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1 Introduction

Financial economists have been looking for variables that predict future stock returns
for as long as there have been financial economists. For example, Banz (1981) used
market cap to predict future returns, Jegadeesh and Titman (1993) used lagged re-
turns, and Cohen and Frazzini (2008) used customer earnings surprises. To find these
sorts of variables, researchers have to solve two distinct problems: identification and
estimation. First, they have to identify a subset of candidate predictors; then, they
have to estimate the quality of these predictors.

In the past, researchers typically reached for a different set of tools when working
on each of these problems, using their intuition to identify predictors and statistics to
estimate quality. This two-pronged approach works well when you are only looking for
steady long-lived predictors. For example, Cabot Oil & Gas’s lagged return predicted
its future return at the 1-minute horizon throughout October 2010. Because it formed
such a steady long-lived predictive relationship, a researcher could intuit this variable
and then estimate its quality with an ordinary least-squares (OLS) regression:

rt−` = α̂ + β̂ · xt−(`+1) + εt−` ` ∈ {0, . . . , L− 1} (1)

Above, rt is Cabot’s minute-t return, α̂ is its mean return, L is the length of the
estimation window, xt−1 is Cabot’s lagged return standardized to have mean zero and
unit variance during the estimation window, and β̂ is the associated OLS coefficient.

But, modern financial markets are big, fast, and complex. Predictability now
exists at scales that are not easy for a researcher to intuit. For instance, the lagged
returns of Family Dollar Corp. were a significant predictor for 20% of the oil-and-gas
industry—including Cabot Oil & Gas—during a 50-minute stretch on October 6th,
2010. Can a researcher really fish this particular variable out of the sea of spurious
predictors using only his intuition? Of course not.

And, without a clear idea of which candidate predictors to test, a researcher
cannot use the OLS regression in Equation (1) to estimate the amount of cross-stock
predictability. There were 2,191 NYSE-listed stocks in October 2010. So, using an
OLS regression to estimate the relationship between Cabot’s current return and the
lagged returns of every one of these candidate predictors would require at least 2,191

observations—or, nearly 6 trading days! A researcher cannot wait 6 days to identify
a signal that lasts less than an hour.

Motivated by this problem, we apply the Least Absolute Shrinkage and Selection
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Operator (LASSO) rather than intuition to identify unexpected short-lived predictors,
such as the lagged returns of Family Dollar Corp. We find that using the LASSO
increases both out-of-sample fit and forecast-implied Sharpe ratios, and we show that
this out-of-sample success comes from identifying predictors that are unexpected,
short-lived, and sparse. Finally, we document that these predictors are often the
lagged returns of stocks with news about fundamentals. In other words, although the
unexpected short-lived predictors that the LASSO identifies are not easy to intuit,
they are still economically meaningful.

The LASSO. We begin our analysis by describing both how the LASSO works and
why we use it. We are motivated by a simple observation. As researchers, we cannot
use our intuition to identify predictors that are sufficiently unexpected and short-
lived—at some point, our brains just do not work fast enough. So, to incorporate
these sorts of signals into our return forecasts, we need some other way to solve the
identification problem described above.

One popular approach is to assume that there are only a handful of important
predictors at any one point in time—that is, to bet on sparsity. Morally speaking,
if only S � 2,191 predictors are important for forecasting Cabot’s returns, then you
should only need a few more than S observations to identify and estimate this sparse
set of predictors. Under this assumption, a researcher trying to forecast the returns of
Cabot Oil & Gas can use the LASSO to incorporate unexpected short-lived signals,
such as the lagged return of Family Dollar Corp.

Using the LASSO means solving the following optimization problem:

α̃, β̃ = arg min
α,β∈R2,192

{
1

L
·
L−1∑
`=0

(
rt−` − α−

2,191∑
n′=1

βn′ · xn′,t−(`+1)

)2

+ λ ·
2,191∑
n′=1

|βn′ |
}

(2)

Just like in Equation (1), L is still the length of the estimation window, rt is still
Cabot’s minute-t return, and α̃ is still its mean return. But, there are two differences.
Now, the optimization problem includes the lagged returns of all N > 1 NYSE-listed
stocks instead of just Cabot’s lagged return. And, there is a new penalty function,
λ ·∑n′ |βn′ |. Note that we will use t̃ildes rather than ĥats to distinguish LASSO
coefficient estimates from the corresponding OLS coefficient estimates.

Although this equation looks complicated at first, it is not. It is a simple extension
of the OLS regression in Equation (1). In fact, if you were to ignore the right-most
term—the penalty function, λ ·∑n′ |βn′ |—then it would simply be an OLS regression.
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The Univariate LASSO
Figure 1: x-axis: OLS estimate, β̂.
Solid line: LASSO estimate, β̃, given the
penalty parameter, λ. Dotted line: y = x.
(Reads) “If the OLS estimate is more
extreme than the LASSO’s penalty pa-
rameter, |β̂| > λ, then the LASSO es-
timate will be a shrunken version of the
OLS estimate, |β̃| = |β̂| − λ > 0. But,
if the OLS estimate is less extreme than
the LASSO’s penalty parameter, |β̂| ≤ λ,
then the LASSO estimate will be precisely
zero, β̃ = 0.”

But, it is this penalty function that allows the LASSO to exploit a bet on sparsity.
To see why, consider the solution to Equation (2) when there is only N = 1

predictor, like in Equation (1), instead of N = 2,191:

β̃ =

Sign[β̂] · (|β̂| − λ) if |β̂| > λ

0 otherwise
(3)

Above, Sign[z] = z/|z| and β̂ represents the OLS coefficient computed in Equation
(1). Equation (3) shows that, if the OLS coefficient is more extreme than the LASSO’s
penalty parameter, |β̂| > λ, then the LASSO will estimate a shrunken version of the
OLS coefficient, |β̃| = |β̂| − λ > 0. Whereas, if the OLS coefficient is less extreme
than the LASSO’s penalty parameter, |β̂| ≤ λ, then the LASSO will estimate a value
of precisely zero, β̃ = 0. Figure 1 depicts this relationship. Thus, if the unexpected
short-lived predictors are sparse—that is, if only S ≤ L of these predictors are more
extreme than λ—then the LASSO will only have to estimate the S ≤ L coefficients
larger than λ. And, as a result, a researcher can use the LASSO to incorporate these
signals into his return forecast using a few more than S observations.

Out-of-Sample Performance. After describing how and why we use the LASSO to
bet on sparsity, we next investigate whether this bet pays off. To do this, we evaluate
1-minute-ahead return forecasts for a randomly chosen subset of 250 NYSE-listed
stocks on each trading day from January 2005 to December 2012. As a benchmark,
we start with forecasts made via OLS regressions that include only steady long-lived
predictors, such as a stock’s own lagged returns or the lagged returns on the market.
In our main specifications, we study 1-minute-ahead return forecasts created using
3 lags of various steady long-lived predictors, but the exact number of lags does not
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qualitatively affect our results.
We then apply the LASSO to make these same 1-minute-ahead return forecasts

using the lagged returns of all 2,000+ NYSE-listed stocks during the previous 3

minutes as candidate predictors. We find that using the LASSO in addition to a
standard benchmark model increases out-of-sample fit by at least ∆R̄2

n = 1.2%pt
relative to just using the benchmark model by itself. A 1.2%pt increase might seem
small, but remember that we are making 1-minute-ahead return forecasts. And, at
short horizons, small increases in “R2 statistics can generate large benefits for investors
(Campbell and Thompson, 2008, p. 1526)”. To highlight this point, we convert the
LASSO’s 1-minute-ahead return forecasts into a forecast-implied trading strategy and
document that this forecast-implied strategy generates an annualized Sharpe ratio of
1.8 net of trading costs.

At this point, it is important to emphasize two things about these results. The
first is that we are running out-of-sample tests. It should not be surprising that the
LASSO has better in-sample fit than an OLS regression. The LASSO can choose from
over 3 ·N ≈ 6,000 candidate predictors; in a 30-minute estimation window, an OLS
regression is restricted to fewer than 30. But, there is no guarantee that the LASSO’s
better in-sample fit will translate into better out-of-sample fit. This will only happen
if the cross-section of returns actually contains a sparse collection of S < 30 signals.
If there are no signals to be found or if there are more than 30 signals, then using the
LASSO will not help.

The second is that our results do not imply that researchers should use the LASSO
instead of the standard two-pronged approach—that is, instead of their intuition. As
a researcher, if you can use your economic intuition to identify a steady long-lived
predictor, such as a stock’s own lagged returns, then an OLS regression is the right way
to incorporate this predictor into your return forecast (Abadie and Kasy, 2017). But,
the Bible does not say that all sources of return predictability should make intuitive
sense.1 And, the fact that using the LASSO and a benchmark model increases out-
of-sample fit relative to just using the benchmark model suggests that researchers
are ignoring important sources of predictability at the 1-minute horizon when they
restrict their attention to steady long-lived predictors that they can suss out using
nothing more than their intuition.

1Original quote by Enrico Fermi: “The Bible does not say that all laws of nature are expressible
linearly.” Found in: Ulam, S (1976). Adventures of a Mathematician. New York: Scribners.
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Predictor Analysis. After seeing that the LASSO increases out-of-sample fit, a
natural next question is: What do the predictors selected by the LASSO look like?
Consistent with our original motivation, we find that the predictors selected by the
LASSO are unexpected, short-lived, and sparse.

We begin by looking at why the predictors are unexpected. When we examine the
LASSO’s cross-validated penalty parameter, we find that it has an average value of
λ = 2.5% per month. In other words, the LASSO ignores any predictor weaker than
2.5% per month when making its 1-minute-ahead return forecasts. This lower bound
is twice as large as well-known predictors at the weekly and monthly horizon docu-
mented in the academic literature (McLean and Pontiff, 2016; Harvey et al., 2016;
Linnainmaa and Roberts, 2016). As a result, there is little correlation between the
predictors identified by the LASSO each minute and existing predictors documented
in the academic literature, which makes the LASSO’s choice of predictors seem un-
expected. In addition, the predictors selected by the LASSO are also short-lived and
sparse. Less than 5% of the predictors selected by the LASSO are used for more than
15 minutes in a row. And, on average the LASSO uses the lagged returns of only 12.7

other stocks as predictors when making its return forecast for each stock.

Economic Origins. We conclude our analysis by investigating the economic, rather
than statistical, origins of the LASSO’s success. This is important because the LASSO
uses a purely statistical rule to identify candidate predictors that are too unexpected
and short-lived to be pinned down by economic intuition alone. And, because it does
not rely on a researcher’s intuition, the LASSO’s increase in out-of-sample fit could
in principle have nothing to do with economic fundamentals. For example, it could
be the case that the LASSO’s increase in out-of-sample fit comes from identifying
statistical artifacts. But, this is not what we find in the data. We document that the
LASSO tends to identify as predictors the lagged returns of stocks with news about
fundamentals. In other words, although the unexpected short-lived predictors that
the LASSO identifies are not easy to intuit, they are still economically meaningful.

1.1 Literature

This paper builds on several strands of the asset-pricing and statistics literature.

Predictability. To start with, our paper relates to work on return predictability
(McLean and Pontiff, 2016; Harvey et al., 2016; Linnainmaa and Roberts, 2016).
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Campbell and Thompson (2008) shows that many of the predictors documented in
the academic literature work much better in sample. And, DeMiguel et al. (2009)
documents that simpler predictive regressions perform better out of sample due to
overfitting. The LASSO avoids this overfitting problem by using a penalty function
that removes all but the strongest predictors.

Sparsity. Our paper also relates to work on the role of sparsity in financial eco-
nomics. For example, Gabaix (2014) proposes that traders prune away the least im-
portant predictors when forming mental models by internally imposing an `1 penalty.
Chinco (2015) shows that, if traders have to uncover sparse signals in market data,
then there are information-theoretic limits to how quickly they can interpret what
the market is telling them.

The LASSO. In addition, this paper builds on a large body of work looking at
the performance of penalized regressions, such as the LASSO. The LASSO was first
introduced in Tibshirani (1996). See Hastie et al. (2001) for a general introduction.
Meinshausen and Yu (2009) shows how LASSO-type estimators extend to settings
with correlated right-hand-side variables.

There are several excellent papers applying these ideas to topics in financial eco-
nomics. For example, DeMiguel et al. (2009) explains why norm-constrained esti-
mators will perform better out of sample in the presence of estimation error. Both
Freyberger et al. (2017) and Feng et al. (2017) use the LASSO to identify char-
acteristics related to the cross-section of expected returns at the monthly horizon.
Bryzgalova (2017) develops a new model-specification test by imposing an `1-penalty
function. And, Kozak et al. (2017) shows that using `1- and `2-penalized regressions
to forecast returns can increase forecast-implied Sharpe ratios using monthly data.

Our paper differs from these other financial applications of the LASSO in an im-
portant way. These papers are using the LASSO to choose between various predictors
that have already been identified by other researchers using the standard two-pronged
approach. By contrast, we are studying a situation where the standard two-pronged
approach simply does not apply. A researcher cannot use his intuition to identify
candidate predictors that are sufficiently unexpected and short-lived. And, without
a clear idea of which candidate predictors to test, a researcher cannot use an OLS
regression to incorporate these cross-stock signals into his return forecasts. So, we are
suggesting the LASSO should be used as a complement to existing methods—that is,
a way for researchers to analyze unexpected short-lived predictors that they would
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not otherwise have access to using existing methods.

