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ABSTRACT

In medicine, the reasons for variation in treatment rates across hospitals serving similar patients 
are not well understood. Some interpret this variation as unwarranted, and push standardization of 
care as a way of reducing allocative inefficiency. An alternative interpretation is that hospitals 
with greater expertise in a treatment use it more because of their comparative advantage, 
suggesting that standardization is misguided. A simple economic model provides an empirical 
framework to separate these explanations. Estimating this model with data for heart attack 
patients, we find evidence of substantial variation across hospitals in both allocative inefficiency 
and comparative advantage, with most hospitals overusing treatment in part because of incorrect 
beliefs about their comparative advantage. A stylized welfare-calculation suggests that 
eliminating allocative inefficiency would increase the total benefits from the treatment that we 
study by 44%.
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A large and influential literature in economics and medicine has documented substantial 

variation in treatment rates and patient outcomes across hospitals even after carefully controlling for 

differences in patient risk [Skinner (2011); Institute of Medicine (2013)]. But this variation in treatment 

rates could arise from two different mechanisms. The conventional interpretation in the medical 

literature is that there is a correct amount of use, so that variation across providers in risk-adjusted 

treatment rates is evidence of allocative inefficiency: some providers are using too much care and others 

are using too little. This interpretation of variation has led to an emphasis on guidelines and developing 

and disseminating information on cost-effectiveness of care.1 A different interpretation is that the ability 

to deliver treatment varies across providers, so that hospitals who can obtain higher benefits from a 

given treatment deliver more of that treatment because of their comparative advantage. This 

interpretation leads to an emphasis on understanding the sources of variation in hospital-specific skill 

and efforts to improve quality, instead of trying to standardize care.  

We develop a simple economic framework that can distinguish between these explanations and 

shed light on the mechanisms behind them. Our framework builds on a generalized Roy model of 

treatment choice along the lines of Chandra and Staiger (2007), where treatment choice depends on the 

expected benefits of treatment relative to usual care. In this model, differences across hospitals in risk-

adjusted treatment rates do not separately identify allocative inefficiency because they also capture 

differences in comparative advantage across hospital in providing the treatment. However, if treatment 

is being allocated efficiently to patients then any difference in the propensity to be treated, whether 

across patients or across hospitals, should solely reflect differences in the expected benefit from the 

treatment. Therefore, allocative inefficiency can be identified when the benefit of treatment is different 

across hospitals for patients with the same propensity to be treated. Furthermore, since low propensity 

patients are those least likely to benefit from treatment, overuse of the treatment in a given hospital can 

be identified when the treatment does harm among patients with the lowest propensity to receive 

treatment.  

We use rich clinical data from the Cooperative Cardiovascular Project for elderly patients 

experiencing heart-attacks in the mid-1990s and being treated with reperfusion therapy to estimate 

variation across patients and hospitals in both the propensity to be treated and treatment effects. Because 

of the richness of the clinical variables in our data, we are able to credibly estimate treatment effects, 

                                                 
1 There are many sources of guidelines and recommendations in healthcare—ranging from screening guidelines 
from the US Preventative Task Force (USPTF), to treatment guidelines from the American College of 
Cardiology (O’Gara et al, 2013) for heart-attacks, to treatment guidelines for very specific cancers from the 
American Society of Clinical Oncologists (Burstein et al, 2018). 
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replicating estimates from randomized controlled trials and demonstrating robustness of our estimates 

to controlling for increasingly detailed covariates. We find that aggressive hospitals (with high risk-

adjusted treatment rates) are much more likely to treat patients with negative treatment effects, 

suggesting overuse of treatment in these hospitals.  

To interpret these results, we estimate the model implied by our economic framework and use 

it to separately identify variation across hospitals in allocative inefficiency and comparative advantage. 

While our model can be applied to any healthcare setting, heart-attack treatments have several features 

that make them particularly suited for the analysis: outcomes are easily measured and agreed upon, and 

questions about overuse, underuse and comparative-advantage are central to treatment decisions. 

Estimating our model, we find strong evidence of allocative inefficiency, with most hospitals overusing 

reperfusion therapy to the point that low propensity patients are harmed by the treatment. However, we 

also find substantial variation in hospitals’ ability to perform treatment (comparative advantage), with 

the variation across hospitals in the survival benefit from reperfusion being the same order of magnitude 

as the average treatment effect of reperfusion. Thus, we find that both allocative inefficiency and 

comparative advantage contribute to variations in treatment rates.  

We use this framework to explore mechanisms that could lead to the allocative inefficiency that 

we observe in the data. One possibility, motivated by Currie and MacLeod (2017), is that allocative 

inefficiency would arise if hospitals had imperfect information and misperceived their ability to deliver 

treatment. In this mechanism, allocative inefficiency arises because hospitals base treatment decisions 

on their incorrect perception of the benefits of treatment in their patients, rather than on the true benefits 

of treatment. Given the general lack of systematic performance feedback and small samples of their own 

treated patients to observe, it is quite plausible that hospitals and physicians will have inaccurate beliefs 

about their own treatment effectiveness. We find evidence in favor of this mechanism, with smaller 

hospitals having particularly imprecise information about their own treatment effectiveness. Another 

explanation is that hospitals are optimizing something other than the survival of a given patient, e.g. 

over-treating for financial gain (particularly in for-profit hospitals) or because of benefits to future 

patients through learning-by-doing (particularly in teaching hospitals). This type of mechanism would 

suggest that allocative inefficiency would be related to hospital characteristics such as ownership, 

teaching status, etc. We find little prima facie evidence for this hypothesis—overuse is not correlated 

with a hospital’s for-profit status or other characteristics such as being a teaching-hospital.  

Our contribution connects the vast empirical literature on variations in medical care to the 

broader economics literature on productivity and technology adoption.  Most of the literature on 

variations in medical care has ignored the role of productivity in driving variation in treatment, and 
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instead debated whether finding variation in risk-adjusted treatment rates that is unrelated to patient 

outcomes points to allocative inefficiency or is simply due to inadequate risk-adjustment [Fisher et al 

(2003a, 2003b), Yasaitis (2009), Skinner (2011), Doyle (2011), Doyle, Graves, Gruber, Kleiner (2015), 

Finkelstein, Gentzkow, Williams (2016)]. In contrast, research influenced by the productivity literature 

(Syverson, 2011) has emphasized productivity differences in healthcare [Chandra and Staiger (2007), 

Chandra et al (2016), Skinner and Staiger (2015), Currie and MacLeod (2017)], but ignored the 

possibility of allocative inefficiency across hospitals. More specifically, evidence that comparative 

advantage drives variation across firms in technology adoption has been found in agriculture (Suri, 

2011) and in health care (Chandra and Staiger, 2007), but these papers do not account for allocative 

inefficiency. Our paper is the first to separately identify variation due to comparative advantage from 

that due to allocative inefficiency. We build on the framework used in Chandra and Staiger (2010), but 

where that paper focused on differences in treatment rates across demographic groups this paper 

focusses on differences across hospitals. Our contribution is closest to that of Abaluck et al. (2016), who 

build on an earlier working-paper version of this paper. While they allow for allocative inefficiency and 

physician level expertise in selecting patients for testing, we differ in allowing for comparative 

advantage and productivity differences across hospitals in addition to differences in allocative 

efficiency. 

The paper proceeds as follows: Section I provides some background on heart attack biology and 

treatment, describes the data, and provides some motivating facts documenting how simple estimates of 

treatment rates and treatment effects vary across hospitals and patients. Section II develops a theoretical 

model for understanding these facts, and links it to our estimation strategy, paying particular attention 

to how allocative inefficiency will be identified separately from comparative advantage and productivity 

differences. Section III presents graphical results and regressions suggested by our theoretical model 

which then motivate a more parametric approach.  In Section IV we use our framework to understand 

mechanisms and estimate a simple Bayesian learning model for learning comparative advantage and 

compare its fit, relative to simpler stories about learning and financial-incentives. We conclude by 

performing some stylized calculations of the welfare-loss from variation in treatment rates. All appendix 

material can be found in an online appendix. 

  

I. HEART-ATTACKS: TREATMENTS, DATA, AND SOME MOTIVATING FACTS 

I.A. Treatments 

Heart attacks (more precisely, acute myocardial infarction (AMI)) occur when the heart-muscle 

(the myocardium) does not receive sufficient oxygen, because of a blockage in one of the coronary 
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arteries which supply blood to the heart. The blockage is typically caused by a blood clot that occurs 

because of coagulation induced by the rupture of atherosclerotic plaque inside the coronary arteries, and 

must be reperfused rapidly. There are two ways to give patients reperfusion (which is the treatment that 

we study): first, thrombolytics, also known as fibrinolytics, are administered intravenously and break 

down blood clots by pharmacological means (these drugs include tissue plasminogen activators, 

streptokinanse and urokinase). Not everyone is appropriate for thrombolytics—patients with strokes, 

peptic ulcers, head-trauma, dementia, advanced liver disease, and uncontrolled hypertension aren’t 

appropriate for this treatment because of the risk of further bleeding induced by the treatment.  

Reperfusion can also be performed through angioplasty (where a balloon on a catheter is inflated inside 

the blocked coronary artery to restore blood flow). Following the clinical literature, we define a patient 

to have received reperfusion if any of these therapies was provided within 12 hours of the heart attack. 

In our data from the mid-1990s, over 90 percent of patients receiving reperfusion received 

thrombolytics. 

We focus our empirical work on the treatment of AMI for a number of reasons. First, 

cardiovascular disease, of which heart attacks are the primary manifestation, is the leading cause of 

death in the US. A perusal of the leading medical journals would indicate that heart attack treatments 

are constantly being refined, and a large body of trial evidence points to significant therapeutic gains 

from many of these treatments. In this context, variation in treatments across hospitals may directly 

translate into lost lives, and there is a rich tradition of studying variation across hospitals in treatments 

and outcomes after heart attacks.  

Second, because of what is known about heart attack treatments from randomized controlled 

trials, we are able to assess whether our regression estimates of the benefits from reperfusion are 

comparable to those found in the medical literature, or whether they are confounded by selection-bias. 

We focus on reperfusion, where our use of chart data allows us to replicate the RCT evidence that is 

summarized by the Fibrinolytic Therapy Trialists' Collaborative Group (1994). Chart data provides 

comprehensive documentation on the patient’s condition at the time that the treatment decision is made, 

and therefore minimizes the possibility that unobserved clinical factors related to a patient’s survival are 

correlated with treatment. 
 Third, because mortality post-AMI is high (mortality rates at 30 days are nearly 20 percent), a 

well-defined endpoint is available to test the efficacy of heart attack treatments. Moreover during the 

acute phase of the heart attack the therapeutic emphasis is on maximizing survival, which is achieved 

by timely reperfusion, and hospital staff (not patients and their families) make treatment decisions. This 

would not be true if we focused on treatment variation for more chronic conditions such as diabetes, 
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chronic obstructive pulmonary disease, or arthritis where because of the importance of quality-of-life 

there would be considerable disagreement on how to measure productivity.  

Fourth, heart attacks are an acute condition for which virtually all patients are hospitalized at a 

nearby hospital and receive some medical care. This may not be true of more chronic conditions such 

as diabetes or heart-failure where many patients aren’t diagnosed and selection confounds the analysis.   

Fifth, within hospitals, heart-attacks are treated by teams comprising doctors and nurses in the 

emergency room, in the hospital, in cardiac-care units and in post-acute facilities. This makes heart-

attacks treatments more hospital-oriented than other areas of medicine where an individual physician 

may have a primary role. This motivates our focus on hospitals over individual physicians.2 Most 

relevant to our paper, we don’t have physician or team identifiers in our data. Nor do the data that we 

have, or most other claims data, identify the first physician who saw the patient in the emergency-room 

(this is key for attribution because all subsequent physicians are endogenous to this first physician). 

Even if we had these identifiers, we’d need assignment to subsequent physicians to be random. While 

this is possibly true for emergency-room physicians, it’s unlikely to be true for other downstream 

physicians.  

 

I.B. Data 

Because acute myocardial infarction is both common and serious, it has been the topic of intense 

scientific and clinical interest. One effort to incorporate evidence-based practice guidelines into the care 

of heart attack patients, begun in 1992, is the Health Care Financing Administration's Health Care 

Quality Improvement Initiative Cooperative Cardiovascular Project (CCP). The CCP samples all 

Medicare beneficiaries who had an heart-attack between February 1994 and July 1995 (45 states), 

between August and November, 1995 for Alabama, Connecticut, Iowa, and Wisconsin, and between 

April and November 1995 (Minnesota). The CCP used bills submitted by acute care hospitals and 

contained in the Medicare claims to identify all Medicare discharges with a principal diagnosis of 

myocardial infarction. These data were matched to hospital clinical records.  The CCP is considerably 

superior to administrative/claims data of the type used by McClellan et al. (1994) as it collects chart data 

                                                 
2 We also note that the medical literature around measuring individual physician quality, does not examine the 
quality of physicians for heart-attack treatments. The literature on physician-level measures typically looks at 
high-mortality and common conditions such as carotid endarterectomy, coronary artery bypass grafting, valve 
replacement, abdominal aortic aneurysm repair, lung resection, cystectomy, pancreatic resection, and 
esophagectomy. Heart-attacks are common and high-mortality, so our sense for why the medical literature has 
not looked at physician quality in this setting is that it is hard to do and may not be key relative to hospital-level 
factors.  
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on the patients—detailed information is provided on laboratory tests, enzyme levels, the location of the 

myocardial infarction, and the condition of the patient at the time of admission. Detailed clinical data 

were abstracted from each patient’s chart using a standard protocol. Further details about the CCP data 

are available in Marciniak et al. (1998), O’Connor et al. (1999), and in Appendix I. The choice of sample 

and variables is identical to what we used and described in Barnato et al. (2005) and Chandra and Staiger 

(2007, 2010). 

One concern with using the CCP is that data from the mid-1990s may be less relevant today: 

perhaps variations have fallen, or perhaps variations today aren’t reflective of variations from many 

years ago.3  To explore whether variation from the 1990s is similar to variation in more recent years, we 

used Medicare fee-for-service data and examined a sample of 2,970 hospitals that treated heart-attacks 

in Medicare in 1992-5 and in 2012-15. We dropped hospitals that closed or merged or opened in this 

window. Since reperfusion is not recorded in claims data, we instead used cardiac-catheterization as a 

proxy for intensive management (Chandra and Staiger, 2007).4  Over this time period, cardiac-

catheterization rates for heart-attack patients increased from 35% to 52%. Over twenty years, the 

correlation between hospital-level catheterization rates is 0.69 (unweighted) and 0.73 (patient weighted), 

showing that treatment intensity is highly correlated over time. In both periods, the standard-deviation 

of these hospital-level treatment rates was about the same: 0.23 and 0.25 respectively, suggesting that 

hospital variations continue to be a persistent phenomenon.  

We report some basic characteristics of our sample in Table I. In our sample, 19% of patients 

received reperfusion within 12 hours of admission for a heart attack. Overall, 81% of patients were still 

alive 30 days after admission, but survival was higher for patients receiving reperfusion (86%) than for 

patients who did not receive reperfusion (80%). However, much of the difference in survival between 

these two groups may be due to differences in underlying health and pre-existing conditions, rather than 

the result of reperfusion. Overall, patients in the sample are elderly (average age of 76.7) and have high 

rates of chronic conditions such as hyptertension (62%), diabetes (30%) and congestive heart failure 

                                                 
3 Chandra and Skinner (2012) argue that the scope of allocative inefficiency has increased over time because 
new medical technologies have fewer side-effects (e.g. stents and many pharmaceutical treatments) and that 
increases the scope for overusing them, in the sense of using a technology whose marginal benefit is less than its 
social cost. In the past, technologies were more invasive or had larger side-effects (for example cardiac bypass), 
and that reduced the willingness to overuse them because death may have been an immediate side-effect of using 
invasive procedures in marginally less appropriate patients. We are less sure about whether the scope for 
comparative advantage differences is increasing over time, but to the extent that more complicated medicine 
requires more expertise in how different inputs are combined, then the answer to this may be affirmative as well. 
 
