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1 Introduction

Online advertising is the main source of revenues for important firms such as Google,

Facebook, Twitter, etc., and it represents one of the largest and fastest growing industries

in the US: in 2013, for instance, the value of advertising on search engines alone amounted

to 50 billion dollars in the U.S., with an annual growth of 10% (PwC (2015)), and 96%

of Google’s global revenues in 2011 were attributed to advertisement (Blake, Nosko and

Tadelis (2015)). Almost all online ads are sold through auctions, in which bidders compete

for the adjudication of one of a given number of ‘slots’ available in various online venues,

such as search engine result pages, social networks feeds, and so on. With the significant

exception of Facebook, which recently adopted the Vickerey-Clarke-Groves (VCG) mech-

anism, for a long time this market has been dominated by the Generalized Second Price

(GSP) auction (used, for instance, by Google, Microsot-Bing, Yahoo! and Taobao).

The VCG is a classic and widely studied mechanism: it involves fairly complex pay-

ments that price externalities, but it has the advantage of being strategy-proof and effi-

cient. The GSP auction in contrast has very simple rules (the k-highest bidder obtains

the k-highest slot at a price-per-click equal to the (k + 1)-highest bid), but it gives rise

to complex strategic interactions. Varian (2007) and Edelman, Ostrovsky and Schwarz

(2007, EOS) pioneered the study of the GSP auction. Their results provided a rationale

for the GSP’s striking success and, until recently, its almost universal diffusion. But these

models do not account for a recent trend in this market, which is bound to alter the

functioning of these auctions and has thus the potential to shake up the entire industry.

We allude to the fact that, at least since 2011, an increasing number of advertisers

are delegating their bidding campaigns to specialized digital marketing agencies (DMAs),

many of which belong to a handful of networks (seven in the US) that conduct all bidding

activities through centralized agency trading desks (ATDs).1 As a result, with increasing

frequency, the same entity (be it DMA or ATD) bids in the same auction on behalf of

different advertisers. But this clearly changes the strategic interaction, as these agencies

have the opportunity to lower their payments by coordinating the bids of their clients.

This paper proposes a theoretical analysis of the impact of agency bidding on the two

main auction formats: the VCG and the GSP. We find that the agency’s equilibrium bids

are akin to implementing a certain form of collusion (even if none of its clients explicitly

attempt it), and that in this situation the VCG outperforms the GSP both in terms of

revenues and efficiency. This is a strong result because the VCG is well-known to be

highly susceptible to collusion, but it is especially noteworthy if one considers the sheer

size of transactions currently occurring under the GSP. It also suggests a rationale for why

1A survey by the Association of National Advertisers (ANA) of 74 large U.S. advertisers indicates that
about 77% of the respondents fully outsource their search engine marketing activities (and 16% partially
outsource them) to specialized agencies, see ANA (2011). Analogously, a different survey of 325 mid-size
advertisers by Econsultancy (EC) reveals that the fraction of companies not performing their paid-search
marketing in house increased from 53% to 62% between 2010 and 2011, see EC (2011). Further details on
DMAs and ATDs, and their relation with programmatic buying, are discussed in Section 2.
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Facebook’s recent adoption of the VCG mechanism was so successful, despite the early

surprise it provoked (e.g., Wired (2015)), and for why the last few years have recorded

a steady decline in ad prices.2 The striking fragility of the widespread GSP auction we

uncover suggests that further changes are likely to occur in this industry, raising important

questions from a market-design perspective. But since agencies’ behavior in our model

is analogous to that of buying consortia, which have been sanctioned in the past, our

results are also relevant from an antitrust perspective.3 To the best of our knowledge,

this is the first study to point at the central role of marketing agencies in these auctions.

The specificities of the market, however, suggest a more nuanced view of the harm to

consumers. We discuss this and other policy implications in the conclusions.

The study of agency bidding in the GSP auction presents numerous difficulties. First,

it is important to develop a model in which collusive and competitive behavior coexist,

because agencies in these auctions operate side by side with independent advertisers. But

the problem of ‘partial cartels’ is acknowledged as a major difficulty in the literature (e.g.,

Hendricks, Porter and Tan (2008)).4 Second, strategic behavior in the GSP auction is

complex and brings forth a plethora of equilibria. Introducing a tractable refinement has

been a key contribution of EOS and Varian (2007), to cut through this complexity and

bring out the economics of these auctions.5 But their refinement is not defined in the

agency model. Thus, a second challenge we face is to develop a model of agency bidding

that is both tractable and ensures clear economic insights.

To achieve these goals, we modify EOS and Varian’s baseline model by introducing

a marketing agency, which we model as a player choosing bids for its clients in order to

maximize the total profits. Bidders that do not belong to the agency are referred to as

‘independents’, and have the usual objectives. To overcome the curse of multiplicity in the

GSP auction, and ensure a meaningful comparison with the competitive benchmark, we

introduce a refinement of bidders’ best responses that distills the individual-level under-

pinnings of EOS’ equilibrium, and assume that independents place their bids accordingly.

This stratagem enables us to maintain the logic of EOS’ refinement for the independents,

even if their equilibrium is not defined in the game with collusion. The marketing agency

in turn makes a proposal of a certain profile of bids to its clients. The proposal is im-

2Google, for instance, reports passing from a positive growth rate in its average cost-per-click of about
4 percent per year in the four years before 2012, to a negative growth rate in each year since then, with
an average yearly decline of 9 percent. Source: 10-k filings of Alphabet inc.

3See, for instance, the case of the tobacco manufacturers consortium buying in the tobacco leaves
auctions, United States v. American Tobacco Company, 221 U.S. 106 (1911).

4The literature on ‘bidding rings’, for instance, has either considered mechanisms in which non-
cooperative behavior is straightforward (e.g., second price auctions with private values, as in Mailath
and Zemski (1991)), or has assumed that the coalition includes all bidders in the auction (as in the first
price auctions of McAfee and McMillan (1992) and Hendricks et al. (2008), or in the dynamic auctions of
Chassang and Ortner (2016), or Chassang and Ortner (2017) in a different setting). The main focus of that
literature is on the coalition members’ incentives to share their private information so as to implement
collusion, a moot point under complete information, as EOS, Varian’s (2007) and our settings. Other
mechanisms for collusion have been considered, for instance, by Harrington and Skrzypacz (2007, 2011).

5On a similar note, Levin and Skrzypacz (2016) strike a fine balance between tractability and realism
of the assumptions, to deliver clear economic insights on an otherwise very complex auction.
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plemented if it is ‘recursively stable’ in the sense that, anticipating the bidding strategies

of others, and taking into account the possible unraveling of the rest of the coalition, no

client has an incentive to abandon the agency and bid as an independent. Hence, the out-

side options of the coalition’s members are equilibrium objects themselves, and implicitly

incorporate the restrictions entailed by the underlying coalition formation game. The logic

of our model is therefore closely related to the idea of ‘equilibrium binding agreements’

(Ray (2008)), in that it involves both equilibrium and recursive stability restrictions.

We consider different models of collusive bidding within this general framework. First,

we assume that the agency is constrained to placing bids that cannot be detected as col-

lusive by an external observer, such as an antitrust authority or the auction platform. We

show that, under this constraint, the GSP auction is efficient and its revenues are identical

to those obtained if the same coalition structure (viz., agency) bid in a VCG auction. We

then relax this ‘undetectability constraint’, and show that in this case the revenues in

the GSP auction are never higher, and are in fact typically lower, than those obtained in

the VCG mechanism with the same agency configuration. Furthermore, once the ‘unde-

tectability constraint’ is lifted, efficiency is no longer guaranteed by the GSP. Since the

VCG is well-known to be highly susceptible to collusion, finding that it outperforms the

GSP both in terms of revenues and efficiency is remarkably negative for the GSP auction.

The source of the GSP’s fragility, and the complexity of agency bidding in this context,

can be understood thinking about an agency that controls the first, second, and fourth

highest bidders in an auction. The agency in this case can lower the highest bidder’s

payment by shading the bid of the second, without necessarily affecting either his position

or his payment. Given the rules of the GSP auction, the agency can benefit from this

simple strategy only if two of her members occupy adjacent positions. But due to the

GSP’s complex equilibrium effects, the agency can do more than that. For instance,

suppose that the agency shades the bid of her lowest member, with no direct impact on

her other clients’ payments. Intuitively, if this bid is kept persistently lower, then the logic

of EOS’ refinement suggests that the third highest bidder, who is an independent, would

eventually lower his bid. But not only would this lower the second bidder’s payment, it

would also give the agency extra leeway to lower the second highest bid, to the greater

benefit of the highest bidder. Revenues in this case diminish for both the direct effect

(lowering the 2-nd highest bid lowers the highest bidder’s payment) and for the indirect

effect (lowering the 4-th highest bid induces a lower bid for the independent, which in

turn lowers the second bidder’s payment). Hence, even a small coalition may have a large

impact on total revenues. Our general results show that this impact is larger if the agency

includes members which occupy low or adjacent positions in the ranking of valuations, but

it also depends on the rate at which click-through-rates vary from one position to another,

and on how independents’ valuations compare to those of the coalition members.

We also explore whether these concerns on the GSP auction may be mitigated by

competition between agencies. Although multiple agencies each with multiple bidders in
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the same auction are rare (Decarolis et al. (2016)), the question has theoretical relevance

because the phenomenon may become more common in the future. If an increase in

agency competition restored the good properties of these auctions, then the diffusion

of marketing agencies need not lead to major structural changes in this industry. Our

results, however, suggest otherwise: for certain coalition structures, agency competition as

expected mitigates the revenue losses in both mechanisms (while preserving their relative

performance); but for other coalition structures, it has a particularly perverse impact on

both mechanisms. That is because, from the viewpoint of an agency bidding for multiple

clients, these auction mechanisms have a flavor of a first-price auction: even holding

positions constant, the price paid depends on the agency’s own bids. With multiple

agencies, this feature of agency bidding may lead to non-existence of pure equilibria, very

much like the case of competitive (non-agency) bidding in a Generalized First Price (GFP)

auction. But as seen in the early days of this industry, when the GFP was adopted (see

Section 2), lack of pure equilibria may generate bidding cycles which eventually lead to

a different form of collusion. In fact, these bidding cycles are often cited as the primary

cause for the transition, in the early ’00s, from the GFP to the GSP auction (Edelman

and Schwarz (2007)). Hence, not only does agency competition not solve the problems

with these auctions, but it appears likely to exacerbate them, giving further reasons to

expect fundamental changes in this industry.

The rest of the paper is organized as follows: Section 2 provides a brief history of the

market and illustrates the basic stylized facts that motivate our model. Section 3 reviews

the competitive benchmarks. Section 4 introduces the model of collusion, and Section 5

presents the main results. Section 6 develops a method for detecting collusion in search

auctions data and to quantify the revenue losses. Section 7 discusses the main policy

implications of our results and directions for future research.

2 A brief history of the online ad market

In 1998, the search engine GoTo.com revolutionized the world of online advertising by

introducing auctions to sell ad space on its search results pages. This company, later

renamed Overture and acquired by Yahoo! in 2001, had devised the so called Generalized

First Price (GFP) auction, in which advertisement space was assigned to advertisers by

the ranking of their bids, with each advertiser paying his own bid for each click he received.

But as Yahoo!’s auctions grew in volume, and advertisers became acquainted with their

operation, this initially very successful model became problematic (cf. Ottaviani (2003)).

The reason is that, after an initial period in which advertisers cycled through phases of

aggressive and conservative bidding, their bids eventually settled at very low levels, with

the GFP indirectly favoring the diffusion of collusive bidding strategies. This phenomenon,

later attributed to the lack of pure equilibria in the GFP auction (Edelman and Schwarz

(2007)), led to the creation of a new auction format, which would soon dominate this
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market: the Generalized Second Price (GSP) auction.

In February 2002, Google introduced the GSP as part of its AdWords Select bidding

platform. Key to Google’s success was the ability to incorporate advertisement in the

clean layout of its pages, without diluting the informative content for the consumers (cf.

Wu (2016)).6 But the strategic structure of the GSP, as well as the simplicity of its

rules, turned out to be fundamental to ensure stable bidding behavior, and hence a solid

revenue base, which boosted Google’s business in an unprecedented way: on August 19th,

2004, Google went public with a valuation of $27 billion. In 2011, the company registered

$37.9 billion in global revenues, of which $36.5 billion (96%) were attributed to advertising

(Google Inc., Blake et al. (2015)). Google is now worth close to $300 billion. Google’s

success turned the GSP into the mechanism of choice of all other major search engines,

including earlier incumbent Yahoo!, its subsequent partner Microsoft-Bing, and Taobao

in China. The GSP’s supremacy among online ad auctions went essentially undisputed,

until recently, when another major player in the industry attempted an alternative route.

In 2015, Facebook introduced the VCG for its own display ad auctions. These display

ad auctions are different from those of search engines, in that they are not generated by

keywords and raise specific challenges to integrate ads within Facebook’s organic content.

But these technicalities aside, they boil down to the same kind of economic problem: a

multi-unit auction. Before John Hegeman, a Stanford economics MA graduate, took the

role of Facebook’s chief economist, the (multi-unit) VCG had had a limited impact outside

of academia. Perhaps for this reason, or for the somewhat byzantine VCG payment rule,

the industry’s initial reaction to Facebook’s innovation was one of surprise (cf. Wired

(2015)). But Facebook and its VCG auction are now essential parts of this industry: in

the second quarter of 2015, Facebook pulled in $4.04 billion and, together with Twitter, it

has become one of the largest players in display ad auctions. Together, sponsored search

and display ad auctions represent nearly the entirety of how online ads are sold.

Alongside the evolution of auction platforms, this market witnessed profound changes

on the advertisers’ side as well. In the early days of online ad auctions, advertisers bid

through their own individual accounts, often managed separately across platforms. But

already back in 2011 (see footnote 1), a large share of advertisers in the US delegated

their bidding activities to specialised digital marketing agencies (DMAs), whose diffusion

quickly led to the issue of common agency discussed in the introduction. The case of

Merkle, one of the major agencies in the U.S., provides a clear example of this phenomenon.

Crucially for our purposes, many of Merkle’s clients operate in the same industries, and

are therefore likely to bid on the same keywords.7 For instance, data from Redbook (the

6In the seminal paper which marked the birth of Google, its founders Sergey Brin and Larry Page
complain that earlier advertising-funded search engines were “inherently biased towards the advertisers
and away from the needs of consumers” (Brin and Page (1998)), which they deemed a major pitfall. The
concern for building and maintaining a long-lasting consumer base is a central concern in Google’s history,
which is also reflected in the introduction of ‘quality scores’ in the payment rule of its ad auctions (see
Section 6). Wu (2016) provides a thorough account of the history of the advertising industry.

7See: https://www.merkleinc.com/who-we-are-performance-marketing-agency/our-clients.
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Keyword CPC Volume Position

Habitat Salv.Army

habitat for humanity donations pick up 4.01 40 1 4

charities to donate furniture 1.08 20 3 9

donate online charity 0.93 20 11 10

website for charity donations 0.90 19 11 6

salvation army disaster relief fund 0.03 20 2 1

giving to charities 0.05 30 8 5

Table 1: CPC is the average cost-per-click in $US. Volume is the number of monthly searches, in

thousands. Position refers to rank among paid search links on Google’s results page for the relevant

keyword. Source: 2016 US Google sponsored search data from SEMrush.

leading public database to link advertisers to their agencies) confirm that Merkle managed

the campaigns of two leading charities in 2016, Habitat for Humanity and Salvation Army,

both of which were bidding in the same auctions for hundreds of keywords.8 Table 1 reports

the top six of these keywords, in terms of their average cost-per-click (CPC).

The common agency problem is made even more relevant by yet another recent phe-

nomenon, the formation of ‘agency trading desks’ (ATDs). While several hundred DMAs

are active in the US, most of them belong to one of the seven main agency networks (Aegis-

Dentsu, Publicis Groupe, IPG, Omnicom Group, WPP/Group M, Havas, MDC), which

operate through their corresponding ATDs (respectively: Amnet, Vivaki, Cadreon, Ac-

cuen, Xaxis, Affiperf and Varick Media). ATDs’ importance is growing alongside another

trend in this industry, in which DMAs also play a central role. That is, the ongoing shift

towards the so called ‘programmatic’ or ‘algorithmic’ real time bidding: the algorithmic

purchase of ad space in real time over all biddable platforms through specialized software.