News. Finally, our paper relates to the literature looking at the relationship be-
tween news and asset prices. Brogaard et al. (2014) show that algorithmic traders’
orders predict price changes over very short horizons and are correlated with macroe-
conomic news announcements. And, Manela and Moreira (2017) uses news to form
an uncertainty index and shows that it is related to expected returns. Theoretical
models of algorithmic trading (e.g., Hoffman, 2014; Foucault et al., 2016; Du and
Zhu, 2016) focus on this ability to react to news announcements faster for individual
firms. By contrast, our results suggest that the LASSO success comes from quickly
identifying the unexpected consequences of news announcements for other firms.

1.2 Notation

Throughout our analysis, Greek letters will denote in-sample parameter values. A
superscript star? will denote a parameter value from the true data-generating process.
A ĥat will denote an in-sample OLS estimate of the true parameter value during a
particular 30-minute estimation window, and a t̃ilde will denote the corresponding
in-sample LASSO estimate. Although these in-sample estimates are functions of the
particular 30-minute estimation window they were estimated in, we will not include
an estimation-window subscript to avoid clutter. Boldface characters will denote
vectors. Finally, we will use a bar to denote out-of-sample parameter estimates.

2 The LASSO

We now outline both how the LASSO works and why we use it.

2.1 Motivation

To see why we use the LASSO to make 1-minute-ahead return forecasts, consider the
following data-generating process for the nth stock’s returns in minute t.

Data-Generating Process. Suppose that the nth stock’s return in minute t could
be related to the lagged returns of any of the other N stocks in the market during
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the previous 3 minutes:

rn,t = α?n +
3·N∑
n′=1

β?n,n′ · xn′,t−1 + ε?n,t (4)

In the equation above, α?n is the mean return of the nth stock, and ε?n,t is a noise term
with E[ε?n,t] = 0 and Var[ε?n,t] = σ2

ε . Since we are considering as predictors the lagged
return of each NYSE-listed stock during the previous 3 minutes, we now use xn′,t−1

to denote the value of one of these 3 · N predictors standardized to have mean zero
and unit variance during the estimation window. The parameter β?n,n′ is then the
predictive power of the n′th predictor for the nth stock’s returns. In our empirical
analysis, we will be making 1-minute-ahead return forecasts for many different stocks,
not just for Cabot Oil & Gas. So, from now on, we will include an n subscript to
denote which stock we are interested in forecasting.

Unexpected and Short-Lived. If the predictive relationship embodied by β?n,n′ is
steady and long-lived, then it is reasonable to think that a financial economist could
intuit this connection. After all, researchers have used their intuition to uncover
hundreds if not thousands of cross-sectional return predictors (McLean and Pontiff,
2016; Harvey et al., 2016; Linnainmaa and Roberts, 2016). And, if a researcher can
intuit a candidate predictor, then he can use an OLS regression to estimate the quality
of this predictor. This is the standard two-pronged approach to finding predictors
mentioned in the introduction.

But, if a researcher cannot use his intuition to narrow down the list of candidate
predictors, then an OLS regression is no longer a viable option. For example, to
estimate all 3 ·N of the cross-stock predictive relationships in Equation (4) using an
OLS regression, you would have to solve the optimization problem below

α̂n, β̂n
def
= arg min

αn,βn

{
1

L
·
L−1∑
`=0

(
rn,t−` − αn −

3·N∑
n′=1

βn,n′ · xn′,t−(`+1)

)2
}

(5)

where β̂n =
[
β̂n,1 · · · β̂n,3·N

]>
is the (3 ·N × 1)-dimensional vector of slope coeffi-

cients used to forecast the returns of the nth stock.
This multivariate analogue to Equation (1) is ill-posed when there are more pa-

rameters to estimate than observations to estimate them with, (3 ·N +1) > L. There
are roughly N = 2,000 NYSE-listed stocks at any point in time, and 2,000 minutes
is roughly 6 trading days. So, if the cross-stock signal represented by β?n,n′ does not
stick around for at least 18 trading days, then there is no way for a researcher to
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estimate it using an OLS regression without making some sort of intuitive leap. If a
researcher wants to use such an unexpected short-lived predictor, then he needs to
find some other way of solving his identification problem which shortens the required
estimation window.

Betting on Sparsity. One popular approach is to assume that there are only a
handful of strong predictors at any point in time—that is, to bet on sparsity (Hastie
et al., 2001). Morally speaking, it should not require all 3 ·N observations to estimate
a coefficient vector containing mostly zeros. If Sn,λ denotes the number of predictors
for stock n that are more extreme than λn

Sn,λ
def
=

3·N∑
n′=1

1{|β?
n,n′ |>λn}

(6)

then betting on sparsity with an L-minute estimation window means assuming that:

Sn,λ ∈ {1, 2, . . . , L− 1} (7)

It is important to note that this bet is not guaranteed to succeed. There are two
ways for the data to be non-sparse. First, if Sn,λ = 0, then there are no predictors
to find. Second, if Sn,λ ≥ L, then the predictors are dense, meaning that there is
no way to consistently estimate the relationship between all these predictors and the
nth stock’s returns in an L-minute estimation window no matter what approach you
take. Either way, if the predictors are not sparse, then a researcher’s bet on sparsity
will not pay off.

Why Sparsity Helps. Before getting to any more math, let’s pause for a moment
and build some intuition about why betting on sparsity might help. Suppose you are
standing on a beach, and you are trying to figure out whether a dark spot you see on
the horizon is a sailboat or a cloud. A natural human reaction in this situation is to
squint. But, why are our brains wired this way? After all, by squinting and slightly
closing your eyes, you are removing information and making it harder to see colors
and quick movements.

The key insight is that colors and quick movements are not going to tell you much
about the nature of the mysterious blob on the horizon. Sailboats and clouds are
both going to be dark and slow moving at this distance. So, in essence, squinting
penalizes these weak predictors. When you squint, the only things left for you to see
are the most relevant details for the question you are trying to answer: Is the blob
triangular? Does it have a mast? And, by ignoring extraneous details, you will be
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able identify the nature of the object on the horizon at a much greater distance.
But, this approach will only work if you can answer your question using only a

handful of strong predictors. For instance, squinting will do you no good when trying
to figure out whether the sailboat is flying a British or American flag. Both of these
flags use the same colors. Distinguishing between these two possibilities will require
many subtle cues about how the colors are organized. No amount of squinting will
help you resolve these subtle differences. You will just have to wait until the sailboat
gets closer and get a better look.

Subset Selection. Most economists are familiar with the Akaike information cri-
terion (AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz,
1978). These criteria are examples of a particular way of solving the selection prob-
lem known as best-subset selection. They both impose a penalty that eliminates
weak predictors—just like in the example above—by solving the following optimiza-
tion problem for different choices of λn:

min
αn,βn

{
1

L
·
L−1∑
`=0

(
rn,t−` − αn −

3·N∑
n′=1

βn,n′ · xn′,t−(`+1)

)2

+ λn ·
3·N∑
n′=1

1{βn,n′ 6=0}

}
(8)

If λn = 2 ·σε, then solving this problem above is equivalent to using the AIC; whereas,
if λn = 2 ·σε · log(L), then it is equivalent to using the BIC (Foster and George, 1994).

So, why not use the AIC or the BIC to identify unexpected short-lived predictors
in the cross-section of returns? The problem with these criteria is that they “are highly
impractical (Candes and Plan, 2009, p. 2146)” when choosing among many variables.
When solving the optimization problem in Equation (8), there is a fixed λn penalty
for moving βn,n′ any distance away from zero, no matter whether it is an inch or a
mile. And, this hard threshold implies that the optimization problem in Equation (8)
is non-convex and thus NP hard (Natarajan, 1995), requiring an exhaustive search
over all possible subsets of 23·N predictors.

To give a sense of the difficulty of this combinatorial-search problem, note that
WiFi networks are considered secure because cracking a 128-bit passcode would in-
volve a brute-force search over 2128 parameter values. Such a search would take 1

billion billion years (Arora, 2012). So, running more than 26,000 regressions is out of
the question.

Convex Relaxation. The difficulty of this combinatorial-search problem is what
brings us to the LASSO. The LASSO, whose name is an acronym for least absolute
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Estimation and Forecast Timing

11:30 11:31 11:32 11:57 11:58 11:59 12:00

t− 29 t− 28 t− 27 t− 2 t− 1 t t+ 1

Estimate coefficients
using data from
previous 30 minutes.

Use estimated coef-
ficients to build fore-
cast for 31st minute.

Figure 2: To make our 1-minute-ahead forecast for the nth stock’s return in minute
(t + 1) = 12:00, we first estimate a model using data from the previous 30 minutes,
{11:30, . . . , 11:59}. Then, we apply the estimated coefficients to the most recent 3-minutes
of data, {11:57, 11:58, 11:59}. We use fLASSO

11:59 to denote this forecast for the nth stock’s
return in minute 12:00, because it only uses information up to minute 11:59.

shrinkage and selection operator, offers a way to solve this subset-selection problem
that gets around the computational roadblock associated with AIC and BIC. The
LASSO does this by changing the penalty function in Equation (8) slightly:

α̃n, β̃n
def
= arg min

αn,βn

{
1

L
·
L−1∑
`=0

(
rn,t−`−αn−

3·N∑
n′=1

βn,n′ ·xn′,t−(`+1)

)2

+λn ·
3·N∑
n′=1

|βn,n′ |
}

(9)

The optimization problem in Equation (8) uses the penalty 1{βn,n′ 6=0} while the prob-
lem in Equation (9) uses the penalty |βn,n′ |. This is the only difference between the
two optimization problems. But, this difference convexifies the problem (Efron and
Hastie, 2016, p. 308). And, “if we can formulate a problem as a convex optimization
problem, then we can solve it efficiently. . . with only a bit of exaggeration, we can say
that, if you formulate a practical problem as a convex optimization problem, then
you have solved the original problem (Boyd and Vandenberghe, 2004, p. 9).”

2.2 Implementation

With this motivation in mind, let’s now examine the details of how we use the LASSO
to make 1-minute-ahead return forecasts in rolling 30-minute estimation windows
using the entire cross-section of lagged returns as candidate predictors.

LASSO Forecasts. Prior to the start of each trading day, we choose 250 stocks at
random. Then, for each stock n in this collection of 250, we solve the optimization
problem in Equation (9) in R using the glmnet package (Friedman et al., 2010) in
rolling (L = 30)-minute estimation windows. As predictors, we consider the lagged
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returns of all NYSE-listed stocks during the previous 3 minutes, including the lagged
returns of stock n itself. This means solving an estimation problem with 3 ·N ≈ 6,000

right-hand-side variables using only 30 observations, something that would clearly
be impossible within an OLS-regression framework. We generate a 1-minute-ahead
return forecast, fLASSO

n,t , for the nth stock’s return in minute (t + 1) by applying
the LASSO-coefficient estimates from the previous 30 minutes to the most recent 3

minutes of data:

fLASSO
n,t

def
= α̃n +

3·N∑
n′=1

β̃n,n′ · xn′,t (10)

Figure 2 summarizes this procedure for creating 1-minute-ahead return forecasts.

Penalty Parameter. There is a clear choice for λn in best-subset-selection proce-
dures like the AIC and the BIC. The LASSO convexifies these problems, making them
computationally tractable in settings with thousands of predictors. But, outside of
special cases, there is no theoretically optimal value for λn when using the LASSO.
So, we follow the standard procedure (Hastie et al., 2001) and choose λn on a stock-
by-stock basis in each 30-minute estimation window via K-fold cross-validation.

Alternative Penalties. The LASSO is not the only way to convexify the best-
subset-selection problem in Equation (8). Researchers have proposed alternative pro-
cedures, such as the adaptive LASSO (Zou, 2006) or the elastic net (Zou and Hastie,
2005). These procedures represent interesting variations on the LASSO, but we focus
on the LASSO for a simple reason: we want to show that it is possible for researchers
to incorporate unexpected short-lived signals into their existing return forecasts using
a statistical selection rule rather than their intuition. To accomplish this goal, it is
best to use the simplest possible version of one of these rules—namely, the LASSO.

Benchmark Forecasts. Finally, in the section below, we show that using 1-minute-
ahead return forecasts from both the LASSO and a standard benchmark model in-
creases out-of-sample fit relative to just using the return forecast from the benchmark
model. To construct these benchmark forecasts, we run OLS regressions that include
a wide range of steady long-lived predictors. We estimate each of these regressions in
the exact same rolling 30-minute estimation windows described above. We then com-
pute our benchmark 1-minute-ahead return forecasts, fBmk

n,t , by applying the resulting
OLS estimates to the most recent 3 minutes of data. In our main specifications, we
use benchmark models with 3 lags of each predictor, but we show that the exact
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number of lags does not qualitatively affect the results.