4 In the CCP data, reperfusion and catheterization are correlated 0.35 at the hospital level.  
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(22%).  However, patients receiving reperfusion were relatively younger, and much less likely to have 

these pre-existing conditions.  

We have 4690 hospitals in the sample. Patients receiving reperfusion were treated in similar 

hospitals in terms of ownership, teaching status, and size of the hospital, reflecting the fact that 

reperfusion is a procedure that does not require special hospital capabilities and is done in nearly all 

hospitals. The average hospital in our sample has 30 patients, with 10th percentile hospital serving fewer 

than 11 patients and 90th percentile hospital having 73 patients. The average patient is in a hospital with 

67 patients and the 10th percentile patient is in a hospital with 15 patients and the 90th percentile patient 

is in a hospital with 133 patients. 

 

I.C. Motivating Facts 

We begin by documenting some key empirical facts about how treatment rates and treatment 

effects vary across hospitals and across patients. This model-free summary of key facts motivates the 

theoretical and empirical model that we develop below and use to interpret this variation. To describe 

variation in treatment rates we use the CCP sample (Table I) to estimate a random-effect logit model of 

whether a patient received reperfusion within 12 hours regressed on a rich set of covariates derived from 

patient charts (see Appendix I for a full list) and a hospital-level random intercept. We use empirical 

Bayes (shrinkage) estimates of the random logit intercepts to capture variation in treatment rates at the 

hospital level for observationally similar patients, and use the estimated treatment propensity index 

based on patient covariates (without the hospital intercept) to capture variation in treatment rates at the 

patient level. Empirical Bayes estimates account for estimation error due to small samples of patients in 

each hospital, and tend to understate the true amount of variation in the hospital-level parameters. To 

describe variation in the effect of reperfusion on survival we estimate a random-coefficient logit model 

of whether a patient survived 30 days after their heart attack regressed on whether the patient received 

reperfusion within 12 hours, controlling for the full set of patient covariates, and allowing for a hospital-

level random intercept and (possibly correlated) random coefficient on reperfusion. We again use 

empirical Bayes estimates of the random coefficient on reperfusion to capture variation in the treatment 

effect at the hospital level. As we discuss in more detail below, this survival logit estimates an average 

effect of reperfusion that is very similar to estimates from randomized controlled trials, suggesting that 

the CCP control variables are sufficient to yield unbiased estimates of the treatment effect.          
Panel A of Figure I illustrates how treatment rates and treatment effects vary across hospitals. 

For each of our 4690 hospitals, we plot the hospital intercept estimated from the reperfusion logit (x 

axis) versus the hospital treatment effect estimated from the survival logit (y axis). This figure illustrates 
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three key facts. First, there is large variation across hospitals in risk-adjusted treatment rates (the 

reperfusion intercepts), ranging from -1 to 1 (in logodds, where an average hospital is normed to 0). This 

fact is at the heart of the variations literature in economics and medicine, and has led some to argue that 

uniform treatment guidelines are needed to reduce unwarranted variation. Second, there is also 

substantial variation across hospitals in the benefit from treatment (the treatment effect from the survival 

logit), ranging from slightly negative (indicating harm) to a positive effect on the logodds of survival of 

over 0.4. This fact is fairly novel,5 and challenges the notion of uniform treatment guidelines which 

implicitly assume that there is no hospital-level variation in the benefit from treatment. The third fact is 

that these hospital level treatment rates and treatment benefits are uncorrelated (correlation = -.02). This 

fact raises a puzzle—why are hospitals with a low benefit from treatment treating patients at the same 

rate as hospitals with a high benefit from treatment? One answer may be overuse.   

Panel B of Figure I illustrates how treatment rates vary across patients. In Panel B, we non-

parametrically plot the probability of treatment as a function of the treatment propensity index from the 

reperfusion logit based on patient covariates (without the hospital intercept), estimating  separate lines 

for the probability of treatment in hospitals in the highest (most aggressive) and lowest (most 

conservative) terciles of risk-adjusted treatment rates (the hospital-level reperfusion intercept). This 

figure illustrates two additional facts. First, treatment increases with the propensity index for both types 

of hospitals. This suggests that both aggressive and conservative hospitals use patient characteristics 

similarly to sort patients into more or less appropriate for treatment. Second, the line for hospitals in the 

highest tercile is both higher and extends further to the left. This underscores the point that hospitals 

with higher risk-adjusted treatment rates are going much deeper into the distribution of observable 

patient characteristics. 

Panel C of Figure I illustrates how the survival benefits of reperfusion (the treatment effects) 

vary across patients. Similarly to Panel B, Panel C non-parametrically plots the treatment effect as a 

function of the treatment propensity index based on patient characteristics, separately for hospitals in 

the highest (most aggressive) and lowest (most conservative) terciles of risk-adjusted treatment rates. 

The survival benefit at each point in the distribution of the propensity index was estimated flexibly using 

a local-logistic regression of 30-day survival on reperfusion that controlled for the detailed risk adjusters 

available in the CCP. This figure illustrates three final facts. First, for both types of hospitals, the benefit 

associated with reperfusion is increasing with the propensity index. This suggests that patients with 

                                                 
5 Hospital-level variation in patient outcomes (and their relationship to treatment rates) is well documented in the 
literature, but few studies have tried to estimate hospital-level variation in the return to treatment (Skinner, 
2011). 
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greater benefits from treatment are more likely to receive treatment and, conversely, that the treatment 

propensity serves as a strong indicator of a patient’s expected benefit from treatment. Thus, while 

treatment rates are uncorrelated with treatment effects at the hospital level, they are strongly correlated 

at the patient level. The second fact is that reperfusion is associated with worse survival (indicating 

harm) for patients with low treatment propensity, particularly for patients treated in aggressive hospitals 

with high risk-adjusted treatment rates. The aggressive hospitals treat between 10 and 30 percent of 

patients for whom we estimate reperfusion is associated with worse survival, while the conservative 

hospitals treat fewer than 10 percent of these patients. This evidence suggests that aggressive hospitals 

are over-treating some patients. Finally, it is interesting to note that the benefit associated with 

reperfusion for patients with the same characteristics are about the same despite the 30 point higher 

probability of being treated in the higher tercile hospitals. If top tercile hospitals treated more patients 

because of comparative advantage (greater benefit from reperfusion in these hospitals), we would expect 

higher benefits associated with reperfusion in these hospitals. If anything, we observe lower returns in 

the aggressive hospitals among low propensity patients. This fact, along with observing negative 

benefits among the lower propensity patients, suggests the existence of allocative inefficiency. 

 

II. THEORY AND ESTIMATION 

 A Roy model of patient treatment choice guides our empirical work. We assume that a hospital 

must choose between two treatment options for every patient: whether to offer reperfusion (treatment) 

or not (usual care). Treatment is provided to each patient whenever a patient’s expected benefit from the 

treatment exceeds a minimal threshold. In our framework, there are two ways in which a patient’s 

hospital could affect treatment. First, because of comparative-advantage, the benefit of treatment for a 

given patient may vary across hospitals, reflecting each hospital’s expertise in providing the treatment. 

Second, because of allocative efficiency, the minimum threshold for receiving care may vary across 

hospitals. From the patient’s point of view, treatment should be provided whenever the expected benefit 

from treatment exceeds zero. Therefore, there is underuse of the treatment in hospitals that set a 

minimum benefit threshold above zero, and overuse in hospitals that set a minimum threshold below 

zero.   

II.A. Patient Outcomes 

 To formalize this, let 𝑌𝑌𝑖𝑖ℎ1  represent the survival for patient i at hospital h if the patient receives 

the treatment (reperfusion) and let 𝑌𝑌𝑖𝑖ℎ0  represent the survival if the patient does not receive the treatment, 
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but otherwise receives usual medical care.6 We focus on the health benefits of the treatment, which in 

our setting is survival, but in other settings would include any reduction in mortality or morbidity that 

was expected from the treatment, e.g. the impact of the treatment on Quality Adjusted Live Years 

(QALYs).7 Treatment decisions are based on expected survival given the information available to the 

provider at the time of treatment. If receiving usual care, a patient’s expected survival 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ0 � depends 

on the hospital’s general level of expertise 𝛼𝛼ℎ0, observable patient characteristics Xih such as age, medical 

history and lab results, and other unmeasured factors affecting baseline mortality 𝑣𝑣𝑖𝑖ℎ0  that are observed 

by the healthcare provider but not by the econometrician. If treated with reperfusion, a patient’s expected 

survival 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ1 � depends on a similar set of factors representing the hospital’s expertise at providing the 

treatment 𝛼𝛼ℎ1, patient characteristics (which may have a different relationship to survival when patients 

receive the treatment), and other unmeasured factors 𝑣𝑣𝑖𝑖ℎ1  that affect the expected benefits of reperfusion. 

The presence of two productivity parameters 𝛼𝛼ℎ1 and 𝛼𝛼ℎ0, allows us to model hospital specific benefits at 

both forms of medicine— usual care and reperfusion (treatment).  

Actual (realized) survival if receiving usual care or reperfusion is equal to expected survival 

plus a random error term (𝜀𝜀𝑖𝑖ℎ0 , 𝜀𝜀𝑖𝑖ℎ1 ), which yields survival equations of the following form: 

(1a) 𝑌𝑌𝑖𝑖ℎ0 = 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ0 � + 𝜀𝜀𝑖𝑖ℎ0 = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖𝛽𝛽ℎ0 + 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0   

(1b)  𝑌𝑌𝑖𝑖ℎ1 = 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ1 � + 𝜀𝜀𝑖𝑖ℎ1 = 𝛼𝛼ℎ1 + 𝑋𝑋𝑖𝑖𝛽𝛽ℎ1 + 𝑣𝑣𝑖𝑖ℎ1 + 𝜀𝜀𝑖𝑖ℎ1  

The benefit, or gain, or return, from reperfusion treatment for patient i in hospital h is  given by: 

(1c)  𝑌𝑌𝑖𝑖ℎΔ = 𝛼𝛼ℎΔ + 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝑣𝑣𝑖𝑖ℎΔ + 𝜀𝜀𝑖𝑖ℎΔ ,  

where 𝛼𝛼ℎΔ = 𝛼𝛼ℎ1 − 𝛼𝛼ℎ0 ,   𝛽𝛽ℎ∆ = 𝛽𝛽ℎ1 − 𝛽𝛽ℎ0, 𝑣𝑣𝑖𝑖ℎΔ = 𝑣𝑣𝑖𝑖ℎ1 − 𝑣𝑣𝑖𝑖ℎ0  and 𝜀𝜀𝑖𝑖ℎΔ = 𝜀𝜀𝑖𝑖ℎ1 − 𝜀𝜀𝑖𝑖ℎ0  

Similarly, the expected benefit from reperfusion at the time of choosing treatment is given by: 

(1d)  𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ� = 𝛼𝛼ℎΔ + 𝑋𝑋𝑖𝑖𝛽𝛽ℎ∆ + 𝑣𝑣𝑖𝑖ℎΔ  

In Equation (1d), 𝛼𝛼ℎΔ represents the hospital-specific benefit in providing reperfusion. One could think 

of  𝛼𝛼ℎ0 as representing a hospital’s Total Factor Productivity (TFP)— because increases in it reflect 

improvements that are unrelated to specific treatments such as reperfusion or surgery [Garber and 

                                                 
6 Throughout this section we treat survival, Y, as a continuous outcome measure. In the empirical work, we use 
binary outcomes indicating whether the patient survived beyond 30 days (or other thresholds). Thus, Y is the 
latent variable in the survival logits that we estimate. 
 
7 For now, we abstract from the problem that hospitals should also think about costs and stop treatment prior to 
achieving zero marginal benefits—that is, that maximize benefits net of cost. We visit this issue in Section III.B. 
The cost of treating heart-attacks is small relative to the survival benefit of the treatments, but this may not be 
true for other medical conditions.  

∆
ihY
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Skinner (2012) and Syverson (2001)]. Efforts to increase 𝛼𝛼ℎ0 are efforts to increase productive 

efficiency-- increasing the fraction receiving beta-blockers or improving patient safety are examples. 

The higher the 𝛼𝛼ℎ0, the lower the benefit from reperfusion, for a fixed level of 𝛼𝛼ℎ1 .   Because 𝛼𝛼ℎΔ represents 

the difference between the ability to perform reperfusion and usual care, we call it comparative-

advantage at reperfusion. Hospitals may have comparative advantage in providing reperfusion because 

of either being particularly good at reperfusion treatment or being particularly bad at usual care for 

patients. In the above equations, we have also allowed for hospital-level variation in how patient 

characteristics affect outcomes through the 𝛽𝛽ℎ∆ term, although in the empirical work we found these to 

be unnecessary and assumed 𝛽𝛽ℎ∆ = 𝛽𝛽∆. 

II.B. Treatment Choice  

Each patient receives treatment if the expected benefit from treatment exceeds a minimal 

threshold τh, where the threshold may vary across hospitals due to incentives or information as discussed 

further below. Since 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ� captures the total expected benefit to the patient of providing treatment, 

then the optimal decision from the patient’s perspective would let τh=0 and provide treatment whenever 

the expected benefits to the patient exceed zero. There is underuse if , since patients with positive 

benefits are under the threshold and do not receive treatment. There is overuse if , since patients 

with negative benefits (who would do better without treatment) are above the threshold and receive 

treatment.  

Figure 2A illustrates the intuition behind a Roy model of treatment at the hospital level. The 

two lines denote patient survival if a hospital treats a given patient with usual care (intercept is 𝛼𝛼ℎ0)  or 

using reperfusion (intercept is 𝛼𝛼ℎ1) as a function of patient characteristics (i.e. patient X’s) on the x-axis. 

To simplify exposition, we have suppressed the distribution of unobservables (𝑣𝑣𝑖𝑖ℎΔ ). In reality, as well 

as in our model and empirical work, providers observe these unmeasured characteristics and use them 

to determine treatment. Expertise at usual care and reperfusion is captured by the intercepts 𝛼𝛼ℎ0 and 𝛼𝛼ℎ1 

respectively, with comparative advantage being the difference between them.   Allocative efficiency 

means that reperfusion should be performed to the point that the marginal patient receives zero benefit, 

(τh = 0), so that everyone to the right of the point of intersection should be treated and to the left should 

receive usual care.  

First, consider the role of comparative-advantage in explaining treatment rates: ceteris paribus, 

a hospital that is better at reperfusion would have a higher intercept for reperfusion 𝛼𝛼ℎ1 , which would 

increase the fraction of patients receiving reperfusion at that hospital. A hospital may also have a relative 

advantage at reperfusion because it is worse at usual care. Either would increase 𝛼𝛼ℎΔ = 𝛼𝛼ℎ1 − 𝛼𝛼ℎ0 and also 

0>hτ

0<hτ
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increase the fraction of all patients being reperfused. Next, consider allocative inefficiency by a hospital 

that over-treats patients with reperfusion therapy, and treats patients to the left of point of intersection. 

This harms patients and lowers the average benefit from reperfusion amongst all patients receiving 

reperfusion. Overuse is equivalent to setting τh < 0, where some patients with negative benefits (harm) 

are treated.  Underuse of reperfusion happens when patients who are appropriate for reperfusion (to the 

right of the intersection of the two lines) don’t receive it—a possibility that increases the benefits of 

reperfusion amongst patients receiving it.  

