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treatments for heart attack patients, we find evidence of substantial variation across hospitals in 
both allocative inefficiency and comparative advantage, with most hospitals overusing treatment 
in part because of incorrect beliefs about their comparative advantage. A stylized welfare-
calculation suggests that eliminating allocative inefficiency would increase the total benefits from 
this treatment by about a third.
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A large and influential literature in economics and medicine has documented substantial variation 

in treatment rates and patient outcomes across hospitals even after carefully controlling for differences in 

patient risk [Skinner (2013); Institute of Medicine (2013)]. But this variation in treatment rates could arise 

from two different mechanisms. The conventional interpretation in the medical literature is that there is a 

correct amount of use, so that variation across providers in risk-adjusted treatment rates is evidence of 

allocative inefficiency: some providers are using too much care and others are using too little. This 

interpretation of variation has led to an emphasis on guidelines and developing and disseminating 

information on cost-effectiveness of care. An alternative interpretation argues that the ability to deliver 

treatment varies across providers, so that hospitals who can obtain higher benefits from a given treatment 

deliver more of that treatment because of their comparative advantage. This interpretation leads to an 

emphasis on understanding the sources of variation in hospital-specific skill and efforts to improve 

quality, instead of trying to standardize care.  

We develop a simple economic framework that can distinguish between these explanations and 

shed light on the mechanisms behind them. Our framework builds on a generalized Roy model of 

treatment choice along the lines of Chandra and Staiger (2007), where treatment choice depends on the 

expected benefits of treatment relative to usual care. In this model, differences across hospitals in risk-

adjusted treatment rates do not separately identify allocative inefficiency because they also capture 

differences in comparative advantage across hospital in providing the treatment. However, if treatment is 

being allocated efficiently to patients then any difference in the propensity to be treated, whether across 

patients or across hospitals, should solely reflect differences in the expected benefit from the treatment. 

Therefore, allocative inefficiency can be identified when the benefit of treatment is different across 

hospitals for patients with the same propensity to be treated. Furthermore, since low propensity patients 

are those least likely to benefit from treatment, overuse of the treatment in a given hospital can be 

identified when the treatment does harm among patients with the lowest propensity to receive treatment.  

We apply this model to clinical data on heart-attacks and their treatment—reperfusion therapy. 

While our model can be applied to any healthcare setting, heart-attack treatments have several features 

that make them particularly suited for the analysis: outcomes are easily measured and agreed upon, and 

questions about overuse, underuse and comparative-advantage are central to treatment decisions. 

Estimating our model with data for elderly patients following a heart-attack, we find strong evidence of 

allocative inefficiency, with most hospitals overusing reperfusion therapy to the point that low propensity 

patients are harmed by the treatment. However, we also we find substantial variation in hospitals’ ability 

to perform treatment (comparative advantage), with the variation across hospitals in the survival benefit 

from reperfusion being the same order of magnitude as the average treatment effect of reperfusion. Thus, 
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we find that both allocative inefficiency and comparative advantage contribute to variations in treatment-

rates.  

We use this framework to explore mechanisms that could lead to the allocative inefficiency that 

we observe in the data. One possibility, motivated by Currie and MacLeod (2017), is that allocative 

inefficiency would arise if hospital’s had imperfect information and misperceived their ability to deliver 

treatment. In this mechanism, allocative inefficiency arises because hospitals base treatment decisions on 

their incorrect perception of the benefits of treatment in their patients, rather than on the true benefits of 

treatment. Given the general lack of systematic performance feedback and small samples of their own 

treated patients to observe, it is quite plausible that hospitals and physicians will have inaccurate beliefs 

about their own treatment effectiveness. We find evidence in favor of this mechanism, with smaller 

hospitals having particularly imprecise information about their own treatment effectiveness. Another 

explanation is that hospitals are optimizing something other than the survival of a given patient, e.g. over-

treating for financial gain (particularly in for-profit hospitals) or because of benefits to future patients 

through learning-by-doing (particularly in teaching hospitals). This type of mechanism would suggest that 

allocative inefficiency would be related to hospital characteristics such as ownership, teaching status, etc. 

We find little prima facie evidence for this hypothesis—overuse is not correlated with a hospital’s for-

profit status or other characteristics such as being a teaching-hospital.  

Our contribution connects the vast empirical literature on variations in medical care to the broader 

economics literature on productivity and technology adoption.  Most of the literature on variations in 

medical care has ignored the role of productivity in driving variation in treatment, and instead debated 

whether finding variation in risk-adjusted treatment rates that is unrelated to patient outcomes points to 

allocative inefficiency or is simply due to inadequate risk-adjustment [Fisher et al (2003a, 2003b), 

Yasaitis (2009), Skinner (2011), Doyle (2011), Doyle, Graves, Gruber, Kleiner (2015), Finkelstein, 

Gentzkow, Williams (2016)]. In contrast, research influenced by the productivity literature (Syverson, 

2011) has emphasized productivity differences in healthcare [Chandra and Staiger (2007), Chandra et al 

(2016), Skinner and Staiger (2015), Currie and MacLeod (2017)], but ignored the possibility of allocative 

inefficiency across hospitals. More specifically, evidence that comparative advantage drives variation 

across firms in technology adoption has been found in agriculture (Suri, 2011) and in health care 

(Chandra and Staiger, 2007), but these papers do not account for allocative inefficiency. Our paper is the 

first to separately identify variation due to comparative advantage from that due to allocative inefficiency. 

We build on the framework used in Chandra and Staiger (2010), but where that paper focused on 

differences in treatment rates across demographic groups this paper focusses on differences across 

hospitals. Our contribution is closest to that of Abaluck et al. (2016), who build on an earlier working-

paper version of this paper. While they allow for allocative inefficiency and physician level expertise in 
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selecting patients for testing, we differ in allowing for comparative advantage and productivity 

differences across hospitals in addition to differences in allocative efficiency. 

The paper proceeds as follows: Section I provides some background on heart attack biology and 

treatment, and describes the data. Section II develops the theoretical model underlying our analysis, and 

links it to our estimation strategy, paying particular attention to how allocative inefficiency will be 

identified separately from comparative advantage and productivity differences. Section III presents 

results: we start with simple graphical results and regressions which then motivate a more parametric 

approach.  In Section IV we use our framework to understand mechanisms and estimate a simple bayesian 

learning model for learning comparative advantage and compare its fit, relative to simpler stories about 

learning and financial-incentives. We conclude by performing a highly stylized calculation of the welfare-

loss from variation in treatment rates.  

  

I. Heart-Attacks: Treatments, and Data 

A. Treatments 

Heart attacks (more precisely, acute myocardial infarction (AMI)) occur when the heart-muscle 

(the myocardium) does not receive sufficient oxygen, because of a blockage in one of the coronary 

arteries which supply blood to the heart. The blockage is typically caused by a blood clot that occurs 

because of coagulation induced by the rupture of atherosclerotic plaque inside the coronary arteries, and 

must be reperfused rapidly. There are two ways to give patients reperfusion (which is the treatment that 

we study): first, thrombolytics, also known as fibrinolytics, are administered intravenously and break 

down blood clots by pharmacological means (these drugs include tissue plasminogen activators, 

streptokinanse and urokinase). Not everyone is appropriate for thrombolytics—patients with strokes, 

peptic ulcers, head-trauma, dementia, advanced liver disease, and uncontrolled hypertension aren’t 

appropriate for this treatment because of the risk of further bleeding induced by the treatment.  In our data 

from the mid-1990s, over 90 percent of patients receiving reperfusion received thrombolytics. 

Reperfusion can also be performed through angioplasty (where a balloon on a catheter is inflated inside 

the blocked coronary artery to restore blood flow). Following the clinical literature, we define a patient to 

have received reperfusion if any of these therapies was provided within 12 hours of the heart attack.  

We focus our empirical work on the treatment of AMI for a number of reasons. First, 

cardiovascular disease, of which heart attacks are the primary manifestation, is the leading cause of death 

in the US. A perusal of the leading medical journals would indicate that heart attack treatments are 

constantly being refined, and a large body of trial evidence points to significant therapeutic gains from 

many of these treatments. In this context, variation in treatments across hospitals may directly translate 
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into lost lives, and there is a rich tradition of studying variation across hospitals in treatments and 

outcomes after heart attacks.  

Second, because of what is known about heart attack treatments from randomized controlled 

trials, we are able to assess whether our regression estimates of the benefits from reperfusion are 

comparable to those found in the medical literature, or whether they are confounded by selection-bias. We 

focus on reperfusion, where our use of chart data allows us to replicate the RCT evidence that is 

summarized by the Fibrinolytic Therapy Trialists' Collaborative Group (1994). Chart data provides 

comprehensive documentation on the patient’s condition at the time that the treatment decision is made, 

and therefore minimizes the possibility that unobserved clinical factors related to a patient’s survival are 

correlated with treatment. 
 Third, because mortality post-AMI is high (mortality rates at 30 days are nearly 20 percent), a 

well-defined endpoint is available to test the efficacy of heart attack treatments. Moreover during the 

acute phase of the heart attack the therapeutic emphasis is on maximizing survival, which is achieved by 

timely reperfusion, and hospital staff (not patients and their families) make treatment decisions. This 

would not be true if we focused on treatment variation for more chronic conditions such as diabetes, 

chronic obstructive pulmonary disease, or arthritis where because of the importance of quality-of-life 

there would be considerable disagreement on how to measure productivity.  

Fourth, heart attacks are an acute condition for which virtually all patients are hospitalized at a 

nearby hospital and receive some medical care. This may not be true of more chronic conditions such as 

diabetes or heart-failure where many patients aren’t diagnosed and selection into the sample confounds 

the analysis.   

 

B. Data 

Because acute myocardial infarction is both common and serious, it has been the topic of intense 

scientific and clinical interest. One effort to incorporate evidence-based practice guidelines into the care 

of heart attack patients, begun in 1992, is the Health Care Financing Administration's Health Care Quality 

Improvement Initiative Cooperative Cardiovascular Project (CCP). Information about patients admitted to 

hospitals for treatment of heart attacks in 1994/1995 was obtained from clinical records. The CCP is 

considerably superior to administrative/claims data of the type used by McClellan et al. (1994) as it 

collects chart data on the patients—detailed information is provided on laboratory tests, enzyme levels, 

the location of the myocardial infarction, and the condition of the patient at the time of admission. 

Detailed clinical data were abstracted from each patient’s chart using a standard protocol. Further details 

about the CCP data are available in Marciniak et al. (1998), O’Connor et al. (1999), and in the appendix 

to this paper. The choice of sample and variables is identical to what we used and described in Barnato et 
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al. (2005) and Chandra and Staiger (2007, 2010). 

In Table 1 we report some basic characteristics of our sample overall, and by whether the patient 

received reperfusion within 12 hours of admission to the hospital. In our sample, 19% of patients received 

reperfusion within 12 hours of admission for a heart attack. Overall, 81% of patients were still alive 30 

days after admission, but survival was higher for patients receiving reperfusion (86%) than for patients 

who did not receive reperfusion (80%). However, much of the difference in survival between these two 

groups was due to differences in underlying health and pre-existing conditions, rather than the result of 

reperfusion. Patients receiving reperfusion were younger, and much less likely to have pre-existing 

conditions such as congestive heart failure, hypertension, diabetes, and dementia. Because of the selection 

of healthier patients into reperfusion, controlling for the detailed clinical variables available in the CCP is 

critical for estimating the effect of reperfusion on survival. 

 

II. Theory and Estimation 

 A Roy model of patient treatment choice guides our empirical work. We assume that a hospital 

must choose between two treatment options for every patient: whether to offer reperfusion (treatment) or 

not (usual care). Treatment is provided to each patient whenever a patient’s expected benefit from the 

treatment exceeds a minimal threshold. In our framework, there are two ways in which a patient’s hospital 

could affect treatment. First, because of comparative-advantage, the benefit of treatment for a given 

patient may vary across hospitals, reflecting each hospital’s expertise in providing the treatment. Second, 

because of allocative efficiency, the minimum threshold for receiving care may vary across hospitals. 

From the patient’s point of view, treatment should be provided whenever the expected benefit from 

treatment exceeds zero. Therefore, there is underuse of the treatment in hospitals that set a minimum 

benefit threshold above zero, and overuse in hospitals that set a minimum threshold below zero. 

   

A. Patient Outcomes 

 To formalize this, let represent the survival for patient i at hospital h if the patient receives the 

treatment (reperfusion) and let represent the survival if the patient does not receive the treatment, but 

otherwise receives usual medical care. We focus on the health benefits of the treatment, which in our 

setting is survival, but in other settings would include any reduction in mortality or morbidity that was 

expected from the treatment, e.g. the impact of the treatment on Quality Adjusted Live Years (QALYs).1 

                                                
1 For now, we abstract from the problem that hospitals should stop treatment prior to achieving zero 
marginal benefits—that is, that providers should maximize benefits net of costs. In practice, the cost of 
treating heart-attacks is small relative to the survival benefit but in other settings, such as oncology, this 
may not be true. 