ATDs are the units that centralize all bidding activities within a network for ‘biddable’

media like Google, Bing, Twitter, iAd, and Facebook. Hence, while DMAs were orig-

inally not much more sophisticated than individual advertisers, over time they evolved

into more and more sophisticated players, and their diffusion and integration through

ATDs has made the issue of common agency increasingly frequent.

Our model focuses on one specific consequence of these phenomena: agencies’ ability

to lower the payments of their clients by coordinating their bids. But this need not be

the only way in which agencies implement collusion. One alternative could be to split the

keywords among an agency’s clients, so that they do not compete in the same auctions.

This ‘bid retention’ strategy is obviously advantageous in single-unit auctions, but in

principle it might be used in multi-unit auctions too. A recent episode, also part of the

trend towards concentrated bidding outlined above, may help us illustrate the significance

of the potential for bid coordination which our model focuses on.

In July 2016, Aegis-Dentsu acquired Merkle, which was not previously affiliated to any

8Similar examples can be identified for nearly every industry: for clothing, Urban Outfitters and Eddie
Bauer use Rimm-Kaufman; for pharmaceuticals, Pfizer and Sanofi use Digitas; etc. (Source: Redbook.)
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Figure 1: For each of Merkle’s advertisers in footnote 9, the figure represents the number of

keywords on which it bid alongside at least one member of the Aegis-Dentsu network (and as a

share of the total number of keywords on which it bid, in parenthesis) between June 2015 and

January 2017 (Merkle’s acquisition by Aegis-Dentsu was in July 2016). The graph shows whether

bids on these ‘shared’ keywords occurred only pre-acquisition (dark blue: all keywords appearing

only before July 2016), only post-acquisition (turquoise: all keywords appearing only after July

2016), or both pre- and post-acquisition (blue: all keywords appearing both before and after July

2016.) Source: keyword-level data provided by SEMrush.

network. At that time, many of Merkle’s clients were bidding on the same keywords as

some of Aegis-Dentsu’s advertisers.9 This acquisition therefore further increased the po-

tential for coordinated bidding. Figure 1 reports, for each of Merkle’s advertisers listed in

footnote 9, the fraction of the total keywords on which they were bidding at the same time

as some of Aegis-Dentsu’s clients, and whether joint targeting of such keywords happened

only pre-acquisition, only post-acquisition, or both pre- and post-acquisition. Although

there is some variation among these advertisers, we clearly see that shared keywords are a

quantitately large phenomenon also post-acquisition (interestingly, a small fraction of key-

words are shared only post-acquisition). Hence, coordinated bidding through a common

agency in the same auction – the focus of our model – is clearly relevant.

9For instance, in the electronics sector, Dell and Samsung were in Merkle’s portfolio, placing bids
on keywords also targeted by Aegis-Dentsu’s clients Apple, HP, IBM/Lenovo and Intel. Other examples
include: in the financial sector, Merkle’s Lending Tree and Metlife were bidding in auctions alongside
Aegis-Dentsu’s Capitalone, Discover, Fidelity, Equifax, JP Morgan-Chase; for car manufacturers, Merkle’s
FIAT-Chrysler and Mercedes-Benz USA bid alongside Aegis-Dentsu’s Toyota, Volkswagen, Subaru; in
phone services, Merkle’s Vonage bid alongside Aegis-Dentsu’s T-Mobile. (Source: Redbook.)
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3 Competitive Bidding in Online Ad Auctions

Stripped down to their essence, online ad auctions are mechanisms to solve the problem

of assigning agents i ∈ I = {1, . . . , n} to slots s = 1, . . . , S, where n ≥ S. In our case,

agents are advertisers, and slots are positions for ads in a given webpage (e.g., on a social

media’s newsfeed for a certain set of cookies, on a search-engine result page for a given

keyword, etc.). Slot s = 1 corresponds to the highest/best position, and so on until

s = S, which is the slot in the lowest/worst position. For each s, we let xs denote the

‘click-through-rate’ (CTR) of slot s, that is the number of clicks that an ad in position

s is expected to receive, and assume that x1 > x2 > · · · > xS > 0. We also let xt = 0

for all t > S. Finally, we let vi denote the per-click-valuation of advertiser i, and we

label advertisers so that v1 > v2 > · · · > vn. As in Varian (2007) and EOS, we maintain

that valuations and CTRs are common knowledge. Although it may seem unrealistic, this

complete information assumption has been shown to be an effective modeling proxy for

these settings (e.g., Athey and Nekipelov (2012), Che et al. (2017) and Varian (2007)).10

3.1 Rules of the auctions

Both in the VCG and in the GSP auction, advertisers submit bids bi ∈ R+, and slots

are assigned according to their ranking: first slot to the highest bidder, second slot to

the second-highest bidder, and so on. We denote bid profiles by b = (bi)i=1,...,n and

b−i = (bj)j 6=i. For any profile b, we let ρ (i; b) denote the rank of i’s bid in b (ties are

broken according to bidders’ labels).11 When b is clear from the context, we omit it

and write simply ρ (i). For any t = 1, . . . , n and b or b−i, we let bt and bt−i denote the

t-highest component of the vectors b and b−i, respectively. Hence, with this notation,

for any profile b, in either mechanism bidder i obtains position ρ (i) if ρ (i) ≤ S, and no

position otherwise.12 The resulting utility, ignoring payments, is thus vix
ρ(i).

The GSP and VCG mechanisms only differ in their payment rule. In the GSP mecha-

nism, the k-highest bidder gets position k and pays a price-per click equal to the (k + 1)-

highest bid. Using our notation, given a profile of bids b, agent i obtains position ρ (i)

and pays a price-per-blick equal to bρ(i)+1. Bidder i’s payoff in the GSP auction, given a

bids profile b ∈ Rn+, can thus be written as uGi (b) =
(
vi − bρ(i)+1

)
xρ(i).

In the VCG auction, an agent pays the total allocation externality he imposes on

others. In this setting, if the advertiser in position k were removed from the auction,

all bidders below him would climb up one position. Hence, if other bidders are bidding

truthfully (i.e., bj = vj , as will be the case in equilibrium), the total externality of the

10For an independent private values model, see Gomes and Sweeney (2014). Borgers et al. (2013)
maintain the complete information assumption, but consider a more general model of CTRs and valuations.

11Formally, ρ (i; b) := |{j : bj > bi} ∪ {j : bj = bi and j < i}|+ 1. This tie-breaking rule is convenient for
the analysis of coordinated bidding. It can be relaxed at the cost of added technicalities (see footnote 16).

12In reality, bidders allocation to slots is determined adjusting advertisers’ bids by some ‘quality scores’.
To avoid unnecessary complications, we only introduce quality scores in section 6 (cf. Varian (2007)).
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k-highest bidder is equal to
∑S+1

t=k+1 b
t(xt−1−xt). We can thus write i’s payoff in the VCG

mechanism, given a bids profile b ∈ Rn+, as uVi (b) = vix
ρ(i) −

∑S+1
t=ρ(i)+1 b

t(xt−1 − xt).
In the rest of this section we review known results on the competitive benchmarks

for these two mechanisms. The only original result will be Lemma 1, which provides an

alternative characterization of EOS’ lowest envy-free equilibrium of the GSP auction.

3.2 Equilibria

As we mentioned in the introduction, despite the relative complexity of its payment rule,

bidding behavior in the VCG is very simple, as truthful bidding (i.e., bi = vi) is a dominant

strategy in this game. In the resulting equilibrium, advertisers are efficiently assigned to

positions. The VCG mechanism therefore is efficient and strategy-proof.

Equilibrium behavior in the GSP auction is much more complex. To see this, first

note that a generic profile of bids for i’s opponentes, b−i = (bj)j 6=i, partitions the space of

i’s bids into S + 1 intervals. The only payoff relevant component of i’s choice is in which

of these intervals he should place his own bid: any two bids placed in the same interval

would grant bidder i the same position at the same price-per-click (equal to the highest

bid placed below bi). So, for each b−i ∈ Rn−1
+ , let πi (b−i) denote i’s favorite position,

given b−i.
13 Then, i’s best-response to b−i is the interval BRi (b−i) = (b

πi(b−i)
−i , b

πi(b−i)−1
−i ).

This defines the best-response correspondence BRi : Rn−1
+ ⇒ R+, whose fixed points are

the set of (pure) Nash equilibria of the GSP auction.

The GSP auction has many equilibria. For this reason, EOS introduced a refinement

of the equilibrium correspondence, the lowest envy-free equilibrium, which was crucial to

cut through the complexity of the GSP auction. We consider instead a refinement of

individuals’ best response correspondence: for any b−i ∈ Rn−1
+ , let

BR∗i (b−i) =
{
b∗i ∈ BRi (b−i) :

(
vi − bπi(b−i)

−i

)
xπi(b−i) = (vi − b∗i )xπi(b−i)−1

}
. (1)

In words, of the many bi ∈ BRi (b−i) that would grant player i his favorite position πi (b−i),

he chooses the bid b∗i that makes him indifferent between occupying the current position

and climbing up one position paying a price equal to b∗i . The set of fixed points of the

BR∗i correspondence, given valuations v, are denoted as E∗ (v).

Lemma 1 For any profile of valuations v = (vi)i=1,...,n, and for any b ∈ E∗ (v), b1 > b2,

bi = vi for all i > S, and for all i = 2, . . . , S,

bi = vi −
xi

xi−1
(vi − bi+1) . (2)

Hence, the fixed points of the BR∗ correspondence coincide with EOS’ lowest revenue

envy-free equilibrium (LREF), and it induces the same allocation and payments as in the

13 Allowing ties in individuals’ bids or non-generic indifferences complicates the notation, without af-
fecting the results and the main insights. See Appendix A.1 for details on this.
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dominant strategy equilibrium of the VCG mechanism.

This lemma shows that EOS’ equilibrium – originally defined as a refinement of the

Nash equilibrium correspondence – can be equivalently defined as the fixed point of a

refinement of individuals’ best responses. Hence, BR∗i distills the individual level under-

pinnings of EOS’ equilibrium. In Section 5 we will assume that independent bidders bid

according to BR∗i in the GSP, and play their dominant strategy in the VCG, both with

and without the agency. Since, by Lemma 1, this is precisely the same assumption on

individuals’ behavior that underlies EOS’ analysis, our approach ensures a meaningful

comparison with the competitive benchmark. Lemma 1 also implies that our formula-

tion inherits the many theoretical arguments in support of EOS’ refinement (e.g. EOS,

Edelman and Schwarz (2010), Milgrom and Mollner (2014)). Finally, independent of equi-

librium restrictions, this individual-level refinement is particularly compelling because it

conforms to the tutorials on how to bid in these auctions provided by the search engines.14

The next example will be used repeatedly throughout the paper to illustrate the relative

performance of the GSP and VCG mechanisms:

Example 1 Consider an auction with four slots and five bidders, with the following

valuations: v = (5, 4, 3, 2, 1). The CTRs for the five positions are the following: x =

(20, 10, 5, 2, 0). In the VCG mechanism, bids are bi = vi for every i, which induces total

expected revenues of 96. Bids in the lowest envy-free equilibrium of the GSP auction

instead are as follows: b5 = 1, b4 = 1.6, b3 = 2.3 and b2 = 3.15. The highest bid b1 > b2 is

not uniquely determined, but it does not affect the revenues, which in this equilibrium are

exactly the same as in the VCG mechanism: 96. Clearly, also the allocation is the same

in the two mechanisms, and efficient. �

For later reference, it is useful to rearrange (2) to obtain the following characterization

of the testable implications of EOS’ equilibrium (cf. EOS and Varian (2007)):

Corollary 1 For any b ∈ E∗ (v), for all i = 2, . . . , S:

bix
i−1 − bi+1x

i

xi−1 − xi︸ ︷︷ ︸
=vi

>
bi+1x

i − bi+2x
i+1

xi − xi+1︸ ︷︷ ︸
=vi+1

(3)

4 A Model of Agency Bidding

Our analysis of marketing agencies focuses on their opportunity to coordinate the bids

of different advertisers. We thus borrow the language of cooperative game theory and

14See, for instance, the Google AdWord tutorial in which Hal Varian teaches how to maximize profits by
following this bidding strategy: http://www.youtube.com/watch?v=jRx7AMb6rZ0. Borgers et al. (2013)
provide a more critical view of Varian and EOS’ refinement. Nonetheless, those refinements are the
established benchmark in the literature, and hence our modeling choice enables us to focus on the issue of
agency bidding while allowing a meaningful comparison with the competitive benchmark.
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refer to the clients of the agency as ‘members of a coalition’ and to the remaining bidders

as ‘independents’. In this Section we focus on environments with a single agency, and

postpone the analysis of the multiple agency case to Section 5.3.

Modeling coordinated bidding, it may seem natural to consider standard solution con-

cepts such as strong Nash (Aumann (1959)) or coalition proof equilibrium (Bernheim et

al. (1987)). Unfortunately, these concepts have no bite in the GSP auction, as it can be

shown that EOS’ equilibrium satisfies both refinements.15 As EOS showed, resorting to

non-standard concepts is a more promising route to get some insights into the elusive GSP

auction. We thus model the marketing agency as a player that makes proposals of binding

agreements to its members, subject to certain stability constraints. The independents

then play the game which ensues from taking the bids of the agency as given.

We assume that the agency seeks to maximize the coalition surplus, but her proposals

can be implemented only if they are stable in two senses: (S.1) first, if they are consistent

with the independents’ equilibrium behavior, which in turn is defined as the fixed-point of

the same refinements of the individual-best responses used in the competitive benchmarks

(i.e., truthful bidding in the VCG, and BR∗i in the GSP); (S.2) second, if no individual

member of the coalition has an incentive to abandon it and bid as an independent. We

also assume that, when considering such deviations, coalition members are farsighted in

the sense that they anticipate the impact of their deviation on both the independents

and the remaining members of the coalition (cf. Ray (2008)). Hence, given a coalition

C, the outside option for each member i ∈ C is his equilibrium payoff in the game with

coalition C\ {i}, in which i bids as an independent. The constraint for coalition C thus

depends on the solutions to the problems of all the subcoalitions C ′ ⊆ C, and hence the

solution concept for the game with the agency will be defined recursively. We thus call it

the ‘Recursively-Stable Agency Equilibrium’ (RAE).

Before getting into the intricacies of agency bidding in the GSP auction, and in the

formal definition of RAE for general mechanisms, we illustrate its basic logic in the context

of the simpler VCG mechanism.

4.1 RAE in the VCG: Informal Explanation

We begin by considering an example of RAE in the VCG mechanism. In the example, as

well as in some results in Section 5, equilibrium bids will sometime be such that bi = bi+1

for some i. Since ties are broken according to bidders’ labels (cf. footnote 11), in that case

bidder i obtains the position above i+ 1. To emphasize this, we will write bi = b+i+1.16

15These standard solution concepts therefore fail to capture any difference between competitive and
collusive bidding in the GSP auction. On the other hand, we envision bid delegation to a common
agency as more than just a channel for non-binding communication, which is the focus of those concepts.
Approaches similar to ours have been previously used, for instance by Aghion, Antras and Helpman
(2007) who incorporate insights from Ray and Vohra (1997) to study regionalism versus multilateralism
by analyzing whether multilateral or sequential bargaining is more likely to lead to global free trade.

16Without the tie-breaking rule embedded in ρ (footnote 11), the agency’s best replies may be empty
valued. In that case, our analysis would go through assuming that bids are placed from an arbitrarily fine
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Example 2 Consider an environment with five bidders who compete for the allocation of

four slots sold through the VCG mechanism. Bidders’ valuations are v = (40, 25, 20, 10, 9),

and the CTRs are x = {20, 10, 9, 1, 0}. As discussed in Section 3, in this mechanism

advertisers bid truthfully in the competitive benchmark, and hence equilibrium payoffs

for the five bidders are uComp = (441, 141, 91, 1, 0).

