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1 Introduction

Recent research across several domains highlights the importance of retail price adjustment to local

shocks. Beraja, Hurst, and Ospina (2016) and Stroebel and Vavra (2015) find that local retail prices

increase in response to positive shocks to consumer demand, and argue that such price responses have

important implications for understanding business cycles. Atkin and Donaldson (2015) show that

retail prices are higher in more remote areas due to intra-national trade costs, and that consumers

in these areas benefit less from globalization as a result. Jaravel (2016) shows that prices have fallen

more in high-income areas, possibly due to higher rates of product innovation, and that this has

significantly exacerbated rising inequality. In interpreting the data, authors in these areas typically

start from models in which local prices are set optimally in response to local costs and demand.

In this paper, we show that most large US food, drugstore, and mass merchandise chains in fact

set uniform or nearly-uniform prices across their stores. This fact echoes uniform pricing “puzzles”

in markets such as soft drinks (McMillan, 2007), movie tickets (Orbach and Einav, 2007), rental cars

(Cho and Rust, 2010), and online music (Shiller and Waldfogel, 2011), but is distinct in that prices

are held fixed across separate markets, rather than across multiple goods sold in a single market.

We show that limiting price discrimination in this way costs firms significant short-term profits. We

then show that the result of nearly-uniform pricing is a significant dampening of price adjustment,

and that this has important implications for the pass-through of local shocks, the incidence of trade

costs, and the extent of inequality.

Our analysis is based on store-level scanner data for 9,415 food stores, 9,977 drugstores, and 3,288

mass merchandise stores from the Nielsen-Kilts retail panel. In our baseline results, we focus on

prices of ten widely available items. We consider larger sets of products in extensions and robustness

analysis. We use the standard price measure in these data, which is defined to be the ratio of weekly

revenue to weekly units sold.

Our first set of results documents the extent of uniform pricing. While we observe no cases in

which the measured prices are the same for all products across stores, the variation in prices within

chains is small in absolute terms and far smaller than the variation between stores in different

chains. This is true despite the fact that consumer demographics and levels of competition vary

significantly within chains: consumer income per capita ranges from $22,700 at the average 10th-

percentile store to $40,900 at the average 90th-percentile store, and the number of competing stores

within 10 kilometers varies from 0.6 at the 10th-percentile store to 8.3 at the 90th-percentile store.1

Prices are highly similar within chains even if we focus on store pairs that face very different income

levels, or that are in geographically separated markets. We can also look directly at the relationship

between price and consumer income. Within chains, prices increase by 0.72 percent (s.e. 0.12)

1The within-chain heterogeneity is only slightly smaller than the cross-sectional heterogeneity across stores, with
income at the 10th-percentile store of $19,300 and income at the 90th-percentile store of $41,700.
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for each $10,000 increase in the income of local consumers. Between chains—that is, comparing

chain-average prices to chain-average income—prices increase by 4.48 percent (s.e. 1.01).2 Another

way of looking at the same fact is to regress a store’s log price on (i) the income of consumers in

its own market and (ii) the average income of consumers in its chain; the coefficient on the former

is an order of magnitude smaller than the coefficient on the latter (0.004 versus 0.040). All of these

results remain similar for various alternative products, including store brands, lower-selling items,

and high-priced items.

Next, we show that the way prices are measured in the Nielsen data means that the degree of

uniform pricing is likely even greater than these results would suggest. If not all consumers pay the

same price within a given week, the weekly ratio of revenue to units sold will yield the quantity-

weighted average price. This ratio can vary across stores not only because of variation in the prices

but also because of variation in the quantity weights. In particular, we expect stores facing more

elastic demand (e.g., lower income) to sell a larger share of units at relatively low prices, leading the

weekly price measure to be lower in such stores, even if posted prices do not vary at all. Thus, the

aggregation to weekly average prices can lead not only to excess variance in measured prices, but

also to apparent correlation between measured prices and income.3

To assess the importance of this compositional bias, we turn to more detailed data from a major

grocer studied in Gopinath et al. (2011) that allows us to see posted non-sale prices directly. These

data suggest two reasons why consumers within a given week pay different prices. First, Nielsen’s

weeks run from Sunday to Saturday while this retailer typically changes prices mid-week. Second,

consumers with loyalty cards pay lower prices than those without loyalty cards.4 When we use

the standard Nielsen price measure, this chain looks similar to other food chains in having a small

but clearly non-zero price-income gradient.5 When we adjust for the compositional bias and look

directly at the posted prices, however, this relationship completely disappears.

For the large majority of the 73 chains in our data, measured prices vary very little across stores,

and we suspect, based on our analysis of the major grocer, that their posted prices are in fact

essentially uniform. For 11 food chains as well as the 2 major drugstore chains, prices vary at the

level of large geographic zones, but vary much less within them.

Our second set of results uses a simple constant-elasticity model of demand to assess the extent

to which uniform pricing represents a deviation from (short-run) optimal prices. The model fits the

2The between-chain comparison includes just food stores, given that there are too few drugstore or mass merchan-
dise chains for a meaningful between-chain comparison.

3The importance of the distinction between posted prices and average prices paid has been previously emphasized
by Chevalier and Kashyap (2015) and Coibion, Gorodnichenko, and Hong (2015). They point out that average prices
paid at the annual or market level may be responsive to macroeconomic shocks even when posted prices are constant.
To the best of our knowledge, we are the first to emphasize that the same force affects the weekly average prices
commonly available in scanner data. Indeed, both Chevalier and Kashyap (2015) and Coibion, Gorodnichenko, and
Hong (2015) treat the weekly average price as equivalent to the posted price.

4Einav, Leibtag, and Nevo (2010) discuss further measurement error due to loyalty cards in Nielsen data.
5Give that this chain does zone pricing at the state level, we estimate the pricing gradient with state fixed effects.
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data well, with an observed relationship between weekly log quantity and weekly log price very close

to linear. The store-level estimate of elasticity is both statistically precise and closely predicted

by store-level measures of demographics and competition. Estimated elasticities vary widely within

chains. Food stores whose elasticities fall at the 10th percentile within their chains have an average

elasticity of -2.28. For those at the 90th percentile within their chains, the average elasticity is -2.98.

This range is -1.94 to -2.65 for drugstores, and -2.92 to -3.67 for mass merchandise stores. Our

model implies that the ratio of the optimal price to marginal cost for a store with elasticity ηs is

ηs/ (1 + ηs). Assuming no variation in marginal costs across stores, prices at stores with elasticities

in the 90th percentile should be 18 percent higher than stores with elasticities in the 10th percentile

in food stores, 29 percent higher in drugstores, and 11 percent higher in mass merchandise stores.

However, observed prices are on average only 0.4 percent higher in food stores, 0.8 percent higher

in drugstores, and 0.4 percent higher in mass merchandise stores.6 To formally test the model’s

predictions, we regress log prices on the term log [ηs/ (1 + ηs)], instrumenting this term with store

income. This yields a between-chain coefficient for food chains of 0.94 (s.e. 0.22), very close to

the value of 1 that the model would predict. The within-chain coefficient is an order of magnitude

smaller, at 0.09 (s.e. 0.03), and the compositional issues discussed above suggest this is likely an

over-estimate.

The model allows us to quantify the loss of profits from uniform pricing. The loss is highest for

stores in high-income areas, where prices would be substantially higher under optimal pricing. We

estimate that the average chain could increase profits by 6.9 percent under flexible pricing.

We consider a number of potential threats to the validity of our model. First, our model abstracts

from variation in marginal costs across stores. Stroebel and Vavra (2015) present a range of evidence

suggesting that such variation is likely to be small, and this is supported by our analysis of the

major grocer’s data. To the extent that marginal costs do vary, we would expect them to be

positively correlated with income, meaning that our model if anything understates the gap between

observed and optimal prices. Second, our baseline estimates assume that short-run week-to-week

elasticities are equal to long-run elasticities. The long-run elasticities relevant to the store’s problem

could in fact be smaller (due to consumer stockpiling as in Hendel and Nevo, 2006) or larger (due

to search). We repeat our analysis using prices and quantities aggregated to the quarterly level

and find that the broad patterns are unchanged. We also show that the results are similar for

storable and non-storable products. Third, our main analysis treats demand as separable across

products. Cross-product substitution could lead us to overstate the relevant elasticities as consumers

substitute among products, or understate them as consumers substitute on the store-choice margin

as in Thommasen et al. (2017). To partially address this concern, we show that estimated elasticities

6For observed prices, we calculate this by selecting stores that have elasticities within 0.05 of the 10th and 90th
elasticity percentiles in each chain. We compute the within-chain difference first (i.e., the within-chain difference
in average prices for stores near the 90th percentile and stores near the 10th percentile) and then take the average
difference, weighting each retailer equally.
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are similar when we aggregate prices and quantities to the product category level. Finally, prices and

promotions are often determined jointly by retailers and manufacturers (Anderson et al., 2017). The

fact that our results are similar for store brands suggests that constraints imposed by manufacturers

are unlikely to be a key driver of our results.

The third section of our analysis considers potential explanations for uniform pricing. We argue

that neither menu costs (Mankiw, 1985) nor price advertising provides plausible explanations. We

see softening price competition and fairness concerns as potentially more plausible, but to the extent

we are able to test them with our data we find limited support. The explanation we find the most

support for is managerial decision-making costs (Bloom and Van Reenen, 2007).7 Implementing

more flexible pricing policies may impose chain-level fixed costs such as up-front managerial effort

in pricing design, or a cost for inertial managers to deviate from the traditional pricing approach

in the industry. Two pieces of evidence are consistent with such fixed costs. First, chains with

more stores or facing more variable consumer income levels are more likely to deviate from uniform

pricing. Second, among the drugstore and mass merchandise chains (though not for the food chains),

the extent of uniform pricing has decreased over time, consistent with improvements in technology

reducing managerial fixed costs.

In the final section of the paper, we turn to the implications of uniform pricing for the broader

economy. We first show that uniform pricing exacerbates inequality, increasing prices posted to

consumers in the poorest decile of zip codes by eight percent relative to the prices posted to consumers

in the richest decile. We then show that uniform pricing is likely to substantially dampen the response

of prices to local demand shocks. This significantly shifts the incidence of these shocks – for example,

exacerbating the negative effects of the Great Recession on markets with larger declines in housing

values. Finally, we show that uniform pricing may change the incidence of intra-national trade costs,

benefiting more remote areas that otherwise would pay significantly higher prices, and that it can

also bias estimates of these costs that use spatial price gaps as a key input. In several of these cases,

we also note that the standard practice of treating average prices paid at weekly or greater time

horizons as equivalent to posted prices can also be a source of bias in the results.

We are not the first to document uniform pricing policies in retailing.8 Prior work has noted

uniform pricing by European supermarkets and other major European retailers.9 Early studies of

the Dominicks chain in the Chicago market showed that Dominicks varied prices between pricing

7A different version of this explanation is that managers are simply unaware of the income differences across their
stores, or that they lack the information to recognize their implications for optimal prices. This seems unlikely to us.

8Our discussion of the literature focuses on private retail firms. Miravete, Seim, and Thurk (2014) offer a related
analysis of the implications of a uniform markup regulation applied to government-run liquor stores in Pennsylvania.
Their work parallels ours in estimating variation of demand elasticities and considering the distributional implications
of uniform pricing.

9Reports from UK regulators show that roughly half of UK supermarket chains charge uniform prices across stores
(Competition Commission, 2003, 2005; Dobson and Waterson, 2008) as do the main UK electronics retailers (MMC,
1997a,b). Cavallo, Nieman, and Rigobon (2014) show that Apple, IKEA, H&M, and Zara charge nearly uniform prices
across the Euro zone in their online stores, though they charge different (real) prices across countries with different
currencies. Eizenberg, Lach, and Yiftach (2016) study price variation across supermarkets in Jerusalem.
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zones but kept prices constant within zone, and the same is true for the widely-studied major US

grocer from Gopinath et al. (2011).10 The more comprehensive Nielsen data set shows that, while a

minority of US food chains engage in zone pricing, nearly-uniform pricing is the industry norm.

Two recent papers are particularly related. Adams and Williams (2017) show that the Home

Depot and Lowe’s US hardware chains use a zone pricing strategy, with different degrees of price

flexibility for different products. They estimate a structural model of demand and oligopoly pricing

for a single product, drywall, and use it to evaluate how profits would change under more flexible

pricing for this product. Contemporaneous work by Hitsch, Hortaçsu, and Lin (2017) uses the same

Nielsen data we do to decompose price variation for close to 50,000 products. Though their main

focus is separating the roles of regular price variation and promotions, they also note that prices

vary more between chains than within chains, and they also estimate elasticities for a large set of

stores. Our paper differs in more sharply characterizing the extent of uniform pricing, in comparing

observed pricing to an optimal benchmark, and in addressing broader economic implications.

More broadly, our paper relates to a large body of work on the extent and implications of

local retail price responses to economic shocks or incentives. Examples beyond those cited above

include Broda and Weinstein (2008), Gopinath et al. (2011), Fitzgerald and Nicolini (2014), Coibion,

Gorodnichenko, and Hong (2015), Handbury and Weinstein (2015), Kaplan and Menzio (2015), and

Dubé, Hitsch, and Rossi (forthcoming). Our work also speaks to the literature tracing out the

implications of retail firms’ price setting for macroeconomic outcomes, including influential early

work using scanner data by Bils and Klenow (2004) and Nakamura and Steinsson (2008), and recent

contributions such as Anderson et al. (2017).

Finally, our paper relates to work in behavioral industrial organization (for a review, see Heidhues

and Koszegi, 2018). Most of the work in this area has focused on firms optimally responding to

behavioral consumers (DellaVigna and Malmendier, 2004; Gabaix and Laibson, 2006). Our paper

is part of a smaller literature which considers behavioral firms instead, that is, cases in which firms

deviate from simple benchmarks of profit maximization (Romer, 2006; Bloom and Van Reenen, 2007;

Hortaçsu and Puller, 2008; Goldfarb and Xiao, 2011; Massey and Thaler, 2013; Hanna, Mullainathan,

and Schwartzstein, 2014; Hortaçsu et al., 2017; Ellison, Snyder, and Zhang, 2016).

2 Data

Our primary data sources are the Nielsen Retail Scanner (RMS) and Consumer Panel (HMS) data

provided by the Kilts Center at the University of Chicago.11 The retailer scanner panel records the

10See Hoch et al. (1995), Montgomery (1997), and Chintagunta, Dubé, and Singh (2003). It may not be a coincidence
that the chains which have been most likely to partner with researchers are also the ones that implement the most
sophisticated pricing policies. The focus of research on these chains may also explain why the full extent of uniform
pricing has been under-appreciated.

