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assumptions can attenuate estimates of intergenerational income elasticities by almost 50 percent.
Although differences in these findings across samples and methods caution against the generalizability
of specific error rates, common patterns across multiple datasets offer broad lessons for improving
current linking practice.
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New large-scale linked data are revolutionizing empirical social science. A variety of current and 

proposed projects are linking national surveys, administrative data, and  research samples to recently digitized 

historical records, such as the full-count 1880 (Ruggles 2006, Ruggles et al. 2015) and 1940 U.S. Censuses 

(the first to ask about education and wage income) and newly available administrative sources.1 The resulting 

“big data” have the potential to break new ground on old questions and open entirely novel areas of inquiry.  

Machine-linkage is critical to these projects, and new innovations in machine linkage are being 

introduced at record pace. Outside of protected administrative and proprietary data enclaves, however, little is 

known about how machine linkage influences data quality or social science inferences. The dearth of 

knowledge is especially acute for the U.S., where the lack of “ground truth” has limited the study of false (Type 

I errors) and missed matches (Type II errors).2 Although some diagnostic exercises are suggestive, they rely 

on selected and often non-U.S. samples (Christen and Goiser 2007, Goeken et al. 2016) or rich administrative 

data unavailable to most researchers (Scheuren and Winkler 1993, Winkler 2006, Abowd 2017, Massey 2017). 

The resulting uncertainty about the quality of most linked samples limits both these samples’ contribution to 

social science and the development of innovations in machine-linking methods.  

This paper combines three different high quality U.S. samples in a novel evaluation of the impact of 

different linking assumptions on data quality and inference. Data availability leads us to focus on linking to 

historical U.S. census samples, but our conclusions apply broadly to contexts where linking variables are 

limited and measured with error.3 Different ground-truth samples allow us to examine the robustness of our 

findings for various record types and contexts. The Longitudinal Intergenerational Family Electronic Micro-

database’s (LIFE-M) sample of birth certificates linked to the 1940 Census provides a perspective from the 

early 20th Century (Bailey et al. 2016), and the genealogically linked sample of Union Army veterans from the 

Early Indicators Project (Costa et al. 2017). The Integrated Public Use Microdata Series Linked Representative 

Samples (IPUMS-LRS) of the 1880 Census (Ruggles et al. 2015) cover the late 19th Century. In addition, we 

validate our conclusions by building a synthetic ground truth (for which we know true links), subjecting 

potential false links to additional independent human reviews, and using variables not used in the linking 

                                                      
1 Many on-going initiatives link the 1940 Census to other datasets. The Census Bureau plans to link it to current administrative and 
census data (Census Longitudinal Infrastructure Project, CLIP) and the Minnesota Population Center plans to link it to other historical 
censuses. The Panel Survey of Income Dynamics (PSID) and the Health and Retirement Survey (HRS) are linking their respondents to 
the 1940 Census. The Longitudinal, Intergenerational Family Electronic Micro-Database Project (LIFE-M) is linking vital records to 
the 1940 Census (Bailey et al. 2016). Supplementing these public infrastructure projects, entrepreneurial researchers have also 
combined large datasets. See, for example, Abramitzky et al. (2012), Abramitzky et al. (2013), Abramitzky et al. (2014), Boustan et al. 
(2012), Mill (2013), Hornbeck and Naidu (2014), Mill and Stein (2016), Aizer et al. (2016), Bleakley and Ferrie (2013, 2014, 2016), 
Nix and Qian (2015), Collins and Wanamaker (2016), and Eli et al. (2016). This paper discusses some of these approaches. 
2 “Ground truth” is defined as data obtained by direct measurement and is often used to refer to true data links.  
3 Unlike contemporary ground truth data, historical data are public and contain identifiable information necessary for linkage. Historical 
data allow us to be fully transparent about our samples and techniques.  
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process to characterize errors. We focus our analysis on four machine-linking algorithms, which represent the 

diversity of methods in current practice. In addition, we evaluate the impact of assumptions about phonetic 

name-cleaning (Soundex and NYSIIS), the treatment of common names, and procedures for dealing with 

multiple exact matches (such as probability weighting and random selection) on link quality. 

Our findings highlight the important effects of linking algorithms on data quality. First, no linking 

method produces samples that are consistently representative of the linkable population, and the ways in which 

the data are not representative differ by method and record type. Second, automated linking algorithms result 

in high rates of incorrect matches ranging from 13 to 69 percent. Averaging across samples and methods, we 

find that 32 percent of links generated by automated methods are likely incorrect. Third, different algorithms 

induce different correlations between false links with baseline sample characteristics and the true link.  

Although findings vary across datasets, common patterns reveal the importance of different linking 

assumptions. Phonetic name cleaning universally increases false link rates by an average of 23 percent and, in 

some cases, more than 60 percent. Trying to link more common names tends to worsen false link rates by 30 

percent, when averaged across methods and datasets. Methods to break ties through random selection or simple 

probability weighting increase instances of false links in samples by an average of 40 percent and, in some 

cases, more than 75 percent.  

A final case study considers the importance of linking algorithms on estimates of intergenerational 

mobility in the 1940s. After characterizing the theoretical implications of false links and missing links using a 

within-between decomposition framework, we show that—for the same sample of records—algorithm 

assumptions can attenuate intergenerational income elasticity estimates by almost 50 percent. Eliminating false 

matches reduces attenuation and renders intergenerational mobility elasticities—in very different samples—

statistically indistinguishable.  

These findings suggest that machine-linking algorithms per se—and the errors they introduce—can 

dramatically affect researchers’ conclusions. Different linking assumptions induce different kinds of non-

representativeness and measurement error, which may have difficult-to-predict consequences for inference. 

Although the specific error rates and attenuation factors found here are not broadly generalizable, we conclude 

by formulating recommendations for best practice that draw on common patterns across datasets and 

algorithms. Importantly, our findings caution against increasing linkage rates which tend to come at the cost 

of increasing linkage errors. Using low-cost ways to diagnose and purge false links together with weights to 

increase the sample representativeness holds great promise for improving large-scale record linkage.  
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I. AN OVERVIEW OF METHODOLOGY IN RECORD LINKAGE IN HISTORICAL DATA 

Recent developments in computational speed, data availability, and probabilistic linking techniques 

have expanded the possibilities of record linkage. However, limitations in U.S. historical data often constrain 

what is possible, both relative to contemporary administrative sources and data for other countries. This section 

describes some limitations of historical U.S. records and illustrates how they can affect linking.  

A. A Typical Historical Linking Problem 

Several types of common errors in historical records limit researchers’ ability to link them. Names 

may vary over time because Census enumerators may have misspelled respondent names, the household 

respondent may have reported incorrectly, or the individual may have changed their name (perhaps using a 

middle name or nickname in place of the given name). For example, Goeken et al. (2016) documents that in 

two enumerations of St. Louis in the 1880 Census, nearly 46 percent of first names are not exact matches, and 

the Early Indicators project notes that 11.5 percent of individuals in the Oldest Old sample have a shorter first 

name in pension records than in the original Civil War enlistment records (Costa et al. 2017). A similar problem 

relates to the common practice of rounding age to the nearest multiple of 5 (or “age heaping”) (A'Hearn et al. 

2009, Hacker 2013) and frequent mis-enumeration of birth place (Goeken et al. 2016), which make individuals 

hard to track over time.  

Adding to these recording errors, the digitization of hand-written manuscripts adds another layer of 

uncertainty. Our comparison of two independently digitized versions of the 1940 Census by Ancestry.com and 

FamilySearch.org suggests that 25 percent of records have different transcriptions of last name in the two 

datasets. Consequently, linking individuals across historical datasets relies upon a handful of potentially mis-

measured characteristics.  

To illustrate common challenges associated with matching historical datasets, consider the exercise of 

linking birth certificates for boys to the 1940 U.S. Census. To minimize concerns about selection bias and non-

representativeness of the linked sample, researchers typically use time-invariant characteristics to match 

records (Ruggles 2006).4 When linking birth certificates to the 1940 Census, these characteristics include first 

                                                      
4The earliest linking methods involved identifying a group of individuals in a particular location (e.g., township, county, or state) in 
one census and manually searching for the same person within the same region (the block) in the next census (Malin 1935, Curti 1959, 
Bogue 1963, Thernstrom 1964, Guest 1987). This strategy missed individuals who relocated or changed names and, therefore, generated 
unrepresentative samples. The creation of state population indexes allowed researchers to draw a random sample of households with 
children at least 10 years old in a historical census. They then searched for the same household in the previous census using the birth 
state of the child to narrow the search (Schaefer 1985, Steckel 1988). This technique, therefore, could find individuals who moved 
between the census years, but it was similarly limited by geographic mobility between birth and first enumeration in the census. It also 
restricted the sample of linked households to those with children surviving to age 10. 
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name, last name, age, birth state, and sex—effectively four characteristics because sex contains little more 

information than first name.5 One advantage of using birth certificates (relative to census) is that they measure 

age and birth state with much less error than the decennial censuses, because they also collect the exact date 

of birth and are recorded in a particular state. Issues with name transcription and digitization, however, will 

affect both birth certificates and Census, and errors in birth place and age will affect the 1940 Census records.  

After limiting candidate matches to those with the same birth state and sex (as is common in the 

literature), the standard linking problem can be captured as two-dimensional scatter plots as shown in Figure 

1. The x-axis captures the similarity between the name on the birth record and the names of its candidate links 

in the 1940 Census as measured by the Jaro-Winkler similarity score, a string-distance metric equal to 1 if the 

names are identical.6 The y-axis captures the difference in the age in 1940 implied by the birth certificate 

(which contains exact date of birth) and the reported age in the 1940 Census. A perfect match occurs when the 

age difference is zero. In this two-dimensional space, link candidates fall into one of four categories: 

(M1)  A perfect (1,0), unique match in terms of name and age similarity (shown in Figure 1A). 

(M2)  A single, similar match is slightly different in terms of age, name, or both (shown in Figure 1B). 

(M3)  Many perfect (1,0) matches, leading to problems with match disambiguation (shown in Figure 1C). 

(M4)  Multiple similar matches are slightly different in terms of age, name, or both (shown in Figure 1D).  

Historical linking algorithms generally consider M1 candidates as matches. However, methods differ 

in their treatment of candidates in the M2, M3, and M4 categories. A common approach for dealing with 

candidates in the M2 category is the use of Soundex or NYSIIS phonetic codes while allowing for differences 

in age. Phonetic string cleaning is designed to account for orthographic differences that could lead a true match 

to be missed, such as minor spelling differences, name Anglicization, and transcription errors. Soundex, for 

example, was developed in the early 20th century to help create Census links. It groups similar sounding names 

like “Smith,” “Smyth” and “Smythe” to the same code (in this example, S530). NYSIIS, the acronym for the 

New York State Identification and Intelligence System, was developed in 1970 as an improvement to the 

Soundex algorithm. NYSIIS transforms names like “Wilhem” and “William” to WALAN.7 To account for 

                                                      
5 Race is not available on birth certificates, but this has little effect on this paper’s results. Appendix A3 shows that using race would 
reduce error rates by at most 1 percentage point. Matching in historical settings in other countries often makes greater use of 
characteristics not available in U.S. data. Modalsli (2017) notes that in Norway before 1910 there is less first name variation and more 
flexible surname traditions than in the U.S. The possible birthplaces in Norway number more than 500 municipalities for a population 
of under 2 million, whereas birthplace is limited to 48 states and foreign countries for 132 million residents in the 1940 U.S. Census.  
6 Jaro-Winkler similarity score adapts the Jaro (1989) string distance, the minimum number of single-character transpositions required 
to change one string into another, to up-weight differences earlier in the string. See Winkler (2006) for an overview. 
7 Phonetic name cleaning was included in a public probabilistic matching software, called PC Matchmaker, to link to Census samples 
in a DOS environment (Atack et al. 1992). PC Matchmaker coded names using Soundex or NYSIIS phonetic codes and allowed for 
user-specified blocking and weighting schemes. This software was then used to create a linked sample between the agricultural and 
population censuses between 1850 and 1880 (Atack 2004).  
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differences in age, researchers typically search within age ranges such as ±3 or ±5 years. Approaches to deal 

with ties in categories M3 or M4 include random selection among equally likely (tied) candidates (Nix and 

Qian 2015) or an equal probability weighting of tied candidates. The next sections discuss how the commonly 

used automated linking methods address challenges posed by M2, M3, and M4 cases in historical data. 