Now consider a setting in which bidders 1 and 5 belong to the same agency, C ′ = {1, 5},
and everyone else is an independent. Bidding truthfully remains a dominant strategy for

the independents, but clearly this is not the case for the agency: since 1’s payment is

strictly decreasing in b5, it is clear that bidding (b1, b5) = (40, 0) is a profitable deviation

from truthful bidding for the agency. In fact, it is not difficult to see that this bid profile

is optimal for the agency: given the bids of the independents, there would be no benefit in

lowering b1 to the point of losing the highest position, nor in increasing b5 so as to obtain

a higher slot. So, holding constant the allocation, the optimal solution for the agency

is to lower b5 as much as possible, while maintaining b1 > b2 = 25. Hence, any profile

b′ = (b′1, 25, 20, 10, 0) such that b′1 > 25 is an equilibrium, and the resulting payoffs are

u′ = (450, 150, 100, 10, 0), with a total 450 for the coalition. Comparing u′ with uComp, it

is also clear that no member of the coalition would rather bid as an independent.

Next, suppose that the coalition also includes bidder 2: C ′′ = {1, 2, 5}. We next show

that in this case the RAE-bids are b′′ = (b′′1, 20+, 20, 10, 0), where b′′1 > 20, which induce

payoffs u′′ = (500, 150, 100, 10, 0) and a total of 650 for the coalition. To see that this is

a RAE, recall that truthful bidding is still dominant for the independent bidders. The

argument for keeping b′′5 = 0 and b′′1 > 20 are the same as above. So, let’s focus on the

agency-optimal positioning of b2. First note that, if the agency set b2 = 10+, pushing

bidder 2 down to the third slot, then the coalition payoff would be 655, which is higher

than 650, as in our candidate RAE. But in that profile, 2’s payoff would be 145, lower

than u′2 = 150, which he could obtain if he left the coalition and bid as an independent in

the game with C ′ = {1, 5}. Hence, lowering b2 to the point of obtaining a lower position,

would increase the overall coalition payoff (by decreasing bidder 1’s payment), but would

violate the stability constraint (S.2) for bidder 2, who in that case would rather abandon

the coalition and bid as an independent. The optimal b′′2 therefore is the lowest bid which

ensures bidder 2 maintains the second position.17 �

discrete grid (i.e., Ai = (R+ ∩ εZ) where ε is the minimum bid increment). In that setting, bi = b+i+1 can
be thought of as i bidding the lowest feasible bid higher than bi+1, i.e. bi = bi+1 + ε. All our results would
hold in such a discrete model, once the equilibrium bids in the theorems are interpreted as the limit of
the equilibria in the discrete model, letting ε→ 0 (the notation b+i+1 is thus reminiscent of this alternative
interpretation, as the right-hand limit b+i+1 := limε+→0 (bi+1 + ε)).

17This argument also shows that the RAE-profile b′′ = (40, 20+, 20, 10, 0) is not a Nash equilibrium of
the game in which C′′ is treated as a single player, nor a ‘plausible’ refinement of the original game, as
bidders 2 and 5 play weakly dominated strategies. The example’s result also relies on the fact that direct
transfers are ruled out in our model. If transfers were allowed, the impact of collusion would be even
stronger. Our results can thus be seen as a conservative assessment of the impact of collusion. Che et al.
(2016) discuss other arguments for the no-transfers assumption in general settings.
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Note that the recursive definition of the outside option matters in this example. If

outside options were defined with respect to the competitive case, bidder 2 would remain in

the coalition even when forced to take the lower position, since his payoff in the competitive

benchmark is uComp2 = 141 < 145. But we find it unreasonable to model 2’s outside option

this way: why would an agency client assume that, were he to abandon the agency, the

entire coalition would be disrupted and full competition restored? Hence, while it will

necessarily require a more involved definition, the recursivity of the stability constraint

for the coalition members captures an important aspect of the environments we attempt

to model, and poses economically meaningful restrictions on the agency’s freedom to

manipulate the bids of its clients.

Our approach also addresses several questions in the theoretical and applied literature,

such as: (i) provide a tractable model of partial cartels, a well-known difficulty in the

literature on bidding rings (cf. footnote 4); (ii) deliver sharp results on the impact of

coordinated bidding on the GSP auction, vis-à-vis the lack of bite of standard solution

concepts; (iii) provide a model of coordinated bidding that can be applied to different

mechanisms; (iv) bridge the theoretical results to the data, by generating easy-to-apply

testable predictions to detect coordination (which will be discussed in Section 6).

We conclude this discussion by noting that an obvious alternative to our approach

would be to model bidders’ choice to join the agency explicitly. This would also be

useful from an empirical viewpoint, as it would generate extra restrictions to further

identify bidders’ valuations. But once again, the structure of the GSP auction raises non

trivial challenges. First, it is easy to see that without an exogenous cost of joining the

agency, the only outcome of a standard coalition formation game would result in a single

agency consisting of the grand-coalition of players. Thus, the ‘obvious’ extension of the

model would not be capable of explaining the lack of grand coalitions in the data. At

a minimum, some cost of joining the coalition should be introduced. Clearly, there are

many possible ways in which participation costs could be modeled (e.g., costs associated

to information leakage, management practices, agency contracts, etc.). But given the still

incomplete understanding of digital marketing agencies, it is not obvious which should

be preferable.18 Independent of these modeling choices, however, the cost of joining the

agency would ultimately have to be traded-off against the benefit, which in turn presumes

solving for the equilibrium for a given coalition structure. Our work can thus be seen as

a necessary first step in developing a full-blown model of agency formation.

The next subsection contains the formal definition of the ‘Recursively Stable Agency

Equilibrium’, which allows for arbitrary underlying mechanisms. This is useful in that it

provides a unified framework to analyze the impact of marketing agencies under different

mechanisms. Section 5 contains the analysis for the GSP and VCG mechanisms, and the

extension to the multiple agency case.

18Moreover, costs need not be symmetric, and hence it may be that an advertisers is willing to join the
coalition, but current members are better-off without him. Whereas the decision to abandon an agency is
unilateral, the decision to join it is not, raising further modeling questions.
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4.2 The Recursively Stable Agency Equilibrium: General Definition

Let G = (Ai, ui)i=1,...,n denote the baseline game (without a coalition) generated by the

underlying mechanism (e.g., GSP or VCG). We let C denote the collection of all sets

C ⊆ I such that |C| ≥ 2. For any C ∈ C, we let C denote the agency, and we refer to

advertisers i ∈ C as ‘members of the coalition’ and to i ∈ I\C as ‘independents’. The

coalition chooses a vector of bids bC = (bj)j∈C ∈ ×j∈CAj . Given bC , the independents

i ∈ I\C simultaneously choose bids bi ∈ Ai. We let b−C := (bj)j∈I\C and A−C :=

×j∈I\CAj . Finally, given profiles b or b−C , we let b−i,−C denote the subprofile of bids of

all independents other than i (that is, b−i,−C := (bj)j∈I\C:j 6=i).

We assume that the agency maximizes the sum of its members’ payoffs,19 denoted

by uC (b) :=
∑

i∈C ui (b), under three constraints. Two of these constraints are stabil-

ity restrictions: one for the independents, and one for the members of the coalition.

The third constraint, which we formalize as a set R (C) ⊆ A, allows us to accommo-

date the possibility that the agency may exogenously discard certain bids. For instance,

we will consider the case of an agency whose primary concern is not being identified

as inducing collusion (Section 5.2.1) or to induce efficient outcomes (Section 5.2.2). In

those cases, R (C) would be comprised respectively of only those profiles that are ‘un-

detectable’ to an external observer as collusive, or efficient. We denote the collection

of exogenous restrictions for all possible coalitions as R = {R (C)}C∈C , and for any C

we also let RC ⊆ AC denote the restriction it entails on the coalition bids. That is,

RC := {bC ∈ AC : ∃b−C ∈ A−C s.t. (bC , b−C) ∈ R (C)}.
Stability-1: The first stability restriction on the agency’s proposals requires that

they are stable with respect to the independents. For any i ∈ I\C, let BR∗i : A−i ⇒ Ai

denote some refinement of i’s best response correspondence in the baseline game G (e.g.,

truthful bidding in the VCG, or (1) in the GSP). Define the independents’ equilibrium

correspondence BR∗−C : AC ⇒ A−C as

BR∗−C (bC) =
{
b−C ∈ A−C : ∀j ∈ I\C, bj ∈ BR∗j (bC , b−j,−C)

}
. (4)

If the agency proposes a profile bC that is not consistent with the equilibrium behavior

of the independents (as specified by BR∗−C), then that proposal does not induce a stable

agreement. We thus incorporate this stability constraint into the decision problem of the

agency, and assume that the agency can only choose bid profiles from the set

SC =
{
bC ∈ AC : ∃b−C s.t. b−C ∈ BR∗−C (bC)

}
. (5)

19This is a simplifying assumption, which can be justified in a number of ways. From a theoretical
viewpoint, our environment satisfies the informational assumptions of Bernheim and Whinston (1985,
1986). Hence, as long as the agency is risk-neutral, this particular objective function may be the result of
an underlying common agency problem. More relevant from an empirical viewpoint, the agency contracts
most commonly used in this industry specify a lump-sum fee per advertiser and per campaign. Thus, the
agency’s ability to generate surplus for its clients is an important determinant of its long run profitability.
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Clearly, the strength of this constraint in general depends on the underlying game G

and on the particular correspondence BR∗−C that is chosen to model the independents’

behavior. This restriction is conceptually important, and needed to develop a general

framework for arbitrary mechanisms. Nonetheless, the restriction plays no role in our

results for the GSP and VCG mechanisms, because (5) will be either vacuous (Theorem

1) or a redundant constraint (Theorems 2 and 3).

Stability-2: When choosing bids bC , the agency forms conjectures about how its

bids would affect the bids of the independents. We let β : SC → A−C represent such

conjectures of the agency. For any profile bC ∈ SC , β (bC) denotes the agency’s belief

about the independents’ behavior, if she chooses profile bC . It will be useful to define the

set of conjectures β that are consistent with the independents playing an equilibrium:

B∗ =
{
β ∈ ASC

−C : β (bC) ∈ BR∗−C (bC) for all bC ∈ SC
}
. (6)

The second condition for stability requires that, given conjectures β, no client of the

agency has an incentive to leave and bid as an independent. Hence, the outside option

for coalition member i ∈ C is determined by the equilibrium outcomes of the game with

coalition C\ {i}. This constraint thus requires a recursive definition.

First, we let E∗ =
{
b ∈ Rn+ : bi ∈ BR∗i (b−i) for all i ∈ I

}
denote the set of equilibria

in the game without coalition, given refinement BR∗i . Letting ER (C ′) denote the set

of Recursively Stable Agency Equilibrium (RAE) outcomes of the game with coalition C ′,

given restrictionsR (and refinementBR∗i ), we initialize the recursion setting ER (C ′) = E∗

if |C ′| = 1 (that is, if an agency controls only one bidder, then the RAE are the same as the

competitive equilibria). Suppose next that ER (C ′) has been defined for all subcoalitions

C ′ ⊂ C. For each i ∈ C, and C ′ ⊆ C\ {i}, let ūC
′

i = minb∈ER(C′) ui (b). Then, recursively:

Definition 1 A Recursively Stable Agency Equilibrium (RAE) of the game G with coali-

tion C, given restrictions R = {R (C)}C∈C and refinement BR∗i , is a profile of bids and

conjectures (b∗, β∗) ∈ AC ×B∗ such that:20

1. The independents play a best response: for all i ∈ I\C, b∗i ∈ BR∗i
(
b∗−i
)
.

2. The conjectures of the agency are correct and consistent with the exogenous restric-

tions: β∗ (b∗C) = b∗−C and (bC , β
∗ (bC)) ∈ R (C) for all bC ∈ RC .

3. The agency best responds to conjectures β∗, subject to the exogenous restrictions

20Note that, by requiring β∗ ∈ B∗, this equilibrium rules out the possibility that the coalition’s bids are
sustained by ‘incredible’ threats of the independents.
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(R) and the stability restrictions (S.1) and (S.2):

b∗C ∈ arg max
bC

uC (bC , β
∗ (bC))

subject to : (R) bC ∈ RC
: (S.1) bC ∈ SC

: (S.2) for all i ∈ C, ui (bC , β
∗ (bC)) ≥ ūC\{i}i

The set of (R-constrained) RAE outcomes for the game with coalition C is:

ER (C) = {b∗ ∈ A : ∃β∗ s.t. (b∗, β∗) is a RAE} . (7)

We will refer to the case in which R is such that R (C) = A for all C ∈ C as the

‘unconstrained’ case, and denote the set of unconstrained RAE outcomes as E (C).

In the next section we apply this definition to study agency bidding in the GSP and

VCG mechanism. Here we provide some general considerations on the solution concept.

First, as we mentioned in Section 4.1, RAE outcomes in general are not Nash equilibria

of the baseline game, nor of the game in which the coalition is replaced by a single player.

Similar to Ray and Vohra’s (1997, 2014, RV) equilibrium binding agreements, the stability

restrictions do affect the set of equilibrium outcomes, not merely as a refinement.

Relative to RV, our approach differs mainly in that our stability restriction (S.2)

only allows agency proposals to be blocked by individual members, whereas RV allow for

any joint deviation of coalition members. That advertisers can make binding agreements

outside the agency, and jointly block its proposals, seems unrealistic in this context. A

direct application of their concept to this setting therefore seems inappropriate. Also,

unlike RV (in which the non-cooperative interaction is based on Nash equilibrium), our

definition also allows for refinements. As already explained, this is crucial here, especially

for the analysis of GSP auction.

5 Agency Bidding in VCG and GSP: Results

In this Section we specialize the general notion of RAE to the GSP and VCG mechanisms:

Definition 2 (RAE in the GSP and VCG) Given a set of exogenous restrictions R,

the R-constrained RAE of the GSP and VCG mechanisms are obtained from Definition 1

letting G denote the corresponding game, and BR∗i be defined, respectively, as in (1) for

the GSP and as the dominant (i.e., truthful) strategy in the VCG.

We first present the analysis of the VCG mechanism (Section 5.1), and then proceed

to the GSP auction (Section 5.2). Our main conclusion is that the VCG outperforms

the GSP both in terms of revenues and allocative efficiency, thereby uncovering a striking

fragility of the GSP with respect to agency bidding.
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5.1 Agency Bidding in the VCG mechanism

Our first result characterizes the unconstrained RAE of the VCG mechanism:

Theorem 1 (RAE in the VCG) For any C, the unconstrained RAE of the VCG is

unique up to the bid of the highest coalition member. In this equilibrium, advertisers are

assigned to positions efficiently, independents’ bids are equal to their valuations and all the

coalition members (except possibly the highest) bid the lowest possible value that ensures

their efficient position. Formally: in the VCG mechanism, b̂ ∈ E (C) if and only if

b̂i


= vi if i ∈ I\C;

= b̂+i+1 if i ∈ C\ {min (C)} and i ≤ S;

∈
(
b̂+i+1, vi−1

)
if i = min (C) and i ≤ S.

(8)

where we denote v0 :=∞ and b̂n+1 := 0.

The RAE of the VCG mechanism therefore are efficient, with generally lower revenues

than in the VCG’s competitive benchmark. Moreover, the presence of a marketing agency

has no impact on the bids of the independents, which follows from the strategy-proofness

of the mechanism, embedded in the independents’ refinement BR∗i . (This property also

ensures that SC = AC , and hence constraint (S.1) in Def. 1 plays no role in the result.) As

we discussed in Section 4.1, the recursive stability restriction (S.2) is key to this result.21

The proof of Theorem 1 is based on a recursive argument, which shows that the payoff

that any coalition member can attain from abandoning the coalition is bounded below

by the equilibrium payoffs in the baseline (coalition-less) game, in which assignments are

efficient. The ‘Pigouvian’ logic of the VCG payments in turn implies that such recursive

participation constraints can only be satisfied by the efficient assignment of positions.

