤ 10 Age > 10
(1) (2) (3) (4)

Study time, season 1 0.606∗∗∗ 0.503∗∗∗ 0.576∗∗∗ 0.578∗∗∗

(0.052) (0.054) (0.049) (0.055)

Study time, season 1 (square) 0.025∗∗∗ 0.028∗∗∗ 0.025∗∗∗ 0.025∗∗∗

(0.005) (0.005) (0.005) (0.006)

Study time, season 2 0.430∗∗∗ 0.535∗∗∗ 0.509∗∗∗ 0.437∗∗∗

(0.051) (0.056) (0.052) (0.056)

Study time, season 2 (square) 0.051∗∗∗ 0.036∗∗∗ 0.042∗∗∗ 0.046∗∗∗

(0.005) (0.006) (0.005) (0.006)

Study time, season 1 × season 2 -0.088∗∗∗ -0.076∗∗∗ -0.083∗∗∗ -0.081∗∗∗

(0.006) (0.007) (0.006) (0.007)

Observations 9319 7866 8849 8335
Adjusted R2 0.792 0.840 0.816 0.815

Notes: The dependent variable is study time in season 3. Each regression controls for village-by-
round of interview and age-by-gender fixed effects, as well as for current and lagged rainfall in past
3 years (in log mms), for income, wealth and area (all measured in per capita terms and are in logs),
and for village risk (the interquartile range of predicted log consumption). Sample is restricted to
REDS 1998-99 and 2007-08. Standard errors (in parentheses) are corrected to allow for clustering
at the level of the village by round of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.7: Study Time Across Seasons 1 & 2

(1) (2) (3) (4) (5)

Study time, season 1 0.986∗∗∗ 0.994∗∗∗ 0.990∗∗∗ 0.994∗∗∗ 1.003∗∗∗

(0.026) (0.026) (0.026) (0.026) (0.028)

Study time, season 1 (square) -0.011∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.014∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Rainfall controls N Y Y Y Y

Income, wealth, area, hh size, risk N N Y Y Y

State-by-round FE N N N Y Y

Village-by-round FE N N N N Y

Observations 17186 17186 17186 17186 17186
Adjusted R2 0.791 0.794 0.795 0.795 0.798

Notes: The dependent variable is study time in season 2. Each regression controls for village, round of
interview, and age-by-gender fixed effects. Rainfall controls are current and lagged rainfall in past 3 years
(in log mms). Income, wealth and area are measured in per capita terms (and are in logs). Risk is the
interquartile range of predicted log consumption. Sample is restricted to REDS 1998-99 and 2007-08.
Standard errors (in parentheses) are corrected to allow for clustering at the level of the village by round
of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.8: Effect of Rainfall on Income by Season

(1) (2) (3)

Lagged Monthly Rainfall, January (log mms) -0.122∗∗ -0.149∗∗ -0.053
(0.054) (0.060) (0.082)

Lagged Monthly Rainfall, February (log mms) -0.019 0.040 0.240∗∗∗

(0.056) (0.061) (0.085)

Lagged Monthly Rainfall, March (log mms) 0.064 0.110∗ 0.059
(0.060) (0.066) (0.091)

Lagged Monthly Rainfall, April (log mms) 0.104 -0.026 -0.251∗∗

(0.070) (0.077) (0.106)

Lagged Monthly Rainfall, May (log mms) -0.082 0.173∗ 0.190
(0.081) (0.088) (0.122)

Lagged Monthly Rainfall, June (log mms) -0.028 0.064 -0.140
(0.107) (0.117) (0.161)

Lagged Monthly Rainfall, July (log mms) 0.223∗ 0.086 -0.005
(0.115) (0.126) (0.174)

Lagged Monthly Rainfall, August (log mms) -0.087 -0.015 -0.063
(0.110) (0.120) (0.165)

Lagged Monthly Rainfall, September (log mms) 0.142 0.252∗ -0.409∗∗

(0.126) (0.138) (0.191)

Lagged Monthly Rainfall, October (log mms) -0.181∗∗∗ -0.177∗∗∗ 0.273∗∗∗

(0.050) (0.055) (0.076)

Lagged Monthly Rainfall, November (log mms) -0.040 0.097 -0.012
(0.070) (0.077) (0.106)

Lagged Monthly Rainfall, December (log mms) 0.122∗ 0.000 -0.383∗∗∗

(0.063) (0.069) (0.095)

Monthly Rainfall, January (log mms) 0.124∗ 0.019 -0.326∗∗∗

(0.072) (0.078) (0.108)

Monthly Rainfall, February (log mms) -0.080∗ 0.030 0.079
(0.043) (0.047) (0.064)

Monthly Rainfall, March (log mms) 0.015 0.022 0.239∗∗∗

(0.059) (0.065) (0.089)

Monthly Rainfall, April (log mms) -0.092 -0.101 0.237∗∗

(0.076) (0.083) (0.114)

Observations 480 480 480
Dep. Var. mean 10.066 9.685 8.217
Adjusted R2 0.487 0.569 0.373

Notes: The dependent variable is seasonal income from agricultural production and wage labor. Unit
of observation is the village-by-round of interview. Each regression controls for village and round of
interview fixed effects. Sample is restricted to REDS 1998-99 and 2007-08. Robust standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.9: Estimated Structual Parameters — Robustness

Symbol ζL ∆ζ ϕ σ δ yL ∆y ω1 ω2 ω3

Panel A: Main estimates

Estimate 5.284 6.992 1.499 0.290 1.357 14.020 26.088 0.072 0.087 -0.023
Std error 0.831 1.408 0.074 0.007 0.015 0.198 0.826 0.008 0.005 0.006

Panel B: Constraining δ ≤ 1

Estimate 12.049 28.975 2.738 0.143 0.974 18.721 129.828 0.012 0.011 -0.007
Std error 0.864 2.947 0.043 0.002 0.015 0.197 1.138 0.001 0.001 0.001

Panel C: Initial probabilities of high, medium, low incomes = [1/5, 3/5, 1/5]

Estimate 2.718 2.573 1.640 0.242 1.127 19.572 73.621 0.066 0.044 -0.016
Std error 0.133 0.149 0.022 0.006 0.006 0.109 0.666 0.005 0.004 0.005

Panel D: Weighting matrix is inverse variance-covariance matrix

Estimate 4.899 6.963 1.542 0.289 1.376 13.418 29.212 0.062 0.079 -0.028
Std error 0.810 1.661 0.062 0.013 0.026 0.488 0.861 0.006 0.005 0.005

Panel E: Weighting matrix is identity matrix

Estimate 8.028 11.479 1.672 0.239 1.439 11.711 28.988 0.070 0.061 -0.030
Std error 0.916 1.781 0.060 0.008 0.018 0.242 1.283 0.008 0.005 0.006

Notes: Parameters of the structural model Ψ = [ζL,∆ζ, ϕ, σ, δ, yL,∆y, ω1, ω2, ω3] are estimated by indirect
inference. ∆ζ = ζH − ζL, and ∆y = yH − yL.
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Table D.10: Predicted Human Capital, Study Time and Variance Elasticities — Low-return Hh

Predicted levels Variance Elasticities
without variance with variance total ex ante

