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ABSTRACT

The completion of the Human Genome Project (“HGP”) led many scientists to predict a swift 
revolution in human therapeutics. Despite large advances, however, this revolution has been slow 
to materialize. We investigate the hypothesis that this slow progress may stem from the large 
amounts of biological complexity unveiled by the Genome. Our test relies on a disease-specific 
measure of biological complexity, constructed by drawing on insights from Network Medicine 
(Barabasi et al., 2011). According to this measure, more complex diseases are those associated 
with a larger number of genetic associations, or with higher centrality in the Human Disease 
Network (Goh et al., 2007). With this measure in hand, we estimate the rate of translation of new 
science into early stage drug innovation by focusing on a leading type of genetic epidemiological 
knowledge (Genome-Wide Association Studies), and employing standard methods for the 
measurement of R&D productivity. For less complex diseases, we find a strong and positive 
association between cumulative knowledge and the amount of innovation. This association 
weakens as complexity increases, becoming statistically insignificant at the extreme. Our results 
therefore suggest that biological complexity is in part responsible for the slower-than-expected 
unfolding of the therapeutical revolution set in motion by the HGP.
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1 Introduction

If the Human Genome Project gave us a book, scientists are now learning how
to read it (...) and biologists are beginning to face up to the uncomfortable
truth that they have only been looking at the nouns (...) now we are reading
the spaces in between—verbs, adverbs, adjectives, pronouns and the rest, and
they are complicated indeed.

Roger Highfield (Former Editor, New Scientist)1

The 2003 completion of the Human Genome Project (“HGP”) blew a whirlwind of

hope for the future of biology and medicine. Presenting the project’s first draft, Craig

Venter stated that “the basic knowledge that we’re providing the world will have a pro-

found impact on the human condition and the treatments for disease and our view on

our place in the biological continuum.” At the same venue, President Clinton remarked

that the HGP would “revolutionize the diagnosis, prevention and treatment of most, if

not all, human diseases.”2 The Human Genome was envisioned as a discovery platform,

which would greatly facilitate the understanding of disease biology and in turn illumi-

nate, sharpen, and speed up the drug discovery/design process (Daiger, 2005; Lander

et al., 2001). Many scientists and analysts agreed with Venter and Clinton and predicted

a swift revolution in human therapeutics—some even suggesting that it would materialize

within the decade. For example, Randy Scott of Incyte Genomics claimed that “in 10

years, we will understand the molecular basis for most human diseases” (Palmer, 2013).

However, despite large scientific advances, this revolution in human therapeutics remains

manifestly unfulfilled almost 15 years after the HGP’s completion (Lander, 2011; Mardis,

2011): disease mortality continues to be largely driven by the same causes of two decades

ago, and the molecular basis for most important diseases has not yet been fully elucidated

(Wade, 2010; Palmer, 2013).

One reason that may justify the slower-than-expected progress is the large amount

of biological complexity that has been progressively revealed by the so-called “genetic

revolution” (Wade, 2010; Hayden, 2010). For example, only recently we learned that

common mutations may explain a relatively small percent of predicted genetic variance

(Manolio et al., 2009), that non protein-coding mutations may regulate protein-coding

genes (Li et al., 2016), and that genetic mutations rarely map one-to-one into diseases

1“Life just got a lot more complicated.” The Daily Telegraph, June 19, 2007.
2http://transcripts.cnn.com/TRANSCRIPTS/0006/26/bn.01.html.
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(Bauer-Mehren et al., 2011).3 The recent “omnigenic” hypothesis (Boyle et al., 2017)

complicates matters further by suggesting that seemingly unrelated “peripheral” genes

(located outside core pathways, and which cannot be easily categorized based on known

biology) may drive disease through cellular networks. Hayden (2010) illustrates this gen-

eral idea by writing “(the HGP) opened the door to a vast labyrinth of new questions,”

and “the complexity of biology has seemed to grow by orders of magnitude.”

In this article we investigate the extent to which biological complexity has mediated

the translation of genetic epidemiological science into early stage drug innovation, during

the ten years that followed the HGP’s completion. Our analysis focuses on the knowledge

created by the leading type of genetic epidemiological research, the Genome-Wide Associ-

ation Studies (“GWAS”), which takes a prominent role in drug discovery (Manolio, 2013).

These studies search for genetic mutations underlying the manifestation of diseases, val-

idating associations only if stringent statistical standards are met. Exploiting variation

at targeted-disease level, we investigate the impact of GWAS knowledge accumulation on

the number of therapies that enter the drug development process.

To characterize the variability in biological complexity across diseases, we draw on

insights from the emerging field of Network Medicine (Barabási et al., 2011), and rely on

implementations of the Human Disease Network (“HDN”; Goh et al., 2007). In the HDN,

diseases correspond to nodes, and disease-causing genes (or variants thereof) correspond to

edges. We exploit the idea that therapeutic translation may be more complex for diseases

that are caused by a larger set of genes, or for those that are connected with a larger

number of diseases in the HDN. Intuitively, a disease caused by a large number of genetic

mutations could manifest itself through a large number of biological pathways, making a

“silver bullet” treatment less likely to be found. A similar reasoning applies with respect to

HDN connectivity. Therapeutic innovation targeting highly-connected diseases grapples

with risk of interfering with related biological processes, and with it, the possibility of

causing adverse side effects, or other biological imbalances. Thus, to prove its safety, such

therapy may have to overcome greater challenges than one targeting a scantly-connected

disease. At a broader level, it can be argued that translational complexity increases with

these factors because they require developers to consider a larger set of biological factors

in the process of discovering, designing, and testing new compounds. Indeed, to this

3Boyle et al. (2017) illustrate the dramatic paradigm shift referencing the case of Autism: whereas
the prediction of 15 or more responsible mutations of Risch et al. (1999) was perceived as “strikingly
high at the time” (Boyle et al., 2017), based on recent research (Weiner et al., 2017) this number “seems
quaintly low now” (Boyle et al., 2017).
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point Bauer-Mehren et al. (2011) write: “At the end of the day, how a disease is caused

and thus how it can be treated can only be studied on the basis of the entire body of

knowledge including all genes that are associated with the disease and their interactions

through biological pathways.”

We construct these complexity metrics using the largest publicly-available repository

of human gene- and variant-disease associations, DisGeNET, which contains results from

tens of thousands academic publications. Translation rates are estimated from a large

sample of pharmaceutical pipelines, which covers over thirteen hundred targeted diseases,

spanning nineteen therapeutic areas. Our results suggest that complexity plays an im-

portant role moderating therapeutic translation. In particular, for less complex diseases,

we find a strong and positive association between cumulative knowledge and the amount

of new therapies entering the discovery process each year. This association weakens as

complexity increases and becomes statistically insignificant for highly complex diseases.