This figure provides four pieces of intuition. First, knowledge of comparative-advantage doesn’t 

tell us where it originates from—it could arise from low 𝛼𝛼ℎ0, a high 𝛼𝛼ℎ1 , or both. Second, allocative 

inefficiency may arise from overuse  (a willingness to perform reperfusion even if the benefit is 

negative) or underuse  (an unwillingness to perform reperfusion even when the benefit is 

positive). Third, how a patient is treated depends on patient characteristics, the hospital’s comparative 

advantage at delivering reperfusion (𝛼𝛼ℎΔ), and the level of allocative efficiency at the hospital (𝜏𝜏ℎ): all 

three determine the propensity to be reperfused for a given patient at a given hospital. This brings us to 

the fourth insight: variation across hospitals in treatment rates does not imply anything about the 

presence of comparative-advantage versus allocative efficiency. Risk-adjusted hospital treatment rates 

capture both mechanisms—high risk-adjusted rates may arise because of high levels of hospital-specific 

benefits at performing the treatment or a very low threshold for performing the treatment-- and do not, 

by themselves, isolate the source of variation even with perfect risk-adjustment.  

Allocative inefficiency (𝜏𝜏ℎ ≠ 0) could come from a variety of sources. Figure 2B illustrates 

how a hospital that misperceives its comparative-advantage from reperfusion and believes it to be higher 

than it is, through overconfidence or imperfect knowledge about its comparative advantage, would 

overuse reperfusion. It could also be that a hospital overuses reperfusion because it is maximizing 

something other than health. These are alternative mechanisms that we explore in Section IV (we find 

evidence for the misperception mechanism). Regardless of the mechanism for allocative inefficiency, 

they cause a welfare loss whose magnitude is illustrated by the area of the triangle in the figure. The 

height of the triangle is the threshold, and the base is the threshold multiplied by how much the threshold 

increases the probability of receiving reperfusion. At the end of the paper, we aggregate the area of these 

triangles to estimate the welfare loss from allocative inefficiency.  

We now specify our model of treatment choice more completely, paying particular attention to 

how one can identify the different sources of inefficiency. The probability of receiving treatment is the 

probability that expected benefits exceed the minimum threshold: 

0<hτ

0>hτ
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(2) Pr(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ = 1) = Pr�𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ� > 𝜏𝜏ℎ� = Pr�𝛼𝛼ℎΔ + 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝑣𝑣𝑖𝑖ℎΔ > 𝜏𝜏ℎ� = Pr �−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ�, 

    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼𝑖𝑖ℎ = 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝜃𝜃ℎ  𝑎𝑎𝑎𝑎𝑎𝑎  𝜃𝜃ℎ = 𝛼𝛼ℎΔ − 𝜏𝜏ℎ 

In the terminology of Heckman, Urzua and Vytlacil (2006), our model allows for essential 

heterogeneity where the decision to provide treatment to each patient is made with knowledge of their 

idiosyncratic response to treatment (𝑣𝑣𝑖𝑖ℎΔ ). If we make the standard assumption that the distribution of 

patient-level idiosyncratic gains (𝑣𝑣𝑖𝑖ℎΔ ) are i.i.d. (an assumption we return to below), then the parameters 

(𝛽𝛽Δ,𝜃𝜃ℎ) of Equation (2) can be estimated (up to scale) with a single index model such as a logit or OLS 

regression of treatment on patient characteristics and hospital effects. 8 The hospital-specific intercept 

(𝜃𝜃ℎ) in this equation is commonly referred to as the hospital’s risk-adjusted reperfusion rate, with higher 

values indicating a more aggressive hospital where identical patients are more likely to receive 

reperfusion. The hospital effect is 𝜃𝜃ℎ = 𝛼𝛼ℎΔ − 𝜏𝜏ℎ, which means that a hospital may be more likely to 

provide treatment because of greater comparative advantage at delivering treatment ( ), or 

because of using a lower benefit threshold for providing care reflecting overuse. Even if 

treatment rates were the same across hospitals, there could still be overuse or underuse if, say, hospitals 

with greater comparative advantage set a correspondingly higher threshold for providing care. Thus, 

because variation in treatment rates across hospitals confounds variation in hospital comparative 

advantage with hospital treatment thresholds, such variation cannot by itself say anything about overuse 

or underuse.  

 

II.C. Identifying Allocative Inefficiency 

We now demonstrate that allocative efficiency can be identified separately from comparative-

advantage if we can estimate the treatment effect for those patients receiving treatment. The treatment-

on-the-treated parameter is the average gain from treatment amongst those who were given treatment, 

and can be obtained by conditioning the expression for  (equation 1c) on the condition for receiving 

treatment (equation 2): 

(3) 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ = 1� = 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ� = 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝛼𝛼ℎΔ + 𝐸𝐸�𝑣𝑣𝑖𝑖ℎΔ |−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ� 

Noting that 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝛼𝛼ℎΔ = 𝐼𝐼𝑖𝑖ℎ + 𝜏𝜏ℎ  , we can rewrite Equation (3) as: 

(4) 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ = 1� = 𝜏𝜏ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ) 

                                                 
8 Technically, logit models estimate 𝐼𝐼𝑖𝑖ℎ = (𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝜃𝜃ℎ)/𝜎𝜎𝑣𝑣 where 𝜎𝜎𝑣𝑣 is the standard deviation of the patient-level 
idiosyncratic gains (𝑣𝑣𝑖𝑖ℎΔ ). For now, we make the standard assumption that 𝜎𝜎𝑣𝑣=1. Most of the results in the paper 
are invariant to the scale of 𝐼𝐼𝑖𝑖ℎ, but we will return to this point in the results section when we try to recover 
estimates of 𝛼𝛼ℎ∆. 

( )0<hτ
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 where 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ) = 𝐼𝐼𝑖𝑖ℎ +  𝐸𝐸�𝑣𝑣𝑖𝑖ℎΔ |−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ� 

Here, g(I) is an unknown function of the propensity to receive treatment and the conditional expectation 

𝐸𝐸�𝑣𝑣𝑖𝑖ℎΔ �−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ�.  If we assume that the distribution of patient-level idiosyncratic gains (𝑣𝑣𝑖𝑖ℎΔ ) are the 

same for all patients and hospitals, then this conditional expectation is only a function of the index, 

which means that g(𝐼𝐼𝑖𝑖ℎ) is only a function of 𝐼𝐼𝑖𝑖ℎ. This is an important assumption because our empirical 

work relies heavily on the single-index property. The assumption would be violated, for example, if the 

variance or distribution of patient level idiosyncratic gains (𝑣𝑣𝑖𝑖ℎΔ ) differed across hospitals. It is not 

possible to test the single-index assumption by looking at differences in treatment on the treated by type 

of hospital (for example, by hospital volume, size, non-profit status) because in our framework these 

differences, conditional on propensity, reflect differences in thresholds. Because this is a key assumption 

in our model, we will discuss supporting evidence for it in the empirical work. In particular, if the 

variance of idiosyncratic gains differed across hospitals then we would also expect differences across 

hospitals in the coefficients on patient characteristics in Equation 2 (predicting treatment). We will 

explore this possibility later, but do not find this to be the case. The conditional mean 𝐸𝐸�𝑣𝑣𝑖𝑖ℎΔ �−𝑣𝑣𝑖𝑖ℎΔ < 𝐼𝐼𝑖𝑖ℎ� 

can also be modeled parametrically as a Mills-Ratio and we find support for this assumption as well. 

Equation (4) is the key result of the model that allows us to identify allocative inefficiency. 

Equation (4) states that after conditioning on patient propensity to receive treatment, differences across 

hospitals in the treatment effect on the treated are due solely to differences in the hospital’s minimum 

threshold to deliver care (τh). Note that the propensity to receive treatment (𝐼𝐼𝑖𝑖ℎ) depends on the hospital 

effect (𝜃𝜃ℎ) and that includes both the presence of comparative advantage and allocative efficiency. By 

conditioning on this propensity and examining differences in benefit across hospitals, we can isolate 

differences in hospital thresholds. The intuition for this result is straightforward. By conditioning on the 

propensity to receive treatment (𝐼𝐼𝑖𝑖ℎ = 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝛼𝛼ℎΔ − 𝜏𝜏ℎ), we hold the difference between the mean of 

the benefit distribution (𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝛼𝛼ℎΔ) and the truncation threshold (𝜏𝜏ℎ) fixed. Thus, holding 𝐼𝐼𝑖𝑖ℎ constant, 

any difference in 𝜏𝜏ℎ shifts both the mean of the benefit distribution and the truncation point by the same 

amount (keeping the difference fixed), and therefore the truncated mean also increases by that same 

amount. Had we not conditioned on the propensity (or just conditioned on 𝑋𝑋𝑖𝑖𝛽𝛽Δ as we did for the 

motivating facts in Figure I), differences across hospitals in the treatment effect on the treated would be 

difficult to interpret because they would depend on both comparative advantage (𝛼𝛼ℎΔ) and allocative 

inefficiency (𝜏𝜏ℎ). 

Note that our model does not, by itself, uncover mechanisms for overuse or underuse—we will 

investigate these later. It is possible that overuse occurs because providers are worried about malpractice, 
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because they’re maximizing something other than health, because they incorrectly believe that they’re 

better at offering the treatment, or because they inaccurately assess patients as more appropriate for 

treatment than they actually are (perceiving a rightward shift in the distribution of patient’s Xs).  

More insights from our model are illustrated in Figure III. In this figure, we plot the treatment 

effect on the treated, 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ = 1� = 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ� > 𝜏𝜏ℎ�, on the vertical axis, while the 

propensity of being treated (which is a function of 𝐼𝐼𝑖𝑖ℎ) is given on the horizontal axis. The horizontal 

line at zero indicates the efficient threshold, below which the expected benefit of treatment is negative 

(harm). The top curve in Figure III represents the treatment-on-the-treated effect for a patient with a 

given propensity that is treated in a hospital with a high minimum threshold for treatment, i.e. it 

represents 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ|𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ� > 𝜏𝜏ℎ� = 𝜏𝜏ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ). The lower curve represents the same thing for a hospital 

with a low minimum threshold. Treatment-on-the-treated approaches the minimum threshold (τhigh or 

τlow) for a patient with a low propensity of being treated (small value of 𝐼𝐼𝑖𝑖ℎ), since no patient is ever 

treated with a benefit below this threshold.  For a patient with a high propensity of being treated (large 

value of 𝐼𝐼𝑖𝑖ℎ), truncation becomes irrelevant and the treatment-on-the-treated effect asymptotes to the 

unconditional benefit of treatment. However, conditional on a patient’s propensity, the treatment effect 

is always higher by exactly 𝜏𝜏ℎ𝑖𝑖𝑖𝑖ℎ − 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙 in the hospital with the higher threshold.  

The graph illustrates two implications of the theoretical model. First, we can identify overuse 

and underuse by focusing on patients with the lowest probability of receiving treatment. In these 

patients, there is overuse when the treatment effect for the lowest propensity patients is negative, and 

underuse when the treatment effect for the lowest propensity patients remains positive. In particular, a 

hospital is over treating its patients (𝜏𝜏ℎ < 0) whenever the treatment effect on the treated is negative 

(indicating harm) among low propensity patients. 

Second, differences in comparative-advantage at performing reperfusion show up as a 

movement along the curves – higher comparative advantage at reperfusion (𝛼𝛼ℎΔ) increases the propensity 

of patients to be treated, and therefore the treatment effect, but does not affect treatment effects 

conditional on propensity. Being treated at a hospital with a higher comparative advantage (𝛼𝛼ℎΔ) is 

equivalent to having patient characteristics (𝑋𝑋𝑖𝑖𝛽𝛽Δ) that increase your benefits from treatment – both 

raise your expected benefit from treatment and therefore raise your propensity to be treated.  

In summary, the key difference between identifying comparative advantage from allocative 

inefficiency is that differences in hospital comparative advantage have an impact on treatment effects 

by shifting the propensity to be treated, while differences in the minimum threshold have an impact on 

treatment effects conditional on the propensity to receive reperfusion.  
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II.D. Estimation  

In a potential outcomes framework, the equation relating the level of survival to treatment is: 

(5)  𝑌𝑌𝑖𝑖ℎ = 𝑌𝑌𝑖𝑖ℎ0 + 𝑌𝑌𝑖𝑖ℎ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ 

       = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + 𝑌𝑌𝑖𝑖ℎ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + �𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0 � 

Here, latent survival for patient i at hospital h depends on a hospital effect that captures the hospital’s 

general level of expertise (or TFP) providing usual care 𝛼𝛼ℎ0, patient risk adjusters Xih and a patient-

specific treatment effect 𝑌𝑌𝑖𝑖ℎΔ . Regression estimates of this equation identify the treatment-on-the-treated 

effect, 𝐸𝐸�𝑌𝑌𝑖𝑖ℎΔ�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1�, if the receipt of treatment is uncorrelated with the unobservable 

characteristics of patients who were not reperfused (𝑣𝑣𝑖𝑖ℎ0  𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀𝑖𝑖ℎ0 ). This treatment-on-the-treated effect 

is the same as Equation 4—and will be used to identify overuse (if negative) and underuse (if positive).  

It is important to see that we are not relying on the conventional `selection on observables’ 

assumption that both 𝑣𝑣𝑖𝑖ℎ0  and 𝑣𝑣𝑖𝑖ℎ1  are conditionally uncorrelated with treatment, which would imply that 

receipt of treatment is uncorrelated with the gain from treatment. Indeed, we explicitly allow for 

‘selection on gains’ where providers use information on the patient’s idiosyncratic gain, 𝑣𝑣𝑖𝑖ℎΔ = 𝑣𝑣𝑖𝑖ℎ1 −

𝑣𝑣𝑖𝑖ℎ0 , to determine treatment [Wooldridge (2002, p.606)]. In our model, conditional on our control 

variables, we assume that treatment is uncorrelated with omitted factors in a patient’s baseline survival 

(𝑣𝑣𝑖𝑖ℎ0 ), but allow for selection on gains where treatment is correlated with omitted factors in the patient’s 

unobserved gain (𝑣𝑣𝑖𝑖ℎΔ = 𝑣𝑣𝑖𝑖ℎ1 − 𝑣𝑣𝑖𝑖ℎ0 ). Thus, instead of assuming that treatment is uncorrelated with 𝑣𝑣𝑖𝑖ℎΔ  

we must assume that 𝑣𝑣𝑖𝑖ℎ0 and 𝑣𝑣𝑖𝑖ℎΔ are conditionally uncorrelated. We think these assumptions are plausible 

given our rich data and the nature of the reperfusion treatment decision. 

The assumption that treatment is uncorrelated with 𝑣𝑣𝑖𝑖ℎ0  is plausible given the rich covariates that 

we have. The chart data collected in the CCP was focused on patient factors that predict outcomes, so 

there is some reason to think that the CCP included all data from the patient’s chart that physicians 

would use to predict baseline mortality (v0). While the assumption that 𝑣𝑣𝑖𝑖ℎ0 and 𝑣𝑣𝑖𝑖ℎΔ are uncorrelated is a 

strong one, we think there are a number of reasons that it is more likely in our setting than assuming 

treatment is uncorrelated with 𝑣𝑣𝑖𝑖ℎΔ . First, because reperfusion is a treatment that must be done quickly 

after admission, the physician is not able to wait and observe the patient’s outcome without treatment 

(𝑌𝑌𝑖𝑖ℎ0 ). Thus, the physician’s belief about the benefit from reperfusion (𝑣𝑣𝑖𝑖ℎΔ ) is unlikely to be driven by 

knowledge of a patient’s baseline outcome (𝑌𝑌𝑖𝑖ℎ0 ).  This would not be the case in many settings in which 

people get to see their actual outcome in the untreated state (e.g. workers may enroll in training because 

their current job is going poorly, and heart attack patients may not receive bypass because they died 

before being stabilized).  
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Second, unlike many surgical treatments, the benefits of reperfusion are not closely related to 

baseline mortality risk. The key question is whether gains from treatment (and selection into treatment) 

are driven by baseline mortality risk. For some treatments the answer is yes – e.g. invasive surgical 

treatments, or treatments that occur weeks after index admission, are much less successful if the patient 

is at high risk of death (patient is too frail to absorb the physical trauma of the procedure, or does not 

survive/stabilize to get eventual treatment). For reperfusion, this is less likely to be true because it 

happens immediately, and it is less invasive, so that success depends less on how frail the patient is and 

more on specific patient conditions that put them at risk for complications such as bleeding. Thus, the 

benefits of the treatment are specific to reperfusion, rather than a direct function of baseline mortality 

risk. 