B. Ferrie (1996) 

Ferrie’s (1996) path-breaking approach linked men in the 1850 U.S. Census to men who were 10 years 

and older in the 1860 U.S. Census. Ferrie (1996) began by selecting a sample of uncommon names from the 

1850 Census, which reduces problems with record ties (for example, the uncommon name sample excludes 

names like “John Smith” or records in M3 and M4 above).8 To identify likely links among those that were 

similar and to correct for minor orthographic differences (category M2 above), Ferrie’s method transformed 

last names using NYSIIS codes and also truncated the untransformed first name after the fourth letter. Ferrie 

then linked his sample to the 1860 Census, and eliminated candidate links that were not born in the same state 

and not living with the same family. Ferrie kept all candidate links within a ±5 year difference in age and, if 

more than two links remained, Ferrie chose the link with the smallest age difference.9  This process produced 

a linked sample of 4,938 men between—9 percent of the male population in 1850, 19 percent of the population 

of men with uncommon names. Ferrie’s approach has varied in his more recent work, and he has used a smaller 

age ranges, different phonetic name cleaning (such as SPEDIS in SAS), or required matches of birth places. 

More than 20 years later, Ferrie’s original approach has become the foundation for much of the historical 

linking literature, which is why we consider it in this paper.  

C. Abramitzky, Boustan, and Erikson (2012 and 2014) 

Abramitzky et al.’s “Iterative Method” automates Ferrie (1996) to use the full-count census. This 

procedure relaxes Ferrie’s (1996) uncommon name restriction to the extent that the combination of name and 

age provide distinctive information. As summarized in a detailed web appendix (Abramitzky et al. 2012a), 

Abramitzky et al. (2012b) select a sample of boys ages 3 to 15 with unique name-age combinations in the 1865 

Norwegian Census, standardize first and last names using the NYSIIS, and look for exact, unique matches. If 

this method does not identify an exact, unique link, it searches for an exact match within a ±1 year band as a 

second step and, if they do not find a unique link, they repeat this process up to a ±2 year band around the 

reported birth year. The Iterative Method does not link a record if there is no exact name match in NYSIIS, if 

                                                      
8 Ferrie (1996) searched for 25,586 men in the 1860 Census whose surname and first name appeared ten or fewer times in 1850.  
9 Ferrie (1996) does not specify a process for multiple match disambiguation – in his linking from 1850-1860, there were no ties after 
minimizing the difference in age. 
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the best link is tied (has multiple exact candidate matches, as in the M3 case above), or if no candidate falls 

within the maximum allowable age band. Abramitzky et al. (2012b) ultimately linked a sample of 2,613 

migrants and 17,833 non-migrants from a primary sample of 71,644 individuals for a match rate of 29 percent. 

Abramitzky et al. (2014) uses the Iterative Method to link men ages 18-35 with unique age-name combinations 

from the 1900 U.S. Census to the 1910 and 1920 censuses, achieving a match rate of 16 percent for native-

born and 12 percent for foreign-born men. The authors generously provided the most recent version of their 

code for our analysis, which has been used for record linkage in a number of high profile papers.10 Appendix 

A includes the results for Abramitzky et al.’s (2014) additional robustness check of limiting the sample to 

individuals unique in name within a five-year age band in both censuses. 

D. Feigenbaum (2016) and IPUMS (2015) 

A common feature of Ferrie (1996) and Abramitzky et al. (2014) is that they search along the line 

segment at phonetically cleaned name similarity = 1 in Figure 1 for a unique match in NYSIIS-cleaned name 

with a minimum age difference. New methods in probabilistic linking extend these methods by identifying the 

empirical importance of name and age differences using human decisions as a basis. The key insight is that the 

best link may not exactly match on name (or phonetically cleaned name) or age as in Figure 1B and Figure 1D 

but it may dominate when simultaneously considering both the age and name differences.  

IPUMS models these trade-offs using a Support Vector Machine (SVM) to create IPUMS-LRS of the 

1880 U.S. Census. IPUMS-LRS consists of linkages between the 1850-1930 one-percent samples and the 1880 

Census (Ruggles et al. 2015) using clerically reviewed data to train a SVM that, following a few tuning 

parameter choices, classifies all potential links as true or false (Goeken et al. 2011). Illustrating the conservative 

nature of their approach, they produce final match rates of 12.2 percent for native-born whites, 3 percent for 

foreign-born whites, and 6.4 percent for African Americans for the 1870-1880 links.11 

                                                      
10 Abramitzky et al. (2012) use the Iterative Method to show that the returns to migration were relatively low, and Abramitzky et al. 
(2013) use the Iterative Method show that immigrants from Norway to the U.S. were negatively selected based upon parents’ wealth. 
To study migrant assimilation for 16 sending countries, Abramitzky et al. (2014) make use of the Iterative Method to link men between 
the ages of 18 and 35 across the 1900, 1910, and 1920 U.S. Censuses, producing a sample of 20,225 immigrant and 1,650 native-born 
men for a match rate of 12 percent and 16 percent, respectively. In another application of the Iterative Method, Boustan et al. (2012) 
produce a sample of men ages 30 to 40 years old linked from the 1920 to the 1930 U.S. Censuses to study migration responses to 
natural disasters, for a match rate of 24 percent across the 1920 and 1930 Censuses. Hornbeck and Naidu (2014) use the same linked 
sample restricted to 1920 and 1930 links to study black migration out of the Mississippi Delta after the 1927 Flood. Aizer et al. (2016) 
use an updated Ferrie method to link male children of applicants to the mother’s pension programs between 1911 and 1935 to the Social 
Security Death Master File to study the effect of cash transfers on later-life outcomes. They find that mother’s pension programs 
increased longevity of recipient children by one year relative to children of mothers who were denied benefits. 
11 Researchers have used the IPUMS-LRS for a variety of research questions, including the economic effects of racial fluidity 
(Saperstein and Gullickson 2013), long-term differences in black and white women’s labor-force participation (Boustan and Collins 
2014), and intergenerational co-residency (Ruggles 2011).  
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In a similar spirit, Feigenbaum (2016) employs a probit regression to quantify the empirical importance 

of name and age differences in addition to other record features. Using clerically reviewed data, he estimates 

the effect of different record characteristics on the probability that the records are a match. These record 

characteristics include name Jaro-Winkler similarity scores, differences in age, indicators for Soundex matches 

of first and last name, indicators for matches in letters or names, and whether truncated parts of the first and 

last name match. He then tunes his model so that a link is only chosen if its probability of being a match is 

sufficiently high and sufficiently greater than the second-best candidate’s match probability (if a second-best 

candidate exists). Feigenbaum (2016) then uses this method to link a large number of men in the 1915 Iowa 

Census to the 1940 Census, achieving a match rate of 57 percent.12 

E. Breaking Ties: Probability Weighting and Random Selection 

Another challenge in historical data linkage is the treatment of multiple identical matches on name and 

age (e.g., cases like M3 in Figure 1C and M4 in Figure 1D). Nix and Qian (2015) propose randomly selecting 

among identical candidate matches to choose one from these exact ties. This results in a draw of one of the 

candidate matches with probability 1/Jr, where Jr is the number of ties for a primary record, r. Statisticians 

have, instead, proposed weighting by the conditional probability that the match is correct (Scheuren and 

Winkler 1993, Lahiri and Larsen 2005). In Census linking with limited information, multiple exact ties arise 

often. Simple probability weighting uses information from these identical ties and weights each by 1/Jr.13 The 

results for simple probability weighting and random selection are the same in expectation.14 For brevity, we 

                                                      
12 We focus on Feigenbaum (2016) in this analysis because it is for U.S. data, transparent, and easy to replicate. Many other researchers 
have also incorporated probabilistic and machine learning. Mill (2013) and Mill and Stein (2016) use a method that employs string 
comparators and scoring of matches and maximum likelihood estimation. Similar to the IPUMS-LRS, Antonie et al. (2014) and 
Wisselgren et al. (2014) use a text-string comparator and estimate probability scores using truth data and machine learning techniques. 
Antonie et al. (2014) describe the linkage system they developed to link across historical Canadian census data and their application of 
this system to linkage of men from the 1871 Canadian Census to the 1881 Canadian Census. Their linkage rates range from 17.5 percent 
(Quebec) to 25.5 percent (New Brunswick). Wisselgren et al. (2014) use an approach similar to Antonie et al. (2014) and the MPC to 
link the 1890 and 1900 Swedish Censuses. Depending on their treatment of names, they achieve match rates ranging from 18 percent 
to 70 percent for men and 24 percent to 66 percent for women (Wisselgren et al. 2014, pp. 148). They use parish records as “truth” data 
to show 3 percent Type I error rates in their links. Preliminary work by Eriksson (2016) shows the error rate of the Swedish linked data 
increases by as much as 24 percent if linked using county of birth rather than parish of birth. Another approach is the use of 
Ancestry.com’s probabilistic search algorithm to link records. Bailey et al. (2011) link records of lynching to the 1900 to 1930 U.S. 
Censuses to determine which community characteristics were associated with lynching. Collins and Wanamaker (2015) enter 
information on name, age, and place of birth for black men ages 0 to 40 resident in Southern states in the 1910 Census into Ancestry 
to search for individuals who uniquely match these criteria. They match 19.4 percent of individuals to a unique person in 1930. Eli et 
al. (2016) use probabilistic matching to link military records from the War and Treasury Departments to study the effect of the Civil 
War on migration decisions for those living on the border of Union and Confederate states.  
13 This simple probability weighting differs from Lahiri and Larsen (2005), because match probabilities vary in their data due to a 
specifically defined data generating process and they are able to trim candidate links with lower match probabilities. We do not assume 
a specific data generating process. Furthermore trimming is not possible when all records are equally tied. 
14 To see this, let N=the number of observations, M=the number of primary records with multiple exact ties as their best matches, Jr the 
number of ties for a primary record r=1, 2, …, M. Assuming that one of the ties is the correct link, the expected number of false matches 
for records with ties is ∑ 𝐽𝐽𝑟𝑟 − 1 𝐽𝐽𝑟𝑟⁄𝑀𝑀

𝑟𝑟=1  = 𝑀𝑀 −∑ 1 𝐽𝐽𝑟𝑟⁄𝑀𝑀
𝑟𝑟=1  for both random selection and simple probability weighting. As the number 
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summarize these results under Nix and Qian (2015) in this paper’s presentation. 

In summary, existing linking methods involve multiple, interrelated procedures that may improve 

match rates and accuracy and also address problems with tie breaking. Which set of assumptions should 

researchers use in different contexts? What are the implications of using different phonetic name cleaning 

algorithms or weighting exact ties? This paper seeks to answer these questions by presenting a systematic 

comparison of methods in different records and periods.  