We perform several checks to verify that our results are not driven by the influence of

unobservable variables.

At a conceptual level, our research is related to Fleming and Sorenson (2001, 2004),

who also address the interplay of science and complexity in the context of technological

innovation. In the framework laid out by Fleming and Sorenson (2004), science is useful

because it helps to navigate the complexity that arises from the (recombinant) search

process over a “technology landscape.” Instead, we view complexity as the defining trait

of the “landscape’s topography,” and as a barrier to the practical applicability of scientific

knowledge. By highlighting and empirically documenting the role of complexity, we also

contribute to the literature that studies empirically the extent to which academic science

translates into productivity growth or innovation (Rosenberg, 1974; Sveikauskas, 1981;

Jaffe, 1989; Adams, 1990; Mansfield, 1995; Stephan, 1996; Cohen et al., 2002; Ahmadpoor

and Jones, 2017), and specifically to that with a focus on the pharmaceutical industry

(Henderson and Cockburn, 1994; Gambardella, 1995; Ward and Dranove, 1995; Zucker and

Darby, 1996; Zucker et al., 1998; Cockburn and Henderson, 1998; Toole, 2012; Azoulay

et al., 2015).4 Our contribution relative to the latter set of articles is to measure and

ascertain the role of biological complexity on innovative productivity, which has so far

been treated as unobserved heterogeneity.

4Among these, Toole (2012) is the closest to the research herein. Relative to the work of Toole—which
addresses the relationship between basic research funding and drug approvals, aggregating these at the
therapeutic area level—our research enables a more translucent analysis, by focusing on the relationship
between two variables that are more directly related (scientific publication and early-stage development),
and by exploiting variation defined at a thinner aggregation level (targeted diseases).
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By many accounts, genetics have already shaped a new era of drug innovation. For

example, genetics are now routinely used to identify drug targets and populations at higher

risk of developing adverse events (Pollack, 2010). Nevertheless, failure to meet the more

optimistic expectations from the early 2000s has lead to impatience and criticism. Some

observers have questioned the worthiness of the endeavor (Evans et al., 2011), and others

even suggested that a “genomic bubble” may have “temporarily bogged down the drug

industry with information overload” (Pollack, 2010). Our findings suggest that biological

complexity may be partly to blame. By explicitly accounting for it, we provide a novel

assessment of the progress made so far, while suggesting that polarized assessments can

be reconciled.

The rest of the article is organized as follows. Section 2 describes and contextualizes

GWAS science. Section 3 describes data sources and processing. Section 4 lays out the

empirical strategy. Results are presented in Section 5 and conclusions in Section 6.

2 Genome-Wide Association Studies

A Genome-Wide Association study compares the DNA of a population that carries certain

trait (e.g., weight, aggressive personality, diabetes, acne, etc.) against that of a control

population without it. GWAS operates under the assumption that diseases are driven

by the same (possible multiple) genetic variations on all individuals. Although the effec-

tiveness of GWAS has been criticized, their scientific impact is widely recognized. For

example, Visscher et al. (2012) states: “(..) the GWAS experimental design in human

populations has led to new discoveries about genes and pathways involved in common

diseases and other complex traits, has provided a wealth of new biological insights, has

led to discoveries with direct clinical utility, and has facilitated basic research in human

genetics and genomics.”

Our empirical analysis relies on data available from the open-source GWAS Catalog

(Burdett et al., 2016). The earliest study in this catalog was published in 2005. GWAS

publications have since significantly impacted the way scientists think about the biological

mechanisms behind certain diseases.5 An important reason to focus on GWAS publica-

5For instance, Cao and Moult (2014) explores the the use of GWAS in identifying drug targets.
Visscher et al. (2017) and Zheng et al. (2009) review the remarkable discoveries that have been facilitated
by GWAS publications.
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tions is that these studies are “hypothesis-free.” This means that GWAS do not rely on

assumptions to design experiments, but instead, they are a statistical analysis looking for

high correlation between regions of DNA and diseases. In fact, mutations are validated

under a strict threshold of statistical significance (p < 5× 10−8) and the results must be

replicated in an independent sample before they are incorporated into the GWAS Catalog

(McCarthy et al., 2008). These strict requirements make GWAS publications a source of

credible results, which are recognized by most scientists.

Apart from GWAS, there are alternative methods to study the link between genes and

diseases (Londin et al., 2013). Linkage analysis (LA) is a technique used to identify genetic

variants for Mendelian disorders—i.e. mutations caused by a single gene. Following the

success of Kerem et al. (1989) in identifying the gene responsible for cystic fibrosis, LA

studies have proved useful to identify other Mendelian disorders. However, LA studies

rely on related individuals, they do not provide “high resolution” (meaning, they identify

broad regions of variations) and they also have limited statistical power. Next-generation

sequencing (NGS), is the most recent method, has the advantage of identifying mutations

at a high-resolution (i.e. it allows to identify specific gene mutations and variants). The

main drawback of NGS in the past has been the high cost of sequencing the complete

genome for large samples (Koboldt et al., 2013). Recent advances in computer speed and

storage capacity are enabling large NGS studies. Finally, some recent advances combine

both the GWAS and NGS methodologies.

3 Data and Variables

3.1 Therapies

We obtained pharmaceutical pipeline data from Thomson Reuters Cortellis, a subscrip-

tion service that offers pipeline information for a large number of biotechnology and

pharmaceutical firms. The full data sample includes development histories of over 90,000

therapies (i.e., compound/targeted-disease combinations) entering the development pro-

cess around the world, since the mid 1970’s. A “new therapy” in our data crresponds to a

novel indication entering the earliest stage in the process, the “discovery” stage. At this

stage, therapies are optimized, and evaluated analytically and in animal models to assess
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further development.6

We restrict the sample to new therapies that were first observed entering the discovery

stage between 2003 and 2012, and to the set of diseases for which at least one new therapy

was observed during this period. This selected sample covers 1,306 different diseases,

and includes 26,120 new therapies, distributed across 19 therapeutic areas. Cortellis also

identifies each therapy’s molecular target, which allows us to differentiate between protein-

and gene-targeted therapies. The former kind are designed to interact with proteins along

the cell signaling cascade. The latter, to regulate the expression of or modify protein-

encoding genes. Figure 1 describes the distribution of new therapies across therapeutic

areas. The figure showcases the preeminence of innovation in the areas such as cancer,

autoimmune/inflammatory, and endocrinological & metabolic disease. It also shows that

the number of protein-targeted therapies in our sample exceeds that of gene-targeted

therapies by about one order of magnitude.