11The data are collected by Nielsen and made available through the Marketing Data Center at the Univer-
sity of Chicago Booth School of Business. Information on availability and access to the data can be found at
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average weekly revenue and quantity sold for over 35,000 stores in the US over the 2006-2014 period,

covering about a million different unique products (UPCs). We use this data set to extract the

information on weekly price and quantity. We also use some information from the consumer panel

which is based on following the purchase of more than 60,000 consumers across different stores. We

present the main information in this section, with additional detail in the Appendix.

Stores. We focus the analysis on three store types, or channels: food (i.e., grocery), drug, and

mass merchandise. Table 1, Panel A shows that the initial Nielsen sample includes 38,539 stores for

a total average yearly revenue (as recorded in the RMS data) of $224 billion.12

We define a chain to be a unique combination of two identifiers in the Nielsen data: parent code

and retailer code. The former generally indicates the company that owns a store and the latter

indicates the chain itself.13 Nielsen does not disclose the names of the chains in the data, but

a general example would be the Albertson’s LLC parent company which owns chains including

Albertson’s, Shaw’s, and Jewel-Osco. Sometimes, a single retailer code appears under multiple

parent codes, possibly for reasons related to mergers. We introduce additional restrictions detailed

below to exclude cases like these where chain identity is unclear.

We first introduce restrictions at the store level. We exclude stores that switch chains over

time,14 stores that are in the sample for fewer than two years,15 and stores without any consumer

purchases in the HMS data. This reduces the sample to 22,985 stores in 113 chains.

We next introduce restrictions at the chain level. We require that the chains are present in the

sample for at least 8 of the 9 years. This eliminates a few chains with typically only a small number

of stores each with inconsistent presence in the data. Next, we resolve cases where the mapping of

stores to chains is not sufficiently clear. A first concern occurs when the same retailer code identifier

appears for stores with different parent codes. It is unclear whether the use of the same retailer code

in this case indicates that these stores belong to one chain, or perhaps they belong to a subchain

that changed owner, or something else. Thus, for each retailer code, we only keep the parent code

associated with the majority of its stores, and then further exclude cases in which this retailer code-

parent code combination accounts for less than 80% of the stores with a given retailer code. A

second concern is for chains in which a number of stores switch chain, given that this may indicate

a change in ownership of the entire chain. We thus exclude chains in which 60% or more of stores

belonging to the retailer code-parent code change either parent code or retailer code in our sample.

https://research.chicagobooth.edu/kilts/marketing-databases/nielsen.
12This figure omits revenue from prescription drugs, most kinds of produce, and a number of other products that

are not in our data.
13However, some parent companies report their data to Nielsen in a decentralized manner representing each of their

retail chains, so we do not observe all ownership relationships.
14In some cases, we can validate the ownership change with significant observed changes in prices in the switching

stores. However, some of the pricing changes occur up to two years in advance, or two years after, the change,
suggesting a possible inaccurate record of the timing of ownership changes. We therefore exclude such switches.

15This sample restriction is especially important for our estimation of price elasticities, since our elasticity estimates
include controls for 52 week-of-year indicators, requiring multiple observations per week-of-year.
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To define the demographics of the stores, we use the HMS data, which includes all shopping trips

for the consumers in the panel. The median store has 21 Nielsen consumers ever purchasing at the

store, for a total of 502 trips (Panel B of Table 1). We use variables like income and education from

the 2008-2012 5-year ACS for the 5-digit zip code of residence of the consumers shopping in each

store, and then compute the weighted average across the consumers, weighting by the number of

trips that they take to the store.16 We let Ys denote this measure of income for store s.

Table 1 provides summary statistics for our main sample. Panel A summarizes the sample

restrictions, which result in a final sample of 22,680 stores from 73 chains, covering a total of $191

billion of average yearly revenue. These include 9,415 stores from 64 food store chains ($136 billion

average yearly revenue), 9,977 stores from 4 drugstore chains ($21 billion), and 3,288 stores from 5

mass merchandise chains ($34 billion). Panel B summarizes these stores’ demographics. The median

store has an average per-capita income of $26,900, with sizable variation across stores; for example,

the 75th percentile is at $33,450. Panel C-E provide chain-level summary statistics. The median

food chain (Panel C) has 66 stores, and has locations in 4 DMAs (Designated Market Area) and 2.5

states. Drugstore and mass merchandise chains (Panel D and E) are significantly larger and span

more states, with the vast majority of stores in both cases belonging to 2 chains. Given this high

concentration, our between-chain analysis below is limited to food chains.

Our store sample covers the entire continental US (see map in Appendix Figure 1), with a number

of stores and chains that is fairly constant between 2007 and 2013 (Online Appendix Table 1).

Products. We focus most of our analysis on a set of products that are both frequently sold and

widely available. This guarantees clean comparisons both within and between chains, and avoids

the problem that the price measure is missing in weeks with zero sales. This is an issue especially

because the price is not missing at random—a week with no purchases is less likely to occur when

a product is on a price reduction—thus introducing a potential bias in the price measure.

For food stores, we focus on one UPC from each of ten product categories (“modules”): canned

soup, cat food, chocolate, coffee, cookies, soda, bleach, toilet paper, yogurt and orange juice.17 We

define the first eight to be storable products and the last two to be non-storable products. These

modules together account for an average yearly revenue of $13.6 billion across the 9,415 stores in

our food store sample, or 10.0 percent of total revenue. For drugstores and mass merchandise stores,

we focus on the subset of these modules in which some UPC is available in at least 90 percent of

stores: soda and chocolate for drugstores, and soda, chocolate, cookies, bleach, and toilet paper for

mass merchandise stores. Within each module, we choose a specific UPC to maximize sales and

availability across our sample of stores. In most cases, these UPCs remain the same across years; in

16This demographic information is more accurate than the one that can be computed directly from the location of
the store in the RMS data, since in this dataset, the most precise geographic location given is the county or 3-digit
zip code. Weighting by total dollar amount spent or using the unweighted average does not meaningfully change our
imputed demographics.

17These modules have a large overlap with ones used in previous analysis, e.g., Hoch et al. (1995).
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all cases, the UPC is the same across stores within a channel and year. Examples of products in our

sample (Table 2) include a 12-can package of Coca-Cola, a single 10.75 oz can of Campbell’s Cream

of Mushroom Soup, and a 59 oz. bottle of pulp-free Simply Orange juice.

In our robustness analysis, we consider larger sets of products. To avoid availability issues, we

construct these larger product samples only for food stores. They include less commonly sold items

(the 20th highest-availability product across chains for each module), high-quality items (chosen

to have a high-unit-price), the top-selling generic product within each chain, a subset of generic

products comparable across chains, and a large basket of products we use to construct module-level

price and quantity indices.18

To define the module-level baskets, we include all UPCs in a module such that the average share

of weeks with non-zero sales for that UPC is at least 95 percent, where the average is taken across

stores.19 For some modules such as soda and orange juice, products meeting this criterion cover

50-60 percent of the total module revenue, while for other modules like chocolate or coffee, they

cover just 15-20 percent (see Online Appendix Table 1, Panel B). Summing over the 10 modules,

these products cover an average annual revenue of $6.3 billion.

Prices. As is standard in the literature, we define the price Psjt in store s of product j in week

t to be the ratio of the weekly revenue to weekly units sold. The price is not defined if no unit is

sold in a UPC-store-week. We let psjt denote the standardized log price, defined as log (Psjt) minus

the average of log (Psjt) across stores and weeks within each year and store format. To define the

average log price of store s, ps, we first average psjt within years to produce a mean psjy; we then

define ps to be the simple average of psjy across products j and years y.

Table 2 summarizes prices and availability for the products in our main sample. The average

price varies from $0.49 for cat food in food stores to $8.60 for toilet paper in mass merchandise

stores (column 3). The products have at least one recorded sale in the large majority of store-week,

for example in 99.7% of store-week-UPC observations for chocolate in food stores (column 4). Cat

food, coffee, and toilet paper have somewhat lower availability in food stores, as do most of the

products sold in drugstores and mass merchandise stores, but are still in the range around or above

95%. We also compute the average yearly revenue per store that these products generate, with the

highest number associated with the soda product in food stores, $34,100.

To compute the module-level price and quantity index for store s, we start from the weekly log

price psjt and weekly log units sold qsjt, then average across all products j included in the basket for

that module-chain-year. As weights, we use the total quantity sold for product j in a chain-year. If

a product j has no sales in a particular store s and week t, product j is omitted for that store-week

cell, and the other weights are scaled up accordingly.20

18See Appendix Section A.1.4 for more details
19We omit weeks from this calculation in which the store has zero recorded sales in all ten modules.
20We use the same weights for the price variable and the quantity variable so that, under the assumption that all

products within a module have a constant-elasticity demand with the same elasticity η, we can recover the elasticity
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Major Grocer’s Data. We use supplemental scanner data from a single major grocer (par-

ent code) studied in Gopinath et al. (2011).21 These data contain the same variables as the Nielsen

data, plus gross revenue (defined to be the total revenue had all transactions occurred at the non-sale

posted price), wholesale prices paid, and gross profits. The definition of weeks in these data also

differs from Nielsen, and is aligned with the timing of the retailer’s weekly price changes. The data

cover 250 stores belonging to 12 chains (retailer codes) beginning in 2004 and ending in mid-2007.

We focus on the largest retailer, which has 134 stores. We match 132 of these 134 stores to stores

in our main sample (see Appendix Section A.1.7).

3 Descriptive Evidence

3.1 Example

We begin with a visualization of pricing by a single chain (chain 128), which we choose to be

representative of the typical patterns observed in our data. Figure 1a shows the prices of the orange

juice product. The 108 rows in the figure correspond to the 108 stores in the chain, and are sorted

by income. The columns correspond to weeks from January 2006 to December 2014. The color of

each store-week indicates the standardized log price psjt. Darker colors correspond to higher prices,

and white indicates missing values due to zero sales.

The figure shows substantial variation of prices across weeks, with frequent sales of up to 30 log

points, but virtually no variation across stores within a week. To the extent that prices vary across

stores, this variation is uncorrelated with store per capita income, i.e., the vertical position of stores

in the chart. This is despite the fact that store income ranges from about $13,000 at the bottom

of the chart to about $50,000 at the top. Figure 1b shows a similar pattern for five other products:

yogurt, chocolate, soda, cookies, and cat food. Here we display just 50 of the 108 stores shown in

Figure 1a, with the same 50 stores shown for the 5 products, and still ordered by income. We see

variation across products in the depth and frequency of sales, but again no systematic variation of

prices across stores. The pricing patterns of this chain are representative of the large majority of

chains in our sample. Two additional examples are in Online Appendix Figure 1a and 1b.

While patterns like these are typical of the majority of chains, a few other chains follow a different

pattern, which we will call zone pricing. Figure 2 displays an example for chain 130 (showing a

random sample of 250 stores), returning to the orange juice product. Figure 2 follows the same

design as Figure 1a, except that we group stores geographically by sorting them by 3-digit zip

η regressing the index quantity on the index price. We use quantity weights so that our price index resembles a
geometric modified Laspeyres Index, similar for example to Beraja, Hurst, and Ospina (2016) and to how the Bureau
of Labor Statistics builds category-level price indices. Note that our index is not exactly a geometric Laspeyres Index
because the weights are not week 1 weights but instead the average quantities sold in year y.

21The data-sharing agreement between this retailer and the research community is managed through the SIEPR-
Giannini data center (http://are.berkeley.edu/SGDC).
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codes within states. This chain operates in 12 different states. Prices are essentially uniform within

horizontal bands, but then differ for different bands. For example, stores in Georgia and Kentucky

share the same pricing patterns, which are different in Illinois and most of Indiana. Note that the

pricing zones are strongly correlated with state borders but do not follow them perfectly. Online

Appendix Figure 2a and 2b show other examples of zone pricing.

3.2 Measures of Pricing Similarity

To describe chain pricing patterns more systematically, we introduce three measures of the extent

of uniform pricing. Each measure defines the similarity of prices of a pair of stores s and s′. To

compute a chain-level measure of similarity, we average the raw measure across pairs within a chain.

The first measure is the quarterly absolute log price difference. We denote the average of psjt

across weeks in quarter v by psjv. We compute for each pair of stores s and s′ the absolute difference

in the average quarterly log price, and average this difference across quarters and products: as,s′ =

1
Nvj

∑
v,j |psjv − ps′jv|, where Nvj denotes the number of valid product-quarter observations.

The second measure is the weekly correlation in prices. We first demean the log price psjt at the

store-year-product level to obtain p̃sjt. Then we compute the correlation of p̃sjt and p̃s′jt, including

all weeks t and all products j which are non-missing in both store s and store s′.

These two measures capture, by design, two orthogonal aspects of similarity: differences in

average prices, and the correlation of price changes over time. Two stores with the same timing

and depth of sales, but different regular prices would have high weekly correlation but also a high

quarterly difference. Conversely, two stores with similar average prices at the quarterly level, but

different timing of sales would have a low quarterly difference, but also a low weekly correlation.

The third measure is the share of (nearly) identical prices. This is defined as price differences

smaller than one percent, i.e., the share of observations across products j and weeks t for which

|Psjt − Ps′jt|/((Psjt + Ps′jt)/2) < 0.01.

Figure 3 displays the distribution of these measures for store pairs in the same chain (solid blue

bars) and pairs that belong to different chains (hollow red bars). To form the within-chain pairs,

we keep all stores for chains with fewer than 200 stores, and a random sample of 200 stores from

larger chains, and then compute similarity for all pairs within the resulting set of stores. Prices

for same-chain pairs are far more similar on all three measures than for different-chain pairs. The

absolute log price difference (Figure 3a) is typically below 5 log points for the former, and typically

above 10 log points for the latter. The weekly correlation (Figure 3b) is typically above 0.8 for the

former and below 0.2 for the latter. The share of identical prices (Figure 3c) is often as high as 0.5

or 0.6 for the former, but is rarely above 0.2 for the latter.

Table 3 summarizes a number of variants of these measures. The first row summarizes the same

information shown in Figure 3, reporting the mean and standard deviation of the three similarity
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measures for our full set of same-chain and different-chain store pairs. The second row shows that

the patterns are essentially unchanged if we restrict attention to cases where stores s and s′ are in

the same geographic market (DMA). The third row shows the same for cases where s and s′ are in

different DMAs and also face very different income levels (with one store in the pair in the top third of

the income distribution and the other in the bottom third).22 These results provide initial evidence

against the possibility that the observed similarity just reflects same-chain store pairs serving more

homogeneous consumers in terms of either geography or demographics. They also suggest that it

does not result from constraints specific to pairs of stores operating in the same geographic market,

for example, because price advertising is determined at the newspaper or television market level.