1
ihY

0
ihY
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Treatment decisions are based on expected survival given the information available to the provider at the 

time of treatment. If receiving usual care, a patient’s expected survival 𝐸 𝑌#$
%  depends on the hospital’s 

general level of expertise 𝛼$%, observable patient characteristics Xih such as age, medical history and lab 

results, and other unmeasured factors affecting baseline mortality 𝑣#$
%  that are observed by the healthcare 

provider but not by the econometrician. If treated with reperfusion, a patient’s expected survival 𝐸 𝑌#$(  

depends on a similar set of factors representing the hospital’s expertise at providing the treatment 𝛼$(, 

patient characteristics (which may have a different relationship to survival when patients receive the 

treatment), and other unmeasured factors 𝑣#$(  that affect the expected benefits of reperfusion. The 

presence of two productivity parameters 𝛼$( and 𝛼$%, allows us to model hospital specific benefits at both 

forms of medicine— usual care and reperfusion (treatment).  

Actual (realized) survival if receiving usual care or reperfusion is equal to expected survival plus 

a random error term (𝜀#$
% , 𝜀#$( ), which yields survival equations of the following form: 

(1a) 𝑌#$
% = 𝐸 𝑌#$

% + 𝜀#$
% = 𝛼$% + 𝑋#𝛽$% + 𝑣#$

% + 𝜀#$
%   

(1b)  𝑌#$( = 𝐸 𝑌#$( + 𝜀#$( = 𝛼$( + 𝑋#𝛽$( + 𝑣#$( + 𝜀#$(  

The benefit, or gain, or return, from reperfusion treatment for patient i in hospital h is  given by: 

(1c)  𝑌#$/ = 𝛼$/ + 𝑋#𝛽/ + 𝑣#$/ + 𝜀#$/ ,  

where 𝛼$/ = 𝛼$( − 𝛼$%	,   𝛽$∆ = 𝛽$( − 𝛽$%, 𝑣#$/ = 𝑣#$( − 𝑣#$
%  and 𝜀#$/ = 𝜀#$( − 𝜀#$

%  

And similarly the expected benefit from reperfusion at the time of choosing treatment is given by: 

(1d)  𝐸 𝑌#$/ = 𝛼$/ + 𝑋#𝛽$∆ + 𝑣#$/  

In Equation (1d), 𝛼$/	represents the hospital-specific benefit in providing reperfusion. One could think of  

𝛼$% as representing a hospital’s Total Factor Productivity (TFP)— because increases in it reflect 

improvements that are unrelated to specific treatments such as reperfusion or surgery [Garber and Skinner 

(2012) and Syverson (2001)]. Efforts to increase 𝛼$% are efforts to increase productive efficiency-- 

increasing the fraction receiving beta-blockers or improving patient safety are examples. The higher the 

𝛼$%, the lower the benefit from reperfusion, for a fixed level of 𝛼$(.   Because 𝛼$/	represents the difference 

between the ability to perform reperfusion and usual care, we call it comparative-advantage at 

reperfusion. Hospitals may have comparative advantage in providing reperfusion because of either being 

particularly good at reperfusion treatment or being particularly bad at usual care for patients. In the above 

equations, we have also allowed for hospital-level variation in how patient characteristics affect outcomes 

through the 𝛽$∆ term, although in the empirical work we found these to be unnecessary and assumed 𝛽$∆ =

𝛽∆. 

B. Treatment Choice  

D
ihY
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Each patient receives treatment if the expected benefit from treatment exceeds a minimal 

threshold τh, where the threshold may vary across hospitals due to incentives or information as discussed 

further below. Since	𝐸 𝑌#$/  captures the total expected benefit to the patient of providing treatment, then 

the optimal decision from the patient’s perspective would let τh=0 and provide treatment whenever the 

expected benefits to the patient exceed zero. There is underuse if , since patients with positive 

benefits are under the threshold and do not receive treatment. There is overuse if , since patients 

with negative benefits (who would do better without treatment) are above the threshold and receive 

treatment.  

Figure 1A illustrates the intuition behind a Roy model of treatment at the hospital level. The two 

lines denote patient survival if a hospital treats a given patient with usual care (intercept is 𝛼$%)  or using 

reperfusion (intercept is 𝛼$() as a function of patient characteristics (i.e. patient X’s) on the x-axis. To 

simplify exposition, we have suppressed the distribution of unobservables (𝑣#$/ ). In reality, as well as in 

our model and empirical work, providers observe these unmeasured characteristics and use them to 

determine treatment. Expertise at usual care and reperfusion is captured by the intercepts 𝛼$% and 𝛼$( 

respectively, with comparative advantage being the difference between them.   Allocative efficiency 

means that reperfusion should be performed to the point that the marginal patient receives zero benefit, (τh 

= 0), so that everyone to the right of the point of intersection should be treated and to the left should 

receive usual care.  

First, consider the role of comparative-advantage in explaining treatment rates: ceteris paribus, a 

hospital that is better at reperfusion would have a higher intercept for reperfusion 𝛼$(,	which would 

increase the fraction of patients receiving reperfusion at that hospital. A hospital may also have a relative 

advantage at reperfusion because it is worse at usual care. Either would increase 𝛼$/ = 𝛼$( − 𝛼$% and also 

increase the fraction of all patients being reperfused. Next, consider allocative inefficiency by a hospital 

that over-treats patients with reperfusion therapy, and treats patients to the left of point of intersection. 

This harms patients and lowers the average benefit from reperfusion amongst all patients receiving 

reperfusion. Overuse is equivalent to setting τh < 0, where some patients with negative benefits (harm) are 

treated.  Underuse of reperfusion happens when patients who are appropriate for reperfusion (to the right 

of the intersection of the two lines) don’t receive it—a possibility that increases the benefits of 

reperfusion amongst patients receiving it.  

This figure provides four pieces of intuition. First, knowledge of comparative-advantage doesn’t 

tell us where it originates from—it could arise from low 𝛼$%, a high 𝛼$(, or both. Second, allocative 

inefficiency may arise from overuse  (a willingness to perform reperfusion even if the benefit is 

0>ht

0<ht

0<ht
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negative) or underuse  (an unwillingness to perform reperfusion even when the benefit is positive). 

Third, how a patient is treated depends on patient characteristics, the hospitals comparative advantage at 

delivering reperfusion (𝛼$/), and the level of allocative efficiency at the hospital (𝜏$): all three determine 

the propensity to be reperfused for a given patient at a given hospital. This brings us to the fourth insight: 

variation across hospitals in treatment rates does not imply anything about the presence of comparative-

advantage versus allocative efficiency. Risk-adjusted hospital treatment rates capture both mechanisms—

high risk-adjusted rates may arise because of high levels of hospital-specific benefits at performing the 

treatment or a very low threshold for performing the treatment-- and do not, by themselves, isolate the 

source of variation even with perfect risk-adjustment.  

Allocative inefficiency (𝜏$ ≠ 0) could come from a variety of sources. Figure 1B illustrates how 

a hospital that misperceives its comparative-advantage from reperfusion and believes it to be higher than 

it is, through overconfidence or imperfect knowledge about its comparative advantage, would overuse 

reperfusion. It could also be that a hospital overuses reperfusion because it is maximizing something other 

than health. These are alternative mechanisms that that we explore in Section IV (we find evidence for the 

misperception mechanism). Regardless of the mechanism for allocative inefficiency, they cause a welfare 

loss whose magnitude is illustrated by the area of the triangle in the figure. The height of the triangle is 

the threshold, and the base is the threshold multiplied by how much the threshold increases the probability 

of receiving reperfusion. At the end of the paper, we aggregate the area of these triangles to estimate the 

welfare loss from allocative inefficiency.  

We now specify our model of treatment choice more completely, paying particular attention to 

how one can identify the different sources of inefficiency. The probability of receiving treatment is the 

probability that expected benefits exceed the minimum threshold: 

(2) Pr 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ = 1 = Pr 𝐸 𝑌#$/ > 𝜏$ = Pr 𝛼$/ + 𝑋#𝛽/ + 𝑣#$/ > 𝜏$ = Pr	 −𝑣#$/ < 𝐼#$ , 

    𝑤ℎ𝑒𝑟𝑒	𝐼#$ = 𝑋#𝛽/ + 𝜃$		𝑎𝑛𝑑		𝜃$ = 𝛼$/ − 𝜏$ 

In the terminology of Heckman, Urzua and Vytlacil (2006), our model allows for essential 

heterogeneity where the decision to provide treatment to each patient is made with knowledge of their 

idiosyncratic response to treatment (𝑣#$/ ). If we make the standard assumption that the distribution of 

patient-level idiosyncratic gains (𝑣#$/ ) are i.i.d. (an assumption we return to below), then the parameters 

(𝛽/, 𝜃$) of Equation (2) can be estimated (up to scale) with a single index model such as a logit or OLS 

regression of treatment on patient characteristics and hospital effects. 2 The hospital-specific intercept (𝜃$) 

                                                
2 Technically, logit models estimate 𝐼#$ = 𝑋#𝛽/ + 𝜃$ /𝜎L where 𝜎L	is the standard deviation of the 
patient-level idiosyncratic gains (𝑣#$/ ). For now, we make the standard assumption that 𝜎L=1. Most of the 

0>ht
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in this equation is commonly referred to as the hospital’s risk-adjusted reperfusion rate, with higher 

values indicating a more aggressive hospital where identical patients are more likely to receive 

reperfusion. The hospital effect is 𝜃$ = 𝛼$/ − 𝜏$, which means that a hospital may be more likely to 

provide treatment because of greater comparative advantage at delivering treatment ( ), or because 

of using a lower benefit threshold for providing care reflecting overuse. Even if treatment rates 

were the same across hospitals, there could still be overuse or underuse if, say, hospitals with greater 

comparative advantage set a correspondingly higher threshold for providing care. Thus, because variation 

in treatment rates across hospitals confounds variation in hospital comparative advantage with hospital 

treatment thresholds, such variation cannot by itself say anything about overuse or underuse.  

 

C. Identifying Allocative Inefficiency 

We now demonstrate that allocative efficiency can be identified separately from comparative-

advantage if we can estimate the treatment effect for those patients receiving treatment. The treatment-on-

the-treated parameter is the average gain from treatment amongst those who were given treatment, and 

can be obtained by conditioning the expression for  (equation 1c) on the condition for receiving 

treatment (equation 2): 

(3) 𝐸 𝑌#$/|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ = 1 = 𝐸 𝑌#$/|−𝑣#$/ < 𝐼#$ = 𝑋#𝛽/ + 𝛼$/ + 𝐸 𝑣#$/ |−𝑣#$/ < 𝐼#$  

Noting that 𝑋#𝛽/ + 𝛼$/ = 𝐼#$ + 𝜏$	, we can rewrite Equation (3) as: 

(4) 𝐸 𝑌#$/|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ = 1 = 𝜏$ + 𝑔 𝐼#$  

 where 𝑔 𝐼#$ = 𝐼#$ + 	𝐸 𝑣#$/ |−𝑣#$/ < 𝐼#$  

Here, g(I) is an unknown function of the propensity to receive treatment and the conditional expectation 

𝐸 𝑣#$/ −𝑣#$/ < 𝐼#$ .	 If we assume that the distribution of patient-level idiosyncratic gains (𝑣#$/ ) are the 

same for all patients and hospitals, then this conditional expectation is only a function of the index, which 

means that g(𝐼#$) is only a function of 𝐼#$. This is an important assumption because our empirical work 

relies heavily on the single-index property. The assumption would be violated, for example, if the 

variance or distribution of patient level idiosyncratic gains (𝑣#$/ ) differed across hospitals. It is not 

possible to test the single-index assumption by looking at differences in treatment on the treated by type 

of hospital (for example, by hospital volume, size, non-profit status) because in our framework these 

differences, conditional on propensity, reflect differences in thresholds. Because this is a key assumption 

in our model, we will discuss supporting evidence for it in the empirical work. In particular, if the 

                                                                                                                                                       
results in the paper are invariant to the scale of 𝐼#$, but we will return to this point in the results section 
when we try to recover estimates of 𝛼$∆. 

αh
Δ > 0

( )0<ht

Yih
Δ
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variance of idiosyncratic gains differed across hospitals then we would also expect differences across 

hospitals in the coefficients on patient characteristics in Equation 2 (predicting treatment), but we do not 

find this to be the case.  

Equation (4) is the key result of the model that allows us to identify allocative inefficiency. 

Equation (4) states that after conditioning on patient propensity to receive treatment, differences across 

hospitals in the treatment effect on the treated are due solely to differences in the hospital’s minimum 

threshold to deliver care (τh). Note that the propensity to receive treatment (𝐼#$) depends on the hospital 

effect (𝜃$) and that includes both the presence of comparative advantage and allocative efficiency. By 

conditioning on this propensity and examining differences in benefit across hospitals, we can isolate 

differences in hospital thresholds.  