For our econometric analysis, we formulate the dependent variable Ndkt, computed as

the total number of new therapies for a disease d, which enter the discovery stage during

year t, and which employ a target of type k ∈ {p (protein), g (gene)}. Figure 2 describes

the temporal evolution of the total number of new protein- and gene-targeted observed in

the data. These series display a similar pattern—they are roughly stable through 2006,

but increasing in 2007-2012.

3.2 Knowledge Stocks

In March of 2016, we dowloaded the compilation of results hosted by GWAS Central,

which is described as “a database of summary level findings from genetic association

studies.”7 This compilation included results drawn from 2,044 studies, covering 1,362

traits. We restricted our attention only to traits that correspond to human diseases.8 Each

of these results then associates a human disease with one or more genetic variants (single-

6Cortellis identifies these by collecting information of new therapies discussed in an academic confer-
ences or scientific publications, reported by a clinical trial submitted to www.clinicaltrials.gov or other
websites, featured by the media or regulatory updates, or announced in the sponsoring firm’s website.

7http://www.gwascentral.org/.
8Traits that are not associated human disease include, for example, “economic and political prefer-

ences,” “educational attainment,” “freckles,” “hand grip strength,” among others. We retain only those
pertaining human diseases as defined by Merriam-Webster’s: “an illness that affects a person, animal, or
plant: a condition that prevents the body or mind from working normally.”
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nucleotide polymorphisms). We refer to each such result as a variant-disease association

(“VDA”). For our empirical analysis, we assume that a VDA associating a disease to a

set of variants adds one unit to the cumulative stock of knowledge for the disease, at the

time when the corresponding GWAS is published.

Matchcing VDA data to the Cortellis pipeline presents two main challenges. The first

regarded differences in spelling and use of synonyms (e.g., peanut allergy and peanut hy-

persensitivity, Wilms’ tumor and Nephroblastoma, etc). The second, and more challeng-

ing one, stemmed from differences between the disease ontologies used by GWAS Central

and Cortellis. For example, we noticed that the GWAS trait “longevity” could inform the

design of Cortellis therapies targeting “aging.” Similarly, the GWAS trait “5-htt brain

serotonin transporter levels”—which is thought to underlie a variety of neuropsychiatric

disorders—could inform the design of Cortellis therapies compounds targeting “post-natal

depression.” To systemically bridge these two ontologies we assembled a team of experts.

Two independent coders (M.D. residents) were asked to identify as many matches as pos-

sible from the data. A third expert (Ph.D. in Epidemiology) then curated these lists and

resolved conflicts. As a result, 17% of the diseases targeted by the therapies in the Cortel-

lis sample were matched to at least one GWAS VDA. Along with the number of different

diseases in the pipelines sample, Figure 3 shows the number GWAS VDAs recorded for

each therapeutic area.

With this matching in place, we constructed the variable VDAFLOWdt as the total

number of VDAs published for a disease d in year t. Following the approach of Adams

(1990) and Toole (2012), we then assembled a knowledge stock variable VDASTOCK as:

VDASTOCKdt = log
(

1 +
∑

t′=2003,..,t

(1− δ)t−t′VDAFLOWdt

)
,

where δ ∈ [0, 1] corresponds to an “obsolescence rate” (Adams, 1990), which accounts

for the fact that knowledge embedded in GWAS publications depreciates over time. A

log transformation is used to incorporate the idea that knowledge accumulation may be

subject to marginally decreasing impacts on innovation; 1 is added to avoid indefinition

when no VDAs are available. GWAS began to be published in 2005, so VDASTOCK

equals zero for all diseases in 2003 and 2004. The dashed line of Figure 2 describes

the (scale-free, assuming δ = 0) aggregate trend of VDASTOCK over the remainder of

the sample period, displaying a high correlation with the therapeutical innovation series

introduced above.
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3.3 Human Disease Network and Biological Complexity

We construct proxies for biological complexity from an implementation of the Human

Disease Network (“HDN”)—an undirected network in which diseases are connected to

each other through common genes mutations (Goh et al., 2007). To build the most com-

plete (up-to-date) representation of this network, we retrieved data from DisGeNET,9

an aggregator that is widely considered as the largest publicly-available repository of

scientific results linking human diseases to their genetic underpinnings (Piñero et al.,

2017). From an array of specialized sources that focus on specific diseases or scientific

approaches, DisGeNET aggregates VDAs (like GWAS) and the coarser gene-disease as-

sociations (“GDAs”). At the time of data download, DisGeNET included 561,119 GDAs

and 135,588 VDAs, covering over 20,000 diseases.

Table 1 presents descriptive statistics for the different data sources from which Dis-

GeNET aggregates associations. These sources can be grouped into three categories shown

in panels A, B, and C, respectively.10 Curated sources (Panel A) include the GWAS Cat-

alog, CTD Human, CLINVAR, HPO, ORPHANET, PSYGENET, and UNIPROT. Al-

though all of these rely on findings submitted by individual scientific groups, they differ in

terms of their focus and curation process. For example, CTD Human (Comparative Toxi-

cogenomics Database) focuses on promoting the understanding of the effects of chemicals

on human health, while ORPHANET focuses on rare diseases. In terms of the extent of

curation, some of these may select entries based on statistical significance (GWAS) and

possibly reinterpret results for “accurate and comprehensive representation of biological

knowledge” (UNIPROT), whereas others accept all submitted GDAs (insofar supporting

evidence is provided) and abide by the interpretations provided by the submitting group

(CLINVAR). Panel B describes sources of results predicted from genomic analysis on

laboratory mice and rats;11 while Panel C, those from sources which compile GDAs and

VDAs by text mining the scientific literature.

The HDN can be implemented by considering either the set of available GDAs or

VDAs. In particular, a network can be constructed based on the premise that any two

diseases that are associated to the same gene or variant thereof should be connected

in the respective network, whereas any two diseases which do not share associations,

9http://www.disgenet.org. We retrieved DisGeNET version 4.0 data on 6/12/17.
10This Table is reproduced with permission from the DisGeNET website. Minor formatting changes

have been introduced for clarity.
11MGD and RGD respectively stand for corresponds to Mouse and Rate Genome Database.
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should appear as disconnected. For example, our data shows that Parkinson’s disease

and Waldenström’s disease are both associated to the EPO gene. These diseases will

thus be connected in a network implemented with GDA data. We also observe that

Parkinson’s disease and Myopia are both associated to the HGF, KRAS, and PTEN genes.