The remaining rows of Table 3 show that these pricing patterns are not an artifact of focusing on

our set of widely-available products. Focusing on food stores, the table shows similar patterns for:

(i) the 20th-highest-selling product within a category; (ii) the top-selling store-brand product, and

(iii) products with high unit-prices.23

Figure 4 summarizes pricing similarity at the chain level. In Figure 4a, weekly correlation is

on the vertical axis, absolute log price difference is on the horizontal axis, and each point indicates

the average value for a single chain. The vast majority of chains cluster in the upper-left of the

figure, with low price differences and high correlation. Out of 73 chains, 61 have both an average

correlation of weekly prices above 70 percent and an absolute quarterly distance in prices below 5

percent. These two measures of pricing similarity are also highly correlated: chains that are similar

in one dimension are also similar in the other dimension. One might have ex ante expected to see

deviations from this - for example, highly correlated sales but varying levels of regular prices across

stores - but these deviations do not appear to a substantial degree in the data.

Figure 4b returns to the phenomenon of zone pricing. We decompose the measures of pricing

similarity into similarity for pairs of stores within a state, versus across state boundaries. Focusing

on chains that operate at least three stores in each of two or more states, we plot the within-state log

price difference on the horizontal axis, and the between-state log price difference on the vertical axis.

To the extent that zone pricing follows state boundaries, it should show up in this figure as smaller

differences within and larger differences between, i.e., points above the 45-degree line in the figure.

Between differences are indeed larger in almost all cases, but for the majority of chains only slightly

so; these chains do not appear to determine prices by state to a significant extent. A minority of

chains do have clearer zone pricing patterns, however. Most notable is chain 9, which has an average

within-state difference of roughly 2 log points but an average between-state difference of more than

9 log points.24

22Online Appendix Figure 3 displays the distribution of distance between pairs for these samples.
23In Online Appendix Figure 5, we show that chains with uniform prices for our benchmark products also tend to

have uniform prices for these alternative products.
24Online Appendix Figure 4 shows a parallel figure using correlation in weekly prices, instead of the log price

difference. The classification of chains as zone pricers based on this alternative figure is overall similar.
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3.3 Price Response to Consumer Income

We now turn to the relationship between prices and income. Stores in high-income areas have less

elastic consumers (as we confirm below), so all else equal, we expect these stores to charge higher

prices. Though we argue that variation in marginal costs across stores is likely to be small, any

such variation would likely be positively correlated with income, and so tend to strengthen this

relationship.

Figure 5 shows the relationship between log income and price within and between chains.25 We

first regress both store average log price ps and store income Ys on chain fixed effects. Figure 5a shows

a binned scatterplot of the residuals, illustrating the within-chain relationship. The relationship is

positive and highly significant, but the magnitude is very small economically: an increase in per-

capita income of $10,000, equivalent to a move from the 30th to the 75th percentile, is associated

with an increase in prices of only 0.72 percent. Figure 5b shows a scatterplot of the chain averages,

illustrating the between-chain relationship.26 This is also highly significant, and its magnitude is

more than five times larger: a $10,000 increase is associated with a price increase of 4.5 percent.

We view this sharp contrast between the within- and between-chain results as one of our key

findings. It suggests that chains are either varying their prices far too little across stores in response

to income, or varying their prices far too much at the overall chain level. Our model below separates

these two hypotheses, providing strong support for the former.

If we estimate the within-chain coefficients separately by chain (Online Appendix Figure 6a-

c), the majority of chains have small, positive coefficients in the range between 0 and 0.01, with 27

coefficients positive and significantly different from zero. Only five chains have coefficients above 0.01.

The pattern of tiny within-chain response and large between-chain response is robust to dropping

the two outlier chains 98 and 124 (Online Appendix Table 2). It also holds for lower-selling and

high price products, as well as for all but one module separately (Online Appendix Figure 7).

Figure 5c-d examine the role of zone pricing. As we documented in Figure 2 and 4b, some chains

vary prices more between states than within states. In Figure 5c, we re-estimate the within-chain

relationship, but now plot residuals after taking out chain*state fixed effects. This further reduces

the price-income slope to 0.56 percent per $10,000 of income, but it remains statistically significant.

In Figure 5d, we show the complementary plot of chain-state mean prices after subtracting the chain

mean. Across states within a chain, a $10,000 income increase is associated with an increase in prices

of 2.16 percent, a slope about half the size of the between-chain relationship.

Figure 6a-d zoom into this zone pricing result for different groups of chains. For the 54 food

chains that are not identified as doing zone pricing based on Figure 4b, there is no relationship

25The results are similar replacing income with the fraction of college graduates (Online Appendix Figure 9).
26Here we omit drugstore and mass merchandise chains, since comparing across formats may be less informative

and the number of chains for these channels is small. Online Appendix Figure 8 shows the plot including these chains.
The overall pattern remains unchanged.
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between chain-state income and chain-state prices (Figure 6a). There is instead a clear relationship

for the 10 food chains identified as zone pricing (Figure 6b) and for the 2 major drugstore chains

(Figure 6c). The mass merchandise chains (Figure 6d) exhibit modest evidence of zone pricing.

Finally, Table 4 presents an alternative view of the price-income relationship. We run a store-

level regression of average log price ps on both store income Ys and the average income of stores

in the chain to which s belongs. In some specifications, we include separately the average income

in s’s chain-state. We separate food stores (Panel A) from the drugstores and mass merchandise

stores (Panel B and C), since it is only for the food stores that we can do a meaningful between-

chain comparison. The first column presents the regression including only own-store income as a

benchmark.27 The second column adds chain average income for food stores. Consistent with the

evidence in Figure 5, a store’s response to its own consumers’ income is an order of magnitude

smaller than its response to the average income served by its chain. This result remains when we

add county fixed effects (third column). Thus, if we look at two stores in the same county both

attracting consumers of the same income, one of which is from a mainly high-income chain and one

of which is from a mainly low-income chain, the former will tend to charge much higher prices than

the latter.28

The fourth and fifth columns add chain-state average income as a regressor. This response is

larger than the own-store-income response but smaller (for food stores) than the response to overall

chain average income, consistent with our other zone pricing results. Online Appendix Table 4 shows

that the results are similar using generic products, lower-selling items, and higher-quality items.

3.4 Composition Bias

The pattern of within-chain pricing in Figure 5a-c poses a puzzle. Why would chains exert the

effort to vary their prices in a highly systematic way with consumer income, but then do so with

an economically tiny magnitude far smaller than the one with which they respond to income at the

chain level, and far smaller than the analysis below suggests would be profit maximizing? We show

here that this small price-income relationship is likely to be mainly an artifact of composition bias,

due to the fact that the standard Nielsen price measure is the weekly average price paid rather than

the price the store posts on any given day.

If all consumers of a store in a given week paid the same prices, weekly average price paid and

posted price would be equal. For them to diverge, prices paid must vary within a week. There are

two main reasons why they are likely to do so. First, Nielsen’s weekly revenue and units sold are

27For mass merchandise stores, there is a negative relationship between prices and income when not including chain
fixed effects because among the largest two mass merchandise chains, the one operating in, on average, higher income
areas has lower prices (see Online Appendix Figure 8b).

28One could worry that this result stems from the chain-level income measure capturing the elasticity of consumers
in a store better than the own-store income measure due to measurement error in the latter. In Online Appendix
Table 3, we show that the elasticity in a store is predicted by own-store income but not predicted by chain-level
income, counter to this explanation.
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based on a week that runs from Sunday through Saturday. Although most retailers do not change

prices at more than weekly frequency, they may institute their price changes on a different day of

the week. If, for example, they change prices on Wednesdays, consumers who buy in the first half of

Nielsen’s week will pay a different price from those who buy in the second half. Second, some but

not all consumers may use store cards or obtain other discounts that lead them to pay lower prices.

For an example of the bias that can arise, consider a retailer that charges identical prices in all

stores and that changes prices on Wednesdays. Suppose in a particular week, they cut the price

from Phigh to P low. The measured weekly average price in the Nielsen data for store s will be

PRMS
s = θsP

high + (1 − θs)P low, where θs is the share of purchases made in the first half of the

week in store s. If the share θs varies across stores for any reason, this will obscure the fact that

the chain is charging uniform prices. In fact, the share θs will vary systematically: for stores facing

less elastic consumers, fewer will shift purchases to the low price, and θs will be higher. Measured

prices PRMS
s will thus be higher for stores facing higher income or otherwise less elastic consumers,

even if posted prices do not vary at all. A similar bias arises if the share of consumers who use store

cards or other discounts is greater among consumers who are most price elastic.

This bias can explain a price-income gradient broadly consistent with what we observe. Suppose

that the income of store s is $10,000 greater than the income of store s′, and that, consistent with

our estimates of the income-elasticity relationship below, this translates into price elasticities among

their respective consumers of ηs = −2.5 and ηs′ = −2.65. Suppose that P low is 35 percent lower than

Phigh, and that the price change occurred exactly midway through the Nielsen week. Consistent

with our model below, assume store s faces a constant-elasticity demand function Qs = kP ηss .

Then it is straightforward to show that (θs, θs′) = (0.328, 0.318) , and the difference in log prices

is pRMS
s − pRMS

s′ = 0.006.29 If prices go on sale and off of sale every four weeks, this would imply

a bias in one fourth of the weeks, and thus a slope of 0.0015 in the analogue of Figure 5c. This

mechanical bias thus could explain a quarter of the observed slope across all stores (0.0056 in Figure

5c) and half of the slope for food stores (0.0029, Online Appendix Table 2). Taking into account

also the bias from heterogeneity in the share of consumers with store cards, the composition bias

could plausibly account for all the observed variation of prices within the majority of chains.

To provide direct evidence on the magnitude of this bias, we use the major grocer’s data described

in Section 2. This grocer does, indeed, change prices every week on Wednesday, and the revenue and

units sold reported in the grocer’s data are based on weeks defined as Wednesday to Tuesday. We

therefore expect the bias arising from mid-week price changes to be present in the Nielsen data but

not in the grocer’s data. Figure 7a shows a binned scatterplot of the within-chain relationship using

the Nielsen price measure for the 132 stores in both data sets. This grocer uses geographic pricing

29To see this, note that θs =
q
high
s

q
high
s +qlows

=

(
Phigh

)ηs
(Phigh)ηs+(P low)ηs

. Plugging in the values for Phigh, P low, ηs, and

ηs′ yield the values of (θs, θs′ ) which in turn yield values of PRMS
s and PRMS

s′ .
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zones, so we focus on the within-chain-state relationship as in Figure 5c. The slope of 0.0027 is

similar to the one in Figure 5c and marginally significant. Figure 7b reproduces the same estimate,

but using weekly prices from the grocer’s data. The estimated slope falls to 0.0008 and is no longer

significantly different from zero. We thus cannot reject the view that posted prices for this retailer

do not vary at all with income, and that all of the within-chain-state slope for this retailer is an

artifact of the weekly offset. Figure 7c shows the same slope using the posted non-sale price, which

we observe in the grocer’s data. This is not the object we would ideally like to measure—if stores

vary the frequency or depth of their sales, we would consider this real variation in posted prices—but

it provides a benchmark. Here all remaining slope disappears: this chain sets uniform non-sale prices

with respect to income. We observe further that, within a state, 74 percent of store pairs charge

identical non-sale prices (i.e., within one percent as defined above).

As an additional check about the importance of this bias, we use an algorithm described in

Appendix Section A.1.8 to estimate non-sale prices in the Nielsen data and repeat the analysis

of Figure 5. Online Appendix Figure 10a-d show that this flattens the within-chain price-income

relationship but not the between-chain relationship.

Our conclusion is that a large part of the within-chain and within-chain-state slopes shown in

Figure 5 is likely an artifact of composition bias. We suspect that a large majority of chains are in

fact charging exactly the same prices in all of their stores, or in all stores within geographic zones.

Moreover, we note that this bias will not only affect the cross-sectional relationship between prices

and income, but also the apparent response of prices to income shocks observed in panel data. We

discuss the implications of this bias for the literature on local price responses in Section 6 below.

3.5 Variation in Marginal Cost

Stroebel and Vavra (2015) provide a detailed analysis suggesting that variation in marginal costs

among retailers such as those in our data is likely to be negligible. They first use novel data on

wholesale costs to show that geographic variation in these costs is minimal. Since wholesale costs

account for three-quarters of total costs and a presumably much larger share of marginal costs, this

significantly limits the scope for cost variation. They then present further evidence suggesting that

neither variation in labor costs nor variation in retail rents plays a significant role.

We confirm the findings for wholesale costs in our large grocer’s data. A binned scatterplot of

the wholesale cost variable for this grocer against store income (Figure 7d) displays no evidence

of a positive relationship between the two variables. Given this evidence, we will assume for the

remainder of our analysis that marginal costs are constant across stores within a chain.

15



4 Demand Estimation and Optimal Prices

4.1 Model

We introduce a simple demand model to gauge the degree to which we would expect prices to

vary within and between chains. The model makes strong assumptions, and we do not necessarily

take deviations from the model predictions to imply a failure of profit maximization. It provides a

valuable benchmark, however, on the extent to which short-run pricing incentives vary across stores.

A monopolistically competitive chain chooses a price Psj for each product in each of its stores

to maximize total profits. Each store’s residual demand for product j takes the constant elasticity

form Qsj = ksjwP
ηs
sj , where Qsj is the number of units sold, ksjw is a scale term that may vary

seasonally by week of year w, and ηs is the store’s price elasticity. Total cost cjQsj +Cs for a store

consists of a constant marginal cost cj and a store-level fixed cost Cs. The chain solves

max{Psj}
∑
s(c),j

(Psj − cj)Qsj (Psj)−
∑
s(c)

Cs. (1)

The first order conditions yields, for all j,

P ∗sj =
ηs

1 + ηs
cj (2)

or in log terms

p∗sj = log

(
ηs

1 + ηs

)
+ log (cj) . (3)

There is thus a simple relationship between elasticities and optimal prices, and under optimal pricing

a regression of log prices on log
(

ηs
1+ηs

)
within chains should yield a coefficient of one.

4.2 Elasticity Estimates

The model above requires estimates of the store-level elasticity of demand ηs. As our benchmark

measure, we estimate the response of weekly log quantity to the weekly log price product-by-product,

for each store s. More precisely, letting qsjt = log (Qsjt), we estimate separately for each store s,

qsjt = ηspsjt + αsjy + γsjw + εsjt, (4)

where αsjy is product*year fixed effects, γsjw is product*week-of-year fixed effects, and εsjt is an

error term. The former controls for the fact that the exact UPC associated with a product varies

in some cases across years, and the latter captures seasonal variation in ksjw. The coefficient on

the log price is the estimated price elasticity, η̂s. We use price variation for all 9 years and all 10

products in order to maximize precision. We cluster the standard errors by bi-monthly period, thus

16



allowing for correlation across products, as well as over time within a 2-month period.

This stylized demand structure abstracts away from two important margins: intertemporal sub-

stitution and cross-product substitution. The former could lead quantities in week t to vary with

prices in prior weeks. The latter could lead to demand for one product to depend on the price of

other products. We revisit these assumptions below.