Grade Ht Ht+3 st − st+2 Ht+3 st − st+2 var(st) Ht+3 st Ht+3 st
1 4 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175
1 6 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175
1 8 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175
1 10 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175
1 12 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175
1 14 7.845 7.776 6.929 7.017 1.276 -0.132 -0.175 -0.094 -0.175

2 4 4.161 4.648 4.090 4.442 0.325 -0.137 -0.175 -0.100 -0.155
2 6 5.875 5.547 5.699 5.239 0.495 -0.141 -0.180 -0.096 -0.163
2 8 7.323 6.174 7.002 5.769 0.672 -0.137 -0.177 -0.084 -0.164
2 10 8.489 6.582 8.010 6.104 0.793 -0.148 -0.183 -0.082 -0.171
2 12 9.421 6.875 8.774 6.326 0.887 -0.155 -0.183 -0.079 -0.174
2 14 10.082 7.013 9.340 6.469 0.957 -0.142 -0.171 -0.064 -0.164

3 4 3.946 3.530 3.912 3.413 0.165 -0.139 -0.173 -0.099 -0.151
3 6 5.740 4.380 5.653 4.192 0.281 -0.147 -0.181 -0.094 -0.156
3 8 7.396 5.019 7.231 4.773 0.395 -0.142 -0.176 -0.078 -0.151
3 10 8.885 5.480 8.627 5.193 0.488 -0.153 -0.183 -0.074 -0.154
3 12 10.238 5.873 9.853 5.525 0.590 -0.157 -0.181 -0.066 -0.154
3 14 11.441 6.188 10.908 5.777 0.676 -0.153 -0.191 -0.053 -0.160

4 4 3.911 2.759 3.890 2.680 0.095 -0.139 -0.172 -0.097 -0.147
4 6 5.757 3.488 5.706 3.367 0.164 -0.150 -0.178 -0.092 -0.148
4 8 7.522 4.068 7.426 3.910 0.236 -0.145 -0.183 -0.075 -0.145
4 10 9.190 4.525 9.033 4.332 0.306 -0.153 -0.179 -0.067 -0.140
4 12 10.777 4.934 10.540 4.698 0.377 -0.163 -0.195 -0.060 -0.146
4 14 12.267 5.276 11.936 5.003 0.451 -0.156 -0.182 -0.046 -0.139

5 4 3.916 2.160 3.902 2.105 0.056 -0.140 -0.172 -0.096 -0.145
5 6 5.802 2.767 5.769 2.686 0.097 -0.151 -0.180 -0.090 -0.143
5 8 7.635 3.266 7.576 3.161 0.141 -0.147 -0.182 -0.072 -0.137
5 10 9.414 3.689 9.314 3.555 0.191 -0.155 -0.184 -0.064 -0.134
5 12 11.134 4.056 10.990 3.902 0.235 -0.163 -0.186 -0.056 -0.130
5 14 12.801 4.390 12.597 4.208 0.284 -0.159 -0.193 -0.043 -0.129

6 4 3.930 1.688 3.921 1.649 0.033 -0.140 -0.173 -0.094 -0.142
6 6 5.845 2.180 5.824 2.125 0.057 -0.152 -0.182 -0.088 -0.141
6 8 7.726 2.596 7.687 2.525 0.084 -0.148 -0.179 -0.070 -0.130
6 10 9.572 2.963 9.510 2.874 0.114 -0.155 -0.185 -0.061 -0.127
6 12 11.383 3.288 11.290 3.182 0.146 -0.164 -0.190 -0.054 -0.124
6 14 13.154 3.579 13.027 3.459 0.176 -0.160 -0.186 -0.041 -0.117

7 4 3.945 1.314 3.938 1.286 0.019 -0.140 -0.173 -0.093 -0.141
7 6 5.882 1.708 5.867 1.669 0.034 -0.152 -0.179 -0.086 -0.136
7 8 7.795 2.046 7.768 1.997 0.050 -0.148 -0.178 -0.068 -0.126
7 10 9.686 2.352 9.645 2.291 0.068 -0.156 -0.184 -0.060 -0.122
7 12 11.554 2.628 11.493 2.556 0.087 -0.164 -0.190 -0.052 -0.118
7 14 13.397 2.879 13.313 2.796 0.108 -0.160 -0.188 -0.039 -0.111

8 4 3.958 1.020 3.953 1.000 0.011 -0.141 -0.173 -0.093 -0.140
8 6 5.910 1.331 5.900 1.303 0.020 -0.152 -0.179 -0.085 -0.134
8 8 7.846 1.603 7.828 1.567 0.030 -0.148 -0.178 -0.067 -0.123
8 10 9.768 1.851 9.740 1.809 0.041 -0.156 -0.184 -0.059 -0.118
8 12 11.673 2.078 11.633 2.028 0.052 -0.164 -0.190 -0.051 -0.114
8 14 13.563 2.288 13.508 2.231 0.065 -0.160 -0.187 -0.038 -0.106

9 4 3.967 0.790 3.964 0.774 0.007 -0.141 -0.173 -0.092 -0.138
9 6 5.932 1.034 5.924 1.013 0.012 -0.152 -0.178 -0.085 -0.132
9 8 7.885 1.249 7.872 1.224 0.018 -0.148 -0.178 -0.067 -0.121
9 10 9.827 1.448 9.808 1.418 0.024 -0.156 -0.184 -0.058 -0.116
9 12 11.759 1.631 11.731 1.596 0.031 -0.164 -0.190 -0.050 -0.111
9 14 13.680 1.802 13.642 1.762 0.038 -0.160 -0.187 -0.038 -0.103

Notes: Levels of st and Ht+3 are obtained from numerically solving the dynamic model for three seasons of each
grade as described by eq. (12) and parameter vector Ψ shown in table 3, and calculating the weighted average over
27 possible combinations of yH , yM and yL for each type. Elasticities with respect to variance are obtained from
numerically solving the structural model for a counterfactual income structure with no variance.23



Table D.11: Predicted Human Capital, Study Time and Variance Elasticities — High-return Hh

Predicted levels Variance Elasticities
without variance with variance total ex ante

Grade Ht Ht+3 st − st+2 Ht+3 st − st+2 var(st) Ht+3 st Ht+3 st
1 4 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150
1 6 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150
1 8 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150
1 10 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150
1 12 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150
1 14 11.603 11.524 10.232 10.405 2.617 -0.134 -0.150 -0.092 -0.150

2 4 4.348 6.055 4.307 5.835 0.574 -0.136 -0.173 -0.101 -0.150
2 6 6.304 7.320 6.198 6.998 0.936 -0.138 -0.173 -0.098 -0.154
2 8 8.082 8.229 7.880 7.825 1.269 -0.139 -0.171 -0.094 -0.154
2 10 9.679 8.931 9.333 8.404 1.585 -0.146 -0.188 -0.093 -0.170
2 12 11.058 9.410 10.569 8.834 1.877 -0.145 -0.179 -0.086 -0.165
2 14 12.284 9.842 11.606 9.154 2.122 -0.148 -0.181 -0.081 -0.170