For simplicity, our implementations will assume that the “strength” or “validity” of the

connections between Parkinson’s and Waldenström’s diseases, and Parkinson’s disease and

Myopia are the same. On the other hand, although Anemia is associated to several genes,

none of these is also associated with Parkinson’s disease. Thus, a network implementation

based on GDA data would portray them as disconnected diseases.

We construct independent HDN versions using both types of association data. We la-

bel the network implementation based on GDAs as “GHDN” and that based on VDAs, as

“VHDN.” Differences between these arise not only because they rely on non-overlapping

sets of scientific results, but more importantly, also because VHDN imposes a more strin-

gent requirement to establish connectedness between diseases.12 As a result, VHDN

presents a much more sparse structure, with lower overall levels of connectedness. In-

deed, the number of connections in the VHDN is only about 2% that of the GHDN.

Furthermore, whereas about 18% of diseases are “isolated”(disconnected from all other

diseases) in the latter, 42% are so in the former.

Following the insights of previous research (Wachi et al., 2005; Jonsson and Bates,

2006; Bauer-Mehren et al., 2011; Silverman and Loscalzo, 2012), we use two simple net-

work statistics to proxy for the biological complexity of each disease d. In particular, we

define: (i) d’s total number of genetic associations (NASSOC), and (ii) d’s degree cen-

trality (CENTRALITY). For the GHDN, NASSOC corresponds to the total number of

genes associated to d; for the VHDN, to the total number of associated variants. CEN-

TRALITY corresponds to the total number of diseases d′ 6= d to which d is directly linked

through networks’ respective connectors.

Panel A of Table 2 presents the distributions for these network statistics under the

GHDN implementation; Panel B, those under the VHDN implementation. Both distri-

butions exhibit wide dispersion and a long right tail. The latter feature points to the

existence of a relatively small number of diseases characterized by high amounts of bio-

logical complexity. Consistent with the higher sparsity of the VHDN network, centralities

12For two diseases to be connected in GHDN they ought to be associated to some mutation of the
same gene. For them to be connected in VHDN, they need to be associated to the same mutation of the
same gene.
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are generally much lower. Nevertheless, GHDN and VHDN centralities and number of

associations are highly correlated at the disease level.13 Interestingly, for both imple-

mentations, values of CENTRALITY are generally larger than those of NASSOC. This

occurs due to the existence of clusters of highly inter-connected diseases, where one gene

or variant enables the connection of one disease with many others. Figure 4 presents

averages by therapeutic area. Among others, patterns in this figure suggest that variants

of Cancer rank high in both number of associations and network centrality.

4 Empirical Strategy

To illustrate our empirical strategy, we consider the patterns of innovation and accumula-

tion of GWAS genetic epidemiological knowledge in the cardiovascular therapeutic area.

Panel A of Figure 5 describes the cumulative number of published GWAS VDAs available

each year, for each of the 98 diseases in this area.14 The bottom panels present the number

of new therapies that enter the discovery stage (Ndkt). Panel B shows on gene-targeted

therapies (Ndgt); Panel C shows protein-targeted therapies (Ndpt). A visual inspection of

these patterns suggests a rough correlation between the accumulation of published VDAs

and the amount of innovation for each disease. Our empirical analysis aims at distilling

this relationship by isolating it from the influence of observed and unobserved conditioning

factors.

Given that the dependent variable (Ndkt) is a non-negative integer, we investigate

this relationship employing count-data models. In particular, because the data exhibits

over-dispersion, we estimate Negative Binomial specifications. Furthermore, Figure 5

shows that there is a large number of observations associated with Ndkt = 0. Although

these occurrences primarily manifest for gene-targeted therapies, they are not rare among

protein-targeted therapies. To account for this feature of the data, we use a zero-inflated

specification of the Negative Binomial model, which allow us to separately capture the

determinants of Ndkt = 0 and Ndkt > 0 outcomes.15

13The correlation for CENTRALITY is 0.73 (p < 0.01). The correlation for NASSOC is 0.63 (p < 0.01).
14Within the sample period, GWAS VDAs become available for about 30% of diseases in this area.
15In the full sample, about 78% Ndkt observations equal 0 (61% for gene-targeted therapies, 95% for

protein-targeted ones). The zero-inflated specification is supported by the Vuong test. The inflation
model is specified to include a constant and an indicator for gene-targeted therapies.
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Another distinctive pattern of Figure 5 is that the number of new therapies observed

each year is unevenly distributed across diseases, in a temporally persistent way. That is,

some diseases exhibit systematically larger values of Ndkt. Moreover, this heterogeneity

is observed for both molecule types, gene- and protein-targeted. To account for this

form of dk-specific, time-invariant unobserved heterogeneity we employ the “pre-sample

mean estimator” approach of Blundell et al. (2002), where average pre-sample values of

the dependent variable are use proxy for unobserved heterogeneity. In our context, this

amounts to including the average of the logged dependent variable in a pre-sample period

as an independent variable in our regressions, while constraining its coefficient to one. We

compute this pre-sample mean using data from the 1990-2001 period.

We estimate several versions of the following specification:

Ndkt = f(ΘXdkt + λt + ηa(d) + µ̂dk), (1)

where f corresponds to the zero-inflated negative-binomial functional form, λt is a year

fixed effect, ηa(d) is a therapeutic area fixed effect, and µ̂dk and corresponds to the

disease/target-specific pre-sample level, given by:

µ̂dk = log(1 + N̄dk), with N̄dk =
1

12

∑
t=1990,..,2001

Ndkt

In equation (1), Θ is a vector of coefficients for the variables contained in X. Besides

the first lag of VDASTOCK, X includes an indicator that identifies gene-targeted thera-

pies (GENETARGET), the disease-specific network statistics (NASSOC, CENTRALITY)

that proxy for translational complexity, and their interactions with VDASTOCK’s first

lag.

To account for economic and public health “pulling forces,” we also include in X the

first lags of MEPSPATS and MEPSEXPND, which respectively proxy for the epidemio-

logical pervasiveness and market size associated to each disease, and are constructed using

data from the Medical Expenditure Panel Survey (MEPS). MEPSPATS corresponds to

the log total number of patients (in millions) in the US that report suffering the condition

d during year t; MEPSEXPND, to the log total amount spent on prescription drugs for

the condition, during the same year (measured in billions of dollars, CPI-adjusted to year

2000).16

16MEPS (https://meps.ahrq.gov/mepsweb/) is large and representative sample of health care usage
and insurance in the US. MEPSPATS is constructed using data from MEPS’ yearly “Medical Conditions

11
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The parameters of main interest in equation (1) are those associated to VDASTOCK’s

lag, and its interactions with each diseases’ network statistics. In particular, a statistically

significant and positive coefficient for VDASTOCK’s lag would indicate that larger stocks

of GWAS science increase the rate of therapeutic innovation. The coefficient’s specific

value would then illustrate the extent of this translational effect. The parameter for

its interactions with network statistics would identify the extent to which this effect is

moderated by each disease’s network environment.