3 Out-of-Sample Performance

This section investigates whether it pays to bet on sparsity with the LASSO. This
means testing whether using both the LASSO and a benchmark model to forecast
returns increases out-of-sample fit relative to just using the benchmark model.

3.1 Data Description

Our tests incorporate data from several different sources.

1-Minute Returns. We get data on the 1-minute returns of NYSE-listed stocks
from the Trade and Quote (TAQ) database. Our sample includes every trading day
from January 2005 to December 2012. We remove stocks with prices below $5 at
the previous day’s close. While we consider the entire cross-section of NYSE-listed
stocks as candidate predictors, we only make 1-minute-ahead return forecasts for a
randomly selected subset of 250 stocks each day for computational reasons.

Because we use a 30-minute estimation window and 3 lags, the first 1-minute-
ahead return forecast each day is at t = 10:04am. To avoid distortions due to the
NYSE closing auction, we also drop the last minute of each trading day from our
sample. This means that we make 356 separate 1-minute-ahead return forecasts,
t ∈ {10:04am, . . . , 3:59pm}, for each of the randomly selected 250 stocks during each
day. In other words, each stock-day contains 356 · 250 = 64,000 forecasts.

Benchmark Predictors. We consider multiple steady long-lived predictors when
making our benchmark 1-minute-ahead return forecasts. In autoregressive specifi-
cations, a stock’s lagged returns come from the TAQ data described above. When
a specification involves the lagged returns on a portfolio (market, size, or value),
we use the 1-minute returns of exchange-traded funds (ETFs). The market return
corresponds to the return on the iShares market ETF. And, size and value returns cor-
respond to the returns on the iShares Russell 1000 and 2000 value and growth ETFs.
When a specification involves lagged industry returns, we construct a value-weighted
return for the corresponding 3-digit SIC industry.

Control Variables. We look at how the LASSO’s increase in out-of-sample fit
varies across stocks with different firm characteristics using data from CRSP. Market
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capitalization is defined at the close of the previous trading day. Trading volume is
defined as the total trading volume on the previous trading day. Return volatility is
defined as the volatility of 1-minute returns during the previous trading day. And,
bid-ask spread is the average bid-ask spread during the previous trading day.

Daily Factors. Finally, to compute the abnormal returns, we use data on the daily
excess returns of factor portfolios from Kenneth French’s website.2

3.2 Out-of-Sample Fit

Before thinking about increases in out-of-sample fit, let’s start by asking: How much
return variation can the LASSO explain? This estimate will provide an upper bound
on the LASSO’s increase in out-of-sample fit because some of the return variation
explained by the LASSO might already be explained by an existing benchmark model.

Econometric Approach. To answer this question, we estimate a suite of predictive
regressions:

rn,t+1 = ān + b̄n ·
(
fLASSO
n,t −m̄LASSO

n

s̄LASSO
n

)
+ en,t+1 (11)

In the equation above, rn,t+1 is the nth stock’s realized return in minute (t+1), fLASSO
n,t

is the LASSO’s 1-minute-ahead return forecast for minute (t+1), m̄LASSO
n and s̄LASSO

n

denote the mean and standard deviation of the LASSO’s 1-minute-ahead return fore-
casts for the nth stock on a given day, ān and b̄n denote out-of-sample regression
coefficients, and en,t+1 is the forecasting error. We estimate a separate regression for
each of the 250 randomly selected stocks on a given trading day, which means that
each regression contains 356 observations. And, we normalize the LASSO’s 1-minute-
ahead return forecasts to have mean zero and unit variance so that we can compare
the slope coefficients, b̄n, across different regressions.

For each predictive regression, we then measure the fraction of the variation in
a stock’s 1-minute returns on a given day that is explained by the LASSO using
the adjusted R2 statistic. At one extreme, an adjusted R̄2

n = 100% means that the
LASSO’s 1-minute-ahead return forecast, fLASSO

n,t , explains all of the variation in a
stock’s returns. Whereas, at the other extreme, an adjusted R̄2

n = 0% means that
fLASSO
n,t explains none of this variation.

Empirical Results. Table 1 summarizes the results of the suite of predictive re-
2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

15

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Out-of-Sample Fit, The LASSO

Mean 95% CI

ān [%/m] 0.002
(0.002)

·

b̄n [%/m] 1.433
(0.017)

[1.399, 1.467]

R̄2
n [%] 2.467

(0.027)
[2.414, 2.520]

R̄2
n

1%

2%

3%

4%

5%

‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13

Table 1: The LASSO’s out-of-sample fit. (Sample) Results of predictive regressions run
at the stock-day level for 250 randomly chosen stocks on each trading day from January 2005
to December 2012. (Left) Population averages for regression coefficients and adjusted R2

statistic. Numbers in parentheses are standard errors clustered by stock-day. 95% CI reports
95%-confidence intervals for population averages. (Right) Average adjusted R2 statistic
each month with the dashed line representing R̄2

n = 2.467%. Grey bands denote the 99.9%
confidence interval computed using standard errors clustered by stock-day. (Reads) “On
average, the LASSO’s 1-minute-ahead return forecast explains 2.467% of the variation in a
stock’s returns on a given day. And, the LASSO explains at least 1% of the variation in
returns during every month in our sample.”

gressions that we run. On average, the LASSO’s 1-minute-ahead return forecast
explains 2.467% of the variation in a stock’s 1-minute returns on a given day. The
95%-confidence interval shows that this point estimate is statistically different from
zero. We two-way cluster the standard errors at the stock-day level to account for the
possibility that the LASSO might do a better job of forecasting returns for particular
stocks or on particular trading days. The figure on the right of Table 1 reveals that,
while there is some time-series variation in the LASSO’s out-of-sample fit, the LASSO
explains at least 1% of the variation in returns during every month in our sample.

3.3 Increase in Out-of-Sample Fit

Of course, we are not directly interested in the LASSO’s out-of-sample fit in an
absolute sense. Our goal is to show that using the LASSO in addition to a benchmark
model increases out-of-sample fit relative to just using the benchmark model. We are
interested in increases in out-of-sample fit not the level of out-of-sample fit itself.

Illustrative Example. Consider an example showing why this distinction is impor-
tant. Recall that the LASSO can identify a stock’s own lagged returns as candidate
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predictors. So, in principle, the LASSO could be doing nothing more than replicating
the 1-minute-ahead return forecast of an autoregressive model with 3 lags. If this
were the case, then the LASSO would have significant out-of-sample fit in an abso-
lute sense. But, it would not provide any additional information over and above what
was already contained in the AR(3) model. To justify using the LASSO, we need to
show that the 2.467% of the return variation explained by the LASSO is not already
explained by an existing benchmark model. In other words, we need to show that
using the LASSO increases out-of-sample fit.

Econometric Approach. We do this by elaborating on the methodology described
above. First, we estimate the out-of-sample fit of a benchmark model just like we did
for the LASSO:

rn,t+1 = ān + c̄n ·
(
fBmk
n,t −m̄Bmk

n

s̄Bmk
n

)
+ en,t+1 (12)

In the specification above, rn,t+1 is the nth stock’s realized return in minute (t + 1),
fBmk
n,t is the 1-minute-ahead return forecast for this stock’s minute-(t + 1) return
generated by some benchmark model, m̄Bmk

n and s̄Bmk
n denote the mean and standard

deviation of the benchmark model’s 1-minute-ahead return forecasts, ān and c̄n are
out-of-sample regression coefficients, and en,t+1 is the benchmark forecasting error.

Then, to see if the LASSO increases out-of-sample fit relative to this benchmark
model, we estimate a second specification that includes both fLASSO

n,t and fBmk
n,t :

rn,t+1 = ān + b̄n ·
(
fLASSO
n,t −m̄LASSO

n

s̄LASSO
n

)
+ c̄n ·

(
fBmk
n,t −m̄Bmk

n

s̄Bmk
n

)
+ en,t+1 (13)

If including the LASSO’s 1-minute-ahead return forecast increases the adjusted R2

statistic, ∆R̄2
n

def
= R̄2,Both

n − R̄2,Bmk
n , then we know that the LASSO must be capturing

new information that is not already present in the benchmark model’s 1-minute-ahead
return forecast.

At one extreme, if the LASSO and the benchmark model are using totally different
information sets to create their respective 1-minute-ahead return forecasts, then we
will estimate ∆R̄2

n = 2.467%pt. At the other extreme, if the LASSO is just replicating
the 1-minute-ahead return forecast of the benchmark model, then we will estimate
∆R̄2

n = 0%pt. We are working with increases not levels. And, because we are studying
percentage-point increases in adjusted R2, we can use the analysis in Giacomini and
White (2006) to evaluate statistical significance (see Appendix B).

Empirical Results. Table 2 summarizes the LASSO’s increase in out-of-sample

17



fit relative to a variety of different benchmark models. The first row reveals that 1-
minute-ahead return forecasts made using an AR(3) model explain R̄2,Bmk

n = 7.365%

of return variation on average. The out-of-sample fit of this benchmark model is
larger than the LASSO’s out-of-sample fit. But, we are not suggesting that researchers
should use the LASSO instead of their preferred benchmark model. We are suggesting
that researchers should use the LASSO in addition to their preferred benchmark
model. And, by using the LASSO in addition to this benchmark model, we estimate
that a researcher could explain an additional ∆R̄2

n = 1.185%pt of the variation in
returns. The Giacomini and White (2006) p-value shows that such a large increase
in out-of-sample fit is highly unlikely under the null hypothesis that ∆R̄2

n = 0%pt.
The second row of Table 2 performs the exact same exercise, only this time relative

to a benchmark model using 3 lags of the market return. This market benchmark
performs much worse than the AR(3) benchmark, explaining only R̄2,Bmk

n = 0.311%

of the variation in returns. And, the 1-minute-ahead return forecasts coming from
the market benchmark use totally different information than those coming from the
LASSO. The point estimate of ∆R̄2

n = 2.469%pt is identical to our original estimate
for R̄2,LASSO

n = 2.467% to within 1 part in 500. What’s more, the third row shows that
a combined benchmark model that uses a stock’s own returns as well as the market’s
returns does not improve on the simple AR(3) benchmark.

Alternative Lag Structures. The next four rows in Table 2 examine the LASSO’s
increase in out-of-sample fit relative to alternative AR(1), AR(2), AR(4), and AR(5)

benchmark models. The AR(3) benchmark has the highest out-of-sample fit, so we use
it in our main specifications. But, the LASSO increases out-of-sample fit by roughly
∆R̄2

n = 1.2%pt regardless of the number of lags used in the benchmark model. In
fact, the row labeled “AR(h?)” shows that the LASSO still increases out-of-sample fit
by ∆R̄2

n = 1.1%pt relative to an autoregressive benchmark model where the number
of lags has been optimally chosen within each 30-minute estimation window using the
Bayesian information criteria.

Including Portfolio Returns. Finally, the last three rows in Table 2 show that
the LASSO’s increase in out-of-sample fit persists even when the benchmark model
includes lagged industry and risk-factor returns. In particular, the last row examines
the LASSO’s increase in out-of-sample fit relative to a benchmark model that includes
3 lags of the market’s returns, 3 lags of a stock’s industry’s returns, 3 lags of a
size portfolio’s returns, 3 lags of a value portfolio’s returns, and 3 lags of a stock’s
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own lagged returns. Using this benchmark model to generate 1-minute-ahead return
forecasts means estimating an OLS regression with 1 + 5× 3 = 16 coefficients in just
30 minutes of data. The fact that this more elaborate benchmark has a lower out-of-
sample fit than the simple AR(3) benchmark is evidence of overfitting. By contrast,
the fact that using the LASSO increases out-of-sample fit relative to this same AR(3)

benchmark suggests the LASSO is capturing meaningful new information.

Cross-Sectional Variation. The LASSO’s increase in out-of-sample fit does not
appear to be explained by observable differences across stocks. For example, Figure 3
shows that the LASSO’s ∆R̄2

n = 1.185%pt increase relative to the AR(3) benchmark
and its ∆R̄2

n = 2.469%pt increase relative to the market benchmark are remarkably
consistent across industries. In addition, Table 3 shows that the LASSO’s increase in
out-of-sample fit is not explained by firm characteristics such as market capitalization,
trading volume, return volatility, or bid-ask spread. In fact, the LASSO actually
increases out-of-sample fit slightly more for large, liquid, frequently traded stocks—
that is, stocks with returns that are the hardest to predict using conventional methods.

Time-Series Variation. How does the LASSO’s increase in out-of-sample fit vary
over time? The left panel of Figure 4 shows that the LASSO increased in out-of-
sample fit less during the financial crisis. This pattern is consistent with existing
research showing that returns display a stronger single-factor structure during market
downturns (Ferson and Harvey, 1991; Dangl and Halling, 2012; Kacperczyk et al.,
2014). If there is a strong single-factor structure, then there cannot be as many
unexpected, short-lived, and sparse signals in the cross-section of returns. And, if
there are not many unexpected, short-lived, and sparse signals in the cross-section of
returns, then using the LASSO should not increase out-of-sample fit by much.