To adjust for sampling error in the elasticity estimates, we use a simple empirical shrinkage

procedure. We re-estimate the elasticity using just the first 26 weeks of each year and again using

the next 26 weeks of each year; label these elasticity estimates η̂1,s and η̂2,s. We choose a shrinkage

parameter ρ to minimize the mean squared difference between (1− ρ) η̂1,s+ρη1 and η̂2,s, where η1 is

the overall mean of η̂1,s across stores.30 The estimated optimal shrinkage is just ρ̂ = 0.104 for food

stores, though it is slightly larger at ρ̂ = 0.305 for drugstores and ρ̂ = 0.408 for mass merchandise

stores. We then adjust our overall estimates η̂s as η̃s = (1− ρ̂) η̂s + ρ̂η, where η is the mean of η̂s.

Figure 8a shows the distribution of the resulting elasticity estimates η̃s for food, drug, and mass

merchandise stores. All are well-behaved, with all but a handful of values smaller than the theoretical

maximum of −1, and most of the mass falling between −2 and −4. Figure 8b shows the distribution

of associated standard errors, which are mostly between 0.05 and 0.2 for food stores and between 0.2

and 0.4 for drugstores and mass merchandise stores. The lower precision for the latter is expected

given the smaller number of products in the drug and mass merchandise samples.

Figure 8c provides evidence on the fit of the constant elasticity demand model. The figure shows

a binned scatterplot of residuals of qsjt against residuals of psjt after partialing out the fixed effects

αsjy and γsjw. The model assumes a linear relationship, and this test proves that it is true to a

remarkable degree. This plot aggregates across all products and tens of thousands of stores of all

types. Visual inspection of this relationship by product and store-by-store generally yields similarly

well-behaved linear relationships (with different slopes as expected, given the different mean elasticity

estimates for each store type and module); some examples are in Online Appendix Figure 12a-b.

We provide two additional pieces of evidence validating the elasticity estimates for food stores

in Online Appendix Figure 12c-d. First, the log price variable explains about half of the remaining

variation (in terms of R2) after controlling for the fixed effects. Second, we run a module-by-module

regression that pools across stores and augments equation (4) by including also the prices charged

in weeks t−2 and t−4, as well as in week t+4 (and using store*year fixed effects µsy in place of the

product*year fixed effects αsjy). The coefficients on these variables, while statistically significant

and in line with the predictions of a model of stockpiling, are an order of magnitude or more smaller

than the coefficients on price in week t. Furthermore, they are not systematically larger for storable

products, like toilet paper and canned soup, than for non-storables, like orange juice and yogurt.

Finally, we examine the correlates of our estimated elasticities. Figure 8d shows that the es-

30Online Appendix Figure 11 shows the mean squared error as function of the shrinkage parameter.
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timated elasticities vary monotonically (and in fact linearly) with store income. Table 5 presents

regressions of the estimated elasticities η̃s on a broader set of demographic and competition mea-

sures. The results confirm the robust relationship between elasticity and income: an increase of

$10,000 is associated with an increase of the elasticity of 0.140 (s.e. 0.014). This estimate remains

similar with the addition of chain fixed effects. In columns 3 and 4, we add as determinants the

share of college graduates, the median home price, controls for the fraction of urban area, as well as

a simple measure of competition with other stores: indicators for the number of competitor stores

within 10 kilometers of the store. The coefficients have the expected signs, with income as the

strongest determinant, and the expected effect of the competition proxies.31

Next, we replace the estimated elasticity η̃s as the dependent variable with the log elasticity

term log
(

η̃s
1+η̃s

)
suggested by equation (3). The regressions in columns 6-8 are the first-stage of the

instrumental variables regressions we estimate below. Income is a strong predictor of log elasticity,

with a coefficient that is relatively similar across food, drug, and mass merchandise stores.

4.3 Comparing Observed and Optimal Prices

In this section, we test the model’s prediction for optimal pricing (equation 3) directly. We estimate

ps = α+ βlog

(
η̃s

1 + η̃s

)
+ εs. (5)

Equation (5) follows from averaging equation (3) across products. Under the assumptions of the

model, the coefficient β on the log elasticity term is equal to 1. If the chains under-respond to the

elasticity variation, instead, we will observe β < 1. For our benchmark specification, we instrument

the log elasticity term with the store-level income to address remaining measurement error in these

estimates.32 The standard errors are block bootstrapped, clustering by parent code in food stores

to allow for any within-chain correlation in errors. For the drugstores and mass merchandise stores,

given that there are only, respectively, 4 and 5 chains, we block bootstrap by parent code*state.33

Figure 9 displays the first stage relationship between the log elasticity term and income within

chains, between chains, and within and between chain-states. Unlike the analogous plots of the

price-income relationship in Figure 5, the within and between relationships are remarkably similar,

with a first stage coefficient varying between 0.034 and 0.055.

We estimate variants of this IV regression within and between chains and chain states. To

compute within-chain estimates, we replace α with chain fixed effects. To compute within-chain-

31Column 5 in Online Appendix Table 5 shows that it is important to control for the fraction of urban variables,
as without those some of the competition variables have the opposite sign (though their effect is not significant).

32For this specification we winsorize the store elasticity η̃s at -1.2. This happens very rarely in the case of our
benchmark weekly elasticity estimates (nine food stores and one drugstore) but more frequently for weekly index (564
food stores) and quarterly top-product estimates (796 food stores).

33We cluster by parent code instead of by chain (retailer code) to allow for correlation between chains that fall
under the same ultimate owner (parent code).
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state estimates we replace α with chain*state fixed effects. To compute between-chain-state estimates

we average ps and the log elasticity term within chain-states, and run the regression including chain

fixed effects. To compute between-chain estimates we average both terms within chains and then

run the regression with no fixed effects. In all cases, we fix the first-stage coefficients at the values

from the within-chain first stage shown in the final three columns of Table 5. This is motivated by

the similarity of the coefficients in Figure 9, and prevents us from losing first-stage power in the

specifications where we aggregate the data.

Table 6 presents our main IV estimates, starting with the food stores. The first two columns

show within-chain and within-chain-state results respectively. Both coefficients are statistically

significant, but an order of magnitude smaller than the model prediction of β̂ = 1. Thus, the

observed nearly-uniform pricing within chains occurs despite significant incentives to vary prices to

achieve profit maximization. The third column shows between-chain-state estimates. The results

imply a substantial response of price to the elasticity term, though smaller than predicted by the

model, β̂ = 0.351 (s.e. 0.193). Finally, the fourth column shows the between-chain estimates. The

estimated coefficient on the log elasticity term in this regression, β̂ = 0.944 (s.e. 0.220), indicates

that average pricing at the chain level is consistent with the model: we cannot reject a slope β = 1.

In the drugstores (Panel B) the within-chain response is larger, but still significantly smaller than

predicted by the model: β̂ = 0.287 (s.e. 0.040). The between-chain-state relationship (zone pricing)

is consistent with the model: β̂ = 0.858 (s.e. 0.267). In the mass merchandise stores (Panel C) the

response is intermediate between that for food stores and that for drugstores.

We present OLS estimates in Online Appendix Table 6 and Online Appendix Figure 13a-d. The

results are qualitatively similar, but the point estimates are 3 times or more smaller. This may

reflect measurement error in our estimated elasticities or a larger local average treatment effect

in the IV regressions due to variation in income being more salient to chains than variation in

other determinants of elasticities. The OLS results reinforce the conclusion that the within-chain

price-elasticity relationship is an order of magnitude too flat to be consistent with the model.

4.4 Robustness

Table 7 presents a series of robustness checks, focusing on the results for food stores.

Quarterly Elasticities. Our short-run elasticities may differ from the longer-run elasticities

that are relevant to the chains’ pricing problem. Longer-run elasticities could be smaller due to

stockpiling, or larger if it takes consumers time to adjust to price changes—for example, if price

increases induce gradual substitution to other stores. As a step toward addressing these concerns,

we estimate quarterly elasticities. That is, we average the weekly log price and log units sold across

all weeks in a quarter, and then re-estimate our main equation (4). The controls include product*year

fixed effects as well as product*quarter-of-year fixed effects. The estimated quarterly elasticities are
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smaller (in absolute value) than the benchmark ones (Online Appendix Figure 15a), but the two

measures are highly correlated (Online Appendix Figure 15b). Importantly, the quarterly elasticity

measure passes the same validation exercises as our benchmark measure, as Online Appendix Figure

15c-e document: (i) the log-log specification is approximately linear; (ii) the standard errors of

the estimated elasticity are still relatively small (at 0.15 to 0.4), even if clearly larger than in the

benchmark elasticities,34 and (iii) the measure is still highly correlated with local income.

Panel A of Table 7 reports our main IV results using the quarterly elasticity measure, with the

first stage reported in Online Appendix Table 5. The finding that within-chain responses are an

order of magnitude too small is robust to using the quarterly measure. In fact, the within-chain β̂

coefficients become substantially smaller. This reflects two offsetting forces: the quarterly elasticities

vary less across stores, which would tend to reduce the optimal price variation, but the fact that

they are lower in magnitude makes the log elasticity term log
(

ηs
1+ηs

)
more responsive to a given

change in elasticity. The smaller coefficient, and the consequently larger gap between actual and

predicted price variation, means that the second effect dominates. The between-chain relationship

is still an order of magnitude larger than the within-chain response, but is now significantly smaller

than the model predicts (β̂ = 0.409).

Module-Level Indices. Another important limitation of our model is the fact that it ignores

substitution between products. Firms care about the profits they earn from all products. If some

of the response in our benchmark elasticities reflects within-store substitution, the optimal price

response could be smaller than our model would predict. To partially address this issue, we re-

estimate our elasticities using the module-level price and quantity indices described in Section 2. As

in the case of the quarterly elasticities, the module-level price elasticities are smaller (in absolute

value) than the benchmark ones (Online Appendix Figure 16a), as expected, but are highly correlated

with the benchmark elasticity (Online Appendix Figure 16b). The index elasticity also passes the

same validation tests (Online Appendix Figure 16c-e).

In Panel B of Table 7, we regress the price index on the index elasticities, instrumented with

income.35 As with the quarterly elasticities, this yields even smaller within-chain coefficients: our

main finding that chains vary prices too little from the model’s perspective is robust. Here we cannot

re-estimate the between-chain specifications given that the price indices are not comparable across

chains. In Online Appendix Table 7 Panel A, we show that the within-chain results are similar if

we use the index elasticity while keeping the benchmark prices as the dependent variable.

Additional Robustness. So far we have used per-capita income as an instrument for the log

elasticity term. The results are very similar (Panel C) if instead we use the full set of demographic

and competition variables in columns (3) and (4) of Table 5. In Panel D, we consider the role of

34We cluster the standard errors for the quarterly elasticities at the quarterly level, allowing for correlation across
the 10 products.

35The first stage is in Online Appendix Table 5.
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branding by considering the price of a top-selling generic that is common to many chains within

a subset of the modules considered. The within-chain relationship between price and income or

elasticity remains very similar to the one for the top-selling branded good. In Online Appendix

Table 7, we show that these patterns persist when we use the 20th most-available good in each of

the 10 product categories as dependent variable (Panel B), generic top sellers within chains (Panel

C), and some high-quality (high-price) products (Panel D).36

Yearly Average Price Paid. Our main question of interest is how the pricing decisions of

firms compare to the benchmark of optimal pricing, and we are therefore interested mainly in the

prices firms choose to post. If we are interested in the welfare effects on consumers, however, we

may also want to consider the average price paid over a longer time horizon. When prices vary over

time, more elastic consumers could end up paying substantially lower prices on average than less

elastic consumers even if the posted prices they face are the same.

To assess how large this force is, in Table 8, we compare our benchmark results using the log

of the weekly average prices (Panel A) with the results using the log of the yearly average prices

(Panel B). The within-chain coefficient (β̂ = 0.223) for the yearly average prices, while larger than

the benchmark estimate in Panel A as expected, is still 5 times smaller than the model prediction

under optimal pricing (β = 1). Thus, even taking into account this margin of adjustment does not

bring the level of prices up to what is expected in light of the model. Still, it is interesting that the

presence of sales works as a kind of “automatic” price discrimination, guaranteeing that consumers

in stores facing more elastic demand pay lower prices over the year, even in presence of uniform

pricing.37

4.5 Loss of Profits

The model allows us to compute the profits lost as a result of nearly-uniform pricing. Under uniform

pricing, we assume that a chain c sets a constant price P̄jc across all stores s to maximize

max{P̄cj}
∑
s(c),j

[
P̄cjksjP̄

ηs
cj − ccjksjP̄

ηs
cj

]
−
∑
s(c)

Cs,

where s(c) is the set of stores s belonging to chain c. This leads to the first order condition

∑
s(c)

ksj

[
(1 + ηs) P̄

ηs
cj − ccjηsP̄

ηs−1
cj

]
= 0. (6)

36Online Appendix Figure 14 presents the within-chain and between-chain plots for these alternative products.
37Online Appendix Figure 17a-d reproduce the key findings in Figure 5a-d, comparing the yearly average price to

the weekly average price. The yearly average price is more responsive to within-chain differences in income than the
weekly average price (Online Appendix Figure 17a and 17c), with a slope that is about twice as steep. Similarly, the
between-state zone-pricing relationship is also stronger using the yearly average price (Online Appendix Figure 17d).
The between-chain relationship for food stores, instead, is not much affected (Online Appendix Figure 17b).
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We assume that each chain c sets their average price P̄cj equal to the solution to (6). This is a weaker

assumption than the standard assumption of profit maximization, and is consistent with the between-

chain results observed above. To compute the implied profits, we need estimates for the scale factor

ksj , the marginal costs ccj , and the fixed cost Cs, in addition to the estimates η̃s of the elasticities

computed above.38 To estimate the quantity term, we take k̂sj to be the average over the weeks t of

Qsjt/P
η̃s
sjt. To estimate the marginal costs, we define ĉcj =

[∑
s k̂sj (1 + η̃s) P̄

η̃s
cj

]
/
[∑

s k̂sj η̃sP̄
η̃s−1
cj

]
,

which, by equation (6), is a consistent estimator. Finally, to estimate the fixed costs, we follow

Montgomery (1997), who estimates gross profit margins for supermarkets of 25 percent and operating

profit margins of 3 percent; thus we posit Ĉs = (1 − (3/25)) ∗ Πg
s , where Πg

s is the (optimal) gross

profit.

Given these assumptions, we compute the profits for store s and product j under uniform pricing,

Π̄sj , and under optimal pricing, Π∗sj , which we obtain by setting P ∗sj = ĉcj ∗ η̃s/(1 + η̃s).
39 We then

aggregate across products j to obtain Π̄s and Π∗s, and compute the percent of profit loss due to

uniform pricing as
(
Π∗s − Π̄s

)
/Π∗s. Panel A of Table 9 shows that, in the average store, the profit

loss is 8.9 percent of variable profits, with the losses as high as 23 percent at the 90th-percentile store.