II. METRICS OF AUTOMATED METHOD PERFORMANCE 

This paper evaluates the performance of different linking methods for linking U.S. historical data: 

Ferrie (1996); the Iterative Method (Abramitzky et al. 2014); and regression-based prediction (Feigenbaum 

2016). Detailed web appendices, published articles, and posted code make replicating these methods 

straightforward. Ferrie (1996) and Feigenbaum (2016) describe their methods step by step, which we 

implement exactly as described.15 We also present the results for an adaptation of Ferrie (1996) that relaxes 

the common name restriction (i.e., includes names with more than 10 exact matches). We present Feigenbaum 

(2016) using both his regression coefficients for the Iowa Census-1940 training data (labeled “Iowa coef.”) as 

well as coefficients estimated using our ground truth samples (called “estimated coef.”; see Appendix A for 

details and coefficient estimates). To implement Abramitzky et al. (2014), we use the code provided by the 

authors (see Appendix A). Finally, we implement tie breaking by random selection (Nix and Qian 2015) for 

links generated by Ferrie’s method without the uncommon name restriction. We additionally present results 

using different phonetic name cleaning algorithms for each of these algorithms. 

We examine the performance of each algorithm in several high-quality historical samples, including 

the LIFE-M sample of birth certificates linked to the 1940 Census (Bailey et al. 2016), a genealogically linked 

sample of Union Army veterans from the Early Indicators Project (Costa et al. 2017), and the IPUMS-LRS of 

the 1880 Census (Ruggles et al. 2015). Because these ground truth data may also contain errors, we validate 

our conclusions by building a synthetic ground truth (which we create with full knowledge of true links), 

subjecting potential false links to additional independent human reviews, and using variables not used in the 

linking process to characterize errors. We use four main criteria to measure performance:  

(1) Match rate: We calculate the match rate as the share of records that were successfully matched 

                                                      
of multiples increases for a given record, the probability weight on a false match gets smaller as does the weight on the true match. The 
results from probability weighting may differ slightly due to sampling variation. 
15 Unlike Ferrie (1996), we do not limit links based on family continuity. In addition, we treat records with multiple matches after the 
last step as having no link, although Ferrie reports having none of these instances and, therefore, does not indicate how he would have 
dealt with them.  
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from the original sample. Even for perfect matching, this rate is expected to be less than 100 percent 

due to emigration and mortality. Notwithstanding, comparisons across methods are still valid, as 

emigration and mortality affect each sample and, therefore, all of our methods equally. 

(2) Representativeness: We compare the characteristics of the linked samples to the characteristics of 

the unlinked sample using a heteroskedasticity-robust Wald test of the overall significance of the 

covariates in a multivariate, linear probability model with Huber-White standard errors (Huber 

1967, White 1980). The exact variables in the regression vary across datasets. Under the null 

hypothesis that the covariates are jointly unrelated to successful linkage, the Wald statistic should 

be statistically insignificant.16 This approach provides a straightforward, single summary measure, 

and its regression coefficients describe the extent and subgroups that are under-represented. 

Although these first two measures are the most common statistics reported for linked samples, they are 

inadequate to assess link quality. This fact is easily illustrated in an example. Consider a matching algorithm 

that randomly links individuals between two datasets. This algorithm would perform very well in terms of the 

first two criteria, because the entire sample would be matched and identical to the baseline sample in observed 

characteristics (representative). Few researchers, however, would want to work with these data, because—with 

large enough datasets—the incidence of false links would approach 100 percent, rendering the data useless for 

making population inferences. We, therefore, use two more criteria to assess link performance (Abowd and 

Vilhuber 2005, Kim and Chambers 2012): 

(3) False link rate (also called the Type I error rate)17: We compare links for each automated method 

to a measure of the truth. In the synthetic data, we know the true link and take disagreements as 

errors. We also take the hand-linked Early Indicators data as the truth. For the LIFE-M and IPUMS 

data, we include an independent assessment of link quality. For the LIFE-M data, we stage a 

“police line-up.” In the line-up, two independent reviewers see the LIFE-M link, the automated 

method link, and a number of close candidate links, which means that links from the ground truth 

and the automated method have an equal shot at being chosen. This process also allows reviewers 

to identify errors in LIFE-M. For the IPUMS-LRS, we use concordance of parents’ birth places in 

the two linked Censuses—information that IPUMS did not use to link the data—as an independent 

                                                      
16 We implement this in Stata by multiplying the F-statistic reported in Stata following a regression with robust standard errors by the 
relevant degrees of freedom parameter. Note that this test could be very conservative in the sense that it would reject the null hypothesis 
due to one variable’s significance in the regression and does not weight for the ‘importance’ of different covariates.  
17 Computer scientists focus on 1-T1 error rate, which is called “precision.”  
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measure of quality.18 The false positive rate for each method is defined as the share of links that 

disagree with the synthetic ground truth and Early Indicators’ links, the links that reviewers reject 

in the police line-up (LIFE-M), or the links with discordant parents’ birth places (IPUMS-LRS). 

This analysis may understate the true Type I error rate if the ground truths are incorrect or the 

ground truth and the automated method agree on an incorrect link. We also look for evidence of 

systematic measurement error by examining the correlation of false links with baseline 

characteristics. 

(4) False negative rate (also called the Type II error rate)19: This metric captures the fraction of true 

links that are not found, or 1 – Match Rate*(1 – Type I Error Rate). 

Because a central focus of a growing literature is linking to the newly available 1940 Census, we begin our 

analysis with the LIFE-M sample to the 1940 Census.  

III. METHOD PERFORMANCE IN THE LIFE-M DATA 

The LIFE-M sample is based on a random draw from birth certificates from Ohio and North Carolina. 

These birth certificates are then linked to siblings’ birth certificates using parents’ names. We exclude girls 

because they typically changed their name at marriage in this era, making them hard to find as adults in the 

Census (see Appendix B). The linked LIFE-M sample consists of 45,442 boys born from 1881 to 1940 and 

25,352 born in North Carolina and 19,090 born in Ohio.  

The LIFE-M sample of boys was then linked to the 1940 full-count U.S. Census using a semi-

automated process, making use of both computer programming and human input. After cleaning and 

standardizing the data, we use bi-gram matching on name and age similarity within birth state to generate a set 

of candidate links (Wasi 2014).20 Each candidate match is reviewed by two “data trainers” who choose a correct 

link (or no link) from the set of candidates. If the two trainers agree, we treat their choice (link or no link) as 

                                                      
18 We acknowledge that birthplace discordance is a noisy measure of Type I errors, but Bailey et al. (2017) shows that birthplace 
disagreement is correlated with being an incorrect link. Requiring disagreement in both parents’ birthplaces may understate the true 
rate of Type I errors, because 18.7 percent of IPUMS links have at least one disagreement in parent’s birthplace. On the other hand, 
parental birth place discordance may overstate errors if enumerators filled out this variable incorrectly (e.g., indicated state of residence 
instead of birth), if there are errors in imputed family relationships within a household, if an adult misremembers the birthplace of their 
parents, or if there were changes in household composition that would lead to a different father’s birthplace being listed on a child’s 
record (Goeken et al. 2016). Although parental birthplace discordance is noisy measure of Type I errors, limiting the sample to non-
discordant links reduces the Type I error rate. For this reason, IPUMS-LRS also used disagreement in parent birthplaces as part of its 
matching algorithm when matching the 1880 to the 1900, 1910, 1920 and 1930 census samples. 
19 Computer science focus on a similar statistic, “recall.” This is defined as the number of true links found by the algorithm divided by 
number of linkable observations. It is different from 1-T2 error rate in that the false links are excluded from the denominator. In 
historical contexts, it is difficult to know how many individuals have a true links in the data, because mortality rates, emigration, and 
Census under-enumeration are unknown.  
20 A bi-gram algorithm compares two strings by selecting all combinations of two consecutive characters within each string. 
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the truth. In cases where the two trainers disagree, the records are re-reviewed by three new trainers to resolve 

these discrepancies.21 This automated system maintains quality by randomly assigning these discrepancies 

cases among the 15 to 30 trainers who are employed at any time, so it is difficult for trainers to coordinate with 

peers. In addition, random audits provide feedback to trainers about the accuracy of their decisions, and weekly 

meetings help trainers achieve consistent and accurate matches.  

The Family History and Technology Lab at Brigham Young University (BYU) performed two 

independent quality checks of the LIFE-M links. First, BYU research assistants used genealogical methods 

and multiple data sources to hand link 543 of the 19,090 Ohio boys, 241 of which had been linked by LIFE-

M. The BYU team had no knowledge of LIFE-M’s links. Its links, however, agreed with LIFE-M matches 

93.4 percent of the time (16/241 matches were discordant). Second, BYU compared 1,043 LIFE-M links to 

those already on the FamilySearch.org “Tree.” (FamilySearch.org Tree links are created by genealogists and 

users of FamilySearch.org, which are also independent of the LIFE-M process.) For 1,043 birth certificates 

linked to the 1940 Census by LIFE-M and FamilySearch.org users, the LIFE-M links agreed with 

FamilySearch.org users 96.7 percent of the time.  Taking genealogical linking as the gold standard implies that 

LIFE-M’s false link rate is between 3.3 and 6.6 percent. However, not all cases where LIFE-M differs are 

necessarily incorrect. To account for potential errors in the LIFE-M data, we additionally require all links that 

differ from the LIFE-M sample to be re-reviewed using the police-line up process as described in section II.  

A. Match Rates  

Table 1 and Figure 2A describe the match rates for the LIFE-M clerical review and for each automated 

algorithm. Match rates are computed as the share of the baseline sample of 45,442 boys who were successfully 

matched to the 1940 complete count Census. LIFE-M matched 43 percent of the baseline sample, whereas 

Ferrie’s (1996) method matches between 19 and 31 percent of baseline sample, depending on the phonetic 

name cleaning. His match rates fall with phonetic name cleaning, because this cleaning creates more common 

name strings, leading the algorithm to discard more links. As expected, relaxing the uncommon name sample 

restriction (labeled “Ferrie 1996 + common names”) results in higher match rates, ranging from 39 to 43 

percent. Abramitzky et al.’s Iterative Method is very similar to Ferrie with common names and yields 

comparable match rates, ranging from 37 to 39 percent. Feigenbaum’s (2016) regression-based machine 

learning method matches approximately 47 percent of the baseline sample when using Iowa coefficients and 

                                                      
21 “Data trainers” participate in a rigorous orientation process when they receive detailed feedback on their accuracy relative to an 
answer key. They continue this process for 10 to 20 hours per week until their matches agree with the truth dataset 95 percent of the 
time. After completing this orientation, trainers become part of the larger team that conducts independent clerical review. 
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43 percent when we estimate the coefficients using a random sample of the LIFE-M links. As intended, the 

Nix and Qian (2015) method of randomly choosing a match for records with ties substantially increases the 

match rate to between 67 to 82 percent, highlighting how important tie breaking is for historical linking.  

Three findings stand out. First, match rates across methods using the birth certificates are higher than 

in published studies. For instance, the Ferrie (1996) method matches between 19 and 31 percent of our sample 

versus his published figure of 9 percent of all men between 1850 and 1860. Similarly, the Abramitzky et al. 

(2014) algorithm links 37 to 39 percent of the LIFE-M sample, whereas it links only 29 percent in the 2012b 

paper and 16 percent of native-born men in their 2014 paper. This result likely reflects the fact that birth 

certificates have better information than data used in many U.S. Census-linking contexts: (1) they contain a 

complete and correct full name, often including middle names omitted in the Census; (2) they record the exact 

date of birth rather than age in years;22 and (3) state of birth reflects where the birth certificate was recorded 

and so should have less error than Census reports.23 In addition, the LIFE-M boys are on average 24 years old 

in the 1940 Census, so mortality and outmigration are likely lower than in other contexts.  

Second, phonetic name cleaning may increase or decrease match rates, depending upon how it affects 

ties. Although phonetic cleaning may correct for orthographic and transcription errors (tending to increase 

match rates), it may also remove meaningful spelling variation from names and increase ties (tending to 

decrease match rates). This interaction is important for the Ferrie (1996) method. This method’s uncommon 

name restriction (i.e., allowing fewer than 10 potential matches in the 1940 Census regardless of age) results 

in the match rate falling from 31 to 26 (NYSIIS), to 19 percent (Soundex). Because the Nix and Qian (2015) 

method does not require unique matches, phonetic name cleaning unambiguously increases match rates.  