Figure 2 illustrates why conditioning on the propensity (rather than, say, patient characteristics) 

allows us to identify differences across hospitals in τh. The first panel illustrates selection into treatment 

allowing for selection on gains that are observable to the physician but not to us. For patients in this 

hospital, Hospital A, the mean of the benefit distribution for a patient with characteristics X is 𝑋𝛽/ + 𝛼$/, 

with the distribution around this reflecting 𝑣/ , which is observed by the physician and used in 

determining treatment. Patients above 𝜏$ are treated, so that the area under the curve to right of 𝜏$ is the 

probability of treatment and the difference between  𝑋𝛽/ + 𝛼$/  and 𝜏$ is our index (𝐼 = 𝑋𝛽/ + 𝛼$/ −

𝜏$ ≡ 𝑋𝛽/ + 𝜃$). The conditional mean to the right of 𝜏$ represents the treatment effect on the treated 

(mean of shaded area in light blue). Holding patient characteristics fixed at 𝑋𝛽/, the treatment on treated 

could be higher at one hospital versus another because that hospital has either a higher threshold (𝜏$) or 

higher comparative advantage (𝛼$/)—which would increase the mean of the distribution upwards-- or 

both. Thus, differences across hospitals in the treatment on treated for identical patients do not help to 

identify allocative inefficiency (𝜏$).   

The second panel in the figure illustrates how conditioning on the propensity identifies variation 

in 𝜏$. In panel (b) which illustrates treatment decisions in Hospital B, we consider a patient who is treated 

at a hospital with the same comparative advantage (𝛼$/) as hospital A but a higher threshold (𝜏$ + 𝑑). 

Compared to hospital A, patients with the same X’s will have a lower propensity to be treated at hospital 

B because of the higher threshold, i.e. 𝜃$ = 𝛼$/ − 𝜏$ in hospital A and 𝜃$ = 𝛼$/ − 𝜏$ − 𝑑 in hospital B. 

Thus, when we match on propensity, patients in hospital A will be matched to patients with higher X’s in 

order to offset the lower 𝜃$ in hospital A. More precisely, in order to hold the index (I) constant, a patient 

with characteristics X in hospital A will be matched to a patient with characteristics 𝑋 in hospital B such 

that 𝑋𝛽/ = 𝑋𝛽/ + 𝑑. Therefore, after matching on propensity, both the threshold (𝜏$ + 𝑑) and the mean 

of the benefit distribution 𝑋𝛽/ + 𝛼$/ = 𝑋𝛽/ + 𝑑 + 𝛼$/  are shifted up by d in hospital B relative to 
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hospital A, and as a result the treatment on the treated is also shifted up by d in hospital B relative to 

hospital B.  In other words, when we hold the propensity index constant, differences across hospitals in 

treatment on treated are exactly equal to the difference across the hospitals in 𝜏$ (which in this case is d). 

Note that the same figure applies to a setting where both the threshold and comparative advantage 

increase by d in the second hospital. Here, 𝜃$ would be the same in the two hospitals (since 𝜃$ = 𝛼$/ −

𝜏$ = 𝛼$/ + 𝑑 − 𝜏$ + 𝑑 ), so that matching on the index would match patients with the same 𝑋𝛽/. 

However, this would still imply a shift of d in both the threshold and the benefit distribution, resulting in a 

corresponding shift in treatment on treated. None of this would be possible if we matched patients on X’s 

instead of the propensity to be treated, which includes X’s, 𝜏$, and 𝛼$/.	Finally, recall that an important 

assumption is that the distribution of 𝑣/  is the same across all patients with the same propensity (so that 

the distribution only depends on a single index, 𝐼). If this were not true, then the distribution in hospital B 

could differ from the distribution in hospital A, and would not be a simple shift to the right by d. 

The third panel in Figure 2 illustrates how conditioning on the propensity controls for variation in 

comparative advantage across hospitals. In panel (c), we consider a patient who is treated at a hospital 

with the same threshold (𝜏$) as hospital (a) but a lower comparative advantage (𝛼$/ − 𝑑). Compared to 

hospital A, patients with the same X’s will have a lower propensity to be treated at hospital C because of 

the lower comparative advantage, i.e. 𝜃$ = 𝛼$/ − 𝜏$ in hospital A and 𝜃$ = 𝛼$/ − 𝑑 − 𝜏$ in hospital C. 

The propensity to treat a patient with characteristics X is the same in hospital C as it was in hospital B, 

but in hospital C this is because of lower comparative advantage rather than a higher treatment threshold. 

Thus, when we match on propensity, patients in hospital A will be matched to patients with higher X’s in 

hospital C just as they were in hospital B. Therefore, after matching on propensity, both the threshold (𝜏$) 

and the mean of the benefit distribution 𝑋𝛽/ + 𝛼$/ − 𝑑 = 𝑋𝛽/ + 𝑑 + 𝛼$/ − 𝑑 = 𝑋𝛽/ + 𝛼$/  are the 

same in hospital C as in hospital A, implying that treatment on the treated is also the same.  In other 

words, when we hold the propensity index constant, differences across hospitals in treatment on the 

treated are not affected by differences across hospitals in comparative advantage. 

Note that our model does not, by itself, uncover mechanisms for overuse or underuse—we will 

investigate these later. It is possible that overuse occurs because providers are worried about malpractice, 

because they’re maximizing something other than health, because they incorrectly believe that they’re 

better at offering the treatment, or because they inaccurately assess patients as more appropriate for 

treatment than they actually are (perceiving a rightward shift in the distribution of patient’s Xs).  

More insights from our model are illustrated in Figure 3. In this figure, we plot the treatment 

effect on the treated,	𝐸 𝑌#$/|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ = 1 = 𝐸 𝑌#$/|𝐸 𝑌#$/ > 𝜏$ , on the vertical axis, while the 

propensity of being treated (which is a function of 𝐼#$) is given on the horizontal axis. The horizontal line 
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at zero indicates the efficient threshold, below which the expected benefit of treatment is negative (harm). 

The top curve in Figure 3 represents the treatment-on-the-treated effect for a patient with a given 

propensity that is treated in a hospital with a high minimum threshold for treatment, i.e. it represents 

𝐸 𝑌#$/|𝐸 𝑌#$/ > 𝜏$ = 𝜏$ + 𝑔 𝐼#$ . The lower curve represents the same thing for a hospital with a low 

minimum threshold. Treatment-on-the-treated approaches the minimum threshold (τhigh or τlow) for a 

patient with a low propensity of being treated (small value of 𝐼#$), since no patient is ever treated with a 

benefit below this threshold.  For a patient with a high propensity of being treated (large value of 𝐼#$), 

truncation becomes irrelevant and the treatment-on-the-treated effect asymptotes to the unconditional 

benefit of treatment. However, conditional on a patient’s propensity, the treatment effect is always higher 

by exactly 𝜏$#P$ − 𝜏QRS in the hospital with the higher threshold.  

The graph illustrates two implications of the theoretical model. First, we can identify overuse and 

underuse by focusing on patients with the lowest probability of receiving treatment. In these patients, 

there is overuse when the treatment effect for the lowest propensity patients is negative, and underuse 

when the treatment effect for the lowest propensity patients remains positive. In particular, a hospital is 

over treating its patients (𝜏$ < 0) whenever the treatment effect on the treated is negative (indicating 

harm) among low propensity patients. 

Second, differences in comparative-advantage at performing reperfusion show up as a movement 

along the curves – higher comparative advantage at reperfusion (𝛼$/) increases the propensity of patients 

to be treated, and therefore the treatment effect, but does not affect treatment effects conditional on 

propensity. Being treated at a hospital with a higher comparative advantage (𝛼$/) is equivalent to having 

patient characteristics (𝑋#𝛽/) that increase your benefits from treatment – both raise your expected benefit 

from treatment and therefore raise your propensity to be treated.  

In summary, the key difference between identifying comparative advantage from allocative 

inefficiency is that differences in hospital comparative advantage have an impact on treatment effects by 

shifting the propensity to be treated, while differences in the minimum threshold have an impact on 

treatment effects conditional on the propensity to receive reperfusion.  

 

D. Estimation  

In a potential outcomes framework, the equation relating the level of survival to treatment is: 

(5)  𝑌#$ = 𝑌#$
% + 𝑌#$∆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ 

       = 𝛼$% + 𝑋#$𝛽% + 𝑌#$∆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝑣#$
% + 𝜀#$

%  

Here, survival for patient i at hospital h depends on a hospital effect that captures the hospital’s general 

level of expertise (or TFP) providing usual care	𝛼$%, patient risk adjusters Xih and a patient-specific 
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treatment effect 𝑌#$/ . Regression estimates of this equation identify the treatment-on-the-treated effect, 

𝐸 𝑌#$/ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1 , if the receipt of treatment is uncorrelated with the unobservable characteristics 

of patients who were not reperfused (𝑣#$
% 	𝑎𝑛𝑑	𝜀#$

% ). This treatment-on-the-treated effect is the same as 

Equation 4—and will be used to identify overuse (if negative) and underuse (if positive).  

It is important to see that we are not assuming that receipt of treatment is uncorrelated with the 

gain from treatment, which is the conventional assumption required to estimate average treatment effects. 

Indeed, we explicitly allow for ‘selection on gains’ where providers use information on the patient’s 

idiosyncratic gain, 𝑣#$/ = 𝑣#$( − 𝑣#$
% , to determine treatment [Wooldridge (2002, p.606)]. This is 

particularly likely in our setting because of idiosyncratic factors occurring in the hospital that will affect 

the benefits of reperfusion. For example, whether a patient gets treated with reperfusion or standard care 

depends on factors such as the experience of the particular doctor and team as well as the capacity of the 

hospital at the moment of the patient’s arrival.  Providers observe these factors, which are idiosyncratic to 

every patient situation, and act on them. This is a weaker set of identifying assumptions than the 

conventional ‘selection on observables’ model where one assumes that conditional on rich observable 

patient characteristics, patients receive treatments randomly. In terms of the analogy to random 

assignment, we are assuming that conditional on X’s, patients are randomly assigned to hospitals, but 

within hospitals doctors triage them according to the benefit that they would receive from treatment.3 In 

other words, the random assignment that we require is that treatment is random with respect to 𝑣#$
%  

(baseline unobservables), which is plausible given the rich covariates that we have. We are not assuming 

that patients are randomly allocated to hospitals, and within hospitals that they are randomly assigned to 

treatment (conditional on X’s). In the results section, we provide evidence supporting the case that we can 

estimate unbiased estimates of the treatment on treated effect, based on comparing our estimates to 

evidence from randomized trials. 

Our test for allocative efficiency requires comparing the treatment on the treated parameter across 

hospitals, while holding the propensity to receive treatment constant. The index for the propensity to 

receive treatment, 𝐼#$, was obtained from a random-effects logit model of treatment receipt on the patient 

risk adjusters (𝑋#$) and hospital-level random intercepts (𝜃$) estimated using xtmelogit in Stata. Bayesian 

posterior estimates of the hospital random effects (𝜃$), commonly referred to in the literature as shrinkage 

estimates, were used as estimates of  𝜃$. For more details see Appendix B. 

                                                
3 Hull (2017) clearly shows that patients are not randomly choosing hospitals, and that there is a ‘selection 
on gains’ in the hospital that they, or their ambulance driver, chose. This is consistent with our earlier 
work in Chandra et al. (2016b) which also showed that hospital choice is far from random, and aligned 
with some notion of ‘market learning.’ In this paper, we’re relying on CCP data to assume away this 
selection and modeling what happens inside the hospital.   
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Using the fact that OLS estimates of Equation (5) estimate treatment on the treated, we can plug 

in our model’s implication for treatment on treated from Equation (4) into Equation (5) to yield: 

(6)    	𝑌#$ = 𝛼$% + 𝑋#$𝛽% + 𝜏$ + 𝑔 𝐼#$ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝑣#$
% + 𝜀#$

%  

To estimate Equation (6), we consider two approximations to the function 𝑔 𝐼 : a linear approximation 

(𝑔 𝐼 = 𝜆R + 𝜆(𝐼), and a more flexible approximation using indicator variables for the 100 percentiles of 

that allows 𝑔 𝐼  to have any shape (𝑔 𝐼 = 𝛿V1 𝑔VW( < 𝐼 < 𝑔V(%%
VX( ). While the theory only predicts a 

monotonic relationship, we find that estimates from a simple linear specification are very similar to those 

that allow g(I) to have a completely flexible form. We will exploit the linear specification later in the 

paper, where we impose additional parametric structure to recover hospital measures of 𝛼$/.   