Third, many idiosyncratic factors occurring in the hospital that are unrelated to a patient’s 

baseline mortality may affect the benefits of reperfusion. For example, whether a patient gets treated 

with reperfusion depends on factors such as the experience of the particular doctor and team as well as 

the capacity of the hospital at the moment of the patient’s arrival.  Providers observe these factors (which 

are 𝑣𝑣𝑖𝑖ℎ1 ) , that are idiosyncratic to every patient situation, and act on them.  

While we think the selection on gains assumption is defensible on a priori grounds, it is still a 

strong assumption. In the results section, we provide evidence supporting the case that we can estimate 

the treatment on treated effect, including comparing our estimates to evidence from randomized trials. 

Our test for allocative efficiency requires comparing the treatment on the treated parameter 

across hospitals, while holding the propensity to receive treatment constant. The index for the propensity 

to receive treatment, 𝐼𝐼𝑖𝑖ℎ, was obtained from a random-effects logit model of treatment receipt on the 

patient risk adjusters (𝑋𝑋𝑖𝑖ℎ) and hospital-level random intercepts (𝜃𝜃ℎ) estimated using xtmelogit in Stata. 

Bayesian posterior estimates of the hospital random effects (𝜃𝜃�ℎ), commonly referred to in the literature 

as shrinkage estimates, were used as estimates of  𝜃𝜃ℎ. For more details see Appendix II. 

Using the fact that OLS estimates of Equation (5) estimate treatment on the treated, we can plug 

in our model’s implication for treatment on treated from Equation (4) into Equation (5) to yield: 

(6)     𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + �𝜏𝜏ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ)�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0  

To estimate Equation (6), we consider two approximations to the function 𝑔𝑔(𝐼𝐼): a linear approximation 

(𝑔𝑔(𝐼𝐼) = 𝜆𝜆𝑜𝑜 + 𝜆𝜆1𝐼𝐼), and a more flexible approximation using indicator variables for the 100 percentiles 

of that allows 𝑔𝑔(𝐼𝐼) to have any shape (𝑔𝑔(𝐼𝐼) = ∑ 𝛿𝛿𝑝𝑝1�𝑔𝑔𝑝𝑝−1 < 𝐼𝐼 < 𝑔𝑔𝑝𝑝�100
𝑝𝑝=1 ). While the theory only 

predicts a monotonic relationship, we find that estimates from a simple linear specification are very 

similar to those that allow g(I) to have a completely flexible form. We will exploit the linear specification 

later in the paper, where we impose additional parametric structure to recover hospital measures of 𝛼𝛼ℎΔ.   
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Adding these approximations for g(I) into Equation (6) yields estimating equations: 

(6a)  𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + 𝜏𝜏ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝜆𝜆0𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝜆𝜆1𝐼𝐼𝑖𝑖ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0  

(6b)  𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + 𝜏𝜏ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + ∑ 𝛿𝛿𝑝𝑝1�𝑔𝑔𝑝𝑝−1 < 𝐼𝐼𝑖𝑖ℎ < 𝑔𝑔𝑝𝑝� ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ +100
𝑝𝑝=1 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0  

Here, the hospital-specific coefficient on treatment identifies differences across hospitals in 𝜏𝜏ℎ. Note 

that separating the average level (as opposed to differences across hospitals) of 𝜏𝜏ℎ from the intercept of 

𝑔𝑔(𝐼𝐼) would require stronger parametric assumptions, so we focus on identifying differences between 

hospitals (which are indications of allocative inefficiency). In the linear specification, we demean 𝐼𝐼𝑖𝑖ℎ to 

have a value of 0 for the average treated patient so that the coefficient 𝜆𝜆0 captures the average effect of 

reperfusion among the treated. The hospital-specific intercept in this regression identifies hospital TFP 

(𝛼𝛼ℎ0). The coefficient (𝜆𝜆1) on the interaction 𝐼𝐼𝑖𝑖ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ  or on the indicator variables for the 

percentiles of g(I) provide a test for whether the benefit of reperfusion therapy is increasing with the 

propensity to receive such treatment—as would be the case if a Roy Model of treatment allocation was 

at work, as opposed to model where providers select patients randomly or without regard to benefits. 

 Estimating Equations (6a) and (6b) involves estimating hospital-specific coefficients on 

treatment rates for thousands of hospitals. Rather than including hospital dummies interacted with 

treatment, which would yield imprecise estimates and suffer from small sample problems, we estimate 

hierarchical logit models for survival with hospital-level correlated random coefficients for the hospital-

specific intercept and slope (𝛼𝛼ℎ0 and 𝜏𝜏ℎ). We document that key results are similar using fixed effect 

models. 

We also consider an alternative specification that allows for a relatively straightforward test for 

allocative inefficiency while avoiding the necessity of estimating hospital-specific coefficients. Recall 

that the risk-adjusted hospital reperfusion rate (the hospital intercept from Equation 2) is 𝜃𝜃ℎ = 𝛼𝛼ℎΔ − 𝜏𝜏ℎ,  

and we obtain estimates 𝜃𝜃�ℎ of this intercept (up to scale) from estimating the propensity equation. Under 

two extreme cases, we can say how treatment on the treated (𝜏𝜏ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ)) is related to 𝜃𝜃ℎ. In the first 

case, if there is no allocative inefficiency (𝜏𝜏ℎ = 0) then 𝜃𝜃ℎ = 𝛼𝛼ℎΔ and variation in reperfusion across 

hospitals is driven purely by comparative advantage. In this case, 𝜃𝜃ℎ is unrelated to the treatment effect 

on the treated after conditioning on the propensity (since in this case 𝜏𝜏ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ) = 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ)). At the other 

extreme, if there is no variation in comparative advantage (𝛼𝛼ℎΔ = 0) then 𝜃𝜃ℎ = −𝜏𝜏ℎ and variation in 

reperfusion across hospitals is driven purely by treatment thresholds. In this case, 𝜃𝜃ℎ will be negatively 

related to the treatment effect on the treated after conditioning on the propensity (since in this case 𝜏𝜏ℎ +

𝑔𝑔(𝐼𝐼𝑖𝑖ℎ) = −𝜃𝜃ℎ + 𝑔𝑔(𝐼𝐼𝑖𝑖ℎ)). 
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These two extreme cases suggest including an interaction between 𝜃𝜃�ℎand treatment in Equations 

(6), rather than estimating hospital-specific coefficients on treatment, as a simple test for allocative 

inefficiency. Therefore, we estimate specifications of the form: 

(7a)  𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖𝛽𝛽0 + 𝜆𝜆2𝜃𝜃�ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝜆𝜆0𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝜆𝜆1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ ∗ 𝐼𝐼𝑖𝑖ℎ+ 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0  

(7b)  𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + 𝜆𝜆2𝜃𝜃�ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + ∑ 𝛿𝛿𝑝𝑝1�𝑔𝑔𝑝𝑝−1 < 𝐼𝐼𝑖𝑖ℎ < 𝑔𝑔𝑝𝑝� ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ +100
𝑝𝑝=1 𝑣𝑣𝑖𝑖ℎ0 +

𝜀𝜀𝑖𝑖ℎ0  

If the coefficient on the interaction (𝜆𝜆2) is zero, this suggests that variation in hospital-level reperfusion 

rates was entirely driven by comparative advantage in treatment (case 1 above). Alternatively, if the 

coefficient on the interaction is negative, this suggests that variation in hospital-level reperfusion is 

associated with allocative inefficiency. This simple specification provides an intuitive test of the key 

insights from our model: conditional on propensity, higher treatment rates due to comparative advantage 

will be unrelated to treatment effects, while higher treatment rates due to lower treatment thresholds will 

be negatively related to treatment effects.   

  

III. RESULTS 

III.A. Identifying Allocative Inefficiency 

Our model implies that if treatment is being allocated efficiently, then patients with a higher 

propensity to be treated for any reason should have higher expected benefit from the treatment, and two 

patients with the same propensity should have the same expected benefit from treatment. Allocative 

inefficiency can be identified when the benefit of treatment differs across hospitals for patients with the 

same propensity to be treated. In Figure IV, we evaluate these implications graphically by plotting the 

estimated survival benefit from reperfusion and 95% CI against a patient’s treatment propensity index 

(Iih) for patients treated in different hospitals. The graphs do not impose structure on the data and are 

designed to graphically illustrate the main findings of our paper using simple and transparent plots that 

can be easily replicated by others. These graphs are similar to Figure I, only now we include the hospital 

effect  in the propensity, as suggested by our model. 

The treatment benefit at each point in the distribution of the propensity to receive care was 

estimated flexibly using a local-linear version of equation 6a with a triangular kernel that included 30% 

of the sample on either side. The patient’s treatment propensity was obtained from hierarchical logit 

estimation of equation (2), and is demeaned so that 0 is the propensity for an average patient receiving 

reperfusion. We estimate separate panels for hospitals in the lowest tercile and highest tercile of the 

estimated hospital effect ( ), also estimated from the propensity equation (2), as described in Appendix 

hθ̂
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II. These hospital effects are estimates of the risk-adjusted reperfusion rate at each hospital, so hospitals 

in the top tercile are those that treat patients more aggressively; the distribution of hospital-effects is 

also graphed in the appendix.   As noted there, we estimate hospital random-effects which allow for 

empirical Bayes shrinkage. Empirical Bayes reduces prediction error in the estimates of the hospital 

effects by shrinking standard hospital fixed-effect estimates back toward zero, particularly for small 

hospitals with noisy estimates. In the appendix, we show that OLS and logit models with random and 

fixed-effects generate very similar (correlation>.97) estimates of the impact of patient characteristics 

(𝑋𝑋𝑖𝑖𝛽̂𝛽) and unshrunk estimates of hospital effects (𝜃𝜃�ℎ). However, the use of shrinkage does matter for the 

estimates of hospital effects because of the substantial number of small hospitals in our sample: The 

correlation between the shrunk and unshrunk random effect from the logit model is only 0.88. 
Both plots show a strong upward slope, with higher benefit from treatment for patients with a 

higher propensity to receive reperfusion—and exactly mirror the theoretical illustration in Figure 3. But 

at every propensity, the benefits of reperfusion are lower in the top-tercile hospitals, as would be 

expected if higher treatment rates were due to lower treatment thresholds. At the lowest propensity 

levels, the survival benefits from reperfusion are significantly negative for the top-tercile hospitals, 

suggesting that there is overuse among these hospitals. In the bottom-tercile hospitals, the estimated 

survival benefits from reperfusion for the lowest propensity patients are less negative and not 

significantly different from zero, which is consistent with appropriate use of reperfusion in these 

hospitals. Finally, we note that plots are also linear in log-odds despite the non-parametric nature of the 

estimation— this will allow us to use logit models that control for the propensity linearly as in Equations 

6a and 7a.9 The linearity in log-odds result was not implied by our model, but it will greatly simplify 

our empirical work.  

Figure V is similar to Figure IV, but plots the estimated survival benefit from reperfusion and 

95% CI against the hospital effect from the propensity equation ( ), controlling non-parametrically 

for the propensity index (a local linear estimate of Equation 7b). The hospital-effects are mean zero. The 

left-hand panel included all patients, while the right-hand panel was estimated only for low-propensity 

patients whose propensity index implied that they had below a 20% probability of receiving reperfusion. 

Both plots show a clear downward slope, with lower benefit from treatment for patients treated by 

hospitals with higher risk-adjusted reperfusion rates ( ). Again, this would be expected if higher 

treatment rates were due to lower treatment thresholds, and is evidence of allocative inefficiency. 

                                                 
9 Changes in log-odds (i.e. logit coefficients) can be approximately converted into absolute changes in 
probability by multiplying them by p x (1-p), where p is the probability of success. Table 1 reports 30-day 
survival as 80%, so a change of .3 in log-odds means a .3x.8.x2=4.8 percentage points increase in survival. 
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Among all patients (the left-hand plot), the estimated survival benefit from reperfusion is positive for 

all hospitals, although it is small and not significant in hospitals with the highest treatment rates (those 

2 standard deviations above average, with =0.6). In contrast, among the lowest propensity patients 

(the right-hand plot), only hospitals with the lowest treatment rates are estimated to have survival 

benefits from reperfusion that are near to zero. The estimated survival benefit from reperfusion is 

negative and significant in hospitals with average or higher treatment rates, suggesting that there is 

overuse in most hospitals, i.e., we were able to identify substantial subsets of low-propensity patients 

who were harmed by reperfusion treatment in most hospitals. 

Table II reports regression estimates of equation 7a and 7b that are analogous to the results 

reported in the figures. The table reports estimates of the effect of reperfusion on 30-day survival 

allowing for interactions of reperfusion with the propensity index (Iih) and the hospital effect from the 

propensity equation ( ). The regressions control for patient characteristics and include hospital fixed-

effects, as the theory tells us to condition on them. To help with interpretation, we have normed the 

propensity-index so that a value of 0 refers to the average patient receiving reperfusion. Thus, the 

coefficient on reperfusion is an estimate of the effect of reperfusion on an average patient receiving 

reperfusion. The first four columns report OLS estimates and the last three report logit estimates where 

the coefficients are odds ratios.  

Column (1) does not include the interactions of reperfusion with , but it is included to 

demonstrate that the benefit of reperfusion is clearly increasing in the propensity to receive reperfusion, 

and consequently, that a Roy-model of triage describes provider decision making. The coefficient on 

the interaction of reperfusion with the propensity index is positive and highly significant, implying that 

the treatment effect of reperfusion on survival is increasing in the patient’s propensity index as predicted 

by our model. The coefficient on this interaction implies that an increase in the propensity index of one 

(about one standard deviation of the propensity index in the treated population) is associated with 

roughly a doubling of the treatment effect. Thus, it appears that hospitals are choosing patients for 

treatment based on the benefit of the treatment, and the heterogeneity in the treatment effect is large 

relative to the average treatment effect.  

In column 2, we add an interaction of reperfusion with the hospital effect from the propensity 

equation ( ). The coefficient on this interaction is negative and significant, meaning that conditional 

on a patient’s propensity, more aggressive hospitals (those with a higher propensity to treat patients,

) have lower returns to reperfusion. As noted earlier, and consistent with the simpler graphical evidence 
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presented before, this is evidence of allocative inefficiency – if a hospital’s high use of reperfusion was 

entirely due to comparative advantage, we would get a coefficient of 0 on this variable. The negative 

coefficient is consistent with what would be expected if the variation was due to differences in thresholds 

(τ), where more aggressive hospitals have lower minimum thresholds for treatment, treat more patients, 

and have lower benefits to treatment. In column 3 we control for the propensity-index through a mills 

ratio and note that this type of control is quite similar to controlling for the index linearly.10 The 

coefficient is similar in column 4, where we non-parametrically control for the interaction of reperfusion 

with a set of 100 dummies for each propensity percentile, suggesting that controlling for the linear 

interaction of propensity with reperfusion is a sufficient approximation to g(I). The last three columns 

of Table II are logit analogs to the earlier OLS regressions, and yield similar results in logodds terms. 

