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ABSTRACT

Precision medicines – therapies that rely on genetic, epigenetic, and protein biomarkers – create a 
better match between individuals with specific disease subtypes and medications that are more 
effective for those patients. These treatments are expected to be both more effective and more 
expensive than conventional therapies, implying that their introduction is likely to have a 
meaningful effect on health care spending patterns.  In addition, precision medicines can change 
the expected profitability of therapies both by allowing more sophisticated pricing systems and 
potentially decreasing the costs of drug development through shorter and more focused trials.  As 
a result, this could change the types of products that can be profitably brought to market.  To 
better understand the landscape of precision medicines, we use a comprehensive database of over 
130,000 global clinical trials, over the past two decades. We identify clinical trials for likely 
precision medicines (LPMs) as those that use one or more relevant biomarkers. We then further 
segment trials based on the nature of the biomarker(s) used and other trial features with economic 
implications.  Given potential changes in the incentives for bringing products to market, we also 
examine the relative importance of public agencies such as the National Institutes of Health 
(NIH) and different types of private firms in developing precision medicines.
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1.! INTRODUCTION 

While lacking a universally agreed upon definition, Precision Medicine is broadly known as an ap-

proach to disease treatment and prevention that takes into account variability in environment, lifestyle, 

and genes for each person.1 The concept of targeted interventions has a long history across the practice of 

medicine, however, recent technological advancements have made it increasingly possible to tailor the 

development and utilization of medical technologies. This possibility has attracted interest from the med-

ical and broader scientific communities. For example, in early 2015, the White House announced a “bold 

new research effort to revolutionize how we improve health and treat disease,” and launched a Precision 

Medicine Initiative with a $215 million investment in 2016.2 Other countries such as France and China 

have also announced major public investments ranging from the equivalent of several hundreds of millions 

of U.S dollars to several billion over coming years. Major investments to advance precision medicine have 

also been announced by a number of U.S. research institutions such as Harvard University and the Uni-

versity of California San Francisco.3  

Below, we consider a subset of the broad set of practices encompassed by “precision medicine” and 

focus specifically on the clinical development of precision medicines, i.e. those new therapies focused on 

biomarker-defined patient subgroups. Precision medicines, and in particular, therapies that rely on genetic, 

epigenetic, and protein biomarkers, can help patients by using identifiable biological features (biomarkers) 

to define disease subtypes. The technology to rapidly and accurately sequence genes has increasingly facil-

itated understand the “-omic” (genomic and proteomic) characteristics of disease in recent years. This, in 

turn, has broadened the scope for drug development focusing on targeted therapies for newly-identifiable 

sub-groups of patients. Indeed, the public efforts noted above lag private endeavors in this area: the phar-

maceutical industry4 has already commercialized almost 150 drugs with pharmacogenomic information in 

                                                   
1 https://www.nih.gov/research-training/allofus-research-program 
2 https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative 
3 http://solidarites-sante.gouv.fr/IMG/pdf/genomic_medicine_france_2025.pdf 
  https://www.genomeweb.com/clinical-translational/france-plans-invest-670m-genomics-personalized-medicine 
  https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative 
  http://www.nature.com/news/china-embraces-precision-medicine-on-a-massive-scale-1.19108      
  http://www.hbs.edu/news/releases/Pages/kraft-family-foundation-establishes-endowment.aspx 
  https://www.ucsf.edu/news/2015/08/131341/new-center-will-advance-life-saving-genome-based-diagnostic-tools 
4 Throughout the chapter, reference to the pharmaceutical industry and pharmaceutical manufacturers refers to all firms 
developing drugs to treat medical conditions, including pharmaceutical and biotechnology firms 
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their label, according to the U.S. Food and Drug Administration (FDA),5 suggesting there are already sub-

stantial economic incentives for private firms to invest in the development of precision medicines.   

We focus on precision medicines because, in theory, they allow for a more effective match between 

individuals with specific disease sub-types and medications that are more effective for those sub-types. 

While the science underlying these medicines is broadly interesting and is the subject of a growing body 

of research, this ability to more precisely match patients and medications based on likely efficacy also 

fundamentally changes many of the economic incentives that pharmaceutical manufacturers face in the drug 

development process. Given the growing importance of these medicines, these changing incentives could 

have far reaching implications on the entire pharmaceutical industry.  

Perhaps most importantly, the ability to develop more targeted products may influence the decision 

process for which drugs to bring to market. These decisions will then subsequently be reflected in the 

equilibrium prices and availability of new pharmaceutical products. For example, almost by definition, 

precision medicines tend to target smaller patient populations than more traditional medicines. This may 

mean that manufacturers will shift their attention to the subset of products able to command high(er) 

prices – and thus are more likely to justify the fixed costs of developing the medication. These higher 

priced products are likely to include those products with large clinical benefits in relatively small patient 

populations. In addition, since these drugs are more efficacious within a smaller patient population, the 

marginal customer is expected to have a greater willingness to pay, allowing for higher profit maximizing 

prices on the part of manufacturers. These two factors together provide an economic rationale for the 

broadly higher prices observed for precision medicines. 

Economic incentives could also, all else held equal, result in some products no longer being brought 

to market because manufacturers don’t believe they can reasonably expect to recuperate their research and 

development (R&D) expenditures from the relatively small target patient populations. For example, with 

increasingly small patient populations we might expect a decrease in brand-brand competition for partic-

ular patients as new entrants find the potential for competing for a small market to be an unattractive 

economic opportunity.  Perhaps more concerning, a similar dynamic could exist for the eventual generic 

                                                   
5  http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/pmc_personalized_medi-
cine_by_the_numbers.pdf 
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markets for precision medicines, which would extend the period of pricing power far beyond the period 

of patent protection.  

Potentially counteracting this effect is manufacturers’ ability to create identifiable subgroups of patients 

based on their willingness to pay, so-called “indication-based pricing.” Such an ability on the part of man-

ufacturers increases the scope for future price-discrimination as manufacturers could, in theory, more easily 

charge higher prices for high-value indications and lower prices for indications or patients where therapies 

will work less well (Chandra and Garthwaite, 2017). This would (weakly) increase the profits from any 

particular product and would, in turn, (weakly) increase the subset of early-stage products that pharmaceu-

tical manufacturers would consider as candidates for commercialization. In addition, greater potential ther-

apeutic benefit may result in smaller, shorter clinical trials because fewer patients would be needed and 

shorter periods of time will be sufficient for demonstrating statistically significant improvements in out-

comes. Smaller and/or faster trials would both decrease the costs of bringing a drug to market and could 

increase the drug’s effective patent length,6 increasing the set of pipeline drugs considered as potentially 

worthwhile R&D investments. These factors together could counteract some of the negative entry incen-

tives that might be created by small patient populations.  

Despite the potential for precision medicines to both reduce some of the costs of drug development 

and also increase the patient benefits created by new products, markets for some medicines may still be so 

small that private firms will lack the necessary incentives for bringing therapies to market. This would 

create a potential role for government funding of research in these areas from sources such as the National 

Institutes of Health (NIH). 

Finally, the emergence of a new technology could create opportunities for additional specialization of 

firms into different stages of the development process and/or create new markets for mergers and acqui-

sitions (M&A) among pharmaceutical companies.  This could, for example, lead to early-stage drug dis-

covery being increasingly pursued by a subset of highly specialized (e.g. small, research-focused) firms. 

                                                   
6 Patent life for a drug in the U.S. is generally 20 years from the date the application is filed and manufacturers can file a 
patent application any time before or during a drug’s development process.  Therefore, the time that a drug spends in 
clinical trials (i.e. before the drug can be marketed) are typically counted against the 20-year patent life.  Marketing exclu-
sivity is different from patent life and is granted by the FDA upon drug approval.  Exclusivity typically lasts for 5 years, 
though there are extensions to exclusivity for certain cases, such as orphan drugs and pediatric indications. 
(https://www.fda.gov/downloads/drugs/developmentapprovalprocess/smallbusinessassistance/ucm447307.pdf) 
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More broadly, it is possible that the emergence of precision medicines will shift the division of labor be-

tween small biotechnology companies and large pharmaceutical companies across different stages of the 

R&D process. 

To help understand this collection of potential economic implications of precision medicines, we aim 

to provide a detailed characterization of the existing drug development efforts in this area.  We begin at a 

broad level by examining the aggregate development of likely precision medicines (LPMs), those pipeline 

drugs whose clinical trials have signature features of precision medicine R&D. We identify and report on 

clinical trials for such medicines by therapeutic area and over time. Since cancers represent a set of diseases 

in which precision therapies are already successfully used, and since cancer applications of precision med-

icine are expected to grow rapidly over the coming years, we separately characterize cancer LPMs. Under-

standing the nature of these innovations provides first order information on the wide-ranging health care 

spending implications of these emerging medications. 

We then examine other aspects of clinical trials that provide additional insight into the economic 

mechanisms of drug development that are shaping the nature of innovation in this area. We begin by 

considering the characteristics (e.g. geography, indication, sponsorship) of clinical research between LPM 

vs. non-LPM trials. We then summarize the role of the NIH in supporting the existing pipeline of precision 

medicines, by asking what share of LPM clinical trials cite the support of NIH grants. Finally, we consider 

the types of firms pursuing clinical trials in LPMs, considering how LPM R&D activities has evolved over 

recent years. 

 

2.!PRECISION MEDICINES AND THE DRUG DEVELOPMENT PROCESS 

As discussed above, we focus on the development of precision medicines – those products that use 

biomarkers to target particular subgroups of patients.  To better understand how these products are de-

fined and developed, we begin by providing some background information on the science of biomarkers 

and their use by various economic actors in the drug development process.  

 

Precision medicines and biomarkers 
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The FDA defines a “biomarker” as “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or biological responses to a therapeutic 

intervention.” 7 A familiar example can be seen in the common medical practice of using glycated hemo-

globin (HbA1c), an indicator of average blood glucose levels over time, as a measure of the effectiveness 

of a therapeutic agent in controlling diabetes. In this example, the biomarker (which indicates therapeutic 

efficacy) is HbA1c. However, biomarkers can also be used to carve out patient subtypes of diseases because 

a treatment may work differently in patients who vary in their biomarker subtypes. In this case, a biomarker 

can be used predictively to determine ex ante how likely a given patient is to benefit from a therapy. For 

example, among patients with non-small cell lung cancer, those with the ALK (anaplastic lymphoma ki-

nase) gene mutation will benefit more from therapies like alectinib (Alecensa®) than patients without this 

mutation. Similarly, the CFTR (cystic fibrosis transmembrane conductance regulator) modulator ivacaftor 

(Kalydeco®) has been approved for people with cystic fibrosis (CF) who have at least one of thirty-eight 

CF mutations—out of more than 1700 mutations in the gene that causes the disease.  This amounts to 

approximately 3,500 potential patients in the United States. 8 

Many biomarkers associated with precision medicines are genomic in nature. The FDA defines a ge-

nomic biomarker as “a measurable DNA and/or RNA characteristic that is an indicator of normal biologic 

processes, pathogenic processes, and/or response to therapeutic or other interventions” and can be a 

measurement of the expression, function, or regulation of a gene (FDA, 2008). In recent years, there have 

been large-scale public gene sequencing efforts – e.g. the NIH’s funding of The Cancer Genome Atlas.9 At 

the same time, a host of new genomics companies have sprung up, providing genetic sequencing technol-

ogies, including both software and hardware. An early 2017 report found that companies in genomics and 

sequencing raised more money in 2016 than any other category of digital health companies (Rock Health, 

2017).  

                                                   
7 https://www.fda.gov/Drugs/NewsEvents/ucm424545.htm 
8 Since Kalydeco® (ivacaftor) was initially approved in 2012 for patients with the G551D mutation, the FDA has subse-
quently approved its use for patients with any 1 of 38 mutations. According to the Cystic Fibrosis Foundation, recent 
approvals in May 2017 and August 2017 added an estimated 900 and 600 patients in the US to the estimated 2,000 who 
were already eligible for treatment with ivacaftor. (https://www.cff.org/News) 
9 https://cancergenome.nih.gov 
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In response to the growing market and the scientific and regulatory knowledge needed to commercial-

ize such technologies, public funding organizations and regulators have joined forces to harmonize lan-

guage around biomarkers: in 2015, the joint leadership council of the FDA and NIH identified “the har-

monization of terms used in translational science and medical product development…with a focus on 

terms related to study endpoints and biomarkers” as a priority need. One product of this effort was the 

publication of the “BEST (“Biomarkers, EndpointS, and other Tools) Resource” in December of 2016 

(FDA and NIH, 2016). Appendix A lists the biomarker definitions established to-date by the FDA-NIH 

Biomarker Working group.   

Yet these broad discussions about biomarkers often fail to differentiate among a diverse set of bi-

omarker applications, each of which has different economic implications. Biomarkers can reveal useful 

information about disease diagnosis and prognosis, predict the treatment efficacy or toxicity of a medica-

tion, serve as markers of disease progression, and often serve as auxiliary (or so-called “surrogate”) end-

points in clinical trials. Complicating matters further, some biomarkers can be used in more than one way, 

while others have just one known role.10 While all of these applications of biomarkers have the potential 

to shape the practice of (more) personalized medicine and improve drug development and clinical practice, 

only a small subset has the potential to assist in the development of precision medicines, those therapies 

targeted at specific patient populations who are more likely to benefit. It is the latter group of biomarkers 

– and the clinical trials driven by their use – that we specifically consider here.  

A key opportunity in precision medicine is therapeutic innovation. As we improve our understanding 

of the genetic and cellular basis of disease, it will be possible to use genetic and protein biomarkers to 

classify patients into increasingly more specific subtypes where specific medicines will be more effective. 

In addition, biomarkers that can serve as surrogate endpoints can lead to faster clinical trials, which may 

influence decisions about whether to pursue treatments for specific diseases (Budish, Roin, and Williams 

2015). However, the development of drugs that rely on biomarkers can also introduce challenges to the 

traditional clinical trial process, such as increased difficulty in trial recruitment due to smaller target patient 

populations. Additionally, trial design and execution can be significantly more complex when a companion 

diagnostic (used to identify the biomarker) needs to be approved alongside the drug (Fridlyand, et.al 2013). 

                                                   
10 Biomarkers come in many types (genomic, proteomic, cellular, biochemical, structural, etc.) and can take on a range of 
roles (uses) in both drug development and clinical practice. These are explained below and listed in Tables 2 and 3. 
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Regardless of the specific application, an increase in the use of biomarkers has the potential to markedly 

change the development and approval process for pharmaceutical innovation. 