Adding these approximations for g(I) into Equation (6) yields estimating equations: 

(6a)  𝑌#$ = 𝛼$% + 𝑋#$𝛽% + 𝜏$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝜆%𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝜆(𝐼#$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝑣#$
% + 𝜀#$

%  

(6b)  𝑌#$ = 𝛼$% + 𝑋#$𝛽% + 𝜏$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝛿V1 𝑔VW( < 𝐼#$ < 𝑔V ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ +(%%
VX( 𝑣#$

% + 𝜀#$
%  

Here, the hospital-specific coefficient on treatment identifies differences across hospitals in 𝜏$. Note that 

separating the average level (as opposed to differences across hospitals) of 𝜏$ from the intercept of 𝑔 𝐼  

would require stronger parametric assumptions, so we focus on identifying differences between hospitals 

(which are indications of allocative inefficiency). In the linear specification, we demean 𝐼#$ to have a 

value of 0 for the average treated patient so that the coefficient 𝜆% captures the average effect of 

reperfusion among the treated. The hospital-specific intercept in this regression identifies hospital TFP 

(𝛼$%).	The coefficient (𝜆() on the interaction 𝐼#$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$  or on the indicator variables for the 

percentiles of g(I) provide a test for whether the benefit of reperfusion therapy is increasing with the 

propensity to receive such treatment—as would be the case if a Roy Model of treatment allocation was at 

work, as opposed to model where providers select patients randomly or without regard to benefits. 

 Estimating Equations (6a) and (6b) involves estimating hospital-specific coefficients on treatment 

rates for thousands of hospitals. Rather than including hospital dummies interacted with treatment, which 

would yield imprecise estimates and suffer from small sample problems, we estimate hierarchical logit 

models for survival with hospital-level correlated random coefficients for the hospital-specific intercept 

and slope (𝛼$% and 𝜏$). We document that key results are similar using fixed effect models. 

We also consider an alternative specification that allows for a relatively straightforward test for 

allocative inefficiency while avoiding the necessity of estimating hospital-specific coefficients. Recall 

that the risk-adjusted hospital reperfusion rate (the hospital intercept from Equation 2) is 𝜃$ = 𝛼$/ − 𝜏$, , 

and we obtain estimates 𝜃$ of this intercept (up to scale) from estimating the propensity equation. Under 

two extreme cases, we can say how treatment on the treated (𝜏$ + 𝑔 𝐼#$ ) is related to 𝜃$. In the first 

case, if there is no allocative inefficiency (𝜏$ = 0) then 𝜃$ = 𝛼$/ and variation in reperfusion across 
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hospitals is driven purely by comparative advantage. In this case, 𝜃$ is unrelated to the treatment effect 

on the treated after conditioning on the propensity (since in this case 𝜏$ + 𝑔 𝐼#$ = 𝑔 𝐼#$ ). At the other 

extreme, if there is no variation in comparative advantage (𝛼$/ = 0) then 𝜃$ = −𝜏$ and variation in 

reperfusion across hospitals is driven purely by treatment thresholds. In this case, 𝜃$ will be negatively 

related to the treatment effect on the treated after conditioning on the propensity (since in this case 𝜏$ +

𝑔 𝐼#$ = −𝜃$ + 𝑔 𝐼#$ ). 

These two extreme cases suggest including an interaction between 𝜃$and treatment in Equations 

(6), rather than estimating hospital-specific coefficients on treatment, as a simple test for allocative 

inefficiency. Therefore, we estimate specifications of the form: 

(7a) 	𝑌#$ = 𝛼$% + 𝑋#𝛽% + 𝜆Z𝜃$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝜆%𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝜆(	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ ∗ 𝐼#$+	𝑣#$
% + 𝜀#$

%  

(7b)  𝑌#$ = 𝛼$% + 𝑋#$𝛽% + 𝜆Z𝜃$𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ + 𝛿V1 𝑔VW( < 𝐼#$ < 𝑔V ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ +(%%
VX( 𝑣#$

% + 𝜀#$
%  

If the coefficient on the interaction (𝜆Z) is zero, this suggests that variation in hospital-level reperfusion 

rates was entirely driven by comparative advantage in treatment (case 1 above). Alternatively, if the 

coefficient on the interaction is negative, this suggests that variation in hospital-level reperfusion is 

associated with allocative inefficiency. This simple specification provides an intuitive test of the key 

insights from our model: conditional on propensity, higher treatment rates due to comparative advantage 

will be unrelated to treatment effects, while higher treatment rates due to lower treatment thresholds will 

be negatively related to treatment effects.   

  

III. Results  

A. Identifying Allocative Inefficiency 

Our model implies that if treatment is being allocated efficiently, then patients with a higher 

propensity to be treated for any reason should have higher expected benefit from the treatment, and two 

patients with the same propensity should have the same expected benefit from treatment. Allocative 

inefficiency can be identified when the benefit of treatment differs across hospitals for patients with the 

same propensity to be treated. In Figure 4, we evaluate these implications graphically by plotting the 

estimated survival benefit from reperfusion and 95% CI against a patient’s treatment propensity index (Iih) 

for patients treated in different hospitals. The graphs do not impose structure on the data and are designed 

to graphically illustrate the main findings of our paper using simple and transparent plots, that can be 

easily replicated by others.  

The treatment benefit at each point in the distribution of the propensity to receive care was 

estimated flexibly using a local-linear version of equation 6a with a triangular kernel that included 30% of 

the sample on either side. The patient’s treatment propensity was obtained from hierarchical logit 

estimation of equation (2), and  is demeaned so that 0 is the propensity for an average patient receiving 
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reperfusion. We estimate separate panels for hospital’s in the lowest tercile and highest tercile of the 

estimated hospital effect ( ), also estimated from the propensity equation (2), as described in Appendix 

B. These hospital effects are estimates of the risk-adjusted reperfusion rate at each hospital, so hospitals in 

the top tercile are those that treat patients more aggressively; the distribution of hospital-effects is also 

graphed in the appendix.  As noted in the Appendix, we estimate hospital random-effects which allow for 

empirical Bayes shrinkage, but their correlation with hospital fixed-effects is over 0.999.  

Both plots show a strong upward slope, with higher benefit from treatment for patients with a 

higher propensity to receive reperfusion—and exactly mirror the theoretical illustration in Figure 3. But at 

every propensity, the benefits of reperfusion are lower in the top-tercile hospitals, as would be expected if 

higher treatment rates were due to lower treatment thresholds. At the lowest propensity levels, the 

survival benefits from reperfusion are significantly negative for the top-tercile hospitals, suggesting that 

there is overuse among these hospitals. In the bottom-tercile hospitals, the estimated survival benefits 

from reperfusion for the lowest propensity patients are less negative and not significantly different from 

zero, which is consistent with appropriate use of reperfusion in these hospitals. Finally, we note that plots 

are also linear in log-odds despite the non-parametric nature of the estimation— this will allow us to use 

logit models that control for the propensity linearly as in Equations 6a and 7a.4 The linearity in log-odds 

result was not implied by our model, but it will greatly simplify our empirical work.  

Figure 5 is similar to Figure 4, but plots the estimated survival benefit from reperfusion and 95% 

CI against the hospital effect from the propensity equation ( ), controlling non-parametrically for the 

propensity index (a local linear estimate of Equation 7b). The hospital-effects are mean zero. The left-

hand panel included all patients, while the right-hand panel was estimated only for low-propensity 

patients whose propensity index implied that they had below a 20% probability of receiving reperfusion. 

Both plots show a clear downward slope, with lower benefit from treatment for patients treated by 

hospitals with higher risk-adjusted reperfusion rates ( ). Again, this would be expected if higher 

treatment rates were due to lower treatment thresholds, and is evidence of allocative inefficiency. Among 

all patients (the left-hand plot), the estimated survival benefit from reperfusion is positive for all hospitals, 

although it is small and not significant in hospitals with the highest treatment rates (those 2 standard 

deviations above average, with =0.6). In contrast, among the lowest propensity patients (the right-hand 

plot), only hospital’s with the lowest treatment rates are estimated to have survival benefits from 

                                                
4 Changes in log-odds (i.e. logit coefficients) can be approximately converted into absolute changes in 
probability by multiplying them by p x (1-p), where p is the probability of success. Table 1 reports 30-day 
survival as 80%, so a change of .3 in log-odds means a .3x.8.x2=4.8 percentage points increase in 
survival. 

hq̂

hq̂
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reperfusion that are near to zero. The estimated survival benefit from reperfusion is negative and 

significant in hospitals with average or higher treatment rates, suggesting that there is overuse in most 

hospitals, i.e., we were able to identify substantial subsets of low-propensity patients who were harmed by 

reperfusion treatment in most hospitals. 

Table 2 reports regression estimates of equation 7a and 7b that are analogous to the results 

reported in the figures. The table reports estimates of the effect of reperfusion on 30-day survival 

allowing for interactions of reperfusion with the propensity index (Iih) and the hospital effect from the 

propensity equation ( ). The regressions control for patient characteristics and include hospital fixed-

effects, as the theory tells us to condition on them to control for hospital TFP (𝛼$%). To help with 

interpretation, we have normed the propensity-index so that a value of 0 refers to the average patient 

receiving reperfusion. Thus, the coefficient on reperfusion is an estimate of the effect of reperfusion on an 

average patient receiving reperfusion. The first three columns report OLS estimates and the last two logit 

estimates where the coefficients are odds ratios. The second and third columns of Table 2 report 

estimation of Equations 7 using two different approaches to control for the propensity index. In the first 

(which corresponds to Equation 7a), we restrict the index to be a simple linear function, and interact this 

with reperfusion—an approach that was justified in the graphical analysis in Figure 4. In the second we 

control for the propensity index with 100 indicator variables also interacted with reperfusion (this 

corresponds to Equation 7b). The final two columns repeat these specifications using a logit model. 

Column (1) does not include the interactions of reperfusion with , but it is included to 

demonstrate that the benefit of reperfusion is clearly increasing in the propensity to receive reperfusion, 

and consequently, that a Roy-model of triage describes provider decision making. The coefficient on the 

interaction of reperfusion with the propensity index is positive and highly significant, implying that the 

treatment effect of reperfusion on survival is increasing in the patient’s propensity index ( ) as 

predicted by our model. The coefficient on this interaction implies that an increase in the propensity index 

of one (about one standard deviation of the propensity index in the treated population) is associated with 

roughly a doubling of the treatment effect. Thus, it appears that hospitals are choosing patients for 

treatment based on the benefit of the treatment, and the heterogeneity in the treatment effect is large 

relative to the average treatment effect.  

In column 2, we add an interaction of reperfusion with the hospital effect from the propensity 

equation ( ). The coefficient on this interaction is negative and significant, meaning that conditional on 

a patient’s propensity, more aggressive hospitals (those with a higher propensity to treat patients, ) have 

lower returns to reperfusion. As noted earlier, this is evidence of allocative inefficiency – if the hospital’s 

hq̂

hq̂
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high use of reperfusion was entirely due to comparative advantage in treatment, we would get a 

coefficient of 0 on this variable. The negative coefficient is consistent with what would be expected if the 

variation was due to differences in thresholds (τ), where more aggressive hospitals have lower minimum 

thresholds for treatment, treat more patients, and have lower benefits to treatment. The coefficient is 

similar in column 3, where we non-parametrically control for the interaction of reperfusion with a set of 

100 dummies for each propensity percentile, suggesting that controlling for the linear interaction of 

propensity with reperfusion is a sufficient approximation to g(I). The last two columns of Table 2 are logit 

analogs to the earlier OLS regressions, and yield similar results in logodds terms. The estimated 

coefficients suggest that a one standard deviation increase in the hospital effect from the propensity 

equation (about 0.3) lowers the survival benefit of reperfusion by about 1 percentage point or lowers the 

odds of survival by about 7%. 

In Table 3 we estimate the logit models for 7-day and 365-day survival to investigate the 

sensitivity of our results to alternative survival windows. The purpose of using 7-day survival was to 

examine whether the patterns noted above are evident soon after admission, and reflect decisions about 

how the heart-attack was initially treated. If they do not appear at 7-day survival, the concern would be 

that we are picking up the effect of later treatments—for example, the quality of post-discharge care. At 7 

days relative to 30 days, we expect the effect of the treatment to be even more tightly linked to a patient’s 

propensity to receive it and that is exactly what we find in Panel A. This relationship is half as strong for 

1-year survival (Panel B) relative to 7 day survival, and represents the importance of post-discharge 

factors in affecting 1-year survival. In both panels, the benefits of reperfusion fall in hospitals that do 

more of it which is consistent with allocative inefficiency, as more aggressive hospitals work into less 

appropriate patients.  