The estimated coefficients suggest that a one standard deviation increase in the hospital effect from the 

propensity equation (about 0.3) lowers the survival benefit of reperfusion by about 1 percentage point 

or lowers the odds of survival by about 7%. 
In Table III we estimate the logit models for 7-day and 360-day survival to investigate the 

sensitivity of our results to alternative survival windows. The purpose of using 7-day survival was to 

examine whether the patterns noted above are evident soon after admission and reflect decisions about 

how the heart-attack was initially treated. If they do not appear at 7-day survival, the concern would be 

that we are picking up the effect of later treatments—for example, the quality of post-discharge care. At 

7 days relative to 30 days, we expect the effect of the treatment to be even more tightly linked to a 

patient’s propensity to receive it and that is exactly what we find in Panel A. This relationship is half as 

strong for 360-day survival (Panel B) relative to 7-day survival, and represents the importance of post-

discharge factors in affecting 360-day survival. In both panels, the benefits of reperfusion fall in 

hospitals that do more of it which is consistent with allocative inefficiency, as more aggressive hospitals 

work into less appropriate patients. 

The regressions in Tables II and III identify allocative inefficiency indirectly, by estimating 

whether a particular hospital-level characteristic ( ) is associated with the survival benefit of 

reperfusion, after controlling for patient propensity. A more direct approach is to estimate how much 

the survival benefit of reperfusion varies across hospitals, after conditioning on patient propensity. In 

Table IV, we do this by estimating Equation 6a using hierarchical (mixed effects) logit models that treat 

                                                 
10 In the columns with a mills-ratio control for the propensity index, we took the propensity Pr(Reperfusion=1|X) 
from the treatment logit, put it through an inverse normal to get the equivalent probit index, then created the 
mills-ratio using that probit index. We did this for ease of comparability across columns and avoiding a 
comparison of probit coefficients to logit and OLS coefficients.  

hθ̂
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the hospital-specific intercept and reperfusion coefficient as correlated random effects (these models 

side-step the challenges of fixed-effects estimation for small hospitals). The first column of Table IV 

reports results from estimating a logit model that only includes a hospital-level random intercept to 

account for the hospital’s general level of expertise (or TFP) at providing usual care (𝛼𝛼ℎ0). The random 

effects assumption may appear to be restrictive relative to the fixed effect models in Table II, but the 

restrictions do not meaningfully change the estimated coefficients on reperfusion or 

reperfusion*propensity. 

The second column of Table IV estimates the logit with both a hospital-level random intercept 

and a hospital-level random coefficient on reperfusion, allowing us to estimate the variance and 

correlation in both the hospital-level TFP (𝛼𝛼ℎ0) and the hospital-level thresholds (𝜏𝜏ℎ). We find that the 

standard deviation of hospital thresholds is large (.313 in logodds) —and of the same magnitude as the 

effect of reperfusion for the average treated patient (.314). There is also considerable variation across 

hospitals in TFP, as seen by the standard deviation of 𝛼𝛼ℎ0 estimated to be .198. This estimate implies that 

the standard deviation across hospitals in the risk-adjusted odds of survival for patients not receiving 

reperfusion is nearly 20 percent (or nearly 4 percentage points off a base survival rate of 81 percent). 

Finally, we estimate that the hospital-level coefficient on reperfusion is negatively correlated with the 

hospital-level intercept, meaning that hospitals with higher thresholds (conservative hospitals that do 

less) have worse outcomes for patients not receiving reperfusion. Later in the paper we find evidence 

that this stems from hospitals that are worse at caring for patients without reperfusion being unaware, 

especially if they’re small, that the benefits from doing more reperfusion are actually high for them.  

 

III.B. Evidence Supporting Key Assumptions 

Our analysis relies on three key assumptions: (1) that hospitals triage patients according to a 

Roy-model; (2) the ‘single-index’ assumption, that the distribution of unobservables does not have a 

hospital specific component; and (3) that we are able to estimate a ‘treatment on the treated’ parameter. 

We examine each of these in turn. Finally, we discuss other relevant issues including our decision to 

ignore costs and the possibility that comparative advantage and allocating inefficiency are not just 

hospital-level objects, but vary with patient characteristics.  

 

Roy Selection: We have presented evidence supporting the first assumption in Figure IV and Table II, 

which document that the benefit of reperfusion is clearly increasing in the propensity to receive 

reperfusion. Thus, it appears that hospitals are choosing patients for treatment based on the benefit of 

the treatment. This evidence is not consistent with other possible selection rules that would imply no 
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relationship or even a negative relationship between the propensity and benefit. For example, we would 

expect no relationship if selection were based on non-medical factors such as ability to pay or availability 

of needed personnel at the time of admission. Alternatively, we would expect a negative relationship 

between propensity and benefit if hospitals were more likely to treat patients who were about to die in 

a futile, last-ditch effort.  

 

Single Index: If some hospitals have a wider distribution of unobservable gains from treatment (𝑣𝑣∆), 

because of patient selection or superior diagnostics, it will increase the return to treatment at these 

hospitals, but the mechanism would be patients’ unobserved characteristics, not allocative inefficiency 

in the form of higher hurdles. This can be tested by examining whether the relationship between 

treatment effect and propensity-index varies by selected hospital characteristics: hospitals with more 

variation in 𝑣𝑣∆ (gains in treatment unobserved to us but observable to the hospital, say through better 

diagnostics) will have a flatter relationship between propensity and the return to treatment relative to 

other hospitals. There are two reasons for this: (i) the propensity estimates β/σv so as σv increases, the 

index captures less about benefit relative to the increased variance of 𝑣𝑣∆ and (ii) an increase in σv would 

push relatively more low-propensity patients over the hurdle and this would flatten the relationship 

between returns and the propensity. 

This test is implemented by adding a triple interaction (Reperfusion*Index*Hospital 

Characteristics) between hospital characteristics like (risk-adjusted) hospital treatment rates, volume, 

and major-teaching hospital and seeing whether the effect of Reperfusion*Index on survival varies by 

these characteristics. If these triple interactions are significant then it is evidence against our hypothesis 

that conditional on the X’s, the distribution of 𝑣𝑣∆ is identical across hospitals. This would be different 

than a parallel shift in the returns to treatment that would be generated by a model of allocative 

differences (as in Figure II).  

We test this hypothesis in Table V. If we thought that hospitals with high treatment rates had 

access to superior diagnostic technology or somehow received patients with better unobservable 

characteristics, then they’d have a higher variance of 𝑣𝑣∆, not higher tau, and the triple-interaction would 

be negative to reflect the flatter relationship. We do not see this; the coefficient on the triple interaction 

in the first column is essentially zero. But if hospitals with higher risk-adjusted treatment rates have 

lower hurdles (negative tau), then the coefficient on Reperfusion *Hospital-Effect should be negative 

because this is a story about hurdles (τ) and implies a parallel shift down conditional on propensity—

this is exactly what we find.  In the remaining columns we estimated triple interactions with other 

hospital characteristics like volume and major-teaching. Here too, we found that the triple interactions 
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were insignificant, and interpreted that as being reassuring for the credibility of our empirical work (OLS 

models gave very similar results).   

 

Estimating Treatment-on-the-Treated: To evaluate the plausibility of this assumption we 

estimated a simple logit model for the impact of reperfusion on 30-day mortality, controlling for the rich 

patient risk-adjusters in the CCP data, and compared our estimates to those obtained from clinical trials. 

Clinical trials in medicine have highly specific and strict exclusion criteria based on contraindications 

and prior histories and therefore estimate the effect of the treatment on patients who will likely receive 

the treatment. For this reason, we think that the CCP data and the RCTs should recover similar treatment-

on-treated effects. A summary of nine trials was published in the journal Lancet by the Fibrinolytic 

Therapy Trialists’ Collaborative Group (1994). This was the same time-period as the CCP data and each 

trial evaluated reperfusion therapy in heart-attack patients. Across these nine trials, reperfusion within 

12 hours reduced 35-day mortality from 11.5% to 9.6%, which implies that the treatment on the treated 

effect of reperfusion on the log-odds of survival is 0.20. In our CCP data, a logit model controlling for 

the CCP risk-adjusters estimates an identical effect, with reperfusion increasing the log-odds of survival 

by 0.207 (S.E. = 0.025).   We take this evidence as supporting the case that we can estimate unbiased 

estimates of the treatment on treated effect. 

Because of the centrality of the treatment-on-treated parameter to our model, we further 

explored the plausibility of the model’s identifying assumptions.  In our model, conditional on our 

control variables, we assume that treatment is uncorrelated with omitted factors in a patient’s baseline 

survival (𝑣𝑣𝑖𝑖ℎ0 ), but allow for selection on gains where treatment is correlated with omitted factors in the 

patient’s unobserved gain (𝑣𝑣𝑖𝑖ℎΔ = 𝑣𝑣𝑖𝑖ℎ1 − 𝑣𝑣𝑖𝑖ℎ0 ). Thus, we must assume that 𝑣𝑣𝑖𝑖ℎ0 and 𝑣𝑣𝑖𝑖ℎΔ are conditionally 

uncorrelated. While we cannot test this assumption directly, we can test for a similar pattern in 

observables: as we add more detailed information about the patient to our controls, the additional 

controls may predict treatment (correlated with 𝑣𝑣𝑖𝑖ℎΔ ) and predict mortality (correlated with 𝑣𝑣𝑖𝑖ℎ0 ) but 

should not change the estimated effect of treatment on survival (because 𝑣𝑣𝑖𝑖ℎΔ  uncorrelated with 𝑣𝑣𝑖𝑖ℎ0 ).  

Table VI reports results from logit models of survival on reperfusion with increasingly detailed 

controls. The first column includes no controls, and estimates an impact of reperfusion on the logodds 

of survival of 0.424, well above the trial estimates and implying that some level of controls are needed 

for our assumptions to hold. The second column adds age-sex-race controls, and estimates a treatment 

effect of 0.192, in line with trial estimates. The third column adds all of the CCP risk adjusters, and 

yields a similar estimate of the treatment effect of 0.207. Thus, while the additional CCP risk-adjusters 
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are very strong predictors of both treatment (p<.001) and survival (p<.001), controlling for them has 

very little impact on the estimated treatment effect, which is consistent with our identifying assumptions.  

In the final column we add two types of additional controls that were not on the patient’s chart 

(so were not included in our baseline specification) but were added to the data later and are highly 

predictive (p<.001) of both survival and treatment: patient zip-code characteristics (average income and 

fraction with a high school and college degree); and American Hospital Association and American 

College of Cardiology (AHA/ACC) criteria for reperfusion and cardiac catheterization that were created 

for each patient by expert reviewers using the chart data (where ideal patients for a treatment are those 

for whom the treatment would almost always be indicated, and less-than-ideal candidates are patients 

for whom the therapy would be controversial). Controlling for these additional variables yields an 

estimate of the treatment effect (0.199) that is similar to models with fewer controls and similar to the 

trial estimates. This provides further support for our conditional independence assumption – omitted 

factors driving treatment decisions (𝑣𝑣𝑖𝑖ℎΔ ) appear to be uncorrelated with omitted factors determining 

survival (𝑣𝑣𝑖𝑖ℎ0 ). 

The fact that we can replicate trial estimates with simple age-sex-race controls is context specific 

– reperfusion with thrombolytics is a non-invasive treatment whose benefits are not strongly related to 

mortality risk, unlike surgical interventions which are less likely to be successful in frail populations. 

Thus, after conditioning on age-sex-race, the factors that drive treatment in our setting are not strongly 

related to the factors that determine survival. In our application, the main advantage of the rich control 

variables available in the CCP is to allow more accurate estimation of variation in treatment propensity 

across patients and hospitals.11 So the key takeaway is that the CCP controls clearly matter, but the basic 

patterns noted in the paper are robust to relying only on age-race-gender as control variables (additional 

robustness tests using age-sex-race as the only controls are provided in Appendix III). 

 

Comparative Advantage and Allocative Inefficiency Vary by Patient Characteristics:  while not 

an identifying assumption, one might think that comparative-advantage and allocative efficiency vary 

by patient characteristics—that they are larger or smaller for certain types of patients. This can be tested 

by letting the coefficients on the patient characteristics vary by the risk-adjusted hospital treatment rate 

(Θ). To do this, we estimate separate propensity models by three terciles of theta and correlate their 

                                                 
11 For example, estimates of the propensity using only age-sex-race controls predict only 20% of the variation 
that is predicted by the propensity using the full CCP controls. Thus, if we re-estimate Table 2 controlling for 
age-sex-race (but using the original full-CCP propensity estimates) we get very similar results, but if we re-
estimate Table 2 using age-sex-race controls in both the propensity and the survival equation we get similar signs 
and significance, but different magnitude estimates (see online Appendix III for these results) 
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predictions. If hospitals with high or low treatment rates weight patient characteristics differently, we 

would find weak correlations across the terciles. Empirically, the correlations across the indices is 

greater than 0.99 for terciles 1 and 2 and terciles 2 and 3. It is 0.98 for the correlation between tercile 1 

and 3.   

 

Incorporating Costs: We have assumed that hospitals maximize survival and don’t think about 

costs. We could assume that hospitals aren’t just maximizing survival, but rather, maximizing Net 

Benefit=Survival - λCost, where λ represents the value of life, measured as survival per $1000 of 

spending. λ captures the trade- off being made by the patient and physician between improved survival 

and increased costs. In our data, receiving reperfusion increases 1-year spending by $2.3k. Following 

the literature, we assume that every AMI patient who lives to one year, lives on average, to 5 years. A 

typical value of λ used in cost-effectiveness studies would place the societal value of a life year at around 

$100,000 (Cutler, 2004), although hospitals may use λ=0 if patients do not pay directly for the cost of 

treatment (e.g., because of insurance), or if providers have strong incentives to ignore costs (and social-

welfare) and maximize survival (e.g., perhaps because of fee-for-service payments).  

Using these numbers, an extremely low value of life would be to value each life-year at $20k, 

which would generate λ=0.01. For a value of life-year of $100k, we’d get λ=0.002. At the other extreme, 

one could assume that hospitals value a life-year at $300,000 (which is highly cost-ineffective); this 

would generate λ=0.00067. These values represent the increased probability of 1-year survival at which 

costs become relevant. Given that the reperfusion increases 1-year survival by 4 percentage points 

(0.04), and increases spending by $2.3k, costs become irrelevant, or at-best third-order important.12 

 

III.C. Identifying Hospital Comparative Advantage 

To summarize the evidence so far, we have shown that (i) patients with higher appropriateness 

receive higher benefits from treatment, (ii) this relationship is approximately linear, which is why 

simpler linear-controls for the propensity to receive care do as well as non-parametric controls for the 

propensity to receive care, (iii) less appropriate patients are harmed in high-reperfusion hospitals, which 

is consistent with overuse, (iv) more aggressive hospitals have lower average treatment benefits for 

                                                 
12 What is relevant for our analysis is whether more aggressive hospitals are less costly on a per unit basis (this 
would happen if they do more reperfusion which increases costs but this therapy has offsetting effects on 1-year 
hospital and physician spending). The difference in 1-year spending from reperfusion across the most and least 
intensive terciles of reperfusion is $164. There is no reasonable value of λ at which a $150-$200 difference in 
spending becomes salient to offset our emphasis on survival. 
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patients at every propensity, which is consistent with these hospitals having a lower treatment threshold, 

and (v) after conditioning on patient propensity there remains substantial variation in the survival benefit 

of reperfusion across hospitals, which is consistent with allocative inefficiency. While these results 

identify the presence of allocative inefficiency in the presence of comparative advantage, they say 

nothing about the presence or absence of comparative advantage. In order to simultaneously estimate 

variation in hospital thresholds and comparative advantage, we now turn to a more parametric 

framework to estimate both quantities. 