Whereas the presence of an agency does not alter the allocation of the VCG mechanism,

it does affect its revenues: in any RAE of the VCG mechanism, the agency lowers the bids

of its members (except possibly the one with the highest valuation) as much as possible,

within the constraints posed by the efficient ranking of bids. Since, in the VCG mechanism,

lowering the i-th bid affects the price paid for all slots s = 1, ...,min {S + 1, i− 1}, even

a small coalition can have a significant impact on the total revenues. On the other hand,

the VCG’s strategy-proofness ensures that the agency has no impact on the independents,

which continue to use their dominant strategy and bid truthfully. Hence, while an agency

may have a large ‘direct effect’ on revenues, it has no ‘indirect effect’ in this mechanism.

Example 3 Consider the environment in Example 1, and suppose that C = {1, 3}. Then,

applying the formula in (8), the RAE of the VCG mechanism is b̂ =
(
b̂1, 4, 2

+, 2, 1
)

. The

resulting revenues are 86, as opposed to 96 of the competitive benchmark. �
21Bachrach (2010), for instance, studies collusion in the VCG mechanism in a classical cooperative setting

(i.e. without distinguishing the agency clients from the independents, and without the ‘farsightedness’
assumption), finding that the VCG is vulnerable to this form of collusion.
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5.2 Agency Bidding in the GSP auction

We begin our analysis of the GSP auction by characterizing the RAE when the agency

is constrained to placing bids that could not be detected as ‘coordinated’ by an external

observer (the ‘Undetectable Coordination’ restriction). Theorem 2 shows that the equilib-

rium outcomes of the GSP with this restriction are exactly the same as the unrestricted

RAE of the VCG mechanism. This result is particularly interesting because it character-

izes the equilibria in a market in which ‘not being detectable as collusive’ is a primary

concern of the agency, which appears relevant in the data (Decarolis et al. (2016)). It also

enables a tractable comparative statics on the impact of agency bidding in the GSP.

We lift the ‘undetectable coordination’ restriction in Section 5.2.2. We show that,

unlike the VCG mechanism, the unrestricted RAE of the GSP auction may be inefficient

and induce strictly lower revenues than their VCG counterparts. In light of the VCG’s

efficiency (Theorem 1), it may be tempting to impute the lower revenues of the GSP

auction to the inefficiencies that it may generate. To address this question, in Section

5.2.2 we also consider the RAE of the GSP auction when the agency is constrained to

inducing efficient allocations. With this restriction, we show that the equilibrium revenues

in the GSP are lower than in the VCG (Theorem 3). The revenue ranking therefore is not

a direct consequence of the allocative distortion.

5.2.1 ‘Undetectable Coordination’: A VCG-Equivalence Result

Consider the following set of exogenous restrictions: for any C ∈ C,

RUC(C) :=
{
b ∈ A : ∃v′C ∈ R|C|+ s.t. b ∈ E∗

(
v′C , v−C

)}
.

In words, RUC(C) is comprised of all bid profiles that could be observed in a com-

petitive equilibrium in the GSP auction, given the valuations of the independents v−C =

(vj)j∈I\C . For instance, consider an external observer (e.g., the search engine or the an-

titrust authority) who can only observe the bid profile, but not the valuations (vi)i∈C .

Then, RUC(C) characterizes the bid profiles that ensure the agency could not be detected

as ‘collusive’, even if the independents had revealed their own valuations to the external

observer. The next result characterizes the RAE of the GSP under these restrictions, and

shows its revenue and allocative equivalence to the unrestricted RAE of the VCG:

Theorem 2 For any C, in any RAE of the GSP auction under the ‘undetectable coordi-

nation’ (UC) restriction, the bids profile b̂ is unique up to the highest bid of the coalition

and up to the highest overall bid. In particular, let vfn+1 = 0, and for each i = n, ..., 1,

recursively define vfi := vfi+1 if i ∈ C and vfi = vi if i /∈ C. Then, for every i,

b̂i

 = vfi −
xi

xi−1

(
vfi − b̂i+1

)
, if i 6= 1 and i 6= min (C);

∈
[
vfi −

xi

xi−1

(
vfi − b̂i+1

)
, b̂i−1

)
otherwise

, (9)
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where b̂0 := ∞ and xi/xi−1 := 0 whenever i > S. Moreover, in each of these equilibria,

advertisers are assigned to positions efficiently, and advertisers’ payments are the same as

in the corresponding unrestricted RAE of the VCG mechanism (Theorem 1).

Note that, in this equilibrium, every bidder i other than the highest coalition member

and the highest overall bidder bids as an independent with valuation vfi would bid in the

baseline competitive model (first line of eq. 9). For the independent bidders (i /∈ C),

such vfi coincides with the actual valuation vi. For coalition members instead, vfi 6= vi

is a ‘feigned valuation’. Though notationally involved, the idea is simple and provides

a clear insight on the agency’s equilibrium behavior: intuitively, in order to satisfy the

UC-restriction, the agency’s bids for each of its members should mimic the behavior of

an independent in the competitive benchmark, for some valuation. The agency’s problem

therefore boils down to ‘choosing’ a feigned valuation, and bid accordingly. The optimal

choice of the feigned valuation is the one which, given others’ bids, and the bidding strategy

of an independent, induces the lowest bid consistent with i obtaining the i-th position in

the competitive equilibrium of the model with feigned valuations, which is achieved by

vfi = vfi+1. Note that the fact that bidder i cannot be forced to a lower position is

not implicit in the UC-restriction, but the result of the equilibrium restrictions.22 The

last line of (9) corresponds to the bid of the highest coalition member and the highest

overall bidder, required to be placed in their efficient positions. The resulting allocation

is efficient, and it yields the same individual payments (and hence total revenues) as the

unrestricted RAE of the VCG mechanism.

To understand the implications of this equilibrium, note that, in the GSP auction, the

i-th bid only affects the payment of the (i− 1)-th bidder. Hence, the ‘direct effect’ of bids

manipulation is weaker in the GSP than in the VCG mechanism, where the payments for

all positions above i are affected. Unlike the VCG mechanism, however, manipulating the

bid of coalition member i also has an ‘indirect effect’ on the bids of all the independents

placed above i, who lower their bids according to the recursion in (9).

Example 4 Consider the environment of Example 3, with C = {1, 3}. Then, applying

the formula in (9), the UC-RAE is b̂ =
(
b̂1, 2.9, 1.8, 1.6, 1

)
, which results in revenues 86.

These are the same as in the VCG mechanism (Example 3), and 10 less than in the non-

agency case (Example 1). Note that the bid b̂3 = 1.8 obtains setting vf3 = v4 = 2, and then

applying the same recursion as for the independents. Also note that the ‘direct effect’,

due to the reduction in b̂3, is only equal to
(
bEOS3 − b̂3

)
· x2 = 5 (where bEOS3 denotes 3’s

bid in the non-agency benchmark). Thus, 50% of the revenue loss in this example is due

to the agency’s ‘indirect effect’ on the independents. �

Thus, despite the simplicity of the payment rule in the GSP auction, the equilibrium

effects in (9) essentially replicate the complexity of the VCG payments: once the direct and

22The reason is similar to that discussed for Theorem 1, only here is more complicated due to the fact
that, in the GSP auction, the bids of the agency alter the bids placed by the independents.

19



indirect effects are combined, the resulting revenue loss is the same in the two mechanisms.

This result also enables us to simplify the analysis of the impact of agency bidding on

the GSP, by studying the comparative statics of the unconstrained RAE in the VCG

mechanism. We can thus obtain some qualitative insights for this complex problem.

Remark 1 Hold the agency configuration, C, constant. Then, in both the unconstrained

RAE of the VCG and in the UC-RAE of the GSP auction, the revenue losses due to

agency bidding are larger if: (i) the differences (xi−1 − xi) associated to the agency’s

clients i ∈ C are larger; or if (ii) the difference in valuations between the agency’s clients

and the independents immediately below them in the ranking of valuations are larger.

To understand this remark, recall that the price-per-click for position s in the VCG,

given a profile b, is equal to
∑S+1

t=s+1 b
t(xt−1 − xt). By Theorem 1, in the RAE of the

VCG the agency lowers the bids of its members as much as possible, while preserving

the efficient ranking of bids. Hence, holding C and (vi)i∈I constant, it is clear that the

revenue losses due agency bidding are larger if the terms (xt−1 − xt) associated to agency

members are larger, which is part (i) of the Remark. To understand part (ii), let i be an

agency member such that i + 1 is an independent. Since independents bid truthfully in

the VCG, we have bi+1 = vi+1, and hence the efficient ranking can be maintained only if

bi ≥ vi+1. Hence, the lower vi+1, the stronger the impact of agency bidding.

The next comparative statics refer to the agency composition. Besides the obvious

statement that an agency’s impact is stronger if it includes more bidders, the impact

of different coalitions in general depends on the exact CTRs and valuations. To isolate

the position effects from the comparative statics in Remark 1, which were driven by the

differences (xs − xs+1) and (vs − vs+1), we assume that they are constant in s.

Remark 2 Assume that ∆s (x) := (xs − xs+1) and ∆s (v) := (vs − vs+1) are constant in

s. Then, in both the RAE of the VCG and in the UC-RAE of the GSP, the revenue losses

due to agency bidding are larger if the agency includes members that occupy adjacent or

lower positions in the ranking of valuations.

To understand this result, note that if an agency has no two ‘adjacent’ members, then

i+ 1 is an independent for all i ∈ C, and hence for the above explanation the lower bound

to i’s bid equals vi+1. But if instead i+1 also belongs to the agency, then the lower bound

drops to the valuation of the next lower independent. The rest of the Remark follows

directly from the fact that a given reduction of a bid in the VCG has a larger impact if it’s

lower in the ranking, because it affects the payments for all positions above. The latter

point is particularly interesting, since one might have expected that the agency would

have a larger impact if she controlled the high-valuation bidders. We find that, in fact,

the opposite is true when one controls for the increments ∆s (x) and ∆s (v).

The equilibrium characterization in Theorem 2 involves bidders’ valuations, which are

typically not observable. The conditions in (9), however, can be rearranged to obtain a

characterization that only depends on the CTRs and the individual bids:
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Corollary 2 For any C, the UC-RAE bids b̂ in the GSP are such that:

• if i /∈ C:
b̂ix

i−1 − bi+1x
i

xi−1 − xi︸ ︷︷ ︸
=vi

>
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(10)

• if i ∈ C and i 6= min (C):

b̂ix
i−1 − b̂i+1x

i

xi−1 − xi︸ ︷︷ ︸
=vfi (≤ vi)

=
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(11)

These conditions are easily comparable to the analogous for the competitive benchmark

(eq. 3), and will provide the basic building block for the application in Section 6.

5.2.2 Lifting the UC-Restriction: Revenue Losses and Inefficiency

As discussed in Section 5.1, even a small coalition of bidders may have a large impact on

revenues in the VCG. Theorem 2 therefore already entails a fairly negative outlook on the

GSP’s revenues when an agency is active, even if it cannot be detected as collusive. The

next example shows that, when the undetectability constraint is lifted, an agency may

induce larger revenue losses as well as inefficient allocations in the GSP auction.

Example 5 Consider an environment with 8 bidders and 7 slots, with valuations v =

(12, 10.5, 10.4, 10.3, 10.2, 10.1, 10, 1) and CTRs x = (50, 40, 30.1, 20, 10, 2, 1, 0). Let the

coalition be C = {5, 6}. The unrestricted RAE is essentially unique (up to the highest

overall bid) and inefficient, with the coalition bidders obtaining slots 4 and 6. Equilibrium

bids (rounding off to the second decimal) are b = (b1, 9.91, 9.76, 9.12, 9.5, 7.94, 5.5, 1). Note

that b4 = 9.12 < 9.5 = b5, which induces an inefficient allocation. The inefficiency arises

as follows. Suppose that the agency drastically lowers b6 to benefit the other member.

If b6 is very low, it creates incentives for the independents i < 5 to move down to the

position just above bidder 6, in order to appropriate some of the rents generated by its

lower bid. Hence, if efficiency were to be preserved, 5’s bid would also have to be reduced,

to make the higher positions more attractive. But the reduction of 6’s bid in this example

is large enough that 4’s undercut is sufficiently low that the coalition prefers to give up

position 5. Thus, the coalition does not benefit directly from the reduction of 6’s bid, but

indirectly, by attracting 4 to the lower position. �

Hence, unlike the VCG mechanism, the unrestricted RAE of the GSP auction can be

inefficient. In light of this result, it may appear that the unconstrained-RAE in the GSP

allows an implausible degree of freedom to the agency, and that this alone is the cause

of the low revenues of the GSP auction. To see whether this is the case, we consider
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next exogenous restrictions that force the agency to induce efficient allocations. Theorem

3 shows that, even with this restriction, the GSP’s revenues are no higher than in the

unrestricted RAE of the VCG mechanism. Formally, let REFF =
{
REFF

(
C)}C∈C be

such that, for each non trivial coalition C ∈ C,

REFF (C) := {b ∈ A : ρ(i; b) = i ∀i ∈ I} .

Definition 3 An efficiency-constrained RAE of the GSP auction is a RAE of the GSP

auction where the exogenous restrictions are given by R = REFF .

Theorem 3 Efficiency-constrained RAE of the GSP auction exist; in any such RAE: (i)

the agency’s payoff is at least as high as in any RAE of the VCG mechanism, and (ii)

the auctioneer’s revenue is no higher than in the corresponding equilibrium of the VCG

auction. Furthermore, there exist parameter values under which both orderings are strict.

By imposing efficiency as an exogenous constraint, Theorem 3 shows that the fragility

of the GSP’s revenues is independent of the allocative distortions it may generate. The

intuition behind Theorem 3 is simple, in hindsight: in the VCG mechanism, truthful

bidding is dominant for the independents, and hence the agency’s manipulation of its

members’ bids only has a direct effect on revenues. In the GSP auction, in contrast, the

agency has both a direct and an indirect effect. Under the UC-restrictions, the two effects

combined induce just the same revenue-loss as in the VCG mechanism, but lifting that

restriction tilts the balance, to the disadvantage of the GSP.

Since the UC-RAE induce efficient allocations (Theorem 2), it may seem that Theorem

3 follows immediately from the efficiency constraint being weaker than the UC-restriction.

This intuition is incorrect for two reasons. First, the UC-constraint requires the existence

of feigned valuations which can rationalize the observed bid profile, but does not require

that they preserve the ranking of the true valuations. Second, when the exogenous re-

strictions R = (RC)C∈C are changed, they change for all coalitions: hence, even if RC is

weaker for any given C, the fact that it is also weaker for the subcoalitions may make the

stability constraint (S.2) more stringent. Which of the two effects dominates, in general, is

unclear. Hence, because of the ‘farsightedness assumption’ embedded in constraint (S.2),

the proof of the theorem is by induction on the size of the coalition.

Example 6 Consider the environment of Examples 3 and 4, with C = {1, 3}. The

efficiency-constrained RAE is b̂ =
(
b̂1, 2.8, 1.6

+, 1.6, 1
)

, which results in revenues 82, which

are lower than the RAE in VCG mechanism (86). Note that, relative to the UC-RAE in

Example 4, the coalition lowers b3 to the lowest level consistent with the efficient ranking.

This in turn induces independent bidder 2 to lower his bids, hence the extra revenue loss

is due to further direct and indirect effects. We note that the efficiency restriction is not

binding in this example, and hence the Eff-RAE and the unconstrained RAE coincide.

(Table 2 summarizes and compares the equilibria illustrated in our running examples.) �
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Table 2: Summary of Results in Examples
Valuations VCG GSP (EOS) RAE in VCG UC-RAE in GSP (Eff.) RAE in GSP

5 5 b1 b1 b1 b1

4 4 3.15 4 2.9 2.8
3 3 2.3 2+ 1.8 1.6+

2 2 1.6 2 1.6 1.6
1 1 1 1 1 1

Revenues 96 96 86 86 82
Summary of results in Examples 1, 3, 4 and 6. Coalition members’ bids and valuations are in

bold. The VCG and GSP columns represent the competitive equilibria in the two mechanisms as

described in example 1. The RAE in VCG and the revenue equivalent UC-RAE in the GSP are

from Examples 3 and 4 respectively. The last column denotes both the Efficient RAE and the

unrestricted RAE of the GSP auction, which coincide in Example 6.