 

The drug development pipeline 

To describe the drug development pipeline for precision medicines, we characterize all phases of de-

velopment-oriented clinical trials for new drug candidates over the past twenty-two years. Clinical trials 

oriented towards drug development typically consist of three main phases, which commence following a 

manufacturer’s successful completion of preclinical studies and submission of an Investigational New 

Drug (IND) application. Phase I is primarily designed to assess product safety and appropriate dosage. 

Phase I trials run for several months and typically include 20-100 healthy volunteers or individuals with 

the target disease. Phase II trials are much larger, enrolling up to several hundred individuals with the target 

disease and typically lasting between several months to two years. Phase II trials are intended to study drug 

efficacy and side effects. Phase III trials – usually the final stage of pre-market clinical research – are the 

largest, enrolling anywhere from a few hundred to a few thousand individuals with the target disease. These 

trials are designed to study clinical efficacy and to monitor and collect data on adverse reactions to new 

drugs. Sometimes also referred to as “pivotal studies,” Phase III trials typically take 1-4 years to run – but 

can take far longer (or shorter) depending on the normal progression of the disease studied.11 Once Phase 

III results are available, manufacturers must submit a New Drug Application (NDA) or Biologics License 

Application (BLA) to the FDA that includes the full set of results from preclinical and clinical studies.  The 

FDA then has up to 10 months to review the application and determine whether to grant marketing ap-

proval.12 

 

                                                   
11 https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm 
12 In recent decades, the FDA has introduced several expedited approval programs for drugs intended to treat serious 
conditions. “Fast Track” designation allows for frequent meetings with an FDA review team and is for drugs for which 
there is evidence of addressing an unmet medical need or treating an infectious disease. “Breakthrough Therapy” is for 
drugs that have preliminary clinical evidence indicating substantial improvement over available therapies and guarantees 
intensive guidance from the FDA as early as Phase I while also providing several opportunities for expedited and rolling 
review of results. The “Accelerated Approval” pathway is for drugs that demonstrate an effect on a surrogate endpoint 
that is reasonably likely to predict clinical benefit and provides the potential for approval based on that surrogate endpoint 
or an intermediate clinical endpoint. “Priority Review” requires the FDA to review marketing applications within 6 months 
rather than 10 and is available in a number of circumstances. https://www.fda.gov/downloads/Drugs/Guid-
ances/UCM358301.pdf 
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The role of major pharmaceutical R&D actors 

Clinical trials can be funded by private companies – both small privately-financed and large publicly-

listed organizations – as well as by universities/academic medical centers, and by public actors such as the 

NIH. The latter has historically been more focused on early-stage research with a particular focus on basic 

science13 (therefore, to the extent NIH-funded studies lead to drug development projects, one would ex-

pect NIH support to be more likely to appear in the context of earlier-stage clinical trials). This focus stems 

from the economic role of the NIH as not only the world’s largest funder of biomedical research (with 

nearly $32.3 billion invested in 201614), but also a provider of public goods in the form of investments in 

basic research.15  

How might we expect patterns of NIH investment to differ among LPM trials? First, markets for 

precision medicines may be smaller (because the biomarker segments the patient population) and thus less 

attractive to private actors. At the same time, however, rare diseases are known to have strong lobbies: 

Hegde and Sampat (2015) find that approximately 3-15% of NIH grants for rare diseases are influenced 

by politics, suggesting that lobbying plays a role in the allocation of public resources. It is therefore possible 

that there could be relatively more NIH funding of later-stage precision medicines trials in response to 

disease group lobbies or in order to address shortfalls in private investment in these diseases. Second, LPM 

trials may be more innovative and closer to the frontier of biomedical research, a fact that should increase 

their likelihood of being supported by a competitive research grant. On the other hand, in many cases, 

these trials are sponsored by for-profit companies looking to commercialize targeted therapies, which can 

potentially be sold at higher prices, making even small markets more financially attractive (Stern, Alexan-

der, and Chandra, 2017).  In this case, private market interest in R&D projects for LPMs may amplify any 

additional propensity for such projects to receive NIH funding. The likelihood of observing public funding 

in LPM trials relative to other clinical trials (conditional on phase and drug indication) is therefore an 

empirical question. We study the role played by each of these actors in the development of LPMs and how 

these roles have changed over recent decades. 

                                                   
13 https://nexus.od.nih.gov/all/2016/03/25/nihs-commitment-to-basic-science/ 
14 https://www.hhs.gov/about/budget/budget-in-brief/nih/index.html 
15 The stated mission of the NIH is “to seek fundamental knowledge about the nature and behavior of living systems and 
the application of that knowledge to enhance health, lengthen life, and reduce illness and disability.” 
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3.!  THE ECONOMICS OF PRECISION MEDICINE 

As noted above, not all biomarkers imply precision medicines. Here, we outline the economics of 

precision medicine to better understand how and why biomarkers are important for understanding the 

potential future of the pharmaceutical market. We argue that biomarkers that provide surrogate endpoints 

help manufacturers by speeding up clinical trials – e.g. through the use of the FDA’s accelerated approval 

process.16 This increase in the speed of clinical trials may provide the incentive for pharmaceutical manu-

facturers to target drugs for different conditions, thus potentially bringing new innovation to the market 

(Budish, Roin, and Williams, 2015). Conditional on approval however, such drugs may be priced lower 

because the evidence base for their approval was less certain.17 At a broad level, the effect of the types of 

biomarkers that can be used as surrogate trial endpoints is limited to changes in the length of the drug 

development process (via the ability to run shorter clinical trials).18  

In contrast, biomarkers that predict treatment benefit (by defining the subset of patients who are most 

appropriate for therapy) can have far reaching consequences. These include the ability to run faster trials 

because a therapeutic effect is easier to detect as a result of the greater putative efficacy in the indicated 

population, but also have a tendency to change expected market sizes. Further, as we have noted elsewhere, 

such biomarkers could facilitate indication-based pricing, which could expand access to patients, but also 

mean that higher prices will be charged for patients who have a biomarker that indicates the drug will be 

most effective (Chandra and Garthwaite, 2017). The broad contours of this type of price-discrimination 

are illustrated through a fictional example presented in Appendix B.19 

Biomarkers can facilitate a drug market being segmented into identifiable groups based on the expected 

efficacy of the product – and thus the willingness to pay for the product. In a setting where pharmaceutical 

manufacturers are able to charge only a single price, these subgroups allow firms to effectively choose 

which patients to serve. For example, where the population receiving the least value is quite large, the 

                                                   
16 https://www.fda.gov/drugs/resourcesforyou/healthprofessionals/ucm313768.htm 
17 This may be particularly true, for example, in cases where precision medicines are approved based on limited data and/or 
surrogate endpoints. Additional evidence substantiating their benefit on actual patient outcomes is likely to be required 
before clinicians and health organizations adopt these medications and reimbursement levels are determined (Dzau and 
Ginsburg 2016). 
18 For a detailed discussion of how the use of surrogate endpoints impacts drug development incentives, see Budish, Roin, 
and Williams (2015). 
19 This figure depicts the monetary value of a hypothetical product for three different indications (for example, patient 
populations defined by the presence of biomarkers), the size of the patient populations affected by each indication, and 
the prices charged for the product under different pricing regimes. 
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manufacturer can set a low price and sell to a larger market. However, when the low-value population is 

quite small, the manufacturer can choose a higher price and forgo sales to lower-value patients.   

Economists will note that this represents the classic monopolist’s dilemma, where pharmaceutical 

firms must trade margin for quantity. For this reason, firms attempt to find ways to sell the same product 

to different customers based on their valuation – a strategy known as price discrimination. If firms develop 

a mechanism for charging indication-based prices, the existence of well-established, readily identifiable 

biomarkers will become an important tool for facilitation price discrimination.  When this is feasible, the 

most extreme outcome is that the manufacturer is able to capture all of the surplus as profits. Depending 

on the distribution of patients, this could (but need not) expand access to lower-value indications.  How-

ever, an indication-based pricing strategy weakly increases the profits of firms developing precision medi-

cines. As a result, the expanded use of biomarkers has the potential to provide additional incentives to 

develop products that otherwise would not be commercialized.  

Pricing aside, biomarkers that predict treatment efficacy reduce market size, which in turn, could re-

duce some of the incentives for innovation. That said, some biomarkers could allow manufacturers to 

more easily qualify for “orphan drug” designation through the Orphan Drug Act of 1983 (ODA) by carv-

ing out an indication that affects fewer than 200,000 patients. If a medicine receives FDA approval for a 

new drug (a “new molecular entity”) that treats an orphan condition, it receives tax credits equaling 50% 

of clinical trials expenses and seven years of marketing exclusivity (two years longer than non-orphan 

drugs). These incentives have been shown to be powerful: more than 516 medicines for over 450 different 

rare diseases have been approved through the ODA20 and in 2015 alone, 47% of novel drugs approved 

were orphan drugs.21 When such an approval happens, it will also raise prices because of the (extended) 

protections from generic competition offered by the Orphan Drug Act, and the fact that smaller markets 

will attract less follow-on competition. Further, in small markets, brand-brand competition will likely be 

far less robust than in large markets as potential entrants see little expected benefit in competing for a 

smaller market. To some extent this phenomenon has already been observed in early biosimilar competi-

tion in the European Union (Scott Morton, et al., 2017; Berndt and Trusheim, 2015). Thus, even after 

                                                   
20 https://www.accessdata.fda.gov/scripts/opdlisting/oopd/index.cfm 
21 http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm474696.htm 
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exclusivity periods end, there may not be a substantial enough market to stimulate price competition 

through generic entry.22 As a result, a major shift in the innovative market towards precision medicine 

could result in less price competition through a meaningful decline in the attractiveness of the generic/bi-

osimilar drug market and, as a result, a meaningful increase in total drug spending.  

Finally, the complexity of developing products in this space combined with the use of new and emerg-

ing technologies may result in greater specialization for the drug development process.  This could involve 

a greater share of products beginning their lifecycle at small research-focused firms than would be true in 

more traditional segments of the pharmaceutical industry. 

 

4.!DATA 

We use data from the Cortellis Competitive Intelligence Clinical Trials Database (Cortellis), which is 

compiled by Clarivate (and formerly by Thompson Reuters). The database includes over 270,000 global 

and US-based clinical trials. Cortellis includes full coverage of 24 clinical trial registries from around the 

world, including clinicaltrials.gov, which is maintained by the National Institutes of Health (NIH), and 

European Clinical Trials Database (EudraCT), which is maintained by the European Medicines Agency 

(EMA). Biomedical researchers are strongly encouraged to register trials for publication in medical journals 

and, as of 2005, trials must be registered to an approved public clinical trial registry prior to patient enroll-

ment in order to be considered for publication in any International Committee of Medical Journal Editors 

(ICMJE) member journals (De Angelis, Catherine, et al., 2004).  

Because both publication and registration are integral parts of the new drug development process, the 

set of registered trials included in Cortellis should capture all relevant development efforts – in particular, 

in the years since 2005, after which time the International Committee of Medical Journal Editors required 

trial registration in order to publish the results of clinical trials in member journals.23 Cortellis has full 

                                                   
22 Competition in follow-on drug markets has been discussed by a number of researchers (e.g. Scott Morton, 1999) and in 
recent years by Berndt, Conti, and Murphy (2017), Scott Morton, Stern, and Stern (2017), and others. More generally, 
larger markets attract more entrants while smaller markets have been shown to attract less competition, all else equal 
(DuBois et al., 2015; Acemoglu and Linn, 2004).  
23 We believe that coverage of registered trials is comprehensive and we further expect a high share of trials to be registered 
in the post-2004 period (De Angelis, Catherine, et al., 2004). However, we note that certain types of trials – e.g. smaller 
trials without regulatory oversight may still be missing in our data. Kao (2017), describes these types of trials and how they 
may be designed to signal “off-label usability” to physicians. While an understanding of these types of unregistered trials 
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coverage of all ICMJE approved trial registries (Clinical Trial Registration, 2016) and Cortellis data have 

been used in several published studies in peer reviewed biomedical journals such as Lancet Infectious 

Disease (Phyo, Aung Pyae, et al., 2016) and Nature Reviews Drug Discovery (Bespalov, Anton, et al., 

2016). Appendix C includes a detailed timeline of important dates related to the registration of clinical 

trials and the establishment of the U.S. registry clinicaltrials.gov. 

 

Data composition and summary statistics  

We queried the Cortellis database for all clinical trials with a launch date between January 1, 1995 and 

December 31, 2016 for a total of 22 calendar years of clinical trial starts. We identify the full set of phase 

I, II, and III24 clinical trials, along with detailed clinical trial information associated with each trial. A few 

facts are notable: first, the total number of registered trials worldwide has grown over time for each phase 

of clinical research (Figure 1) and in particular for phase II trials.25 In 2016, roughly six thousand phase II 

trials were launched globally, nearly double the number of registered trials launched a decade earlier, in 

2006.  

For each trial, the Cortellis database also provides information on the trial’s relevant drug indication(s), 

any biomarkers used in the trial, and the trial’s sponsor(s). In addition, we are able to classify trials accord-

ing to broad set of descriptive categories – in particular, the presence (or absence) of one or more bi-

omarker(s) used in the trial. For each biomarker, we are separately able to consider data on its type and 

use (role). A complete list of the descriptive variables we consider and their frequencies in the clinical trials 

data set are provided in Table 1.  

                                                   
is important for understanding pharmaceutical firm strategy, we do not believe they are likely to be the types of trials that 
we attempt to identify in this study, which are those specifically intended to commercialize targeted therapies.   
24 For the simplest classification of trails into phases, we assign combined trials (e.g. combined Phase II & Phase III) to 
the lower of the two phases involved. For example, a combined Phase II/ Phase III trial would be classified as having 
started Phase II in the year that the trial launched. In robustness tests, we create separate sub-categories for combined 
Phase I/II and II/III trials and include controls for these combined trials in regression analyses. Subsequent regression 
results are not sensitive to this distinction, so we use the simplified 3-phase classification in tables and figures for simplicity.   
25 The recent spike in the number of global clinical trials (and Phase II trials in particular) is driven by growth in non-US 
trails (see Appendix tables for a version of Figure 1 that presents only U.S. trials).  
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To aggregate the detailed indications reported in the Cortellis database to more usable categories, we 

used a dataset26 of indications matched to ICD-9 codes to link each trial in our dataset to a 3-digit ICD-9 

code. The matched indication-ICD-9 dataset was independently checked for accuracy by three research 

assistants using an online ICD-9 medical coding reference manual,27 and any discrepancies between their 

matches were resolved by a fourth research assistant. Each indication was ultimately assigned to one ICD-

9 code, corresponding to a total of 65 ICD-9 sub-chapters (listed in Appendix D). Trials with any indica-

tions matching ICD-9 codes 140-239 were classified as cancer trials. 