In the analysis, we avoid imposing assumptions regarding the relative adequacy of

GHDN and VHDN as means to characterize biological complexity. Our approach is

to first show that the main promoted effects hold when each of these are considered

independently, and then, that they continue to hold when the joint variation of GHDN

and VHDN is summarized by an ordering of diseases, which we derive through a flexible,

data-driven clustering method.

Lastly, by the structure of DisGeNET data, the computation of network statistics

from the GHDN or VHDN do not hinge on GWAS science. This is suggested by Figure 6,

which compares the NASSOC and CENTRALITY values computed with and without

accounting for GWAS results in the construction of VHDN.17 (In red, a 45 degree line.)

Although for some diseases GWAS results account for a non-negligible share of observed

associations, they do significantly not distort the overall ordering. Together, these ob-

servations suggest that GWAS science does not overtly condition our measurement of

biological complexity. In subsection 5.2 we analyze the potential inferential confounds

introduced by this and other issues, finding no evidence to suggest that they drive our

main results.

Files,” which report the incidence of diseases on individuals at the 3-digit ICD9 level. Thus, all diseases
associated to a single 3-digit ICD9 code are awarded the same value for MEPSPATS. MEPSEXPND is
constructed with data from the yearly “Prescribed Medicines Files” using the same procedure. In both
cases, individual variables are aggregated at the year level using individual representativeness weights.

17To facilitate the comparison, values are normalized by each variables’ largest values when all Dis-
GeNET results are considered.
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5 Results

5.1 Translational Complexity

Table 3 presents the estimates of different versions of equation (1).18 Column 1 presents

the simplest specification, which does not our measure of biological complexity, nor the

pre-sample proxy for unobserved heterogeneity. In the Column 1, the coefficient for

GENETARGET is negative, large, and strongly significant, which is consistent with the

systematically smaller number of gene-targeted therapies. The estimated coefficient for

VDASTOCK implies that a 1 percent increase in the stock of GWAS knowledge is associ-

ated to a 1.4 percent increase in the number of new therapies entering the discovery stage,

whereas that for its interaction with GENETARGET, that scientific knowledge stocks

have a larger impact on the innovation of protein-than gene-target therapies. Further-

more, consistent with the results of Toole (2012), the coefficient estimates for MEPSPATS

and MEPSEXPND are positive, indicating a disease’s epidemiological pervasiveness and

market size both increase the rate of therapeutical innovation. Although both of these

are estimated precisely by this specification, MEPSPATS looses its statistical significance

in the more comprehensive specifications.

In Column 2 we control for disease-/target type-specific unobserved heterogeneity

through the coefficient-constrained inclusion of logged pre-sample means. Although most

coefficients retain their sign and statistical significance, their magnitude becomes smaller,

suggesting that this type of unobserved heterogeneity plays a relevant role in innovation

rates. This is particularly noteworthy for the coefficient of VDASTOCK, which now is

about half the estimate of Column 1, and implying that a 1 percent larger knowledge

stock can be linked to only a 0.7 percent increase of new therapies entering the drug

development process.

The specifications of Columns 3 and 4 incorporate our measure of biological complexity,

which computed with the GHDN network implementation. Both CENTRALITY and

NASSOC are measured in hundreds and these two measures are (by construction) highly

correlated. To avoid multicollinearity issues we considered these variables separately in

18These and following results are obtained by setting the “obsolescence rate” δ = 0.05. This value was
determined by comparing information-based criteria of specifications estimated on a grid for plausible δ
values.
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Columns 3 and 4. The specification of Column 3 considers diseases’ network centralities.

The positive and significant coefficient for CENTRALITY points to a particular dimension

of unobserved heterogeneity, whereby more central diseases are the more frequent focus of

therapeutical innovation. The positive coefficient for its interaction with GENETARGET

suggests that the effect is more pronounced for gene-targeted therapies.

This baseline effect of CENTRALITY could be rationalized by a combination of

supply- and demand-side factors. The latter could ensue if MEPSEXPND underestimates

“true” market potential for more central diseases. Noting that Cancer variants tend to

have higher network centralities (see Figure 4), such underestimation is a real possibility

in this context. This is because MEPSEXPND is computed from prescription drug data,

which may omit much of the expenditure on drugs used for the treatment of Cancer (typ-

ically administered via injections and thus, possibly, not available through prescription

on a systematic basis).19 At a more fundamental level, the underestimation of market

potential could be grounded on the possibility that new Cancer therapies provide a partic-

ularly significant improvement to the standard, compared to other therapeutic areas, and

so unlock value that is unaccounted for by historical spending patterns. Table 4 presents

results obtained by reproducing the above analysis, but on a sample that omits diseases in

the Cancer area. Because results remain largely unchanged, they attenuate the concerns

stemming from these potential confounds. Supply-side factors justifying the positive co-

efficient of CENTRALITY could be rooted on potentially larger knowledge spillovers or

scrap values for therapies targeting more central diseases. Under this view, the return of

investment on these therapies may in part be driven by the broader usefulness of applied

knowledge generated in the process, or by the ability to re-purpose therapies for use in

the treatment of different, related conditions.

In Column 3, the coefficient associated to the interaction of VDASTOCK and CEN-

TRALITY is negative and statistically significant. This suggests that the impacts of

larger knowledge stocks on innovation rates are smaller for more central diseases. To the

extent that CENTRALITY is accepted as a proxy for biological complexity, this coeffi-

cient evidences that new genetic epidemiological science has a smaller innovative impact

among the more complex diseases. The same conclusion can be drawn from the estimates

19Dranove et al. (2014) provide some facts that suggest that measures for market potential for cancer
indications that are based on prescription drug expenditures may not be completely inadequate. One
the one hand, many of the top-selling biotechnology drugs are covered by Medicare prescription drug
insurance. Some of this coverage may operate through the practice of “brown bagging,” by which patients
purchase drugs in retail pharmacies and then have them immediately administered in an outpatient
setting.
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of Column 4, which account for biological complexity through NASSOC. Columns 5 and

6 reproduce the analysis of Columns 3 and 4, but using complexity metrics computed

with the VHDN implementation. These estimates offer further support the moderating

role of complexity in translation.20

Although these results broadly support our main insight that biological complexity

mediates the extent of translation of new GWAS knowledge into therapeutical innovation,

they also entail the possibility that larger knowledge stocks may deter innovation. In

concrete, the coefficient estimates of specifications 3 through 5 all imply that, evaluated

at a large enough percentile of CENTRALITY or NASSOC, an increase in VDASTOCK

could deter innovation.