3 4 4.045 4.495 4.025 4.361 0.283 -0.138 -0.172 -0.102 -0.151
3 6 5.960 5.598 5.911 5.409 0.469 -0.139 -0.170 -0.098 -0.149
3 8 7.792 6.463 7.694 6.212 0.671 -0.142 -0.177 -0.092 -0.153
3 10 9.529 7.158 9.359 6.832 0.896 -0.150 -0.182 -0.089 -0.157
3 12 11.161 7.711 10.908 7.342 1.087 -0.149 -0.177 -0.080 -0.153
3 14 12.699 8.200 12.332 7.758 1.271 -0.155 -0.192 -0.075 -0.162

4 4 3.975 3.467 3.963 3.379 0.154 -0.138 -0.171 -0.101 -0.148
4 6 5.896 4.386 5.866 4.259 0.265 -0.140 -0.171 -0.096 -0.146
4 8 7.766 5.125 7.709 4.959 0.383 -0.143 -0.176 -0.089 -0.147
4 10 9.581 5.750 9.484 5.540 0.514 -0.152 -0.182 -0.086 -0.148
4 12 11.338 6.282 11.189 6.031 0.643 -0.151 -0.180 -0.075 -0.145
4 14 13.028 6.732 12.822 6.457 0.763 -0.157 -0.185 -0.069 -0.144

5 4 3.961 2.696 3.953 2.633 0.089 -0.138 -0.169 -0.100 -0.145
5 6 5.895 3.438 5.876 3.350 0.152 -0.140 -0.169 -0.094 -0.142
5 8 7.797 4.053 7.761 3.940 0.221 -0.144 -0.174 -0.087 -0.141
5 10 9.665 4.590 9.606 4.450 0.298 -0.153 -0.181 -0.083 -0.142
5 12 11.497 5.061 11.406 4.893 0.379 -0.152 -0.181 -0.072 -0.138
5 14 13.288 5.474 13.160 5.282 0.458 -0.158 -0.184 -0.066 -0.135

6 4 3.963 2.096 3.957 2.050 0.052 -0.138 -0.169 -0.100 -0.143
6 6 5.911 2.687 5.898 2.625 0.088 -0.140 -0.168 -0.093 -0.139
6 8 7.838 3.188 7.814 3.109 0.129 -0.144 -0.173 -0.086 -0.137
6 10 9.742 3.635 9.704 3.539 0.174 -0.153 -0.180 -0.081 -0.136
6 12 11.623 4.034 11.565 3.920 0.222 -0.152 -0.180 -0.070 -0.131
6 14 13.479 4.392 13.397 4.261 0.272 -0.158 -0.184 -0.063 -0.129

7 4 3.969 1.625 3.964 1.592 0.030 -0.138 -0.168 -0.099 -0.142
7 6 5.929 2.093 5.920 2.048 0.052 -0.141 -0.167 -0.092 -0.137
7 8 7.874 2.495 7.858 2.438 0.075 -0.144 -0.172 -0.085 -0.134
7 10 9.805 2.859 9.779 2.791 0.102 -0.153 -0.179 -0.080 -0.133
7 12 11.719 3.187 11.681 3.108 0.130 -0.153 -0.179 -0.069 -0.127
7 14 13.617 3.488 13.563 3.396 0.160 -0.158 -0.183 -0.062 -0.123

8 4 3.975 1.257 3.972 1.233 0.018 -0.139 -0.168 -0.099 -0.141
8 6 5.945 1.625 5.939 1.592 0.030 -0.140 -0.167 -0.091 -0.135
8 8 7.904 1.944 7.893 1.903 0.044 -0.144 -0.171 -0.084 -0.132
8 10 9.853 2.235 9.835 2.186 0.060 -0.153 -0.178 -0.079 -0.130
8 12 11.790 2.500 11.764 2.444 0.076 -0.153 -0.178 -0.068 -0.123
8 14 13.717 2.746 13.681 2.682 0.094 -0.158 -0.182 -0.061 -0.120

9 4 3.981 0.971 3.978 0.953 0.010 -0.139 -0.168 -0.098 -0.140
9 6 5.958 1.258 5.953 1.233 0.018 -0.140 -0.166 -0.091 -0.134
9 8 7.927 1.509 7.919 1.479 0.026 -0.144 -0.171 -0.083 -0.130
9 10 9.889 1.740 9.876 1.704 0.035 -0.153 -0.178 -0.078 -0.128
9 12 11.843 1.951 11.825 1.910 0.045 -0.152 -0.177 -0.067 -0.121
9 14 13.790 2.149 13.765 2.103 0.055 -0.158 -0.182 -0.060 -0.117

Notes: Levels of st and Ht+3 are obtained from numerically solving the dynamic model for three seasons of each
grade as described by eq. (12) and parameter vector Ψ shown in table 3, and calculating the weighted average over
27 possible combinations of yH , yM and yL for each type. Elasticities with respect to variance are obtained from
numerically solving the structural model for a counterfactual income structure with no variance.24



Table D.12: Predicted Human Capital, Study Time and Variance Elasticities — δ = 1

Predicted levels Variance Elasticities
without variance with variance total ex ante

Grade t Ht Ht+3 st − st+2 Ht+3 st − st+2 var(st) Ht+3 st Ht+3 st
Panel A: Low-return household

1 1 n.a. 3.452 3.452 3.160 3.206 0.140 -0.093 -0.141 -0.065 -0.141

2 4 3.160 3.289 3.447 3.157 3.226 0.145 -0.095 -0.137 -0.069 -0.136

3 7 3.157 3.238 3.429 3.159 3.238 0.149 -0.097 -0.140 -0.071 -0.135

4 10 3.159 3.220 3.424 3.164 3.256 0.152 -0.100 -0.145 -0.073 -0.137

5 13 3.164 3.213 3.422 3.171 3.282 0.156 -0.103 -0.147 -0.074 -0.136

6 16 3.171 3.213 3.426 3.180 3.305 0.158 -0.106 -0.150 -0.075 -0.135

7 19 3.180 3.216 3.438 3.189 3.329 0.161 -0.108 -0.154 -0.076 -0.137

8 22 3.189 3.221 3.446 3.200 3.354 0.163 -0.110 -0.156 -0.076 -0.136

9 25 3.200 3.229 3.459 3.211 3.379 0.165 -0.111 -0.157 -0.076 -0.135

Total 3.556 3.211 -0.108

Panel B: High-return household

1 1 n.a. 5.791 5.791 5.187 5.277 0.486 -0.116 -0.168 -0.079 -0.168

2 4 5.187 5.460 5.773 5.192 5.337 0.501 -0.128 -0.168 -0.089 -0.163

3 7 5.192 5.363 5.741 5.203 5.380 0.497 -0.135 -0.169 -0.094 -0.159

4 10 5.203 5.326 5.727 5.217 5.418 0.498 -0.140 -0.174 -0.097 -0.159

5 13 5.217 5.314 5.724 5.233 5.459 0.502 -0.143 -0.178 -0.098 -0.159

6 16 5.233 5.313 5.729 5.251 5.502 0.507 -0.145 -0.182 -0.099 -0.159

7 19 5.251 5.319 5.741 5.269 5.545 0.514 -0.147 -0.184 -0.099 -0.158

8 22 5.269 5.329 5.758 5.289 5.589 0.521 -0.148 -0.186 -0.099 -0.157

9 25 5.289 5.343 5.778 5.309 5.633 0.528 -0.149 -0.187 -0.098 -0.156

Total 5.940 5.309 -0.119

Notes: Levels of st and Ht+3 are obtained from numerically solving the dynamic model for three seasons of each grade as
described by eq. (12) and parameter vector Ψ shown in table 3, and calculating the weighted average over 27 possible
combinations of yH , yM and yL for each type. Elasticities with respect to variance are obtained from numerically
solving the structural model for a counterfactual income structure with no variance.
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Table D.13: Effect of Rainfall Shocks on Consumption and Time Use