In this section, we jointly estimate the treatment propensity and survival equations, yielding 

estimates of the joint distribution of the hospital-level parameters (𝜃𝜃ℎ ,𝛼𝛼ℎ0, 𝜏𝜏ℎ). This approach will require 

us to make assumptions about the scale parameter (σv), which is the variance of the unobservable gain 

from treatment. Our earlier results on the presence of allocative-inefficiency were invariant to this 

scaling, but it will turn out to be central for the recovery of comparative-advantage. These estimates are 

then used to identify variation across hospitals in comparative advantage. We will rely on the linear-

approximation for instead of the non-parametric control to simplify things (the linear 

assumption was justified by Figure IV and in Table II where we showed very similar results with this 

restriction compared to the fully non-parametric approach). 

To motivate our approach to recovering hospital-level comparative advantages, recall that the 

treatment propensity was estimated using a random effect logit to estimate Equation 2: 

(2)  Pr(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖ℎ = 1) = F(𝑋𝑋𝑖𝑖ℎ𝛽𝛽 + 𝜃𝜃ℎ) 

Note that since 𝐼𝐼𝑖𝑖ℎ = 𝑋𝑋𝑖𝑖ℎ𝛽𝛽 + 𝜃𝜃ℎ, equation 6a can we rewritten as: 

(7c) 𝑌𝑌𝑖𝑖ℎ = 𝛼𝛼ℎ0 + 𝑋𝑋𝑖𝑖ℎ𝛽𝛽0 + 𝜆𝜆0𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + (𝜆𝜆1 𝜃𝜃ℎ + 𝜏𝜏ℎ)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ + 𝜆𝜆1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ ∗ 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑣𝑣𝑖𝑖ℎ0 + 𝜀𝜀𝑖𝑖ℎ0  

Equation 7c is a logit model with a hospital-level random intercept (𝛼𝛼ℎ0) and a hospital-level random 

coefficient on reperfusion (𝜆𝜆1 𝜃𝜃ℎ + 𝜏𝜏ℎ). In estimating Tables II-IV, we used a 2-step approach that first 

estimated 𝜃𝜃ℎfrom Equation 2, and then plugged this estimate into the survival equation. We now 

estimate the treatment propensity equation (2) and the survival equation (7c) jointly, treating the 

hospital-effect in the propensity equation (𝜃𝜃ℎ) and the hospital-level intercept (𝛼𝛼ℎ0) and coefficient on 

reperfusion (𝜆𝜆1 𝜃𝜃ℎ + 𝜏𝜏ℎ) in the survival equation as jointly normal correlated random coefficients. The 

remaining parameters determining the effect of reperfusion ( ) were estimated along with the 

variance and covariance of the hospital-level random coefficients by maximum likelihood.13 Finally, 

                                                 
13 To simplify estimation, we first estimated the coefficients on all of the covariates (X) in equations 2 and 7c 
using simple logit models, and then used the estimated indices ( ) rather than the individual 
covariates when estimating the random coefficient models.  All the reported standard errors are conditional on 

( ) IIg 10 λλ +=

10 ,λλ

0ˆ,ˆ ββ ihih XX
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knowledge of (𝜆𝜆1 𝜃𝜃ℎ + 𝜏𝜏ℎ), 𝜆𝜆1 and 𝜃𝜃ℎ allows one to restate all of the estimates in terms of 𝜏𝜏ℎ rather 

than (𝜆𝜆1 𝜃𝜃ℎ + 𝜏𝜏ℎ).  

We report the results from joint estimation of equation 2 and 7c in Table VII. We were reassured 

that the more complicated joint estimation procedure replicates the results and magnitudes from simpler 

models. For example, the coefficient on reperfusion from Table VII is 0.27 compared to 0.31 in the 

simpler logit model in Table IV (both coefficients are in log-odds). The benefit of reperfusion increases 

with the index with similar magnitudes in both models—0.29 in Table IV vs. 0.28 from Table VII. The 

threshold and general productivity are correlated -0.331 in the simpler model and are correlated -0.321 

in the joint model, and both are estimated to have similar standard deviations using the simple and the 

joint model. In particular, the joint model continues to estimate considerable variation across hospitals 

in , the minimum threshold for treatment (Std. Dev. = 0.327). The consistency between the joint 

estimates and simpler approaches reassures us that the estimates are not a consequence of the structure 

that we have imposed. Consistent with the evidence presented in Table II, there is a negative correlation 

(-0.341) between and the reperfusion intercept , suggesting that some of the variation in treatment 

rates across hospitals is associated with variation in the treatment threshold (mostly overuse, as 

suggested by Figures IV-V), but that this correlation is far from -1 (as would be the case if there was no 

variation in comparative advantage) suggests that comparative advantage is also present.  

The joint estimation in Table VII yields estimates of the joint distribution of the hospital-level 

parameters (𝜃𝜃ℎ,𝛼𝛼ℎ0, 𝜏𝜏ℎ). However, our goal is to estimate the joint distribution of comparative advantage 

(𝛼𝛼ℎ∆) and the treatment threshold (𝜏𝜏ℎ). Recall that 𝜃𝜃ℎ = �𝛼𝛼ℎ∆ − 𝜏𝜏ℎ�/𝜎𝜎𝑣𝑣, where 𝜎𝜎𝑣𝑣  is the standard deviation 

of the patient-level idiosyncratic gains (𝑣𝑣𝑖𝑖ℎΔ ), which we have so far ignored by assuming that it is one 

(all our earlier results were invariant to this scaling). This implies that 𝛼𝛼ℎ∆ = 𝜏𝜏ℎ + 𝜎𝜎𝑣𝑣𝜃𝜃ℎ, so that the 

distribution of comparative advantage (and its correlation with the treatment threshold) depends on both 

𝜎𝜎𝑣𝑣 and the joint distribution of (𝜃𝜃ℎ, 𝜏𝜏ℎ).  Therefore, it is important to know the scale factor in order to 

make statements about comparative advantage. The scale parameter represents the standard deviation 

of the unobservable factors determining expected benefit from treatment. While we cannot estimate it 

directly, we used a range of values for 𝜎𝜎𝑣𝑣 to calculate the standard deviation of  and its correlation 

with . These are presented in Appendix IV. Interestingly, these estimates bound the standard 

deviation of  to be above 0.3. Thus, our estimates imply that the variation across hospitals in 

                                                 
the first-stage estimates , but any adjustment for using these generated regressors is likely to be 
second-order because of the large samples used to estimate the patient-level coefficients. 
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comparative advantage is at least as large as the variation across hospitals in the treatment threshold 

(SD=.327) and possibly much larger. For 𝜎𝜎𝑣𝑣 < 1, corresponding to relatively less variation in 

idiosyncratic differences across patients in the expected benefits from treatment, our estimates imply 

similar amounts of variation in  and , and that the two are strongly positively correlated (between 

0.4 and 1), meaning that hospitals with low comparative advantage tend to have low thresholds and 

overuse reperfusion. Such a positive correlation (which was also noted above in Table VII) would arise 

if all hospitals incorrectly believed that they had high comparative advantage in performing the 

treatment, resulting in overuse among those hospitals that actually did not have a high comparative 

advantage in performing the treatment (as we illustrated in Figure IIb). We examine this mechanism in 

the next section.  

 

IV. MECHANISMS 

As noted earlier, there are two broad mechanisms that could lead to allocative inefficiency. First, 

hospitals may be over-treating for financial gain (particularly in for-profit hospitals) or because of 

benefits to future patients through learning-by-doing (particularly in teaching hospitals). This type of 

mechanism would suggest that allocative inefficiency (τ) would be related to hospital characteristics 

such as ownership, teaching status, etc. To investigate this hypothesis, we estimated the model from 

Table IV adding interactions of treatment with a number of hospital-characteristics such as ownership, 

teaching status and size (Table VIII). Overuse at for-profit hospitals or teaching hospitals, or at hospitals 

with other characteristics that are included in the table, would mean that the return to treatment would 

be lower at such facilities. The results demonstrate that there is no evidence that these characteristics are 

associated with the return to treatment, conditional on the patient’s propensity to receive treatment. A 

joint-test on all the Treatment*Hospital Characteristics interactions can’t reject the null-hypothesis that 

these variables are jointly zero (chi-squared statistic=2.96; p-value=0.96). Yet, since overtreatment is 

clearly in evidence from the earlier exhibits, we need another mechanism for why it happens.  Note that 

these hospital characteristics do predict variation in the use of reperfusion: for-profit hospitals and high-

volume hospitals were more likely to perform reperfusion, while teaching hospitals and hospitals that 

treated high poverty populations were less likely to perform more reperfusion. The evidence in Table 

VIII implies that differences across hospitals with these characteristics in reperfusion rates reflect 

differences in comparative-advantage rather than differences in treatment thresholds. 

hτ
∆
hα
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A second mechanism for allocative inefficiency is that hospitals have imperfect information and 

misperceive their comparative advantage, as we illustrated earlier in Figure IIb.14 Given the general lack 

of systematic performance feedback and small samples of their own treated patients to observe, it is 

quite plausible that hospitals and physicians will have inaccurate beliefs about their own comparative 

advantage. Put differently, there is no reason to think that physicians or hospitals know their 𝛼𝛼ℎ∆ 

perfectly—it’s the difference of two parameters (𝛼𝛼ℎ0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼ℎ1) that are both measured with error. In this 

mechanism, θ represents a hospital’s belief about their comparative advantage and τ represents a 

hospital’s misperception (or prediction error) of their own comparative advantage. 

More formally, we can reinterpret our empirical model in the following way. Suppose that a hospital 

does not know its comparative advantage, but instead has a belief about its comparative advantage which 

is given by θ. Based on this belief, they treat patients if the expected benefit of treatment is positive. 

Thus, patients are treated based on beliefs (if 𝜃𝜃ℎ + 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝑣𝑣𝑖𝑖ℎΔ > 0) rather than based on actual 

comparative advantage (if 𝛼𝛼ℎΔ + 𝑋𝑋𝑖𝑖𝛽𝛽Δ + 𝑣𝑣𝑖𝑖ℎΔ > 0). Let 𝜏𝜏ℎ  represent the difference between a hospital’s 

actual comparative advantage and their beliefs, so that 𝜏𝜏ℎ = 𝛼𝛼ℎΔ − 𝜃𝜃ℎ is the hospital’s prediction error 

(and therefore 𝜃𝜃ℎ = 𝛼𝛼ℎΔ − 𝜏𝜏ℎ, as in our empirical model). Thus, this framework interprets 𝜏𝜏ℎ as arising 

from an inaccurate belief about 𝛼𝛼ℎ∆, rather than assuming that hospitals know 𝛼𝛼ℎ∆ and consciously set 

𝜏𝜏ℎ≠0 to achieve other objectives. A negative 𝜏𝜏ℎ implies that the hospital over-estimated their 

comparative advantage and, as a result, treated some patients who were in fact harmed by the treatment. 

In this reframing, the key question is how hospitals form their beliefs.  

Suppose that each hospital receives a noisy signal of their comparative advantage (S), where 

S=𝛼𝛼Δ+ω and the noise (ω) is independent of α with variance 𝜎𝜎ω2  (we have suppressed the subscripts to 

simplify notation). Based on this signal, the hospital forms a prediction of its comparative advantage 

(θ). If the hospital knew the reliability of the signal (r=𝜎𝜎𝛼𝛼2/(𝜎𝜎𝛼𝛼2 + 𝜎𝜎ω2), where  𝜎𝜎𝛼𝛼2  is the variance of 𝛼𝛼Δ  

across hospitals), then the optimal prediction of 𝛼𝛼Δ  given S is the posterior mean, given by E(𝛼𝛼Δ  

|S)=r*S. More generally, we assume that hospitals may not know the reliability of the signal, and form 

their prediction using θ=w*S, where w≠r.  Incorrectly weighting the signal generates additional variation 

in the prediction error (τ) which leads to greater allocative inefficiency. Even if hospital beliefs are 

optimal given S (i.e., w=r), there will be allocative inefficiency (τ≠0) because hospitals have imperfect 

information, and this information only predicts a fraction (r) of the true variation in comparative 

advantage.  

                                                 
14 We are grateful to Janet Currie for suggesting this interpretation and alerting us to related work in Currie and 
MacLeod (2017). 
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This simple framework delivers a number of strong empirical implications. First, because the error 

in the signal is assumed to be independent of the hospital’s actual productivity and comparative 

advantage, this framework constrains the number of parameters in the structural model to six, which 

allows us to identify the scale parameter and the variance in comparative advantage. More specifically, 

our empirical model from Table VII estimated 6 reduced-form moments (the variances and covariances 

of θ, τ, and α0) which are a function of the 6 unknown structural parameters in this framework (the 

variances and covariance of 𝛼𝛼Δ  and α0, the reliability of the signal r, the weight placed on the signal w, 

and the scale parameter from the logit 𝜎𝜎𝑣𝑣).15 Therefore, we can derive estimates of the unknown 

structural parameters for this model using minimum chi-squared estimation (Wooldridge 2010, p.442-

446). Minimum chi-squared estimation chooses the structural parameters that provide a best fit of the 

reduced-form estimates (in a weighted least squares sense, using the standard errors & covariance of the 

reduced form estimates to form weights). In the just-identified case the resulting structural parameters 

fit the reduced form moments exactly because they are one-to-one function of the reduced form 

parameters. These equations are derived and listed in Appendix V. Restrictions on the structural 

parameters can be tested based on how they affect the structural models ability to fit the reduced form 

estimates through a chi-squared goodness of fit statistic. 

Just-identified estimates of the structural parameters for this model are provided in the first column 

of Table IX. There is substantial variation in comparative advantage (standard deviation of α = 0.317), 

with the variation across hospitals being as large as the average treatment effect. The signal that hospitals 

receive about their comparative advantage is estimated to have very low reliability (r=.065), but 

hospitals place more weight on the signal than is optimal, with w=0.154. 

If w=r in this framework then beliefs are optimal. When we impose w=r (column 2 of Table IX), 

we are over-identified (estimating 5 parameters from 6 moments) and can use the chi-squared goodness 

of fit statistic to test the restriction (Wooldridge, 2010, pp. 444-445). This statistic rejects the hypothesis 

that w=r (chi-squared with 1 df = 10.4, p=.001).  In other words, the constrained model with w=r implies 

reduced-form variances and correlations of θ, τ, and α0 that are significantly different from those 

estimated in Table VII. More specifically, if w=r then the hospital’s prediction (θ) is optimal and, 

therefore, should be uncorrelated with the prediction error (τ). The fact that we estimated a significant 

negative correlation of -0.34 between θ and τ in Table VII implies that hospitals’ predictions are not 

optimal and they are overweighting the noisy signal (w>r), i.e. they over-react to the signal. One might 

not expect hospitals to have the information necessary to form optimal weights – in particular, they may 

                                                 
15 See Appendix V for derivation of the equations stating the reduced-form moments in terms of the structural 
parameters. 
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not know how much true variation in comparative advantage there is across hospitals, and are acting as 

if they are using an over-diffuse prior (placing too much weight on their own signal, and not shrinking 

enough to a prior mean).   