Summing up, since – under the efficiency restriction – the GSP auction induces the

same allocation as the VCG mechanism, the two mechanisms are ranked in terms of

revenues purely due to the agency’s effect on prices. Obviously, if allocative inefficiencies

were introduced, they would provide a further, independent source of revenue reduction.

As already noted, this is not the case in Example 6, in which the efficiency constraint is

not binding, but it is possible in general (see Example 5).

As done in the earlier sections, we characterize next the testable implications of the

Eff-RAE of the GSP auction:

Corollary 3 For any C, in any Eff-RAE of the GSP auction under, the bids profile b̂

satisfies the following conditions:

• if i /∈ C:
b̂ix

i−1 − b̂i+1x
i

xi−1 − xi︸ ︷︷ ︸
=vi

>
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(12)

• if i ∈ C and i 6= min (C):

b̂ix
i−1 − b̂i+1x

i

xi−1 − xi︸ ︷︷ ︸
less than vi

<
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(13)

5.3 Agency Competition

Multiple agencies competing in the same auction appears rarely in the data (Decarolis et al.

(2016)), but for the reasons explained in the introduction, it is nevertheless interesting to

assess whether competition may soften the impact of agency bidding on online ad auctions.

This is a reasonable conjecture, but the results we present in this section suggest a more

nuanced view on the impact of agency competition on the VCG and GSP auctions. On

the one hand, for certain coalition structures, our earlier results extend to the case with
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multiple agencies essentially unchanged: the revenue losses will be less pronounced when

the same set of coordinating bidders is divided into two (or more) competing coalitions,

but they would still be substantial, and preserve the relative performance of the VCG

and GSP auctions. On the other hand, for other coalition structures, equilibria in pure

strategies will not exist. Hence, bidding cycles are likely to emerge. As discussed in Section

2, a similar phenomenon was observed for the earlier mechanisms used in this market, and

is considered to be the main reason for the transition from such earlier mechanisms to the

GSP auction.23 Hence, while competition between agencies may produce the expected

result of mitigating the revenue losses due to bidding coordination, it may also impair the

working of the current mechanisms in a more fundamental way.

For simplicity, we consider the case with two agencies (the extension to more than

two agencies is cumbersome but straightforward). We also assume that agencies break

indifferences over bids in the same way that independents do. This implies that the highest

bidder in any coalition bids as if he were an independent. With the formal definitions given

in Appendix A.3, the following result holds.

Theorem 4 1. If no members of different coalitions occupy adjacent positions in the or-

dering of valuations, then the UC-RAE of the GSP with multiple coalitions is unique.

In this equilibrium, the allocation is efficient and the search engine revenues are weakly

higher than those of the UC-RAE in which all members of the different coalitions bid

under the same agency, but lower than under full competition. Moreover, both the allo-

cation and the associated revenues are identical to those resulting in the unconstrained

RAE of the VCG mechanism with the same agency configuration.

2. If non-top members of different coalitions occupy adjacent positions in the ordering of

valuations, then no unconstrained RAE of the VCG and no UC-RAE of the GSP exist.

The first part of the theorem extends Theorems 1 and 2 to the case of multiple agencies.

The result therefore shows that competition between agencies may mitigate, but not solve,

the revenue losses due to coordinated bidding. If coalitions have bidders in adjacent

positions (part 2 of the Theorem), further problems arise, such as non-existence of pure-

strategy equilibria and bidding cycles. We illustrate both these points in the context of

our workhorse example.

Example 7 Consider the environment of the examples in Table 2. Table 3 reports EOS’

equilibrium bids (second column) as well as the bids under different coalition structures.

We first look at the case of a single coalition C = {1, 2, 4, 5}. According to our earlier

results, in the UC-RAE with this agency configuration the bottom two bidders bid zero.

This has an indirect effect on the independent bidder (3), who lowers his bid from 2.3 to

1.5, thereby lowering the payments and bids for bidders 1 and 2. If we split this coalition

23See Edelman and Ostrovsky (2007) for a discussion of bidding cycles in the Overture’s first price
auctions, and Ottaviani (2003) for an early assessment of the transition from first price to GSP auctions.
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Table 3: Competition between Agencies
Valuations GSP Single Two Two

(EOS) Coalition: Coalitions: Coalitions:
C = {1, 2, 4, 5} C1 = {1, 2}, C2 = {4, 5} C1 = {1, 4}, C2 = {2, 5}

5 b1 5 5 b1

4 3.15 2.75 3.05 b2

3 2.3 1.5 2.1 b3
2 1.6 0+ 1.2 b4

1 1 0 0 b5

Revenues 96 60 88 −

into two separate coalitions, however, things will change depending on the way we do it.

If we split C as in the fourth column of the table, C1 = {1, 2} and C2 = {4, 5}, we obtain

two coalitions with no adjacent members, as in part 1 of Theorem 4. With this coalition

structure, equilibrium revenues amount to 88, which is above the single coalition case (60),

but still well below the competitive benchmark (96).24 If we split C as in the last column

of Table 3, C1 = {1, 4} and C2 = {2, 5}, pure equilibria would cease to exist. To see this,

note that C2 would ideally like to set b5 = 0, and given this C1 would ideally like to set

b4 = 0+. This, however, is incompatible with an equilibrium because once b4 = 0+, C2

would find it profitable to increase b5 so as to obtain a higher position, with a negligible

increase in its payments. On the other hand, if b4 is set so high that C2 does not find

this deviation profitable, then C2’s optimal response is to set b5 = 0. But then, a strictly

positive b4 cannot be optimal for C1. Hence, a pure equilibrium does not exist. �

Part 2 of Theorem 4 shows that this phenomenon emerges whenever two coalitions

have non-top members which occupy contiguous positions in the ordering of valuations.

It is interesting to note that the economics behind this phenomenon is nearly identical to

that explained by Edelman and Ostrovsky (2007) in their characterization of the original

Generalized First Price (GFP) auction, under which the market started, to explain the

bidding cycles observed in the data. As discussed earlier, such bidding cycles are considered

to be the main cause for the shift from the GFP to the GSP auction. The fact that a

similar phenomenon emerges here with multiple agencies may thus be seen as a troubling

result for the existing mechanisms, in that it suggests that agency competition, instead of

mitigating the impact of agency bidding, could exacerbate the system’s instability.

24Note that, if the highest placed member of the lower coalition (i.e., the bidder with a value of 2 in
this example) were to slightly increase/decrease his bid, his coalition’s payoffs would not change, but the
revenues of the other coalition would correspondingly decrease/increase. Hence, without the assumption
that top coalition members behave as independents, a multiplicity of equilibria might arise. Different
selections from the best-response correspondence may thus be used to model other forms of behavior, such
as spiteful bidding (cf., Levin and Skrzypacz, 2016).
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6 Application: A Method for Detecting Collusion

In this section we show how our model can be used to detect collusion in the typical

datasets that are available to search engines. We first present the method and then

illustrate its application through simulated data.

A typical search engine’s dataset (e.g., Google’s or Microsoft-Yahoo!’s) includes infor-

mation on all variables in our model, except advertisers’ valuations. In particular, search

engines record advertisers’ identity, their agencies (if any), bids, positions and CTRs. But

the typical dataset also records information about ‘quality scores’, which for simplicity

we ignored in the previous sections. Quality scores are the advertisers’ idiosyncratic score

assigned by the search engine to account for various quality dimensions, including the

CTRs. In the variant of the GSP auction run by Google or Microsoft-Yahoo! (but not, for

instance, by Taobao), quality scores concur in determining the assignment of advertisers

to slots and prices: advertisers are ranked by the product of their bid and quality score,

and pay a price equal to the minimum bid consistent with keeping that position.

Formally, letting ei denote the ‘quality score’ of bidder i, advertisers are ranked by

ei · bi, and CTRs are equal to ei · xρ(i), the product of a ‘quality effect’ and a ‘position

effect’. The price paid by bidder i in position ρ(i) is pi = eρ(i+1)bρ(i+1)/ei.
25 Relabeling

advertisers so that eivi > ei+1vi+1, the competitive (EOS) equilibrium bids are such that,

for all i = 2, ..., S,

eivi =
eibix

i−1 − ei+1bi+1x
i

xi−1 − xi
>
ei+1bi+1x

i − ei+2bi+2x
i+1

xi − xi+1
= ei+1vi+1. (14)

This is the analogue, with quality scores, of the characterization of EOS’ equilibrium in

terms of the observable variables we provided in Corollary 1. As shown below, similar

modifications apply to various notions of RAE discussed in the earlier sections, and will

provide the basis for our proposed criterion to detect collusion.

6.1 Detecting Collusion in the GSP: Strategy

We devise next a criterion to say whether a given set of data for the GSP auction is more

likely to be generated by competitive (EOS) bidding or by one of the models of agency

coordination (UC-RAE, Eff-RAE and RAE). As we showed above, the latter models dif-

fer from EOS in that the bids of all agency bidders, with the exception of the highest

coalition member, are ‘too low’. For two-bidder coalitions, this property leads to a simple

classification criterion (the extension to larger coalitions is straightforward). Let j denote

the lowest value agency bidder, and define

J :=
ejbjx

j−1 − ej+1bj+1x
j

xj−1 − xj
− ej+1bj+1x

j − ej+2bj+2x
j+1

xj − xj+1
.

25In extending the model to accommodate quality scores, we again follow EOS and Varian (2007).
Clearly, the baseline model of the previous sections obtains letting ei = 1 for all i.
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The key idea of our criterion is to look at the implications that different models of agency

bidding have for this quantity J . For instance, it is immediate from eq. (14) that if j’s

bid is compatible with EOS (competitive) bidding, then it must be the case that J > 0.

In contrast, as shown by equations (11) and (13), under our models of collusive bidding

j’s bid will be lower than in the competitive case, so that the above inequality no longer

holds: it will either be such that J = 0, as in the UC-RAE case, or such that J < 0, as

in the Eff-RAE and unrestricted RAE. Note that, in two-bidder coalitions, this criterion

actually captures all observable implications (i.e., ignoring valuations) that differentiate

collusive from EOS bidding, and UC-RAE from Eff-RAE and Eff-RAE.

Thus, if we have a set of T auctions, t = 1, 2, ..., T , for the same keyword/coalition and

for which we observe quality scores, bids, CTRs and positions for all bidders, and we let Jt

denote the value taken by quantity J in auction t, then we can study the distribution of Jt

across these auctions to assess whether bidding is competitive of collusive. For instance,

if we find evidence that Jt is positive, then we can say that there is evidence in favor of

competitive bidding. Otherwise, the evidence will be in favor of collusion. We next turn

to simulated data to illustrate how to operationalize this idea.

6.2 Simulation

Consider once again the example in Table 2. We hold fixed the valuations, CTRs and

coalition structure as in Table 2 and construct 100, 000 simulated replicas of this auction

by randomly drawing quality scores. For each auction and bidder, we take independent

draws from a Normal distribution with mean 1 and s.d. 0.03. Since, as reported in Table

2, the lowest value member of the coalition is the bidder with a value of 3, we calculate

the value of Jt for this bidder for all simulated auctions under three different equilibrium

scenarios. We report the resulting distributions of Jt in panel (a) of Figure 2: EOS (solid

line), UC-RAE (dashed line) and Eff-RAE (dotted line).

Figure 2: Simulation
(a) No Noise (b) Small Noise (c) Large Noise

The distributions in panel (a) show that, as expected, Jt is never negative when we

simulate EOS, it always equals zero when we simulate UC-RAE, and it is never positive
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when we simulate Eff-RAE.26 Under the ideal conditions of the simulation, the observation

of the distribution of Jt thus allows us to unambiguously separate the bidding models.

Clearly, with real data this tool should be expected to face some limits. For instance,

search engines’ quality scores are updated in real time, and hence even if bidders can

frequently adjust their bids, bids are not always optimized for the ‘true’ quality scores.

That is, there may be ‘belief errors’ on quality scores, which (albeit small) may impact Jt.

To illustrate this point, in plot (b) and (c) of Figure 2 we repeat the previous simulation

under two scenarios. In both cases, we consider a belief error that enters multiplicatively:

for each bidder i and auction t, we let eit denote the true quality score, but assume that

bidders believe it to be ẽit, where ẽit = dit ·eit, where d is drawn from a normal distribution

centered around 1. Panel (b) considers the case of a small error, with dit ∼ N (1, 0.052);

panel (c) considers the case of a larger error, with dit ∼ N (1, 0.12). These two cases

illustrate that, with any belief error, the distribution of Jt under UC-RAE is no longer

degenerate at zero. This implies the need to search for UC-RAE cases by looking at an

interval around zero, thus introducing some arbitrariness in the use of the Jt criterion.

Moreover, overlaps in the three distributions make it more ambiguous to discriminate

between the different models.

In panel (b), the relatively small amount of noise still allows us to correctly classify the

bidding models by looking at whether most of the mass of the distribution lies to the left of

zero, around zero or to the right of zero. In practice, this can be operationalized in many

ways by looking, for instance, at the smallest interval including majority of the mass, or

by looking at some summary measure like mean, median or mode. As shown by panel (c),

however, when the amount of noise is large, none of these methods will yield an entirely

unambiguous classification. Nevertheless, based on the empirical findings in Varian (2007)

and Athey and Nekipelov (2012), it is reasonable to expect that the amount of belief noise

is often rather small in the data so that our proposed criterion will typically be a useful

tool to detect potential collusion. This is indeed what we also find in Decarolis, Goldmanis

and Penta (2016) where we apply the methodology described above to data from a search

engine and use it to estimate bounds on the revenue losses induced by collusion.

7 Conclusions

This is the first study to focus on the impact of marketing agencies on online ad auctions,

and in particular on their role in coordinating the bids of their clients. Our results uncover

a striking fragility of the GSP auction to bid coordination.27 Aside from its theoretical

26Detecting bids as coming from UC-RAE, in which coordinated bids were defined as ‘undetectable’,
may strike as oxymoronic. The reason is that, by definition, UC-RAE is undetectable in a single auction,
but because it entails that Jt is exactly zero, it becomes detectable once many auctions are considered:
Jt = 0 in every auction would be possible only if valuations where changing with the quality scores in an
ad hoc way, hence the detectability of UC-RAE across auctions.

27The empirical analysis in Decarolis, Goldmanis and Penta (2016) shows that even the small two-bidder
coalitions frequently observed in the data can have large effects on revenues.

28



interest, this is a first order finding since most of the online marketing is still passing

through GSP auctions. Our findings may also provide a rationale for why Facebook has

recently adopted the VCG and Google is said to be considering the transition. Shifts

between one mechanism and the other are important both for the large stakes involved

and because the proper functioning of this market is essential for both advertisers to reach

consumers and for consumers to learn about products.

From a methodological perspective, we note that the notion of RAE has been key to

obtain clear results in the complex GSP auction, and more broadly to accommodate the

coexistence of competitive and coordinated bidding. This suggests that our approach,

which combines cooperative and non-cooperative ideas, may be fruitful to address the

important problem of partial cartels, an outstanding challenge in the literature.

Our results are also interesting from a market design perspective. While beyond the

scope of this paper, our analysis suggests some possible guidelines for research in this

area. For instance, our analysis of the GSP auction with ‘undetectable coordination’

constraints implicitly suggests a way of deriving reservation prices to limit the impact of

bid coordination. This kind of intervention would thus reinforce the resilience of the GSP

auction, without necessarily entailing major changes in the mechanism.

From a broader perspective, our findings complement other recent work on the evolu-

tion of bidding behavior in online auctions. For instance, Blake, Nosko and Tadelis (2015)

use large scale experiments to explore how eBay could benefit from a more nuanced bidding

behavior that distinguishes between brand and non-brand keyword ads. Einav, Farronato

and Sundaresan (2014) document a decline in the importance of consumers’ bidding in the

eBay auctions, with a progressive shift towards purchasing at posted prices. Altogether,

it emerges the picture that bidding behavior in online marketing platforms is undergoing

important transformations that still need careful analysis.