Household Child time
Agr.inc. Cons.exp. Home prod. Studying

(1) (2) (3) (4)

Rainfall Quintile=1 -0.497∗∗ -0.067 0.448 -0.285
(0.229) (0.045) (0.283) (0.242)
[0.233] [0.048] [0.302] [0.250]

Rainfall Quintile=2 -0.403∗∗ 0.011 -0.161 -0.034
(0.194) (0.033) (0.229) (0.198)
[0.203] [0.033] [0.220] [0.203]

Rainfall Quintile=4 -0.074 0.051 0.175 0.136
(0.181) (0.031) (0.248) (0.217)
[0.183] [0.033] [0.238] [0.242]

Rainfall Quintile=5 0.101 0.040 -0.055 0.397∗

(0.201) (0.038) (0.292) (0.225)
[0.232] [0.040] [0.298] [0.229]

Dependent variable mean ln(9455) ln(11274) 2.69 6.10
Observations 15849 20445 68301 68301
Adjusted R2 0.062 0.264 0.324 0.177

Notes: Agricultural income and consumption expenditures are in log INR per capita. Child
time allocation is in hours per day for three seasons. Each regression controls for state-by-
round of interview fixed effects, for irrigated area (share of village area), and for lagged rainfall
(in logs) in the last 3 years (2 years in col. (1)). Columns (3) and (4) also control for season-
by-round, and age-by-gender fixed effects. Standard errors (in parentheses) are corrected to
allow for clustering at the level of the grid cell by round of interview. Conley (1999) standard
errors (300km cut-off, Bartlett weights) in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.14: Effect of Rainfall on Consumption Expenditures per Capita (log)

(1) (2) (3) (4) (5)

Precipitation, current year (1,000 mms) 0.105∗ 0.115
(0.053) (0.122)
[0.056] [0.132]

Irrigated area (share of village agr. area) 0.172∗∗∗ 0.172∗∗∗ 0.170∗∗∗ 1.608∗∗∗ 0.907∗∗∗

(0.034) (0.034) (0.034) (0.394) (0.352)
[0.035] [0.035] [0.035] [0.396] [0.338]

Precipitation, current year (square) -0.004
(0.033)
[0.033]

Precipitation, current year (log mms) 0.119∗ 0.229∗∗∗ 0.138∗∗

(0.063) (0.071) (0.061)
[0.071] [0.076] [0.061]

Precipitation × Irrigated area -0.210∗∗∗ -0.116∗∗

(0.057) (0.050)
[0.057] [0.047]

Dependent variable mean ln(11274) ln(11274) ln(11274) ln(11274) ln(11274)
Observations 20445 20445 20445 20445 20445
Adjusted R2 0.277 0.277 0.277 0.280 0.347

Notes: Consumption expenditures are in log INR per capita. Each regression controls for state-by-round of interview
fixed effects, and for lagged rainfall (in logs) in the last 3 years. Column (5) also controls for village fixed effects.
Standard errors (in parentheses) are corrected to allow for clustering at the level of the grid cell by round of interview.
Conley (1999) standard errors in brackets (cut-off 300km, Bartlett weights). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01,
according to Conley standard errors.
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Table D.15: Effect of Rainfall on Study Time

(1) (2) (3) (4) (5)

Precipitation, current year (1,000 mms) 0.616∗∗ 1.764∗∗∗

(0.325) (0.690)
[0.299] [0.651]

Irrigated area (share of village agr. area) 0.854∗∗∗ 0.844∗∗∗ 0.850∗∗∗ 7.855∗∗∗ 9.427∗∗∗

(0.203) (0.202) (0.201) (2.745) (2.277)
[0.204] [0.204] [0.202] [2.792] [2.376]

Precipitation, current year (square) -0.424∗∗

(0.206)
[0.191]

Precipitation, current year (log mms) 0.955∗∗∗ 1.524∗∗∗ 1.333∗∗∗

(0.357) (0.433) (0.375)
[0.337] [0.416] [0.380]

Precipitation × Irrigated area -1.028∗∗ -1.285∗∗∗

(0.393) (0.324)
[0.403] [0.336]

Dependent variable mean 6.10 6.10 6.10 6.10 6.10
Observations 68301 68301 68301 68301 68301
Adjusted R2 0.176 0.177 0.177 0.179 0.245

Notes: Time spent studying is in hours per day for three seasons. Each regression controls for state-by-round of
interview fixed effects, for age-by-gender fixed effects, for season-by-round fixed effects, and for lagged rainfall
(in logs) in the last 3 years. Column (5) also controls for village fixed effects. Standard errors (in parentheses)
are corrected to allow for clustering at the level of the grid cell by round of interview. Conley (1999) standard
errors in brackets (cut-off 300km, Bartlett weights). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, according to Conley
standard errors.
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Table D.17: Effect of Risk on School Attendance (with village FE in risk calculation)

(1) (2) (3) (4) (5)

Panel A:
IQR of predicted log consumption -2.087 -2.420 -2.404 -2.361 -1.807

(0.651) (0.685) (0.684) (0.627) (0.642)
[0.143] [0.139] [0.141] [0.125] [0.187]

Treatment Mean 0.025 0.025 0.025 0.025 0.025
Treatment Std. Dev. 0.017 0.017 0.017 0.017 0.017

Adjusted R2 0.207 0.209 0.209 0.228 0.240

Panel B:
SD of predicted log consumption -2.448 -2.836 -2.815 -2.803 -2.113

(0.835) (0.901) (0.900) (0.818) (0.816)
[0.186] [0.195] [0.199] [0.180] [0.219]

Treatment Mean 0.019 0.019 0.019 0.019 0.019
Treatment Std. Dev. 0.013 0.013 0.013 0.013 0.013

Adjusted R2 0.207 0.208 0.209 0.228 0.239

Rainfall controls N Y Y Y Y

Rainfall by schoolage N N Y Y Y

Income, wealth, area, hh size N N N Y Y

State-by-round FE N N N N Y

Dep. var. mean 0.762 0.762 0.762 0.762 0.762
Observations 68301 68301 68301 68301 68301

Notes: In this table, risk is calculated with the estimates of column (4), table 5. Each regression
controls for village, season-by-round of interview, and age-by-gender fixed effects. Rainfall controls
are current and lagged rainfall in past 3 years (in log mms), and the standard deviation of rainfall
over the last three years. Rainfall by schoolage additionally interacts each rainfall lag with a dummy
that equals 1 of the child was 6 years or older in that year. Income, wealth and area are measured
in per capita terms (and are in logs). Standard errors (in parentheses) are corrected to allow for
clustering at the level of the village by round of interview. Percentile bootstrap-t p-values (null-
imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to
bootstrap p-values.
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Table D.20: Effect of Risk on School Infrastructure