To further investigate the relation between biological complexity and innovation, we

cluster diseases into groups according to their measured network presence. In particular,

we apply a k-means clustering algorithm on the list of all four available network statistics.

This procedure allows us group diseases into different subsamples based on their network

presence similarity in flexible, a data-driven manner. As a result, we obtain a partition

of diseases without imposing assumptions regarding the relative importance of different

network statistics or implementations. We settled on five clusters because a larger number

thereof yields some subsamples that are too small to estimate the econometric specifica-

tions on.

Table 5 characterizes the result of this clustering procedure. The first and largest

group (subsample S1) includes 35% of the diseases in the sample. These exhibit the lower

average values, for all four considered metrics. Thus, diseases in this subsample may be

considered as the more peripheral, less connected ones in the full sample, and in turn, those

associated to lower amounts of biological complexity. Metrics’ average values progressively

increase as we move to larger-indexed subsamples, at the time that the fraction of sample

diseases included in each progressively shrinks. Subsample S5 includes 6% of the diseases

in the sample, with average statistics exceeding those of S1 by at least two orders of

magnitude. Thus, diseases in S5 correspond the more central, more connected, and so, also

more complex ones in the sample. Together, these statistics suggest that the clustering

procedure yields a reasonable ordering of diseases into categories of distinct biological

complexity.

20Differences in parameter values are largely driven by the different scaling of GHDN and VHDN
metrics.

15



With this ordering in hand, we return to the question of interest by estimating a

simplified version of specification (1) on each subsample. In particular, because there is

relatively little variation in the network presence of diseases included within each subsam-

ple, we drop network metrics and their interactions from the set of dependent variables.

The employed specification is summarized by the variables listed on the results Table 6.

As in Table 3, the sequence of estimated coefficients for VDASTOCK displayed by

Table 6 indicates that the impact of new GWAS science on rates of therapeutical inno-

vation is decreasing in complexity. These suggest that, for the set of diseases associated

to the lower levels of measured complexity (subsample S1), a 1 percent increase in VDA-

STOCK is associated to a 1.12 percent increase in the number of new therapies entering

the discovery stage. The effect is generally decreasing as one shifts attention to higher-

complexity subsamples. For diseases in S5, the effect is not significantly different from

zero at usual statistical confidence levels. Thus, these results indicate that the negative

coefficients associated to interactions of VDASTOCK and network metrics in Table 3 are

primarily derived from variation a lower ranges of the considered network statistics, and

cannot be taken to imply that larger stocks of GWAS knowledge could deter innovation.

A second aspect of interest in Table 6 corresponds to the sequence of coefficients for

MEPSEXPND. In particular, their values indicate that the innovation of more peripheral,

less connected diseases is also more reactive to market conditions than that of the more

central, connected ones. Based on the higher average centrality of Cancer diseases, we con-

jecture that this pattern may reflect a possible correlation between diseases’ burden and

network environment. If, like Cancer, more burdensome diseases are also more connected

or central in the HDN, they may have also constituted the more frequent historical targets

of the industry’s innovation efforts. In this scenario, the less connected, more peripheral

set of diseases would be relatively more deserted of therapeutical alternatives. Guided

by expected market profitability, pharmaceutical developers may have therefore seen this

set of diseases a more fertile ground for the application of novel genetic epidemiological

science.

Table 7 displays the marginal effects of knowledge accumulation. These are computed

by increasing in one the number of available GWAS publications for each disease, and then

computing the implied percentage difference in the number of new therapies (averaged

across diseases within each cluster). Measured both given the stocks of 2004 and 2012,

these marginal effects largely coincide with the insights of Table 6.
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Lastly, to provide a sense of the overall contribution of GWAS science to therapeutical

innovation over the covered period, Figure 7 decomposes the bulk of new therapies ob-

served in the sample, singling out the share of these which, according to the above model

estimates, can be attributed to GWAS knowledge. Panel A focuses on gene-targeted

therapies and Panel B, on protein-targeted ones. Because there was virtually no GWAS

science published before 2007, their innovative impacts start to be perceived only after

this year. Following the progressive accumulation of knowledge, the percentage of new

therapies that can be linked to it increases with time. As a share of each group’s to-

tal, by 2012, this contribution is largest for gene-targeted therapies of lowest measured

complexity (S1), at around 25%.

5.2 Do Unobservables Drive our Results?

Our inference may be confounded by two main factors: the conditional independence

of GWAS knowledge accumulation and the computed measures of complexity. In this

section we provide evidence suggesting that these concerns are unlikely to overturn our

main conclusions.

We begin by addressing the conditional independence of the computed network statis-

tics. Because the HDN implementations used above rely in part on DisGeNET research

published during the sample period (including GWAS), one may worry about the exis-

tence of unobserved trends driving both the focus of this research, as well as that of the

industry’s innovative efforts.

To investigate this concern we replicate earlier results, but instead constructing NAS-

SOC and CENTRALITY from DisGeNET research published no later than 2005. To carry

out this analysis we merged DisGeNET results with each article’s publication date, which

were usually available from PubMed. The 2005 threshold was selected in consideration

of two factors. First, only one GWAS result in our sample was published before 2006.

Second, selecting earlier thresholds significantly reduced the set of DisGeNET results

available to implement GHDN and VHDN, yielding relatively little variation on NAS-

SOC and CENTRALITY. Indeed, even with the 2005 threshold, the computed NASSOC

and CENTRALITY variables present considerably less variation than in the original sam-

ple, the primary reason being that these data contain no associations for a much larger

number of diseases. As a consequence, the resulting 5-cluster grouping in this case yields
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a S1 subsample including 68% of diseases, at the time S4 and S5 respectively include 7%

and 3% only. The higher degree of degeneracy of this partition prevents us from repli-

cating the cluster-based analysis of Table 6, so we focus on the original specification (1)

used by Table 3.

Estimation results are presented in Table 8. Although slightly smaller than in Ta-

ble 6, the estimated coefficients of VDASTOCK have similar values and continue to be

estimated precisely. Furthermore, because the smaller set of DisGeNET results used to

implement the networks yields lower-valued NASSOC and CENTRALITY, their associ-

ated coefficients have generally larger values than in Table 6. Nevertheless, these retain

their signs and statistical significance, suggesting that considered trend does not drive the

translational complexity effect.