Finally, if hospitals learn based on their experience with patients, then one would expect that low-

volume hospitals would have less reliable signals of their comparative advantage than high-volume 

hospitals. In the third column of Table IX we fit our model to reduced-form moments estimated 

separately for low, medium and high-volume hospitals (6 moments for each group, for a total of 18 

moments), allowing the reliability parameter to vary across the 3 groups but otherwise constraining the 

remaining model parameters to be equal across the 3 groups (8 parameters total to fit 18 moments). As 

expected, the reliability of the signal is estimated to be highest for the high-volume hospitals and lowest 

for the low-volume hospitals. Moreover, the goodness of fit statistic cannot reject our model (chi-

squared with 10 df = 12.7, p=.24) suggesting that this simple model provides an adequate fit of the data. 

In other words, the model estimated in column 3 of Table IX implies reduced-form variances and 

correlations of θ, τ, and α0 that are not significantly different from the unconstrained reduced-form 

estimates for low, medium, and high-volume hospitals. Assuming that reliability of the signal is the 

same for high, medium and low-volume hospitals (final column of Table IX) is strongly rejected (chi-

squared with 2 df = 49.7, p<.0001) and such a model is strongly rejected by the goodness-of-fit test (chi-

squared with 12 df = 62.4, p<.0001).  

 

V. WELFARE IMPLICATIONS 

We can use our results to construct a stylized estimate of the welfare loss generated by this 

allocative inefficiency, along the lines suggested by Phelps (2000). Returning to the intuition from 

Figure IIb, a patient in a hospital which uses a τ that is different than zero experience a welfare loss, 

where:  

(8a)    𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖ℎ = 1
2

. (𝜏𝜏ℎ)�
ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

(𝜏𝜏ℎ) 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖ℎ) 
d𝜏𝜏

���������������
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

The welfare loss due to allocative inefficiency is the average reduction in (logodds) survival per 

patient.16 Noting that 𝐸𝐸(𝜏𝜏ℎ2) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜏𝜏ℎ) + [𝐸𝐸(𝜏𝜏ℎ)]2,  and letting 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
d𝜏𝜏

 represent the average 

effect of a change in 𝜏𝜏ℎ across all patients, the average welfare loss across all hospitals is given by: 

(8b) 𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖ℎ)  = 1
2

.𝑉𝑉𝑎𝑎𝑎𝑎(𝜏𝜏ℎ) 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
d𝜏𝜏

 + 1
2

. [𝐸𝐸(𝜏𝜏ℎ)]2 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
d𝜏𝜏

  

                                                 
16 The welfare loss is measured in the same units as τ (logodds of survival in our estimates) and is the welfare 
loss per patient because we use the probability of treatment rather than total number treated. 
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The welfare loss can be broken into two parts – the first due to variance in 𝜏𝜏ℎ and the second due to 

systematic bias in 𝜏𝜏ℎ, across all hospitals. We estimate each in turn. 

For the first term, we can return to the hierarchical-logit model in Table VII, where we estimated 

𝑆𝑆𝑆𝑆(𝜏𝜏ℎ)=0.327.17 To get an estimate of 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 𝑑𝑑𝑑𝑑⁄ , which is a change in the propensity to 

receive treatment for a small increase in τ, we took a tiny change of 0.01 in 𝜏𝜏ℎ, divided it by our estimate 

of the scale factor (𝜎𝜎𝑣𝑣) of 0.44 to turn it into how much change that would create in the hospitals risk-

adjusted treatment rate 𝜃𝜃ℎ. Adding this change in 𝜃𝜃ℎ to each patient’s propensity index yielded an 

estimate of the average effect across all patients of 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 𝑑𝑑𝑑𝑑⁄  =-0.26.  So the welfare loss 

from variation in allocative inefficiency is (1/2)*(0.327^2)*(-0.26)= -0.014, i.e. the allocative 

inefficiency across hospitals results in an average reduction in the logodds of survival per patient of 

.014. The overall benefit from treatment is the benefit among the treated (0.265 in log-odds for the 

average treated patient from Table VII), who comprise 19 percent of the patient population for a total 

average benefit of 0.05. This means that we could increase the effectiveness of treatment by about 28% 

(.014/.05) if we removed the allocative inefficiency across hospitals.  

The second term of the welfare loss equation says that there is additional welfare loss if there is 

systematic overuse across all hospitals, i.e. if the mean of τ is not equal to zero. This part of the welfare 

calculation is more speculative. A good guess about systematic overuse across all hospitals comes from 

the average treatment effect among patients with very low propensity, since the treatment effect 

asymptotes at 𝜏𝜏ℎ as the propensity goes to zero in the limit. In Figure IV, patients with the lowest 

propensity being plotted (with about a 5% chance of treatment) have an average treatment effect of 

roughly -0.25 (a bit higher for conservative hospitals, a bit lower for aggressive hospitals), suggesting 

that 𝐸𝐸(𝜏𝜏ℎ) < −0.25. Therefore, the additional welfare loss from systematic overuse should be at least 

(1/2)*(-0.25^2)*(-0.26)=-0.008, which would raise the overall loss from .014 (28% ) to .022 (44%). This 

calculation suggests that systematic overuse adds substantially to the welfare loss from the overall 

variation.  

Put differently, these estimates mean that a policy which provided better information about 

treatment effect heterogeneity across hospitals could improve patient welfare by reducing the prediction 

error 𝜏𝜏ℎ, where 𝜏𝜏ℎ = 𝛼𝛼ℎΔ − 𝜃𝜃ℎ. Our more structural estimates from Table IX suggest that it is very 

difficult for hospitals to predict their own comparative advantage – they receive very unreliable signals, 

and then overweight these noisy signals. But if all hospitals had perfect information about 𝛼𝛼ℎΔ, and acted 

on it, we would eliminate allocative inefficiency entirely and improve the average value of the treatment 

                                                 
17 The simpler model in Table 4 yielded a very similar estimate of 0.31. 
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by 44% (based on the calculation above, assuming perfect information eliminates both the bias and 

variation in 𝜏𝜏ℎ).   

Our estimates also allow us to consider other counterfactuals. One alternative counterfactual would 

be to encourage more complete standardization in treatment rates across hospitals, along the lines often 

suggested by policy makers concerned about unwarranted variation across hospitals in treatment rates. 

In our model, this is equivalent to getting hospitals to ignore the signal (S) about their own comparative 

advantage, and instead all use a common 𝜃𝜃 as an estimate of their own comparative advantage. Policy-

makers often have the sense that 𝜃𝜃 should be set to the average true comparative-advantage. The main 

benefit from this type of standardization is it can potentially eliminate the welfare loss from systematic 

bias in 𝜏𝜏ℎ. As we calculated above, eliminating this bias improves welfare by at least 16%. But there is 

also a cost from this type of standardization as it ignores true differences across hospitals in comparative 

advantage, and through this channel, increases allocative inefficiency. If hospitals were perfectly 

predicting the variation in 𝛼𝛼ℎΔ (so that 𝜏𝜏ℎ = 0), then standardization would lead to greater prediction 

errors resulting in 𝑉𝑉𝑉𝑉𝑉𝑉(𝜏𝜏ℎ) = 𝑉𝑉𝑉𝑉𝑉𝑉�𝛼𝛼ℎΔ�. Using the estimate of the standard deviation of 𝛼𝛼ℎΔ from Table 

IX (0.317), we estimate that the welfare loss from standardization (relative to the first best of perfect 

prediction of 𝛼𝛼ℎΔ) is (1/2)*(0.317^2)*(-0.26)=-0.013. Note that this is similar to the welfare loss from 

variation in 𝜏𝜏ℎ under current practice (-.014) because hospitals are doing such a poor job of predicting 

their own comparative advantage. Thus, in this case, there is no cost (relative to current practice) from 

reducing variation in treatment rates across hospitals and some benefit if standardization were able to 

remove the overall bias toward over-treatment. 

A third, perhaps more realistic, counterfactual would be to encourage more standardization in 

treatment rates across patients. One possibility would be just prohibiting hospitals from treating patients 

below a certain cutoff and giving hospitals discretion in treating patients above the cutoff. This is similar 

to having evidence-based guidelines, and discouraging hospitals from treating outside of guidelines. 

Note that if there were no systematic bias toward over-treatment (i.e., 𝐸𝐸(𝜏𝜏ℎ) = 0) then there would be 

no benefit from this strategy. If there were no bias then even low propensity patients would, on average, 

have positive treatment effects on the treated (although there would be negative treatment effects in 

some hospitals). Thus, this strategy is a second-best solution to the bias problem – rather than eliminating 

the bias (which benefits all patients), we eliminate treatment for low-propensity patients who are most 

negatively affected by the bias toward over-treatment. To calculate how much would be gained from 

this strategy, we compared the existing average benefit from treatment (.050) to a counterfactual in 

which we set treatment to 0 for all patients for whom the  𝜆𝜆0 + 𝜆𝜆1 ∗ 𝑋𝑋𝑖𝑖𝛽𝛽 < 0, using estimates of the 

treatment effect on the treated for these patients (including the hospital random effects) derived from 
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the model in Table VII. Just over 18% of patients currently getting the treatment are predicted to have 

negative treatment effects, and not treating these patients increases the average benefit across all patients 

by 14% to .057. The gains from this second-best approach (.007) are nearly as large as the gains we 

estimated from eliminating bias (.008), suggesting once again that systematic overuse is a central 

component of welfare losses.  

 

VI. CONCLUSION 

Using a Roy model of treatment to motivate our empirical framework, we found significant evidence 

of allocative inefficiency across hospitals. In addition to the welfare loss from allocative inefficiency, 

we also found evidence of substantial variation in comparative advantage across hospitals, with the 

benefits from treatment being much higher in some hospitals than others. This variation in the benefits 

from treatment implies that “one size fits all” policies such as strict treatment guidelines are incorrect, 

since hospitals with greater comparative advantage at a treatment should use it more among their 

patients. Moreover, our evidence suggests that much of the allocative inefficiency that we observe is 

due to hospitals having imperfect information and misperceiving their comparative advantage. This is a 

different mechanism than explaining variations by appealing to medical malpractice or financial 

entrepreneurship by providers (Gawande, 2009). Thus, rather than reducing treatment variation across 

hospitals, better information about treatment effect heterogeneity across hospitals is key to improving 

patient welfare. We don’t know if these findings and conclusions generalize to settings beyond the 

treatment of heart attack patients, but our framework is general and can be applied to a variety of settings. 

Our work suggests three new directions for research on productivity in healthcare. By uniting the 

literatures from economics and medicine on variations in medical care with insights from the 

productivity literature, we found that variation in comparative advantage (productive efficiency) plays 

an important role in generating treatment variation. Thus, future work should explore sources of 

variation in productive efficiency across hospitals and broaden the idea of productive efficiency beyond 

simple TFP (Garber and Skinner, 2008) to consider the reasons for comparative advantage in particular 

types of care. By separately identifying allocative inefficiency, we also found that lack of information 

about the variation across hospitals in comparative advantage generates substantial welfare loss. This 

finding is similar to Abaluck et al. (2016), who find that physician misperceptions about which patients 

benefit most from testing generate substantial welfare loss. Thus, future work should also explore how 

patients and providers learn about and respond to variation in productive efficiency. This would involve 

taking our framework for understanding how hospitals differ in efficiency, and combining it with the 

insights in Hull (2018), which finds evidence that patients select on gains in terms of choosing hospitals.  
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Our framework can also be applied to a range of related puzzles such as the presence of racial and 

gender disparities in treatment and the slow diffusion of new treatments that were proven effective in 

randomized trials (Chandra and Staiger, 2010). As with the variation we study across hospitals, our 

framework can identify the underlying source of these differences in treatment across populations. Our 

findings suggest that misperceptions and learning about the heterogeneous benefits of treatment across 

hospitals and patients may play a key role in understanding all of these puzzles. 

Finally, and related to the point about heterogeneous benefits, our works speaks to using more 

economic structure at the time of estimating simpler reduced-form estimates of the marginal value of 

health. Regression-discontinuity designs such as those involving birthweight cuts are recovering the 

average marginal effect of a treatment across all hospitals and all patients. These approaches often focus 

on removing a demand-side confounder like patient illness. The Roy-model approach notes that there is 

substantial heterogeneity in the treatment effect across hospitals and across patients, with the marginal 

effect of more treatment depending on which patient receives the treatment, and which hospital delivers 

it. These are supply-side explanations, and ignoring such heterogeneity, across patients and hospitals, 

creates problems for the interpretation of simpler approaches. 

But RCTs and other approaches can also be deployed to test other implications of our model, and 

we believe that a greater use of these methods to test approaches like ours is central. These methods 

could be deployed to test selection on gains—perhaps by evaluating whether the average treatment effect 

is smaller than treatment on the treated. One setting to validate our paper would be one where it became 

slightly harder to access treatment in a hospital. We would predict that the extra costs would reduce 

treatment for the marginal patient, and that this marginal patient will be different in different hospitals: 

in more intensive hospitals (as measured by risk-adjusted treatment rates), the marginal patient will be 

less appropriate in the global distribution of patient characteristics. Another test would be to give 

hospitals more information about their comparative-advantage and see if this information is used by 

hospitals to change their treatment decisions. Our model would predict that if hospitals respond to their 

information then (1) some less appropriate patients will no longer be treated (2) overall outcomes will 

improve and that this will be driven by a lack of overuse in less appropriate patients, and (3) these effects 

will be concentrated in smaller hospitals. These insights flow from a Roy model of treatment allocation, 

but not from theory-agnostic approaches that measure average treatment effects across all patients and 

hospitals.  
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FIGURE I 

Motivating Facts from the CCP Data 

PANEL A 

Survival benefit associated with reperfusion versus risk-adjusted rate of reperfusion at the hospital 
level (correlation = -0.02, Number of hospitals =4690) 

 

 

 

FIGURE I 

Motivating Facts from the CCP Data 

PANEL B 

Probability of Receiving Reperfusion According to Patient Characteristics and Hospital Treatment 
Intensity  
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FIGURE I 

Motivating Facts from the CCP Data 

PANEL C 

Survival Benefit Associated with Reperfusion According to Patient Characteristics and Hospital 
Treatment Intensity 

 

In Panel A, the risk-adjusted rate of reperfusion at the hospital level is an empirical Bayes 
estimate of the hospital-level intercept from a random-effect logit model of whether a patient received 
reperfusion within 12 hours regressed on a rich set of covariates derived from patient charts (see 
Appendix I for a full list) and a hospital-level random intercept. The survival benefit associated with 
reperfusion is an empirical Bayes estimate of the hospital-level coefficient on reperfusion from a 
random-coefficient logit model of whether a patient survived 30 days after their heart attack regressed 
on whether the patient received reperfusion within 12 hours, controlling for the full set of patient 
covariates, and allowing for a hospital-level random intercept and (possibly correlated) random 
coefficient on reperfusion. 

In Panel B, we non-parametrically plot the probability of treatment as a function of the 
treatment propensity index from the reperfusion logit based on patient covariates (without the hospital 
intercept), estimating  separate lines for the probability of treatment in hospitals in the highest (most 
aggressive) and lowest (most conservative) terciles of risk-adjusted treatment rates (the hospital-level 
reperfusion intercept). 

In Panel C, we non-parametrically plot the effect of reperfusion on survival as a function of 
the treatment propensity index based on patient characteristics (without the hospital intercept), 
separately for hospitals in the highest (most aggressive) and lowest (most conservative) terciles of 
risk-adjusted treatment rates. The survival benefit at each point in the distribution of the propensity 
index was estimated flexibly using a local-logistic regression of 30-day survival on reperfusion that 
controlled for the detailed risk adjusters available in the CCP. The lines in Panels B and C are based 
on local regressions with a triangular kernel that included 30% of the sample on either side. 