B. Representativeness of the Linked Samples 

We next compare the representativeness of the linked records. Because birth certificates do not contain 

socio-demographic measures found in the Census (race, age, or incomes of the parents), we regress a binary 

dependent variable (1= linked records) on the individual’s exact date of birth24 and the number of siblings in 

the family. In addition, we include as covariates the number of characters in the infants’ (boys’), mothers’, and 

fathers’ names—a characteristic which is strongly positively correlated with years of schooling and income 

from wages in the 1940 Census. Finally, we include the share of family records with a misspelled mother’s or 

                                                      
22 Massey (2017) shows that decreasing the noise in age results in higher match rates and lower Type I error rates. 
23Goeken et al. (2016) compare the first and second enumeration of St. Louis in the 1880 Census, conducted five months apart. They 
find that own birthplace disagreed for 8.4 percent of records, that father’s birthplace disagreed for 17.9 percent of records, and mother’s 
birthplace disagreed for 18.7 percent of records. 
24 Exact day of birth (1-366, due to leap year) is as close to a continuous measure as we can get in historical records, and season of 
birth is strongly correlated with socio-economic in modern data (Buckles and Hungerman 2013). 
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father’s name, which we expect to be negatively correlated with years of schooling and income (Aizer et al. 

2016). Column 1 of Table 2 reports the heteroskedasticity-robust Wald-statistic (p-value beneath) by method 

for the LIFE-M data. Under the null that the links are representative of the underlying population, the Wald-

statistic would be small and the p-value large.  

Consistent with findings in other papers (Abramitzky et al. 2012, Abramitzky et al. 2014, Collins and 

Wanamaker 2015), p-values indicate that we can reject representativeness (i.e., we reject that baseline 

covariates are unrelated to whether a record is linked) for all linking methods. Regression estimates in 

Appendix C show that the LIFE-M ground truth is less likely to link boys with higher incidence of misspelled 

father’s last name, but more likely to link boys with a longer mother’s name. All methods are more likely to 

link children with longer names, indicating that linked records may come from more affluent families. At the 

same time, most methods tend to link children with more siblings, indicating that their families may have been 

less affluent. These findings in part reflect the fact that the linkable sample—those surviving and not emigrating 

before the Census—is not randomly selected. Still, differences in regression coefficients across samples likely 

imply that the linking algorithm itself has consequences for representativeness of the data as well.  This finding 

suggests caution when generalizing findings from the linked data to the population or comparing results across 

samples linked through different matching algorithms.  

C. False Links (Type I Errors) 

Figure 2A and Table 1also describes the share of links that are incorrect using the “police line-up” 

method described in section II. False links are presented in two ways. First, the share of the entire sample 

determined to be wrong for each method is displayed in red in Figure 2A. For slightly less than 1 percent of 

original sample, trainers reversed LIFE-M decisions upon re-review in favor of the link chosen by one of the 

automated methods. Consistent with genealogical validation, these reversals are rare. Second, the column on 

the far right in Figure 2A and in column 5 in Table 1 presents that share of links that are wrong (false positive 

rate). This number is computed by dividing the share of the total sample that is incorrect by the match rate. 

Because the LIFE-M match rate is 43 percent, this implies a Type I error rate of 1.0 percent (approximately 

0.005/0.43). The implications of measurement error are closely linked to the share of incorrect links, so our 

discussion focuses on this second metric.  

Relative to clerical review, the share of false links for automated methods is much higher, ranging 

from 22 percent for Ferrie (1996) to 69 percent for Nix and Qian-Soundex (2015). In his 1996 paper, Ferrie 
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used NYSIIS, which is associated with a 26 percent false link rate in the LIFE-M sample.25 Although 20 years 

old, Ferrie’s (1996) method of selecting uncommon names achieves the lowest Type I error rate at 22 percent. 

Including more common names worsens the share of false links. Holding the rest of Ferrie’s (1996) algorithm 

constant, using common names increases the false match rate by 8 to 13 percentage points, resulting in Type I 

error rates ranging from 30 to 44 percent.  This pattern explains the higher error rates, ranging from 26 to 43 

percent rates of all links for Abramitzky et al. (2014) that includes more common names. Underscoring this 

point is the fact that their robustness check, which eliminates more common names, reduces error rates to levels 

similar to Ferrie (1996) (see Appendix A3). Feigenbaum’s (2016) supervised, regression-based machine 

learning model produces a Type I error rate of 35 percent when using the Iowa coefficients and decreases to 

30 percent when estimated using LIFE-M data. In the case of Nix and Qian (2015), the share of links that are 

wrong ranges from 54 to 69 percent. As noted, a high share of false positives for Nix and Qian (2015) is not 

surprising, because this method randomly selects one link from sets of identical ties on name and age. For 

instance, if 10 identical matches are found, nine of these will be incorrect. Although this method ensures a high 

match rate, the random tie breaking is unlikely to identify the correct match in the majority of cases.  

Importantly, the incidence of Type I error universally increases with the use of phonetic name cleaning 

in our sample. Across methods, using NYSIIS rather than uncleaned names increases Type I error rates by an 

average of 22 percent and as much as 31 percent. Using Soundex rather than uncleaned names increases Type 

I error rates by an average of 48 percent and as much as 65 percent. This increase occurs because, in addition 

to orthographic and transcription errors, phonetic codes remove meaningful spelling variation from names. For 

example, both Soundex and NYSIIS would code “Meyer” and “Moore” as the same name, whereas reviewers 

tend to treat these as different names. By interacting with the requirements of many automated methods that 

names (or a phonetically cleaned names) match exactly, phonetic name cleaning causes some automated 

methods to classify records as links that humans would reject. 

Table 3 shows that false links appear to be systematically related to baseline sample characteristics. 

Our test regresses a binary dependent variable equal to one for false links and zero for correct links on the 

characteristics used in the representativeness analysis: the individual’s exact date of birth, the number of 

siblings, the number of characters in the infant, mother and father’s names; and misspelled names (a common 

measure of illiteracy). Column 1 of Table 3 reports the Wald-statistic by method for the LIFE-M data. For all 

methods, including LIFE-M’s clerical review, p-values of the Wald test are lower than 0.05. These results 

                                                      
25 This error rate consistent with Massey (2017) who uses contemporary administrative data linked by Social Security Number as the 
ground truth. She finds that methods similar to Ferrie (1996) are associated with a 19-23 percent false positive rate.  
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suggest that false links are not random with respect to sample characteristics may complicate inference by 

introducing systematic measurement error into analyses. See Appendix D for the full set of regression results. 

D. Missed Links (Type II Errors) 

Our last analysis compares the incidence of Type I errors to Type II errors which we plot in Figure 2B 

and present in column 9 of Table 1. The horizontal axis shows that Type II error rates tend to be high, ranging 

from a low of 58 percent for LIFE-M to 88 percent for Ferrie (1996)-Soundex (with the uncommon name 

restriction). Of course, the level of these errors is overstated because some infants did not survive until the 

1940 Census, emigrated, or were missed by enumerators in the 1940 Census. We estimate that these factors 

likely account for around 15 percent of missed links.26 Because mortality, emigration, and under-enumeration 

affect all methods equally, these factors do not influence our comparisons across methods.  

To facilitate an overall comparison of methods, Figure 2B plots Type I error rates on the vertical axis 

against Type II error rates on the horizontal axis. A linking method that linked all individuals correctly would 

locate at (0.15, 0), missing only the individuals who are unlinkable. As linking methods become less 

conservative (and, therefore, have lower Type II error rates), we generally expect the share of incorrectly 

classified links (Type I errors) to fall. This expectation predicts a negative relationship between Type II and 

Type I errors. The plot, however, exhibits a positive relationship with a slope coefficient of 1. As methods 

have increased match rates, they have also tended to worsen Type I errors and increase Type II errors.   

In summary, the LIFE-M data suggest that a large share of links used for inference in historical settings 

appear erroneous. Methods aimed to increase match rates such as the use of more common names, phonetic 

name cleaning, and methods for tie-breaking increase the share of false matches and, counter-intuitively, 

increase the share of missed links. Adding to these problems, false links appear to be systematically related to 

baseline sample characteristics, which suggest they might introduce difficult-to-correct measurement error into 

analyses. Next, we examine the robustness of these findings in other high quality linked datasets.  

IV. AUTOMATED METHODS PERFORMANCE IN ALTERNATIVE DATASETS 

Variability in record quality and the skill and care with which microfilmed data are transcribed should 

lead researchers to expect different results in different datasets. Consequently, the LIFE-M results may not 

generalize to other datasets or periods. Moreover, high Type I error rates in the LIFE-M data could result from 

                                                      
26 Based on life tables from 1939 to 1941, we calculate that 8.27 percent of our sample should be un-linkable due to death prior to 1940 
(National Office of Vital Statistics 1948). Moreover, Census analyses estimate that around 5.4 percent of individuals were missed in 
1940 (West and Robinson 1999). This calculation leaves some scope (about 1.5 percentage points) for emigration, which reflects the 
fact that we think emigration for native-born boys would have been much lower than for those born abroad. To the extent that our 
approximation of emigration is too low, the actual Type II errors should be adjusted accordingly. 
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reviewers (trained by the LIFE-M project) making decisions more likely to favor the LIFE-M links.  

To characterize the robustness of our findings in different contexts, we use three alternative high-

quality samples. First, we simulate a synthetic ground truth dataset, so that we know the true link objectively. 

Because our objective truth is not influenced by human reviewers at all, this validation exercise helps interpret 

the exercise with the LIFE-M data. Second, we use the Oldest Old sample from the Early Indicators Project 

that was linked by genealogists and is known to be highly accurate. Third, we use 1850, 1860, 1870, and 1900 

IPUMS-LRS. This section describes each of these samples and then presents the results.  

A. Descriptions of the Synthetic Ground Truth, Early Indicators, and IPUMS-LRS Samples 

We construct the synthetic ground truth in in two steps. First, we take all of our Ohio and North 

Carolina born boys, randomly drop 10 percent to reflect mortality and emigration and drop another 5 percent 

to reflect under-enumeration (see footnote 26). Using the LIFE-M names allows us to retain sample name 

characteristics (e.g., ethnic origin and other conventions and name commonness). To account for orthographic 

differences in enumeration or transcription errors, we add noise to names and ages to reflect age heaping and 

transcription or digitization errors (Hacker 2010, Hacker 2013, Goeken et al. 2016).27 The result is a noisy 

version of the truth for 85 percent of the Ohio and North Carolina boys. Then, we append to a random sample 

of boys from the 1940 Census who were born in Michigan, Indiana, Tennessee and South Carolina. Because 

these states neighbor Ohio and North Carolina, these individuals are incorrect links by construction. We chose 

these states because they retain regional naming conventions and have similar demographic and economic 

characteristics and, consequently, provide good candidate links.  We choose the size of our random sample of 

boys from neighboring states so that our total set of candidate matches (the noisy truth − 15 percent for 

emigration and mortality + incorrect boys) has the same number of observations as in the LIFE-M linking 

exercise described in section III: 3,133,982 boys from the relevant age ranges born in Michigan and Indiana 

for Ohio and 1,904,592 boys born in Tennessee or South Carolina for North Carolina. When linking to this 

dataset, we emulate the common process of blocking on birthplace and consider only the synthetic Ohio data 

as candidate matches for the Ohio boys and only the synthetic North Carolina data as candidate matches for 

the North Carolina boys.  