TREATMENT VARIABLE: IQR of exp. cons SD of exp. cons
(1) (2) (3) (4)

Panel A: Village-level outcomes

Primary school in village (=1) -0.845 0.317 -1.174 0.285
(0.969) (1.009) (1.131) (1.206)
[0.428] [0.760] [0.362] [0.810]

Middle school in village (=1) -1.210 -1.341 -1.273 -1.345
(1.120) (1.146) (1.395) (1.432)
[0.321] [0.307] [0.381] [0.395]

Lower secondary school in village (=1) -1.091 -0.891 -1.504 -1.257
(0.918) (0.951) (1.123) (1.160)
[0.281] [0.380] [0.234] [0.307]

Higher secondary school in village (=1) -0.036 0.169 -0.204 0.106
(0.727) (0.738) (0.909) (0.911)
[0.952] [0.814] [0.829] [0.906]

Village and round FE Y Y Y Y
State-by-round FE N Y N Y
Observations 710 710 710 710

Panel B: Child-level outcomes

School attendance (=1) -1.084∗∗ -1.028∗∗ -1.255∗∗ -1.192∗∗

(0.284) (0.297) (0.368) (0.379)
[0.024] [0.038] [0.033] [0.044]

Village and round FE Y Y Y Y
Village & hh controls Y Y Y Y
School controls Y Y Y Y
State-by-round FE N Y N Y
Observations 67485 67485 67485 67485

Notes: Each coefficient relates to an individual regression. The unit of observation is the village-by-
round (Panel A), and the child (Panel B). Each regression controls for village and round of interview
fixed effects. Cols. (2) and (4) add state-by-round of interview fixed effects. Child-level regressions
additionally control for season-by-round of interview, and age-by-gender fixed effects, and for current
rainfall and for lagged rainfall (in log mms) in the past 3 years. Each lag is additionally interacted
with a dummy that equals 1 of the child was 6 years or older in that year. Child regressions also
control for income, wealth and area (all measured in per capita terms, in logs), for household size,
and for the presence of all four school types in the village (primary, middle, lower secondary and
higher secondary). Standard errors (in parentheses) are corrected to allow for clustering at the level
of the village by round of interview. Percentile Bootstrap-t p-values (null-imposed, 999 replications)
are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.21: Effect of Risk on Village Characteristics

TREATMENT VARIABLE: IQR of pred. log cons SD of pred. log cons
(1) (2) (3) (4)

Agricultural income (share of village income) 0.138 0.313 0.318 0.579
(0.417) (0.396) (0.588) (0.538)
[0.756] [0.468] [0.634] [0.357]

Share of households involved in agr. -0.529 -0.664 -0.500 -0.687
(0.540) (0.452) (0.722) (0.608)
[0.384] [0.182] [0.532] [0.293]

Any factory in village 0.082 -0.407 0.047 -0.681

(1.094) (1.071) (1.430) (1.365)
[0.927] [0.690] [0.973] [0.619]

No. of villagers employed in factories 86.030 107.830 83.880 107.467
(94.410) (96.752) (131.052) (132.638)
[0.394] [0.317] [0.579] [0.479]

Any cooperative in village -0.019 1.142 -0.176 1.466
(1.127) (1.060) (1.438) (1.335)
[0.985] [0.296] [0.900] [0.293]

Any bank in village -0.508 -0.675 -1.121 -1.142
(1.484) (1.392) (1.872) (1.751)
[0.739] [0.626] [0.630] [0.584]

Village and round FE Y Y Y Y
State-by-round FE N Y N Y

Observations 713 713 713 713

Notes: The unit of observation is the village-by-round. Each coefficient relates to an individual regression.
Each regression controls for village and round of interview fixed effects. Cols. (2) and (4) add state-by-round of
interview fixed effects. Standard errors (in parentheses) are corrected to allow for clustering at the level of the
village by round of interview. Percentile Bootstrap-t p-values (null-imposed, 999 replications) are in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.22: Effect of Rainfall on Outcomes of Interest – Cash Savings

Household Maternal time
Cons. exp. Household chores Labor market

(1) (2) (3)

Precipitation, current year (log mms) 0.488∗∗∗ 1.475 -0.895
(0.124) (0.936) (0.971)

Cash savings (per capita, log) 0.432∗∗∗ 0.969∗ -0.175
(0.088) (0.585) (0.627)

Precipitation × Cash savings -0.042∗∗∗ -0.118 0.007
(0.012) (0.083) (0.090)

Irrigated area (share of village agr. area) 0.469 0.678 -4.728
(0.361) (2.918) (3.146)

Precipitation × Irrigated area -0.056 -0.045 0.720
(0.051) (0.421) (0.451)

Observations 15693 27009 27009
Adjusted R2 0.592 0.499 0.569

Notes: Consumption expenditures are in log INR per capita. Female time allocation is in hours per day for
three seasons. Each regression controls for household fixed effects, for state-by-round of interview fixed effects,
and for lagged rainfall (in logs) in the last 3 years. Columns (2) and (3) also control for season-by-round, and
age fixed effects. Conley (1999) standard errors in parentheses (cut-off 300km, Bartlett weights). ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.23: Effect of Risk (calculated at household-level) on School Attendance

(1) (2) (3) (4)

Panel A:
IQR of predicted log consumption -5.392∗∗∗ -5.343∗∗∗ -4.295∗∗∗ -4.470∗∗∗

(1.032) (1.035) (1.122) (1.137)
[0.000] [0.001] [0.000] [0.000]

Adjusted R2 0.573 0.573 0.573 0.571

Panel B:
SD of predicted log consumption -7.477∗∗∗ -7.412∗∗∗ -6.132∗∗∗ -6.357∗∗∗

(1.268) (1.274) (1.403) (1.415)
[0.000] [0.000] [0.001] [0.001]

Adjusted R2 0.573 0.573 0.573 0.572

Rainfall controls Y Y Y Y

Rainfall by schoolage N Y Y Y

Income, wealth, area, hh size N N Y Y

Initial savings-by-round N N N Y

Dep. var. mean 0.762 0.762 0.762 0.762
Observations 55455 55455 55455 48546

Notes: Each regression controls for household, village-by-round of interview, season-by-round, and
age-by-gender fixed effects, and for household-specific linear time trends. Rainfall by schoolage
interacts each rainfall lag with a dummy that equals 1 of the child was 6 years or older in that
year. Income, wealth and area are measured in per capita terms (and are in logs). Standard
errors (in parentheses) are corrected to allow for clustering at the level of the household by round
of interview. Percentile bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.24: Effect of Risk (calculated at household-level) on Economic Outcomes

Income Land Wealth Cons. exp Agr. prod. Mat. labor
(=1) supply

(1) (2) (3) (4) (5) (6)

PANEL A:
IQR of predicted log consumption -7.156 -36.168∗ -43.931∗∗ -9.223∗ -6.583∗∗ 21.128∗