We also capture key information about the clinical trial’s sponsor(s). Trial sponsors are identified by 

name and type, including academic investigators, government, non-government, company, and other 

sponsors. Importantly, the database also lists associated clinical trial registry identifiers such as unique trial 

registration numbers from clinicaltrials.gov as well as NIH grant numbers that supported the research. We 

use these to identify whether a trial benefited from any acknowledged NIH funding (regardless of the 

sponsor’s identity). NIH funded trials can be segmented by type of NIH funding using the activity code 

embedded in the NIH project number(s) listed. Appendix E describes how NIH project types are identi-

fied.  

The categorical variable “biomarker type” indicates the biological feature that a given biomarker iden-

tifies. Biomarker types include genomic biomarkers, proteomic biomarkers, biochemical biomarkers, cel-

lular biomarkers, physiological biomarkers, structural biomarkers, and anthropomorphic biomarkers. Def-

initions of biomarker types and their frequencies of use in clinical trials both a) overall and b) over time 

are reported in Table 2. Importantly, these types are not mutually exclusive, since a given biomarker – e.g. 

a receptor such as EGFR (epidermal growth factor receptor) – can be both a genomic and proteomic 

biomarker. This is because genomic characteristics will lead to differential expression of EGFR – making 

it a biomarker of particular genomic features –but EGFR is itself a protein and therefore a proteomic 

biomarker as well. For this reason, there can be correlation in the frequencies of biomarkers types across 

trials.  

 

                                                   
26 We are grateful to Manuel Hermosilla, Craig Garthwaite, and David Dranove, who generously shared their version of a 
3-digit ICD-9 crosswalk dataset with us. This dataset was assembled through the use of two independent medical coders 
separately constructing a crosswalk.  Discrepancies were adjudicated by a third expert and additional outside research.  
27 ICD9Data.com 
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Biomarker data and defining pipeline precision medicines 

Cortellis includes fairly broad categories of biomarker uses as they may relate to clinical trials. These 

include disease markers, toxic effect markers, and therapeutic effect markers. Disease-related biomarkers 

indicate if a disease already exists (diagnostic biomarker), or how such a disease may develop in an indi-

vidual case regardless of the type of treatment (prognostic biomarker). Therapeutic effect-related bi-

omarkers provide an indication of the progress of a product on the patient during treatment. Toxic effect-

related biomarkers indicate a treatment-related adverse reaction. Other biomarker roles are “not deter-

mined” because they do not have any of the roles described above in a particular trial. In practice, we are 

interested in a subset of the trials that use disease-related biomarkers – namely, those in which we observe 

the unambiguous features of products that would likely come to market as targeted therapeutics upon 

successful progression through the R&D process. This is because this subset of biomarkers facilitates ad 

hoc patient selection for therapy.  

Our working definition of likely precision medicines (LPMs) is that they encompass the set of pipeline 

products that are being developed using the types of diseases-related biomarkers that are relevant for iden-

tifying subpopulations that are likely to be more (or less) responsive to medications. We therefore employ 

a second, biomarker-specific database from Clarivate in order to link biomarkers to their detailed roles in 

clinical trials. The detailed biomarkers data (DBD) from Clarivate include additional detail (in the form of 

“detailed biomarker roles”) on all known clinical biomarkers and their paired uses and indications in clinical 

research. For example, human epidermal growth factor receptor 2 (HER2) is a (genomic) biomarker that 

can be used for (a) selection for therapy and (b) predicting treatment efficacy – both of which are detailed 

biomarker roles – among patients with breast cancer (the indication). Based on using a trial’s “breast can-

cer” indication and knowing that the HER2 biomarker was used in that clinical trial, one can probabilisti-

cally assign both a biomarker type and a detailed biomarker role (or, in some cases, more than one) to that 

trial. Generally, in order to assign biomarker types and biomarker roles to our full set of clinical trials, we 

match the named biomarker(s) associated with each trial (when there are any) and the indication(s) of that 

trial to the DBD.  

Definitions of detailed biomarker roles and the frequencies of their use in clinical trials are reported in 

Table 3. A biomarker may have multiple associated uses, making it important to correctly link a biomarker 
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associated with a given clinical trial and indication to its use in that setting. Therefore, the process of match-

ing a biomarker-indication pair from the Cortellis clinical trials data with a biomarker-indication pair from 

the DBD is a crucial step in correctly assigning biomarker roles to individual clinical trials. We define LPMs 

in two ways using these detailed biomarker roles. These classifications are consistent with the NIH-FDA 

definitions of biomarkers and how they are employed and were separately discussed with an oncologist, 

who is the principal investigator on a biomarker-driven clinical trial. 

In the first, “generous” definition of LPMs, we identify trials using biomarkers whose roles include 

diagnosis, differential diagnosis, predicting drug resistance, predicting treatment efficacy, predicting treat-

ment toxicity, screening, and selection for therapy. The rationale for the generous definition is that all of 

these biomarkers can be used in the development of targeted therapeutics and are likely to be associated 

with the development of precision medicines.   

In the second, “restrictive” definition of LPMs, we identify the subset of trials from the “generously” 

defined group that specifically employ biomarkers for prediction (predicting drug resistance, predicting 

treatment efficacy, and predicting treatment toxicity), with the vast majority of these trials identified as 

LPM trials due to the use of biomarkers that can help predict treatment efficacy (Table 3). We consider 

each in turn and further consider the interaction of these roles with specific biomarker types (genomic and 

proteomic) that are more likely to be used in trials for precision medicines.  

 

5.!CHARACTERIZING THE LPM DEVELOPMENT PIPELINE 

We characterize the number and type of drugs using biomarkers in their clinical trials as well as those 

that can be considered LPMs by therapeutic area and over time. Since cancers represent a set of diseases 

in which precision therapies are already successfully used, and since cancer applications of precision med-

icine are expected to grow in coming years, we separately characterize the cancer applications of pipeline 

precision medicines in detail.  

 

Biomarkers and LPMs in clinical trials 

We begin at perhaps the broadest point, by first identifying all trials that use one or more biomarker(s) 

of any kind (Figure 2). Notably, both the share and total number of clinical trials employing biomarkers 
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has increased markedly over recent decades. We next focus only on the subset of biomarker uses that are 

associated with LPMs, by both the generous and restrictive definitions (Figure 3). Both the number and 

percentage of LPM trials increased over our period of observation, as seen in Figure 3. We further note 

that the two definitions of LPMs track each other closely over time – both in Figure 3 as well as in the 

subsequent sub-sample analyses described below. Table 4 presents the count (column 1) and percentage 

(column 2) of LPMs in clinical trials in each year of our data. Columns 3-8 present the same results by 

clinical trial phase. Even by the most restrictive definition of LPM trials, by 2016, approximately 7.5% of 

trials were for LPMs, roughly double the percentage observed a decade earlier (3.8%).  

LPM trials are associated with the use of different types of biomarkers and the relative and absolute 

frequencies of these types have evolved over time. Biomarker types are not mutually exclusive; for exam-

ple, there is extremely high overlap between proteomic and genomic biomarkers, since the vast majority 

of genomic mutations (e.g. in cancer) manifest themselves through differences in protein expression. Fig-

ure 4 shows how these types were represented in each phase (by both generous and conservative defini-

tions of LPMs), over our years of observation. Genomic/proteomic biomarkers were the most commonly 

used in recent years, featured in the vast majority of LPM trials, a statistic that is consistent with LPMs 

being driven primarily by understanding gene and protein expression and how these factors predict the 

likely success of medications.  

 

Pipeline precision cancer therapies 

Figure 5 and Table 5 present data on the frequency of LPMs in cancer trials only. Several features of 

these trials are notable – especially in comparison. First, LPM trials are more than an order of magnitude 

more common in cancer indications: in 2015 and 2016, roughly 25% (or more) of all cancer drug trials 

were LPM trials, but only 1-2% of trials for non-cancer indications were LPM trials. In regression analysis 

(Table 8), we also see that a cancer indication is a strong statistical predictor of a LPM trial and the growth 

of LPMs among cancer drugs explains the lion’s share of growth in LPM trials over the past two decades. 

These results are completely consistent with the clinical belief that the majority of applications of precision 

medicines in coming years will be in the context of targeted therapies for cancer.  

 

Institutional factors 
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Next, we consider the LPM development pipeline in light of a number of specific institutional factors. 

We consider US-based vs. non-US-based trials. The United States is, by far, the world’s largest pharma-

ceutical consumer (International Trade Administration, 2016) and it would therefore be reasonable to ex-

pect trials for LPMs to be driven to by both local demand (Costinot et al., 2016) as well as local regulations 

(FDA, 2004). Figure 6 shows the number and share of U.S. LPM trials. The total number of LPM trials 

conducted within the United States is comparable to the total number conducted abroad, but the share of 

LPM trials among U.S. trials is roughly double that of international trials. This finding is consistent with 

the fact that U.S. drug prices are typically higher than those of other countries (Kanavos et al., 2013), 

making it more appealing for pharmaceutical manufacturers to bring drugs to market in the United States 

as soon as possible. These facts are also reflected in our regression analysis (Table 8) which indicates that 

U.S. trials are, on average, roughly 1 percentage point more likely to involve LPMs at any point in time 

than their non-U.S. counterparts in the same year, all else equal.  

We next consider LPM trials with vs. without NIH funding. Since NIH grants are concentrated in U.S. 

research institutions, we focus our analysis of NIH funding on U.S. trials only. The first panel of Figure 7 

shows the share of clinical trials by phase that received NIH funding in each year. Although the total value 

of NIH funding available has grown over time, the total number of registered clinical trials has grown 

more rapidly, leading to a declining share of total U.S. trials with NIH funding. Among LPM trials (both 

definitions), the share of trials with NIH funding has been relatively constant, albeit somewhat noisily 

measured. On average, roughly 5-6% of Phase I and Phase II trials (but a lower share of Phase III trials) 

have received NIH support in recent years (with higher averages, but also higher variances in earlier years 

of observation; Figure 7). Table 6 presents the absolute shares of all trials – not restricting to LPM trials – 

receiving NIH funding over our sample. Overall, NIH support is less common among LPM trials (of both 

definitions) relative to overall rates of NIH support of clinical trials in the United States.  

In addition, we briefly consider whether LPM trials appear to be related to disease severity.28 We use 

the Institute for Health Metrics and Evaluation’s Global Health Data Exchange to collect data on “global 

burden of disease” for all cancers.29 For both the United States (alone) as well as globally, we assemble 

data on years of life lost (YLL) due to each cancer.30 For all cancers, we identify the relevant ICD-9 code 

                                                   
28 We are grateful to NBER conference participants for this suggestion. 
29 These Data are publicly available at http://www.healthdata.org/gbd 
30 We use this measure because it is one of the only metrics that has yearly data dating back to the 1990s. 
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and can then match YLL to the cancer trials in our data (as described above and in the 11 cancer ICD-9 

subchapters presented in Appendix D). Table 7 presents results from two sets of t-tests of differences in 

means with unequal variances. We find evidence that among cancer trials, LPM trials are associated with 

significantly more U.S. and global YLL for the product’s intended indication than non-LPM trials on av-

erage.  

Finally, we consider the types of firms – namely publicly listed companies vs. (typically smaller) pri-

vately held firms – engaging in the development of LPMs (Figure 8 and Table 8). The correct assignment 

of individual trials to their sponsor firms (and according firm types) is both difficult and fundamental for 

our analysis. Because acquisitions are common and firm ownership may change over time, we probabilis-

tically assign each trail in our dataset to the firm that sponsored the trial and its type (e.g. publicly listed vs. 

privately held) at the time the trial was launched. Although we are not able to assign these types with complete 

accuracy, we are mathematically able to construct upper and lower bounds for whether each sponsor firm 

was publicly listed at the time of a trial. Aggregating our data, we are able to construct upper and lower 

bounds for the share of publicly listed firms over time and across phases (Figure 8). Appendix F presents 

details how these bounds were calculated and a short proof of the bounding exercise. Overall, we find that 

publicly listed firms are significantly more likely to pursue LPM trials, regardless of whether we use the 

upper or lower bound for the measure for whether or not a firm was public at the time of a given trial. 

We conclude with regression analysis (Tables 9-10).31 We are circumspect in interpreting our regres-

sion results: the coefficients calculated are not causally estimated; rather they represent differences between 

categories in our sample, controlling for other factors. However, the coefficients are useful in that they 

allow for interpretation of multivariate associations. Table 9 presents linear probability models using facets 

of trials to predict the likelihood that any given trial is an LPM. Table 9a presents these models using the 

generous definition of LPMs as the binary outcome and Table 9b presents the same set of regression 

models using the conservative definition as the binary outcome.  

Through both panels, a set of statistical relationships emerge. For example, the linear probability mod-

els presented in Tables 9a-9b indicate that the total share of LPM trials has been increasing over time by 

                                                   
31 As noted above, in our analyses we assign combined trials (e.g. combined Phase II & Phase III) to the lower of the two 
phases involved. In robustness tests, we create separate sub-categories for combined Phase I/II and II/III trials and 
include controls for these combined trials in regression analyses. Results are not sensitive to this distinction, so we use the 
more parsimonious 3-phase classification in tables and figures for simplicity.   
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between 0.3 and 0.5 percentage points per year. Other relationships seen in earlier tables and figures are 

also apparent. Most prominent among these is the overwhelming importance of cancer trials: trials for 

cancer indications are 13-15 percentage points more likely to be LPM trials than those for non-cancer 

indications. Indeed, the coefficient on the binary indicator for whether a trial is a cancer trial is an order 

of magnitude larger than the association between time, location, trial phase or firm type. Trials with U.S. 

sites are more likely than non-U.S. trials to be LPM trials, but only by about one percentage point – in 

other words, comparing this result to the overall time trend in the data, U.S. trials seem to be about 2-3 

years “ahead” of non-U.S. trials in their inclusion of LPMs. We also find that the role of publicly listed 

firms is similar in magnitude and direction: trials pursued by publicly listed firms are 1-2 percentage points 

more likely to be LPM trials than those of privately held firms, all else equal. With respect to public funding, 

we find that, on average, NIH-supported trials are more likely to be LPMs. In all specifications, the coef-

ficient on NIH-support is associated with a roughly a 1 percentage point higher probability of being an 

LPM, however this relationship is only statistically significant in some specifications. This indicates that 

the (albeit noisy) relationships seen in Figure 7 are not fully robust to controlling for other trial features.  