The right panel of Figure 4 looks at the intraday time-series properties of the
LASSO’s increase in out-of-sample fit. To create this figure, we re-estimated the
regressions in Equations (12) and (13) 356 times each trading day using the cross-
section of all 250 forecasts. We then averaged the resulting adjusted R2 statistics
in each minute across trading days. The fact that the LASSO’s increase in out-
of-sample fit is so smooth suggests that our findings are not explained by intraday
microstructure effects.

Shrinkage Without Selection. As noted earlier, the term “LASSO” is an acronym
standing for the Least Absolute Shrinkage and Selection Operator. And, as suggested
by this name, the LASSO’s penalty function is performing two separate tasks. First,
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Increase in Out-of-Sample Fit, Main Results

R̄2,Bmk
n [%] ∆R̄2

n [%pt] p-val.

AR(3) 7.365
(0.076)

1.185
(0.012)

[1.162, 1.208] 0.000

Market 0.311
(0.003)

2.469
(0.027)

[2.416, 2.522] 0.000

AR(3), Market 5.553
(0.058)

1.424
(0.015)

[1.395, 1.453] 0.000

AR(1) 6.061
(0.052)

1.288
(0.013)

[1.263, 1.314] 0.000

AR(2) 7.309
(0.071)

1.165
(0.012)

[1.143, 1.188] 0.000

AR(4) 7.174
(0.076)

1.238
(0.012)

[1.214, 1.262] 0.000

AR(5) 6.725
(0.074)

1.307
(0.013)

[1.282, 1.332] 0.000

AR(h?) 8.031
(0.080)

1.134
(0.011)

[1.113, 1.156] 0.000

Market, Industry 0.314
(0.007)

2.436
(0.027)

[2.384, 2.489] 0.000

Market, Size, Value 0.214
(0.003)

2.443
(0.027)

[2.390, 2.496] 0.000

AR(3), Market, Industry, Size, Value 1.443
(0.015)

2.232
(0.024)

[2.184, 2.279] 0.000

Table 2: The LASSO’s increase in out-of-sample fit relative to a variety of benchmark
models measured as the percentage point increase in adjusted R2. (Sample) Regression re-
sults for a randomly selected subset of 250 stocks on each trading day from January 2005
to December 2012. (Estimates) R̄2,Bmk

n : Out-of-sample fit of a benchmark model measured
using the adjusted R2 statistic. ∆R̄2

n: The LASSO’s increase in out-of-sample fit. p-val.:
Probability of observing the realized increase in out-of-sample fit ∆R̄2

n under null hypothesis
of no increase. Numbers in parentheses are standard errors clustered by stock-day. Num-
bers in square brackets represent the 95% confidence interval for the mean. (Benchmark
Models) AR(3): 3 lags of a stock’s own returns. Market: 3 lags of the market’s returns.
AR(3), Market: 3 lags of a stock’s own returns and 3 lags of the market’s returns. AR(1):
1 lag of a stock’s own returns. AR(2): 2 lags of a stock’s own returns. AR(4): 4 lags
of a stock’s own returns. AR(5): 5 lags of a stock’s own returns. AR(h?): h? lags of a
stock’s own returns where h? is chosen within each 30-minute estimation window using the
Bayesian information criteria. Market, Industry: 3 lags of the market’s returns and 3 lags
of the stock’s industry’s returns. Market, Size, Value: 3 lags of the market’s returns, a size
portfolio’s returns, and a value portfolio’s returns respectively. AR(3), Market, Industry,
Size, Value: 3 lags of the market’s returns, a stock’s industry’s returns, a size portfolio’s
returns, and a value portfolio’s returns respectively. (Reads) “A researcher could explain
an additional ∆R̄2

n = 1.185%pt of the variation in returns by using both the LASSO and an
AR(3) model rather than just the AR(3) model alone.”
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it is selecting coefficients larger than λn. In the top panel of Table 4, we study the role
of selection in the LASSO’s increase in out-of-sample fit. We do this by examining
the LASSO’s increase in out-of-sample fit relative to alternative benchmark models
that already incorporate some form of shrinkage. If the LASSO’s increase in out-of-
sample fit were only due to coefficient shrinkage and not due to selection, then using
the LASSO in addition to one of these benchmark models should yield ∆R̄2

n = 0%pt.
We consider two different kinds of pure-shrinkage benchmarks. To start with,

we compute 1-minute-ahead return forecasts using Ridge (Hastie et al., 2001, §3.4).
The first row shows that shrinkage on its own actually results in a lower out-of-
sample fit. And, the LASSO increases out-of-sample fit relative to this pure-shrinkage
benchmark.

The second row contains a weighted average of the 1-minute-ahead return forecasts
generated by the AR(3) and market benchmarks as suggested in Rapach et al. (2010).
Consistent with their original results, we find that averaging these forecasts generates
a higher out-of-sample fit than including each of the forecasts separately, R̄2,Bmk

n =

6.210% vs. R̄2,Bmk
n = 5.553%. But, the LASSO still increases out-of-sample fit relative

to the weighted-average benchmark by ∆R̄2
n = 1.302%pt.

Selection Without Shrinkage. Second, the LASSO is shrinking the point estimates
of all selected coefficients by λn. The middle panel investigates whether this shrinkage
component is key to the LASSO’s increase in out-of-sample fit. We do this by exam-
ining whether LASSO alternatives, which do not use any sort of shrinkage, increase
out-of-sample fit by more than the LASSO does.

Again, we take two different approaches. The first row shows that using an OLS re-
gression that only includes the single predictor with the highest in-sample correlation
performs much worse than the LASSO. This is tantamount to applying a forward-
stepwise procedure to the standard OLS-regression framework. And, the second row
shows that using a two-step procedure that fits an OLS regression to the predictors
selected by the LASSO generates the same increase in out-of-sample fit as just using
the LASSO itself. This suggests that there are not substantial gains to be made
by post-selection inference. It also implies that using an alternative sparse-selection
procedure, such as the adaptive LASSO (Zou, 2006) or elastic net (Zou and Hastie,
2005), will not qualitatively affect our results because these procedures only differ
from the LASSO in the amount of shrinkage.

Lambda Noise. Finally, recall that our implementation of the LASSO selects the
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Increase in Out-of-Sample Fit, by Industry

Apparel Stores
Brokers and Dealers

Building Constr
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Electric and Gas Svc

Electrical Eqp
Engineering Svc

Fabricated Metals
Food

Health Services
Ind Machinery

Insurance Carriers
Investment Offices
Measuring Devices

Merchandise Stores
Metal Mining

Misc Retail
Non-Durable Trade

Oil and Gas
Paper

Petrol Refining
Primary Metals

Publishing
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Rubber
Transport Eqp

Water Transport

∆R̄2
n = 0.4% 1.0% 1.6%

AR(3) Benchmark

0.7% 1.7% 2.7%

Market Benchmark

Figure 3: The LASSO’s increase in out-of-sample fit relative to the AR(3) and market
benchmarks sorted by 3-digit SIC industries. Increase in out-of-sample fit is measured as
the percentage point increase in adjusted R2. (Sample) Regression results for a randomly
selected subset of 250 stocks on each trading day from January 2005 to December 2012. We
restrict the sample to industries with at least 20 firms on average. (Left) The LASSO’s
increase in out-of-sample fit relative to a AR(3) benchmark with the dashed line representing
∆R̄2

n = 1.185%pt. (Right) The LASSO’s increase in out-of-sample fit relative to a market
benchmark with the dashed line representing ∆R̄2

n = 2.469%pt. (Reads) “The LASSO
increases out-of-sample fit for all industries.”
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Increase in Out-of-Sample Fit, by Characteristics

AR(3) Benchmark
High, > 50%ile Low, < 50%ile

∆R̄2
n [%pt] p-val. ∆R̄2

n [%pt] p-val.

Mkt Cap 1.341
(0.017)

[1.307, 1.375] 0.000 1.029
(0.011)

[1.007, 1.051] 0.000

Volume 1.347
(0.017)

[1.315, 1.380] 0.000 1.023
(0.011)

[1.002, 1.044] 0.000

Volatility 1.137
(0.012)

[1.113, 1.162] 0.000 1.234
(0.016)

[1.204, 1.265] 0.000

Spread 0.996
(0.011)

[0.975, 1.017] 0.000 1.377
(0.017)

[1.343, 1.410] 0.000

Market Benchmark
High, > 50%ile Low, < 50%ile

∆R̄2
n [%pt] p-val. ∆R̄2

n [%pt] p-val.

Mkt Cap 2.605
(0.036)

[2.534, 2.675] 0.000 2.332
(0.027)

[2.280, 2.385] 0.000

Volume 2.518
(0.033)

[2.454, 2.582] 0.000 2.419
(0.030)

[2.360, 2.478] 0.000

Volatility 2.680
(0.028)

[2.626, 2.734] 0.000 2.259
(0.032)

[2.196, 2.321] 0.000

Spread 2.302
(0.026)

[2.251, 2.353] 0.000 2.639
(0.036)

[2.569, 2.709] 0.000

Table 3: The LASSO’s increase in out-of-sample fit relative to the AR(3) and market bench-
marks sorted by firm characteristics. Increase in out-of-sample fit is measured as the per-
centage point increase in adjusted R2. (Sample) Regression results for a randomly selected
subset of 250 stocks on each trading day from January 2005 to December 2012. (Estimates)
∆R̄2

n: The LASSO’s increase in out-of-sample fit relative a benchmark model. p-val.: Prob-
ability of observing the realized ∆R̄2

n under the null hypothesis of no increase. Numbers
in parentheses are standard errors clustered by stock-day. Numbers in square brackets are
95% confidence intervals. (Characteristics) Mkt Cap: Market value at close of previous
trading day. Volume: Trading volume on previous trading day. Volatility: Volatility of
1-minute returns during previous trading day. Spread: Average bid-ask spread during pre-
vious trading day. High, > 50%ile: Subset of stocks with above-median values for a given
characteristic. Low, < 50%ile: Subset of stocks with below-median values for the same char-
acteristic. (Reads) “The LASSO increases out-of-sample fit slightly more for large, liquid,
frequently-traded stocks.”
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Increase in Out-of-Sample Fit, Source of Gains

No Selection R̄2,Bmk
n [%] ∆R̄2

n [%pt] p-val.

Ridge 1.182
(0.012)

2.447
(0.026)

[2.395, 2.498] 0.000

Average OLS 6.210
(0.065)

1.302
(0.013)

[1.276, 1.328] 0.000

No Shrinkage
AR(3) Benchmark Market Benchmark

∆R̄2
n [%pt] p-val. ∆R̄2

n [%pt] p-val.

Single-Best Predictor 0.474
(0.005)

[0.464, 0.485] 0.000 0.671
(0.007)

[0.658, 0.685] 0.000

Post-Selection OLS 1.245
(0.013)

[1.218, 1.271] 0.000 2.544
(0.031)

[2.483, 2.604] 0.000

Lambda Noise
AR(3) Benchmark Market Benchmark

∆R̄2
n [%pt] p-val. ∆R̄2

n [%pt] p-val.

LASSO, λ+s.e
n 0.829

(0.011)
[0.807, 0.851] 0.000 1.555

(0.019)
[1.518, 1.592] 0.000

Table 4: Source of the LASSO’s increase in out-of-sample fit relative to the AR(3) and
market benchmarks. Increase in out-of-sample fit is measured as the percentage point increase
in adjusted R2. (Sample) Regression results for a randomly selected subset of 250 stocks
on each trading day from January 2005 to December 2012. (Columns) R̄2,Bmk

n : Out-
of-sample fit of benchmark model. ∆R̄2

n: Increase in out-of-sample fit for the LASSO or
alternative procedure. p-val.: Probability of observing the realized ∆R̄2

n under null hypothesis
of no increase in out-of-sample fit. Numbers in parentheses are standard errors clustered by
stock-day. Numbers in square brackets are 95% confidence intervals. (No Selection) The
LASSO’s increase in out-of-sample fit relative to alternative benchmark models that involve
shrinkage but no selection. Ridge: Ridge regression estimated using 3 lags. Average OLS:
Weighted average of AR(3) and market benchmark models. (No Shrinkage) Increase in out-
of-sample fit for alternative procedures that involve selection but no shrinkage. Single-Best
Predictor: OLS regression using the single predictor with the highest correlation during the
30-minute estimation window. Post-Selection OLS: OLS regression using predictors selected
by the LASSO. (Lambda Noise) The LASSO’s increase in out-of-sample fit when using a
penalty parameter that is 1-standard-deviation too large.
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Increase in Out-of-Sample Fit, Time Series

1%

3%

∆R̄2
n
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Monthly

AR(3) Benchmark

Market Benchmark

3%

5%

10:00 11:00 12:00 1:00 2:00 3:00 4:00

Intraday

Figure 4: Time-series variation in the LASSO’s increase in out-of-sample fit relative to the
AR(3) and market benchmarks. Increase in out-of-sample fit is measured as the percentage
point increase in adjusted R2. (Sample) Regression results for a randomly selected subset
of 250 stocks on each trading day from January 2005 to December 2012. (Monthly) The
LASSO’s increase in out-of-sample fit by month. (Intraday) The LASSO’s increase in out-
of-sample fit by minute of the trading day. (Reads) “The LASSO increased in out-of-sample
fit less during the financial crisis, but the LASSO’s increase in out-of-sample fit is relatively
stable over the course of the trading day.”

penalty parameter, λn, for each stock within each 30-minute estimation window using
K-fold cross validation. This means that our choice of λn contains some estimation
error. The bottom panel of Table 4 examines the effect of this estimation error on
our results. We do this by testing whether the LASSO still increases out-of-sample fit
even when we use a penalty parameter that is 1-standard-deviation too large in terms
of the optimal λn’s cross-validation error. We find that, while using λ+s.e.

n rather than
the optimal λn reduces the LASSO’s gains, it does not eliminate them.3

3.4 Sharpe Ratios

We have just seen that using the LASSO leads to a statistically significant 1.2%pt
increase in out-of-sample fit. But, what is the economic magnitude of this gain?
Because “any predictive regression can be expressed as a portfolio sort (Pedersen,

3We only look at alternative values of λn that are larger than the optimal λn. Here is why.
If you take λn → ∞, then the LASSO ignores all predictors and simply estimates the mean. So,
conditional on the LASSO converging at the optimal λn, any alternative choice for λn that’s larger
than this optimal value will deliver well-defined parameter estimates. However, shrinking λ → 0
means including more predictors. So, alternative values of λn that are smaller than the best-fit
penalty parameter might allow for more than 30 predictors, which would yield parameter estimates
that are not well defined (i.e., which will depend on the details of the optimization algorithm used).
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2015, p. 51),” we answer this question by studying the performance of a LASSO-
implied trading strategy.