(2.730) (4.631) (1.829) (0.825) (0.819) (12.082)
[0.587] [0.058] [0.015] [0.062] [0.038] [0.144]

Observations 13701 13701 13701 13701 13701 23472
Adjusted R2 0.337 0.654 0.733 0.723 0.424 0.730

PANEL B:
SD of predicted log consumption -9.369 -44.862∗ -56.254∗∗ -11.661 -8.364∗∗ 22.794∗

(3.417) (5.842) (2.324) (1.093) (1.068) (15.014)
[0.557] [0.076] [0.019] [0.109] [0.048] [0.087]

Observations 13701 13701 13701 13701 13701 23472
Adjusted R2 0.337 0.653 0.733 0.723 0.424 0.730

Notes: Income, land owned, wealth (value of all assets owned), and consumptions expenditures are in per capita terms and
logs. Maternal labor supply is in hours per day for three seasons. Each regression controls for household and village-by-round
of interview fixed effects, and for household-specific linear time trends. Col. (6) additionally controls for age and for season-
by-round of interview fixed effects. Standard errors (in parentheses) are corrected to allow for clustering at the level of the
household by round of interview. Percentile Bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.

37



Table D.25: Effect of Risk on School Attendance - Panel Households

(1) (2) (3) (4) (5)

Panel A:
IQR of predicted log consumption -1.067∗∗ -1.119∗∗ -1.104∗∗ -1.075∗∗ -0.967∗

(0.285) (0.278) (0.279) (0.271) (0.311)
[0.030] [0.023] [0.024] [0.021] [0.062]

Adjusted R2 0.434 0.435 0.435 0.437 0.443

Panel B:
SD of predicted log consumption -1.287∗∗ -1.344∗∗ -1.323∗∗ -1.282∗∗ -1.155∗

(0.367) (0.359) (0.359) (0.352) (0.397)
[0.045] [0.035] [0.039] [0.033] [0.077]

Adjusted R2 0.434 0.435 0.435 0.437 0.443

Rainfall controls N Y Y Y Y

Rainfall by schoolage N N Y Y Y

Income, wealth, area, hh size N N N Y Y

State-by-round FE N N N N Y

Dep. Var. mean 0.762 0.762 0.762 0.762 0.762

Observations 56922 56922 56922 56922 56922

Notes: Each regression controls for household, season-by-round of interview, and age-by-gender fixed
effects. Rainfall controls are current and lagged rainfall in past 3 years (in log mms), and the standard
deviation of rainfall over the last three years. Rainfall by schoolage additionally interacts each rainfall lag
with a dummy that equals 1 of the child was 6 years or older in that year. Income, wealth and area are
measured in per capita terms (and are in logs). Standard errors (in parentheses) are corrected to allow for
clustering at the level of the village by round of interview. Percentile bootstrap-t p-values (null-imposed,
999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.26: Robustness of Effects to Differential Time Trends

(1) (2) (3) (4) (5)

Panel A:
IQR of predicted log consumption -0.613 -0.729∗ -0.929∗∗ -0.834∗∗ -0.893∗∗

(0.319) (0.283) (0.279) (0.283) (0.293)
[0.149] [0.071] [0.030] [0.043] [0.050]

Observations 66708 66708 66708 66708 66708
Adjusted R2 0.209 0.220 0.211 0.212 0.210

Panel B:
SD of predicted log consumption -0.635 -0.886∗ -1.074∗ -0.954∗ -1.053∗

(0.401) (0.350) (0.357) (0.360) (0.367)
[0.234] [0.077] [0.052] [0.063] [0.058]

Observations 66708 66708 66708 66708 66708
Adjusted R2 0.209 0.220 0.211 0.212 0.210

Irrigation (village mean, 1982) × round FE Y N N N N

Hh head literate (village mean, 1982) × round FE N Y N N N

Log hh income p.c. (village mean, 1982) × round FE N N Y N N

Log hh wealth p.c. (village mean, 1982) × round FE N N N Y N

Log hh area p.c. (village mean, 1982) × round FE N N N N Y

Notes: Each regression controls for village, season-by-round of interview, and age-by-gender fixed effects. Standard errors
(in parentheses) are corrected to allow for clustering at the level of the grid-cell by round of interview. Percentile bootstrap-t
p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap
p-values.
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Table D.27: Effect of Risk on School Attendance - Placebo Tests

(1) (2) (3) (4)

IQR of predicted log consumption, current -0.901
(0.418)
[0.159]

IQR of predicted log consumption, lead 0.442
(0.418)
[0.452]

SD of predicted log consumption, current -1.042
(0.509)
[0.205]

SD of predicted log consumption, lead 0.539
(0.573)
[0.536]

Observations 41886 41886 41886 41886
Adjusted R2 0.241 0.240 0.241 0.240

Sample: REDS 1981-82 and 1998-99. Notes: Each regression controls for village, season-by-round
of interview, and age-by-gender fixed effects, and for current rainfall and lagged rainfall in the past
3 years (in log mms), and the standard deviation of rainfall over the last three years. Each lag of
rainfall is additionally interacted with a dummy that equals 1 of the child was 6 years or older in
that year. Additional controls are income, wealth and area are measured in per capita terms (and
in logs). Standard errors (in parentheses) are corrected to allow for clustering at the level of the
village by round of interview. Percentile bootstrap-t p-values (null-imposed, 999 replications) are
in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.28: Effect of Risk on School Attendance – Weather Controls

(1) (2) (3) (4) (5)

Panel A:
IQR of predicted log consumption -0.976∗∗ -0.821∗ -0.960∗∗ -0.947∗∗ -1.007∗

(0.279) (0.285) (0.286) (0.296) (0.291)
[0.028] [0.061] [0.040] [0.046] [0.058]

Observations 68301 68301 68301 68301 68301
Adjusted R2 0.227 0.229 0.231 0.233 0.234

Panel B:
SD of predicted log consumption -1.106∗∗ -0.916∗ -1.123∗ -1.088∗ -1.162∗

(0.358) (0.359) (0.363) (0.374) (0.371)
[0.044] [0.087] [0.056] [0.057] [0.076]

Observations 68301 68301 68301 68301 68301
Adjusted R2 0.227 0.229 0.231 0.232 0.234

Rainfall controls Y Y Y Y Y

Rainfall controls (square) N Y Y Y Y

Temperature controls N N Y Y Y

Temperature controls (square) N N N Y Y

Rainfall × Temperature controls N N N N Y

Notes: Each regression controls for village, season-by-round of interview, and age-by-gender fixed effects.
Rainfall controls are current rainfall and lagged rainfall (in log mms) in the past 3 years. Temperature
controls are current temperature and lagged temperature (Degree Celsius) in the past 3 years. Each
regression also controls for income, wealth and area (all measured in per capita terms, in logs) and for
household size. Standard errors (in parentheses) are corrected to allow for clustering at the level of the
village by round of interview. Percentile Bootstrap-t p-values (null-imposed, 1,000 replications) are in
brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.29: Effect of Risk on Rainfall Outcomes

TREATMENT VARIABLE: IQR of pred. cons SD of pred. cons
(1) (2) (3) (4)