We conclude our regression analysis by briefly considering predictors of trial duration. One implication 

of precision medicine is that trials themselves can be conducted more efficiently, if effect sizes are expected 

to be large. Efficiency improvements could occur on the dimension of enrollment (fewer patients required) 

or on the dimension of trial duration (less time needed to draw statistically sound evidence); we consider 

only the latter possibility here. Table 10 presents results from a set of linear regression models predicting 

trial duration. These models include a number of trial features as regressors and present multivariate asso-

ciations in our dataset. As above, these coefficients cannot be interpreted causally; rather, they represent 

average associations between salient features of trials and the amount of time required for trial completion.  

The first three columns of Table 10 present models predicting trial duration in LPM trials, while the 

last three columns present identical models in non-LPM trials. A number of interesting relationships 

emerge. First, we note the difference in the coefficient on the intercept in the two sets of linear models: 

LPM trials take roughly 20 months longer to complete relative to non-precision trials, all else equal. This 

may be due to the challenges of enrolling patients with less common sub-types of a disease as well as the 

fact that non-precision trials include a number of studies (e.g. for antibiotics) that can be run extremely 

quickly, thereby lowering the average time to completion in the second group of trials. With respect to trial 
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phases, phase I trials are the omitted category in all models. For LPM trials, phase II trials are only about 

two months longer than phase I trials, on average, and this differences is only statistically significant in one 

out of the three specifications. This is quite different than what is observed in non-precision trials, where 

phase II studies take 5-6 months longer than phase I studies to complete. Among LPM trials, phase III 

studies have durations over a year longer than their phase I and phase II counterparts, a bigger difference 

than among non-precision trials, where phase III studies are only 7-9 months longer on average. This 

suggests, that while LPM trials may be longer on average, precision medicine biomarkers may be able to 

close the gap between Phase 1 and later phases.  

Interestingly, although cancer trials appear to always take longer to complete, on average than non-

cancer trials, the additional trial length associated with LPM cancer trials is 6-7 months less than the addi-

tional trial length associated with non-precision cancer trials in these models. One interpretation of this is 

that precision medicines speed up cancer trials perhaps because of surrogate endpoints or enrichment. We 

caution the over-interpretation of this relationship because it does not hold up when examined in further 

detail: in Appendix Table III we consider the same sets of models for cancer trials alone and show similar 

patterns across many coefficients in the regression models, but differences in the estimated constants be-

tween LPM trials vs. non-precision trails in cancer. Finally, we note that as economic incentives would 

predict, trials supported by the NIH have longer durations on average (e.g. longer studies may require 

public support to run) and trials sponsored by publicly listed firms have shorter durations, on average (e.g. 

such firms are likely under pressure from investors to bring products to market). While none of these facts 

provide conclusive evidence on the causes of differences in trial length, the associations are intriguing and 

suggest the value of future research into the determinants of clinical trial length – especially since clinical 

trials represent a significant component of both the time and financial cost associated with new drug de-

velopment.  

   

6.!CONCLUSION 

By taking a detailed view of the global clinical trial pipeline over recent decades, we are able to describe 

a number of trends and industry-level changes. Beyond growth in the number of registered clinical trials, 
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we document a number of patterns that that have implications for cost-growth in health care and pharma-

ceutical pricing. First, we document that the use of biomarkers in clinical trials has grown significantly, 

with an important subset of those representing the types of biomarkers that have the potential to be used 

in the development of targeted therapies. Such therapies are likely to be more effective, but will also likely 

come with higher prices. Although the raw numbers of trials using biomarkers in the development of 

precision medicines is still dwarfed by the total number of clinical trials, the growth in such trials has been 

large in percentage terms, approximately doubling every decade over the past 22 years.  

Our results should be interpreted with a number of caveats. Firstly, the findings presented here are 

only as representative as the global registries on which our primary clinical trial dataset is based. While we 

have noted above that there are good reasons to believe that these registries are highly representative of 

the set of pipeline drugs pursuing regulatory approvals in the dozen most recent years of our data, some 

trials may not have been reported in earlier years. In particular, we believe that the data in the years after 

2004 are more likely to capture clinical trials, due to changes in trial registration requirements for academic 

journal publication (discussed above). Unfortunately, we do not have a way of estimating the type and 

direction of selection into trial registries that may have occurred.  

Secondly, we note that our characterization of trials as either LPM or non-LPM trials is, by nature, 

probabilistic, based on observable features of these trials and the drugs in them. While the categories we 

use are unambiguously more conservative than simply considering any use of biomarkers in clinical trials, 

they may still capture some trials and pipeline products that do not, in fact, represent true precision med-

icines.  

Finally, and perhaps most importantly, we have characterized the drug development pipeline, which is 

not necessarily synonymous with characterizing the actual set of products that are commercialized. If failure 

rates in clinical research are endogenously determined with other characteristics related to commercializa-

tion strategies (e.g. single-product vs. multi-product firms, as seen in Guedj and Scharfstein, 2004), char-

acterizing trials may not accurately reflect future products. To the extent that there is selection in R&D 

project discontinuations based on features not included in our analysis, the set of products that ultimately 

comes to market may look different than the late-stage clinical trial pipeline would suggest.32  

                                                   
32 On average, success rate for a drug entering clinical trials is approximately 10%. This rate is even lower for oncology 
therapeutics at roughly 5%. (https://www.bio.org/sites/default/files/Clinical%20Development%20Suc-
cess%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf) 
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Yet we believe that we have also made progress in characterizing recent trends and developments in 

clinical research related to precision medicines. By taking a big-picture view of global clinical trials, we can 

observe how LPMs have grown in number and share of trials over recent decades. We can also bring 

empirical data to bear on predictions from medicine and economics, which would suggest that certain 

types of drugs (e.g. for cancers) and certain markets (e.g. in the United Sates) are likely to have a greater 

share of LPMs. Within LPMs, we see a large and growing share of products that incorporate genomic and 

proteomic biomarkers in their development, suggesting the growing importance of sequencing technolo-

gies for both R&D and patient care. Further, recent trajectories have implications for health care spending: 

to the extent that LPMs grow in market share, they will drive up costs for drugs that target specific groups 

of patients and also open up opportunities for indication-based pricing.
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Figures

Figure 1: Clinical trials over time
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Figure 2: Clinical trials using biomarkers
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Figure 3: Clinical trials for LPMs
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Figure 4: Types of biomarkers used in LPM trials

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase I LPM trials (generous definition) by biomarker types used

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase I LPM trials (restrictive definition) by biomarker types used

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase II LPM trials (generous definition) by biomarker types used

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase II LPM trials (restrictive definition) by biomarker types used

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase III LPM trials (generous definition) by biomarker types used

0

100

200

300

400

500

N
u

m
b

e
r 

o
f 

tr
ia

ls

1995 2000 2005 2010 2015
Start year

Anthropomorphic Biochemical Cellular

Genomic Physiological Proteomic

Structural (imaging)

Number of Phase III LPM trials (restrictive definition) by biomarker types used

28



Figure 5: Clinical trials for LPMs, cancer indications only
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Figure 6: Clinical trials for LPMs, U.S. trials only

0

50

100

150

200

250

N
u
m

b
e
r 

o
f 
tr

ia
ls

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

Number of registered LPM (generous definition) trials by phase: US trials

Phase I Phase II Phase III

0

2

4

6

8

10

12

14

16

18

20

S
h
a
re

 o
f 
tr

ia
ls

 (
%

)

1995 2000 2005 2010 2015
Start year

Phase I Phase II Phase III

Share of US drug trials with LPM biomarkers (generous definition)

0

50

100

150

200

250

N
u
m

b
e
r 

o
f 
tr

ia
ls

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

Number of registered LPM (restrictive definition) trials by phase: US trials

Phase I Phase II Phase III

0

2

4

6

8

10

12

14

16

18

20

S
h
a
re

 o
f 
tr

ia
ls

 (
%

)

1995 2000 2005 2010 2015
Start year

Phase I Phase II Phase III

Share of US drug trials with LPM biomarkers (restrictive definition)

30



Figure 7: Trials and LPM trials with NIH funding (U.S. trials only)
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Figure 8: Public vs. privately-held firms (representation in LPM trials)
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Table 1: Summary statistics for selected variables

All trials US trials
Mean Observations Mean Observations

Uses biomarker 0.4092 131,971 0.4619 49,540
Generous LPM 0.0643 131,971 0.0907 49,540
Restrictive LPM 0.0581 131,971 0.0813 49,540
Phase 1 Clinical (includes Phase 1/Phase 2 trials) 0.3305 131,971 0.3653 49,540
Phase 2 Clinical (includes Phase 2/Phase 3 trials) 0.4367 131,971 0.4263 49,540
Phase 3 Clinical 0.2328 131,971 0.2083 49,540
Received NIH funding 0.0282 131,971 0.0703 49,540
Trial site in US 0.4368 113,410 1.0000 49,540
Publicly-listed firm (lower bound) 0.2903 131,971 0.3436 49,540
Publicly-listed firm (upper bound) 0.3977 131,971 0.4588 49,540
Drug indication for neoplasm (cancer) 0.3352 131,971 0.4002 49,540
Biomarker role: disease 0.0842 131,971 0.1145 49,540
Biomarker role: toxic e↵ect 0.0496 131,971 0.0699 49,540
Biomarker role: therapeutic e↵ect 0.3371 131,971 0.3758 49,540
Biomarker role: not determined 0.0023 131,971 0.0024 49,540
Biomarker type: anthropomorphic 0.0350 131,971 0.0400 49,540
Biomarker type: biochemical 0.1248 131,971 0.1300 49,540
Biomarker type: cellular 0.0308 131,971 0.0424 49,540
Biomarker type: genomic 0.2321 131,971 0.2845 49,540
Biomarker type: physiological 0.0849 131,971 0.0865 49,540
Biomarker type: proteomic 0.2426 131,971 0.2942 49,540
Biomarker type: structural (imaging) 0.0177 131,971 0.0200 49,540
Biomarker role (detailed): diagnosis 0.2948 117,180 0.3448 43,777
Biomarker role (detailed): di↵erential diagnosis 0.1829 117,180 0.2041 43,777
Biomarker role (detailed): predicting drug resistance 0.0624 117,180 0.0778 43,777
Biomarker role (detailed): predicting treatment e�cacy 0.2568 117,180 0.3060 43,777
Biomarker role (detailed): predicting treatment toxicity 0.0474 117,180 0.0493 43,777
Biomarker role (detailed): screening 0.0523 117,180 0.0547 43,777
Biomarker role (detailed): selection for therapy 0.0938 117,180 0.1111 43,777
Biomarker role (detailed): disease profiling 0.1909 117,180 0.2269 43,777
Biomarker role (detailed): monitoring disease progression 0.1293 117,180 0.1394 43,777
Biomarker role (detailed): monitoring treatment e�cacy 0.2998 117,180 0.3481 43,777
Biomarker role (detailed): monitoring treatment toxicity 0.0464 117,180 0.0469 43,777
Biomarker role (detailed): not determined 0.0090 117,180 0.0114 43,777
Biomarker role (detailed): prognosis 0.2375 117,180 0.2797 43,777
Biomarker role (detailed): prognosis - risk stratification 0.0564 117,180 0.0660 43,777
Biomarker role (detailed): risk factor 0.2407 117,180 0.2770 43,777
Biomarker role (detailed): staging 0.1103 117,180 0.1280 43,777
Biomarker role (detailed): toxicity profiling 0.0085 117,180 0.0082 43,777
N 131,971 49,540
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Table 2: Number of trials employing biomarkers by type

Any biomarker Anthropomorphic Biochemical Cellular Genomic Physiological Proteomic Structural
Overall 53,998 4,620 16,472 4,070 30,634 11,205 32,011 2,340
1995 105 4 29 1 59 22 60 4
1996 131 5 34 6 77 16 84 4
1997 193 10 62 8 119 24 125 2
1998 288 12 74 6 165 58 182 5
1999 448 16 119 22 292 68 307 8
2000 542 33 149 28 349 83 360 9
2001 645 36 190 38 406 94 426 9
2002 869 53 263 36 558 135 579 21
2003 1,085 80 358 51 698 156 732 28
2004 1,524 126 469 68 950 216 997 34
2005 1,928 135 580 118 1,157 314 1,218 58
2006 2,280 178 737 138 1,379 377 1,462 73
2007 2,718 220 831 207 1,687 437 1,751 98
2008 3,005 252 970 245 1,813 548 1,900 101
2009 3,492 288 1,137 251 2,157 627 2,248 114
2010 3,916 334 1,239 304 2,333 740 2,418 134
2011 4,228 366 1,353 357 2,525 828 2,638 164
2012 4,517 408 1,463 406 2,566 994 2,661 206
2013 4,681 439 1,446 382 2,544 1,104 2,666 241
2014 5,099 518 1,576 434 2,647 1,310 2,762 270
2015 5,857 546 1,610 438 2,944 1,499 3,086 374
2016 6,447 561 1,783 526 3,209 1,555 3,349 383

Biomarker types:
Anthropomorphic biomarkers are markers of the body shape/form
Biochemical biomarkers are substrates or products of chemical reactions in the body
Cellular biomarkers are whole cells
Genomic biomarkers are variants in the DNA sequence or in the transcription level;
Physiological biomarkers are body processes
Proteomic biomarkers are variants in protein sequence, protein levels in a given tissue, protein interactions and enzyme activities
Structural biomarkers are anatomical structures
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Table 3: Number of trials employing biomarkers by detailed role

Any
biomarker Diagnosis

Di↵erential
Diagnosis

Predicting
drug

resistance

Predicting
treatment
e�cacy

Predicting
treatment
toxicity Screening

Selection
for

therapy
Overall 39,207 34,545 21,429 7,312 30,091 5,556 6,133 10,988
1995 105 68 45 7 62 8 8 13
1996 131 88 49 22 81 14 14 19
1997 193 130 83 38 122 31 39 38
1998 288 210 137 66 199 53 42 68
1999 448 341 201 76 310 85 57 97
2000 542 369 233 88 343 78 59 118
2001 645 458 275 121 421 85 81 138
2002 869 624 395 151 578 122 109 203
2003 1,085 764 487 174 691 157 132 263
2004 1,524 1,051 675 240 954 224 190 332
2005 1,928 1,306 799 286 1,189 263 239 408
2006 2,280 1,575 1,004 370 1,396 308 291 510
2007 2,718 1,882 1,215 444 1,693 369 332 617
2008 3,005 2,046 1,360 496 1,832 430 362 661
2009 3,492 2,352 1,578 649 2,145 504 482 842
2010 3,916 2,539 1,540 581 2,210 343 444 768
2011 4,228 2,738 1,698 582 2,379 376 502 890
2012 4,517 2,909 1,780 574 2,494 376 462 906
2013 4,681 2,932 1,778 609 2,530 396 500 964
2014 5,099 3,071 1,809 548 2,552 409 519 934
2015 5,857 3,355 2,005 574 2,816 427 589 1,070
2016 6,447 3,737 2,283 616 3,094 498 680 1,129