Owing to the usefulness of GWAS knowledge for therapeutical innovation, a potential

violation of their conditional independence is perhaps a bigger concern. In an extreme

scenario, the documented positive impact of VDASTOCK on innovation could be entirely

rooted on scientific or market trends that are unaccounted for by our analysis, but which

prompt the conflux of higher innovation and GWAS publication rates among certain

diseases. That is, in this extreme scenario, the identified translational rate could entirely

represent the bias imposed by an omitted variable.

Before analyzing this issue, recall that our main insight—therapeutic translation rates

are decreasing in biological complexity—relies on a comparison of translation rates across

the support of measured biological complexity. We argue that this result is unlikely to

be overturned by the presence of this type of trend, as the latter would be required to

exhibit a rather specific structure. Namely, it should manifest more intensively among

the less complex groups of diseases. The series of analysis performed in turn provide some

support to this point.

We first implement a falsification test, based on the following rationale: if the large

translational effects observed among low-complexity diseases are driven by the described

omitted trend, we should continue to observe them when publication sequences are ran-

domized within diseases with similar patterns of GWAS knowledge accumulation. This

randomization would disband the empirically detectable causality of VDASTOCK on N ,

while roughly maintaining the structure of the alleged omitted trend.
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We implement this test through tiered-resampling. Tier 1 includes the approximate

83% of diseases in the sample for which there are no GWAS VDAs in the sample. Tiers 2

and 3 partition the remaining set of diseases in groups of approximately equal size, based

on the total number of available GWAS VDAs for each disease, and in such a way that

Tier 3 diseases all have more GWAS VDAs than those in Tier 2. Publication sequences

are then re-sampled (with replacement) within diseases of each tier, so maintaining the

average number of published GWAS VDAs within each. (This average is always 0 for Tier

1). We generate 200 pseudo-samples following this procedure, reproducing the analysis

for subsamples S1 and S2 (Columns 1 and 2 of Table 6) on each. Results indicate that the

1.14 and 0.95 estimates of Table 6 are largely improbable outcomes given the estimated

parameter distributions: in both cases, they are larger than 99% of the obtained estimates.

This analysis thus suggests that our main insight is not driven by the conflux of higher

publication and innovation rates caused by an omitted trend.

We further note that, although the number of GWAS publications may be correlated

with innovation series through an omitted trend, such trend is likely to be a less important

determinant of the informational content of published GWAS results. That is, although

scientific and economic tendencies may prompt researchers to engage with specific research

agendas at a certain times, they are less likely to determine the quality of these agendas’

outcomes. Equivalently, these tendencies are less likely to determine the effective amount

of usable knowledge that each GWAS publication adds to the knowledge base.

Based on this premise, and on extensive research (e.g., Garfield, 1972; Moed, 2006)

suggesting that citation counts can be taken as a proxy for articles’ contribution to existing

knowledge base, we devise a test which exploits variation in GWAS articles’ (forward)

citations. Because a series of VDASTOCK constructed from the more cited articles would

be less affected by the cited omitted trend, observing that our results continue to hold

when this series is used would help to alleviate the concern at hand.

From the vast scientific and medical bibliography available from PubMed, we identified

the set of articles that cite each GWAS publication in our data. Because articles published

in earlier years have had a longer time to accumulate citations, we computed the number

of citations observed within two years of publication. Considering the median number

of citations obtained by articles contributing VDAs to each targeted disease, we next

constructed two versions of VDASTOCK: one based on the articles that obtained a below-

median citation count, and the other based on those which obtained an above-median
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citation count. Although these two versions of VDASTOCK are constructed based on an

approximately similar number of articles for each disease, their values at a given point time

usually differ because hi- and low-cited articles are not published at the same time. In the

overall sample, there is no statistically significant difference between the average values

of these two versions of VDASTOCK, suggesting that an article’s impact is independent

of its publication date.

Panel A of Table 9 presents the results obtained when we reproduce the specification of

Table 6, but replacing VDASTOCK for these two variants (for simplicity, other variables

are omitted from the Table). Maintaining the basic result that complexity mediates

translational rates, the set of estimated coefficients suggests that knowledge produced

by the articles with more impact is associated to a generally larger effect on innovation.

Thus, these results lend support to the idea that our main results are not driven by the

influence of described omitted trend.

We finish this section by considering a more specific form of omitted variable. Namely,

the possibility that published GWAS VDAs are themselves the output of firms’ decisions

to innovate a new therapy. In particular, suppose that, in order to evaluate wether to

introduce a candidate to the development process, pharmaceutical firms conduct the same

type of analysis contained by GWAS publications. If this analysis demonstrates a genetic

linkage for an specific disease, we may observe an increase in GWAS publications that

precedes that for the introduction of new therapies into the development process. Such

effect could, by itself rationalize our results.

We analyze this issue based on the idea that this rationale is more likely to be reflected

among GWAS publications funded by the industry, than based on those funded by public

entities. If our main result primarily relied on VDASTOCK series constructed from the

former, the validity of our main insight should be discounted. To implement the test

we mined articles’ acknowledgements and PubMed records in order to identify the set of

GWAS publications in our data where industry funding is acknowledged. About 21% of

the GWAS publications in the sample acknowledge them. Next, as before, we constructed

two versions of VDASTOCK, one based on the articles that report this type of funding,

and other based on those that don’t, and estimated an analog specification. Panel B of

the Table 9 presents the results. These, for the most part, suggest that the translational

effect is attached to those articles that do not report industry funding. Therefore, these

results do not offer support for the idea that our main result follows from the considered
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reverse causality hypothesis.

6 Conclusions

Notwithstanding a rich stream of research investigating the extent and mechanics by

which basic science fuels and shapes pharmaceutical innovation,21 the role of biological

complexity has remained unexplored. We combine insights of Network Medicine with

standard approaches for the measurement of R&D returns (Blundell et al., 2002; Toole,

2012) to take a step forward in this direction.

Our results posit that biological complexity is an important determinant of the rate of

translation. This rate is large among diseases with lower measured complexity, decreas-

ing as complexity rises, and indistinguishable from zero among diseases in the extreme

of higher complexity. Particularly in the current “genomic era,” biological complexity

therefore stands out as a potentially important conditioning factor for the assessment of

innovative productivity in the industry, and the allocation of funding by scientific agen-

cies. It may also represent a useful construct to retrospectively assess the overall impacts

of Human Genome Project, as well as to fine tune expectations going forward.

As with much of the research oriented at measuring the returns of R&D, our analysis

grapples with significant identification challenges (Hall et al., 2010). Here, these arise

primarily because the direction of scientific research and therapeutical innovation are

likely determined by common factors, which are not observable in the data, and cannot

be fully controlled for empirically. We must therefore promote a cautious interpretation of

the estimated coefficients. Nevertheless, a series of checks suggest that our main insight—

the translation rate is decreasing in biological complexity—is unlikely to be overturned by

biases introduced in through these means. Empirical approaches that exploit exogenous

variation stemming from the nuances of research funding rules (as in Azoulay et al., 2015)

may be useful to further assert the validity of these results. This approach may also allow

to address issues that we are forced to neglect here. For example, the speed of translation.