Dep. var.: Annual Rainfall, log (t+3) 0.572 -0.399 0.696 -0.595
(0.754) (0.554) (0.976) (0.694)
[0.493] [0.474] [0.519] [0.414]

Dep var.: Annual Rainfall, log (t+2) 0.549 0.011 0.875 -0.073
(0.712) (0.513) (0.893) (0.664)
[0.453] [0.989] [0.375] [0.912]

Dep var.: Annual Rainfall, log (t+1) 0.890 1.008 1.428 1.448
(0.659) (0.529) (0.876) (0.719)
[0.218] [0.119] [0.176] [0.114]

Dep var.: Annual Rainfall, log (t) 0.902 -0.061 1.132 -0.121
(0.583) (0.481) (0.726) (0.598)
[0.136] [0.899] [0.222] [0.837]

Dep var.: Annual Rainfall, log (t-1) 0.022 -0.354 0.143 -0.496
(0.619) (0.527) (0.757) (0.661)
[0.965] [0.535] [0.867] [0.503]

Dep var.: Annual Rainfall, log (t-2) 0.460 -0.689 0.752 -0.895
(0.723) (0.485) (0.977) (0.601)
[0.540] [0.186] [0.513] [0.159]

Dep var.: Annual Rainfall, log (t-3) 0.282 0.141 0.584 0.188
(1.068) (0.508) (1.518) (0.694)
[0.795] [0.780] [0.713] [0.780]

Village and round FE Y Y Y Y

State-by-round FE N Y N Y

Observations 718 718 718 718

Notes: The unit of observation is the village-by-round. Each coefficient relates to an individual
regression. Each regression controls for village and round of interview fixed effects. Cols. (2) and
(4) add state-by-round of interview fixed effects. Standard errors (in parentheses) are corrected to
allow for clustering by grid cell by round of interview. Percentile bootstrap-t p-values (null-imposed,
999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-
values.
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Table D.30: Effect of Risk on School Attendance by Season

Season 1 Season 2 Season 3
(Oct./Nov.) (February) (April/May)
(1) (2) (3) (4) (5) (6)

Panel A:
IQR of predicted log consumption -1.063∗∗ -0.953∗ -0.881∗∗ -0.836∗ -0.966∗∗ -0.884∗

(0.289) (0.309) (0.295) (0.313) (0.297) (0.314)
[0.021] [0.055] [0.047] [0.079] [0.044] [0.069]

Adjusted R2 0.220 0.232 0.230 0.244 0.224 0.236

Panel B:
SD of predicted log consumption -1.193∗∗ -1.083∗ -0.985∗ -0.937 -1.115∗∗ -1.003∗

(0.374) (0.393) (0.380) (0.402) (0.379) (0.397)
[0.046] [0.066] [0.068] [0.123] [0.046] [0.075]

Adjusted R2 0.220 0.232 0.230 0.244 0.223 0.236

Rainfall by schoolage Y Y Y Y Y Y

Income, wealth, area, hh size Y Y Y Y Y Y

State-by-round FE N Y N Y N Y

Dep. Var. mean 0.769 0.769 0.762 0.762 0.755 0.755

Observations 22767 22767 22767 22767 22767 22767

Notes: Each regression controls for village, season-by-round of interview, and age-by-gender fixed effects, for
current and lagged rainfall in past 3 years (in log mms), and the standard deviation of rainfall over the last
three years. Rainfall controls are additionally interacted with a dummy that equals 1 of the child was 6 years
or older in that year. Each regression also controls for income, wealth and area, measured in per capita terms
(and in logs). Standard errors (in parentheses) are corrected to allow for clustering at the level of the village by
round of interview. Percentile bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.31: Effect of Risk on School Attendance by Quartiles of Consumption, Income and Wealth

Quartiles of: Cons.exp. Income Wealth
(1) (2) (3)

PANEL A:
IQR of predicted log consumption× 1st Quartile -1.005∗ -0.996∗ -1.323∗

(0.386) (0.353) (0.408)
[0.055] [0.052] [0.027]

IQR of predicted log consumption× 2nd Quartile -0.889∗∗ -1.195∗∗ -1.064∗

(0.349) (0.363) (0.363)
[0.082] [0.029] [0.063]

IQR of predicted log consumption× 3rd Quartile -0.891∗ -0.776 -0.955∗

(0.347) (0.341) (0.352)
[0.077] [0.129] [0.070]

IQR of predicted log consumption× 4tht Quartile -0.686 -0.785 -0.460
(0.398) (0.381) (0.359)
[0.214] [0.150] [0.357]

Adjusted R2 0.241 0.240 0.240

PANEL B:
SD of predicted log consumption× 1st Quartile -1.138 -1.101∗ -1.379∗∗

(0.500) (0.455) (0.527)
[0.103] [0.075] [0.049]

SD of predicted log consumption× 2nd Quartile -0.858 -1.263∗ -1.189∗

(0.442) (0.467) (0.469)
[0.148] [0.066] [0.090]

SD of predicted log consumption× 3rd Quartile -1.088∗ -0.958 -1.148∗

(0.441) (0.438) (0.438)
[0.080] [0.123] [0.075]

SD of predicted log consumption× 4th Quartile -0.846 -0.925 -0.593
(0.498) (0.474) (0.446)
[0.209] [0.156] [0.320]

Adjusted R2 0.241 0.240 0.239

Educ. exp. (per child)/ income p.c. (1st Quartile) 15.18% 31.45% 13.62%
Educ. exp. (per child)/ income p.c. (2nd Quartile) 9.93% 12.96% 11.38%
Educ. exp. (per child)/ income p.c. (3rd Quartile) 9.45% 10.08% 8.92%
Educ. exp. (per child)/ income p.c. (4th Quartile) 6.73% 5.03% 6.66%
Observations 68301 68301 68301

Notes: Each regression controls for village, for state-by-round of interview, for season-by-round of inter-
view, and age-by-gender fixed effects, and for current and lagged rainfall in past 3 years (in log mms), as
well as for income, wealth and area are measured in per capita terms (and are in logs). Standard errors
(in parentheses) are corrected to allow for clustering at the level of the village by round of interview.
Percentile bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01 according to bootstrap p-values.
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Table D.32: Effect of Risk on Returns to Education for Men and Women

Wages (men) Wages (women)
(1) (2) (3) (4)

PANEL A:
IQR of predicted log consumption 0.259 0.368 -0.113 2.573

(0.782) (0.910) (1.032) (1.991)

Highest degree: Illiterate -0.229∗∗∗ -0.215∗∗∗ -0.094∗ -0.005
(0.022) (0.028) (0.046) (0.079)

Highest degree: Primary -0.105∗∗∗ -0.090∗∗ -0.038 0.015
(0.021) (0.028) (0.047) (0.080)

Highest degree: Higher secondary 0.278∗∗∗ 0.241∗∗∗ 0.176∗ 0.155
(0.035) (0.047) (0.082) (0.125)

Highest degree: University 0.792∗∗∗ 0.759∗∗∗ 1.093∗∗∗ 1.150∗∗∗

(0.063) (0.071) (0.142) (0.223)

Illiterate × IQR -0.433 -3.275+

(0.757) (1.908)

Primary × IQR -0.500 -2.206
(0.690) (2.063)