The regressions in Tables 2 and 3 identify allocative inefficiency indirectly, by estimating 

whether a particular hospital-level characteristic ( ) is associated with the survival benefit of 

reperfusion, after controlling for patient propensity. A more direct approach is to estimate how much the 

survival benefit of reperfusion varies across hospitals, after conditioning on patient propensity. In Table 4, 

we do this by estimating Equation 6a using hierarchical (mixed effects) logit models that treat the 

hospital-specific intercept and reperfusion coefficient as correlated random effects (these models side-step 

the challenges of fixed-effects estimation for small hospitals). The first column of Table 4 reports results 

from estimating a logit model that only includes a hospital-level random intercept to account for the 

hospital’s general level of expertise (or TFP) at providing usual care (𝛼$%). The random effects assumption 

may appear to be restrictive relative to the fixed effect models in Table 2, but the restrictions do not 

meaningfully change the estimated coefficients on reperfusion or reperfusion*propensity. 

hq̂



19 

The second column of Table 4 estimates the logit with both a hospital-level random intercept and 

a hospital-level random coefficient on reperfusion, allowing us to estimate the variance and correlation in 

both the hospital-level TFP (𝛼$%) and the hospital-level thresholds (𝜏$). We find that the standard 

deviation of hospital thresholds is large (.313 in logodds) —and of the same magnitude as the effect of 

reperfusion for the average treated patient (.314). There is also considerable variation across hospitals in 

TFP, as seen by the standard deviation of 𝛼$% estimated to be .198. This estimate implies that the standard 

deviation across hospitals in the risk-adjusted odds of survival for patients not receiving reperfusion is 

nearly 20 percent (or nearly 4 percentage points off a base survival rate of 81 percent). Finally, we 

estimate that the hospital-level coefficient on reperfusion is negatively correlated with the hospital-level 

intercept, meaning that hospitals with higher thresholds (conservative hospitals that do less) have worse 

outcomes for patients not receiving reperfusion. Later in the paper we find evidence that this stems from 

hospitals that are worse at caring for patients without reperfusion being unaware, especially if they’re 

small, that the benefits from doing more reperfusion are actually high for them.  

 

B. Evidence Supporting Key Assumptions 

Our analysis relies on three key assumptions: (1) that hospitals triage patients according to a Roy-

model; (2) the ‘single-index’ assumption, that the distribution of unobservables does not have a hospital 

specific component; and (3) that we are able to estimate a ‘treatment on the treated’ parameter. We have 

already presented evidence supporting the first assumption in Figure 4 and Table 2, which document that 

the benefit of reperfusion is clearly increasing in the propensity to receive reperfusion. Thus, it appears 

that hospitals are choosing patients for treatment based on the benefit of the treatment. 

Evidence on the single-index assumption comes from noting that logit models implicitly estimate 

Pr 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = (𝑋𝛽 + 𝜃)/𝜎L, where 𝜎L	is the standard deviation of the unobservables. If hospitals 

vary in 𝜎L, then estimates of 𝛽	from more aggressive or less aggressive hospitals will be different. But 

this is testable—we estimated separate propensity equations (as in equation 2) by aggressiveness of the 

hospital (above and below median on 𝜃$) and found that their predictions are nearly identical, with a 

correlation of 0.9987, suggesting that differences in variances are not a first-order concern. We 

acknowledge that we are not able to reject a world in which the variances vary across hospitals and where 

the coefficients scale up to perfectly offset the increased variance, but we’re unaware of an economic 

story for why this should be the case. 

To evaluate the plausibility of our third assumption we estimated a simple logit model for the 

impact of reperfusion on 30-day mortality, controlling for the rich patient risk-adjusters in the CCP data, 

and compared our estimates to those obtained from clinical trials. A summary of nine trials was published 

in the journal Lancet by the Fibrinolytic Therapy Trialists' Collaborative Group (FTTCG, 1994). This was 
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the same time-period as the CCP data and each trial evaluated reperfusion therapy in heart-attack patients. 

Across these nine trials, reperfusion within 12 hours reduced 35-day mortality from 11.5% to 9.6%, 

which implies that the treatment on the treated effect of reperfusion on the log-odds of mortality is 0.20. 

In our CCP data, a logit model controlling for the CCP risk-adjusters estimates an identical effect, with 

reperfusion reducing the logodds of mortality by 0.206 (S.E. = 0.023).   We take this evidence as 

supporting the case that we can estimate unbiased estimates of the treatment on treated effect.5 

 

C. Identifying Hospital Comparative Advantage 

To summarize the evidence so far, we have shown that (i) patients with higher appropriateness 

receive higher benefits from treatment, (ii) this relationship is approximately linear, which is why simpler 

linear-controls for the propensity to receive care do as well as non-parametric controls for the propensity 

to receive care, (iii) less appropriate patients are harmed in high-reperfusion hospitals, which is consistent 

with overuse, (iv) more aggressive hospitals have lower average treatment benefits for patients at every 

propensity, which is consistent with these hospitals having a lower treatment threshold, and (v) after 

conditioning on patient propensity there remains substantial variation in the survival benefit of 

reperfusion across hospitals, which is consistent with allocative inefficiency. While these results identify 

the presence of allocative inefficiency, they say nothing directly about the presence or absence of 

comparative advantage. In order to simultaneously estimate variation in hospital thresholds and 

comparative advantage, we now turn to a more parametric framework to estimate both quantities. 

In this section, we jointly estimate the treatment propensity and survival equations, yielding 

estimates of the joint distribution of the hospital-level parameters (𝜃$, 𝛼$%, 𝜏$). These estimates are then 

used to identify variation across hospitals in comparative advantage. This approach requires us to use the 

linear-approximation for instead of the non-parametric control. The linear assumption was 

justified by Figure 4 and in Table 2 where we showed very similar results with this restriction compared 

to the fully non-parametric approach.   

To pursue this approach, recall that the treatment propensity was estimated using a random effect 

logit to estimate Equation 2 (see appendix B): 

(2)  Pr 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$ = 1 = F 𝑋#$𝛽 + 𝜃$  

Note that since 𝐼#$ = 𝑋#$𝛽 + 𝜃$, equation 6a can we rewritten as: 

(7c) 𝑌#$ = 𝛼$% + 𝑋#$𝛽% + 𝜆%𝑇𝑟𝑒𝑎𝑡#$ + (𝜆(	𝜃$ + 𝜏$)𝑇𝑟𝑒𝑎𝑡#$ + 𝜆(	𝑇𝑟𝑒𝑎𝑡#$ ∗ 𝑋#𝛽 + 𝑣#$
% + 𝜀#$

%  

                                                
5 A completely different approach would instrument for reperfusion. Key for our empirical approach is 
that the instrument should recover a treatment-on-the treated estimate that may or may not be the same as 
the Local Average Treatment Effect (LATE).  

( ) IIg 10 ll +=
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Equation 7c is a logit model with a hospital-level random intercept (𝛼$%) and a hospital-level random 

coefficient on reperfusion (𝜆(	𝜃$ + 𝜏$). In estimating Tables 2-4, we used a 2-step approach that first 

estimated	𝜃$from Equation 2, and then plugged this estimate into the survival equation. We now estimate 

the treatment propensity equation (2) and the survival equation (7c) jointly, treating the hospital-effect in 

the propensity equation (𝜃$) and the hospital-level intercept (𝛼$%) and coefficient on reperfusion (𝜆(	𝜃$ +

𝜏$) in the survival equation as jointly normal correlated random coefficients. The remaining parameters 

determining the effect of reperfusion ( ) were estimated along with the variance and covariance of 

the hospital-level random coefficients by maximum likelihood using xtmelogit in Stata.6 Finally, 

knowledge of 𝜆(	𝜃$ + 𝜏$ , 𝜆(	and	𝜃$ allows one to restate all of the estimates in terms of 𝜏$ rather than 

𝜆(	𝜃$ + 𝜏$ .  

We report the results from joint estimation of equation 2 and 7c in Table 5. Reassuringly, the 

more complicated joint estimation procedure replicates the results and magnitudes from simpler models. 

For example the coefficient on reperfusion from the table 5 is 0.27 compared to 0.31 in the simpler logit 

model in Table 4 (both coefficients are in log-odds). The benefit of reperfusion increases with the index 

with similar magnitudes in both models—0.29 in Table 4 vs. 0.28 from Table 5. The threshold and 

general productivity are correlated -0.331 in the simpler model and are correlated -0.321 in the joint 

model, and both are estimated to have similar standard deviations using the simple and the joint model. In 

particular, the joint model continues to estimate considerable variation across hospitals in , the 

minimum threshold for treatment (Std. Dev. = 0.327). The consistency between the joint estimates and 

simpler approaches reassures us that the estimates are not a consequence of the structure that we have 

imposed. Consistent with the evidence presented in Table 2, there is a negative correlation (-0.341) 

between and the reperfusion intercept , suggesting that some of the variation in treatment rates across 

hospitals is associated with variation in the treatment threshold (mostly overuse, as suggested by figures 

4-5), but that this correlation is far from -1 (as would be the case if there was no variation in comparative 

advantage) suggests that comparative advantage is also present.  

The joint estimation in Table 5 yields estimates of the joint distribution of the hospital-level 

parameters (𝜃$, 𝛼$%, 𝜏$). However, our goal is to estimate the joint distribution of comparative advantage 

(𝛼$∆) and the treatment threshold (𝜏$). Recall that 𝜃$ = 𝛼$∆ − 𝜏$ /𝜎L, where 𝜎L	is the standard deviation 

                                                
6 To simplify estimation, we first estimated the coefficients on all of the covariates (X) in equations 2 and 
7c using simple logit models, and then used the estimated indices ( ) rather than the individual 
covariates when estimating the random coefficient models.  All the reported standard errors are 
conditional on the first-stage estimates , but any adjustment for using these generated 
regressors is likely to be second-order because of the large samples used to estimate the patient-level 
coefficients. 
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of the patient-level idiosyncratic gains (𝑣#$/ ), which we have so far ignored by assuming that it is one (all 

our earlier results were invariant to this scaling). This implies that 𝛼$∆ = 𝜏$ + 𝜎L𝜃$, so that the 

distribution of comparative advantage (and its correlation with the treatment threshold) depends on both 

𝜎L and the joint distribution of (𝜃$, 𝜏$).  Therefore, it is important to know the scale factor in order to 

make statements about comparative advantage. The scale parameter represents the standard deviation of 

the unobservable factors determining expected benefit from treatment. While we cannot estimate it 

directly, we used a range of values for 𝜎L to calculate the standard deviation of  and its correlation 

with . These are presented in Figure 6. The left hand panel plots estimates of the standard deviation of 

comparative advantage ( ) for values of 𝜎L from 0.01 to 3, while the right hand panel plots estimates of 

the correlation of  with for the same range of 𝜎L. Interestingly, the estimates from Figure 6 bound 

the standard deviation of  to be above 0.3. Thus, our estimates imply that the variation across 

hospitals in comparative advantage is at least as large as the variation across hospitals in the treatment 

threshold (SD=.327) and possibly much larger. For 𝜎Lr  < 1, corresponding to relatively less variation in 

idiosyncratic differences across patients in the expected benefits from treatment, our estimates imply 

similar amounts of variation in  and , and that the two are strongly positively correlated (between 

0.4 and 1). In this case, a hospital’s minimum treatment threshold  is positively correlated with a 

hospital’s comparative advantage , meaning that hospitals with low comparative advantage tend to 

have low thresholds and overuse reperfusion.  

To explore the relationships between  and  further, we plotted the hospital-level 

relationship between the risk-adjusted treatment rates and in Figure 7a and between  and  in Figure 

7b. We did these using 𝜎L = .25, which is value of 𝜎L that minimizes the standard-deviation of  . This 

was chosen because the null-hypothesis in the literature is to assume that there is no comparative-

advantage, and we wanted to examine the greatest scope for comparative-advantage under the null. The 

graphs report shrunken estimates of  and  so they understate the variation in both. However, clear 

patterns are obvious—consistent with Figure 4 and Table 5, higher risk-adjusted treatment rates mean 

lower thresholds, and hospitals lower thresholds also have lower comparative advantage at delivering 

reperfusion. Interestingly, such a positive correlation (which was also noted above in Table 5) would arise 

if all hospital’s incorrectly believed that they had high comparative advantage in performing the 

treatment, resulting in overuse among those hospitals that actually did not have a high comparative 
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advantage in performing the treatment (as we illustrated in Figure 1B). We examine this mechanism in 

the next section. 

 

IV. Mechanisms 

As noted earlier, there are two broad mechanisms that could lead to allocative inefficiency. First, 

hospitals may be over-treating for financial gain (particularly in for-profit hospitals) or because of 

benefits to future patients through learning-by-doing (particularly in teaching hospitals). This type of 

mechanism would suggest that allocative inefficiency (τ) would be related to hospital characteristics such 

as ownership, teaching status, etc. To investigate this hypothesis, we estimated the model from Table 4 

adding interactions of treatment with a number of hospital-characteristics such as ownership, teaching 

status and size (Table 6). Overuse at for-profit hospitals or teaching hospitals, or at hospitals with other 

characteristics that are included in the table, would mean that the return to treatment would be lower at 

such facilities. The results demonstrate that there is no evidence that these characteristics are associated 

with the return to treatment, conditional on the patient’s propensity to receive treatment. A joint-test on all 

the Treatment*Hospital Characteristics interactions can’t reject the null-hypothesis that these variables 

are jointly zero (chi-squared statistic=2.96; p-value=0.96). Yet, since overtreatment is clearly in evidence 

from the earlier exhibits, we need another mechanism for why it happens.  Note that these hospital 

characteristics do predict variation in the use of reperfusion: for-profit hospitals and high-volume 

hospitals were more likely to perform reperfusion, while teaching hospitals and hospitals that treated high 

poverty populations were less likely to perform more reperfusion. The evidence in Table 6 implies that 

differences across hospitals with these characteristics in reperfusion rates reflect differences in 

comparative-advantange rather than differences in treatment thresholds. 