                                                      
27 To mimic age-heaping, 25 percent of ages are rounded to the closest multiple of 5. We introduce orthographic and transcription 
errors as follows. In 10 percent of cases, the first and middle names are transposed (if a middle name exists) and, in 5 percent of cases, 
the first and last name are transposed. In 5 percent of cases each, the first character of the first name or last name is randomly changed. 
In 5 percent of cases, the second character of the first name or last name is randomly changed. In 5 percent of cases, the third character 
of the first or last name is randomly changed. In 5 percent of cases each, we add a repeated letter to first names (e.g., James -> Jamees) 
or last names. In 5 percent of cases each, a random letter is dropped or two letters are transposed in the first or last name (e.g., Matthew 
-> Mathew or William -> Willaim). In 5 percent of cases each, we replace the first name with an initial. 
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The advantage using this synthetic dataset is that it characterizes the performance of each matching 

algorithm relative to an objective truth similar to the LIFE-M sample. One disadvantage of this approach is 

that the error structure in names and ages is unknown, so our decisions about how to simulate error may be 

incomplete. In robustness checks (omitted for brevity), we find that the patterns of results (although not 

necessarily the exact levels) are very similar under different assumptions. 

Our second sample is the Oldest Old sample of Union Army veterans from the Early Indicators project. 

Costa et al. (2017) created this sample of 2,076 individuals at least 95 years old linked to the 1900 complete-

count U.S. Census using genealogical methods and a rich set of supplementary information. These veterans 

tended to report very complete and accurate information to ensure they would receive their army pensions and 

benefits. Moreover, sources such as gravestone databases, obituaries, newspaper accounts, veterans 

associations and pension files allow multiple cross-validation exercises, ultimately resulting in an extremely 

high match rate of 90 percent among men confirmed to live beyond the 1900 Census. This makes the match 

rates appear higher than in other samples, which do not make adjustments for mortality between census years. 

The Early Indicators project scores matches on a scale of 1 to 4 to indicate their confidence in a match. We use 

1,875 matches coded as the highest quality (1 and 2) as the ground truth sample. Importantly, we do not use 

all possible records for which matches were attempted, so tests of representativeness should be interpreted as 

relative to the set of high quality links, which is not likely representative. 

Our third sample is the IPUMS-LRS, which links the 1850, 1860, 1870 and 1900 Census samples to 

the 1880 full count Census. We restrict attention to men who were age 15 or younger and living with a mother 

and father in the 1850, 1860, 1870 Censuses or ages 15 to 40 in the 1900 Census for a sample of 349,712 men 

linked to the 1880 Census. Because IPUMS-LRS is itself a machine-linked sample, we use discordance in 

parents’ birthplaces across years as an independent check of link quality (described in section II.).28   

B. Results from Alternative Ground Truth Data 

Table 1 presents the match rates for each method in each ground truth. For the synthetic data, the best 

match rate is 85 percent, because 15 percent of the original links are absent by design. Patterns in match rates 

across methods are slightly higher in the synthetic data but generally within a few percentage points of the 

                                                      
28 When linking the 1-percent 1850, 1.2-percent 1860 sample, and 1.2-percent 1870 samples to the full-count 1880 Census, we use only 
men aged 15 and younger and living at home with both their parents in 1850-1870. For the 1.2-percent 1900 sample, we use only men 
who would have plausibly been age 0 to 15 in 1880 and include a five-year age window. When matching people in 1900 to 1880, we 
use men aged 15 to 40 in 1900. We exclude the 1910-1930 data, because there is no identifier on these samples to link the samples to 
the IPUMS-LRS. We restrict attention to people living at home because parent birthplaces are only available for men living at home in 
the 1850-1870 samples, which we require for our birth place discordance validation. We also consider results for our evaluation when 
applying IPUMS-provided person weights for each sample, including those specifically made for the IPUMS-LRS, and we find that 
they do not meaningfully impact the results we offer here. 
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LIFE-M match rates, with the exception of Feigenbaum (2016). Notably, Feigenbaum’s (2016) method 

performs substantially better in the synthetic data than in the LIFE-M data with a match rate of 55 and 60 

percent with the Iowa and estimated coefficients, respectively. The match rates for Early Indicators’ veterans 

linked to the 1900 complete count Census are generally higher than in the LIFE-M sample. This pattern is due 

at least in part to the fact that we are linking a sample that are known to be linkable (i.e., did not die before 

1900). In contrast, the match rates are much lower for all methods in the IPUMS-LRS. This result could reflect 

higher mortality, greater under-enumeration in the 1880 Census, or higher incidence of errors in enumeration 

or transcription.  

Comparisons of match rates across methods in different ground truths also yield patterns similar to 

LIFE-M, although the levels differ. Match rates for Ferrie (1996) are in general lower than other methods and 

decrease with use of phonetic name cleaning. Although differences in record quality, the types of names and 

spelling variations, or other differences in the socio-demographic composition of the samples (i.e., differences 

in country of origin of parents, socio-economic characteristics of individuals represented, etc.) could affect 

conclusions about the role of phonetic name cleaning, the use of NYSIIS and Soundex increases match rates 

as does random selection among ties (Nix and Qian 2015). Finally, as in the LIFE-M data, restricting to a 

sample of uncommon names tends to lower match rates (Ferrie 1996).  

Linked samples also appear unrepresentative across different ground truths. Columns 2 through 4 of 

Table 2 presents a heteroskedasticity-robust Wald-statistic from regressions of whether a record was linked on 

baseline covariates (described in the table notes; see full regression results in Appendix C). For the synthetic 

data, this exercise allows us to test the hypothesis that the non-representativeness in the LIFE-M sample reflects 

the linking algorithm per se. Because we randomly dropped 15 percent of individuals, non-random attrition 

due to differential death, enumeration, or emigration is ruled out by construction. The only reason that the 

linked synthetic sample would not be representative is that the methods link certain groups more systematically 

than others. Consistent with this hypothesis, the Wald-statistics and p-values in column 2 reject 

representativeness for all methods in the synthetic data. 

Column 3 and 4 present these analyses for the Early Indicators and IPUMS-LRS data. As indicated in 

the table notes, data availability requires that we use a slightly different set of covariates across different ground 

truths.29 As in the synthetic data, we reject that the linked samples are representative at the 10-percent 

                                                      
29 For the synthetic dataset, we use the same covariates as in the LIFE-M data when considering representativeness. For the Early 
Indicators data, we use age, speaks English, owns a farm, currently married, foreign born, day of birth by year, literacy, length of first 
and last names, and foreign born status of parents. For the IPUMS-LRS data, we use age category variables, the size of the local place, 
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significance level for all methods except for Abramitzky et al. (2014) used with NYSIIS and with Soundex. 

Nearly all methods are more likely to link individuals with U.S.-born mothers; some methods are more likely 

to link individuals with longer first or last names, while others exhibit the reverse correlation. For the IPUMS-

LRS, we also reject representativeness: linked individuals tend to have fewer siblings, and are less likely to be 

native born, have native-born parents, be married, and live in urban areas.  

In terms of false links, automated methods produce relatively high Type I error rates in each these 

three additional datasets. Despite differences in the match rates, period, and type of records, Figure 3 and Table 

1 show similar patterns (though different levels) in Type I error rates as found in the LIFE-M data. Averaging 

across all methods except the ground truths, roughly one third of links are incorrect, a similar finding to that 

in the LIFE-M data. Furthermore, using phonetic name cleaning and trying to link common names raises the 

share of false matches in all samples, just as in the LIFE-M data by 14 percent with NYSIIS and 32 percent 

for Soundex. Feigenbaum’s (2016) method with estimated coefficients performs better outside the LIFE-M 

sample, achieving the low average of 18 percent errors versus the Ferrie (Name) method averaging 24 percent 

errors in the alternative ground-truth data. In particular, the Feigenbaum (2016) method with estimated 

coefficients does especially well in the synthetic data, achieving a Type I error rate of 16 percent. Part of this 

result may stem from the quality of the training data used in the synthetic case, where the training data was the 

true links that were known to us from having created the data. This evidence suggests that this regression-

based method is well-suited to address the specific age and name perturbations we introduced in the synthetic 

data, but its performance varies considerably in the other ground truth samples. 

A key factor in differences in Type I error rates across datasets is the number of tied links. Notably, 

the higher Type I error rate for the LIFE-M than synthetic data for the Nix and Qian method indicates that the 

number of candidate ties for a given record is higher in the LIFE-M data. This finding provides insight about 

the difference between our synthetic error generating process and the true error process: in practice, very 

common names are less likely to be misenumerated and transcribed. Because our synthetic process creates 

errors as frequently for common and uncommon names, the synthetic data error process lowers the number of 

exact ties by more than happens in the LIFE-M data. Since ties are less common as in Early Indicators and 

IPUMS-LRS, random selection or probability weighting have smaller effects on outcomes. Finally, as with the 

LIFE-M data, Table 3 shows that erroneous links tend to be strongly related to baseline characteristics (full set 

                                                      
birth region, relationship to household head, occupation categories, whether or not the respondent lives at home with parents, whether 
or not the respondent’s parents were foreign born, region of residence, marital status, farm status, number of siblings, and whether or 
not the respondent lives in the same state of birth. We compare representativeness of the matched data by appending on the relevant 
final year Censuses, as these were the data that were used to compute the IPUMS-LRS weights. 
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of results in Appendix D). 

Lastly, in our evaluation of errors in the IPUMS-LRS matches, we find that 4 percent of IPUMS-LRS 

links are probable Type I errors using disagreement in both parents’ birthplaces as a metric. This rate is a higher 

number than reported in IPUMS internal assessments of 0.2 and 2 percent (Goeken et al. 2011) but similar to 

clerically reviewed data like the LIFE-M sample. This rate is substantially lower than the rate we observe with 

other automated matching algorithms, which is one reason we use this as a “ground truth” sample.  

Summarizing these results, Figure 4 plots the relationship between Type I and Type II error rates for 

each method and dataset. The plot describes the mixed progress in historical automated linking since 1996. As 

the literature has moved from the use of Ferrie’s (1996) uncommon name sample and increased match rates, 

methods have also tended to increase Type I errors (and decrease precision). For the synthetic and Early 

Indicators data, Type I and Type II errors exhibit a positive relationship, with slope parameters of 0.43 and 

0.51, respectively. These results reinforce the finding that recent methods have often increased both Type 1 

errors and Type II errors. In contrast, the IPUMS-LRS data show a negative relationship: for an increase in the 

Type II error rate of 0.1, the false positive rate falls by 0.07. There is no obvious reason why these results 

should differ, but they underscore the point that generalizing from one sample to others may prove misleading.  

The main finding is the overall similarity of our results across datasets. Our analyses in four high 

quality linked datasets robustly show that an average of 32 percent of links using common automated methods 

are likely incorrect. Phonetic name cleaning universally increases false link rates by an average of 23 percent 

(14 and 32 percent with NYSIIS and Soundex, respectively), but sometimes by more than 60 percent. Linking 

more common names also worsens false link rates by an average of 30 percent. Methods to break ties through 

random selection or simple probability weighting increase the instance of false links by an average of 40 

percent, but in some cases more than 75 percent. Considering all automated methods in this paper, using 

Ferrie’s (1996) method without common names and without name cleaning achieves the lowest and most robust 

average rate of false matches of 22 percent. Feigenbaum’s (2016) method also achieves an average rate of false 

positives around 22 percent, but this rate is less robust across datasets (varies from 13 to 35 percent of records). 

Finally, erroneous links are systematically related to baseline sample characteristics which suggests they may 

introduce systematic measurement error into analyses.  

V. HOW AUTOMATED METHODS AFFECT INFERENCES 

Our final analysis explores the consequences of Type I and Type II errors for inferences about 

historical rates of intergenerational mobility. Following the intergenerational literature (Solon 1999, Black and 
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Devereux 2011), we consider the following benchmark specification,  

log (y) = π log (x)+ ε , (1) 

where the dependent and independent variables have been rescaled to capture only individual deviations from 

population means. The dependent variable, log(y), refers to the log of son’s wage income in adulthood in the 

1940 Census. The key independent variable, log(x), refers to the parent’s log wage income in the 1940 Census. 

Within this framework, we interpret π as the intergenerational income elasticity. The magnitude of π is an 

important indicator of the role that parents’ income plays in determining their children’s wage earnings. 