Biomarker roles (uses) that are related to the development of LPMs, generously defined, are included above
The restrictive definition of LPMs limits the definition to those related only to prediction: predicting
drug resistance, treatment e�cacy, and treatment toxicity and is driven by “predicting treatment e�cacy.”
Biomarker roles (uses) that are unrelated to developing LPMs, but included in the data are: disease profiling,
monitoring disease progression, monitoring treatment e�cacy, monitoring treatment toxicity, prognosis,
prognosis - risk stratification, risk factor, staging, and toxicity profiling
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Table 4: Likely precision medicine (LPM) trials (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 12 1.39 4 1.2 2 .631 6 2.79
1996 25 2.58 6 1.77 10 2.53 9 3.81
1997 37 2.8 11 2.44 16 3.13 10 2.77
1998 56 3.29 10 1.72 31 4.43 15 3.54
1999 75 3.12 26 3.03 37 3.94 12 1.96
2000 95 3.62 27 3.03 48 4.57 20 2.93
2001 114 3.81 41 4.13 50 4.05 23 3.01
2002 144 3.87 46 3.99 70 4.46 28 2.81
2003 166 3.96 45 3.55 85 4.82 36 3.1
2004 234 4.49 68 4.48 126 5.68 40 2.71
2005 263 4.1 67 3.63 143 5.09 53 3.03
2006 299 4.17 74 3.44 167 5.4 58 3
2007 407 5.39 109 4.62 231 6.96 67 3.57
2008 408 5.09 116 4.34 229 6.69 63 3.28
2009 563 6.63 178 5.95 300 8.22 85 4.57
2010 563 6.44 185 5.97 311 8.52 67 3.37
2011 642 7.14 214 6.88 361 9.34 67 3.32
2012 699 7.54 231 7.6 381 9.13 87 4.24
2013 781 8.55 257 8.44 396 9.86 128 6.18
2014 836 8.85 337 9.95 388 9.4 111 5.76
2015 1,009 9.55 368 10.5 482 9.89 159 7.23
2016 1,057 8.69 417 10.3 501 8.44 139 6.35

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 9 1.04 3 .898 2 .631 4 1.86
1996 23 2.37 5 1.47 9 2.28 9 3.81
1997 34 2.57 9 2 15 2.94 10 2.77
1998 53 3.11 9 1.55 30 4.29 14 3.3
1999 70 2.91 23 2.68 35 3.73 12 1.96
2000 90 3.43 25 2.8 46 4.38 19 2.78
2001 105 3.51 36 3.63 46 3.72 23 3.01
2002 133 3.58 41 3.56 66 4.21 26 2.61
2003 152 3.63 37 2.92 80 4.54 35 3.01
2004 212 4.06 60 3.95 112 5.05 40 2.71
2005 240 3.75 58 3.14 131 4.66 51 2.91
2006 275 3.83 64 2.98 156 5.04 55 2.85
2007 370 4.9 89 3.78 218 6.56 63 3.35
2008 380 4.74 104 3.89 217 6.34 59 3.07
2009 502 5.91 148 4.95 274 7.51 80 4.31
2010 514 5.88 165 5.33 285 7.81 64 3.22
2011 592 6.58 188 6.04 343 8.87 61 3.02
2012 645 6.96 209 6.88 355 8.5 81 3.94
2013 720 7.88 231 7.59 369 9.19 120 5.79
2014 748 7.92 306 9.03 343 8.31 99 5.13
2015 883 8.35 322 9.21 417 8.56 144 6.55
2016 914 7.52 346 8.56 442 7.45 126 5.76
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Table 5: Likely precision medicine (LPM) trials: cancer only (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 2.33 3 2.38 2 1.39 3 4.05
1996 24 5.3 6 3.57 10 5.21 8 8.6
1997 34 5.81 11 4.89 13 5.1 10 9.52
1998 54 6.26 10 3.15 30 7.52 14 9.52
1999 67 6.41 21 5.34 35 7.26 11 6.47
2000 86 6.62 24 4.75 45 7.56 17 8.5
2001 104 7.74 39 7.39 45 7.28 20 10.2
2002 137 8.77 44 7.76 68 8.66 25 11.9
2003 142 8.53 34 5.72 80 9.41 28 12.7
2004 204 10.2 61 8.93 113 10.5 30 12.6
2005 226 9.89 55 6.67 130 10.8 41 15.8
2006 261 10.7 64 7.62 154 11.8 43 14.5
2007 363 14.2 87 9.6 217 16.1 59 19.4
2008 368 14.2 98 10.2 221 16.6 49 16.3
2009 507 18 162 14.4 275 19.8 70 22.9
2010 509 18 164 14.6 289 20.5 56 19.4
2011 572 19.8 189 16.7 332 22.4 51 18.8
2012 620 21.4 211 18.9 341 23 68 22.7
2013 680 24.8 226 21.6 356 25.6 98 31.8
2014 713 26.5 296 25.6 332 26.7 85 28.9
2015 855 29.5 319 27 410 30.5 126 34.3
2016 899 27.1 375 27 410 26.1 114 31.4

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 2.33 3 2.38 2 1.39 3 4.05
1996 22 4.86 5 2.98 9 4.69 8 8.6
1997 31 5.3 9 4 12 4.71 10 9.52
1998 52 6.03 9 2.84 29 7.27 14 9.52
1999 64 6.12 20 5.09 33 6.85 11 6.47
2000 83 6.38 22 4.36 44 7.39 17 8.5
2001 100 7.45 35 6.63 45 7.28 20 10.2
2002 129 8.26 41 7.23 65 8.28 23 11
2003 132 7.93 29 4.88 76 8.94 27 12.2
2004 190 9.51 56 8.2 104 9.67 30 12.6
2005 213 9.32 50 6.07 122 10.1 41 15.8
2006 249 10.2 59 7.02 147 11.3 43 14.5
2007 340 13.3 77 8.5 207 15.3 56 18.4
2008 352 13.6 91 9.48 212 15.9 49 16.3
2009 467 16.6 138 12.3 259 18.6 70 22.9
2010 479 17 155 13.8 270 19.2 54 18.7
2011 544 18.9 172 15.2 323 21.8 49 18
2012 598 20.7 200 18 332 22.4 66 22.1
2013 654 23.8 212 20.3 347 25 95 30.8
2014 673 25 278 24 311 25 84 28.6
2015 791 27.3 291 24.6 378 28.1 122 33.2
2016 820 24.7 326 23.5 383 24.4 111 30.6
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Table 6: Share of trials receiving NIH funding

P1 P1 P1 P2 P2 P2 P3 P3 P3
All Gen. Rest. All Gen. Rest. All Gen. Rest.

Trials LPM LPM Trials LPM LPM Trials LPM LPM

1995 2.10 5.99 3.26 0.00 100.00 0.00 0.00 100.00 0.00
1996 3.54 4.81 3.39 0.00 10.00 11.11 0.00 11.11 11.11
1997 5.56 8.02 3.05 9.09 6.25 0.00 11.11 0.00 0.00
1998 5.34 6.00 1.89 0.00 19.35 6.67 0.00 16.67 0.00
1999 4.08 6.93 2.95 15.38 8.11 0.00 13.04 5.71 0.00
2000 7.29 6.10 2.64 7.41 10.42 10.00 8.00 8.70 5.26
2001 4.73 5.67 3.27 14.63 12.00 0.00 16.67 13.04 0.00
2002 3.91 4.97 2.51 15.22 12.86 3.57 9.76 13.64 3.85
2003 5.13 4.14 2.07 6.67 5.88 2.78 2.70 6.25 2.86
2004 4.08 5.81 1.15 16.18 7.94 2.50 18.33 7.14 2.50
2005 4.34 4.94 1.60 4.48 9.79 3.77 3.45 10.69 3.92
2006 4.05 4.75 0.98 12.16 9.58 1.72 9.38 7.69 1.82
2007 3.22 3.73 0.75 7.34 9.96 0.00 7.87 10.09 0.00
2008 3.29 3.62 0.88 17.24 10.92 4.76 18.27 11.06 5.08
2009 3.54 3.18 0.81 8.43 6.00 0.00 8.11 6.57 0.00
2010 2.74 2.47 0.75 11.35 4.82 1.49 12.73 4.56 1.56
2011 1.96 2.43 0.69 5.14 5.26 0.00 5.85 5.54 0.00
2012 2.07 2.04 0.24 5.63 4.46 0.00 4.78 3.94 0.00
2013 2.66 2.81 0.34 5.84 7.32 0.78 5.63 7.59 0.83
2014 3.13 2.25 0.52 5.04 3.87 0.00 4.90 4.37 0.00
2015 2.63 2.48 0.82 6.52 6.64 0.63 6.52 6.71 0.69
2016 2.67 1.85 0.64 6.47 4.79 0.00 7.23 4.75 0.00
N 43615 57636 30720 2837 4365 1283 2478 3991 1195

Table 7: Burden of disease: Millions of years of life lost for associated diseases (average)

U.S. only Global
non-LPM 11.66 188.20
LPM 14.65 202.03
t-statistic 19.30 5.57
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Table 8a: Likely precision medicine LPM trials: publicly listed firm (upper bound) involvement (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 3 25 1 25 0 0 2 33.3
1996 1 4 1 16.7 0 0 0 0
1997 6 16.2 1 9.09 5 31.3 0 0
1998 8 14.3 3 30 4 12.9 1 6.67
1999 8 10.7 2 7.69 5 13.5 1 8.33
2000 11 11.6 3 11.1 4 8.33 4 20
2001 32 28.1 12 29.3 14 28 6 26.1
2002 40 27.8 12 26.1 20 28.6 8 28.6
2003 56 33.7 7 15.6 35 41.2 14 38.9
2004 65 27.8 15 22.1 39 31 11 27.5
2005 106 40.3 27 40.3 52 36.4 27 50.9
2006 126 42.1 28 37.8 72 43.1 26 44.8
2007 164 40.3 45 41.3 92 39.8 27 40.3
2008 152 37.3 47 40.5 80 34.9 25 39.7
2009 259 46 80 44.9 130 43.3 49 57.6
2010 234 41.6 80 43.2 113 36.3 41 61.2
2011 290 45.2 95 44.4 154 42.7 41 61.2
2012 307 43.9 107 46.3 144 37.8 56 64.4
2013 347 44.4 116 45.1 150 37.9 81 63.3
2014 426 51 170 50.4 182 46.9 74 66.7
2015 476 47.2 186 50.5 186 38.6 104 65.4
2016 439 41.5 169 40.5 198 39.5 72 51.8

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 2 22.2 1 33.3 0 0 1 25
1996 1 4.35 1 20 0 0 0 0
1997 5 14.7 0 0 5 33.3 0 0
1998 8 15.1 3 33.3 4 13.3 1 7.14
1999 8 11.4 2 8.7 5 14.3 1 8.33
2000 11 12.2 3 12 4 8.7 4 21.1
2001 30 28.6 11 30.6 13 28.3 6 26.1
2002 37 27.8 11 26.8 18 27.3 8 30.8
2003 55 36.2 7 18.9 34 42.5 14 40
2004 65 30.7 15 25 39 34.8 11 27.5
2005 97 40.4 25 43.1 47 35.9 25 49
2006 122 44.4 27 42.2 70 44.9 25 45.5
2007 150 40.5 39 43.8 86 39.4 25 39.7
2008 144 37.9 44 42.3 77 35.5 23 39
2009 241 48 73 49.3 123 44.9 45 56.3
2010 218 42.4 74 44.8 104 36.5 40 62.5
2011 273 46.1 88 46.8 146 42.6 39 63.9
2012 289 44.8 101 48.3 135 38 53 65.4
2013 331 46 113 48.9 141 38.2 77 64.2
2014 388 51.9 163 53.3 159 46.4 66 66.7
2015 435 49.3 172 53.4 168 40.3 95 66
2016 395 43.2 150 43.4 179 40.5 66 52.4

40



Table 8b: Likely precision medicine LPM trials: publicly listed firm (lower bound) involvement (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 1 8.33 0 0 0 0 1 16.7
1996 1 4 1 16.7 0 0 0 0
1997 3 8.11 1 9.09 2 12.5 0 0
1998 3 5.36 2 20 0 0 1 6.67
1999 3 4 0 0 2 5.41 1 8.33
2000 5 5.26 0 0 2 4.17 3 15
2001 23 20.2 10 24.4 8 16 5 21.7
2002 27 18.8 6 13 15 21.4 6 21.4
2003 40 24.1 4 8.89 24 28.2 12 33.3
2004 51 21.8 10 14.7 31 24.6 10 25
2005 74 28.1 16 23.9 39 27.3 19 35.8
2006 103 34.4 21 28.4 60 35.9 22 37.9
2007 124 30.5 34 31.2 66 28.6 24 35.8
2008 114 27.9 35 30.2 60 26.2 19 30.2
2009 216 38.4 68 38.2 105 35 43 50.6
2010 196 34.8 65 35.1 93 29.9 38 56.7
2011 228 35.5 73 34.1 119 33 36 53.7
2012 248 35.5 93 40.3 112 29.4 43 49.4
2013 285 36.5 92 35.8 117 29.5 76 59.4
2014 345 41.3 139 41.2 142 36.6 64 57.7
2015 378 37.5 148 40.2 141 29.3 89 56
2016 326 30.8 129 30.9 140 27.9 57 41