A second mechanism for allocative inefficiency is that hospitals have imperfect information and 

misperceive their comparative advantage, as we illustrated earlier in Figure 1B.7 Given the general lack of 

systematic performance feedback and small samples of their own treated patients to observe, it is quite 

plausible that hospitals and physicians will have inaccurate beliefs about their own comparative 

advantage. Put differently, there is no reason to think that physicians or hospitals know their 𝛼$∆ 

perfectly—it’s the difference of two parameters (𝛼$%	𝑎𝑛𝑑	𝛼$() that are both measured with error. In this 

mechanism, θ represents a hospital’s belief about their comparative advantage and τ represents a 

hospital’s misperception (or prediction error) of their own comparative advantage. 

More formally, we can reinterpret our empirical model in the following way. Suppose that a hospital 

does not know its comparative advantage, but instead has a belief about its comparative advantage which 

                                                
7 We are grateful to Janet Currie for suggesting this interpretation and alerting us to related work in Currie 
and MacLeod (2017). 
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is given by θ. Based on this belief, they treat patients if the expected benefit of treatment is positive. Thus, 

patients are treated based on beliefs (if 𝜃$ + 𝑋#𝛽/ + 𝑣#$/ > 0) rather than based on actual comparative 

advantage (if 𝛼$/ + 𝑋#𝛽/ + 𝑣#$/ > 0). Let 𝜏$	represent the difference between a hospital’s actual 

comparative advantage and their beliefs, so that 𝜏$ = 𝛼$/ − 𝜃$ is the hospital’s prediction error (and 

therefore 𝜃$ = 𝛼$/ − 𝜏$, as in our empirical model). Thus, this framework interprets 𝜏$ as arising from an 

inaccurate belief about 𝛼$∆, rather than assuming that hospitals know 𝛼$∆ and consciously set 𝜏$≠0 to 

achieve other objectives. A negative 𝜏$ implies that the hospital over-estimated their comparative 

advantage and, as a result, treated some patients who were in fact harmed by the treatment. In this 

reframing, the key question is how hospitals form their beliefs.  

Suppose that each hospital receives a noisy signal of their comparative advantage (S), where S=𝛼/ +ω 

and the noise (ω) is independent of α with variance 𝜎aZ  (we have suppressed the subscripts to simplify 

notation). Based on this signal, the hospital forms a prediction of its comparative advantage (θ). If the 

hospital knew the reliability of the signal (r=𝜎bZ/ 𝜎bZ + 𝜎aZ , where  𝜎bZ  is the variance of 𝛼/  across 

hospitals), then the optimal prediction of 𝛼/  given S is the posterior mean, given by E(𝛼/  |S)=r*S. More 

generally, we assume that hospitals may not know the reliability of the signal, and form their prediction 

using θ=w*S, where w≠r.  Incorrectly weighting the signal generates additional variation in the prediction 

error (τ) which leads to greater allocative inefficiency. Even if hospital beliefs are optimal given S (i.e., 

w=r), there will be allocative inefficiency (τ≠0) because hospitals have imperfect information, and this 

information only predicts a fraction (r) of the true variation in comparative advantage.  

This simple framework delivers a number of strong empirical implications. First, because the error in 

the signal is assumed to be independent of the hospital’s actual productivity and comparative advantage, 

this framework constrains the number of parameters in the structural model to six, which allows us to 

identify the scale parameter and the variance in comparative advantage. More specifically, our empirical 

model from Table 5 estimated 6 reduced-form moments (the variances and covariances of θ, τ, and α0) 

which are a function of the 6 unknown structural parameters in this framework (the variance and 

covariance of 𝛼/  and α0, the reliability of the signal r, the weight placed on the signal w, and the scale 

parameter from the logit 𝜎L).8 Therefore, we can derive estimates of the unknown structural parameters 

for this model using minimum chi-squared estimation (Wooldridge 2010, p.442-446). Minimum chi-

squared estimation chooses the structural parameters that provide a best fit of the reduced-form estimates 

(in a weighted least squares sense, using the standard errors & covariance of the reduced form estimates 

to form weights). In the just-identified case the resulting structural parameters fit the reduced form 

                                                
8 See Appendix-C for derivation of the equations stating the reduced-form moments in terms of the 
structural parameters. 
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moments exactly because they are one-to-one function of the reduced form parameters. Restrictions on 

the structural parameters can be tested based on how they affect the structural models ability to fit the 

reduced form estimates through a chi-squared goodness of fit statistic. 

Just-identified estimates of the structural parameters for this model are provided in the first column of 

Table 7. There is substantial variation in comparative advantage (standard deviation of α = 0.317), with 

the variation across hospitals being as large as the average treatment effect. The signal that hospital’s 

receive about their comparative advantage is estimated to have very low reliability (r=.065), but hospital’s 

place more weight on the signal than is optimal, with w=0.154. 

If w=r in this framework then beliefs are optimal. When we impose w=r (column 2 of Table 7), we 

are over-identified (estimating 5 parameters from 6 moments) and can use the chi-squared goodness of fit 

statistic to test the restriction (Wooldridge, 2010, pp. 444-445). This statistic rejects the hypothesis that 

w=r (chi-squared with 1 df = 10.4, p=.001).  In other words, the constrained model with w=r implies 

reduced-form variances and correlations of θ, τ, and α0 that are significantly different from those 

estimated in Table 5. More specifically, if w=r then the hospital’s prediction (θ) is optimal and, therefore, 

should be uncorrelated with the prediction error (τ). The fact that we estimated a significant negative 

correlation of -0.34 between θ and τ in table 5 implies that hospitals’ predictions are not optimal and they 

are overweighting the noisy signal (w>r), i.e. they over-react to the signal. One might not expect hospitals 

to have the information necessary to form optimal weights – in particular, they may not know how much 

true variation in comparative advantage there is across hospitals, and are acting as if they are using an 

over-diffuse prior (placing too much weight on their own signal, and not shrinking enough to a prior 

mean).   

Finally, if hospitals learn based on their experience with patients, then one would expect that low-

volume hospitals would have less reliable signals of their comparative advantage than high-volume 

hospitals. In the third column of table 7 we fit our model to reduced-form moments estimated separately 

for low, medium and high-volume hospitals (6 moments for each group, for a total of 18 moments), 

allowing the reliability parameter to vary across the 3 groups but otherwise constraining the remaining 

model parameters to be equal across the 3 groups (8 parameters total to fit 18 moments). As expected, the 

reliability of the signal is estimated to be highest for the high-volume hospitals and lowest for the low-

volume hospitals. Moreover, the goodness of fit statistic cannot reject our model (chi-squared with 10 df 

= 12.7, p=.24) suggesting that this simple model provides an adequate fit of the data. In other words, the 

model estimated in column 3 of Table 7 implies reduced-form variances and correlations of θ, τ, and α0 

that are not significantly different from the unconstrained reduced-form estimates for low, medium, and 

high-volume hospitals. Assuming that reliability of the signal is the same for high, medium and low-
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volume hospitals (final column of table 7) is strongly rejected (chi-squared with 2 df = 49.7, p<.0001) and 

such a model is strongly rejected by the goodness-of-fit test (chi-squared with 12 df = 62.4, p<.0001).  

 

V. Conclusion 

Using a Roy model of treatment to motivate our empirical framework, we find significant evidence of 

allocative inefficiency across hospitals. We can use our results to construct a stylized estimate of the 

welfare loss generated by this allocative inefficiency, along the lines suggested by Phelps (2000). 

Returning to the intuition from Figure 1b, the effect of a non-zero τ generates a standard welfare loss 

triangle, where 𝑊𝑒𝑙𝑓𝑎𝑟𝑒	𝐿𝑜𝑠𝑠$ =
(
Z
. 𝜏$

$i#P$j

(𝜏$)	𝑑𝑃𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑎𝑛𝑡)/	d𝜏
lmni

 . The welfare loss due to 

allocative inefficiency is the average reduction in (logodds) survival per patient.9 This loss is given by  
(
Z
. 𝑑𝑃𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)/	d𝜏$𝐸 𝜏$Z  

To get an estimate of 𝑑𝑃𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 𝑑𝜏,	which is a change in the propensity to receive treatment 

for a small increase in τ, we took a tiny change of 0.01 in 𝜏$, divided it by our estimate of the scale factor 

(𝜎L) of 0.44 to turn it into how much change that would create in the hospitals risk-adjusted treatment rate 

𝜃$. This yielded an estimate of 𝑑𝑃𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 𝑑𝜏	=-0.26. To estimate 𝐸 𝜏$Z  note that 𝐸 𝜏$Z =

𝑉𝑎𝑟 𝜏$ + 𝐸 𝜏$ Z. From the hierarchical-logit model in Table 5, we estimated 𝑆𝐷(𝜏$)=0.33.10  If we 

assume that there is no allocative inefficiency on average (𝐸 𝜏$ = 0), then the welfare loss from 

variation in allocative inefficiency is (1/2)*(0.33^2)*-0.26=-0.014, i.e. the allocative inefficiency across 

hospitals results in an average reduction in the logodds of survival per patient of .014. The overall benefit 

from treatment is the benefit among the treated (0.20 in log-odds), who comprise 20 percent of the patient 

population for a total benefit of 0.04. This means that we could increase the effectiveness of treatment by 

about a third if we removed the allocative inefficiency across hospitals. There is additional welfare loss if 

the mean of τ is not equal to zero, e.g. if there is systematic overuse across all hospitals (𝐸 𝜏$ < 0). This 

part of the welfare calculation is far more speculative, but a good guess about systematic overuse across 

all hospitals comes from the average treatment effect among low propensity patients, which is about -.1 

from Figure 5. Thus, the additional welfare loss from systematic overuse would be (1/2)*(-0.1^2)*-0.26=-

0.0013. This calculation suggests that systematic overuse is a minor concern relative to the welfare loss 

from the overall variation.  

In addition to the welfare loss from allocative inefficiency, we also found evidence of substantial 

variation in comparative advantage across hospitals, with the benefits from treatment being much higher 

                                                
9 The welfare loss is measured in the same units as τ (logodds of survival in our estimates) and is the 
welfare loss per patient because we use the probability of treatment rather than total number treated. 
10 Table 4 yielded a very similar estimate of 0.31. 
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in some hospitals than others. This variation in the benefits from treatment implies that “one size fits all” 

policies such as strict treatment guidelines are incorrect, since hospitals with greater comparative 

advantage at a treatment should use it more among their patients. Moreover, our evidence suggests that 

much of the allocative inefficiency that we observe is due to hospitals having imperfect information and 

misperceiving their comparative advantage. This is a different mechanism than explaining variations by 

appealing to medical malpractice or financial entrepreneurship by providers (Gawande, 2009). Thus, 

rather than reducing treatment variation across hospitals, better information about treatment effect 

heterogeneity across hospitals is key to improving patient welfare. We don’t know if these findings and 

conclusions generalize to settings beyond the treatment of heart attack patients, but our framework is 

general and can be applied to a variety of settings. 