All estimates are based on data from the CCP for 138,957 AMI patients treated in 4690 hospitals.  
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FIGURE IIa 

A Roy Model of Treatment at the Hospital Level 
 

The two lines denote patient survival if a hospital treats a given patient with usual care (intercept 
is 𝛼𝛼ℎ0)  or with reperfusion treatment (intercept is 𝛼𝛼ℎ1) as a function of patient characteristics (i.e. patient 
X’s) on the x-axis. We have suppressed the distribution of unobservables that come out of the plane. 
Expertise at usual care and reperfusion is captured by the intercepts 𝛼𝛼ℎ0 and 𝛼𝛼ℎ1 respectively, with 
comparative advantage being the difference between them. Allocative efficiency means that reperfusion 
should be performed to the point that the marginal patient receiving it receives zero benefit (τh = 0). 
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FIGURE IIb 

A Roy Model of Treatment at the Hospital Level with Allocative Inefficiency 
 

The figure illustrates the presence of allocative inefficiency. Here, misperceptions about 
comparative advantage at delivering the treatment result in more patients treated than is optimal. It is 
also possible that some hospitals overuse treatment because of maximizing something other than 
survival, rather than because of misperceptions about comparative advantage. As drawn, the hospital 
overuses treatment and uses a negative threshold (τh).  The shaded triangle represents the welfare loss. 
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FIGURE III 
Distinguishing Underuse and Overuse Using the Propensity to Receive Treatment 

 
The figure illustrates the relationship between the expected benefit from treatment, , on the 

vertical axis, and the propensity index I on the horizontal axis. The propensity to receive treatment 
depends on patient characteristics and a hospitals assessment of its hospital specific benefit from 
treatment. The curves represent the treatment-on-the-treated effect for a patient with index I, and 

approach the minimum threshold (τ) for a patient with a low propensity of being treated. The top curve 
represents a hospital with a high treatment threshold (underuse) and the bottom curve represents a 

hospital with a low treatment threshold (overuse).   
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FIGURE IV 
Survival Benefit from Reperfusion by Patient’s Treatment Propensity, 

Low-Treatment-Rate (Left) and High-Treatment-Rate (Right) Hospitals. 
 

The figures plot the estimated survival benefit (and 95% confidence intervals) from reperfusion 
against a patient’s treatment propensity index for hospitals in the lowest (left-hand side) and highest 
(right-hand side) terciles of the estimated hospital effect from the propensity equation. Propensity 
Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a logit model; see Appendix 
II. Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to the average value 
of patients receiving reperfusion. All models include all CCP risk-adjusters. 
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FIGURE V 
Survival Benefit from Reperfusion by Risk-Adjusted Hospital Treatment Rate, 

All Patients (Left) and Low-Propensity Patients (Right) 
 

The left-hand panel plots the estimated survival benefit from reperfusion (and 95% confidence 
interval) against the hospital effect from the propensity equation using a locally-weighted logit model 
to estimate the reperfusion effect (controlling non-parametrically for the propensity index as was done 
in column 3 of Table 2). The right-hand panel is the analogous plot estimated only for low-propensity 
patients whose propensity index implied that they had below a 20% probability of receiving reperfusion. 
Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a logit model; 
see Appendix II. Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to the 
average value of patients receiving reperfusion. All models include all CCP risk-adjusters. 
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TABLE I: Patient Characteristics, Full Sample and by Reperfusion 
    
Variable Full Received No 

 Sample Reperfusion Reperfusion 
  w/in 12 hours w/in 12 hours 
    

Survival 30 days post-AMI 81% 86% 80% 
Reperfusion within 12 hours 19% 100% 0% 
Age (in years) 76.7 73.5 77.4 
Female (percent) 49.5 43.2 50.9 
Black (percent) 5.9 4.0 6.4 
    
Previous diagnoses:    

Congestive Heart Failure 22% 7% 25% 
Hypertension 62% 56% 63% 
Diabetes 30% 23% 32% 
Dementia 6% 2% 7% 

    
Percent treated at Non-Profit Hospital 19.6 20.7 19.3 
Percent treated at For-Profit Hospital 10.6 11.0 10.5 
Percent treated at Government Hospital  13.2 12.7 13.4 
Percent treated at Major Teaching 20.2 20.5 18.7 
Percent treated at Minor Teaching  14.3 14.1 14.2 
Number of Beds at Treating Hospital 275.3 274.6 275.5 
    
Number of observations 138,957 25,876 113,081 
    
        

 
Note: Sample is from the Cooperative Cardiovascular Project (CCP), which included data derived 
from patient charts for all Medicare beneficiaries with acute myocardial infarction admitted during 
selected months during 1994 and 1995. There are 4,690 hospitals in the sample. Full-list of variables 
and additional detail on the sample and data collection is in Appendix I. 
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TABLE II: Effect of Reperfusion on 30-day Survival, OLS and Logit Estimates 
        

 OLS OLS OLS OLS Logit Logit Logit 
  (1) (2) (3) (4) (5) (6) (7) 

        
Reperfusion  0.039 0.043 0.044 

 
0.328 0.344 

  (0.003) (0.003) (0.003) (0.027) (0.027) 
        

Reperfusion*Propensity index 0.040 0.042  
 

0.291  
  (0.002) (0.002)  (0.018)  

        
Reperfusion* Hospital Rate (θ) -0.031 -0.037 -0.037  -0.211 -0.251 -0.252 

  (0.009) (0.009) (0.009)  (0.076) (0.076) (0.077) 
           

        
Hospital Fixed-Effects Yes Yes Yes Yes Yes Yes Yes 
      
 
Control for Propensity Index  None Linear 

Mills 
Ratio 

Non-
Parametric Linear 

Mills 
Ratio 

Non-
Parametric 

        
  

    
 
Note: Dependent variable is whether patient survived to 30 days. Reperfusion measures receipt of reperfusion therapy 
within 12 hours of admission. OLS coefficients are percentage-point changes in survial and logit coefficients are log-
odds. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a logit model; see 
Appendix II. Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to the average value of 
patients receiving reperfusion. All models include all CCP risk-adjusters. Columns 2 and 5 include linear controls for 
propensity-index. Columns 3 and 6 use a mills-ratio but retain OLS/Logit for the survival equation for comparability. 
Columns 4 and 7 include 100 percentiles of propensity-index interacted with the receipt of Reperfusion. Sample-size in 
every regression is 138,957.   
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TABLE III: Effect of Reperfusion on 7-day and 365-day Survival, Logit Estimates 
    
  Conditional Conditional 

  on Propensity on Propensity 
    
   (1) (2) 
Panel A: 7 Day Survival    
    

Reperfusion   0.218  non-parametric 
  (0.031)  
    

Reperfusion * Propensity index  0.356 non-parametric 
    (0.021)  

    
Reperfusion * Hospital Treatment Rate (θ) -0.271 -0.325 
    (0.087) (0.088) 

    
     Control for Propensity Index   Linear Non-Parametric 
       
Panel B: 365 Day Survival    
    

Reperfusion   0.393  non-parametric 
  (0.023)  
    

Reperfusion * Propensity index  0.176 non-parametric 
    (0.017)  

    
Reperfusion * Hospital Treatment Rate (θ) -0.147 -0.192 

  (0.066) (0.067) 
    

     Control for Propensity Index   Linear Non-Parametric 
       
    
Note: Coefficients are log-odds. Table is analogous to Table 2. Propensity Equation is 
Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a logit model; see Appendix II. 
Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to the average value 
of patients receiving reperfusion. Column 1 reports equation 7a and Column 2 reports equation 7b. 
All models include all CCP risk-adjusters. Sample-size in every regression is 138,957.   
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TABLE IV: Effect of Reperfusion on 30-day Survival, Mixed-Logit Estimates 
   
  (1) (2) 
Reperfusion  0.297 0.314 
 (0.022) (0.024) 
   
Reperfusion*Propensity index 0.289 0.292 

 (0.017) (0.017) 
   
   

Std dev of hospital intercept (α0) 0.188 0.198 
 (0.015) (0.017) 
   

Hospital Level Random-Intercept (α0) Yes Yes 
Hospital Level Random Coefficient on Reperfusion (τ) No Yes 
      
Std dev of hospital coefficient on reperfusion  0.313 
(identifies τ; hospital level thresholds)  (0.056) 

   
corr(hospital level intercept, coefficient on reperfusion) -0.331 
(identifies corr (α0, τ))  (0.154) 

   
Number of Hospitals 4,690 4,690 
      
   
Note: Coefficients are log-odds. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) 
and is estimated using a logit model; see Appendix II. Propensity index refers to the logit index 
(XB+Hospital Effect). It is demeaned to the average value of patients receiving reperfusion. Table 
reports estimating Equation 6a. All models include all CCP risk-adjusters. Sample-size in every 
regression is 138,957.   
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TABLE V: Testing for violations of the Single-Index Assumption, Logit Estimates 
  

Hospital Characteristic 
 

 Hospital 
Treatment 

Rate 

Ln (Volume) Major 
Teaching 
Hospital 

    
Reperfusion 0.330 0.178 0.296 
 (0.027) (0.118) (0.027) 
    
Reperfusion * Index 0.295 0.289 0.268 
 (0.021) (0.088) (0.020) 
    
Reperfusion * Hospital Treatment Rate -0.216   
 (0.077)   
    
Reperfusion * Hospital Treatment Rate * 
Index  

-0.019 
(0.056) 

  

    
Reperfusion * ln (Volume)  0.031  
  (0.029)  
    
Reperfusion * ln (Volume) * Index  -0.001  
  (0.022)  
    
Reperfusion * Major Teaching Hospital   0.026 
   (0.058) 
    
Reperfusion * Major Teaching Hospital* 
Index 

  0.086 
(0.044) 

    
Control for Propensity Index Linear Linear  Linear 
    
Note: Coefficients are log-odds. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) 
and is estimated using a logit model; see Appendix II. Index refers to the logit index 
(XB+Hospital Effect) from this equation. It is demeaned to the average value of patients receiving 
reperfusion. Hospital treatment rate refers to the risk-adjusted treatment rate. All models include 
all CCP risk-adjusters. Sample-size in every regression is 138,957.   
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TABLE VI: Sensitivity of the Effect of Reperfusion on 30-day Survival to Controls, Logit Estimates 
 (1) (2) (3) (4) 
     
Reperfusion 0.424 0.192 0.207 0.199 
 (0.020) (0.021) (0.025) (0.026) 
     
     
Controls:     
     
  Age-sex-race No Yes Yes Yes 
     
  Full CCP controls No No Yes Yes 
     
  Zipcode Characteristics No No No Yes 
     
  AHA/ACC Criteria No No No Yes 
     
     
Note: Coefficients are log-odds. Sample-size in every regression is 138,957. Age-sex-race were full 
interactions between five-year age categories, race categories, and gender categories. Zipcode 
characteristics included ln(average income), % with high school diploma, and % with college degree. 
Ideal for Cath and reperfusions reflect American Hospital Association and American College of 
Cardiology (AHA/ACC) criteria for reperfusion that were created for each patient by expert reviewers 
using the CCP data but were not in the information that admitting physicians saw.  Ideal patients for a 
treatment are those for whom the treatment would almost always be indicated, and less-than-ideal 
candidates are patients for whom the therapy would be controversial. 
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TABLE VII: Effect of Reperfusion on 30-day Survival, Hierarchical-Logit Estimates 
 
   

Reperfusion Equation:      
Std. Dev. Of Hospital Reperfusion Rate (θ) 0.442  

 (0.013)  
30-day Survival Equation:      

Reperfusion 0.265  
 (0.026)     

Reperfusion * Propensity Index 0.276  
 (0.018)     

Hospital-level intercept  (α0; general productivity)   
Standard Deviation 0.199  

 (0.017)     
Correlation with Hospital Reperfusion Rate (θ) -0.100  

 (0.073)         
Hospital minimum treatment threshold (τ)   

Standard deviation 0.327  
 (0.055)     

Correlation with Hospital Reperfusion Rate (θ) -0.341  
 -(0.106)     

Correlation with General Productivity (α0) -0.321  
 (0.150)       

Number of Hospitals 4,690  
Control for Propensity Index  Linear  
   

 
Note: Coefficients are log-odds. Table reports estimates from hierarchical logit, where the propensity 
to receive treatment is estimated simultaneously with the survival equation. See Section III.C for 
details.  
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TABLE VIII: Effect of Reperfusion on 30-day Survival, By Type of Hospital  

  
Reperfusion 0.205 

 (0.195) 
Reperfusion*Propensity Index 0.289 

 (0.0171) 
 
Reperfusion*Church Operated Hospital -0.0119 

 
(0.0596) 

 
Reperfusion*For-Profit Hospital 0.0341 

 
(0.0750) 

 
Reperfusion*Government Hospital 0.0230 

 
(0.0719) 

 
Reperfusion*ln (Discharge Volume) 0.0214 

 
(0.0429) 

 
Reperfusion*Major Teaching Hospital 0.0352 

 
(0.0816) 

 
Reperfusion*Minor Teaching Hospital -0.00622 

 
(0.0675) 

 
Reperfusion*Percent of DSH Patients -0.156 

 
(0.200) 

 
Reperfusion*ln (Beds) 0.00949 

 
(0.0516) 

 
Reperfusion*Resident to Bed Ratio -0.230 

 
(0.296) 

 
Constant 0.0984 

 
(0.0757) 

 
  

Propensity  Linear 
Hospital Random Effects Yes 

  
Observations 138,957 
Number of Hospitals 4,690 
  
 
Note: Coefficients are log-odds, from mixed-logits that allow for random coefficients and 
are analogous to Table 4. Omitted characteristics is a non-profit hospital. 30-day survival is 
regressed on hospital-characteristics and hospital characteristics interacted with treatment. 
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The table reports the interaction effects. A test of joint-significance on these interactions 
yielded a chi-square statistic of  2.96, p=.097. 
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TABLE IV: Minimum Chi-Squared Estimates of Structural Parameters 

 
 Pooling All Hospitals Separately by Hospital Volume 

 
Just-

identified 
Constrain 

w=r 
Different Reliability 
by Hospital Volume 

Same Reliability 
by Hospital Volume 

     
Std. Dev (α0) 0.198 0.204 0.200 0.200 

 (0.0167) (0.017) (0.016) (0.016) 
Std. Dev (αΔ) 0.317 0.407 0.337 0.336 

 (0.058) (0.059) (0.057) (0.057) 
Corr(αΔ, α0) -0.390 -0.438 -0.457 -0.438 

 (0.145) (0.130) (0.148) (0.154) 
σv 0.435 0.367 0.431 0.441 

 (0.152) (0.218) (0.117 (0.135) 
w (weight) 0.154 constrained 0.119 0.114 

 (0.169)  (0.107) (0.127) 
r (reliability) 0.065 0.155  0.040 

 (0.106) (0.162)  (0.069) 
r (big Hospitals)   0.069  

   (0.093)  
r(Medium Hospitals)   0.047  

   (0.063)  
r(Small Hospitals)   0.019  

   (0.026)  
     

# moments being fit 6 6 18 18 
Degrees of freedom 0 1 10 12 
Chi-Squared statistic NA 10.4 12.7 62.4 
(p-value)  (p=.001) (p=.24) (p<.001) 
          
 
The first two columns fit 6 reduced-form moments estimated from our empirical model (the variances and 
covariances of θ, τ, and α0) as a function of the unknown structural parameters in this framework (the 
variance and covariance of αΔ and α0, the reliability of the signal r, the weight placed on the signal w, and the 
scale parameter from the logit σv). The reduced-form moments were estimated pooling all hospitals. The 
unknown structural parameters were estimated using minimum chi-squared methods. The last two columns fit 
our model to reduced-form moments estimated separately for low (20 or fewer patients), medium (21-80 
patients) and high (81 or more patients) volume hospitals - 6 moments for each group, for a total of 18 
moments. 
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