The highest losses occur for stores in high-income areas (Online Appendix Figure 18a), where the

lower elasticities (in absolute value) would call for significantly higher prices under flexible pricing.

While uniform pricing captures well the observed pricing in most food chains, we do estimate

a small, but statistically significant, response of prices to elasticity within chains. In the second

row of Table 9, we compute the percent of profit loss for the actual profits Πs, relative to optimal

pricing. To compute the actual profits, we use the prices implied by our benchmark IV specification:

Psj = Acj ∗ [η̃s/(1 + η̃s)]
βIV , where βIV is the estimate in column 1 of Table 6 and Acj is a constant

that guarantees that the average price Psj across all stores s in chain is equal to the uniform price

P̄cj .
40 We then compute the profits Πjs and aggregate across products j. The second row in Panel

A of Table 9 shows that this tempers the losses to an average profit loss of 6.5 percent. In the final

row, we compute the loss of profits for state-zone optimal pricing, where prices are set optimally,

but are uniform at the state level. This leads to similar losses as using the actual price-elasticity

slope.

In Panel B of Table 9, we aggregate the profits for all stores s in a chain c, and compute the

chain-level profit loss
(
Π∗c − Π̄c

)
/Π∗c . The mean loss from uniform pricing at the chain level is 8.7

percent, and the mean loss using the actual price-elasticity slope is 6.9 percent. For the average food

chain (Online Appendix Table 8), the profit loss from uniform pricing is about 8.8 percent, and 7.2

percent under the actual pricing. For the drugstore chains, the loss from uniform pricing is larger,

38For the computation of the lost profits, we use the modules with constant products throughout the 9 years so as
to avoid estimating year-specific marginal cost and quantity terms.

39For the stores with elasticity η̃ > −1.2, the elasticity is winsorized at -1.2.
40If we instead use the observed prices, the estimated lost profits would be larger, as there is significant idiosyncratic

variation in these prices, which is both unrelated to income and sub-optimal from the perspective of our model; see
Online Appendix Table 8.
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though this larger loss is mitigated when taking into account the more sizable price-elasticity slope.

Finally, the losses are smaller for the mass merchandise chains.

The loss of profits computed so far uses the benchmark weekly elasticity. In Panels B and C

of Online Appendix Table 8 we compute the loss of profits using the quarterly elasticity and the

module-level index elasticity in food stores. We follow the same procedure outlined above to infer

the marginal costs, but using the relevant elasticity in place of η̃s . The implied loss of profits is

larger under these alternative elasticities, with mean loss of 34.4 percent for the quarterly elasticity

and 17.2 percent under the index elasticity.

5 Determinants of Pricing and Explanations

We now discuss chain-level factors that predict flexible pricing, then turn to possible explanations.

Determinants of Flexible Pricing. Table 10 shows the relationship between the degree of

uniform pricing and chain characteristics. The dependent variable is a chain’s estimated response

to the log elasticity term in equation (5), based on chain-by-chain estimate of the IV specification

in column 1 of Table 6, where we pool chains in the first stage.41

We first relate this measure of flexible pricing to measures of chain size: the log number of stores,

the log number of states the chain operates in, and the log of average revenue per store. As column

1 of Table 10 shows, both the number of stores and the number of states positively predict flexible

pricing. Just these three variables achieve an R2 = 0.548, implying that chain size is an important

determinant of the uniformity decision.

Next, we add a reduced-form measure of the returns from flexible pricing: the standard deviation

of store-level income across the stores in the chain. As column 2 shows, even controlling for chain

size, heterogeneity in income across stores is a significant predictor of flexible pricing.

We then consider two model-based variables of the return to tailored pricing: the percentage

gains from optimal pricing,
(
Π∗c − Π̄c

)
/Π∗c , as in Table 9, and the log absolute gain from optimal

pricing, log(Π∗c − Π̄c). To compute the second variable, we take the store-level loss from uniform

pricing in dollar terms, Π∗s − Π̄s, and scale it up by the share of revenue in that store due to the

selected UPCs; we then sum the dollar losses across all stores in a chain, and take the log.

The percent profit loss is likely the most relevant variable if the chain is comparing the gain

from optimal pricing to a store-by-store cost of optimal pricing, such as, for example, the possible

backlash from consumers who may perceive optimal pricing to be unfair. The profit loss in dollars

is more relevant if the chain is comparing the gain from optimal pricing to a chain-wide fixed cost,

such as a chain-wide managerial cost. As column 3 shows, of the two variables, only the (log of) the

41That is, for each chain, we regress the store-level log price on the store-level income, yielding the coefficients in
Online Appendix Figure 6. We then divide these coefficients by the first-stage coefficient in Table 5, columns 6-8
(depending on chain type). For example, for food chain 32, the coefficient is 0.0098/0.0474 = 0.207.
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dollar profit losses is significant, consistent with the results in columns 1 and 2, which suggest that

the chain size matters. While the log dollar profit loss is clearly correlated with the extent of tailored

pricing (see Online Appendix Figure 18b for a scatterplot at the chain level), the explanatory power

of these two variables (R2 = 0.3) is about half the one for column 2.

Next, in column 4, we consider two variables that one would expect to play a role according

to some of the possible explanations for the findings. As a measure of competition, we take the

share of stores in chain c that have at least a competitor store within ten kilometers. Stronger

competition could lead one to expect a stronger incentive to charge optimal prices. Conversely,

though, as discussed below, tacit collusion incentives could lead one to expect the opposite. We

also consider a measure of density, the share of stores which have a second store of the same chain

within ten kilometers. If consumers compare prices across stores in the same chain and dislike price

variation due to fairness, varying prices will be less attractive for contiguous stores. We find that

neither variable matters significantly.

In column 5 we consider all determinants jointly. A key size variable, the number of states,

remains a strong determinant, as does a variable indicating the dispersion of consumer demand, the

income heterogeneity. The model-based measures are not statistically significant, though they are

highly correlated with the other determinants. In Online Appendix Table 9, we document similar

results using the chain-level quarterly absolute log price difference, as in Figure 4a.

Explanations. In light of this evidence, we now consider explanations for the documented

prevalence of uniform pricing. Some traditional explanations do not appear to apply to this setting.

One is menu costs (Mankiw, 1985). Food stores change prices regularly to implement sales. Thus,

it is implausible that a menu cost limits the ability to set different prices at the store level. A

behavioral explanation that also appears unlikely in this setting is limited attention on the part

of managers (e.g., Gabaix and Laibson 2006). It is hard to imagine that managers are not aware, or

are optimally inattentive, with regards to the local income in their stores, especially given that we

consider local income averaged over several years.

We also think it is unlikely that uniform pricing is due to constraints imposed by price advertis-

ing. Advertising could certainly create an incentive to price uniformly within a geographic market:

if a firm advertises a particular price in a newspaper, for example, it might want to honor that price

in all stores in that newspaper’s circulation area. Retail chains rarely advertise prices nationally,

however, and this constraint would only apply at the level of a newspaper market, or at most a

television market (DMA), which is typically larger. In Online Appendix Figure 19a-b, we compare

the zone pricing at the state level to the zone pricing at the DMA level (after taking residuals for

chain*state fixed effects). We find less evidence of zone pricing at the DMA level than at the state

level, and we see many chains that charge nearly uniform prices across DMAs.

We see three other explanations as more plausible. First, committing to uniform or zone pricing
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may allow chains to soften price competition. Suppose chains start out in a high-price equi-

librium, and that they would be tempted to cut prices in certain markets to capture market share

from their competitors. Under flexible pricing, they could do so while leaving their other stores’

prices unchanged. Under uniform pricing, such price cuts become more costly, as the chain would be

forced to cut prices in all stores. Dobson and Waterson (2008) present a model along these lines, and

Adams and Williams (2017) estimate a richer model in which this incentive exists and find mixed

support for it as an explanation using data from the hardware industry.

Such models predict that the value of committing to uniform pricing would be greater for chains

that face significant competition than for chains that do not. We do not observe any chains that

are literally monopolists in all their markets, but there is substantial variation in the extent of

competition chains face. Yet, the share of stores in a chain facing competitors nearby is not a

predictor of the extent of uniform pricing (Table 10). Further, in Online Appendix Table 10, we ask

whether the price-log elasticity relationship differs for stores with no competing stores nearby. There

is no evidence for food and drug stores. These exercises are not a definitive test – the incentive to

soften competition need not be related in a simple way to our competition proxies – but we see them

as evidence suggesting that softening price competition may not be the driving force.

Second, managers may avoid varying prices because consumers could perceive charging different

prices in different stores as unfair (fairness). If varying prices would damage the reputation of the

chain, this might outweigh the gains from flexible pricing. Anecdotal evidence from store managers

themselves provides some support for this explanation. In a report on the UK grocery pricing, the

UK Competition Commission writes “Asda said that it would be commercial suicide for it to move

away from its highly publicized national EDLP pricing strategy and a breach of its relationship of

trust with its customers, and it would cause damage to its brand image, which was closely associated

with a pricing policy that assured the lowest prices always” and “Morrisons stated that adopting a

policy of local prices would be contrary to its long-standing marketing and pricing policy, it would

damage its brand and reputation built up over many years and would adversely affect customer

goodwill, as well as being costly to implement and manage” (Competition Commission, 2003).

These quotes notwithstanding, fairness may be a less compelling explanation for uniform pricing

in our setting than in others. Few consumers visit multiple stores from a chain in geographically

separated markets, so if chains did choose to price discriminate across these stores, few consumers

would observe this directly. In addition, if our chains were to price discriminate they would be

raising prices on the rich and cutting prices for the poor (as we discuss in Section 6.1 below), not

an obviously objectionable practice from an ethical point of view.

To provide direct evidence, we examine if there is more price similarity when detecting price

variation is easier for consumers. As we show in Table 10, there is no evidence that chains with a

higher fraction of isolated stores are more likely to do targeted pricing. Further, in Online Appendix
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Table 10, we consider if stores with no same-chain stores nearby are more likely to price flexibly.

We find no evidence for food store or mass merchandise stores, with some evidence for drugstores.

Overall, we find only limited support for the fairness explanation.

A final explanation is managerial decision-making costs. Implementing more flexible pricing

policies may impose costs such as up-front managerial effort in policy design or investments in more

sophisticated information technology. More generally, the costs of implementing sophisticated pricing

policies may exhibit increasing returns to scale. Bloom and Van Reenen (2007) offer possible support

for this, showing that larger chains have better management practices generally. To the extent that

uniform pricing has been the prevalent policy in the past, change may impose additional costs,

as managers may not be well incentivized to make the change, while fearing the cost if a change

backfires.

The key prediction of any such model is that chains should invest more in flexible pricing when

the returns to doing so are high. In particular, we would expect to see more such investment for

large chains in terms of number of stores and revenue, and in chains where the variation of optimal

prices across stores is large. The findings in Table 10 support these predictions.

Another prediction is that pricing would become more flexible over time, as information tech-

nology costs fall and inertial managers turn over. In Online Appendix Table 10, we re-estimate our

IV specification forming the log price either using the first years (2006-08) or the most recent years

(2012-14). Both drugstore and mass merchandise chains appear to have doubled the flexibility of

their pricing over these years, though we do not see a comparable trend for food chains.

Overall, though none of this evidence is definitive, we see the most support for managerial

decision-making costs or inertia, consistent with prior work on management and behavioral firms

(e.g., Bloom and Van Reenen, 2007; Hanna, Mullainathan, and Schwartzstein, 2014).

6 Implications

In this section, we consider three broader economic implications of uniform pricing.

6.1 Inequality

Jaravel (2016) among others brings attention to the role of store pricing for the rise of inequality

in the past decades, and shows that the introduction of novel products reduced the relative prices

faced by high-income consumers. Uniform pricing by chains will have a similar effect, since optimal

prices covary positively with income.

To quantify this effect, we compare the relationship between average local prices and income to

the counterfactual one we would observe if firms priced flexibly as in our benchmark model. We

compute the observed level of prices at a particular income level by simply taking the average price
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charged by stores in all chains with local income in that range. For the counterfactual, we compute

the optimal price under flexible pricing as detailed in Section 4.5: p∗sj = log(ĉcj) + log(η̃s/(1 + η̃s)).

Since our observed price measure is standardized, we standardize the optimal prices as well by

subtracting the average observed log price in a year-product cell. We then average this standardized

optimal price across products j and further across all stores s at a particular income level. Note

that the extent to which the price-income gradient increases in the counterfactual depends both on

how much steeper the within-chain pricing slope becomes and on the extent to which low-income

and high-income areas are served by distinct chains.

Figure 10a shows the result for food stores. Areas with higher income have higher actual prices:

an extra $10,000 of local income increases prices on average by about 2 percent. This relationship is

consistent with our between-chain relationship (e.g., Table 6 column 4): chains operating in higher

average income areas charge higher prices. Yet, this price-income slope is much flatter than it would

be if firms were setting prices optimally. Under flexible pricing, the price increase associated with

$10,000 higher local income would be about 5 percent. The pattern is similar for drugstores (Figure

10b). For mass merchandise stores, the observed price-income relationship is in fact negatively

sloped, due to the fact that of the two major chains, the one operating in higher income areas has

lower prices. Even so, the counterfactual price has a positive slope with respect to income.

These patterns have quantitatively important implications for inequality. For the food stores,

consumers of stores in the lowest income decile pay about 0.7 percent higher prices than they would

pay under flexible pricing, but consumers of stores in the top income decile pay about 9.0 percent

lower prices than under flexible pricing. Consolidation between retailers could further strengthen this

pattern. These quantitative implications are even larger if we use the quarterly or index elasticities

instead of the benchmark weekly elasticities (Online Appendix Figure 20).

6.2 Response to Local Shocks

A second implication of our findings relates to the response of prices to local economic shocks

(Beraja, Hurst, and Ospina, 2016; Stroebel and Vavra, 2015). Benchmark models assume that when

a negative shock to income or wealth hits consumers in an area, the impact on welfare will be offset

to some extent by reductions in local retail prices. Similarly, any shocks that increase local costs

would tend to be reflected in higher prices. Such responses will be dampened by uniform pricing,

and this will be more true the smaller the geographic area affected by the shock.

The magnitude of this effect depends on the geographic distribution of stores, as well as the

degree of uniform pricing. We provide an illustrative calibration in Table 11. For simplicity, we

focus on our benchmark orange juice product. We assume that some group of stores faces a negative

$2,000 income shock, translating into an elasticity shift as in Table 5, column 6. We consider a set

of such shocks that differ in the set of stores affected. These are (i) a nationwide shock that affects
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all stores in the country; (ii) a set of 48 state-level shocks, each of which affects all stores in a given

state; (iii) a set of analogous county-level shocks. For each shock, we compute the response of prices

under optimal pricing (column 1), under uniform pricing (column 2), and under our approximation

of actual pricing (column 3), similar to what we did in Section 4.5. For the local shocks in groups

(ii) and (iii), we report the mean response across shocks in each group.