Higher secondary × IQR 1.300 0.571
(1.368) (3.908)

University × IQR 1.177 -2.162
(2.183) (7.582)

R2 0.403 0.404 0.455 0.457

PANEL B:
SD of predicted log consumption 0.509 0.798 -0.168 3.972

(0.991) (1.187) (1.376) (2.791)

Highest degree: Illiterate -0.230∗∗∗ -0.211∗∗∗ -0.094∗ 0.010
(0.021) (0.028) (0.046) (0.081)

Highest degree: Primary -0.105∗∗∗ -0.085∗∗ -0.038 0.021
(0.021) (0.029) (0.047) (0.083)

Highest degree: Higher secondary 0.277∗∗∗ 0.235∗∗∗ 0.176∗ 0.158
(0.035) (0.048) (0.082) (0.123)

Highest degree: University 0.791∗∗∗ 0.757∗∗∗ 1.093∗∗∗ 1.244∗∗∗

(0.063) (0.073) (0.142) (0.233)

Illiterate × SD -0.778 -4.977+

(0.972) (2.623)

Primary × SD -0.884 -3.171
(0.923) (2.804)

Higher secondary × SD 1.902 0.540
(1.884) (5.195)

University × SD 1.563 -7.348
(2.929) (10.275)

Observations 16547 16547 5180 5180
R2 0.403 0.404 0.455 0.458

Notes: Sample consists of men and women aged 15 to 64, with non-missing wages (2007-08 round
of interviews only). Dep. var.: Log daily wage (averaged over all activities). Omitted category:
Lower secondary. Each regression controls for state and season fixed effects, for age fixed effects,
marital status, and for current rainfall and lagged rainfall in the past 3 years (in log mms), and
the standard deviation of rainfall over the last three years. Standard errors (in parentheses) are
corrected to allow for clustering at the village by round of interview. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
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Table D.33: Effect of Risk on School Attendance of Girls – Marriage Market Risk

(1) (2) (3) (4)

PANEL A:
IQR of predicted log consumption -1.238∗∗ -1.138∗∗ -1.094∗ -1.063∗

(0.314) (0.314) (0.335) (0.332)
[0.017] [0.020] [0.068] [0.063]

Average IQR in marriage market -0.635 -0.664∗

(0.388) (0.403)

Adjusted R2 0.279 0.280 0.293 0.293

PANEL B:
SD of predicted log consumption -1.368∗∗ -1.246∗∗ -1.208∗ -1.163∗

(0.401) (0.402) (0.420) (0.419)
[0.043] [0.050] [0.091] [0.094]

Average SD in marriage market -0.732 -0.772
(0.495) (0.511)

Adjusted R2 0.279 0.279 0.293 0.293

State-by-round FE N N Y Y
Observations 30909 30909 30909 30909

Notes: Each regression controls for village, for season-by-round of interview, and age-by-
gender fixed effects, and for current rainfall and lagged rainfall (in log mms) in the past 3
years. Each lag is additionally interacted with a dummy that equals 1 of the child was 6 years
or older in that year. Each regression also controls for income, wealth and area (all measured
in per capita terms, in logs), and for household size. Cols. (3) and (4) add state-by-round of
interview fixed effects. Villages belonging to the same marriage market are defined as villages
located in a 67 km radius around village of interest. When calculating average risk in these
villages, we exclude the village of interest itself. Sample: Girls aged 6 to 15 living in a village
that has at least one more REDS village in a 67 km radius. Standard errors (in parentheses)
are corrected to allow for clustering at the level of the village by round of interview. Percentile
Bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01 according to bootstrap p-values.

46



Table D.34: Effect of Risk on Fertility and Gender-Composition

No. of children born Boys per girl
(1) (2) (3) (4)

PANEL A:
IQR of predicted log consumption 0.014 1.907 -0.283 -1.936

(1.337) (1.314) (1.642) (1.675)
[0.999] [0.317] [0.849] [0.243]

Adjusted R2 0.429 0.446 0.055 0.093

PANEL B:
SD of predicted log consumption 0.715 2.930 -0.257 -2.319

(1.681) (1.658) (2.132) (2.176)
[0.782] [0.264] [0.894] [0.288]

Adjusted R2 0.429 0.446 0.055 0.093

State-by-round FE N Y N Y
Observations 11125 11125 710 710

Notes: The unit of observation is the mother in cols. (1) and (2), and the village-by-round in cols.
(3) and (4). Each regression controls for village and round of interview fixed effects, and for current
rainfall and lagged rainfall (in log mms) in the past 3 years, and the standard deviation of rainfall
over the past 3 years. Cols. (1) and (2) also control for age (of the mother) fixed effects, and
cols. (2) and (4) add state-by-round of interview fixed effects. Standard errors (in parentheses)
are corrected to allow for clustering at the level of the village by round of interview. Percentile
bootstrap-t p-values (null-imposed, 999 replications) are in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01 according to bootstrap p-values.
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Table D.35: Summary statistics (SEPRI)

Mean SD

Consumption expenditures p.c. (log) 9.34 (0.58)
Precipitation, current year 6.90 (0.35)
Irrigated area (share of village agr. area) 0.79 (0.30)
Employment generated per capita, NREGS (lag) 0.74 (1.46)
SD of predicted log consumption 0.013 (0.014)
SD of predicted log consumption (Av. NREGS employment = 0) 0.014 (0.0036)
SD of predicted log consumption (Av. NREGS employment = 2.24) 0.0085 (0.0022)

Observations 77,938

Notes: Consumption expenditures are in constant July 2010 INR.
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Table D.36: Effect of Rainfall on Consumption Expenditures per Capita (1982-2016)

(1) (2) (3) (4)

Precipitation, current year (log mms) 0.192∗∗∗ 0.196∗∗∗ 0.136∗∗ 0.136∗∗

(0.063) (0.063) (0.062) (0.061)
[0.066] [0.066] [0.059] [0.059]

Irrigated area (share of village agr. area)) 1.377∗∗∗ 1.367∗∗∗ 1.013∗∗∗ 0.998∗∗∗

(0.381) (0.381) (0.352) (0.349)
[0.394] [0.395] [0.329] [0.324]

Precipitation × Irrigated area -0.174∗∗∗ -0.173∗∗∗ -0.130∗∗∗ -0.127∗∗∗

(0.055) (0.055) (0.050) (0.049)
[0.058] [0.058] [0.046] [0.046]

Employment generated per capita, NREGS (lag) 0.306∗∗ 0.270∗

(0.149) (0.149)
[0.124] [0.143]

Precipitation × Employment generated, NREGS -0.042∗∗ -0.037∗

(0.021) (0.021)
[0.017] [0.020]

Village FE N N Y Y

Observations 98383 98383 98383 98383
Adjusted R2 0.296 0.296 0.349 0.349

Notes: Each regression controls for state-by-round of interview, and for lagged rainfall (in logs) in the last 3
years. Columns (3) and (4) also control for village fixed effects. Standard errors (in parentheses) are corrected
to allow for clustering at the level of the grid cell by round of interview. Conley (1999) standard errors in
brackets (cut-off 300km, Bartlett weights). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, according to Conley standard
errors.
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