Finally, as pointed out earlier, our findings are potentially relevant from an antitrust

perspective. In many ways, agency behavior in our model is analogous to that of buy-

ing consortia, which have been sanctioned in the past (see footnote 3). Nevertheless, the

specificities of online ad market suggest a more nuanced view of the harm to the con-

sumers. First, although our model focuses on agencies’ role to coordinate their clients’

bids, agencies in this market have other roles which are expected to improve the efficiency

of the system (e.g., in improving sellers’ ability to reach new consumers, improving ad-

vertisers’ campaigns, bringing new advertisers to the market, etc.) Second, it is likely

that the degree of competition between different search engines is substantially less than

that between most of advertisers. Since the lower auction prices due to agency bidding

imply a reduction in the marginal cost advertisers pay to reach consumers, advertiser

competition implies that some savings are passed on to consumers. Therefore, harm to

consumers would result only if the agency engages in coordinating not only auction bids,

but also the prices charged to consumers. Third, bid coordination can negatively affect

the quality of the service received by consumers by further exacerbating the advantage of
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dominant search engines relative to fringe ones. In Europe, for instance, where 90% of the

searches pass via Google, agencies might be rather careful not to harm Google given the

risk of being excluded from its results page. Smaller search engines cannot exert such a

threat because agencies are essential to attract new customers. The shift of revenues from

small search engines to marketing agencies could thus deprive the former of the essential

resources needed for technology investments. Thus, to the extent that competing search

engines exert pressure for quality improvements, bid coordination poses a threat to con-

sumer welfare. All these considerations represent potentially fruitful directions for future

research on this important market.

A Appendix

A.1 Technical Details

As discussed in Section 3 any generic profile b−i = (bj)j 6=i in the GSP auction partitions the

space of i’s bids, R+, into S+ 1 intervals: [0, bS−i), [bS−i, b
S−1
−i ), . . . , [b1−i,∞). Letting b0−i ≡

∞ and bS+1
−i ≡ 0, if bidder i bids bi ∈ (bt−i, b

t−1
−i ), then he obtains slot t = 1, . . . , S+1 at per-

click-price bt. If bi is placed at one extreme of such intervals, the allocation is determined by

the tie-breaking rule embedded in the function ρ. The function πi introduced in section 3

can be seen as a corresopndence πi : Rn−1
+ ⇒ {1, . . . , S + 1} such that for each b−i ∈ Rn−1

+ ,

πi (b−i) = arg max t=1,...,S+1

(
vi − bt−i

)
xt.28 To allow for the possibility of ties in the bids

profiles, it is necessary to generalize some of these concepts. In particular, if some of i’s

opponents place equal bids (i.e., b−i = (bj)j 6=i is such that bj = bk for some j 6= k), then,

depending on the tie-breaking rule embedded in ρ, some of the S + 1 positions may be

precluded to player i (e.g., if i = 1, and b2 = b3, if the tie-breaking rule is specified as

in footnote 11, position s = 2 is precluded to player i). In that case, the argmax in the

definition of πi should be taken over the set of positions that are actually accessible to i.

Formally: for any b−i ∈ Rn−1
+ , let

S (b−i) = {s = 1, ..., S + 1 : ∃bi s.t. ρ (i; bi, b−i) = s} .

Then, we redefine the function πi : Rn−1
+ → {1, ..., S + 1} as follows: for every b−i ∈ Rn−1

+

πi (b−i) ∈ arg max
s∈S(b−i)

(
vi − bti

)
xt.

Since S (b−i) is always non-empty and finite, the best responses BRi : Rn−1
+ ⇒ R+

defined in Section 3 is well-defined, and so is BR∗i : Rn−1
+ ⇒ R+ in (1). With these changes

to the definition of πi, the rest of the analysis also extends to the case of ties in bids.

28This correspondence is always non-empty valued, and multi-valued only if i is indifferent between two
positions. We can ignore this case here (for instance, assuming that such ties are always broken in favor
of the lower position) and treat πi : Rn−1

+ → Π as a function (if not, πi should be thought of as a selection
from the correspondence above).
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A.2 Proofs of the Main Results

All the results are proven for the case in which n = S + 1. The extension to the general

case is straightforward but requires more cumbersome notation.

A.2.1 Proof of Lemma 1

Let b̂ ∈ E∗ (v). By definition, for any i , ρ (i) = s implies πi

(
b̂−i

)
= s if s ≤ S and

πi

(
b̂−i

)
= S + 1 if s > S. Hence, b̂

πi(b−i)
−i = b̂s+1 whenever s ≤ S. Now, for any i such

that ρ (i) ≤ S and j s.t. ρ (j) = ρ (i) + 1, the following must hold:

by the optimality of b̂i :
(
vi − b̂ρ(i)+1

)
xρ(i) ≥

(
vi − b̂ρ(i)+2

)
xρ(i)+1; (15)

by the condition in (1) for j :
(
vj − b̂ρ(i)+2

)
xρ(i)+1 =

(
vj − b̂ρ(i)+1

)
xρ(i). (16)

Rearranging, we obtain

vi ·
(
xρ(i) − xρ(i)+1

)
≥ b̂ρ(i)+1xρ(i) − b̂ρ(i)+2xρ(i)+1 = vj ·

(
xρ(i) − xρ(i)+1

)
,

which implies that vi > vj (since, by assumption, xs > xs+1 for all s ≤ S and vi 6= vj for all

i 6= j). Hence, in equilibrium, the top S bidders are ranked efficiently among themselves.

For the others, for any i such that ρ (i) > S, eq. (1) requires that 0 =
(
vi − b̂i

)
xS , hence

vi = b̂i whenever ρ (i) > S. It follows that b̂i = b̂i for all i (agents bids are efficiently

ranked) and b̂i = vi for all i ≥ S + 1. Equation (2) follows immediately, applying eq. (1)

for all i = 2, ..., S with initial condition b̂S+1 = vS+1. The only restriction this entails on

b̂1 is that b̂1 > b̂2. Finally, note that (2) coincides with EOS’ lowest envy free equilibrium

(EOS, Theorem 2), and with Varian’s lower-bound symmetric Nash Equilibrium (Varian,

2007, eq.9).

A.2.2 Proof of Theorem 1

We prove the statement by induction on the size of the coalition. The induction basis

is the non-collusive benchmark (i.e., |C| = 1). In this case all players use their dominant

strategies, bi = vi for each i, which clearly ensures vi ∈ (bi+1, vi−1) for all i, and the

equilibrium bids profile is as claimed in the Theorem.

For the inductive step, suppose we have shown that the result holds for all coalitions

C ′ such that C ′ ⊆ C. We want to show that it also holds for C. Let i be the lowest bidder

in the coalition, and let r denote his position. Then, his payoff is equal to:

ui = vix
r −

S+1∑
t=r+1

bt
(
xt−1 − xt

)
.

It is useful to introduce notation to rank independent among themselves, based on their

valuation. Let vI\C = (vj)j∈I\C , and let vI\C (k) = v
|I\C|+1−k
I\C denote the valuation of
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the k-th lowest value independent: for k = 1, vI\C (1) = v
|I\C|
I\C is the lowest valuation

among the independents, vI\C (2) = v
|I\C|−1
I\C is the second lowest valuation among the

independents, and so on. Now, if i is the lowest-bidding member of the coalition, all

players placing lower bids are independents, and therefore bid according to their dominant

strategy, bj = vj . This in turn implies that bids in positions t = r+ 1, ..., S+ 1 are ranked

efficiently between themselves, but it does not guarantee that bt = vt for each t ≥ r + 1,

unless all j ∈ C are such that j ≤ r. Thus, we conclude that bids bt for t = r+ 1, ..., S+ 1

are placed by the S + 1− r lowest-valued independents. Hence,

ui = vix
r −

S+1∑
t=r+1

vI\C (S + 2− t)
(
xt−1 − xt

)
. (17)

Let us consider the function ũi (k) of i’s payoff, as a function of the position k he occupies,

given that he is the lowest-bidder in the coalition. Let u∗i := maxk ũi (k). Clearly, u∗i ≥ ui.
We show next that, if i 6= max {j : j ∈ C}, then u∗i < u

C\{i}
i (the payoff i would obtain by

leaving the coalition). Hence, the coalition is stable only if the lowest bidding member is

also the member with the lowest valuation.

First we show that ũi is maximized only if i is placed efficiently with respect to the

independents. That is, for any j ∈ I\C, j < i if and only if ρ (j) < r. We proceed by

contradiction: suppose that there exist j ∈ I\C such that either j < i and ρ (j) > r, or

j > i and ρ (j) < r. Consider the first case: Since independents are ranked efficiently

among themselves, for any j, l ∈ I\C, l < j if and only if ρ (l) < ρ (j). It follows that if

there exists j ∈ I\C : j < i and ρ (j) > r, such j can be chosen so that j = r + 1, i.e. j

occupies the position immediately following i’s. We next show that, in this case, i’s payoff

would increase if he dropped one position down. To see this, notice that

ũi (r + 1)− ũi (r) = vi
(
xr+1 − xr

)
+ vI\C (S + 1− r)

(
xr − xr+1

)
=
(
vI\C (S + 1− r)− vi

) (
xr − xr+1

)
,

where vI\C (S + 1− r) = vr+1 is the valuation of the highest independent if i occupies

position r. Since, by assumption, xr > xr+1, it follows that

sign (ũi (r + 1)− ũi (r)) = sign
(
vI\C (S + 1− r)− vi

)
.

Under the absurd hypothesis, vI\C (S + 1− r) > vi, hence ui increases dropping one

position down. A similar argument shows that in the second case of the absurd hypothesis,

i.e. if there exists j ∈ I\C : j > i and ρ (j) < ρ (i), ui could be increased climbing one

position up, from r to (r − 1). The result obtains considering the difference

ui (r)− ui (r − 1) =
(
vI\C (S + 2− r)− vi

) (
xr−1 − xr

)
,
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which is negative, under the absurd hypothesis.

We have thus proved that, in equilibrium, for all j ∈ I\C, j < i if and only if ρ (j) < r.

Hence, the lowest coalition bidder is placed efficiently with respect to the independents,

and only independents are below him. Letting J = {j ∈ C : j > i} denote the set of

coalition members with values lower than vi, the lowest coalition bidder i therefore occupies

position i + |J |. (Clearly, i occupies the i-th position if and only if J = ∅, i.e. if i, the

lowest bidding member of the coalition, also has the lowest value in the coalition.) But

then, setting r = i+ J in eq. (17) , we have that

u∗i = vix
i+|J | −

S+1∑
t=i+|J |+1

vI\C (S + 2− t)
(
xt−1 − xt

)
. (18)

We show next that J 6= ∅ implies u∗i < u
C\{i}
i . For any k, let b̄k denote k’s bid in the

equilibrium with coalition C\ {i}. Since, under the inductive hypothesis, the equilibrium

with coalition C\ {i} is efficient, b̄k = b̄k for any k, and hence

u
C\{i}
i = vix

i −
S+1∑
k=i+1

b̄k

(
xk−1 − xk

)
.

By the inductive hypothesis, the equilibrium with this smaller coalition is as in the

Theorem’s statement. Hence, b̄k < vk−1 for all k ∈ I (if k is an independent, because

he bids b̄k = vk < vk−1; if he’s the highest-value member of the coalition, because b̄k ∈(
b+k+1, vk−1

)
, otherwise b̄k = b+k+1 < vk−1). We also show that b̄k ≤ vI\C(S+2−k) for all k.

To this end, observe that all k ≥ max {J } are independents (both before and after i drops

out), so that for all k ≥ max {J } , b̄k = vk = vI\C(S+2−k): these are the lowest bidding

and the lowest-value bidders, hence also the lowest independents. For k < max {J }, at

least one of the S + 2 − k elements of the set {k, k + 1, ..., S + 1} is a member of the

coalition. It follows that the valuation of the (S + 2− k)-th lowest independent is higher

than vk, hence vI\C(S+2−k) ≥ vk−1, which in turn implies vI\C(S+2−k) > b̄k. Overall,

we have that b̄k < vk−1 and b̄k ≤ vI\C(S + 2− k) for all k ∈ I. Using the first inequality

for k ≤ i+ |J | and the second inequality otherwise, we see that if J 6= ∅,

u
C\{i}
i = vix

i −
i+|J |∑
k=i+1

b̄k

(
xk−1 − xk

)
−

S+1∑
k=i+|J |+1

b̄k

(
xk−1 − xk

)

> vix
i −

i+|J |∑
k=i+1

vk−1

(
xk−1 − xk

)
−

S+1∑
k=i+|J |+1

vI\C(S + 2− k)
(
xk−1 − xk

)
(19)
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Combining (18) and (19), we get

u
C\{i}
i − u∗i > vi

(
xi − xi+|J |

)
−

i+|J |∑
k=i+1

vk−1

(
xk−1 − x

)
≥ vi

(
xi − xi+|J |

)
− vi

(
xi − xi+|J |

)
= 0,

where the latter inequality follows because vk−1 ≤ vi for all k ≥ i + 1. Hence, whenever

J 6= ∅, we obtain ui < u
C\{i}
i : that is, the recursive stability condition (S.2) is violated

for bidder i. J = ∅ therefore is a necessary condition for equilibrium. Hence, in any

equilibrium, the lowest coalition bidder also has the lowest valuation in the coalition.

Moreover, if J = ∅, u∗i = u
C\i
i (by equations (18) and (19)), hence in equilibrium ui = u∗i

and i = ρ (i):

ui = vix
i −

S+1∑
k=i+1

vk

(
xk−1 − xk

)
= u

C\{i}
i . (20)

Furthermore, since the payment of coalition members above i is strictly decreasing in

bi and positions are independent of bi (as long as bi ∈ (bi+1, bi−1)), the coalition will set

bi as low as possible to ensure i’s efficient position. That is, bi = b+i+1 = v+
i+1.

We have determined the positions and bids of all bidders k ≥ i. We know that

the remaining coalition members are positioned above these bidders and do not affect

ui. Thus, the remaining task for the coalition is to choose bids (bj)j∈C\{i} in order to

maximize
∑

j∈C\{i} uj , subject to the constraint that bj > bi for all j ∈ C\ {i}. We now

need to look separately at two cases: |C| = 2 and |C| > 2.

First, if |C| = 2, the task is simply to maximize the payoff of the other member of

the coalition, j, by determining his position relative to the remaining independents. But

this, by the usual argument, is achieved when j is placed efficiently with respect to these

independents. This is achieved if and only if bj ∈ (bj+1, vj−1).

Second, if |C| > 2, note that even when one of the members j ∈ C\ {i} drops out, i

still remains a non-top member of the coalition. Hence, its bid does not change. Naturally,

the bids of all k > i (who are independents) do not change either. Hence, the payoffs of

all bidders k < i both before and after one of the coalition members (other than i) drops

out are shifted by the same constant relative to a game in which the bidders k ≥ i (and

the corresponding slots) are removed: thus, the presence of these bidders has no effect on

either the payoffs or the outside options. It follows that the problem we are solving at this

stage is exactly equivalent to finding the equilibrium in the VCG game played between

coalition C\ {i} and independents {j ∈ I\C : j > i} with slots x1, ..., xi−1. This game has

coalition size C − 1, so the solution follows by the inductive hypothesis.�
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A.2.3 Proof of Theorem 2

Since the UC-restrictions imply the stability restriction (S.1), the agency’s problem in the

GSP auction with the feigned values restriction reduces to:

max
bC

uC (bC , β
∗ (bC))

subject to : (R) ∃v′C ∈ R|C|+ s.t. (bC , β
∗(bC)) ∈ E∗

(
v′C , vC

)
: (S.2) ∀i ∈ C, ui (bC , β

∗(bC)) ≥ ūC\{i}i .

where the equilibrium conjectures β∗ are such that,

∀bC , β∗ (bC) ∈
{
b∗−C ∈ Rn−|C|+ : ∀i ∈ I\C, b∗i ∈ BR∗i

(
bC , b

∗
−i,−C

)}
.