The dampening effect of uniform pricing on local price responses is dramatic. Under flexible

pricing, our $2,000 income shock leads to roughly 0.9 percent lower prices. As expected, the response

under uniform and actual pricing is similar when the shock is nationwide.42 For state and county-

level shocks, however, the responses are far smaller. Under uniform pricing, the average state-level

shock reduces prices by 0.29 percent, and the average county-level shock reduces prices by 0.02

percent. These responses are somewhat higher under actual pricing (which allows some flexibility

across stores), but still far smaller than under flexible pricing: the average state-level shock reduces

prices by 0.35 percent and the average county-level shock by 0.10 percent.43

Panel B and C explore these responses further by considering an example of a cost shock affecting

California or Nevada. Given that California is a large state, a negative shock in California leads to

a decrease in prices in the California stores of 0.71 percent, still dampened but much closer to the

response under optimal pricing. In contrast, an equal-sized shock in Nevada lowers the prices in

Nevada stores by only 0.23 percent. This example also illustrates potential price spillovers. Under

flexible pricing, a shock in California leaves prices unaffected in Nevada. Under uniform pricing,

instead, it causes prices in Nevada to decrease by 0.36 percent, as some stores in Nevada are part

of the same chains as stores in California. Uniform pricing thus causes not just under-response to

local shocks, but also spillover in pricing beyond the region affected by the shock.

6.3 Incidence of Trade Costs

A third implication of uniform pricing relates to the estimation and incidence of trade costs. A

large literature estimates trade costs by examining differences in the prices of specific products at

geographically separated retail stores. Prior studies are surveyed by Fackler and Goodwin (2001)

and Anderson and van Wincoop (2004). As a recent example, Atkin and Donaldson (2015) use

prices in the Nielsen RMS data to estimate trade costs, accounting explicitly for the source locations

of the products and the possibility of spatially varying markups.

Setting aside for a moment the adjustment for markups, this strategy will estimate trade costs

to be larger the more prices vary across space. Uniform pricing would thus lead trade costs to be

underestimated. At an extreme, if all stores were owned by a single chain that practiced uniform

42The response to a nationwide shock under uniform and actual pricing is not identical to the flexbile pricing
response because elasticities enter equation (6) non-linearly.

43The patterns for local price response to shocks are similar if we use the quarterly or price index elasticities instead
of the benchmark elasticity, with a larger overall response to the negative shock (Online Appendix Table 11).
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pricing, the estimated trade costs would be zero. In the observed data, the extent to which they are

underestimated will depend on the size and geographic distribution of chains.

How would uniform pricing affect the adjustments for markups? Atkin and Donaldson (2015)

propose an innovative strategy that infers the extent of market power from the observed passthrough

of price shocks in origin locations to prices in stores further away. While they would ideally use

the origin wholesale price, this is not available in the data, so they use the origin retail price as a

proxy. Uniform pricing will tend to increase the estimated passthrough, as it increases the correlation

between changes in retail prices in origin and destination markets that are served by stores from

the same chains. It will therefore tend to reduce the level of estimated markups, while (correctly)

implying less variation in markups across space. The extent of these effects again depends on the

size and distribution of chains.

Both of these points relate to the estimation of trade costs. Uniform pricing also affects the

true incidence of these costs. Just as we noted above that uniform pricing tends to raise prices

in high-income areas and lower them in low-income areas, so here it will tend to raise prices in

locations close to where products are produced and lower them in remote locations. It thus shifts

the incidence of trade costs away from those located far from the place of origin to those located

closer to it.

7 Conclusion

In this paper, we show that most large US food, drugstore, and mass merchandise chains in fact set

uniform or nearly-uniform prices across their stores. We show that limiting price discrimination in

this way costs firms significant short-term profits. We find managerial costs to be the most plausible

explanation for this pattern. We show that the result of nearly-uniform pricing is a significant

dampening of price adjustment, and that this has important implications for the extent of inequality,

the pass-through of local shocks, and the incidence of trade costs.
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A Appendix

A.1 Data

A.1.1 Store Selection

In the RMS data, Nielsen provides a basic categorization of stores into five “Channel Codes”:
Convenience, Food, Drug, Mass Merchandise, and Liquor. Of these, we select Food, Drug, and Mass
Merchandise chains since the Convenience and Liquor stores are typically not covered in the HMS
data and thus would not be included in our final sample. In the HMS data, there are more detailed
“Retailer Channel Codes” and each store is assigned to one of 66 mutually exclusive categories such
as Department Store, Grocery, Fruit Stand, Sporting Goods, and Warehouse Club. Our starting
sample of food stores includes all stores that are categorized as “Food” stores in the RMS data. All
the food stores selected in the final sample fall into the “Grocery” store category in the HMS channel
code categorization44, the drugstores are all “Drug Stores,” and the Mass Merchandise stores are all
“Discounters.”

Some stores change DMA or FIPS code over the time that they are in the sample. Since Nielsen
identifies store by the physical location of the store, this occurs because DMA regions or county lines
are redefined over the nine years we observe. In other words, the stores themselves are not changing
physical locations. For stores that switch, we use the modal DMA and FIPS code. This does not
affect how we aggregate store-level demographics for our main analysis.

A.1.2 Demographics

All demographics are zip code level data from the 2008-2012 5-year ACS. We aggregate this zip
code level demographics into store-level demographics as explained in Section 2. There are two
special cases: (i) for one store with missing median home price data, we impute this value by
regressing median home price on the other demographics (income, fraction with a bachelor’s degree,
race, and fraction of urban area); (ii) three drugstores are only visited by one household each, and
these households provide a PO Box zip code as its zip code, making it impossible to use our usual
procedure; we use county-level demographics for these three stores.

A.1.3 Competition Measures

We use the HMS panel data to help us construct a measure of competition based on geodesic distance.
To compute the location of each store, we use the more detailed location information in the HMS
data.45 First, we assume that each HMS household lives at the center of its zip code. For each of
the stores in the HMS dataset, we use a trip-weighted average of the coordinates of each household
in order to arrive at an imputed location for the store. For our measure of competition for store s,
we then count the number of stores of the same channel (e.g., food stores, counting only other food
stores) within various distances (e.g., 5 or 10 km) of store s by geodesic distance.46

A.1.4 Product Selection

We select 10 modules (product categories) based on commonly available and highly-sold products
in food stores. These products include five that belong to product groups used in Hoch et al. (1995)
(soup, cookies, orange juice, soda, and toilet paper) and in Montgomery (1997) (orange juice).

44The starting sample of 11,501 Food stores also contains some Discount Stores and Warehouse Clubs, as well as
some (likely mislabeled) drugstores.

45Recall that the location of the store in the Nielsen publicly available data is only recorded up to the 3-digit zip
code or county.

46i.e., distance as the crow flies
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Within a module (e.g., soda), we select a high-selling product (e.g., 12-pack cans of Coke). The
product choice aims to ensure that (i) the product is available across as many chains and stores as
possible (to ensure comparability across stores and across chains), and that (ii) within a store, it is
sold in as many weeks of the year as possible (since otherwise the price is not recorded). We select
the product within a module-year with the highest number of week-store observations with positive
sales. This procedure typically selects, for a given module, different products in different years. We
refine this initial selection with an eye to identifying a constant product across all 9 years, when
possible. We search for a single product (UPC) that is present in all nine years and with availability
in each module-year at most 10 percentage points below that of the top product. In food stores,
this leads us to identify a consistent product for 7 out of 10 modules; for the remaining 3 modules,
the selected product varies across the years. Because of low availability, we identify two constant
products in drugstores and five products in mass merchandise stores, two of which are constant.47

For robustness analysis, just for the food stores, we also identify an additional set of four prod-
ucts. (i) (Less Commonly Sold Items) For each module, we also select the 20th-highest availability
seller (for example, 6 oz Chobani Black Cherry); this product is chosen to be the same across all
chains. (ii) (High-quality products) Since high-quality, high-price products are not well represented
in our benchmark products, for three modules (chocolate, cookies, and coffee) we identify products
that are in the top 2 quintiles of average price (conditional on package size) are high in availability,
as defined above. We select three coffee products (for example, Starbucks 12 oz French Roast),
3 cookie products (Pepperage Farm Chessmen), and 2 chocolate product (Lindt 5.1 oz bar). (iii)
(Chain-specific generic product) We identify within each module a generic (store-brand) product as
the product with highest availability within each chain among the UPCs with the Nielsen identifier
“CTL BR” (which identifies store-brand products). This generic product is not comparable across
chains. (ii) (Generic product across chains) We choose a different set of generic products to enable
between-chain comparisons. We take advantage of the fact that Nielsen assigns the same (masked)
UPC to products it deems similar across chains, e.g. “Yogurt 32 oz.” To minimize the chance
that we identify non-comparable products across chains, we require that the average price for each
store-product is within 20% of each other for stores in the same DMA. On this sample of products,
we apply a similar product selection procedure as for our benchmark products, leading to generic
products that are comparable across (most) chains for 4 modules (soup, cookies, soda, and yogurt).48

A.1.5 Prices

As described in the text, we compute the weekly price Psjt as the ratio of weekly revenue and
weekly units sold for that store-product. We apply the following filters: (i) Following the Nielsen
manual, we divide the weekly units sold by the variable ‘prmult’ (price multiplier); (ii) We drop all
prices ≤ $0.10 since almost surely these represent cases of measurement error. This affects very few
observations: 1,298 store-product-weeks (0.003% of observations) in food stores, 1,613 observations
(0.017%) in drugstores, and 459 observations (0.006%) in mass merchandise stores.

A.1.6 Pairs Dataset for the Analysis of Store Pricing Similarity

For the measure of similarity in pricing across stores, we create a data set of pairs of stores. For the
within-chain comparisons, we select up to 200 stores per chain, out of which we form all possible
pairs. For the chains with more than 200 stores, we select 200 stores with consistent presence in the
sample, since we could not compare the similarity in pricing between stores operating in different
sample years. (Recall that the condition for inclusion of a store is data availability for at least 104

47In drugstores, we replace the top-availability soda UPC with the fifth-highest-availability soda UPC as the top
four products go on temporary price reductions extremely rarely and thus make it difficult to identify the demand
elasticity.

48For each store, we keep only the generic modules with at least 80% availability over the 9 years. Some stores have
pricing information for only a subset of the 4 generic products.
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weeks). Specifically, we select stores with non-missing price observations for at least 60% of the 468
sample weeks in at least 5 out of 10 modules in food stores, 1 out of 2 modules for drugstores, and 3
out of 5 modules for mass merchandise stores. For the between-chain comparisons, given that some
of the comparisons condition on DMA, we sample one store per chain-DMA if there are multiple
chains in a DMA and two stores per chain-DMA otherwise.

For the between-chain sample, we begin with the within-chain sample (limited to a maximum
of 200 stores per chain) and select the maximum of 1 store or 7.5% of stores (rounded down) in that
sample, giving preference to stores with consistent presence in the sample as described above.

A.1.7 Major Grocer’s Data

As additional data, we use the scanner data for 250 stores from a major grocer as in Gopinath et
al. (2011). Since we want to compare the results using the Nielsen price measure versus the price
measures in this major grocer’s data, it is important to identify the stores in the Nielsen data which
correspond to stores in this additional data set. Since the dataset in Gopinath et al. (2011) covers
2004 to mid-2007, we focus on the 1.5 years of overlap covering all of 2006 and part of 2007. We
match the two data sets using the 3-digit zip code and (with a fuzzy match) using the sum of units
sold in 2006 for our benchmark products in the 10 modules. This results in 132 matches to stores in
our main sample, all of which belong to a single Nielsen retailer code. We validate the correctness
of the matches using data on price and with an alternative matching algorithm.

A.1.8 Imputing Nonsale Prices from Nielsen RMS Data

The major grocer’s data provides information on non-sale prices. While we do not have the same
information in the Nielsen RMS dataset, we infer non-sale prices using the following procedure. We
keep only prices that are above the 80th percentile of prices in a given store-year–module. Futher,
we require that a given price is charged for three weeks in a row (two weeks in a row for the first and
last weeks of each year). This yields Pnonsalesjt for the weeks t where this variable is defined. We then
calculate the price level as detailed in Section 2. For the 132 stores that are both in the Nielsen and
in the major grocer’s data, we can provide a validation of this procedure comparing the non-sale
price measure computed this way with the non-sale price variable in the major grocer’s data. The
two data series match perfectly for all but 13 store-product-weeks.
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Figure 1. Examples of Uniform Pricing 
Figure 1a. Pricing for Chain 128, Orange Juice 

 
Figure 1b. Pricing for Chain 128, 5 Different Products 

 
Notes: Plots depict log price in store s and week t for a particular product j. To facilitate comparison across products, we standardize prices by 
demeaning the log price by the average log price across all stores s in all chains, within a year. Thus, a log price of 0.1 indicates a price that is 0.1 
log points higher than on average. Darker colors indicate higher price and are blank if price is missing. Each column is a week. Each row is a store, 
and stores are sorted by store-level income per capita. In Figure 1a, dividers are $10,000s differences in the per-capita income measure. In Figure 
1b, the same 50 stores appear for each product. 
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Figure 2. Example of Zone Pricing: Chain 130, Orange Juice 

 
Notes: Plots depict demeaned log prices, same as in Figure 1. The only difference is that stores are not sorted by per-capita income (as in Figure 
1) but are instead sorted first by state and then by the three-digit zip code of the store within each state. 
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Figure 3. Similarity in Pricing Across Stores: Same-Chain Comparisons versus Different-Chain Comparisons. 
Figure 3a. Quarterly Absolute Difference in Log Prices      Figure 3b. Weekly Correlation of Log Prices  

    
Figure 3c. Share of Identical Prices 

 
Notes: Each observation in the histograms is a pair of stores. The “same chain” pairs are formed from stores belonging to the same chain; the “different chain” pairs are formed from stores in different 
chains, requiring in addition that the two stores do not belong to the same parent_code. Figure 3a displays the distribution of the average absolute difference in log quarterly prices between two stores 
in a pair, winsorized at 0.3. Figure 3b displays the distribution of the correlation in the weekly (demeaned) log prices between two stores, winsorized at 0. Figure 3c displays the share of prices in a pair 
of stores that are within 1 percent of each other. A maximum of 200 stores per chain are used for the same-chain pairs to bound the overweighting of the 10 largest chains. See Appendix Section A.1.4 
for details on how we formed the different-chain pairs. 
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Figure 4. Similarity in pricing, Chain-Level Measure 
Figure 4a. Quarterly Similarity in Pricing versus Weekly Correlation of Prices, by Chain 

 
Figure 4b. Within-State versus Between-State Quarterly Absolute Log Price Difference, by Chain 