Finally, our work suggests new directions for research on productivity in healthcare. By uniting the 

literatures from economics and medicine on variations in medical care with insights from the productivity 

literature, we found that variation in comparative advantage (productive efficiency) plays an important 

role in generating treatment variation. Thus, future work should explore sources of variation in productive 

efficiency across hospitals and broaden the idea of productive efficiency beyond simple TFP (Garber and 

Skinner, 2008) to consider the reasons for comparative advantage in particular types of care. By 

separately identifying allocative inefficiency, we also found that lack of information about the variation 

across hospitals in comparative advantage generates substantial welfare loss. This finding is similar to 

Abaluck et al. (2016), who find that physician misperceptions about which patients benefit most from 

testing generate substantial welfare loss. Thus, future work should also explore how patients and 

providers learn about and respond to variation in productive efficiency. This would involve taking our 

framework for understanding how hospitals differ in efficiency, and combining it with the insights in Hull 

(2017), which finds evidence that patients select on gains in terms of choosing hospitals. More generally, 

our framework can also be applied to a range of related puzzles such as the presence of racial and gender 

disparities in treatment and the slow diffusion of new treatments that were proven effective in randomized 

trials [Chandra and Staiger, 2010)]. As with the variation we study across hospitals, our framework can 

identify the underlying source of these differences in treatment across populations. Our findings suggest 

that misperceptions and learning about the heterogeneous benefits of treatment across hospitals and 

patients may play a key role in understanding all of these puzzles. 
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Appendix-A 

Construction of CCP Estimation Sample  

The CCP used bills submitted by acute care hospitals (UB-92 claims form data) and contained in the 
Medicare National Claims History File to identify all Medicare discharges with an International 
Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) principal diagnosis of 410 
(myocardial infarction), excluding those with a fifth digit of 2, which designates a subsequent episode of 
care.  The study randomly sampled all Medicare beneficiaries with acute myocardial infarction in 50 
states between February 1994 and July 1995, and in the remaining 5 states between August and 
November, 1995 (Alabama, Connecticut, Iowa, and Wisconsin) or April and November 1995 
(Minnesota); for details see O’Connor et al. (1999). Among patients with multiple myocardial infarction 
(MIs) during the study period, only the first AMI was examined. The Claims History File does not 
reliably include bills for all of the approximately 12% of Medicare beneficiaries insured through managed 
care risk contracts, but the sample was representative of the Medicare fee-for-service (FFS) patient 
population in the United States in the mid-1990s.  After sampling, the CCP collected hospital charts for 
each patient and sent these to a study center where trained chart abstracters abstracted clinical data.  
Abstracted information included elements of the medical history, physical examination, and data from 
laboratory and diagnostic testing, in addition to documentation of administered treatments.  The CCP 
monitored the reliability of the data by monthly random reabstractions.  Details of data collection and 
quality control have been reported previously in Marciniak et al. (1998). For our analyses, we delete 
patients who were transferred from another hospital, nursing home or emergency room since these 
patients may already have received care that would be unmeasured in the CCP. We transformed 
continuous physiologic variables into categorical variables (e.g., systolic BP < 100 mm Hg or > 100 mm 
Hg, creatinine <1.5, 1.5-2.0 or >2.0 mg/dL) and included dummy variables for missing data.   
Our choice of variables was based on those selected by Fisher et al. (2003a,b) and Barnato et al. (2005). 
With the exception of two variables that are both measured by blood-tests, albumin and bilirubin (where 
the rates of missing data were 24 percent), we do not have a lot of missing data (rates were less than 3 
percent). Included in our model are the following risk-adjusters:



 

Age, Race, Sex (full interactions) 
previous revascularization (1=y) 
hx old mi (1=y) 
hx chf (1=y) 
history of dementia  
hx diabetes (1=y) 
hx hypertension (1=y) 
hx leukemia (1=y) 
hx ef <= 40 (1=y) 
hx metastatic ca (1=y) 
hx non-metastatic ca (1=y) 
hx pvd (1=y) 
hx copd (1=y) 
hx angina (ref=no) 
 

hx angina missing (ref=no) 
hx terminal illness (1=y) 
current smoker 
atrial fibrillation on admission 
cpr on presentation 
indicator mi = anterior 
indicator mi = inferior 
indicator mi = other 
heart block on admission 
chf on presentation 
hypotensive on admission 
hypotensive missing 
shock on presentation 
peak ck missing 
peak ck gt 1000 

no-ambulatory (ref=independent) 
ambulatory with assistance 
ambulatory status missing 
albumin low(ref>=3.0) 
albumin missing(ref>=3.0) 
bilirubin high(ref<1.2) 
bilirubin missing(ref<1.2) 
creat 1.5-<2.0(ref=<1.5) 
creat >=2.0(ref=<1.5) 
creat missing(ref=<1.5) 
hematocrit low(ref=>30) 
hematocrit missing(ref=>30) 
ideal for CATH (ACC/AHA criteria) 
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Appendix-B 

Estimation of Propensity to Receive Reperfusion 

We compared results from fixed-effects and random-effects logits predicting reperfusion as a function 
of the full list of patient risk-adjusters and a random hospital-level intercept, and  examined the 
sensitivity of different approaches to estimating the slope parameters for this equation, ranging from 
OLS with hospital fixed-effects, conditional logit with hospital fixed effecst, logit with random effects, 
and mixed-logit. If equation (2) is estimated using xtmelogit in Stata, then we obtain Bayesian 
posterior estimates of hospital random-effects, commonly referred to in the literature as shrinkage 
estimates or, in linear models, best linear unbiased predictions. As the table below notes, the choice 
between OLS and logit and between random effects and fixed effects is not significant for the 
estimation of hospital effects, but the use of shrinkage is because of the substantial number of small 
hospitals in our sample. 
 
Model: Pr(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡#$)=	𝐹(𝐼#$) = 𝐹(𝑋#𝛽 + 𝜃$) Correlation of Patient 

Characteristics (𝑋#𝛽)	 
Correlation of 
Hospital Effects (𝜃$)	 

   
Fixed Effects OLS and Fixed-Effects Logit 0.9745 0.9997 
Fixed Effects OLS and Random-Effects Logit (Unshrunk) 0.9997 0.9997 
Fixed Effects OLS and Random-Effects (Shrunk) 0.9732 0.9998 
   
 
The results from the shrunken random-effects were used to form posterior estimates of the hospital 
random effects 𝜃$ and an estimate of the propensity index for each patient  𝐼#$ = 𝑋#$𝛽 + 𝜃$. The 
coefficients on the patient-level variables are consistent with the medical literature, with reperfusion 
being less likely among patients with pre-existing conditions and who are older, and also depending on 
the location and severity of the heart attack. The estimated standard deviation of the hospital effect is 
0.44 (Std. Err. = 0.01), which implies that a one standard deviation in the hospital effect increases the 
logodds of receiving reperfusion by 0.44, which would increase an average patients probability of 
receiving reperfusion from 19% to 26%. Thus, there is sizable variation across hospitals in the rate at 
which they provide reperfusion to observationally similar patients. The model is able to predict much 
of the hospital-level variation, with the posterior prediction of each hospital’s effect on reperfusion 
having a standard deviation of 0.30 in our data.  
 
Also note that if hospitals vary in 𝜎L, then estimates of 𝛽	from more aggressive or less aggressive 
hospitals will be different. This is testable—we estimated separate propensity equations (as in equation 
2) by aggressiveness of the hospital (above and below median on 𝜃$) and found that their predictions 
are nearly identical, with a correlation of 0.9987, suggesting that differences in variances are not a 
first-order concern. Finally, histograms of hospital-risk adjusted treatment rates are below (Panel A is 
hospital level and Panel B is patient weighted) 
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Appendix-C 

Equations used in minimum distance estimation  

This appendix describes the equations used in minimum distance estimation that state the reduced-
form estimates in terms of the parameters of the structural model. The mixed-logit model from Table 5 
estimates 6 reduced-form moments (the variances and covariances of θ, τ, and α0) and their associated 
variance covariance matrix. Call this 1x6 vector of reduced form parameters 𝛽 =
𝜎s
Z, 𝜎tZ, 𝜎bu

Z , 𝜎st, 𝜎sbu,𝜎tbu,  and let 𝛽 be the vector of estimates of these parameters and 𝑉 = 𝑉𝑎𝑟 𝛽  
be the associated 6x6 variance matrix of these estimates. Our structural model has 6 unknown 
structural parameters: the variance and covariance of α and α0, the variance of the noise in the signal 
ω, the weight placed on the signal w, and the scale parameter from the logit σv. Call this 1x6 vector 
𝛿 = 𝜎b∆

Z , 𝜎bu
Z , 𝜎b∆bu, 𝜎v

Z , 𝑤, 𝜎L . We can state the reduced form parameters as a function of the 
structural parameters (as shown below) so that 𝛽 = 𝑓 𝛿 . Then minimum distance estimates of 𝛿 

minimize the objective function 𝛽 − 𝑓 𝛿 𝑉W( 𝛽 − 𝑓 𝛿
w
 . In the just-identified case the resulting 

structural parameters fit the reduced form moments exactly (𝛽 = 𝑓 𝛿 ). Restrictions on the structural 
parameters can be tested based on how they affect the structural models ability to fit the reduced form 
estimates, using the fact that the objective function has a chi-squared distribution with degrees of 
freedom equal to the degree of over-identification (the difference between the dimension of 𝛽 and the 
dimension of 𝛿. Fitting the model to reduced form estimates from low, medium and high-volume 
hospitals is done similarly, where 𝛽 stacks the estimates from the three samples into a 1x18 vector and 
V is 18x18 with the variance covariance matrix for estimates from each of the samples along the 
diagonal and zeros everywhere else. 
 
The structural model interprets our original model parameters (θ, τ, and α0) as follows: 

1. α0 is unchanged 
2. 𝜃∗∗ = 𝑤𝑆 = 𝑤 𝛼∆ + 𝜔  which is the hospital’s prediction of its comparative advantage given 

its signal. In the treatment propensity logit we estimate 𝜃 = s∗

yz
= (

yz
𝑤 𝛼∆ + 𝜔  

3. 𝜏 = 𝛼∆ − 𝜃∗ = 1 − 𝑤 𝛼∆ − 𝑤𝜔 
 
Using these definitions, it is straightforward to derive the following relationships between the reduced 
form estimates and the parameters of the structural model: 
 

i. 𝜎s
Z = 𝑉𝑎𝑟 (

y
𝑤 𝛼∆ + 𝜔 = (

yz{
𝑤Z 𝜎b∆

Z + 𝜎vZ  

ii. 𝜎tZ = 𝑉𝑎𝑟 1 − 𝑤 𝛼∆ − 𝑤𝜔 = 1 − 𝑤 Z𝜎b∆
Z + 𝑤Z𝜎vZ  

iii. 𝜎bu
Z = 𝑉𝑎𝑟 𝛼% = 𝜎bu

Z  
iv. 𝜎st = 𝐶𝑜𝑣 (

yz
𝑤 𝛼∆ + 𝜔 , 1 − 𝑤 𝛼∆ − 𝑤𝜔 = (

yz
𝑤 1 − 𝑤 𝜎b∆

Z − (
yz
𝑤Z𝜎vZ  

v. 𝜎sbu = 𝐶𝑜𝑣 (
yz
𝑤 𝛼∆ + 𝜔 , 𝛼% = (

yz
𝑤𝜎b∆bu 

vi. 𝜎tbu = 𝐶𝑜𝑣 1 − 𝑤 𝛼∆ − 𝑤𝜔, 𝛼% = 1 − 𝑤 𝜎b∆bu 
 

  



34 

Figure 1A: A Roy model of Treatment at the Hospital level 
 
 

 
The two lines denote patient survival if a hospital treats a given patient with usual care (intercept is 
𝛼$%)  or with reperfusion treatment (intercept is 𝛼$() as a function of patient characteristics (i.e. patient 
X’s) on the x-axis. We have suppressed the distribution of unobservables that come out of the plane. 
Expertise at usual care and reperfusion is captured by the intercepts 𝛼$% and 𝛼$( respectively, with 
comparative advantage being the difference between them. Allocative efficiency means that 
reperfusion should be performed to the point that the marginal patient receiving it receives zero benefit 
(τh = 0).  
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Figure 1B: A Roy model of Treatment at the Hospital level with Allocative Inefficiency 
 
 

 
 
The figure illustrates the presence of allocative inefficiency. Here, perceptions about comparative 
advantage at delivering the treatment result in more patients treated than is optimal. It is also possible 
that some hospitals overuse treatment because of maximizing something other than survival, rather 
than because of misperceptions about comparative advantage. As drawn, the hospital overuses 
treatment and uses a negative threshold (τh).  A welfare loss triangle emerges and is illustrated in blue. 
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Figure 2. Why conditioning on the Propensity to Receive Treatment identifies differences in 
Allocative efficiency 

 
 
 
Figure show the distribution of expected benefits, 𝐸(𝑌$/).	Panel A illustrates selection into treatment 
allowing for selection on gains. Expected benefits for the ith patient is centered on 𝑋𝛽/ + 𝛼$/, with the 
distribution around this reflecting 𝑣#$/ , which is used by the physician to determine treatment. Patients 
above 𝜏$ are treated, so that the difference between  𝑋#𝛽/ + 𝛼$/  and 𝜏$ is the propensity index 𝐼 . 
The conditional mean to the right of 𝜏$ represents the treatment effect for the treated. Panel B 
illustrates how matching on the propensity isolates a higher threshold (𝜏$ + 𝑑) in Hospital B, that has 
the same comparative advantage (𝛼$/) as hospital A. Compared to hospital A, patients with the same 
X’s will have a lower propensity to be treated at hospital B because of the higher threshold. However, 
after matching on propensity, both the threshold (𝜏$ + 𝑑) and the mean of the benefit distribution 
𝑋𝛽/ + 𝛼$/ = 𝑋𝛽/ + 𝑑 + 𝛼$/  are shifted up by d in hospital B relative to hospital A, and as a result 

the treatment on the treated is also shifted up by d in hospital B relative to hospital A. In panel C we 
illustrate hospital C, with the same threshold (𝜏$) as hospital A but lower comparative advantage 
(𝛼$/ − 𝑑). When we match on propensity, patients in hospital A will be matched to patients with 
higher X’s in hospital C. Therefore, after matching on propensity, both the threshold (𝜏$) and the 
mean of the benefit distribution are the same in hospital C as in hospital A, implying that treatment on 
the treated is also the same, which implies no difference in thresholds. Note that the differences in 
thresholds and comparative-advantage would not be captured, if we only matched on X’s. 
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Figure 3: Distinguishing underuse and overuse using the propensity to receive treatment.  
 