Intergenerational mobility is measured as 1- π, which is often regarded as a metric of economic opportunity.  

Our analysis uses the LIFE-M sample of 19,486 boys (43 percent of the 45,442 that were linked to the 

1940 Census) and samples linked using different automated methods to estimate intergenerational mobility. 

Unlike other analyses using the Census and PSID, we must link fathers from birth certificates to the 1940 

Census to obtain their income information. Links for fathers are obtained using only the LIFE-M clerical 

review method, so that father links remain constant in all regressions. By using the same links for fathers and 

different methods to link sons, our analysis describes differences in the estimates that are driven by differences 

in methods used to link sons.  

A. How Type I Errors Affect Inferences 

Different kinds of Type I errors in links for sons may have vastly different implications for inferences 

about intergenerational mobility. Within the regression framework in equation (1), measurement error in son’s 

income (the dependent variable in the regression) that is uncorrelated with father’s income will still allow us 

to estimate π consistently using OLS, though the estimates will be less precise. However, measurement error 

on the right-hand side in father’s income (the independent variable in the regression) is more consequential. 

At first glance, considering measurement error in father’s income seems counter to our problem of using 

different linking methods to link sons. Note, however, that linking a boy to the wrong man in 1940 is equivalent 

to assigning the wrong father’s income to that man.  

Our conceptual framework for thinking about linking-induced measurement error is similar to 

Horowitz and Manski (1995). We assume that a linking method, ℓ, induces Type I error in matches by 

erroneously linking a father to a son (we do not derive bounds here, but that is a useful avenue for future 

research). The presence of this measurement error allows us to divide the sample into two groups, g: one for 

which the links are correct, denoted with a *, and another for which the link is imputed (or incorrectly 

classified), i. Following Greene (2008) and Stephens and Unayama (2017), we decompose the OLS estimate 

of π for a sample linked with method, ℓ, into the sum of within and between covariance for the correct, *, and 
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imputed groups, i. b denotes the between component. Let sxyℓ∗ + sxyℓi = ∑ sxy
ℓg

g = ∑ ∑ �log(xkg) −kg

log(xkg���������)��log(ykg) − log(ykg)������������, sxyℓb = ∑ Ngg �log (xkg)����������� − log (xkg)������������ �log (ykg)����������� − log (ykg���������)� where group 

means are defined with a single bar and overall means are defined by two bars, such that, 

 π�ℓ = sxyℓ

sxxℓ
= sxyℓ∗ +sxyℓi +sxyℓb

sxxℓ
= sxx∗

sxx
π�ℓ∗ + sxxi

sxx
π�ℓi + sxxb

sxx
π�ℓb.  (2) 

Equation (2) shows that an OLS estimator converges in probability to a weighted average of the plim for the 

correct links,  π�ℓ∗, imputed links, π�ℓi and the between group term (* versus i), π�ℓb, where the weights on each 

term reflect the share of variance due to each component, θ: 

 plim π�ℓ = θℓ∗plim π�ℓ∗ + θℓiplim π�ℓi + θℓbplimπ�ℓb.  (3) 

The between group component can be thought of as the “selection” term. In some cases, we expect that the 

plim of the between term to be zero (e.g., if the means of son’s income or father’s income are the same for the 

imputed and correctly linked groups). This could happen in practice if errors (e.g., enumeration error or 

transcription) randomly assign records to these groups. Initially, we assume this term is zero to simplify 

exposition but later relax this assumption. Furthermore, note that if the variances of father income are equal 

across all groups, the weights 𝜃𝜃 become the share of the sample in each category. 

 Now, consider the probability limit of the two remaining non-weight terms, π�ℓ∗ and π�ℓi. The first term 

represents the elasticity for the linked subsample, plim π�ℓ∗ = π. The second term is an estimated elasticity for 

the imputed observations. If we assume cov(ε,, log (xℓi))=0, then  

 plim π�ℓi = cov�log (y∗),log (xℓi)�
var(log (xℓi))

= cov�πlog (x∗)+ε,log (xℓi)�
var(log (xℓi))

= π cov�log (x∗),log (xℓi)�
var(log (xℓi))

  (4) 

If the imputed father’s income is the same as the true father’s income, log (x∗) = log�xℓi�, then plim π�ℓ∗ =

plim π�i. However, if cov�log (x∗),log (xℓi)�
var(log (xℓi))

≠ 1, then plim π�ℓi ≠ π and the degree of the inconsistency depends on 

the relationship between the true and imputed father’s income. 

There are several special cases of interest. First, suppose that there is no relationship between the true 

father’s income and the imputed father log income, or that cov�log (x∗),log (xℓi)�
var(log (xℓi))

= 0. Then, the plim π�ℓi = 0 and 

the estimator is inconsistent in proportion to the share of imputed links, plimπ�ℓ = θℓ∗π. Second, consider the 

case where imputed father’s income equals the true father’s income plus noise, or log�xℓi� = log(x∗) + u. 

Under the assumptions of the classical errors in variables model (plim(uε) = 0, plim�ulog (x∗)� = 0 , and 

plim�ulog (y)� = 0), then plim π�ℓi = θℓi � σx2

σx2+σu2
� π. Moreover, plim π�ℓ = (1 − θℓ∗) π + θℓ∗ � σx2

σx2+σu2
� π. 

Third, it is well known that non-classical measurement error for the imputed fathers could lead to under or 

over-statement of the parameter of interest, plim π�ℓi > π or plim π�ℓi < π.  

As a final exercise, consider the effect of Type I error on inference using Nix and Qian’s (2015) method 
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of random selection among identical ties. Consider a setting where 𝑁𝑁 is the total number of records that one 

wishes to link and for M≤N of these records, r=1,2, …, M, there are 𝐽𝐽𝑟𝑟 candidate matches that are exact ties. 

For instance, if the first record with ties involves 30 potential matches for a John Smith, age 40, then for r=1, 

𝐽𝐽1=30. A second record, however, may only have 4 ties, so r=2 and 𝐽𝐽2=4. Assume that there is one correct link 

among the ties for record, r, indexed by j=1, log(x1), and imputed (but incorrect links) log�x𝑗𝑗�, j=2,…, 𝐽𝐽r. 

From the researcher’s perspective, the correct link is unknown and the probability that any one of the ties is 

correct is 1
Jr

. Under the Nix and Qian (2015) method, one of these records would be selected at random to use 

in the analysis. By the same logic as in equation (2), a regression estimate of the intergenerational income 

elasticity can be decomposed into a variance-weighted sum of elasticities for three groups of observations—

correct, unique links, denoted *; a correct link from the ties, denoted j=1; incorrect links from the ties, denoted 

j>1, and a “selection term” (which we assume is zero). Therefore, the estimated elasticity will be π�ℓ =

sxx∗

sxx
π�∗ℓ + sxx

j=1 
sxx

π�j=1,ℓ + sxx
j>1,ℓ

sxx 
�∑ sxx

j,ℓ

sxx
j>1,ℓ π�jℓ

Jr
j=2 � and plim �∑ sxx

jℓ

sxx
j>1,ℓ π�jℓ

Jr
j=2 �  = ∑ λj

Jr
j=2 plim πjℓ. Therefore, the 

estimate of the intergenerational income elasticity using random selection to break ties is,  

 plim π�ℓ = π �θ∗ℓ + θj=1,ℓ + θj>1,ℓ �∑ λjψjℓ
Jr
j=2 �� (5) 

Note that this estimator is inconsistent if ψjℓ = cov(log(x1),log�xj�)
σxj
2 <1.30 The degree of inconsistency is, again, 

determined by how much information is in the incorrect ties. If the weights, θ and λ, simplify to the expected 

shares of observations in each group (as they would if variances were equal across all groups as we note above), 

the degree of inconsistency is also related to the share of all records with exact ties, M
N

 (implicit in the weight), 

as well as the number of multiples for each record, Jr.  

These conclusions are identical if the elasticity is estimated with a probability-weighted estimator 

where the weight is the probability that any exact multiple in a set of exact multiples is the true match, or 1/𝐽𝐽𝑟𝑟. 

The probability limit of the estimator will be the same, although the performance of these methods may diverge 

in smaller samples.31 This result is intuitive because the same share of imputed observations would be present 

using probability weighting or random selection for exact ties. In summary, the presence of imputed links—

either through random selection or probability weighting—will generally lead to inconsistency, with the degree 

of inconsistency increasing in the number of records with ties, the number of exact ties for a given record, as 

                                                      
30Note that plim(πj) = cov(log(y1),log�xj�)

σxj
2 = cov(πlog (x1)+ε,log�xj�)

σxj
2 = cov(log(x1),log�xj�)

σxj
2  π.  

31 Reducing the influence of observations with less information is why some statisticians recommend truncating lower probability links, 
where presumably the covariance between the income of the father for the imputed link and the true link is small (Scheuren and Winkler 
1993, Lahiri and Larsen 2005). Although Lahiri and Larsen (2005) propose an exactly unbiased estimator of π, this estimator only 
holds when the estimated link probability is uncorrelated with father’s income and where an exact data generating process for links is 
estimated. But this result breaks down in many historical settings, because the distribution of matching variables (name, age, and birth 
place) are correlated with outcomes and, often, a parent’s socioeconomic status (see Appendix C and D). 
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well as the relationship between imputed observation and the truth. After examining the role of Type II errors, 

we examine the quantitative importance of these errors in a case study.  

B. How Type II Errors Affect Inferences 

Social scientists are accustomed to working with small representative samples. As long as links are 

representative of the underlying population, Type II error rates should only reduce precision. Across linking 

methods and datasets, however, this paper finds evidence that samples of links are not representative. If Type 

II errors result in the selective representation of different groups and the relationship of interest is 

heterogeneous across these groups, Type II errors may also lead to inconsistent estimates of population 

parameters in linked samples. Heterogeneity in intergenerational income elasticities is believed to exist for 

many reasons. For instance, researchers have concluded that intergenerational income elasticities are larger for 

blacks than whites (Duncan 1968, Collins and Wanamaker 2016, Margo 2016) and that patterns of mobility 

are substantially different for farmers compared to non-farmers (Hout and Guest 2013, Xie and Killewald 

2013). If one group is over-represented in the linked data, this will bias inferences about the historical rate of 

the population’s intergenerational mobility.  

To make this point concretely, assume that the two groups in equation (3) are a high mobility, h, and 

low mobility, l (rather than correctly and imputed links). Denote the intergenerational income elasticities of 

these groups as πh and πl where (where πh ≤ πl), and the share of the variation attributable to each group is 

θh and θl, respectively. Finally, assume that there are no errors in linking. Therefore, following the logic of 

equation (2), the regression estimate of the population elasticity parameter for a given linking method, ℓ, is,  

 plim π�ℓ = θℓhplim π�ℓh + θℓ𝑙𝑙plim π�ℓ𝑙𝑙 + θℓbplimπ�ℓb (6) 

The inconsistency of the probability limit in equation (5) depends upon several factors. First, if πh=π𝑙𝑙   and the 

means for both groups of fathers and sons are the same, the selection term is 0 and having a non-representative 

sample will not affect inference. Having a representative sample matters only to the extent that the relationship 

of interest varies across those groups or the group’s characteristics differ. Second, if πh ≠ π𝑙𝑙 (and the group 

means are the same), Type II errors that effectively decrease the share of variation attributable to one group 

will lead to an inconsistent estimate of the population intergenerational elasticity parameter. Suppose that a 

linking method introduces Type II errors, which effectively decreases the variation attributable to observations 

representing the low mobility group. (In the extreme, high rates of Type II errors could imply that none of the 

total variation is attributable to low mobility group.) These Type II errors would result in an elasticity estimate 

that puts lower weight on the low-mobility group, resulting in a lower estimated elasticity. Third, if πh=π𝑙𝑙 but 

the group means are different, then the selection term will not be 0 and inferences will be affected in an 
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ambiguous way. Both effect heterogeneity and selection, of course, may vary greatly across samples. The 

following case study examines the combined implications of non-representativeness (through heterogeneity 

and selection) using inverse propensity weights to adjust for differences in observed characteristics (DiNardo 

et al. 1996, Heckman et al. 1998). 