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 0 0 0 0 0 0 0 0
1996 1 4.35 1 20 0 0 0 0
1997 2 5.88 0 0 2 13.3 0 0
1998 3 5.66 2 22.2 0 0 1 7.14
1999 3 4.29 0 0 2 5.71 1 8.33
2000 5 5.56 0 0 2 4.35 3 15.8
2001 21 20 9 25 7 15.2 5 21.7
2002 24 18 5 12.2 13 19.7 6 23.1
2003 40 26.3 4 10.8 24 30 12 34.3
2004 51 24.1 10 16.7 31 27.7 10 25
2005 69 28.8 16 27.6 34 26 19 37.3
2006 101 36.7 21 32.8 59 37.8 21 38.2
2007 112 30.3 29 32.6 61 28 22 34.9
2008 111 29.2 34 32.7 59 27.2 18 30.5
2009 201 40 62 41.9 100 36.5 39 48.8
2010 182 35.4 59 35.8 86 30.2 37 57.8
2011 213 36 68 36.2 111 32.4 34 55.7
2012 232 36 87 41.6 104 29.3 41 50.6
2013 271 37.6 89 38.5 110 29.8 72 60
2014 319 42.6 137 44.8 123 35.9 59 59.6
2015 345 39.1 137 42.5 128 30.7 80 55.6
2016 296 32.4 118 34.1 125 28.3 53 42.1
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Table 9a: Predicting LPM trials (linear probability models)

Outcome = LPM trial, generous definition
All Years 2005-2016 Only

Trial start year 0.0038* 0.0038* 0.0038* 0.0038* 0.0050 0.0050 0.0050 0.0050
(0.0014) (0.0014) (0.0014) (0.0014) (0.0024) (0.0024) (0.0024) (0.0024)

Phase 2 Clinical (includes phase 2/3 trials) 0.0097 0.0100 0.0097 0.0100 0.0124 0.0127 0.0129 0.0131
(0.0095) (0.0096) (0.0093) (0.0094) (0.0109) (0.0110) (0.0107) (0.0107)

Phase 3 Clinical 0.0168 0.0166 0.0169 0.0167 0.0192 0.0189 0.0196 0.0193
(0.0145) (0.0145) (0.0143) (0.0143) (0.0160) (0.0159) (0.0157) (0.0157)

Trial site in US=1 0.0126*** 0.0118*** 0.0120** 0.0112** 0.0132*** 0.0122*** 0.0087* 0.0078*
(0.0020) (0.0021) (0.0032) (0.0031) (0.0026) (0.0028) (0.0035) (0.0035)

Cancer trial =1 0.1372*** 0.1373*** 0.1364*** 0.1365*** 0.1502*** 0.1502*** 0.1444*** 0.1444***
(0.0147) (0.0147) (0.0120) (0.0120) (0.0184) (0.0184) (0.0134) (0.0133)

NIH funding 0.0113 0.0128* 0.0111 0.0126* 0.0100 0.0114 0.0080 0.0095
(0.0064) (0.0060) (0.0060) (0.0056) (0.0078) (0.0071) (0.0064) (0.0058)

Biomarker type: genomic=1 0.2427* 0.2427* 0.2426* 0.2426* 0.2401* 0.2401* 0.2397* 0.2397*
(0.1103) (0.1102) (0.1105) (0.1104) (0.1129) (0.1128) (0.1132) (0.1131)

Public firm (lower bound) 0.0109* 0.0109* 0.0133* 0.0132*
(0.0043) (0.0043) (0.0059) (0.0060)

Public firm (upper bound) 0.0124* 0.0124* 0.0141* 0.0140*
(0.0048) (0.0048) (0.0062) (0.0062)

Trial site in US=1 ⇥ Cancer trial=1 0.0017 0.0018 0.0137 0.0136
(0.0074) (0.0074) (0.0129) (0.0130)

N 108749 108749 108749 108749 92568 92568 92568 92568
R2 0.271 0.271 0.271 0.271 0.279 0.279 0.279 0.279

* p<0.05, ** p<0.01, *** p<0.001
All models include a constant; robust standard errors clustered at the level of the ICD-9 chapter
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Table 9b: Predicting LPM trials (linear probability models)

Outcome = LPM trial, restrictive definition
All Years 2005-2016 Only

Trial start year 0.0034* 0.0034* 0.0034* 0.0034* 0.0044 0.0044 0.0044 0.0044
(0.0014) (0.0013) (0.0014) (0.0013) (0.0023) (0.0023) (0.0023) (0.0023)

Phase 2 Clinical (includes phase 2/3 trials) 0.0127 0.0131 0.0129 0.0132 0.0153 0.0156 0.0158 0.0162
(0.0101) (0.0101) (0.0099) (0.0100) (0.0117) (0.0117) (0.0115) (0.0115)

Phase 3 Clinical 0.0215 0.0212 0.0217 0.0214 0.0236 0.0233 0.0241 0.0238
(0.0153) (0.0153) (0.0152) (0.0151) (0.0170) (0.0169) (0.0168) (0.0167)

Trial site in US=1 0.0091*** 0.0081*** 0.0075** 0.0065* 0.0090*** 0.0078*** 0.0035 0.0025
(0.0014) (0.0015) (0.0024) (0.0022) (0.0017) (0.0019) (0.0024) (0.0025)

Cancer trial =1 0.1360*** 0.1362*** 0.1338*** 0.1340*** 0.1488*** 0.1488*** 0.1418*** 0.1418***
(0.0139) (0.0139) (0.0111) (0.0111) (0.0175) (0.0175) (0.0124) (0.0124)

NIH funding 0.0093 0.0111* 0.0088 0.0106 0.0100 0.0117* 0.0076 0.0094*
(0.0056) (0.0052) (0.0054) (0.0051) (0.0059) (0.0053) (0.0050) (0.0044)

Biomarker type: genomic=1 0.2174 0.2174 0.2173 0.2172 0.2142 0.2143 0.2137 0.2138
(0.1086) (0.1085) (0.1087) (0.1087) (0.1110) (0.1109) (0.1112) (0.1112)

Public firm (lower bound) 0.0138* 0.0138* 0.0163* 0.0162*
(0.0054) (0.0054) (0.0071) (0.0072)

Public firm (upper bound) 0.0154* 0.0154* 0.0171* 0.0170*
(0.0057) (0.0057) (0.0073) (0.0073)

Trial site in US=1 ⇥ Cancer trial =1 0.0047 0.0048 0.0165 0.0164 ¿
(0.0069) (0.0069) (0.0123) (0.0123)

Constant -6.8957* -6.9257* -6.9057* -6.9359* -8.8324 -8.9462 -8.8072 -8.9201
(2.7655) (2.7107) (2.7552) (2.7004) (4.6835) (4.6680) (4.6941) (4.6796)

N 108749 108749 108749 108749 92568 92568 92568 92568
R2 0.254 0.254 0.254 0.254 0.261 0.262 0.262 0.262

* p<0.05, ** p<0.01, *** p<0.001
All models include a constant; robust standard errors clustered at the level of the ICD-9 chapter
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Table 10: Dependent variable: Trial duration in months

LPM Trials Non-LPM Trials
All Trials All Trials All U.S. All Trials All Trials All U.S.

Phase 2 Clinical (inc. Phase 2/3 trials) 2.028 2.063* 2.557 6.441*** 6.184*** 5.284***
(1.045) (1.043) (1.358) (0.222) (0.222) (0.337)

Phase 3 Clinical 14.164*** 14.367*** 13.400*** 9.262*** 9.374*** 7.095***
(1.564) (1.554) (2.063) (0.253) (0.252) (0.397)

Trial site in US 2.998** 3.425*** 3.975*** 4.355***
(0.981) (0.989) (0.189) (0.189)

Cancer trial 12.930*** 13.038*** 12.391*** 19.387*** 19.214*** 18.171***
(1.282) (1.275) (1.755) (0.269) (0.268) (0.374)

Received NIH funding 8.026*** 7.033** 6.680** 12.839*** 11.871*** 11.714***
(2.243) (2.271) (2.355) (0.730) (0.732) (0.758)

Public firm (lower bound) -2.608** -6.111***
(0.973) (0.187)

Public firm (upper bound) -4.308*** -4.866*** -7.238*** -7.210***
(1.006) (1.394) (0.192) (0.298)

Constant 60.199*** 59.999*** 63.247*** 38.158*** 38.697*** 44.402***
(6.136) (6.113) (6.710) (1.276) (1.275) (1.472)

N 2743 2743 1760 50186 50186 26101
R2 0.334 0.337 0.324 0.311 0.317 0.286

* p<0.05, ** p<0.01, *** p<0.001
Sample includes all trials launched after 2000 with known end dates. Duration is winsorized to remove extreme
outliers. All OLS models include a constant, year fixed e↵ects, and robust standard errors. All models in this table
use the “generous” definition of LPM trials.
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Appendices

Appendix Figure A: U.S. Clinical trials over time
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Appendix Figure B: U.S. Clinical trials using biomarkers
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Appendix Figure C: U.S. Clinical trials for LPMs
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Appendix Figure D: Types of biomarkers used in U.S. LPM trials
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Appendix Figure E: U.S. clinical trials for LPMs, cancer indications only
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Appendix Table I: U.S. likely precision medicine (LPM) trials (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 6.15 3 5.36 2 4 3 12.5
1996 18 8.57 4 5.19 9 10 5 11.6
1997 23 7.82 10 7.94 9 6.57 4 12.9
1998 38 8.15 6 3.66 26 10.3 6 12.2
1999 45 8.09 16 7.55 24 8.57 5 7.81
2000 57 8.78 15 6.1 34 10.7 8 9.3
2001 65 10.1 24 10.2 31 9.09 10 14.3
2002 85 12.3 32 12.8 41 10.8 12 20
2003 91 11.8 22 8.21 56 13.2 13 15.7
2004 117 11.8 38 10.9 69 12.5 10 11.6
2005 119 11 31 7.33 70 12.2 18 20
2006 155 13.3 48 10.4 90 14.7 17 18.7
2007 201 16.7 56 11.2 125 20.7 20 19.8
2008 207 18 65 12.7 120 21.7 22 25.3
2009 271 22.2 106 18.3 129 24.1 36 32.7
2010 257 21.1 112 18.8 121 23.3 24 24
2011 290 24.8 125 22 143 27.8 22 24.7
2012 293 26.1 132 23.1 132 28.3 29 34.1
2013 354 30.8 153 26.8 156 31.9 45 50
2014 387 31.9 202 30.8 143 30.8 42 45.2
2015 453 34.2 212 31.3 180 33.5 61 55
2016 413 30.9 205 29.5 165 31 43 39.4

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 6.15 3 5.36 2 4 3 12.5
1996 16 7.62 3 3.9 8 8.89 5 11.6
1997 21 7.14 9 7.14 8 5.84 4 12.9
1998 36 7.73 5 3.05 25 9.88 6 12.2
1999 42 7.55 15 7.08 22 7.86 5 7.81
2000 54 8.32 13 5.28 33 10.4 8 9.3
2001 63 9.75 22 9.36 31 9.09 10 14.3
2002 81 11.7 31 12.4 39 10.3 11 18.3
2003 84 10.9 19 7.09 52 12.3 13 15.7
2004 110 11.1 35 10.1 65 11.7 10 11.6
2005 111 10.2 28 6.62 65 11.3 18 20
2006 144 12.4 44 9.54 83 13.5 17 18.7
2007 189 15.7 52 10.4 118 19.6 19 18.8
2008 198 17.2 62 12.1 114 20.7 22 25.3
2009 245 20 89 15.4 120 22.4 36 32.7
2010 242 19.9 106 17.8 112 21.5 24 24
2011 274 23.4 115 20.3 139 27 20 22.5
2012 279 24.8 123 21.5 128 27.4 28 32.9
2013 340 29.6 146 25.6 152 31.1 42 46.7
2014 363 30 188 28.7 133 28.7 42 45.2
2015 415 31.3 196 29 161 30 58 52.3
2016 376 28.1 186 26.8 149 28 41 37.6
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Appendix Table II: U.S. likely precision medicine (LPM) trials: cancer only (1995-2016):

Generous definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 6.15 3 5.36 2 4 3 12.5
1996 18 8.57 4 5.19 9 10 5 11.6
1997 23 7.82 10 7.94 9 6.57 4 12.9
1998 38 8.15 6 3.66 26 10.3 6 12.2
1999 45 8.09 16 7.55 24 8.57 5 7.81
2000 57 8.78 15 6.1 34 10.7 8 9.3
2001 65 10.1 24 10.2 31 9.09 10 14.3
2002 85 12.3 32 12.8 41 10.8 12 20
2003 91 11.8 22 8.21 56 13.2 13 15.7
2004 117 11.8 38 10.9 69 12.5 10 11.6
2005 119 11 31 7.33 70 12.2 18 20
2006 155 13.3 48 10.4 90 14.7 17 18.7
2007 201 16.7 56 11.2 125 20.7 20 19.8
2008 207 18 65 12.7 120 21.7 22 25.3
2009 271 22.2 106 18.3 129 24.1 36 32.7
2010 257 21.1 112 18.8 121 23.3 24 24
2011 290 24.8 125 22 143 27.8 22 24.7
2012 293 26.1 132 23.1 132 28.3 29 34.1
2013 354 30.8 153 26.8 156 31.9 45 50
2014 387 31.9 202 30.8 143 30.8 42 45.2
2015 453 34.2 212 31.3 180 33.5 61 55
2016 413 30.9 205 29.5 165 31 43 39.4

Restrictive definition
All All P1 P1 P2 P2 P3 P3

Count % Count % Count % Count %
1995 8 6.15 3 5.36 2 4 3 12.5
1996 16 7.62 3 3.9 8 8.89 5 11.6
1997 21 7.14 9 7.14 8 5.84 4 12.9
1998 36 7.73 5 3.05 25 9.88 6 12.2
1999 42 7.55 15 7.08 22 7.86 5 7.81
2000 54 8.32 13 5.28 33 10.4 8 9.3
2001 63 9.75 22 9.36 31 9.09 10 14.3
2002 81 11.7 31 12.4 39 10.3 11 18.3
2003 84 10.9 19 7.09 52 12.3 13 15.7
2004 110 11.1 35 10.1 65 11.7 10 11.6
2005 111 10.2 28 6.62 65 11.3 18 20
2006 144 12.4 44 9.54 83 13.5 17 18.7
2007 189 15.7 52 10.4 118 19.6 19 18.8
2008 198 17.2 62 12.1 114 20.7 22 25.3
2009 245 20 89 15.4 120 22.4 36 32.7
2010 242 19.9 106 17.8 112 21.5 24 24
2011 274 23.4 115 20.3 139 27 20 22.5
2012 279 24.8 123 21.5 128 27.4 28 32.9
2013 340 29.6 146 25.6 152 31.1 42 46.7
2014 363 30 188 28.7 133 28.7 42 45.2
2015 415 31.3 196 29 161 30 58 52.3
2016 376 28.1 186 26.8 149 28 41 37.6
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Appendix Table III: Dependent variable: Trial duration in months (cancer trials only)

LPM Trials Non-LPM Trials
Phase 2 Clinical (inc. Phase 2/3 trials) 1.619 1.626 3.106*** 3.045***

(1.126) (1.124) (0.483) (0.482)
Phase 3 Clinical 16.378*** 16.478*** 13.128*** 13.043***

(1.884) (1.875) (0.932) (0.928)
Trial site in US 3.062** 3.404** 3.207*** 3.497***

(1.095) (1.106) (0.481) (0.482)
Received NIH funding 8.011*** 7.172** 8.347*** 7.721***

(2.342) (2.376) (1.113) (1.126)
Public firm (lower bound) -2.162* -5.506***

(1.081) (0.473)
Public firm (upper bound) -3.551** -6.032***

(1.117) (0.470)
Constant 70.225*** 70.159*** 58.019*** 58.086***

(6.410) (6.384) (1.785) (1.786)
N 2289 2289 12423 12423
R2 0.308 0.310 0.197 0.199

* p<0.05, ** p<0.01, *** p<0.001
Sample includes all trials launched after 2000 with known end dates. Duration is winsorized to
remove extreme outliers. All OLS models include year fixed e↵ects, and robust standard errors.
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APPENDIX A 

This table lists the formal definition of different biomarker types as defined by the FDA-NIH Bi-

omarker Working group (2016) 

Biomarker type Official definition Examples 
Diagnostic  
Biomarker 

A biomarker used to detect or confirm 
presence of a disease or condition of inter-
est or to identify individuals with a subtype 
of the disease. 