Let ∼ be an equivalence relation on Rn+ such that v ∼ v′ (resp., b ∼ b′) if and only if

v and v′ only differ in the highest valuation (resp., highest bid), but not in the identity

of the highest valuation individual (bidder).29 For any v ∈ Rn+, let [v] (resp., [v] ) denote

the equivalence class of v (resp., b) under this equivalence relation, and let V∼ (resp., B∼)

denote the set of such equivalence classes. Next, consider the competitive equilibrium

correspondence E∗ : Rn+ ⇒ Rn+, which assigns to each profile v ∈ Rn+ the set E∗ (v) of

competitive equilibria in the GSP auction. Denote the set of equivalence classes under ∼
on the range of E∗ as E∗(V∼) ⊆ V∼, and let E∼ : V∼ → E∗(V∼) denote the function

induced by E∗. Lemma 1 implies that E∼ is a bijection. Further note that the payoffs of

all bidders in the GSP with bids E∗(v) are the same as in the VCG with truthful bids:

for all v ∈ Rn+ and i ∈ I, uVi (v) = uGi (E∗(v)). (21)

Since E∼ is a well-defined function on the equivalence classes of ∼, the profile of valu-

ation v′C in the restriction (R) uniquely pins down (bC , b
∗
−C) ∈ E∗(v′C , v−C) up to the

highest overall bid. That is, (bC , b
∗
−C), (b′C , b

′
−C) ∈ E∗(v′C , v−C) if and only if (bC , b

∗
−C) ∼

(b′C , b
′
−C). Together with (21), this implies that uGi (bC , b

∗
−C) = uVi (v′C , v−C), so that also

uGC(bC , b
∗
−C) = uVC(v′C , v−C). As a result, we can now easily recast the coalition’s problem

as one of choosing v′C (the coalition’s ‘feigned valuations’):

max
v′C

uVC
(
v′C , v−C

)
subject to : (S.2) ∀i ∈ C, uVi

(
v′C , v−C

)
≥ ūC\{i}i .

(Notice that the restriction (R) and the restriction that β∗(bC) always be in the set BR∗−C
are both built in this formulation of the problem.)

29Formally: v ∼ v′ if and only if the following two conditions hold: (1) arg maxi∈I vi = arg maxi∈I v
′
i;

(2) vi = v′i for all i 6= arg maxi∈I vi.
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Furthermore, ūCi = ūC;V
i for all i when |C| = 1, and the recursion defining ūCi is

identical to that defining ūC;V
i . It follows that the coalition’s problem is now equivalent to

its problem in the VCG game. By Theorem 1, the solution v′∗C is unique up to the report

of the highest coalition member, v′∗min(C).

Finally, by (R), the UC-RAE of the GSP satisfies (b∗C , β
∗ (b−C)) ∈ E∗(v′∗C , v−C). Hence

all bidders’ positions and payoffs in this GSP equilibrium are the same as in the unre-

stricted RAE of the VCG, (v′∗C , v−C). Because the ordering of bidders in the RAE of the

VCG is efficient (Theorem 1), so is the ordering of bidders in the the UC-RAE of the GSP.

However, because v′∗ is unique only up to the highest coalition bid, (b∗C , β
∗ (b−C)) is not

uniquely defined: there exists a continuum of equilibria differing in the payments of all

bidders above the highest coalition bidder: for each v′∗min(C) ∈ (v′∗min(C)+1, vmin(C)−1), there

exists one equivalence class of UC-RAE of the GSP, [(b∗C , β
∗ (b−C))]. Because E∗ is unique

only up to the highest overall bid, there also exist a continuum of equilibria yielding the

same payoffs and positions, but differing in the highest overall bid, within each [b∗]. In

this sense, the equilibrium is unique up to the highest coalition and overall bids.

A.2.4 Proof of Theorem 3

The claim about the possibility of strict ordering in revenues is proven by Example 6 in

the text. Here we prove the general claims about existence, uniqueness and weak ordering.

The proof is by construction, and it is based on the following intermediate result.

Lemma 2 Fix C ⊂ I, and let K be a finite index set. Let
{
b(k)
}
k∈K be a collection of

bid profiles such that, for each k ∈ K, b
(k)
−C ∈ BR∗−C(b

(k)
C ) and ρ(i; b(k)) = i for each i ∈ I.

Define L
({
b(k)
}
k∈K

)
≡ b̂ ∈ Rn+ as follows:

b̂i =


b̂i = mink∈K b

(k)
i if i ∈ C

b̂i = vS+1 if i = S + 1 /∈ C
1

xi−1

[∑c̄(i)−1
j=i vj(x

j−1 − xj) + b̂c̄(i)x
c̄(i)−1

]
otherwise

;

where c̄ (i) := min {j ∈ C | j > i} if i < maxC and c̄ (i) = S + 1 otherwise.

Then: (i) ρ(i; b̂) = i ∀i ∈ I; (ii) ui(b̂) ≥ ui(b
(k)) for all i ∈ I and for all k ∈ K, with

strict inequality whenever b̂c̄(i) 6= b
(k)
c̄(i); (iii) uC(b̂) ≥ uC(b(k)) for all k ∈ K, with strict

inequality whenever ∃i ∈ C\minC such that b
(k)
i 6= b̂i; (iv) b̂−C ∈ BR∗−C(b̂C).

Proof of Lemma 2

We begin by noting that because for each k ∈ K, b
(k)
−C ∈ BR∗−C(b

(k)
−C) and ρ(i; b(k)) = i

for each i ∈ I, we have that ∀k ∈ K, i /∈ C s.t. i 6= S + 1,

b
(k)
i =

1

xi−1

c̄(i)−1∑
j=i

vj(x
j−1 − xj) + b

(k)
c̄(i)x

c̄(i)−1

 ,

36



and b
(k)
i = vS+1 if i = S + 1 /∈ C (c̄ (i) is defined in the statement in the Lemma.)

The following two key observations are now immediate:

1. For every k ∈ K and for every i ∈ I, b̂i ≤ b(k)
i : For i ∈ C, b̂i ≤ b(k)

i by the definition

of coalition bids in the statement of the lemma. For i = S + 1 /∈ C, b̂i = vS+1 = b
(k)
i

(the second equality is because the Lemma requires b
(k)
−C ∈ BR∗−C(b

(k)
C )). Finally, for

i /∈ C s.t. i 6= S + 1,

b̂i =
1

xi−1

c̄(i)−1∑
j=i

vj(x
j−1 − xj) + b̂c̄(i)x

c̄(i)−1

 ≤ 1

xi−1

c̄(i)−1∑
j=i

vj(x
j−1 − xj) + b

(k)
c̄(i)x

c̄(i)−1

 = b
(k)
i ,

where the inequality follows because, by definition, c̄ (i) ∈ C ∪ {S + 1} and hence

b̂c̄(i) ≤ b
(k)
c̄(i)). Note that the inequality is strict whenever b̂c̄(i) 6= b

(k)
c̄(i).

2. For each i ∈ I, there exists k ∈ K such that bi = b
(k)
i . For i ∈ C this is immediate

from the definition. For i = S + 1 /∈ C, b̂i = vS+1 = b
(k)
i for all k (cf. previous

point). For i /∈ C s.t. i 6= S+ 1, the result follows because c̄ (i) ∈ C ∪{S + 1}, hence

there exists k ∈ K such that b̂c̄(i) = b
(k)
c̄(i), so that

b̂i =
1

xi−1

c̄(i)−1∑
j=i

vj(x
j−1 − xj) + b̂c̄(i)x

c̄(i)−1

 =
1

xi−1

c̄(i)−1∑
j=i

vj(x
j−1 − xj) + b

(k)
c̄(i)x

c̄(i)−1

 = b
(k)
i ,

We can now establish the lemma’s results:

(i) ρ(i; b̂) = i for all i ∈ I: Let i, j ∈ I be s.t. i < j. We show that b̂i > b̂j . By point

2 above, there exists k ∈ K such that b̂i = b
(k)
i . Because, by assumption, b(k) is ordered

efficiently, b
(k)
i > b

(k)
j . By point 1, b

(k)
j ≥ b̂j . Hence, b̂i = b

(k)
i > b

(k)
j ≥ b̂j , as desired.

(ii) ui(b̂) ≥ ui(b
(k)) for all i ∈ I and all k ∈ K, with strict inequality if b̂c̄(i) 6= b

(k)
c̄(i):

Because i obtains its efficient position under both b̂ (established in (i)) and b(k) (given),

ui(b̂) = (vi − b̂i+1)xi ≥ (vi − b(k)
i+1)xi = ui(b

(k)),

where the inequality holds because b̂i+1 ≤ b
(k)
i+1 by point 1 above, with strict inequality if

b̂c̄(i) 6= b
(k)
c̄(i), as noted at the end of point 1.

(iii) uC(b̂) ≥ uC(b(k)) for all k ∈ K, with strict inequality whenever ∃i ∈ C\minC

such that b
(k)
i 6= b̂i: The weak inequality follows immediately from part (ii). Now, suppose

b
(k)
i 6= b̂i for some i ∈ C\minC, and let j = max {k ∈ C|k < i} be the coalition member

directly above i in the ranking of valuations. Then c̄ (j) = i, so that by the strict inequality

part of result (ii), uj(b
(k)) < uj(b̂). Since uj′(b

(k)) ≤ uj′(b̂) for all other terms in the sums

defining uC(·), this completes the proof for strict inequality.

(iv) b̂−C ∈ BR∗−C(b̂−C): The LREF condition holds by construction. We must simply

prove the Nash condition, i.e., that each i /∈ C (weakly) prefers position i to position j
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for all j 6= i. Define j′ = j + 1 if j > i and j′ = j if j < i. Note that if bidder i deviates

to position j 6= i under bid profile b̂, it gets payoff (vi − b̂j′)xj . By the observation in

point 2 above, there exists some k such that b̂j′ = b
(k)
j′ , so that (vi− b̂j′)xj = (vi− b(k)

j′ )xj .

Because b
(k)
−C ∈ BR∗−C(b

(k)
−C) and ρ(i; b(k)) = i, i cannot profitably deviate from position i

to position j 6= i under bid profile b(k), i.e. (vi − b(k)
j′ )xj ≤ (vi − b(k)

i+1)xi. Finally, by point

1 above, b
(k)
i+1 ≥ b̂i+1, so that (vi − b(k)

i+1)xi ≤ (vi − b̂i+1)xi. Putting these results together,

(vi − b̂i+1)xi ≥ (vi − b(k)
i+1)xi ≥ (vi − b(k)

j′ )xj = (vi − bj′)xj .

That is, bidder i cannot profitably deviate to position j 6= i under bid profile b̂, as desired.

This concludes the proof of the Lemma.�

Armed with this Lemma, we can now prove Theorem 3. We begin with existence and

weak ordering of revenues, using induction on the coalition’s size, C. For the induction

basis, we use |C| = 1. Both existence and weak order now hold trivially, as both the

efficiency-constrained RAE of the GSP and the RAE of the VCG mechanism are equal to

the LREF equilibrium by definition.

For the inductive step, we fix C and suppose that for all coalitions of size |C| − 1

Eff-RAE exist, then we show that Eff-RAE also exists for C, and that in each of these

RAE the coalition’s surplus is no lower than in any RAE of the VCG mechanism, while the

auctioneer’s revenue is no higher than in a corresponding RAE of the VCG mechanism.

Fix C, and let bUC ∈ Rn+ be the bids in the UC-RAE of the GSP auction with the

same coalition C, in which the top coalition member is placing the highest possible bid

(this exists, it is efficient and unique by Theorem 2). Observe that because of the bijection

between UC-RAE of the GSP auction and unconstrained RAE of the VCG mechanism

(established in Theorem 2), we can use the coalition’s surplus in the GSP auction with

bids bUC as our reference point. Next, note that, for any bC , the beliefs β∗ (bC) in any Eff-

RAE of the GSP auction are uniquely determined by the Varian/EOS recursion. Hence, a

complete Eff-RAE, (b∗, β∗) ∈ Rn+×B∗, if it exists, is in fact fully determined by b∗C ∈ RC+.

We now proceed to prove that such a b∗C exists by constructing a candidate profile.

For each i ∈ C, let b(i) be the bids in an Eff-RAE with coalition C\ {i} (these exist

under the inductive hypothesis). Let b(0) = bUC . Let b̂ = L
({
b(i)
}
i∈C∪{0}

)
, where L is

as defined in Lemma 2. Now, by results (i) and (iv) of Lemma 2, we have ρ(i; b̂) = i for

all i ∈ I and b̂−C ∈ BR∗−C(b̂C). It follows that b̂C ∈ REFFC . By result (ii) of Lemma 2,

ui(b̂) ≥ ui(b
(k)) for each i. Moreover, by construction, ui(b

(k)) = ū
C\{i}
i for each i ∈ C,

hence profile b̂ satisfies the recursive stability condition. It follows that b̂C is a valid bid

vector for coalition C trying to achieve an Eff-RAE and that b̂−C = β∗(b̂C), where β∗

are the unique beliefs consistent with Eff-RAE. Maintaining the assumption of finite bid

increments, as in Theorems 1 and 2, the coalition is therefore maximizing over a non-

empty, finite set of valid bid vectors, so that a maximum, b∗C , exists. Thus, an efficiency

constrained RAE for coalition C exists (and is equal to ((b∗C , β
∗(b∗C)), β∗)).
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Now the weak ordering of coalition surplus is immediate: Result (iii) of Lemma 2

implies uC(b̂) ≥ uC(bUC), and clearly the optimal bid profile (b∗C , β
∗(b∗C)) must satisfy

uC(b∗C , β
∗(b∗C)) ≥ uC(b̂). It follows that uC(b∗C , β

∗(b∗C)) ≥ uC(bUC).

Next, we establish the ordering for the auctioneer’s revenues. We first show that, in

the Eff-RAE (b∗, β∗), the bid of coalition members other than the highest-valuation is

weakly lower than in b̂. To this end, suppose that there exists some i ∈ C\minC such

that b∗i > b̂i. Let b′ = L({b∗, b̂}). By part (i) of Lemma 2, b′C is still a valid bid vector for

the coalition, whereas part (iii) implies uC(b′C , β
∗(b′C)) > uC(b∗C , β

∗(b∗C)) which contradicts

the optimality of b∗C . We thus conclude that b∗i ≤ b̂i for all i ∈ C\minC.

Because the independents’ bids are fixed by the recursion under both b̂ and b∗, we

know that in fact b∗i ≤ b̂i for all i > minC. Because by construction b̂i ≤ bUCi for all i ∈ I,

we thus have b∗i ≤ bUCi for all i > minC. If minC = 1, this completes the proof that the

auctioneer’s revenues are weakly lower under b∗ than under bUC . If minC > 1, we need to

show that even the top coalition bidder in b∗ cannot bid more than this bidder’s maximum

possible UC-RAE bid. Because bUCminC is the maximum bid that the top coalition bidder

can place in a UC-RAE, it is equal to (cf. Theorem 2)

bUCminC = vminC−1 −
xminC

xminC−1

(
vminC−1 − bUCminC+1

)
.

If b∗minC > bUCminC , then the independent above the top coalition member obtains a payoff

U0 = (vminC−1−b∗minC)xminC−1 < (vminC−1−bUCminC)xminC−1 = (vminC−1−bUCminC+1)xminC ,

where the last inequality follows by substituting in the expression for bUCminC from above.

Dropping one position down this independent would obtain

U ′ = (vminC−1 − b∗minC+1)xminC ≥ (vminC−1 − bUCminC+1)xminC > U0,

where the first inequality follows because b∗i ≤ bUCi for all i > minC, as established

above. Thus this independent has a profitable deviation; a contradiction. We conclude

that b∗minC ≤ bUCminC . But then, by the independents’ recursion, we also have b∗i ≤ bUCi for

all i ≤ minC. Because we already knew that the b∗i ≤ bUCi for all i > minC, we have

established that all bids in b∗ are weakly lower than in bUC , which completes the claim

about the auctioneer’s revenues.