C. Results: Intergenerational Elasticity Estimates from the 1940 Census 

Different linking methods could have large effects on intergenerational income elasticity estimates 

through their influence on both Type I and Type II error rates. Figure 5A reports estimates of the 

intergenerational elasticity of income using samples of sons linked using different methods. For the LIFE-M 

links, we estimate an income elasticity of 0.22 between fathers and sons. Consistent with lifecycle bias and 

transitory income fluctuations attenuating our estimates, this estimate is lower than modern estimates.32 These 

biases, however, should not affect our comparisons across different linking methods for the same set of records.  

Several important patterns emerge. First, higher Type I errors in matching tend to be associated with 

smaller intergenerational elasticities. Consistent with attenuation described in equations (4) and (5), estimates 

using linking samples with higher Type I error rates tend to be smaller. Using NYSIIS and Soundex tends to 

increase Type I error rates and produce smaller estimates than using the reported name. Moreover, Nix and 

Qian’s (2015) method of random selection among ties results in Type I error rates ranging from 54 to 69 

percent and yields intergenerational income elasticity estimates of 0.19 to 0.12.  

To examine the role of non-representativeness, we use inverse propensity-score weights to reweight 

the linked sample to have the characteristics of the LIFE-M population (Bailey et al. 2017).33 Figure 5B shows 

that the reweighted intergenerational income elasticities tend to be slightly smaller in magnitude than the 

unweighted Figure 5A estimates. This result may stem from the modest over-representation of larger, less-

mobile families in the linked sample. The effects of non-representativeness (as measured by the changes 

induced by reweighting) on observed characteristics, however, appears modest in comparison to the role of 

                                                      
32 For instance, Chetty et al. (2014) estimates 0.33, which is itself smaller than estimates for the same period using survey data 
(Mazumder 2015). Life-cycle bias may attenuate the estimated intergenerational elasticity regardless of matching method (Mazumder 
2005, Haider and Solon 2006, Black and Devereux 2011, Mazumder 2015). In addition, wage income observed in the 1940 Census is 
an imperfect measure of permanent income, and we expect the single year observation of income for both generations can generate 
downward bias in estimated elasticities due to the importance of transitory income (Solon 1992, Zimmerman 1992, Mazumder 2005). 
On the other hand, the absence of farm and self-employed income in 1940 may lead this analysis to overstate mobility by excluding 
father-son pairs of famers—an occupation that tends to be highly persistent across generations (Hout and Guest 2013, Xie and Killewald 
2013). However, lifecycle bias and transitory income fluctuations should have similar effects for all methods. 
33 To construct these weights, we first run a probit model of link status (for each method) on covariates, X, which include an indicator 
variable for presence of middle name, length of first, middle, and last name, polynomials in day of birth, polynomials in age, an index 
for first name commonness, an index for last name commonness, number of siblings, an indicator variable for presence of siblings, and 
the length of own name as well as father’s and mother’s names. We then use the estimated propensity of being linked, 𝑃𝑃𝑖𝑖(𝐿𝐿𝑖𝑖 = 1|𝑿𝑿𝒊𝒊), 
for each method and reweight observations by (1 − 𝑃𝑃𝑖𝑖(𝐿𝐿𝑖𝑖 = 1|𝑿𝑿𝒊𝒊)) 𝑃𝑃𝑖𝑖(𝐿𝐿𝑖𝑖 = 1|𝑿𝑿𝒊𝒊) ∗ 𝑞𝑞 (1 − 𝑞𝑞⁄⁄ ), where 𝑞𝑞 is the share of records that 
are linked. Distributions of inverse propensity score weights are plotted in Appendix E. 
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errors in linking.  

While estimates using machine-linked samples appear attenuated relative to LIFE-M, the attenuation 

is not always as severe as one might expect with random error. For instance, Ferrie (1996) with name results 

in a 22 percent Type I error rate but the intergenerational elasticity estimate obtained from these links is one 

percentage point different from the LIFE-M estimate. If the selection term in equation (3) were zero, and the 

signal to noise ratio in equation (4) were zero, one would expect to estimate 0.16 (=0.78*0.21). Therefore, one 

might think that fathers’ incomes for imputed links positively covaries with the truth or that the Ferrie (1996) 

is positively selected on immobility. For tie-breaking methods, however, the attenuation appears more 

consistent with random error. For instance, Nix and Qian (2012) with Soundex shows a 69 percent Type I error 

rate and the intergenerational elasticity estimate is 0.12 in Figure 5A.  

Figure 5C and Figure 5D examine the effects of incorrect matches directly by plotting π�∗, or the 

estimated elasticity for the “true” links (plotted as ο with 95-percent confidence intervals) and  π�i, or the 

estimated elasticity for the “false” links (plotted as ×) from separate regressions. Without the incorrect links, 

the estimates of the intergenerational income elasticity are very similar across groups at around 0.23 without 

weights (Figure 5C) and 0.21 with inverse propensity-score weights (Figure 5D). The comparability of 

unweighted estimates is especially striking given how different in size and representativeness the samples are. 

For instance, the number of true links varies from around 482 for Ferrie (Soundex) to 1,600 for Nix and Qian 

(Soundex), but the unweighted intergenerational income elasticities are estimated to be 0.22 and 0.21, 

respectively. Consistent with Type I errors introducing attenuation, π�i tend to be smaller than π�∗ across 

methods. And, consistent with the observations about the magnitudes above, the unweighted estimated 

intergenerational elasticities for the imputed links for Ferrie (Name) is 0.11 and only 0.04 for Abramitzky et 

al. (Soundex) and 0.05 for Nix and Qian (Soundex)—a statistical zero in the latter two cases. On the other 

hand, the correlation of incorrect links for Feigenbaum (2016) is very high, which show how the regression-

based classification system selects links with a very high correlation to the true link—even when false. In short, 

the inclusion of imputed links appears to have large effects on OLS estimates of the intergenerational income 

elasticities, biasing them toward zero in most cases. After purging incorrect links, reweighting the linked 

sample to resemble the set of birth certificates has a minimal effect on the estimates.34 

                                                      
34 Reweighting our sample to represent individuals in the 1940 Census, as we do in Appendix E,  produces estimates that are closer to 
the LIFE-M elasticity across all methods—even  when incorrect links are included. Interestingly, this reweighting procedure sometimes 
assigns lower p-score weights to matches that are incorrect, thus reducing the influence of these observations for some methods 
(Abramitzky et al. 2004, NYSIIS). For other methods (Ferrie 1996-Name + uncommon names; Nix and Qian Name), incorrect links 
receive more weight substantially attenuating the estimates. Of course, the appropriate way to re-weight a sample depends upon the 
research question of interest.  
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VI. LESSONS FOR HISTORICAL RECORD LINKING 

New large-scale longitudinal and intergenerational data for the U.S. have the potential to revolutionize 

empirical social science. The need for reliable linking methods is especially high in the U.S., where the linking 

variables in public data tend to be more limited than in modern administrative data and relative to records in 

other countries. Using different U.S. ground truth samples, this paper documents how linking errors could have 

large effects on scientific conclusions and policy inferences. Not only are linked samples non-representative, 

existing algorithms yield very high rates of false matches. Our case study of intergenerational income 

elasticities shows that some combinations of linking assumptions attenuate estimates by more than 50 percent. 

Of course, linking based on more variables—especially those with many values (e.g., social security numbers 

or exact dates of birth)—or higher quality information (e.g., administrative records rather than individual 

reports) will attain lower error rates than we document. Although we cannot diagnose how much linking 

assumptions matter in other contexts, our results broadly suggest that reducing false matches and choosing 

methods that generate false matches more highly correlated with the truth are crucial for improving inferences 

with linked data.  

For limited linking variables which are measured with error, clerical review (e.g., LIFE-M) and 

genealogical methods (e.g., Early Indicators) attain much lower error rates than machine algorithms. Because 

these labor-intensive methods are cost prohibitive for most projects, our findings recommend several easy-to-

implement and lower-cost changes to current practice.  

First, we recommend careful examination of a sample of links resulting from automated algorithms. 

Applying close scrutiny to a sample links allows researchers to diagnose and potentially remedy algorithm 

errors arising for specific records or in a particular historical context.  

Second, we recommend against using phonetic cleaning and using commonly occurring observations.  

Limiting attention to distinctive observations, like Ferrie’s (1996) approach of only linking uncommon names 

or Abramitzky et al.’s (2014) robustness check using unique name-age combinations in a five year window 

(see Appendix A), reduces sample sizes but substantially reduces false matches. In contrast, the common 

practice of weighting ties equally by the inverse of their empirical frequency incorporates a large number of 

known false links and may result in substantial attenuation. 

Third, using even a small sample of clerically reviewed data to train a machine-learning algorithm (or 

applying the results of another researcher’s model based on similar training data) can improve the quality of 

linked samples. Feigenbaum’s (2016) method or Ruggles et al.’s (2015) SVM are examples of this. Notably, 

even when these machine-methods make incorrect links, the correlation of these links with the truth appears 
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to be much higher than for other algorithms and these errors, therefore, have less impact on inferences.  

A fourth strategy for reducing Type I errors is to combine multiple methods and use the intersection of 

the links across sets—a form of ensemble machine learning in the spirit of “bagging” or “boosting.” By 

construction, requiring links to be classified by more than one algorithm should tend to decrease match rates. 

But, to the extent that different methods make errors for different reasons, taking the set of common links 

leverages the common strengths of different methods. For example, when using LIFE-M data, combining 

methods like Ferrie (1996) and Feigenbaum (2016) drives the match rate to 25 percent and the Type I error 

rate to 12 percent—much lower than the 22 to 30 percent error rate for either method individually. Using this 

same combination in other ground truths achieves a similarly low error rate. In addition, this technique provides 

a low-cost way to identify false links and remedy algorithm issues contributing to bad links.  

After purging samples of incorrect links, we recommend using multiple record features to assess and 

improve sample representativeness. Survey methods for constructing weights and allocating values are easy to 

implement and have well documented properties. Making greater use of common record features such as name 

length or other socio-demographic information also allows researchers to use survey research methods or, as 

is more common in economics (and used in this paper), construct inverse-propensity weights to improve 

representativeness.35 A close examination of what is referred to as the common support assumption also 

informs researchers about where more time-intensive genealogical or clerical review methods may increase 

the representation of hard to link groups.  

Our findings suggest that the quality of inferences with linked data may be improved by putting less 

emphasis on increasing sample sizes (which in our analysis tend to be associated with higher rates of false 

matches) and more emphasis on increasing the share of correct links. In the parlance of machine learning, 

“precision” should be weighted more heavily than “recall.” Modern surveys such as the Panel Survey of 

Income Dynamics and National Longitudinal Surveys demonstrate that much can be learned from high quality, 

small samples with summary statistics and weights to describe and adjust for non-representativeness. 

Ultimately, increasing sample sizes for difficult-to-link subgroups (such as individuals with common names) 

will not likely be solved without more data to disambiguate similar records. More research to uncover data to 

describe the groups underrepresented in linked samples will serve both to broaden knowledge about them and 

improve the ability of modern machine-learning methods to link them. 