1)! Sweat chloride may be used as a diagnostic bi-
omarker to confirm cystic fibrosis (Farrell et al. 
2008). 

2)! Glomerular filtration rate (GFR) may be used as a di-
agnostic biomarker to identify patients with chronic 
kidney disease (National Kidney Foundation 2002). 

Monitoring  
Biomarker 
 

A biomarker measured serially for assessing 
status of a disease or medical condition or 
for evidence of exposure to (or effect of) a 
medical product or an environmental agent. 

1)! HIV-RNA may be used as a monitoring biomarker 
to measure and guide treatment with antiretroviral 
therapy (ART) (AIDSinfo 2007). 

2)! Serial measurements of symphysis-fundal height dur-
ing pregnancy can be used during antenatal screening 
to detect fetal growth disturbances (Papageorghiou et 
al. 2016). 

Pharmacodynamic / 
Response Biomarker  

A biomarker used to show that a biological 
response has occurred in an individual who 
has been exposed to a medical product or 
an environmental agent. 

1)! Circulating B lymphocytes may be used as a pharma-
codynamic/response biomarker when evaluating pa-
tients with systemic lupus erythematosus to assess re-
sponse to a B-lymphocyte stimulator inhibitor (Stohl 
and Hilbert 2012). 

2)! Urinary level of glycosaminoglycans may be used as a 
pharmacodynamic/response biomarker when evalu-
ating the effect of enzyme replacement therapy for 
patients with mucopolysaccharidosis type 1 (Jameson 
et al. 2016). 

Predictive  
Biomarker 

A biomarker used to identify individuals 
who are more likely than similar individuals 
without the biomarker to experience a fa-
vorable or unfavorable effect from expo-
sure to a medical product or an environ-
mental agent. 

1)! Certain cystic fibrosis transmembrane conductance 
regulator (CFTR) mutations may be used as predic-
tive biomarkers in clinical trials evaluating treatment 
for cystic fibrosis, to select patients more likely to re-
spond to particular treatments (Davies et al. 2013). 

2)! Human leukocyte antigen allele (HLA)–B*5701 gen-
otype may be used as a predictive biomarker to eval-
uate human immunodeficiency virus (HIV) patients 
before abacavir treatment, to identify patients at risk 
for severe skin reactions (AIDSinfo 2007). 

Prognostic  
Biomarker  

A biomarker used to identify likelihood of a 
clinical event, disease recurrence or progres-
sion in patients who have the disease or 
medical condition of interest. 

1)! Breast Cancer genes 1 and 2 (BRCA1/2) mutations 
may be used as prognostic biomarkers when evaluat-
ing women with breast cancer, to assess the likeli-
hood of a second breast cancer (Basu et al. 2015). 

2)! Gleason score may be used as a prognostic bi-
omarker when evaluating patients with prostate can-
cer to assess the likelihood of cancer progression 
(Epstein et al. 2016; Gordetsky and Epstein 2016). 

Safety  
Biomarker 

A biomarker measured before or after an 
exposure to a medical product or an envi-
ronmental agent to indicate the likelihood, 

1)! Hepatic aminotransferases and bilirubin may be used 
as safety biomarkers when evaluating potential hepa-
totoxicity (Senior 2014). 
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presence, or extent of toxicity as an adverse 
effect. 

2)! Serum creatinine may be used as a safety biomarker 
when evaluating patients on drugs that affect kidney 
function to monitor for nephrotoxicity (Wasung et 
al. 2015). 

Susceptibility / Risk 
Biomarker:  

A biomarker that indicates the potential for 
developing a disease or medical condition 
in an individual who does not currently 
have clinically apparent disease or the medi-
cal condition. 

1)! Factor V Leiden may be used as a susceptibility/risk 
biomarker to identify individuals with a predisposi-
tion to develop deep vein thrombosis (DVT) (Kujo-
vich 2011). 

2)! Infection with certain human papillomavirus (HPV) 
subtypes may be used as a susceptibility/risk bi-
omarker to identify individuals with a predisposition 
to develop cervical cancer (Khan et al. 2005; Schiff-
man et al. 2011). 

 

Note: Some examples of biomarkers cited in this appendix may be applicable for more than one type of 
biomarker.  For example, in some cases predictive biomarkers used to identify individuals who are more 
likely to experience a favorable effect from a drug can also be used as diagnostic biomarkers in the initial 
detection or confirmation of the disease (e.g. CFTR mutations in Cystic Fibrosis). 
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APPENDIX B 

Effects of uniform pricing versus indication-based pricing. 

 
From Chandra, A. and Garthwaite, C. “The Economics of Indication-Based Drug Pricing.” New England Journal of Medicine, 
377(2), pp.103-106. Copyright © (2017) Massachusetts Medical Society.  Reprinted with permission. 
http://www.nejm.org/doi/full/10.1056/NEJMp1705035 
 

In Panel A, the upper graph represents a uniform-pricing context in which patients with indication A 
receive the most benefit and those with indication C receive the least. The population with indication C is 
large, and the value of treatment to this group is close to the value for indication B. As a result, the man-
ufacturer’s profit-maximizing price allows all patients to obtain the drug. At this price, the manufacturer 
earns profits represented by the green area. But the firm faces a trade-off. By setting the price in this way, 
the manufacturer forgoes profits that could be earned by charging higher prices to patients with indications 
A and B. These forgone profits, represented by the blue areas, are captured by these patients as consumer 
surplus — the value difference between the most consumers are willing to pay and what they actually pay.  
The lower graph in Panel A shows a different scenario, in which the product’s valuation for patients with 
indication C is very low. In this case, it’s a better trade-off for the manufacturer to set a high price, at 
which it knows the payer will allow only patients with indications A and B to obtain the drug. The manu-
facturer accepts the loss of sales to patients with indication C in exchange for higher profits earned from 
patients with indications A and B. Comparing these graphs, we see that when the valuation of the prod-
uct for indication C is relatively low, manufacturers set a higher uniform price, the payer curtails sales to 
patients with indication C (orange area), and patients with indications A and B obtain less consumer sur-
plus than they did in the first scenario. 
 
Panel B of the graph represents the same set scenarios with respect to the distribution of patients and 
valuations but allows for indication based pricing by the manufacturer.  The scenario presented is an ex-
treme example where a monopoly provider is able to set the price exactly at the willingness to pay of the 

Chandra'A,'Garthwaite'C.'N'Engl'J'Med'2017:377:103=106.

Effects'of'Uniform'Pricing'versus'Indication=Based'Pricing.
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consumer population and thus capture all of the surplus. For scenario 1, the same sets of patients are 
served by the manufacturer is now able to capture all of the surplus.  Scenario 2 represents an output ex-
panding scenario where the manufacturer now finds it profitable to sell to patients with indication C, 
while also raising the price on the indication A patients that receive the most value from the drug. In to-
tal, the introduction of indication based pricing is shown to weakly increase prices, profits, and the quan-
tity sold.   
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APPENDIX C 
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Selected Explanation as provided by the Website of ClinicalTrials.gov (2017): 
 
1997: Congress Passes Law (FDAMA) Requiring Trial Registration 
The first U.S. Federal law to require trial registration was the Food and Drug Administration Moderniza-
tion Act of 1997 (FDAMA) (PDF). Section 113 of FDAMA required the National Institutes of Health 
(NIH) to create a public information resource on certain clinical trials regulated by the Food and Drug 
Administration (FDA) 
 
2000: NIH Releases ClinicalTrials.gov Web Site 
The first version of ClinicalTrials.gov was made available to the public on February 29, 2000. At the time, 
ClinicalTrials.gov primarily included NIH-funded studies. 
 
2000–2004: FDA Issues Guidance for Industry Documents 
In 2000 FDA issued a draft Guidance for Industry document, which provided recommendations for re-
searchers submitting information to ClinicalTrials.gov. A final guidance document that incorporated com-
ments from the public was issued in 2002. 
 
2004: ClinicalTrials.gov Wins the Innovations in American Government Award 
The Innovations in American Government Awards program highlights exemplary models of government 
innovation and advances efforts to address the Nation's most pressing public concerns. 
 
2005: International Committee of Medical Journal Editors Requires Trial Registration 
In 2005 the International Committee of Medical Journal Editors (ICMJE) began requiring trial registration 
as a condition of publication. 
 
2005: State of Maine Passes Clinical Studies Registration Law (Repealed in 2011) 
In 2005 the State of Maine passed a law requiring prescription drug manufacturers or labelers to submit 
clinical study registration and results information to ClinicalTrials.gov. In 2011 the law was repealed; it is 
no longer in effect. 
 
2006: World Health Organization Establishes Trial Registration Policy 
In 2006 the World Health Organization (WHO) stated that all clinical trials should be registered, and it 
identified a minimum trial registration dataset of 20 items and in 2007 launched the International Clinical 
Trials Registry Platform (ICTRP). 
 
2007: Congress Passes Law (FDAAA) Expanding ClinicalTrials.gov Submission Requirements 
In 2007 the requirements for submission to ClinicalTrials.gov were expanded after Congress passed the 
Food and Drug Administration Amendments Act of 2007 (FDAAA). Section 801 of FDAAA (FDAAA 
801) required more types of trials to be registered; additional trial registration information; and the sub-
mission of summary results, including adverse events, for certain trials. The law also included penalties for 
noncompliance, such as the withholding of NIH grant funding and civil monetary penalties of up to 
$10,000 a day. 
 
2008: ClinicalTrials.gov Releases Results Database 
In September 2008, as required by FDAAA 801, ClinicalTrials.gov began allowing sponsors and principal 
investigators to submit the results of clinical studies.33 
 

                                                   
33 The submission of adverse event information was optional when the results database was released but was required 
beginning in September 2009. 
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2008: Declaration of Helsinki Revision Promotes Trial Registration and Results Dissemination 
In October, 2008 the 59th World Medical Association (WMA) General Assembly amended the Declara-
tion of Helsinki - Ethical Principles for Medical Research Involving Human Subjects. Two newly added 
principles (paragraphs 19 and 30) considered the prospective registration and the public disclosure of study 
results to be ethical obligations.  
 
2009: Public Meeting Held at the National Institutes of Health 
In accordance with FDAAA 801, NIH held a public meeting in April 2009 to solicit input from interested 
individuals about future regulations that will expand the information on ClinicalTrials.gov. 
 
2013: European Medicines Agency Expands Clinical Trial Database to Include Summary Results 
In October 2013 the European Medicines Agency (EMA) released a new version of the European Clinical 
Trials Database (EudraCT). Notably, the EudraCT summary results data requirements are "substantially 
aligned" with those of the ClinicalTrials.gov results database. 
 
2014: Notice of Proposed Rulemaking (NPRM) for FDAAA 801 Issued for Public Comment 
In November 2014 the U.S. Department of Health and Human Services issued a notice of proposed rule-
making (NPRM) describing the proposed requirements and procedures for registering and submitting the 
results, including adverse events, of clinical trials on ClinicalTrials.gov, in accordance with FDAAA 801.  
 
2014: NIH Draft Policy on Registration and Results Submission of NIH-Funded Clinical Trials 
Issued for Public Comment.  
In November 2014 NIH proposed a policy to ensure that every clinical trial (see the Revised NIH Defini-
tion of "Clinical Trial") that receives NIH funding is registered on ClinicalTrials.gov and has summary 
results submitted and posted in a timely manner, whether subject to FDAAA 801 or not.  
 
2015: National Cancer Institute Issues Clinical Trial Access Policy 
In January, 2015 the NIH National Cancer Institute (NCI) issued its Policy Ensuring Public Availability 
of Results from NCI-supported Clinical Trials. The policy states, "Final Trial Results are expected to be 
reported in a publicly accessible manner within twelve (12) months of the Trial's Primary Completion Date 
regardless of whether the clinical trial was completed as planned or terminated earlier."  
 
2016: Final Rule for FDAAA 801 Issued 
In September 2016, the U.S. Department of Health and Human Services issued a Final Rule for Clinical 
Trials Registration and Results Information Submission (42 CFR Part 11) that clarifies and expands the 
regulatory requirements and procedures for submitting registration and summary results information of 
clinical trials on ClinicalTrials.gov, in accordance with FDAAA 801. The final rule is intended to make it 
clear to sponsors, investigators, and the public which trials must be submitted, when they must be submit-
ted, and whether compliance has been achieved.  
 