 
 
 
 
 
The figure illustrates the relationship between the expected benefit from treatment, , on the 
vertical axis, and the propensity index I on the horizontal axis. The propensity to receive treatment 
depends on patient characteristics and a hospitals assessment of its hospital specific benefit from 
treatment. The curves represent the treatment-on-the-treated effect for a patient with index I, and 
approach the minimum threshold (τ) for a patient with a low propensity of being treated. The top curve 
represents a hospital with a high treatment threshold (underuse) and the bottom curve represents a 
hospital with a low treatment threshold (overuse). 
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Figure 4: Survival Benefit from Reperfusion According to Patient’s Treatment Propensity, 
Low-Treatment-Rate (Left) and High-Treatment-Rate (Right) Hospitals. 
 

 
 
 
The figures plot the estimated survival benefit (and 95% confidence intervals) from reperfusion 
against a patient’s treatment propensity index for hospital’s in the lowest (left-hand side) and highest 
(right-hand side) terciles of the estimated hospital effect from the propensity equation. Propensity 
Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a logit model; see 
Appendix-B. Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to the 
average value of patients receiving reperfusion. All models include all CCP risk-adjusters. 
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Figure 5: Survival Benefit from Reperfusion by to Hospital Effect from Treatment Propensity, 
All patients (Left) and Low-propensity patients (Right). 
 
 

 
 
 
The left-hand panel plots the estimated survival benefit from reperfusion (and 95% confidence 
interval) against the hospital effect from the propensity equation using a locally-weighted logit model 
to estimate the reperfusion effect (controlling non-parametrically for the propensity index as was done 
in column 3 of Table 2). The right-hand panel is the analogous plot estimated only for low-propensity 
patients whose propensity index implied that they had below a 20% probability of receiving 
reperfusion. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a 
logit model; see Appendix-B. Propensity index refers to the logit index (XB+Hospital Effect). It is 
demeaned to the average value of patients receiving reperfusion. All models include all CCP risk-
adjusters. 
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Figure 6: Estimates of the Standard Deviation of Comparative Advantage ( ) and its Correlation 

with a Hospital’s Treatment Threshold ( ) for a Range of Values of the Scale Parameter (σv). 
 
 

   Standard Deviation of   Correlation of Treatment Threshold ( ) 

             Comparative Advantage ( )      With Comparative Advantage ( ) 

  
 
We used the estimates from Table 5 to calculate estimates of the standard deviation of 𝛼$/ and its 
correlation with 𝜏$	for a range of values for σv. The left hand panel plots estimates of the standard 
deviation of comparative advantage 𝛼$/ for values of σv from 0.01 to 3, while the right hand panel plots 
estimates of the correlation of 𝛼$/ with 𝜏$	for the same range of σv.  
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Figure 7: Hospital level correlation between Risk-Adjusted Treatment rates, Thresholds, and 
Comparative Advantage 
 

 
 
We used the estimates from Table 5 to graph the correlation between risk-adjusted treatment rates 
(𝜃$)	and thresholds (𝜏$), as well as the correlations between comparative-advantage (𝛼$/) and 𝜏$, 
while setting σv to 0.25, the value that minimizes the role of comparative advantage across hospitals. 
All parameters are demeaned to zero for the average hospital. The positive correlation in the second 
panel would arise if hospital’s incorrectly believed that they had high comparative advantage in 
performing the treatment, resulting in overuse among those hospitals that actually did not have a high 
comparative advantage in performing the treatment.  
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Table 1: Patient Characteristics, Full Sample and by Reperfusion 

    Variable Full Received No 

 
Sample Reperfusion Reperfusion 

  
w/in 12 hours w/in 12 hours 

    Survival 30 days post-AMI 81% 86% 80% 
Reperfusion within 12 hours 19% 100% 0% 
Age 77 73 77 
Previous diagnoses: 

   Congestive Heart Failure 22% 7% 25% 
Hypertension 62% 56% 63% 
Diabetes 30% 23% 32% 
Dementia 6% 2% 7% 

    Number of observations 138,957 25,876 113,081 
        
 
Note: Full-list of variables is in Appendix-A.  
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Table 2: Effect of Reperfusion on 30-day Survival, OLS and Logit Estimates 

      
 

OLS OLS OLS Logit Logit 
  (1) (2) (3) (4) (5) 

      Reperfusion  0.039 0.043  non-parametric 0.328  non-parametric 

 
(0.003) (0.003) 

 
(0.027) 

 
      Reperfusion*Propensity index 0.040 0.042 non-parametric 0.291 non-parametric 

 
(0.002) (0.002) 

 
(0.018) 

 
      Reperfusion* Hospital Treatment Rate (θ) -0.031 -0.037 -0.211 -0.254 

  
(0.009) (0.009) (0.076) (0.077) 

    
     

           Hospital Fixed-Effects Yes Yes Yes Yes Yes 
     Control for Propensity Index  None Linear Non-Parametric Linear Non-Parametric 
            
 
Note: Dependent variable is the whether patient survived to 30 days. Reperfusion measures receipt of reperfusion 
therapy within 12 hours of admission. OLS coefficients are percentage-point changes in survial and logit 
coefficients are log-odds. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is estimated using a 
logit model; see Appendix-B. Propensity index refers to the logit index (XB+Hospital Effect). It is demeaned to 
the average value of patients receiving reperfusion. All models include all CCP risk-adjusters. Columns 2 and 4 
include linear controls for propensity-index. Columns 3 and 5 includes 100 percentiles of propensity-index 
interacted with the receipt of Reperfusion. 
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Table 3: Effect of Reperfusion on 7-day and 365-day Survival, Logit Estimates 

    
  

Conditional Conditional 

  
on Propensity on Propensity 

      
 

(1) (2) 
Panel A: 7 Day Survival 

   
    Reperfusion   0.233  non-parametric 

 
 (0.031) 

 
 

 
  Reperfusion * propensity index  0.362 non-parametric 

    (0.020) 
 

    Reperfusion * Hospital Treatment Rate (θ) -0.368 -0.511 
   

 
(0.084) (0.087) 

         Control for Propensity Index   Linear Non-Parametric 
       
Panel B: 365 Day Survival 

   
    Reperfusion   0.403  non-parametric 

 
 (0.024) 

 
 

 
  Reperfusion * propensity index  0.181 non-parametric 

    (0.016) 
 

    Reperfusion * Hospital Treatment Rate (θ) -0.177 -0.351 

  
(0.066) (0.068) 

         Control for Propensity Index   Linear Non-Parametric 
       

    Note: Coefficients are log-odds. Table is analogous to Table 2. Propensity Equation is Pr(Reperfusion)=F(Xb+ 
Hospital Effect) and is estimated using a logit model; see Appendix. Propensity index refers to the logit index 
(XB+Hospital Effect). It is demeaned to the average value of patients receiving reperfusion. Column 3 reports 
equation 7c and Column 4 reports equation 7b. All models include all CCP risk-adjusters. Sample-size in every 
regression is 138,957.   
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Table 4: Effect of Reperfusion on 30-day Survival, Mixed-Logit Estimates 

     (1) (2) 
Reperfusion  0.297 0.314 

 
(0.0218) (0.0243) 

   Reperfusion*Propensity index 0.289 0.292 

 
(0.0169) (0.0171) 

   
   Std dev of hospital intercept (α0) 0.188 0.198 

 
(0.0151) (0.0168) 

   Hospital Level Random-Intercept (α0) Yes Yes 
Hospital Level Random Coefficient on Reperfusion (τ) No Yes 
      
Std dev of hospital coefficient on reperfusion 

 
0.313 

(identifies τ; hospital level thresholds) 
 

(0.0557) 

   corr(hospital level intercept, coefficient on reperfusion) -0.331 
(identifies corr (α0, τ)) 

 
(0.154) 

   Number of Hospitals 4,690 4,690 
Control for Propensity Index  Linear Linear 
      

   Note: Coefficients are log-odds. Propensity Equation is Pr(Reperfusion)=F(Xb+ Hospital Effect) and is 
estimated using a logit model; see Appendix. Propensity index refers to the logit index (XB+Hospital 
Effect). It is demeaned to the average value of patients receiving reperfusion. All models include all CCP 
risk-adjusters. Columns 2 and 4 include linear controls for propensity-index as in equation 7a. Sample-size 
in every regression is 138,957.   
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Table 5: Effect of Reperfusion on 30-day Survival, Hierarchical-Logit Estimates 
 

	   Reperfusion Equation: 
     Std. Dev. Of Hospital Reperfusion Rate (θ) 0.442 

 
 

(0.013) 
 30-day Survival Equation: 

     Reperfusion 0.265 
 

 
(0.026) 

    Reperfusion * Propensity Index 0.276 
 

 
(0.018) 

    Hospital-level intercept  (α0; general productivity) 
  Standard Deviation 0.199 

 
 

(0.017) 
    Correlation with Hospital Reperfusion Rate (θ) -0.100 
 

 
(0.073) 

        Hospital minimum treatment threshold (τ) 
  Standard deviation 0.327 

 
 

(0.055) 
    Correlation with Hospital Reperfusion Rate (θ) -0.341 
 

 
-(0.106) 

    Correlation with General Productivity (α0) -0.321 
 

 
(0.150) 

      Number of Hospitals 4,690 
 Control for Propensity Index  Linear  

   
 
Note: Coefficients are log-odds. Table reports estimates from hierarchical logit, where the propensity 
to receive treatment is estimated simultaneously with the survival equation. See text and discussion of 
equation 7c for details.    
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Table 6: Effect of Reperfusion on 30-day Survival, By Type of Hospital 

   
  

  
   Reperfusion 0.205 

 
(0.195) 

Reperfusion*Propensity Index 0.289 

 
(0.0171) 

 
Reperfusion*Church Operated Hospital -0.0119 

 
(0.0596) 

Reperfusion*For-Profit Hospital 0.0341 

 
(0.0750) 

Reperfusion*Government Hospital 0.0230 

 
(0.0719) 

Reperfusion*ln (Discharge Volume) 0.0214 

 
(0.0429) 

Reperfusion*Major Teaching Hospital 0.0352 

 
(0.0816) 

Reperfusion*Minor Teaching Hospital -0.00622 

 
(0.0675) 

Reperfusion*Percent of DSH Patients -0.156 

 
(0.200) 

Reperfusion*ln (Beds) 0.00949 

 
(0.0516) 

Reperfusion*Resident to Bed Ratio -0.230 

 
(0.296) 

Constant 0.0984 

 
(0.0757) 

   Propensity  Linear  
Hospital Random Effects Yes  

  
 

Observations 138,957  
Number of Hospitals 4,690  
    
 
Note: Coefficients are log-odds, from mixed-logits that allow for random coefficients and are analogous to Table 4. 
Omitted characteristics is a non-profit hospital. 30-day survival is regressed on hospital-characteristics and hospital 
characteristics interacted with treatment. The table reports the interaction effects. A test of joint-significance on these 
interactions yielded a chi-square statistic of  2.96, p=.097. 
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Table 7: Minimum Chi-Squared Estimates of Structural Parameters 
 

 
Pooling All Hospitals Separately by Hospital Volume 

 
Just-identified Constrain w=r 

Different Reliability 
by Hospital Volume 

Same Reliability 
by Hospital Volume 

    
 

Std. Dev (α0) 0.198 0.204 0.200 0.200 

 
(0.0167) (0.017) (0.016) (0.016) 

Std. Dev (αΔ) 0.317 0.407 0.337 0.336 

 
(0.058) (0.059) (0.057) (0.057) 

Corr(αΔ, α0) -0.390 -0.438 -0.457 -0.438 

 
(0.145) (0.130) (0.148) (0.154) 

σv 0.435 0.367 0.431 0.441 

 
(0.152) (0.218) (0.117 (0.135) 

w (weight) 0.154 constrained 0.119 0.114 

 
(0.169) 

 
(0.107) (0.127) 

r (reliability) 0.065 0.155 
 

0.040 

 
(0.106) (0.162) 

 
(0.069) 

r (big Hospitals) 
  

0.069  

   
(0.093)  

r(Medium Hospitals) 
  

0.047  

   
(0.063)  

r(Small Hospitals) 
  

0.019  

   
(0.026)  

     
# moments being fit 6 6 18 18 
Degrees of freedom 0 1 10 12 
Chi-Squared statistic NA 10.4 12.7 62.4 
(p-value)  (p=.001) (p=.24) (p<.001) 
          
 
The first two columns fit 6 reduced-form moments estimated from our empirical model (the variances and covariances 
of θ, τ, and α0) as a function of the unknown structural parameters in this framework (the variance and covariance of αΔ 
and α0, the reliability of the signal r, the weight placed on the signal w, and the scale parameter from the logit σv). The 
reduced-form moments were estimated pooling all hospitals. The unknown structural parameters were estimated using 
minimum chi-squared methods. The last two columns fit our model to reduced-form moments estimated separately for 
low (20 or fewer patients), medium (21-80 patients) and high (81 or more patients) volume hospitals - 6 moments for 
each group, for a total of 18 moments. 

 
 