Naïve Starting Point. Here is the starting point for our LASSO-implied strategy.
Note that the slope coefficient, b̄n, from Equation (11) can be written as:

b̄n
def
=

Cov
[
rn,t+1,

fLASSO
n,t −m̄LASSO

n

s̄LASSO
n

]
Var
[
fLASSO
n,t −m̄LASSO

n

s̄LASSO
n

] (14)

In the equation above, rn,t+1 is the nth stock’s realized return in minute (t + 1),
fLASSO
n,t is the LASSO’s 1-minute-ahead return forecast for minute (t + 1), m̄LASSO

n

and s̄LASSO
n denote the mean and standard deviation of the LASSO’s 1-minute-ahead

return forecasts for the nth stock over the course of the entire trading day, and the
operators Cov[·] and Var[·] denote the covariance and variance over the same time
period—that is, one observation for each minute from 10:04am to 3:59pm.

Because we normalize the LASSO’s 1-minute-ahead return forecasts to have mean
zero and unit variance within a given trading day, the denominator in Equation (14)
is equal to one. Thus, we can write out the expression for b̄n using just the covariance
term as follows

b̄n = Cov
[
rn,t+1,

fLASSO
n,t −m̄LASSO

n

s̄LASSO
n

]
(15a)

=
1

356
·

356∑
h=1

(rn,t+h − ān) ·
(
fLASSO
n,t+h−1−m̄

LASSO
n

s̄LASSO
n

)
(15b)

where ān denotes the nth stock’s mean return during the day.
This expression can be interpreted as an average return to a naïve LASSO-implied

strategy:

rNaïve
n,t+1 = (rn,t+1 − ān)× (1/̄sLASSO

n )× (fLASSO
n,t − m̄LASSO

n ) (16)

The strategy is long 1/̄sLASSO
n shares of the nth stock for each 1%pt that the LASSO’s

1-minute-ahead return forecast exceeds its mean. Likewise, it is short 1/̄sLASSO
n shares

of the nth stock for each 1%pt that the LASSO’s forecast falls below its mean for
the day. The strategy will be profitable if the nth stock’s realized return in minute
(t + 1) tends to be above average, rn,t+1 > ān, when the LASSO’s return forecast is
also above average, fLASSO

n,t > m̄LASSO
n , and vice versa. Thus, we can interpret Table 1

as saying that, for a randomly selected stock-day, this naïve LASSO-implied strategy
has a gross return of b̄n = 1.433% per month.
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There are three problems with implementing this naïve LASSO-implied strategy,
though. To start with, the strategy ignores trading costs (Hasbrouck, 2009; Frazzini
et al., 2015; Novy-Marx and Velikov, 2015), which are substantial when trading at
the 1-minute horizon. The strategy also suffers from look-ahead bias. We do not
know the nth stock’s mean return, ān, or the mean and variance of the LASSO’s 1-
minute-ahead return forecasts, m̄LASSO

n and s̄LASSO
n , until the end of the trading day.

Finally, the strategy gives no guidance on how we should combine the 250 different
1-minute-ahead return forecasts we make each minute. So, we modify the strategy in
Equation (16) in several ways to account for these problems.

Trading Costs. Let’s start with the trading-cost adjustments. To account for
trading costs, we make two changes. First, we change the naïve LASSO-implied
strategy so that it only executes an order when the LASSO’s 1-minute-ahead return
forecast exceeds the bid-ask spread, 1{|fLASSO

n,t |>sprdn,t}. Then, conditional on a trade
taking place, we compute the strategy’s realized returns net of this bid-ask spread,
(rn,t+1 − ān) · Sign[fLASSO

n,t ]− sprdn,t.

Look-Ahead Bias. Next, let’s turn to the issue of look-ahead bias. To eliminate
any look-ahead bias, our strategy should only use values for ān, m̄LASSO

n , and s̄LASSO
n

that are known prior to trading in minute (t + 1). To make sure this is the case,
we start by assuming that both realized returns and 1-minute-ahead return forecasts
are mean-zero variables, ān = m̄LASSO

n = 0. This is a reasonable assumption at the
1-minute horizon as emphasized by our point estimate of ān = 0.002% per month
in Table 1. In addition, we also estimate the standard deviation of the LASSO’s
1-minute-ahead return forecast during the previous 30 minutes of trading rather than
over the course of the entire trading day. We use σ̃LASSO

n,t to denote this in-sample
standard-deviation estimate.

Portfolio Construction. Finally, we come to the question of portfolio construction:
how do we combine the 250 different forecasts each minute into a single portfolio?
The naïve strategy buys/sells more shares of the nth stock per 1%pt change in the
LASSO’s forecast when the LASSO’s 1-minute-ahead return forecasts for the nth
stock tend to be less volatile throughout the trading day. Intuitively, a 1-minute-
ahead return forecast that is 0.20%pt above/below average is a very different signal
when the typical return forecast is on the order of m̄LASSO

n ± 0.02%pt than when it is
on the order of m̄LASSO

n ± 2.00%pt. In the first case, a 0.20%pt above/below average
forecast is noteworthy, garnering a large portfolio weight; whereas, in the second case,
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it is commonplace, garnering a small portfolio weight.
We want our strategy to have a similar flavor. But, we also want to be able

to fund the strategy by borrowing $1 at the riskless rate prior to the beginning of
each trading day. Then, the strategy’s returns at the end of the trading day minute
the riskless rate would represent the excess returns to a zero-cost portfolio. The
complication comes from the fact that the number of LASSO forecasts that exceed
the spread, 1{|fLASSO

n,t |>sprdn,t}, can change from minute to minute. So, we need a rule
that determines how much we invest for each of the stocks with a forecast that exceeds
the spread in a given minute.

Here is how we do this. Suppose that the LASSO generated a 1-minute-ahead
return forecast for the nth stock that exceeds the spread in minute t. Then, the
LASSO-implied strategy invests a fraction ω̃LASSO

n,t of its assets in the nth stock:

ω̃LASSO
n,t

def
=

(1/̃σLASSO
n,t ) · fLASSO

n,t · 1{|fLASSO
n,t |>sprdn,t}∑250

n′=1

∣∣∣ (1/̃σLASSO
n′,t ) · fLASSO

n′,t · 1{|fLASSO
n′,t |>sprdn′,t}

∣∣∣ (17)

The denominator is the total investment, both long and short, dictated by the naïve
strategy in stocks with forecasts that exceeded the spread in minute t. The numerator
is the investment dictated by the naïve strategy in the nth stock. The settlement
period for NYSE stocks is longer than 1 minute, so it does not make sense to net-
out offsetting short and long positions at the 1-minute horizon. This is why we use
the absolute-value operator in the denominator. If there are no stocks with LASSO
forecasts that exceed the spread in a given minute, then ω̃LASSO

n,t = 0 for all stocks.
Consider a quick example to see what these weights imply. Suppose that there are

8 stocks with LASSO forecasts that exceed the spread. And, to keep things simple,
suppose that the first 4 forecasts are +1%pt while the second 4 forecasts are −1%pt.
If all 8 forecasts have a volatility of 0.02%, then the denominator will be 8 · |(1/0.02%) ·
1%pt| = 400. And, the LASSO-implied strategy will invest 1/8th of its portfolio
position in each stock. But, if stocks 1, 2, 5, and 6 instead have forecast volatilities
of 2%, then the denominator will be 4 · |(1/0.02%) · 1%pt| + 4 · |(1/2%) · 1%pt| = 202.
This means that stocks 1, 2, 5, and 6 will have portfolio weights of w̃LASSO

n,t = ±1/404

while stocks 3, 4, 7, and 8 will have portfolio weights of w̃LASSO
n,t = ±100/404—that is,

weights that are 100-times larger in magnitude.

LASSO-Implied Strategy. Thus, the net return each minute to our LASSO-implied
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strategy is:

rLASSO
t+1 =

250∑
n=1

{
rn,t+1 · Sign[fLASSO

n,t ]− sprdn,t
}
× ω̃LASSO

n,t (18)

This strategy accounts for trading costs and does not suffer from look-ahead bias. In
addition, if we subtract off the riskless rate from this strategy’s end-of-day returns,
then the resulting excess returns correspond to the returns of a zero-cost portfolio
funded by borrowing $1 at the beginning of the trading day.

Sharpe Ratios. Table 5 compares the performance of this LASSO-implied strategy
with other benchmarks. Let’s start with the top panel, which provides information
on annualized Sharpe ratios. The first column reports the Sharpe ratio of an un-
conditional buy-and-hold S&P 500 strategy. This strategy generates an annualized
Sharpe ratio of only 0.123. This Sharpe ratio is relatively low because the S&P 500’s
returns were quite volatile during our sample period, which includes the financial
crisis. The next column reports the LASSO-implied strategy’s Sharpe ratio, which
was 1.791. This point estimate is more than 12-times larger than the Sharpe ratio of
the unconditional buy-and-hold strategy.

The last column describes the performance of an AR(3)-implied strategy that is
analogous to the LASSO-implied strategy—that is, a strategy constructed by replac-
ing fLASSO

n,t with fAR(3)
n,t in Equation (18). It turns out that this AR(3)-implied strategy

loses money. Even though the AR(3) benchmark had higher out-of-sample fit than
the LASSO, it is not possible to trade on the AR(3) benchmark’s 1-minute-ahead
return forecasts after adjusting for the bid-ask spread and look-ahead bias.

Thus, the R̄2,Bmk
n = 7.365% out-of-sample fit for the AR(3) benchmark does not

translate into economically meaningful performance. This finding is broadly con-
sistent with the results in both Korajczyk and Sadka (2004) and Patton and Weller
(2017), who give evidence that momentum profits disappear after adjusting for trading
costs. The forecast-implied strategy associated with the market benchmark performs
even worse than the one associated with the AR(3) benchmark.

Abnormal Returns. The positive excess returns earned by the LASSO-implied
strategy do not appear to be explained by standard risk factors. In the bottom panel
of Table 5, we study the LASSO-implied strategy’s covariance with the daily return
on the market, the daily returns on size and value portfolios (Fama and French, 1993),
and the daily return on a momentum portfolio (Carhart, 1997). Because the LASSO-
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implied strategy is zero cost, we choose the scale of the initial investment so that it
has the same average excess return as the buy-and-hold S&P 500 strategy, 2.719%

per year. Because the net returns to the LASSO-implied strategy are so smooth—
12 times less volatile than the returns on the S&P 500—we find that exposure to
these commonly-used risk factors at the daily horizon explains almost none of the
LASSO-implied strategy’s excess returns.

Increases vs. Levels. If the AR(3)-implied strategy had delivered positive excess
returns, then we would have examined whether a 50/50 combination of the LASSO-
and AR(3)-implied strategy produced an even higher Sharpe ratio than the AR(3)-
implied strategy on its own (Asness et al., 2013; Novy-Marx, 2016). But, such a test is
no longer necessary given that the AR(3)-implied strategy loses money. If the AR(3)-
implied strategy delivers negative net returns, then there is no way that it could be
explaining the LASSO-implied strategy’s positive net returns. The difference in signs
implies a difference in the signals being used.

Trade Frequency. Finally, Table 6 gives summary statistics describing the rate
at which both the LASSO- and AR(3)-implied strategies trade. The first row of the
top panel reveals that the AR(3)-implied strategy trades roughly twice as often as
the LASSO-implied strategy, 17.643 trades vs. 8.624 trades per minute out of 250

possible trades. The second row shows that roughly half of each strategy’s trades are
buy orders, and the third row shows that roughly a third of each strategy’s trades are
profitable. The bottom panel then shows that the LASSO-implied strategy is more
active in large, liquid, frequently traded stocks.