Two avenues for follow-up research stand out in our view. The first stems from reports

suggesting that genetic epidemiological knowledge may also be useful during clinical trial

21This literature is referenced in the introduction.
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development. In particular, by helping sponsors to identify subpopulations at higher risk

of developing adverse side effects.22 These events point to a two-layered translational

effect, one operating through the amount of innovation, the other through potentially

higher rates of clinical trial success. It is not a-priori clear to us whether biological

complexity will boost or temper the latter. Secondly, the presence and extent of scale and

scope economies has been an important area of inquiry in the study of the pharmaceutical

industry (e.g., Henderson and Cockburn, 1996; Cockburn and Henderson, 2001). However,

most of this research relies on now dated (pre-HGP) datasets and employs high levels of

aggregation. By virtue of its rich and “exogenous” structure, the Human Disease Network

permits the construction of “spillover weights” directly from the data, at the disease-pair

level. Applied to contemporaneous data, this approach could enable a more translucent,

fine-grained analysis of pharmaceutical scale and scope economies in the “genomic era.”

22Pollack (2010) reports “Many drug companies now collect and analyze the DNA of patients in clinical
trials, hoping to find genetic signatures that will allow drugs to be better tailored to specific patients.”
Pollack (2010) rationalizes this trend with the case of the blockbuster antiplatelet drug “Plavix,” for
which a variation of the gene CYP-2C19 was found to render patients at higher risk of heart attacks. The
point is also illustrated by the 2004 market withdrawal of Merck’s Cox-2 inhibitor “Vioxx” (Rofecoxib)
due to adverse cardiovascular events. Years later, the research of Brune et al. (2008) and Ruff et al.
(2011) found that these events were associated to patients exhibiting high levels of an amino acid, which
could be detected in advanced through genetic diagnostics (Goldman et al., 2013).
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Figures and Tables

Figure 1: Number of new therapies (by therapeutic area) observed entering the develop-
ment process in 2003-2012.
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Figure 2: Temporal patterns of therapeutic innovation and GWAS VDA publication.
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Figure 3: Number of Targeted Diseases and GWAS GDAs by Therapeutic Area.
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Figure 4: Average network statistics for diseases in the pipelines sample.
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Figure 6: Influence of GWAS Research on Computed Network Statistics
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Figure 7: Innovation attributable to GWAS science. Black areas correspond to the share
of new therapies associated with GWAS’ VDAs.
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Table 2: Distributions of Network Statistics.

Percentile
1 5 10 25 50 75 90 95 99

A. GHDN
NASSOC 0 0 0 3 32 131 390 750 1,774
CENTRALITY 0 0 0 720 2,982 5,740 8,540 10,420 12,827

B. VHDN
NASSOC 0 0 0 0 1 15 70 145 495
CENTRALITY 0 0 0 0 4 145 412 617 1,004
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Table 5: Complexity Clusters.

Subsample
Fraction Average of
of sample GHDN GHDN VHDN VHDN
diseases CENTRALITY NASSOC CENTRALITY NASSOC

S1 0.35 397.8 4.5 6.2 2.8
(506.7) (7.8) (30.8) (16.2)

S2 0.24 2,693.8 41.1 42.9 7.8
(635.0) (43.7) (81.0) (18.7)

S3 0.21 5,050.0 114.8 117.3 20.5
(710.7) (123.6) (165.1) (53.1)

S4 0.14 7,892.2 312.7 256.2 58.9
(892.1) (267.3) (210.4) (108.3)

S5 0.06 11,485.0 1,144.1 714.0 248.0
(1262.0) (708.2) (285.3) (309.9)

Subsamples are created through a k-means clustering procedure on all GHDN and VHDN network statistics. Within-
subsample standard deviations are presented in parentheses.

Table 6: Therapeutical Translation Across Disease Clusters of Varying Complexity.

Subsample
S1 S2 S3 S4 S5

VDASTOCKd,t−1 1.12*** 0.74*** 0.32*** 0.52*** 0.06
(0.17) (0.17) (0.09) (0.15) (0.08)

GENETARGETk -1.99*** -0.96 -0.78 -1.60*** -1.40***
(0.76) (0.58) (0.53) (0.30) (0.08)

MEPSPATSd,t−1 0.01 0.02* -0.02 0.05*** -0.01
(0.02) (0.01) (0.01) (0.01) (0.01)

MEPSEXPNDd,t−1 0.03*** 0.02* 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

Pre-sample Estimator X X X X X
Observations 9,140 6,220 5,420 3,680 1,660

Results from Negative Binomial, zero-inflated specifications for the dependent variable Ndkt. All specifications include fixed
effects for therapeutic areas and years. Clustered standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01.
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Table 7: Marginal Effects.

Year
Subsample

S1 S2 S3 S4 S5

2004 1.17 0.65 0.27 0.43 0.04
2012 1.14 0.62 0.26 0.35 0.02

Marginal effects are computed by increasing in one the number of available GWAS publications for each disease, and then
computing the implied percentage difference in the number of new therapies (averaged across diseases within each cluster).
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Table 9: Assessing the Influence of Unobservables.

GWAS articles (1) (2) (3) (4) (5)
used to construct Subsample
VDASTOCK S1 S2 S3 S4 S5

A. Number of 2-Year Citations
Below-median 2-year citations 0.80*** 1.02** 0.16 0.12 0.04

(0.28) (0.48) (0.18) (0.22) (0.08)
Above-median 2-year citations 1.13*** 0.45*** 0.36* 0.57** 0.04

(0.22) (0.11) (0.21) (0.28) (0.06)

B. Funding Source
No industry funding 1.11*** 0.57*** 0.47*** 0.54*** -0.03

(0.19) (0.10) (0.12) (0.17) (0.08)
Some industry funding 0.61 1.53** -0.42 0.14 0.17

(0.76) (0.78) (0.35) (0.32) (0.11)

Pre-sample Estimator X X X X X
Observations 9,140 6,220 5,420 3,680 1,660

Results from Negative Binomial, zero-inflated specifications for the dependent variable Ndkt. All specifications include
fixed effects for therapeutic areas and years, an indicator for gene-targeted therapies, and MEPS variables that proxy for
epidemiological pervasiveness and market size. Clustered standard errors are presented in parentheses. Legend: ∗p <
0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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