 
Notes: Each observation in Figure 4a-b is a chain, with circles representing food stores, diamonds representing drugstores, and squares 
representing mass-merchandise stores. In Figure 4a, for each chain, we plot the average across all within-chain pairs of the quarterly absolute 
difference in log price (Figure 3a) and of the weekly correlation in log price (Figure 3b). We compute the averages using up to 400 stores within a 
chain; for chains with over 400 stores, we select randomly among the stores with data for the maximum number of weeks. In Figure 4b, each 
observation is a chain that operates at least three stores in multiple states. Chains that differentiate pricing geographically—difference between 
across-state and within-state quarterly absolute price difference greater than 0.013—are denoted with solid markers. 
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Figure 5. Price versus Store-Level Income 
Figure 5a. Price versus Income: Within-Chain    Figure 5b. Price versus Income: Between Chains (Food Stores Only) 

    
Figure 5c. Price versus Income: Within-Chain-State   Figure 5d. Price versus Income: Between Chain-State   

     
Notes: Figure 5a,c are binned scatterplots with 50 bins of the residual of log price in store s on the residual of income in store s. Residuals are after removing chain fixed effects (Figure 5a) and chain*state 
fixed effects (Figure 5c). Figure 5b is a scatterplot of average price on average income at the chain level for the food stores, with the labels indicating a chain identifier. Figure 5d is a binned scatterplot 
with 25 bins of chain-state averages of both log price and income. The figures report the coefficients of the relevant regressions, with standard errors clustered by parent_code. Axes ranges have been 
chosen to make the slopes visually comparable. Analytic weights equal to the number of stores in each aggregation unit are used for the regression in Figure 5b and 5d.  
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Figure 6. Zone Pricing 
Figure 6a. Food Stores (Non-Zone-Pricing Chains Only), State Zones Figure 6b. Food Stores (Zone Pricing Chains), State Zones 

    
Figure 6c. Drug Stores, State Zones     Figure 6d. Mass Merchandise Stores, State Zones 

    
Notes: Figure 6a-d are scatterplots of the chain-state averages of log price and income, demeaned by chain. Figure 6a displays this for the food stores that operate in multiple states and do not price by 
state zones (that is, is not labeled in Figure 4b); the figure does not display one chain-state outlier with income residual of $30,800. Figure 6b-d denote each chain with different shapes and colors. 
Figure 6b plots the ten food chains identified as zone pricers from Figure 4b. Figure 6c,d plot, respectively, the drugstores and mass merchandise stores. Standard errors are clustered by 
parent_code*state.  



42 
 

Figure 7. Price Response to Income: Investigation Using Major Grocer’s Data 
Figure 7a. Nielsen Data: Average Weekly Price    Figure 7b. Data from Major Grocer: Average Weekly Price 

   
Figure 7c. Data from Major Grocer: Nonsale Price   Figure 7d. Data from Major Grocer: Wholesale Cost 

    
Notes: We match 132 stores in our Nielsen sample to stores in the sample of a major grocer (Gopinath et al., 2011). Figure 7a is a binned scatterplot with 20 bins of residuals of log price and income for 
the 132 stores in the Nielsen data, after taking out state fixed effects. The prices in this regression are based on 2006 prices only and are thus not identical to our benchmark price level. Figure 7b,c are 
the same binned scatterplots but using the 2006 price variable from the major grocer’s data (Figure 7b) and the nonsale price variable from the grocer’s data (Figure 7c). Figure 7d is a binned scatterplot 
of wholesale cost from the grocer’s data, again after taking out state fixed effects. The cost variable does not include transport or storage costs and is before supplier discounts. Robust standard errors 
are used.   
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Figure 8. Elasticity Estimates and Validation 
Figure 8a. Elasticity Estimates       Figure 8b. Elasticity Estimates: Distribution of Standard Errors 

    
Figure 8c. Validation I. Linearity of Log Q and Log P     Figure 8d. Validation II. Relationship with Store-level Income 

     
Notes: Figure 8a plots the distribution of the estimated elasticity at the store level from a regression of log P on log Q with controls for week-of-year and year. The estimates are then shrunk with an 
empirical shrinkage procedure; see the text for details. Figure 8b plots the distribution of the standard errors of the elasticity, from the regression before the shrinkage adjustment. Figure 8c is a binned 
scatterplot with 50 bins representing 60,552,601 store-module-weeks of log Q on log P, after taking out module*week-of-year and module*year fixed effects. Figure 8d is a binned scatterplot with 50 
bins of representing 22,680 stores of the elasticity on the store-level income, after residualizing the chain fixed effects.  Standard errors are clustered by parent_code. 
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Figure 9. Elasticity versus Price, Instrumenting with Income, First Stage 
Figure 9a. First Stage, Income and Elasticity Within Chains                     Figure 9b. First Stage, Between Retailer (Food stores only) 

    
Figure 9c. First Stage, Within Chain-State                          Figure 9d. First Stage, Income and Elasticity, Between Chain-State Averages

    
Notes: Figure 9a-c are binned scatterplots with 50 bins of the residual of log(elasticity/(elasticity+1)) in store s on the residual of income in store s. Residuals are after removing chain fixed effects (Figure 
9a) and chain*state fixed effects (Figure 9c). Figure 9b is a scatterplot of average log(elasticity/(elasticity+1)) on average income at the chain level, with the labels indicating a chain identifier. Figure 9d 
is a binned scatterplot with 25 bins of chain-state averages of both log(elasticity/(elasticity+1)) and income. The figures report the coefficient of the relevant regressions, with standard errors clustered 
by parent_code. Axes ranges have been chosen to make the slopes visually comparable. Analytic weights equal to the number of stores in each aggregation unit are used for the regression in Figure 
9b,d. 
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Figure 10. Price Rigidity and Inequality: Prices in Areas with Different Income. 
Figure 10a. Food Stores        Figure 10b. Drugstores 

     
Figure 10c. Mass Merchandise Stores 

 
Notes: In these figures, we plot binned scatterplots with 50 bins of store-level observed log prices and counterfactual log prices (under optimal pricing) versus store-level income. The counterfactual 
price assumes optimal pricing, that is log(P*)=log(elasticity/(elasticity+1))+log(c), using the estimated elasticity for each store s and the chain-level marginal costs we have estimated. Prices are 
standardized using observed prices. Only products constant over time are used. 
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No. of 
Stores

No. of      
Chains

No. of 
States

Total 
Yearly 

Revenue

(1) (2) (3) (4)
Panel A. Sample Formation

Initial Sample of Stores 38,539 326 48+DC $224bn
Store Restriction 1. Stores do not Switch Chain, 
>= 104 weeks 24,489 119 48+DC $193bn
Store Restriction 2. Store in HMS dataset 22,985 113 48+DC $192bn
Chain Restriction 1. Chain Present for >= 8 years 22,771 83 48+DC $191bn
Chain Restriction 2. Valid Chain 22,680 73 48+DC $191bn

Final Sample, Food Stores 9,415 64 48+DC $136bn

Final Sample, Drug Stores 9,977 4 48+DC $21bn

Final Sample, Merchandise Stores 3,288 5 48+DC $34bn

Panel B. Store Characteristics Mean 25th Median 75th
Average per-capita Income $29,000 $22,450 $26,900 $33,450
Percent with at least Bachelor Degree 21.0% 9.3% 17.8% 29.0%
Number of HMS Households 28.3 11 21 37
Number of Trips of HMS Households 862 196 502 1162
Number of Competitors within 5 km 0.8 0 0 1
Number of Competitors within 10 km 2.7 0 1 3

Panel C. Chain Characteristics, Food Stores Mean 25th Median 75th
Number of Stores 147 30 66 156
Number of DMAs 7.4 2 4 8
Number of States 3.4 1 2.5 4

Panel D. Chain Characteristics, Drugstores
Chain 
4901

Chain 
4904

Chain 
4931

Chain 
4954

Number of Stores 3000 6853 55 69
Number of DMAs 118 201 9 6
Number of States 32 48+DC 1 2

Panel E. Chain Charact., Mass-Merchandise Stores
Chain 
6901

Chain 
6904

Chain 
6907

Chain 
6919

Chain 
6921

Number of Stores 1565 1311 138 30 244
Number of DMAs 190 189 36 13 48
Number of States 47+DC 48 13 11 22

Notes: Valid chains are those in which at least 80% of stores with that retailer_code have the same parent_code and in which at
least 40% of stores never switch parent_code or retailer_code. Total Yearly Revenue is the yearly average total revenue recorded
in the Nielsen RMS dataset. 

Table 1. Sample Formation and Summary Statistics: Stores and Chains
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Constant 
Product

Yearly 
Product 

Revenue by 
Store (in $)

Weekly 
Average 

Price
Weekly 

Availability

(1) (2) (3) (4)

Panel A. Product Characteristics, Food Stores

Canned Soup         (Campbell's Cream of Mushroom 10.75 oz) Y $3,400 $1.18 99.7%

Cat Food                                                (Purina Friskies 5.5 oz) Y $450 $0.49 93.9%

Chocolate                     (Hershey's Milk Chocolate Bar 1.55 oz) Y $1,650 $0.72 99.7%

Coffee N $6,400 $8.45 96.1%

Cookies                                     (Little Debbie Nutty Bars 12 oz) Y $2,100 $1.51 97.3%

Soda                                                       (Coca-Cola 12pk cans) Y $34,100 $3.99 99.9%

Orange Juice                                           (Simply Orange 59 oz) Y $5,400 $3.54 99.1%

Yogurt                                    (Yoplait Low Fat Strawberry 6 oz) Y $1,900 $0.64 99.3%

Bleach N $1,950 $2.04 96.9%

Toilet Paper N $7,000 $8.60 94.9%

Panel B. Product Characteristics, Drugstores (1) (2) (3) (4)

Soda                                                       (Coca-Cola 12pk cans) Y $3,600 $4.30 93.9%

Chocolate                       (Hershey's Milk Chocolate Bar 1.5 oz) Y $625 $0.72 95.7%

Panel C. Product Characteristics, Mass-Merchandise Stores (1) (2) (3) (4)

Soda                                                       (Coca-Cola 12pk cans) Y $13,300 $4.12 98.5%

Chocolate                     (Hershey's Milk Chocolate Bar 1.55 oz) Y $725 $0.70 97.9%

Cookies N $2,150 $2.57 92.9%

Bleach N $2,700 $2.23 94.6%

Toilet Paper N $7,600 $8.70 93.2%

Table 2. Summary Statistics: Products

Notes: For the Food stores (Panel A) we select ten modules and within each module we identify a product that has high availability (defined as weeks
with positive sales) across all stores in all chains, and across weeks. For the 7 modules with Constant Products, the product remains the same across
all 9 years and is indicated in parentheses. For the other 3 modules, the product varies year by year, but is nonetheless the same across all chains.
For the Drug stores (Panel B) and the Mass-Merchandise stores (Panel C) we follow the same procedure using a subset of modules due to availability
issues. The Weekly Average Price is the unweighted average of weekly price observations in all stores. Weekly Availability is number of store-weeks
with nonzero sales divided by number of store-weeks in which stores in our sample have positive sales in any products belonging to the 10 modules.
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Measure of Similarity:

Wtihin vs. Between:
Same 
Chain

Different 
Chain

Same 
Chain

Different 
Chain

Same 
Chain

Different 
Chain

(1) (2) (3) (4) (5) (6)

Mean 0.034 0.116 0.837 0.138 0.529 0.113
Standard Deviation (0.023) (0.034) (0.125) (0.109) (0.189) (0.041)

Number of Pairs 491,583 2,736,794 489,290 2,729,072 489,290 2,729,072

Panel B. Benchmark UPCs, Store Pairs Within a DMA

Mean 0.022 0.117 0.902 0.143 0.619 0.119
Standard Deviation (0.014) (0.039) (0.057) (0.096) (0.152) (0.052)

Number of Pairs 141,050 40,531 140,553 40,232 140,553 40,232

Panel C. Benchmark UPCs, Store Pairs Across DMAs, Top 33% income vs Bottom 33% Income Only

Mean 0.042 0.118 0.807 0.132 0.449 0.111
Standard Deviation (0.026) (0.037) (0.140) (0.098) (0.195) (0.038)

Number of Pairs 53,926 588,418 53,215 591,924 53,215 591,924

Panel D. Generic Product UPCs, All Store Pairs

Mean 0.032 NA 0.647 NA 0.611 NA
Standard Deviation (0.026) NA (0.193) NA (0.201) NA

Number of Pairs 377,225 NA 373,008 NA 373,008 NA

Panel E. Non-Top Selling UPCs, All Store Pairs

Mean 0.034 0.118 0.805 0.092 0.578 0.099

Standard Deviation (0.020) (0.024) (0.130) (0.114) (0.182) (0.044)

Number of Pairs 332,195 2,315,633 309,550 2,152,888 309,550 2,152,888

Panel F. Higher Unit Price Items, 8 products in 3 modules only, All Store Pairs

Mean 0.028 0.102 0.788 0.116 0.642 0.128
Standard Deviation (0.016) (0.029) (0.135) (0.122) (0.178) (0.066)

Number of Pairs 327,457 2,366,376 274,555 1,992,546 274,555 1,992,546

Table 3. Similarity in Pricing Across Grocery Stores, Within-Chain vs. Between-Chain

Notes: The table presents measures of similarity of pricing for pairs of stores both within a chain, and across chains. To form the pairs we select a
maximum of 200 stores per chain, giving priority to stores that have nonmissing data in a majority of modules for at least 60% of all quarters with
minimum six weeks of nonmissing data (columns (1) and (2)) or 60% of all weeks (Columns (3) - (6)). See Appendix for additional details. In Panel
C we compare only pairs of stores in diferent DMAs and such that one store in the pair is in the bottom third of the income measure, while the
other store is in the top third. Panels D, E, and F compare food stores only. Between chain comparisons of Generic products (Panel D) are not
possible because the generic products selected differ across chains.

Panel A. Benchmark UPCs, All Store Pairs

Absolute Difference in 
Log Quarterly Prices

Share of Identical Prices 
(Up to 1 Percent)

Correlation in (De-
Meaned) Weekly Prices
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Dependent Variable:
(1) (2) (3) (4) (5)

Panel A. Food Stores
Own Store Income 0.0175*** 0.0044*** 0.0037*** 0.0029*** 0.0029***

(0.0047) (0.0013) (0.0009) (0.0003) (0.0003)
Chain Average Income 0.0404*** 0.0363*** 0.0284**

(0.0101) (0.0109) (0.0129)
Chain-State Average Income 0.0136* 0.0136*

(0.0069) (0.0069)

Fixed Effects County Chain

Observations 9,415 9,415 9,415 9,415 9,415
R-squared 0.134 0.290 0.715 0.296 0.925

Panel B. Drugstores
Own Store Income 0.0084*** 0.0075*** 0.0075***

(0.0012) (0.0008) (0.0008)
Chain-State Average Income 0.0101 0.0203***

(0.0107) (0.0074)

Fixed Effects Chain

Observations 9,976 9,976 9,976
R-squared 0.056 0.063 0.469

Panel C. Mass-Merchandise Stores
Own Store Income -0.0126*** 0.0030*** 0.0030***

(0.0031) (0.0010) (0.0010)
Chain-State Average Income -0.0699*** 0.0076***

(0.0099) (0.0019)

Fixed Effects Chain

Observations 3,288 3,288 3,288
R-squared 0.043 0.272 0.916

*** p<0.01, ** p<0.05, * p<0.1

Log Prices in Store s

Notes: In Panel A, standard errors are clustered by parent_code. In Panels B and C, standard errors are clustered by
parent_code*state. In Panels B and C we do not report the specifications with chain-average income given that there are only
4 drug chains and only 5 mass merchandise chains. 