4 Predictor Analysis

After seeing the increase in out-of-sample fit associated with the LASSO, a natural
next question is: What do the predictors selected by the LASSO look like? In this
section, we give evidence that the LASSO identifies predictors that are unexpected,
short-lived, and sparse.

4.1 Unexpected

There are many lead-lag relationships already documented in the academic literature
at the weekly and monthly horizons. For example, Lo and MacKinlay (1990) and
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Forecast-Implied Performance Net of Trading Costs

Annualized Sharpe Ratios

S&P 500 LASSO AR(3)

0.123 1.791 −0.662

LASSO-Implied Strategy
Abnormal Returns [%/yr] α Mkt HmL SmB Mom

Market 2.709
(0.034)

0.004
(0.002)

3-Factor Model 2.713
(0.034)

0.004
(0.002)

−0.004
(0.004)

0.000
(0.003)

4-Factor Model 2.707
(0.034)

0.005
(0.002)

−0.004
(0.004)

0.003
(0.004)

0.003
(0.004)

Table 5: Performance of forecast-implied strategies net of trading costs. (Sample) Each
trading day from January 2005 to December 2012. (Sharpe Ratios) Annualized Sharpe
ratios of forecast-implied trading strategies net of trading costs. First column reports results
for strategy that invests $1 in the S&P 500 at market open on January 3rd, 2005 and holds
that position until market close on December 31st, 2012. The next column reports results for
the LASSO’s forecast-implied trading strategy over the same time period. The third column
reports analogous results for an AR(3)-implied strategy with the same initial investment.
(Abnormal Returns) Net abnormal returns of the LASSO-implied strategy relative to
the market, the Fama and French (1993) 3-factor model, and the Carhart (1997) 4-factor
model. The size of the initial investment in the LASSO-implied strategy was chosen so
that it has the same average excess return as the buy-and-hold S&P 500 strategy. First
column reports annualized abnormal returns. Remaining columns report dimensionless slope
coefficients associated with each factors. (Reads) “The LASSO-implied strategy generates
positive excess returns net of the spread with an annualized Sharpe ratio of 1.791, and these
excess returns are not explained by the strategy’s exposures to standard risk factors.”
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Trading Frequency of Forecast-Implied Strategies

Aggregate [#/min] LASSO AR(3)

Trades 8.624 17.643

Buy Orders 4.306 8.887

Successful 2.600 6.538

By Characteristics [#/min]

>50%ile
Mkt Cap

>50%ile
Volume

>50%ile
Volatility

<50%ile
Spread

LASSO Trades 5.188 5.115 4.821 5.114

LASSO Buy Orders 2.592 2.555 2.407 2.556

LASSO Successful 1.578 1.533 1.467 1.550

Table 6: Trading frequency of forecast-implied strategies. (Sample) Minute-level trades for
randomly selected subset of 250 stocks on each trading day from January 2005 to December
2012 for which we compute 1-minute-ahead return forecasts using the LASSO. (Aggregate)
First row reports the average number of trades per minute made by LASSO- and AR(3)-
implied strategies. Second row reports the number of buy orders per minute. And, third
row reports the number of trades per minute that made money after accounting for the bid-
ask spread. (By Characteristics) Number of trades, buy orders, and successful trades
per minute for the LASSO-implied strategy among large stocks, stocks with high trading
volume, stocks with high return volatility, and liquid stocks. (Reads) “The AR(3)-implied
strategy trades roughly twice as often as the LASSO-implied strategy. And, the LASSO-
implied strategy is more active in large, liquid, frequently traded stocks.”

DeMiguel et al. (2014) both show that the returns of large stocks predict the future
returns of small stocks, Chordia and Swaminathan (2000) shows that the returns of
high-volume stocks predict the future returns of low-volume stocks, and Hou (2007)
shows that the returns of larger stocks within an industry predict the future returns
of smaller stocks within the same industry. We now give evidence that the LASSO’s
choice of predictors does not follow these existing lead-lag relationships—in other
words, evidence that the LASSO identifies an unexpected collection of predictors.

Econometric Approach. Suppose that stock n is one of the randomly chosen 250

stocks for which we use the LASSO to make 1-minute-ahead return forecasts on day
d. For each stock n′ ∈ {1, . . . , N}, we define an indicator variable that is one if stock
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n′ was ever used by the LASSO as a predictor in any of the 356 forecasts for stock
n on day d and zero otherwise. Note that for computational reasons this indicator
variable summarizes the contribution of all 3 lags of the n′th stock’s returns. We then
use a logit regression with this indicator as the dependent variable to study how the
characteristics of stock n′ are related to the probability that the LASSO identifies its
lagged returns as a predictor for stock n at some point during the trading day.

Empirical Results. Table 7 contains the results of these logit regressions. The
first column shows that the LASSO is no more likely to select large stocks than small
stocks as predictors. The second column shows that infrequently traded stocks are
just as likely to be selected as predictors by the LASSO as frequently traded stocks.
The third column shows that return volatility is not related to the LASSO’s choice
of predictors. And, the fourth column shows that the LASSO is equally likely to
use liquid and illiquid stocks as predictors. In short, these four columns document a
lack of correlation between firm characteristics and the LASSO’s choice of predictors.
The fifth column, by contrast, reveals that the LASSO is 1.15% less likely to select a
stock from the same industry as a predictor. Thus, the LASSO is not just selecting
predictors based off of the intra-industry lead-lag effect documented in Hou (2007).
The final column shows that all of these patterns hold up when these variables are
included in the same regression specification.

Penalty Parameter. How can the LASSO increase out-of-sample fit at the 1-
minute horizon but still be so unrelated to firm characteristics? After all, researchers
know that these characteristics are correlated with returns at the weekly and monthly
horizons. This seeming contradiction resolves itself when we examine the size of the
LASSO’s penalty parameter, λn. The LASSO sets all coefficients smaller than λn to
be precisely zero—that is, it completely ignores these predictors.

Figure 5 plots the mean and 95% confidence interval for λn each month during
our sample period. The horizontal dashed line denotes the sample average for λn,
which is 2.5% per month. In other words, the LASSO typically ignores all predictors
weaker than λ = 2.5% per month when making its 1-minute-ahead return forecasts.
This lower bound is more than twice as large as the size of well-known predictors
at the weekly and monthly horizon (McLean and Pontiff, 2016; Harvey et al., 2016;
Linnainmaa and Roberts, 2016).

This is why our implementation of the LASSO at the 1-minute horizon is not
identifying the existing steady long-lived predictors documented in the academic lit-
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Characteristics of LASSO Predictors

Dep. Variable: Ever Selected

Mkt Cap > 50%ile 0.005
(0.004)
[0.11%]

0.003
(0.007)
[0.07%]

Volume > 50%ile 0.004
(0.004)
[0.09%]

0.001
(0.006)
[0.01%]

Volatility > 50%ile −0.005
(0.004)
[0.13%]

−0.004
(0.004)
[0.10%]

Spread < 50%ile 0.002
(0.004)
[0.05%]

0.006
(0.006)
[0.15%]

In Same Industry −0.046
(0.006)
[1.15%]

−0.046
(0.006)
[1.14%]

Table 7: Characteristics of the predictors selected by the LASSO. (Sample) On each
trading day, d, from January 2005 to December 2012 the data contain one observation per
predictor for each of the randomly selected 250 stocks for which we make 1-minute-ahead
return forecasts. e.g., on October 6th, 2010 the LASSO could choose as predictors any of the
N = 2,191 NYSE-listed stocks. So, on that day, our data contained 250 × 2,191 = 547,750
separate observations. (Specification) Each column reports the results from a different logit
regression. Point estimates are log-odds ratios. Numbers in parentheses are standard errors
clustered by day and predictor (i.e., stock n′). Numbers in square brackets are the marginal
effects implied by the log-odds ratios. (Variables) Dep. Variable: An indicator variable
that is one if stock n′ was ever used by the LASSO as a predictor when making 1-minute-
ahead return forecasts for stock n on day d. Mkt Cap > 50%ile: An indicator variable
that is one if stock n′ had above-median market capitalization on day d. Volume > 50%ile:
An indicator variable that is one if stock n′ had above-median trading volume on day d.
Volatility > 50%ile: An indicator variable that is one if stock n′ had above-median 1-minute-
return volume on day d. Spread < 50%ile: An indicator variable that is one if stock n′ had
a below-median average bid-ask spread on day d. In Same Industry: An indicator variable
that is one if stock n and stock n′ both belonged to the same 3-digit SIC industry. (Reads)
“There is little correlation between the LASSO’s choice of predictors and firm size, trading
volume, return volatility, and bid-ask spread. And, the LASSO is less likely to select a stock
from the same industry as a predictor.”
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The LASSO’s Penalty Parameter

2
3
4
5
6
7

‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13

λ
n

[%
/

m
on

th
]

Figure 5: Monthly average (solid line) and 95% confidence interval (gray bands) for the
LASSO’s cross-validated penalty parameter, λn, in units of % per month. Dashed line de-
notes sample average over the course of the entire sample period, which is 2.5%. (Sample)
Estimation results for a randomly selected subset of 250 stocks on each trading day from Jan-
uary 2005 to December 2012. (Reads) “The LASSO typically ignores all predictors weaker
than λ = 2.5% per month when making its 1-minute-ahead return forecasts.”

erature. If they were to last an entire month, the predictors that we identify using
the LASSO would result in outlandish returns that we do not see in practice. Put
differently, existing steady long-lived predictors at weekly and monthly horizons are
too weak at the 1-minute horizon for the LASSO to detect. This finding suggests that
cross-sectional return predictability at the 1-minute horizon follows a different struc-
ture than cross-sectional return predictability at the 1-week and 1-month horizons.

4.2 Short-Lived

If the predictors identified by the LASSO would lead to unrealistic amounts of pre-
dictability if scaled up to the weekly or monthly horizons, then these predictors must
not last that long. They must be short-lived. And, this is indeed the case. To show
this, we compute the length of time that the LASSO typically uses each predictor for.

Econometric Approach. Suppose that stock n is one of the 250 randomly selected
stocks for which we use the LASSO to make 1-minute-ahead return forecasts on day
d. Now, consider the first minute that we generate a 1-minute-ahead return forecast,
10:04am. We collect all of the predictors used by the LASSO to make this return
forecast for stock n. Then, in each subsequent minute, we compute the fraction of
these predictors that are still being used by the LASSO to generate 1-minute-ahead
return forecasts for stock n. If stock n′ was used as a predictor in the LASSO’s return
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Figure 6: Average (solid line) and 95% confidence interval (gray bands) for the usage
duration of the predictors chosen by the LASSO in units of minutes. y-axis is on a log
scale and represents the probability that a predictor is used by the LASSO when making 1-
minute-ahead return forecasts in more than x consecutive minutes. Tick marks on the x-axis
represent the duration associated with a given quantile on the y-axis. (Sample) Estimation
results for a randomly selected subset of 250 stocks on each trading day from January 2005
to December 2012. (Reads) “Less than 5% of predictors selected by the LASSO are used for
more than 14.2 consecutive minutes.”

forecast in minute 10:04am but not in minute 10:05am, then we would say that this
predictor had a duration of 1 minute. Whereas, if stock n′ was used as a predictor
in 10:04am as well as every subsequent minute up to but not including 10:14am, then
we would say that this predictor had a duration of 10 minutes. We repeat this same
calculation for each of the LASSO’s remaining 355 forecasts for stock n on that day.
And, we do the same thing for every other stock on day d, and we do the same thing
for every other trading day as well.

Empirical Results. Figure 6 shows the results of these calculations. We find that
less than 5% of the predictors selected by the LASSO are used when making 1-minute-
ahead return forecasts in more than 14.2 consecutive minutes. And, less than 1% of
predictors are used by the LASSO for more than 25.2 minutes in a row. The short
duration of the LASSO’s predictors helps explain the lack of correlation between these
predictors and firm characteristics.

Some Intuition. Financial economists tend to study particular timescales. The
field of market microstructure analyzes intraday events. People doing asset-pricing
research consider phenomena at the daily, weekly, and monthly horizons. And, re-
search on macrofinance topics answers questions about how markets evolve from one
quarter or one year to the next.
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Clearly, each of these horizon-specific subfields is studying different aspects of the
same underlying return process. There is only one return process for the S&P 500.
Its 1-minute returns in a month must sum up to its monthly return. So, it might seem
odd that predictability at the 1-month horizon does not imply predictability at the
1-minute horizon. But, as illustrated in the parable of the blind men and the elephant
(Holland and Quigley, 1959), the same underlying process can manifest itself in very
different ways depending on the researcher’s perspective.

And, we are all familiar with processes that have different dynamics at different
timescales in our everyday lives. Just think about how animals grow. A caterpillar
hardly appears to change from one minute to the next, but it may well be a butterfly
by this time next week. Or, think about how languages evolve. At this time last
year, the word “awful” had pretty much the same meaning as it does today (very
unpleasant; “an awful stench”). But, centuries ago the word had nearly the opposite
meaning (inspiring wonder; “the awful majesty of God”).4

When we look at the kinds of predictors selected by the LASSO, we find something
similar. Like caterpillars and butterflies, these predictors have little relation to the
predictors at the weekly and monthly horizons documented in the academic literature.
And, we can use the functional form of the LASSO’s optimization problem to shed
light on how this can be the case. On one hand, in order to identify cross-sectional
predictors fast enough, the LASSO has to ignore any source of predictability weaker
than λ = 2.5% per month. On the other hand, the predictors identified by the LASSO
typically last less than 15 minutes, making them imperceptible to monthly investors.