2016: Final NIH Policy on the Dissemination of NIH-funded Clinical Trial Information Issued 
In September 2016, NIH issued a final policy to promote broad and responsible dissemination of infor-
mation from NIH-funded clinical trials through ClinicalTrials.gov. Under this policy, every clinical trial 
funded in whole or in part by NIH is expected to be registered on ClinicalTrials.gov and have summary 
results information submitted and posted in a timely manner, whether subject to FDAAA 801 or not.  
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APPENDIX D 
ICD-9 Sub-chapter Number 

of trials 
Neoplasm (cancer) 
Sub-chapter 

Intestinal Infectious Diseases 402 No 
Tuberculosis 414 No 
Zoonotic Bacterial Diseases 80 No 
Other Bacterial Diseases 1749 No 
Human Immunodeficiency Virus (HIV) Infection 2909 No 
Poliomyelitis And Other Non-Arthropod-Borne Viral Diseases And Prion 
Diseases Of Central Nervous System 232 No 
Viral Diseases Generally Accompanied By Exanthem 627 No 
Arthropod-Borne Viral Diseases 210 No 
Other Diseases Due To Viruses And Chlamydiae 3344 No 
Rickettsioses And Other Arthropod-Borne Diseases 174 No 
Syphilis And Other Venereal Diseases 74 No 
Other Spirochetal Diseases 14 No 
Mycoses 663 No 
Helminthiases 86 No 
Other Infectious And Parasitic Diseases 532 No 
Late Effects Of Infectious And Parasitic Diseases 3 No 
Malignant Neoplasm Of Lip, Oral Cavity, And Pharynx 468 Yes 
Malignant Neoplasm Of Digestive Organs And Peritoneum 8793 Yes 
Malignant Neoplasm Of Respiratory And Intrathoracic Organs 5891 Yes 
Malignant Neoplasm Of Bone, Connective Tissue, Skin, And Breast 9034 Yes 
Malignant Neoplasm Of Genitourinary Organs 7110 Yes 
Malignant Neoplasm Of Other And Unspecified Sites 9340 Yes 
Malignant Neoplasm Of Lymphatic And Hematopoietic Tissue 8981 Yes 
Neuroendocrine Tumors 382 Yes 
Benign Neoplasms 440 Yes 
Carcinoma In Situ 1 Yes 
Neoplasms Of Uncertain Behavior 2377 Yes 
Neoplasms Of Unspecified Nature 2312 Yes 
Disorders Of Thyroid Gland 135 No 
Diseases Of Other Endocrine Glands 6639 No 
Nutritional Deficiencies 526 No 
Other Metabolic And Immunity Disorders 5532 No 
Diseases Of The Blood And Blood-Forming Organs 3392 No 
Psychoses 2855 No 
Neurotic Disorders, Personality Disorders, And Other Nonpsychotic Mental 
Disorders 4348 No 
Intellectual Disabilities 5 No 
Inflammatory Diseases Of The Central Nervous System 150 No 
Organic Sleep Disorders 257 No 
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Hereditary And Degenerative Diseases Of The Central Nervous System 3541 No 
Pain 228 No 
Other Headache Syndromes 33 No 
Other Disorders Of The Central Nervous System 2466 No 
Disorders Of The Peripheral Nervous System 1024 No 
Disorders Of The Eye And Adnexa 2440 No 
Diseases Of The Ear And Mastoid Process 393 No 
Acute Rheumatic Fever 1 No 
Chronic Rheumatic Heart Disease 110 No 
Hypertensive Disease 1378 No 
Ischemic Heart Disease 1933 No 
Diseases Of Pulmonary Circulation 613 No 
Other Forms Of Heart Disease 2515 No 
Cerebrovascular Disease 1285 No 
Diseases Of Arteries, Arterioles, And Capillaries 1179 No 
Diseases Of Veins And Lymphatics, And Other Diseases Of Circulatory Sys-
tem 1605 No 
Acute Respiratory Infections 455 No 
Other Diseases Of The Upper Respiratory Tract 1047 No 
Pneumonia And Influenza 1794 No 
Chronic Obstructive Pulmonary Disease And Allied Conditions 3159 No 
Pneumoconioses And Other Lung Diseases Due To External Agents 18 No 
Other Diseases Of Respiratory System 914 No 
Diseases Of Oral Cavity, Salivary Glands, And Jaws 841 No 
Diseases Of Esophagus, Stomach, And Duodenum 1040 No 
Appendicitis 20 No 
Hernia Of Abdominal Cavity 20 No 
Noninfectious Enteritis And Colitis 1213 No 
Other Diseases Of Intestines And Peritoneum 993 No 
Other Diseases Of Digestive System 1576 No 
Nephritis, Nephrotic Syndrome, And Nephrosis 1508 No 
Other Diseases Of Urinary System 1207 No 
Diseases Of Male Genital Organs 793 No 
Disorders Of Breast 37 No 
Inflammatory Disease Of Female Pelvic Organs 816 No 
Other Disorders Of Female Genital Tract 1454 No 
Ectopic And Molar Pregnancy 12 No 
Other Pregnancy With Abortive Outcome 91 No 
Complications Mainly Related To Pregnancy 396 No 
Normal Delivery, And Other Indications For Care In Pregnancy, Labor, And 
Delivery 130 No 
Complications Occurring Mainly In The Course Of Labor And Delivery 20 No 
Complications Of The Puerperium 84 No 
Infections Of Skin And Subcutaneous Tissue 205 No 
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Other Inflammatory Conditions Of Skin And Subcutaneous Tissue 2100 No 
Other Diseases Of Skin And Subcutaneous Tissue 1536 No 
Arthropathies And Related Disorders 3237 No 
Dorsopathies 545 No 
Rheumatism, Excluding The Back 1220 No 
Osteopathies, Chondropathies, And Acquired Musculoskeletal Deformities 982 No 
Congenital Anomalies 789 No 
Maternal Causes Of Perinatal Morbidity And Mortality 4 No 
Other Conditions Originating In The Perinatal Period 155 No 
Symptoms 6901 No 
Nonspecific Abnormal Findings 402 No 
Ill-Defined And Unknown Causes Of Morbidity And Mortality 195 No 
Fractures 134 No 
Sprains And Strains Of Joints And Adjacent Muscles 22 No 
Intracranial Injury, Excluding Those With Skull Fracture 226 No 
Internal Injury Of Thorax, Abdomen, And Pelvis 83 No 
Open Wounds 252 No 
Injury To Blood Vessels 7 No 
Late Effects Of Injuries, Poisonings, Toxic Effects, And Other External 
Causes 3 No 
Superficial Injury 28 No 
Contusion With Intact Skin Surface 15 No 
Burns 119 No 
Injury To Nerves And Spinal Cord 204 No 
Certain Traumatic Complications And Unspecified Injuries 138 No 
Poisoning By Drugs, Medicinal And Biological Substances 60 No 
Toxic Effects Of Substances Chiefly Nonmedicinal As To Source 78 No 
Other And Unspecified Effects Of External Causes 2264 No 
Complications Of Surgical And Medical Care, Not Elsewhere Classified 515 No 
Persons With Potential Healthhazards Related To Communicable Diseases 54 No 
Persons With Need For Isolation, Other Potential Health Hazards And 
Prophylactic Measures 41 No 
Persons With Potential Health Hazards Related To Personal And Family His-
tory 16 No 
Persons Encountering Health Services In Circumstances Related To Repro-
duction And Development 233 No 
Persons With A Condition Influencing Their Health Status 835 No 
Persons Encountering Health Services For Specific Procedures And Aftercare 31 No 
Persons Without Reported Diagnosis Encountered During Examination And 
Investigation  Of Individuals And Populations 214 No 
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APPENDIX E 

The following explanation of NIH grant numbers are provided by the NIMH website (2017): 
The parts of a complete NIH grant number indicate the following: type, activity code, Institute, serial #, 
grant year, and (possibly) a suffix. For example, the grant number: 1-R01-MH99999-01A1 indicates: 

  
1- This is the Type Code. The most common types are: 
• 1- never previously funded grants — that is, a new/first time grant application. 
• 2- competing continuations — that is, a grant application that was previously funded for a period of 

time. This new continuing period of support requires peer review. 
• 5- non-competing continuations — that is, a grant application that has been funded and is in the midst 

of its support period. For each year of the support period awarded, there is an administrative review 
of progress before the next annual installment of support is issued (no peer review is needed). The 
application that the PI submits as part of this process is called a "non-competing continuation appli-
cation," and it contains a "progress report" for the period of support just completed. 

R01- Activity Code indicates the type of grant mechanism. Examples include R01s (investigator initiated 
research grant), R03s (small grants), R13s (conference support grants), "K"s (career awards), "T"s (in-
stitutional training awards), etc. 

MH- Institute Code identifies the NIH Institute with primary responsibility for payment of this applica-
tion. For example, MH = National Institute of Mental Health (NIMH) and DA=National Institute on 
Drug Abuse (NIDA). Each NIH Institute has a two-letter code associated with it.  

99999- Serial Number provides a unique identification to the project and is assigned sequentially for 
newly submitted applications. The Serial Number remains the same for as long as a project is active, 
even when the PI submits a competing continuation for a new period of support. 

01- Grant Year. "01" indicates the first year of a grant application or funded grant. 
A1- Suffix. "A1" indicates that the application was submitted once previously but did not receive a suffi-

ciently strong priority score to merit funding. This application is an amended version of the original 
one also called a “resubmission.” At NIH, an R01 may be submitted up to three separate times for 
review (i.e., an A2 application is the last amended version permitted). Other suffix terms are also used. 
For example, "S1" refers to a competing supplement request for a currently funded project. 
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APPENDIX F 

Identifying publicly listed firms 

In order to understand the “lineage” (ownership histories) of firms, we take advantage of data on a 

firm’s “Ancestor” as provided by the Thompson Reuters Permanent Identifier (“PermID”) database. 

Thompson Reuters describes the database as “a machine-readable identifier developed to create a unique 

reference for any data item” noting that a “PermID provides comprehensive identification across a wide 

variety of entity types including organizations, instruments, funds, issuers and people.”34 We match firms 

in the Cortellis data to the firms’ PermIDs: 90.0% of the companies in the Cortellis database have PermID 

information (137,160 out of 152,357). Of the137,160 companies with PermIDs we matched 99.2% of 

them with the PermID data. This results in firm-specific data on whether or not a firm is publicly listed. 

The same database also allows us to observe if a firm has been acquired by a publicly listed firm (“ances-

tor”). Based on a combination of trial date (from Cortellis) and acquisition data (from the PermID data-

base), we can understand whether a trial was sponsored by a publicly listed firm (and/) or whether or not 

the sponsor was a subsidiary of a publicly listed firm.  

As a result of the data considerations described below, we assign upper and lower-bound measures of 

whether or not a firm was publicly listed at the time of an observed clinical trial as follows.  

Firms 

 Firm Ancestor !"#$%&' !"#$%&( !"#$%&) !"#$%&* 

  Ancestor (AKA par-

ent) firm observed at  

time = T 

Firm or its ancestor 

is publicly traded on 

trial date (unob-

served true status) 

 

Firm is publicly 

traded (observed 

at time = T) 

Ancestor is pub-

licly traded (ob-

served at time = 

T) 

Either !"#$%&(or 

!"#$%&) is 

TRUE 

1. Pfizer Inc Pfizer Inc TRUE TRUE TRUE TRUE 

2. Pfizer Inc (India) Pfizer Inc TRUE FALSE TRUE TRUE 

3. Small Bio Corp. GSK FALSE FALSE TRUE TRUE 

4. Genentech Roche  TRUE FALSE TRUE TRUE 

5.  Xenoport Arbor Pharmaceuti-

cals 

TRUE FALSE FALSE FALSE 

                                                   
34 More detail can be found at https://financial.thomsonreuters.com/en/products/data-analytics/market-data/reference-
data/permid-data-management.html 
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6.  ALK-Abello  Lundbeck Founda-

tion 

TRUE TRUE FALSE TRUE 

 

 

 

We use ancestor firms’ public status instead of firms’ (own) public status assigns legitimate subsidiaries 

to their parent company’s status as wanted (Row 2); however, this method also assigns some acquired 

firms to an incorrect status.  

In Row 3 above, Small Bio Corp. conducts a trial as a privately owned firm at time 0 and is acquired 

by GSK at time t > 0. Due to data limitations we observe only the most recent firm ancestor (GSK) at 

time of data collection T > t > 0, and thus the ancestor’s public status at time T (TRUE) misrepresents 

Small Bio’s status on the trial date. This is not an issue for firms that were publicly traded before being 

acquired as long as the acquiring firm is public as well (as in the example in Row 4). This is, however, a 

complication for firms that were publicly traded and then “delisted” after being purchased by a private 

firm (as in the example in Row 5). 

Rarely, firms are listed as public with non-publicly traded ancestors. This generally indicates partial 

private ownership of a public firm (as in the example in Row 6).  

None of the measures of !"#$%&+|+∈(,),* match the unobserved true public status (!"#$%&') for each 

case, but they can still be useful in a bounding exercise. Because !"#$%&(is never TRUE in any case that 

!"#$%&' is FALSE, it can be used as a lower bound for !"#$%&'. 

Measure 3 is NOT an upper bound on Measure 0 because, as is the case with Xenoport,  

!"#$%&' = 0123 does not imply !"#$%&* = 0123. However, the true share of trials run by public firms 

will be bounded above by Measure 3 share as long as there are more trials misclassified as public (due to a 

later acquisition) than misclassified as private. This is proven below: 

 

4ℎ6789!"#$%&*

= 9
#!"#$%&907%6$; + #=%;&$6;;%>%8?@ABCDEF→@HIJBK − #=%;&$6;;%>%8?@HIJBK→@ABCDEF

#07%6$;
 

M>9#=%;&$6;;%>%8?@ABCDEF→@HIJBK > #=%;&$6;;%>%8?@HIJBK→@ABCDEF 9  
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4ℎ6789!"#$%&* >
#!"#$%&907%6$;

#07%6$;
= 9 4ℎ6789!"#$%&' 

So in this case, 4ℎ6789!"#$%&*is an upper bound on the true share of trials funded by public firms. 

We cannot directly measure the number of misclassified trials to test whether this assumption holds, 

but because these misclassifications result from mergers and acquisitions, public firms acquiring private 

firms will likely make up the lion’s share of such activity and the bound will hold. 

The process by which we calculate dummy variables indicating whether a trial is public by the different 

measures is outlined below: 

1.! For each firm  

a.!  !"#$%&( = O >%7P9%;9Q"#$%&9%R92017 ; 

b.!  !"#$%&) = O(>%7PY;96R&8;Z[79%;9Q"#$%&9%R92017) 

2.! For each trial and firm recode 

a.! !"#$%&( = 09%>9M!]9^6Z8 > 07%6$9^6Z8. 

b.! !"#$%&) = 09%>9_R&8;Z[79M!]9^6Z8 > 07%6$9^6Z8. 

3.! For each firm-ancestor pair calculate !"#$%&* = max9{!"#$%&(, !"#$%&)}. 

4.! For each trial, calculate whether any public firms were involved with the trial: 

a.! !"#$%&907%6$9( = max !"#$%&(+: f ∈ g 99 

b.! !"#$%&907%6$9* = 9max !"#$%&*+: f ∈ g 9    >[79Zℎ89;8Z9g9[>9>%7P −

6R&8;Z[79Q6%7;9%Rh[$h8?9i%Zℎ9Zℎ89Z7%6$ 
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