                                                      
35 See Bailey et al. (2017) for a simple implementation description. 
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Figure 1. Examples of Common Linking Problems in Historical Samples 
 

   A. Albert Crock  (Example of M1)   B. Raymond Bernaciak  (Example of M2)  

 

C. Author Smith (Example of M3)              D. Charles Hall (Example of M4)   
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Figure 2. Performance of Automated Linking Methods using the LIFE-M Data 

A. Match Rates and False Links  

 
B. Type I versus Type II Errors 

Notes: Panels use the LIFE-M sample of Ohio boys linked to the 1940 Census using different automated methods. See 
Table 1 for numerical estimates. 
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Figure 3. Share of Matches Incorrect (Type I Error Rate) by Method and Ground Truth 

 

Notes: Type I error is the share of links that are incorrect. See text for details and descriptions of samples. See Table 
1 for numerical estimates for match rates, Type I errors, and Type II errors. 

Figure 4. Type I vs. Type II Error Rates by Method and Data 

 

Notes: See Figure 3 notes.   
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Figure 5. Intergenerational Income Elasticity Estimates 
 

A. Unweighted Linked Samples 
 

B. Inverse Propensity-Score Weighted Linked Samples 

  

.23

.2

.17

.14

.2

.18

.23

.22

.2

.16

.14

.22

.19

.16

.12

.1 .15 .2 .25 .3

Nix and Qian 2015 (SDX)

Nix and Qian 2015 (NYSIIS) 

Nix and Qian 2015 (Name) 

Feigenbaum 2016 (LIFE-M)

Feigenbaum 2016 (Iowa)

Abramitzky et al. 2014 (SDX)

Abramitzky et al. 2014 (NYSIIS)

Abramitzky et al. 2014 (Name)

Ferrie 1996 (SDX) + common names

Ferrie 1996 (NYSIIS) + common names

Ferrie 1996 (Name) + common names

Ferrie 1996 (SDX)

Ferrie 1996 (NYSIIS)

Ferrie 1996 (Name)

LIFE-M

.2

.18

.17

.13

.18

.16

.22

.2

.18

.16

.13

.21

.21

.18

.14

.05 .1 .15 .2 .25 .3

Nix and Qian 2015 (SDX)

Nix and Qian 2015 (NYSIIS) 

Nix and Qian 2015 (Name) 

Feigenbaum 2016 (LIFE-M)

Feigenbaum 2016 (Iowa)

Abramitzky et al. 2014 (SDX)

Abramitzky et al. 2014 (NYSIIS)

Abramitzky et al. 2014 (Name)

Ferrie 1996 (SDX) + common names

Ferrie 1996 (NYSIIS) + common names

Ferrie 1996 (Name) + common names

Ferrie 1996 (SDX)

Ferrie 1996 (NYSIIS)

Ferrie 1996 (Name)

LIFE-M

*** 

*** 

** 

*** 

*** 

*** 

*** 

* 

*** 

** 

*** 

* 



  

Automated Linking Methods – 36 

C. Separate Regressions for Imputed and Correct Links, Unweighted 
 

D. Separate Regressions for Imputed and Correct Links, Weighted 

  
Notes: Differences in estimates reflect the incidence of Type I and Type II errors. The sample sizes of father-son pairs are lower than when matching sons only, because not all linked sons had income 
from wages and fathers who were also linked who also had income from wages. Sample sizes are 1,702 for LIFE-M, 1,282 for Ferrie 1996 (Name), 1,034 for Ferrie 1996 (NYSIIS), 684 for Ferrie 
1996 (Soundex), 1,699 for Ferrie 1996 (Name) + common names, 1,644 for Ferrie 1996 (NYSIIS) + common names, 1,406 for Ferrie 1996 (SDX) + common names, 1,549 for Abramitzky et al. 2014 
(Name), 1,549 for Abramitzky et al. 2014 (NYSIIS), 1,364 for Abramitzky et al. 2014 (SDX), 2,371 for Nix and Qian (Name), 2,683 for Nix and Qian (NYSIIS), 2,884 for Nix and Qian (SDX), 1,814 
for Feigenbaum 2016 (Iowa), and 1,715 for Feigenbaum 2016 (LIFE-M). * indicates that the estimate is statistically different from the LIFE-M estimate at the 10-percent, ** at the 5-percent, and *** 
at the 1-percent levels.
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Table 1. Summary of Match Rates and Error Rates, by Method and Ground Truth 

 
Notes: EI stands for the “Early Indicators” data. Each estimate in the table is for a match rate, Type I error rate, or Type II error rate as described in 
text. These estimates are depicted in graphical form in Figures 2, 3 and 4. 

   A. Match Rates     B. Type I Error Rate (False Links)    C. Type II Error Rate (Missed links) 
  LIFE-M Synthetic EI IPUMS LIFE-M Synthetic EI IPUMS LIFE-M Synthetic EI IPUMS 

Ground Truth 0.43 0.85 0.90 0.09 0.01 0.00 0.00 0.05 0.58 0.15 0.10 0.91 
Ferrie 1996 (Name) 0.31 0.31 0.45 0.20 0.22 0.23 0.23 0.20 0.76 0.76 0.65 0.84 
Ferrie 1996 (NYSIIS) 0.26 0.26 0.43 0.21 0.27 0.27 0.24 0.21 0.81 0.81 0.67 0.83 
Ferrie 1996 (SDX) 0.19 0.20 0.38 0.19 0.33 0.31 0.26 0.24 0.88 0.86 0.72 0.86 
Ferrie 1996 (Name) + common names 0.43 0.43 0.52 0.29 0.30 0.34 0.27 0.22 0.70 0.72 0.62 0.77 
Ferrie 1996 (NYSIIS) + common names 0.43 0.44 0.53 0.35 0.37 0.40 0.28 0.24 0.73 0.74 0.62 0.73 
Ferrie 1996 (SDX) + common names 0.39 0.41 0.53 0.35 0.44 0.45 0.33 0.28 0.78 0.77 0.64 0.75 
Abramitzky et al. 2014 (Name)  0.38 0.38 0.44 0.23 0.26 0.30 0.23 0.20 0.72 0.73 0.66 0.81 
Abramitzky et al. 2014 (NYSIIS)  0.39 0.40 0.48 0.29 0.34 0.34 0.25 0.22 0.74 0.74 0.64 0.77 
Abramitzky et al. 2014 (SDX)  0.37 0.39 0.50 0.31 0.43 0.38 0.30 0.25 0.79 0.76 0.65 0.77 
Feigenbaum 2016 (Iowa coef.) 0.47 0.55 0.57 0.33 0.35 0.21 0.19 0.19 0.70 0.57 0.54 0.73 
Feigenbaum 2016 (estimated coef.) 0.44 0.60 0.61 0.16 0.30 0.16 0.20 0.13 0.70 0.50 0.51 0.86 
Nix and Qian  2015 (Name) 0.67 0.68 0.55 0.40 0.54 0.50 0.29 0.27 0.69 0.66 0.61 0.71 
Nix and Qian  2015 (NYSIIS) 0.76 0.79 0.62 0.54 0.61 0.57 0.35 0.31 0.70 0.66 0.60 0.63 
Nix and Qian 2015 (SDX) 0.82 0.87 0.67 0.61 0.69 0.64 0.42 0.35 0.75 0.69 0.61 0.60 
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Table 2. Wald Test of Representativeness of Linked Sample, by Dataset and Linking Method 

 

  LIFE-M Synthetic Data 
Early 

Indicators 
IPUMS - 

LRS 
Ground Truth 1,029 10.1 N/A 16,669 
p-value 0.00 0.26  0.00 
Ferrie 1996 (Name) 838.5 565.2 42.3 25,325 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (NYSIIS) 544.6 417.8 38.4 23,105 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (SDX) 146 124.0 56.2 17,255 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (Name) + common names 605.3 541.5 36.5 27,470 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (NYSIIS) + common names 594.4 636.1 16.4 26,634 
p-value 0.00 0.00 0.09 0.00 
Ferrie 1996 (SDX) + common names 345.2 488.9 24.8 22,174 
p-value 0.00 0.00 0.01 0.00 
Abramitzky et al. 2014 (Name) 727.9 426.8 36.5 24,509 
p-value 0.00 0.00 0.00 0.00 
Abramitzky et al. 2014 (NYSIIS) 640.2 566.3 15.7 24,909 
p-value 0.00 0.00 0.11 0.00 
Abramitzky et al. 2014 (SDX) 412.5 451.2 16.1 22,876 
p-value 0.00 0.00 0.10 0.00 
Feigenbaum 2016 (Iowa coef.) 471.9 129.5 53.4 22,690 
p-value 0.00 0.00 0.00 0.00 
Feigenbaum 2016 (estimated coef.) 782.7 253.5 27.3 39,242 
p-value 0.00 0.00 0.00 0.00 
Nix and Qian 2015 (Name) 739.9 500.2 62.8 39,915 
p-value 0.00 0.00 0.00 0.00 
Nix and Qian 2015 (NYSIIS) 825.2 345.0 54.2 46,453 
p-value 0.00 0.00 0.00 0.00 
Nix and Qian 2015 (SDX) 672.1 94.2 45.5 48,038 
p-value 0.00 0.00 0.00 0.00 
Observations 45,417 45,417 1,774 32,959,605 

 

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression of a binary dependent variable 
(=1 for linked record) for samples described in the text. Relevant p-values are reported in italics. The covariates 
included in the LIFE-M sample and synthetic data are age, number of siblings, length of names of individuals and 
parents, fraction of siblings with misspelled parents' names, and an observation coming from North Carolina. The 
covariates included in the Early Indicators data are age, speaks English, owns a farm, currently married, foreign born, 
day of birth by year, literacy, length of first and last names, and foreign born status of parents. The covariates included 
in the IPUMS data are the number of siblings, age, living with parents, foreign-born status of parents, indicators for 
geographic location, farm status, is currently married, indicators for occupation, race, and foreign-born status. These 
sample sizes are slightly smaller due to missing values. See appendices for full regression results. 
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Table 3. Wald Test of Whether Erroneous Links are Unrelated to Baseline Characteristics 

 

  LIFE-M 
Synthetic 

Data 
Early 

Indicators 
IPUMS -

LRS 
Ground Truth 212.5 N/A N/A 743.1 
p-value 0.00   0.00 
Ferrie 1996 (Name) 414.4 83.5 39.1 1,957 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (NYSIIS) 257.7 44.0 22.1 2,708 
p-value 0.00 0.00 0.01 0.00 
Ferrie 1996 (SDX) 114.2 9.9 13.7 3,101 
p-value 0.00 0.27 0.19 0.00 
Ferrie 1996 (Name) + common names 877.2 145.1 43.5 3,625 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (NYSIIS) + common names 609.1 82.7 34.1 5,431 
p-value 0.00 0.00 0.00 0.00 
Ferrie 1996 (SDX) + common names 301.2 32.7 27.2 7,815 
p-value 0.00 0.00 0.00 0.00 
Abramitzky et al. 2014 (Name) 829.5 174.3 50.8 2,639 
p-value 0.00 0.00 0.00 0.00 
Abramitzky et al. 2014 (NYSIIS) 673.7 107.5 37.6 4,246 
p-value 0.00 0.00 0.00 0.00 
Abramitzky et al. 2014 (SDX) 375.3 44.6 27.3 6,088 
p-value 0.00 0.00 0.00 0.00 
Feigenbaum 2016 (Iowa coef.) 1698.0 492.9 25.9 2,330 
p-value 0.00 0.00 0.00 0.00 
Feigenbaum 2016 (estimated coef.) 1788.0 439.2 19.9 989.8 
p-value 0.00 0.00 0.01 0.00 
Nix and Qian 2015 (Name) 3130.0 682.9 40.7 7,796 
p-value 0.00 0.00 0.00 0.00 
Nix and Qian 2015 (NYSIIS) 2084.0 362.4 56.7 14,472 
p-value 0.00 0.00 0.00 0.00 
Nix and Qian 2015 (SDX) 1078.0 91.0 57.2 22,514 
p-value 0.00 0.00 0.00 0.00 

 

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression of a binary dependent variable 
(=1 for falsely linked record) for samples described in the text. P-values are reported in italics. The covariates included 
in each regression are indicated in Table 2 notes. See appendices for full regression results. 
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