4.3 And Sparse

Finally, the LASSO should only increase out-of-sample fit if there are unexpected
short-lived signals in the cross-section of returns that are also sparse. We find that,
on average, the LASSO uses only 12.7 predictors (out of a possible 3·N ≈ 6,000) when
making its 1-minute-ahead return forecasts for each stock. Figure 7 plots the average
number of predictors, Sn,λ, used by the LASSO for each of its 1-minute-ahead return
forecasts in a given month, and the gray bands report the 95% confidence interval.

4OED Online. Mar. 2017. Oxford Univ. Press. https://goo.gl/DGkBEl
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Figure 7: Average (solid line) and 95% confidence interval (gray bands) for the number
of predictors, Sn,λ, used by the LASSO for each of its 1-minute-ahead return forecasts in a
given month. Dashed line denotes sample average over the course of the entire sample period,
which is 12.7 predictors. (Sample) Estimation results for a randomly selected subset of 250
stocks on each trading day from January 2005 to December 2012. (Reads) “On average,
the LASSO uses only 12.7 predictors (out of a possible 3 · N ≈ 6,000!) when making its
1-minute-ahead return forecasts for each stock.”

5 Economic Origins

The LASSO uses a purely statistical rule to identify candidate predictors that are
too unexpected and short-lived to be pinned down by a researcher’s intuition alone.
However, because it does not rely on a researcher’s intuition, the LASSO’s increase in
out-of-sample fit could in principle have nothing to do with economic fundamentals.
But, this is not what we find in the data. And, we conclude our analysis by showing
that the LASSO tends to identify as predictors the lagged returns of stocks with news
about firm fundamentals. In other words, the LASSO identifies predictors that are
not easy to intuit but are still economically meaningful.

5.1 Ravenpack Data

To investigate the link between the LASSO’s choice of predictors and real-world
events, we use data from Ravenpack.

Ravenpack has a partnership with Dow Jones, giving it access to the full Dow Jones
news archive. This data consists of all Dow Jones Newswire and Wall Street Journal
articles. The Dow Jones news archive have been used in many prior studies (Kolasinski
et al., 2013; Shroff et al., 2013; Dai et al., 2015). Ravenpack data is timestamped
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to the nearest millisecond, which allows us to examine the relative timing of news
announcements and the LASSO’s choice of predictors.

Because we are particularly interested in the link between the LASSO’s choice
of predictors and economically meaningful events, we look only at news articles in
the Ravenpack data about a company’s revenues. In addition, we restrict our atten-
tion to articles that Ravenpack has labeled as “strongly relevant” for an NYSE-listed
company. To make sure that we are not looking at stale news, we narrow our focus
even further and only consider articles that Ravenpack labels as “news flashes” and
gives the highest novelty score to. We also remove any news articles about companies
which had another revenue-related news flash during the previous 5 days. Finally, we
only consider news announcements that occur from 10:04am to 3:59pm. What we are
left with is a collection of novel news flashes about firm revenues that occur during
normal trading hours.

5.2 Event Study

Does the LASSO select a stock more often in the minutes around a news flash about
the firm’s revenues? Yes.

Econometric Approach. Suppose that there is a new flash about the n′th stock’s
revenues in minute t. We define the event time, h, as the number of minutes since
minute t. So, h = 0 denotes the minute that a news flash occurs, h = 10 denotes
the 10th minute afterwards, and h = −12 denotes the 12th minute before. We then
count the number of times that the LASSO uses stock n′ as a predictor when creating
its 1-minute-ahead return forecasts in each minute h ∈ {−30, . . . , − 1, 0, 1, . . . , 30 }.
We use the LASSO to create 1-minute-ahead return forecasts for a randomly selected
set of 250 stocks each minute, so the maximum number of times that the n′th stock
could be chosen by the LASSO in a given minute is 250.

Empirical Results. The LASSO uses a purely statistical rule to identify candidate
predictors. So, the LASSO’s choice of predictors could in principle have nothing to
do with economic fundamentals. If this were the case, then the number of times that
the LASSO selected the n′th stock would be constant with respect to event time,
h. Figure 8 shows that this is not what is going on in the data. The x-axis counts
minutes in event time. The dots denote the number of additional times that the
LASSO selected the n′th stock in minute h relative to minute h = 0. Red dots denote
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The LASSO’s Selection Rate Around News

Dep. Variable: Times Selected [#/min]

Scheduled News Unscheduled News

1{−30≤h<0} −0.115
(0.058)

0.113
(0.101)

1{h=0} · ·

1{30≥h>0} −0.141
(0.054)

0.026
(0.091)

1{−30≤h<−20} −0.139
(0.072)

−0.139
(0.073)

−0.029
(0.120)

−0.029
(0.120)

1{−20≤h<−10} −0.124
(0.070)

−0.123
(0.070)

0.153
(0.124)

0.153
(0.124)

1{−10≤h<0} −0.086
(0.056)

−0.085
(0.056)

0.203
(0.094)

0.202
(0.094)

1{h=0} · · · ·
1{10≥h>0} −0.156

(0.050)
−0.157

(0.050)
0.008
(0.086)

0.008
(0.086)

1{20≥h>10} −0.126
(0.063)

−0.127
(0.063)

0.001
(0.108)

0.001
(0.108)

1{30≥h>20} −0.142
(0.066)

−0.142
(0.066)

0.069
(0.109)

0.069
(0.109)

Impact 0.201
(0.318)

−0.142
(0.876)

Sentiment 0.170
(0.209)

−1.090
(0.659)

Year FE Y Y Y Y Y Y

Table 8: Change in the LASSO’s selection rate around news flashes about a company’s
revenues. (Specification) Each column reports the results from a different regression. Point
estimates have units of number of times selected per minute. Numbers in parentheses are
standard errors clustered by year. Dots denote omitted estimates for the reference category,
h = 0. (Variables) Dep. Variable: Number of times that the n′th stock was selected as
a predictor by the LASSO in minute (t + h). Impact: A zero (low) to one (high) variable
summarizing news flash’s impact on overall market volatility during the next several hours.
Sentiment: A zero (very negative) to one (very positive) variable summarizing the sentiment
of the text contained in a news flash. (Scheduled News) News flashes about scheduled
events.(Unscheduled News) News flashes about unscheduled events. (Sample) 61-minute
window around each novel news flash about an NYSE-listed stock’s revenues which occurred
during normal trading hours from January 2005 to December 2012. (Reads) “The LASSO
uses stock n′ to make 0.115 fewer 1-minute-ahead return forecasts in each of the 30 minutes
leading up to a scheduled news flash, 1−30≤h<0, than it does in the minute of the news
flash itself, h = 0. By contrast, the LASSO uses stock n′ to make 0.203 more 1-minute-
ahead return forecasts in each of the 10 minutes leading up to an unscheduled news flash,
1−10≤h<0.” 40



The LASSO’s Selection Rate Around News
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Figure 8: x-axis: event time relative to news flash (in minutes). Vertical dashed line:
minute of news flash about n′th stock’s revenues, h = 0. y-axis: difference between the
number of times that the LASSO selected the n′th stock as a predictor when making its 1-
minute-ahead return forecast for minute h and the number of times it did so for minute h = 0.
Each dot denotes the difference in the LASSO’s selection rate in minute h relative to minute
h = 0 with the large diamond denoting a difference of zero for h = 0 (a normalization). Red
dots denote differences that are statistically significant at the 5% level using standard errors
clustered by year. (Scheduled News) News flashes about scheduled events. (Unscheduled
News) News flashes about unscheduled events. (Sample) 61-minute window around each
novel news flash about an NYSE-listed stock’s revenues which occurred during normal trading
hours from January 2005 to December 2012. (Reads) “When there is a scheduled news flash
about the n′th stock’s revenues in minute t, the LASSO selects stock n′ as a predictor slightly
more often when making its 1-minute-ahead return forecasts for minute t—i.e., for h = 0.
But, if the news flash is unscheduled, then the LASSO selects stock n′ as a predictor much
more often when making its 1-minute-ahead return forecasts in the 10 minutes prior to
minute t.”

differences that are statistically different from zero at the 5% level using standard
errors that are clustered by stock. The left panel of Figure 8 reports the change in
the LASSO’s selection rate around scheduled news about firm revenues, revealing that
the LASSO selects stock n′ as a predictor slightly more often on the exact minute of
the news flash. The right panel then reports the analogous results for unscheduled
news. This panel shows that the LASSO selects stock n as a predictor when making
its 1-minute-ahead return forecast much more often in the 10 minutes leading up to
the unscheduled news flash.

Timing of Results. It might seem odd that the LASSO’s selection rate increases
in the 10 minutes before an unscheduled news flash. But, this lag makes sense upon
further inspection. For example, think about 3M’s announcement about cutting 1,800
jobs on December 8th, 2008. Or, consider St. Jude’s announcement of the acquisition
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of AGA medical on October 18th, 2010. The market did not know that these an-
nouncements were coming. And, as a result, there was a several minute lag between
when these announcements were actually made and when journalists broadcast the
resulting news flashes. By contrast, when journalists are expecting an announcement
there should be no such gap. Consistent with this intuition, we find that the LASSO’s
selection rate only increases for the exact minute of scheduled news flashes, not in
the 10 minutes before.

Regression Analysis. Table 8 puts precise numbers on these results. Each column
reports the results from a different regression. The dependent variable in all of these
regressions is the number of times the n′th stock was selected as a predictor by the
LASSO when making 1-minute-ahead return forecasts in a given minute. The first
column shows that the LASSO uses stock n′ to make 0.115 fewer 1-minute-ahead
return forecasts in each of the 30 minutes leading up to a scheduled news flash than it
does in the minute of the news flash and that the LASSO uses stock n′ to make 0.141

fewer 1-minute-ahead return forecasts in each of the subsequent 30 minutes following
a scheduled news flash. The fifth column of Table 8 reports that the LASSO uses
stock n′ to make 0.203 more 1-minute-ahead return forecasts in each of the 10 minutes
leading up to an unscheduled news flash than it does in the minute of the news flash.

The third and sixth columns in Table 8 present two additional robustness check
for our results. First, Ravenpack characterizes each news flash’s impact on overall
market volatility over the course of the next several hours, and reports this information
in a variable called “market impact” which takes on values from zero (no impact on
aggregate volatility) to one (large impact on aggregate volatility). Consistent with our
original hypothesis that the LASSO is identifying unexpected short-lived predictors,
we find that the LASSO’s selection rate for stock n′ is not related to the aggregate
effect of a news announcement over the next several hours. Ravenpack also assigns
each news flash a sentiment score ranging from zero (pessimistic) to one (optimistic).
The sentiment of the news flash also appears unrelated to the LASSO’s selection rate
in any statistically significant manner.

6 Conclusion

We apply the Least Absolute Shrinkage and Selection Operator (LASSO) rather than
intuition to identify unexpected short-lived predictors, such as the lagged returns of
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Family Dollar Corp. We find that using the LASSO increases both out-of-sample fit
and forecast-implied Sharpe ratios, and we show that this increase in out-of-sample
fit comes from identifying predictors that are unexpected, short-lived, and sparse.
Finally, we document that these predictors are often the lagged returns of stocks with
recent news about firm fundamentals. Thus, the LASSO identifies predictors that are
not easy to intuit but still economically meaningful.
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A Numerical Simulations

In this appendix, we use the LASSO to make 1-minute-ahead return forecasts in
simulated data. The goal is to show that, if there are sparse signals in the cross-
section of returns, then the LASSO increases out-of-sample fit. And, if there are not
(either no signals or too many signals), then it does not.

Data-Generating Process. We run 1,000 simulations. For each simulation, we
generate 1-minute returns for 100 stocks over the course of T = 1301 minutes using
the following data-generating process:

rn,t = 0 +
100∑
n′=1

β?(n,n′),t · rn′,t−1 + 0.001 · ε?n,t (19)

In the equation above, rn,t is the return of the nth stock in minute t, β?(n,n′),t is the
predictive power of the n′th stock’s lagged return in minute (t−1) when forecasting the
nth stock’s return in minute t, and ε?n,t

iid∼ N(0, 1) is a noise term. For computational
convenience, we only consider a single lag.