Table 4. Determinants of Pricing
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Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)

Demographic Controls

Income Per Capita 0.1405*** 0.1432*** 0.0742*** 0.0616*** 0.0386*** 0.0474*** 0.0321*** 0.0220***

(in $10,000) (0.0137) (0.0087) (0.0208) (0.0218) (0.0057) (0.0046) (0.0020) (0.0013)

Fraction with College 0.4429*** 0.4725***

Degree (or higher) (0.1147) (0.1325)

Median Home Price 0.0036* 0.0049**

(in $100,000) (0.0021) (0.0019)

Controls for Urban Share X X

Controls for Number of Competitors w/in 10km

1 Other Store -0.0097 -0.0203**

(0.0247) (0.0088)

2 Other Stores -0.0145 -0.0273*

(0.0379) (0.0147)

3+ Other Stores -0.0483* -0.0621***

(0.0262) (0.0081)

Fixed Effect for Chain X X X X X

Fixed Effect for Chain*State X

Sample:
All Stores

Food 
Stores

Drugstores
Merch. 
Stores

R Squared 0.083 0.652 0.670 0.750 0.100 0.697 0.353 0.565

Number of Observations 22,660 22,660 22,660 22,660 22,660 9,415 9,957 3,288

*** p<0.01, ** p<0.05, * p<0.1

Table 5. Determinants of Store-Level Price Elasticity

Store s Shrunk Estimated Price Elasticity Store s Log((elasticity/(1+elasticity))

Notes: Standard errors are clustered by parent_code for all columns except for columns (7) and (8), where they are clustered by parent_code*state. All
independent variables are our estimate of store-level demographics at the zip-code level based on Nielsen Homescan (HMS) panelists' residences. Demographics 
are from 2012 ACS 5-year estimates. Fraction with College Degree (or higher) is the fraction of adults 25 and older with at least a bachelor's degree. Controls for
Urban Share are a set of dummy variables for Percent Urban for values in [.8, .9), [.9, .95), [.95, .975), [.975, .99), [.99, .999), and [.999, 1]. Columns 6-8
represent the first stage we use in our IV specification (see for example Table 6).

All Stores
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Dependent Variable:
Avg. Log Price 
for Chain-State

Avg. Log Prices 
for Chain c

Specification:
Between-Chain-

State, IV
Between-Chain, 

IV

(1) (2) (3) (4)

Panel A. Food Stores

Log (elast. / (elast.+1) ) in Store s 0.0919*** 0.0605***
(0.0333) (0.0095)

Mean Log (elast. / (elast.+1) ) 0.3508*
 in State-Chain Combination (0.2016)

Mean Log (elast. / (elast.+1) ) 0.9440***
 in Chain c (0.2358)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X

Number of Observations 9,415 9,415 171 64

Panel B. Drug Stores

Log (elast. / (elast.+1) ) in Store s 0.2871*** 0.2313***
(0.0386) (0.0289)

Mean Log (elast. / (elast.+1) ) 0.8584***
 in State-Chain Combination (0.2447)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,975 9,975 83

Panel C. Mass Merchandise Stores

Log (elast. / (elast.+1) ) in Store s 0.1869*** 0.1340***
(0.0515) (0.0462)

Mean Log (elast. / (elast.+1) ) 0.4775***

 in State-Chain Combination (0.1182)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 3,288 3,288 142

*** p<0.01, ** p<0.05, * p<0.1

Notes: Table 6 reports the results of instrumental variable regressions, in which the log elasticity term
(log(elasticity/(elasticity+1)) is instrumented with store-level income as in Table 5, Columns 5-8. The standard errors are block
bootstrapped. In Panel A, bootstrap clusters are parent_codes. In Panels B and C, bootstrap clusters are parent_code*state.
Elasticities are winsorized to -1.2. In Columns 3 and 4, the means are average log elasticity term (not Log of average elasticity).
In Panels B and C we do not report the Between-Chain results in column(4) given that there are only 4 drug chains and only 5
mass merchandise chains. 

Table 6. Responsiveness of Log Prices to Store-Level Log Elasticity

Within-Chain, IV

Log Prices in Store s



52 
 

Dependent Variable:
Avg. Log Price 
for Chain-State

Average Log 
Prices for Chain c

Specification:
Between-Chain-

State, IV Between-Chain, IV

(1) (2) (3) (4)

Panel A. Elasticity Computed at Quarterly Horizon
Log (elast. / (elast.+1) ) in Store s 0.0396** 0.0260***

(0.0160) (0.0044)

Mean Log (elast. / (elast.+1) ) 0.1515***
 in State-Chain Combination (0.0574)

Mean Log (elast. / (elast.+1) ) 0.4091***
 in Chain c (0.1030)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,403 9,403 170 64

Panel B. Module-Level Indices
Log (elast. / (elast.+1) ) in Store s 0.0431*** 0.0301***

(0.0124) (0.0037)

Mean Log (elast. / (elast.+1) ) 0.1504***

 in State-Chain Combination (0.0532)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,411 9,411 171

Panel C. Benchmark Product, IV with all variables

Log (elast. / (elast.+1) ) in Store s 0.1051*** 0.0632***
(0.0330) (0.0097)

Mean Log (elast. / (elast.+1) ) 0.4016**
 in State-Chain Combination (0.1708)

Mean Log (elast. / (elast.+1) ) 0.9387***
 in Chain c (0.2135)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,415 9,415 171 64

Panel D. Generic, comparable across chains
Log (elast. / (elast.+1) ) in Store s 0.0835* 0.0509***

(0.0436) (0.0184)
Mean Log (elast. / (elast.+1) ) 0.3453
 in State-Chain Combination (0.4544)
Mean Log (elast. / (elast.+1) ) 1.4858***
 in Chain c (0.3825)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,296 9,296 171 61

Table 7. Log Prices and Store-Level Log Elasticity, Robustness (Food Stores)

Log Prices in Store s

*** p<0.01, ** p<0.05, * p<0.1

Notes: The table reports the results for the sample of food stores of instrumental variable regressions, in which the log elasticity term
(log(elasticity/(elasticity+1)) is instrumented with store-level income. The standard errors are block bootstrapped by parent_code.
Elasticities are winsorized to -1.2. Panels A and B use, respectively, quarterly elasticity and our index elasticity instead of the benchmark
elasticity and the first stage is as in Online Appendix Table 4 columns 7-8. These panels do not have the full sample of 9,415 stores
because we excluded stores that had elasticity estimates with estimates greater than zero or with large standard errors. Panel A uses
weekly average prices as the dependent variable, while Panel B uses the average of the weekly price index values. Panel C uses a richer
set of regressors for the first stage and the benchmark weekly price; see Online Appendix Table 4 Column 6. Panels D uses the
benchmark elasticity but using the price for a panel of generic products as the dependent variable. Panel D does not have the full sample
because not all stores sell a generic product that we have deemed comparable.

Within-Chain, IV
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Dependent Variable:

Average Log 
Price for Chain-

State
Average Log 

Prices for Chain c

Specification:
Between-Chain-

State, IV Between-Chain, IV 

(1) (2) (3) (4)

Panel A. Price Variable is Average Weekly Log Price (Benchmark)

Log (elast. / (elast.+1) ) in Store s 0.0919*** 0.0605***
(0.0333) (0.0095)

Mean Log (elast. / (elast.+1) ) 0.3508*
 in State-Chain Combination (0.2016)

Mean Log (elast. / (elast.+1) ) 0.9440***
 in Chain c (0.2358)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,415 9,415 171 64

Panel B. Price Variable is Log of Average Yearly Price

Log (elast. / (elast.+1) ) in Store s 0.2232*** 0.1925***
(0.0316) (0.0141)

Mean Log (elast. / (elast.+1) ) 0.4793***
 in State-Chain Combination (0.1542)

Mean Log (elast. / (elast.+1) ) 0.9793***
 in Chain c (0.2400)
Fixed Effect for Chain X X
Fixed Effect for Chain*State X
Number of Observations 9,415 9,415 171 64

*** p<0.01, ** p<0.05, * p<0.1

Table 8. Average Weekly Price vs. Average Yearly Price (Food Stores)

Log Prices in Store s

Notes: The price variable in Panel B is computed as our benchmark (Panel A), except that we take the ratio of yearly revenue to yearly
units sold instead of taking the ratio at the weekly level. Standard errors are block bootstrapped at the parent_code level. Elasticities
are winsorized at -1.2. The sample Is restricted to food stores. The first stage uses within-chain variation in income and
log(elasticity/(elasticity+1)) as in Table 5 Column 6. 

Within-Chain, IV
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Mean 10th 25th Median 75th 90th
Panel A. Store-Level (N=22,678)

Loss of Profits Comparing Optimal Pricing to 
Uniform Pricing 8.88% 0.11% 0.74% 3.49% 10.59% 22.94%

Loss of Profits Comparing Optimal Pricing to 
Actual Price-Elasticity Slope 6.48% 0.08% 0.54% 2.54% 7.68% 16.62%

Loss of Profits Comparing Optimal Pricing to 
State-Zone Optimal Pricing 7.16% 0.08% 0.55% 2.51% 8.03% 18.53%

Mean 10th 25th Median 75th 90th
Panel B. Chain-Level (N=73)

Loss of Profits Comparing Optimal Pricing to 
Uniform Pricing 8.83% 2.97% 5.01% 7.12% 10.14% 16.43%

Loss of Profits Comparing Optimal Pricing to 
Actual Price-Elasticity Slope 6.99% 2.18% 4.03% 5.60% 7.55% 12.30%

Loss of Profits Comparing Optimal Pricing to 
State-Zone Optimal Pricing 7.05% 2.19% 3.90% 6.12% 8.40% 13.60%

Table 9. Estimated Loss of Profits

Notes: This table reports the difference between the profits computed under optimal pricing and the profits under alternative scenarios,
divided by the profits under optimal pricing. Optimal pricing is assuming the monopolistic competition model and thus deriving optimal
prices using log(P)=log(elas./(elast.+1)) + log(c), with the estimated store-level elasticities (Winsorised at -1.2). Uniform pricing assumes
that each chain sets the optimal uniform price across its stores. Pricing according to the actual price-elasticity slope assumes that chains
set prices according to log(P)=beta*log(elas./(elast.+1)) + log(c), where beta is the IV estimate in Table 6, Column 1. State-Zone Optimal
Pricing assumes that the chain charges a uniform price within each state, with the price set optimally in the chain-state. In Panel A each
observation is a store. In Panel B we aggregate to the chain level.
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Dependent Variable:

(1) (2) (3) (4) (5)

Log (No. of Stores) 0.0229** 0.0039 0.0045

(0.0087) (0.0093) (0.0188)

Log (No. of States) 0.0125* 0.0341*** 0.0313***

(0.0068) (0.0081) (0.0109)

Log (Average Yearly Store Sales) -0.0334** -0.0358** -0.0404*

(0.0163) (0.0150) (0.0225)

Standard Deviation of Store-level 0.1239*** 0.1438***

Per-capita Income (0.0285) (0.0404)

Log Dollar Profit Loss from 0.0385*** -0.0003

Uniform Pricing (0.0140) (0.0189)

Percent Profit Loss from -0.0017 -0.0022

Uniform Pricing (0.0029) (0.0033)

Share of Stores with Competitor -0.0618 -0.0010

Stores within 10 km (0.0966) (0.0350)

Share of Store with Same-Chain -0.0128 -0.0169

Stores within 10 km (0.0876) (0.0630)

Analytic Weights Y Y Y Y Y
Number of observations 73 73 73 73 73

R-squared 0.548 0.662 0.278 0.043 0.669

*** p<0.01, ** p<0.05, * p<0.1

Price-Elasticity Relationship (IV) for Chain c

Table 10. Determinants of Flexible Pricing

Notes: The dependent variable is the chain-by-chain estimate of the IV specification, as in Column 1 of Table 6,
computing the first stage using all chains. Standard errors are clustered by parent_code. Analytic weights equal to the
inverse standard error squared of the reduced form chain-level regression of price on income are used. The chain-level
percent profit loss from uniform pricing is as in Table 9, Panel B, row 1. The log dollar profit loss from uniform pricing is
computed taking the store-level loss from uniform pricing in dollar terms, and scaling it up by the share of revenue in that
store due to the selected UPCs; we then sum the dollar losses across stores in a chain, and take the log.
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Outcome:

Assumed Price Setting: Flexible Pricing Uniform Pricing Actual Pricing

(1) (2) (3)

Panel A. Impact on Prices from a $2,000 Negative Income Shock:

National Shock, Impact on All Stores -0.94% -0.88% -0.88%

State-Level Shock, Impact on Same-State Stores -0.94% -0.29% -0.35%

County-Level Shock, Impact on Same-County Stores -0.94% -0.02% -0.10%

Panel B. Impact on Prices of a $2,000 Negative Income Shock in California:

Impact on California Stores -0.94% -0.69% -0.71%

Impact on Nevada Stores 0% -0.39% -0.36%

Panel C. Impact on Prices of a $2,000 Negative Income Shock in Nevada:

Impact on Nevada Stores -0.94% -0.16% -0.23%

Impact on California Stores 0% -0.03% -0.03%

Table 11. Response to Local Shocks
Estimated Percent Change in Prices for Food 

Stores for a $2,000 decrease in Income

Notes: Displayed are the estimated percent price response to a permanent $2,000 decrease in income, assuming that the income shock
translates into a change of the log elasticity term as estimated in Table 5, Column 6. In Panel A, the averages are the mean response for
stores in each locality, weighting each locality equally. Uniform Pricing assumes that chains set one uniform price across all stores. Actual
pricing assumes that chains set their average price to the uniform price but vary the prices in their stores based on
log(elasticity/(elasticity+1) using the coefficient in Table 6 Column 1. In all cases, stores use the same pricing strategy both before and
after the shock.
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Appendix Figure 1. Store Locations 

 
Note: Plotted are the locations of the 22,680 stores (food, drug, and mass-merchandise) in our sample. The location is the midpoint of the county given in the RMS dataset and jittered so that stores 
do not overlap. In some cases, this may cause stores near state borders to be placed in the wrong state or in the ocean. 
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