Next, we show that the Eff-RAE is unique up to the highest coalition bid. To this

end, fix some coalition C ⊆ I and let bR1 and bR2 be two (possibly equal) Eff-RAE for

C. Let b̂ := L({bR1, bR2}). By results (i), (iii) and (iv) of Lemma 2, b̂ is still efficiently

ordered and b̂−C ∈ BR∗−C(b̂C), so that b̂C is in the set of permitted bids for the coalition in

the efficiency-constrained problem without the recursive stability restriction, with b̂−C ∈
β∗(b̂C). Furthermore, by result (ii) of Lemma 2, each coalition member is at least as

well off under b̂ as under bR1 and bR2. Therefore, the fact that bR1 and bR2 satisfy the
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recursive stability condition implies that so does b̂. The optimality of bR1
C and bR2

C in this

set therefore implies that uC(b̂) ≤ uC(bRk) ∀k ∈ {1, 2}. But result (iii) of Lemma 2 then

implies that b̂i = bR1
i = bR2

i for all i ∈ C\minC.

Combining these results yields bR1
i = bR2

i = b̂i for all i ∈ C\minC. Because coalition

bids also uniquely determine independents’ bids, the Eff-RAE is thus unique up to the

highest coalition bid. This completes the proof.

A.3 Multiple Agencies

A.3.1 Formal definition

We consider the case with two SEMAs, which coordinate the bids of subsets C1, C2 ⊆ I of

bidders, s.t. C1∩C2 = ∅. Similar to the baseline notion with a single SEMA, the definition

of RAE with multiple agencies is recursive, with the outside option of coalition member

i ∈ C1 being defined as his equilibrium payoff in the game with coalitions (C1\ {i} , C2).

Hence, the recursion in the RAE with multiple coalitions involves, for every Cg, a recursion

similar to the one for the single SEMA, but with initial condition set by the RAE in which

C−g is the only coalition.

Let G (v) = (Ai, ui)i=1,...,n denote the baseline game (e.g., GSP or the VCG), given the

profile of valuations v = (vi)i∈I . For any C1, C2 ⊆ I with |Cg| ≥ 2 and C1∩C2 = ∅, we let

C := C1 ∪ C2 . For each g = 1, 2, coalition Cg chooses a vector of bids bCg = (bj)j∈Cg
∈

×j∈CgAj , and let bC = (bC1 , bC2). Given bC , independents i ∈ I\C simultaneously choose

bids bi ∈ Ai. We let b−C := (bj)j∈I\C and A−C := ×j∈I\CAj . Given profiles b or b−C ,

we let b−i,−C := (bj)j∈I\C:j 6=i. As above, each SEMA maximizes the sum of the payoffs of

its members, uCg (b) :=
∑

i∈Cg
ui (b), under the three constraints from the single-agency

model, given conjectures about both the independents and the other coalition.

Stability-1: (Stability w.r.t. Independents) For any i ∈ I\C, let BR∗i : A−i ⇒ Ai,

BR∗−C : AC ⇒ A−C and SC be defined as in the single-agency case (except now C =

C1 ∪ C2.) For each agency Cg, we let

SCg =
{
bCg ∈ ACg : ∃bC−g ∈ AC−g s.t.

(
bCg , bC−g

)
∈ SC

}
,

Stability-2: ((Recursive) Stability w.r.t. Coalition Members) Let B∗ be defined

as in the single-agency case. Letting ER (C1, C2) denote the set of Recursively Stable

Agency Equilibrium (RAE) outcomes of the game with coalitions C1 and C2, given re-

strictions R (and refinement BR∗i ), we initialize the recursion setting ER
(
C ′g, C−g

)
=

ER (C−g) if |C ′g| = 1 (that is, if an agency controls only one bidder, then the RAE are

the same as when there exists only the other agency). Suppose next that ER
(
C ′g, C−g

)
has been defined for all subcoalitions C ′g ⊂ Cg. For each i ∈ Cg, and C ′g ⊆ Cg\ {i},
let ū

C′g ,C−g

i = minb∈ER(C′g ,C−g) ui (b). The second stability requirement therefore requires

ui ≥ ū
C−g\{i},Cg

i . Finaly, we define the set of ‘Rational Conjectures’ about the Opponent
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Coalition as B∗g =
{
βg ∈ (AC−g)SCg : βg(bCg) ∈ BRC−g(bCg) for all bCg ∈ SCg

}
, where

SCg =
{
bCg ∈ SCg : BRC−g(bCg) 6= ∅

}
, and

BRC−g(bCg) = arg max
bC−g

uC−g

(
bCg , bC−g , β

(
bCg , bC−g

))
subject to : (R) (bCg , bC−g) ∈ RC

: (S.1) (bCg , bC−g) ∈ SC

: (S.2) for all i ∈ C−g, ui
(
bCg , bC−g , β

(
bCg , bC−g

))
≥ ūC−g\{i},Cg

i

Definition 4 A Recursively Stable Agency Equilibrium (RAE) of the game G with coali-

tion structure (C1, C2), given restrictions R and independents’ equilibrium refinement

BR∗, is a profile of bids and conjectures (b∗, β∗, β∗1 , β
∗
2) ∈ AC ×B∗ ×B∗1 ×B∗2 such that:

1. The independents play a mutual best response: for all i ∈ I\C, b∗i ∈ BR∗i
(
b∗−i
)
.

2. The conjectures of the agencies are correct and consistent with the exogenous restric-

tions: β∗ (b∗C) = b∗−C , and, for each g ∈ {1, 2}, β∗g
(
b∗Cg

)
= b∗C−g

, and
(
bCg , β

∗
g (bCg), β∗

(
bCg , β

∗
g (bCg)

))
∈

R (C) for all bCg ∈ RCg .

3. Each agency best responds to the conjectures β∗ and β∗g , given the exogenous restrictions

(R) and the stability restrictions about the independents and the coalition members (S.1

and S.2, respectively): For each g = 1, 2

b∗Cg
∈ arg max

bCg

uCg

(
bCg , β

∗
g (bCg), β∗

(
bCg , β

∗
g (bCg)

))
subject to : (R) (

(
bCg , β

∗
g (bCg), β∗

(
bCg , β

∗
g (bCg)

))
∈ RC

: (S.1)
(
bCg , β

∗
g (bCg), β∗

(
bCg , β

∗
g (bCg)

))
∈ SC

: (S.2) for all i ∈ Cg, ui
(
bCg , β

∗
g (bCg), β∗

(
bCg , β

∗
g (bCg)

))
≥ ūCg\{i},C−g

i

The set of RAE outcomes for the game with coalitions (C1, C2) (given BR∗ and RC)

is:

ER (C1, C2) = {b∗ ∈ A : ∃β∗, β∗1 , β∗2 s.t. (b∗, β∗, β∗1 , β
∗
2) is a RAE} . (22)

Note that the definition above does not uniquely pin down the the bid of the top bidder

of the “lower” coalition. To remove this ambiguity, in the following we break these ties

by making this coalition member bid as if it were an independent, whenever such bids are

still in the optimal set.

A.3.2 Proof of Theorem 4

We prove the theorem by providing a precise characterization of the RAE in the VCG

and the UC-RAE of the GSP. That is, we show that with two coalitions, C1 and C2, the
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following statements hold:

1. If in the overall value ranking no member of one coalition is adjacent to a member

of the other coalition, then:

(a) There exists a unique RAE of the VCG mechanism. In this equilibrium, the bid

profile b̂V is such that

b̂Vi =

vi if i ∈ (I\C) ∪minC1 ∪minC2;

(b̂Vi+1)+ if i ∈ C\ {minC1 ∪minC2} and i ≤ S;
(23)

where v0 :=∞ and b̂Vn+1 := 0.

(b) There exists a unique UC-constrained RAE of the GSP auction. In this equilib-

rium, for every i,

b̂Gi = vfi −
xi

xi−1

(
vfi − b̂i+1

)
,

where vfi is equal to bidder i’s bid (reported value) in the VCG mechanism (as

described in Statement 1 above): vfi = b̂Vi .

2. If in the overall value ranking a non-top member of one coalition is directly above a

non-top member of the other coalition (i.e., there exist i and i+ 1, such that i ∈ Cj ,
i+ 1 ∈ Cj′ , j 6= j′, i 6= minCj , and i+ 1 6= minCj′), then no unconstrained RAE of

the VCG and no UC-RAE of the GSP exist.

Below, we prove the results for the VCG (statement 1(a) and the VCG part of state-

ment 2 above). The proofs of the GSP results are analogous.

First we show that, regardless of whether there are or are not adjacencies in the value

rankings, an arrangement like that in statement 1(a) is the only possible RAE of the VCG.

We then show that this candidate is in fact an equilibrium when there are no adjancies,

but not when there are adjacencies involving non-top bidders.30

Before proceeding to the proof, it pays to make two observations about the best-

response correspondences BRCg :

Observation 1: The best-response function of any coalition requires that each non-

top member of the coalition bid just above the bid below. Formally, let i ∈ Cg\minCg

and let b be such that bCg ∈ BRCg (bC−g). Then bi = (bρ(i)+1)+.

30Compared to the single agency case, the part of the proof that parallels Theorem 1 has two compli-
cations. First, the placement of the highest bidder of the the coalition that does not have the top overall
bidder requires some additional technicality, as this placement is not only relative to independents but
also relative to the other coalition’s bidders. Second, the candidate equilibrium produced by the recursion
still needs to be verified, because the recursive procedure does not guarantee that a coalition’s bidders
are best-responding to those bidders of the rival coalition that are placed below them. It is precisely this
verification step that will yield the fundamental difference between the cases with and without members
from different coalitions that are adjacent in the value ranking.
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Proof of Observation 1: Suppose bi 6= (bρ(i))+, and let δ = bi − bρ(i). Now note

that in the definition of BRCg , coalition g takes the bids of the other coalition (and the

independents) as fixed. Thus, lowering bi to bρ(i)+1 + δ/2 < bi does not change the

allocation, but reduces the payments of all higher-ranked members of Cg by (δ/2)(xρ(i)−1−
xρ(i)) > 0, and is therefore a profitable deviation for Cg, a contradiction. �

Observation 2: The best-response function of any coalition requires that no mem-

ber of the coalition (top or non-top) be placed above a bidder bidding higher than this

member’s value. Formally, if i ∈ Cg and bCg ∈ BRCg (bC−g), then vi ≥ bρ(i)+1.

Proof of Observation 2: Suppose vi < bρ(i)+1), and consider the deviation where Cg

bi to (bρ(i)+1)−. Note that this deviation improves i’s individual payoff by (bρ(i)+1 −
vi)(x

ρ(i)−xρ(i)+1) > 0. Also observe that the deviation decreases the payments of higher-

ranked coalition members (if any) by (bi−bρ(i)+1)(xρ(i)+1−xρ(i)) > 0. Thus, the deviation

is unambiguously profitable for the coalition. �

With these observations in hand, we proceed to the proof of Theorem 4.

As in Theorem 1, the proof is by recursion on the overall size of the coalition, |C| =

|C1|+ |C2|. The induction basis is the case of no coalitions (|C| = 2, i.e., |C1| = |C2| = 1),

for which the result holds trivially, by EOS. For the inductive step, we first look at the

overall lowest placed coalition bidder, i. The same argument as in the proof of Theorem 1

shows that, due to the recursive stability condition, this bidder is in fact the lowest-valued

bidder among all coalition bidders (i = max(C1∪C2)) and that it must occupy its efficient

position (ρ(i) = i). The rationale is the same as in Theorem 1: because there are only

independents below this bidder, j cannot be compensated by the rest of the coalition for

taking an inefficient position (which the individually bidder prefers). Furthermore, by

Observation 1 above, bi = v+
i+1.

Just as in the proof of Theorem 1, after fixing the lowest coalition bidder’s bid, we can

essentially remove this bidder and all lower-valued independents from the analysis and

proceed to the next-lowest placed coalition bidder. Unless this bidder is the top bidder

of a coalition, the same argument as in the proof of Theorem 1 again applies to show

the bidder is placed in its efficient position. In addition, by Observation 1, it is bidding

just above the value of the bidder just below. We then move to the next-lowest-placed

coalition bidder.

Now, suppose we reach the top bidder of some coalition, bidder i. As in Theorem 1,

this bidder must simply set its bid so as to maximize its own payoff (as there are no other

coalition members above, whose payoffs it would affect). As in Theorem 1, this bidder

cannot be placed directly above a higher-valued independent or directly below a lower-

valued independent, by the standard EOS argument (e.g., when placed directly above j

with vj > vi, i can increase its payoff by ∆x(vj − vi) > 0 if it drops one position down).

Unlike Theorem 1, however, this does not necessarily guarantee the efficient placement

of i, as i could be placed directly below a lower-valued member of the other coalition

(i cannot be placed above a higher-valued member of the other coalition, because, by
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construction, i is the lowest-placed remaining member of C, with all previous members

placed in their efficient positions).

To rule out this remaining possibility, suppose i is placed directly below the other

coalition’s member j, with vi > vj . By Observation 1, this means that bi < vj < vi. But

consider the deviation where bidder i’s bid is changed to b′i = v+
j > bi (note also that

b′i < vi because vi > vj). By Observation 2, this deviation causes the other coalition to

move bidder j (and any other members with with values below b′i) below bidder i, reducing

their bids to no more than b′i. Consequently, bidder i gains at least one position, which

happens at a price that is less than vi. Therefore, bidder i’s payoff increases by (at least)

(vi − b′ρ(i)−1
i − xρ(i)) > 0. The deviation is thus profitable.

This completes the proof that the top bidder of each coalition must occupy its efficient

position and will therefore bid its true value (by the assumed equilibrium selection).

We now can repeat the above arguments for all remaining coalition bidders until all

of their bids are fixed. We have thus proved that the only possible equilibrium has all

bidders placed efficiently, with bids as specified in the theorem statement.

We next verify that this candidate is in fact an equilibrium when no members of

different coalitions are adjacent. Note that for the top bidders of both coalitions this

is equivalent to checking that they do not have any individually profitable deviations

(because their bids and positions relative to bidders outside of their coalition do not

affect the payoffs of the other members off their coalition), and for non-top bidders any

deviation must also be weakly profitable individually, as they are already held to their

outside options in the candidate equilibrium. Also, because inefficient reversals within a

coalition are never profitable for the coalition, we need to consider only deviations that

preserve ranking within a coalition. Now, for deviations upward consider any coalition

bidder i such that the bidder directly above is not a member of the same coalition. If

i is its coalition’s top bidder, then bi = vi and hence bj > bi = vi for all bidders above

i. Then the standard EOS argument shows that i does not have a profitable deviation

upwards. If i is not a top bidder, then, by assumption, the bidder directly above i (that is,

bidder i− 1) is a higher-valued independent, so bi−1 = vi−1 > vi, and again bj ≥ bi−1 > vi

for all bidders above i. The standard EOS argument again shows that i does not have

a profitable deviation upwards. For deviations downward consider any coalition bidder

i such that the bidder directly below is not a member of the same coalition. If i is its

coalition’s top bidder, then bi = vi and hence bj < bi = vi for all bidders below i. Then

the standard EOS argument shows that i does not have a profitable deviation downwards.

If i is not a top bidder, then, by assumption, the bidder directly below i (that is, bidder

i + 1) is a lower-valued independent, so bi+1 = vi+1 < vi, and again bj ≤ bi+1 < vi for

all bidders below i. The standard EOS argument again shows that i does not have a

profitable deviation downwards. This completes the proof of the theorem.

Finally, we show that there is no equilibrium if there are any cases where non-top

members of different coalitions are adjacent to each other. That is, suppose that vi ∈ Cj
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and vi+1 ∈ Ck 6= Cj , with vi 6= minCj and vi+1 6= minCk. By the first part of the

proof, we know that the only candidate equilibrium has i and i+1 placed in their efficient

positions, with bi+1 = b+i+2 < vi+1 and bi = b+i+1 < vi+1 (recall that the statement about

the magnitudes of the bids follows from Observation 1 about the best-response functions).

However, it is obvious that bi+1 is not a (static) best response to bi: if, holding bj fixed, Ck

deviates to setting b′i+1 = b+i , i+1’s individual payoff increases by (vi+1−bi)(xi−xi+1) > 0,

without perceptibly increasing the payoff of other members of Ck. Thus, bi+1 /∈ BRk(bCj ),

i.e., we are not in a RAE.
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