In our main analysis, each stock’s return in minute t is governed by its exposure
to the lagged returns of a collection of 5 stocks in minute (t−1). We use St to denote
this active set. For all 95 stocks n′ /∈ St, β?(n,n′),t = 0. For all n′ ∈ St, we choose the
values of β?(n,n′),t as follows:

t = 1: Prior to the start of trading, we initialize the model by randomly selecting
a set of 5 stocks to serve as S1. We determine the exposure of every stock
n ∈ {1, . . . , 100} to the lagged returns of the 5 stocks n′ ∈ S1 using the rule:

β?(n,n′),1
iid∼

+0.19 w/ prob. 50%

−0.19 w/ prob. 50%
(20)

t > 1: Prior to each subsequent minute, we draw 5 random variables zn′,t
iid∼ Unif[0, 1]—

i.e., one for each n′ ∈ St−1. If a particular zn′,t > 0.01, then predictor n′ ∈ St−1

remains in St. And, all 100 values of β?(n,n′),t associated with this predictor
remain the same. But, if zn′,t ≤ 0.01, then predictor n′ ∈ St−1 is replaced at
random with one of the remaining 95 stocks. And, we redraw each of the 100

stocks’ exposures to this new predictor exactly as described in Equation (20).

Note that, once a predictor gets added to St, it remains in the active set for
(1−0.01)/0.01 = 99 minutes on average. There are 100 stocks. So, the collection of 5
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Out-of-Sample Fit, Simulated Data
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Figure 9: Out-of-sample fit from predictive regressions using simulated data generated by
Equation (19). x-axis: adjusted R2 from predictive regression in percent. (The LASSO)
Distribution of adjusted R2s in predictive regressions involving only the LASSO’s 1-minute-
ahead return forecast. Vertical line denotes the average adjusted R2 from these regressions.
(AR Benchmark) Dark-gray shading denotes the distribution of adjusted R2s in predictive
regressions involving only the AR(1) benchmark’s 1-minute-ahead return forecast. Light-
gray shading denotes the distribution of adjusted R2s in predictive regressions involving the
1-minute-ahead return forecasts from both the LASSO and the AR(1) benchmark. Verti-
cal lines denote the average adjusted R2s from each specification. (Market Benchmark)
Dark-gray shading denotes the distribution of adjusted R2s in predictive regressions involv-
ing only the market benchmark’s 1-minute-ahead return forecast. Light-gray shading denotes
the distribution of adjusted R2s in predictive regressions involving the 1-minute-ahead return
forecasts from both the LASSO and the market benchmark. Vertical lines denote the aver-
age adjusted R2s from each specification. (Reads) “Including the LASSO’s 1-minute-ahead
return forecast boosts the out-of-sample fit in simulated data.”

predictors in the active set is too short-lived to be estimated with an OLS regression.

Estimation and Forecast Timing. We use the LASSO to make 1-minute-ahead
return forecasts for stock n = 1 in periods t = 302, . . . , 1301 exactly as we did in
the main text, only using a L = 50-minute estimation window. We burn the first
250 periods to make sure that the initial conditions are not affecting our results.
These procedure produces a total of 1000 return forecasts in each simulation. We
also fit two different OLS specifications to the same data. The first specification is an
AR(1) model which only uses a stock’s own lagged return as a predictor. The second
specification is a market model which uses lagged values of the equally-weighted
market as a predictor.

Out-of-Sample Fit. The dark-gray shading in the left panel of Figure 9 shows
that the average out-of-sample fit of the LASSO’s 1-minute-ahead return forecast is
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Oracle Out-of-Sample Fit, Simulated Data
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Figure 10: Out-of-sample fit from predictive regressions using simulated data generated by
Equation (19). x-axis: adjusted R2 from predictive regression in percent. (Oracle, Exact)
Distribution of adjusted R2s in predictive regressions involving an oracle specification using
the exact active set. Vertical line denotes the average adjusted R2 from these regressions.
(Oracle, All) Distribution of adjusted R2s in predictive regressions involving an oracle
specification using every predictor that ever belonged to the active set during the estimation
window. Vertical line denotes the average adjusted R2 from these regressions. (Reads)
“The maximum out-of-sample fit that you could achieve—i.e., if you knew exactly which 5
predictors to include in your OLS regression—is 0.525%.”

0.281%. Just like in Section 3.2, we measure the LASSO’s out-of-sample fit using
the adjusted R2 statistic. This explains why the out-of-sample fit can sometimes be
negative. By contrast, the dark-gray shading in middle panel shows that the average
out-of-sample fit of the AR(1) benchmark is only 0.003%, while the dark-gray shading
in the right panel shows that the average out-of-sample fit of the market benchmark is
only 0.004%. The light-gray shading in each of these panels displays the out-of-sample
fit of using both the LASSO and a benchmark model to predict future returns. In
both cases, the LASSO significantly increases in the out-of-sample fit, boosting the
average adjusted R2 to more than 0.300%.

Oracle Regression. Is an adjusted R2 ≈ 0.300% big or small? To get a sense of
how much out-of-sample fit is possible given the data-generating process in Equation
(19), we make 1-minute-ahead return forecasts using two different versions of an oracle
estimator. First, we estimate an OLS regression using the 5 true predictors governing
the cross-section of returns in minute t, n′ ∈ St. The left panel of Figure 10 shows
that, even if you knew the correct 5 predictors to use each minute, the best adjusted
R2 you could hope for would be 0.525%. So, the LASSO is capturing a little more
than half of the possible variation in returns.
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Number of Predictors, Simulated Data
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Figure 11: The LASSO’s choice of predictors. (Number Selected) Number of predictors
selected by the LASSO each minute when making its 1-minute-ahead return forecasts using
the data simulated from Equation (19). Vertical line denotes the sample average across all
simulations. (Number Correct) Number of predictors selected by the LASSO that belong
to the true active set, St. Vertical line denotes the sample average across all simulations.
(Reads) “The LASSO selects a predictor in the active set roughly 80% of the time.”

This first oracle specific is labeled as “Oracle (Exact)” in Figure 10. We use this
name because this specification knows exactly which 5 predictors to use when making
return forecasts each minute during the 50-minute estimation window. But, during
any given estimation window, the active set of 5 predictors could change. Even though
there are only 5 stocks in St at any one point in time, there might be a total of 6 or
7 stocks that were each included in St at some point in time during an estimation
window. To see how accounting for these additional predictors would affect our
results, we also estimate an oracle specification which uses all stocks which belonged
to St at some point during the estimation window. The right panel of Figure 10,
which we label as “Oracle (All)” shows that including every stock that ever belonged
to the active set drops the out-of-sample fit to 0.130%.

This second version of the oracle estimator actually fares worse than the LASSO’s
because only 5 predictors belong to the active set, St, that is used to generate the re-
turns for minute t. Any additional predictors that were included in some {St−h}0<h≤50

but not in St will not add any out-of-sample predictive power. They are spurious pre-
dictors. And, the LASSO’s penalty function mitigates the problem posed by such
spurious predictors.

Number of Predictors. The left panel of Figure 11 shows that the LASSO typically
selects 6.736 predictors when making its 1-minute-ahead return forecasts each minute.
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Out-of-Sample Fit, Simulated Data With No Predictors

−
0.0

0
1%

0.0% 0.5% 1.0%

The LASSO

0
.00

5
%

0
.0
05
%

0.0% 0.5% 1.0%

AR Benchmark

0
.00

1
%

0
.0
00
%

0.0% 0.5% 1.0%

Market Benchmark

Figure 12: Out-of-sample fit from predictive regressions using simulated data generated by
Equation (21), which contains no predictors for the LASSO to find. x-axis: adjusted R2

from predictive regression in percent. (The LASSO) Distribution of adjusted R2s in pre-
dictive regressions involving only the LASSO’s 1-minute-ahead return forecast. Vertical line
denotes the average adjusted R2 from these regressions. (AR Benchmark) Dark-gray shad-
ing denotes the distribution of adjusted R2s in predictive regressions involving only the AR(1)
benchmark’s 1-minute-ahead return forecast. Light-gray shading denotes the distribution of
adjusted R2s in predictive regressions involving the 1-minute-ahead return forecasts from both
the LASSO and the AR(1) benchmark. Vertical lines denote the average adjusted R2s from
each specification. (Market Benchmark) Dark-gray shading denotes the distribution of
adjusted R2s in predictive regressions involving only the market benchmark’s 1-minute-ahead
return forecast. Light-gray shading denotes the distribution of adjusted R2s in predictive re-
gressions involving the 1-minute-ahead return forecasts from both the LASSO and the market
benchmark. Vertical lines denote the average adjusted R2s from each specification. (Reads)
“The LASSO does not increase out-of-sample fit when there are no predictors.”

The right panel of Figure 11 shows that, on average, only 0.779 of these predictors
belongs to the true active set, St, in any given minute. It might seem surprising that
the LASSO can achieve more than 1/2 of the oracle’s out-of-sample fit while correctly
identifying less than 1/5 of the active set. But, this is another consequence of the
LASSO’s penalty function, which shrinks weak predictors toward zero. The fact that
the LASSO has such a high out-of-sample fit means that it is substantially shrinking
the 6.736− 0.779 = 5.957 spurious predictors it selects each minute.

Placebo Tests. Finally, we conclude this appendix by looking at two alternative
simulations where the LASSO should not increase out-of-sample fit. In the first
setting, there are no predictors—i.e., we simulate the returns for the 100 stocks using
the data-generating process below:

rn,t = 0.125× { 0.001 · ε?n,t } (21)
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The factor of 0.125 is chosen so that the resulting time series have the same standard
deviation as in Equation (19). Figure 12 confirms that, when there are no predictors
for the LASSO to find, using the LASSO does not increase out-of-sample fit.

Then, in the second setting, we look at the other extreme where the predictors
are dense—i.e., we simulate the returns for the 100 stocks using the data-generating
process in Equation (19) but with 75 rather than 5 stocks in the active set. Again,
to keep the standard deviation of returns constant, we choose β?(n,n′),t using the rule:

β?(n,n′),t =
5

75
×

+0.19 w/ prob. 50%

−0.19 w/ prob. 50%
(22)

Figure 13 confirms that, when there are more predictors in the active set, |St| = 75,
than minutes in the estimation window, L = 50, the LASSO does not increase out-
of-sample fit. Thus, the LASSO really is only identifying sparse signals in the cross-
section of returns.

B Significance Test

We use the approach from Giacomini and White (2006) to assess statistical signifi-
cance using a Wald-type test outlined in Theorem 1. The results in Giacomini and
White (2006, Thm. 1) are framed in terms of loss in forecasting power, ∆Ln,t+1, and
a test function, ht. Whereas, we frame our results in terms of changes in R2. Here is
the connection.

First, let eBmk
n,t+1 denote the prediction error when using only the 1-minute-ahead

return forecast from a benchmark model, and let eBoth
n,t+1 denote the prediction error

when using the 1-minute-ahead return forecasts from both the benchmark model
and the LASSO. And, let the loss in forecasting power be the increase in squared
prediction error from using only the benchmark model:

∆Ln,t+1
def
= (eBmk

n,t+1)2 − (eBoth
n,t+1)2 (23)

If using the LASSO in addition to the benchmark model does not increase out-of-
sample fit, then:

E[∆Ln,t+1] = 0 (24)

This is the null hypothesis. The alternative hypothesis is that E[∆Ln,t+1] > 0.
Next, notice that the expected loss in forecasting power divided by the realized
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Out-of-Sample Fit, Simulated Data With Dense Predictors
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Figure 13: Out-of-sample fit from predictive regressions using simulated data generated
by Equation (19) with an active set containing 75 rather than 5 stocks. x-axis: adjusted
R2 from predictive regression in percent. (The LASSO) Distribution of adjusted R2s in
predictive regressions involving only the LASSO’s 1-minute-ahead return forecast. Vertical
line denotes the average adjusted R2 from these regressions. (AR Benchmark) Dark-gray
shading denotes the distribution of adjusted R2s in predictive regressions involving only the
AR(1) benchmark’s 1-minute-ahead return forecast. Light-gray shading denotes the distribu-
tion of adjusted R2s in predictive regressions involving the 1-minute-ahead return forecasts
from both the LASSO and the AR(1) benchmark. Vertical lines denote the average adjusted
R2s from each specification. (Market Benchmark) Dark-gray shading denotes the dis-
tribution of adjusted R2s in predictive regressions involving only the market benchmark’s
1-minute-ahead return forecast. Light-gray shading denotes the distribution of adjusted R2s
in predictive regressions involving the 1-minute-ahead return forecasts from both the LASSO
and the market benchmark. (Reads) “The LASSO does not increase out-of-sample fit when
there are more predictors than minutes in the estimation window.”

variation is returns can be written as the change in R2:

E[∆Ln,t+1]

Var[rn,t+1]
=

E
[
(eBmk
n,t+1)2

]
Var[rn,t+1]

− E
[
(eBoth
n,t+1)2

]
Var[rn,t+1]

(25a)

= − 1 +
E
[
(eBmk
n,t+1)2

]
Var[rn,t+1]

+ 1− E
[
(eBoth
n,t+1)2

]
Var[rn,t+1]

(25b)

=

(
1− E

[
(eBoth
n,t+1)2

]
Var[rn,t+1]

)
−
(

1− E
[
(eBmk
n,t+1)2

]
Var[rn,t+1]

)
(25c)

= R̄2,Both
n − R̄2,Bmk

n (25d)

= ∆R̄2
n (25e)

Finally, assume that ht = 1. We know that ∆R̄2
n → χ2

1, so Giacomini and White
(2006, Thm. 1) implies that we can use a standard t-test to evaluate the statistical
significance of changes in R2. The authors highlight this observation in Comment 7.
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