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1 Introduction

Recent education reforms in the United States, including charter schools, school vouchers, and district-wide

open enrollment plans, increase parents’ power to choose schools for their children. School choice allows

households to avoid undesirable schools and forces schools to satisfy parents’ preferences or risk losing

enrollment. Proponents of choice argue that this competitive pressure is likely to generate system-wide

increases in school productivity and boost educational outcomes for students (Friedman, 1962; Chubb and

Moe, 1990; Hoxby, 2003). By decentralizing school quality assessment and allowing parents to act on local

information, school choice is conjectured to provide better incentives for educational effectiveness than

could be achieved by a centralized accountability system (Peterson and Campbell, 2001). Choice may also

improve outcomes by allowing students to sort into schools that suit their particular educational needs,

resulting in improved match quality (Hoxby, 2000). These arguments have motivated recent policy efforts

to expand school choice (e.g., DeVos, 2017).

If choice is to improve educational effectiveness, parents’ choices must result in rewards for effective

schools and sanctions for ineffective ones. Our use of the term “effective” follows Rothstein (2006): an effec-

tive school is one that generates causal improvements in student outcomes. Choice need not improve school

effectiveness if it is not the basis for how parents choose between schools. For example, parents may value

attributes such as facilities, convenience, student satisfication, or peer composition in a manner that does

not align with educational impacts (Hanushek, 1981; Jacob and Lefgren, 2007). Moreover, while models in

which parents value schools according to their effectiveness are an important benchmark in the academic

literature (e.g., Epple et al., 2004), it may be difficult for parents to separate a school’s effectiveness from

the composition of its student body (Kane and Staiger, 2002). If parent choices reward schools that recruit

higher-achieving students rather than schools that improve outcomes, school choice may increase resources

devoted to screening and selection rather than better instruction (Ladd, 2002; MacLeod and Urquiola,

2015). Consistent with these possibilities, Rothstein (2006) shows that cross-district relationships among

school choice, sorting patterns, and student outcomes fail to match the predictions of a model in which

school effectiveness is the primary determinant of parent preferences.

This paper offers new evidence on the links between parent preferences, school effectiveness, and peer

quality based on choice and outcome data for more than 250,000 applicants in New York City’s centralized

high school assignment mechanism. Each year, thousands of New York City high school applicants rank-

order schools, and the mechanism assigns students to schools using the deferred acceptance (DA) algorithm

(Gale and Shapley, 1962; Abdulkadiroğlu et al., 2005). The DA mechanism is strategy-proof: truthfully

ranking schools is a weakly dominant strategy for students (Dubins and Freedman, 1981; Roth, 1982). This

fact motivates our assumption that applicants’ rankings measure their true preferences for schools.1 We
1As we discuss in Section 2, DA is strategy-proof when students are allowed to rank every school, but the New York City

mechanism only allows applicants to rank 12 choices. Most students do not fill their preference lists, however, and truthful
ranking is a dominant strategy in this situation (Haeringer and Klijn, 2009; Pathak and Sönmez, 2013). Fack et al. (2015)
propose empirical approaches to measuring student preferences without requiring that truth-telling is the unique equilibrium.
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summarize these preferences by fitting discrete choice models to applicants’ rank-ordered preference lists.

We then combine the preference estimates with estimates of school treatment effects on test scores, high

school graduation, college attendance, and college choice. Treatment effect estimates come from “value-

added” regression models of the sort commonly used to measure causal effects of teachers and schools (Todd

and Wolpin, 2003; Koedel et al., 2015). We generalize the conventional value-added approach to allow

for match effects in academic outcomes and to relax the selection-on-observables assumption underlying

standard models. Recent evidence suggests that value-added models controlling only for observables provide

quantitatively useful but biased estimates of causal effects due to selection on unobservables (Rothstein,

2010, 2017; Chetty et al., 2014a; Angrist et al., 2017). We therefore use the rich information on preferences

contained in students’ rank-ordered choice lists to correct our estimates for selection on unobservables. This

selection correction is implemented by extending the classic multinomial logit control function estimator

of Dubin and McFadden (1984) to a setting where rankings of multiple alternatives are known. We show

that predictions from our models match the effects of randomized lottery assignment for a subset of schools

where lottery quasi-experiments are available, suggesting that our methods provide accurate measures of

causal effects.

The final step of our analysis relates the choice model and treatment effect estimates to measure

preferences for school effectiveness. The choice and outcome models we estimate allow preferences and

causal effects to vary flexibly with student characteristics. Our specifications accommodate the possibility

that schools are more effective for specific types of students and that applicants choose schools that are a

good match for their student type. We compare the degree to which parent preferences are explained by

overall school effectiveness, match quality, and peer quality, defined as the component of a school’s average

outcome due to selection rather than effectiveness. We explore these relationships for test scores as well

as longer-run postsecondary outcomes, which is important in view of recent evidence that school quality is

multi-dimensional and only imperfectly measured by effects on test scores (Beuermann et al., 2018).

We find preferences are positively correlated with both peer quality and causal effects on student

outcomes. More effective schools enroll higher-ability students, however, and preferences are unrelated to

school effectiveness after controlling for peer quality. We also find little evidence of selection on match

effects: on balance, parents do not prefer schools that are especially effective for their own children, and

students do not enroll in schools that are a better-than-average match. These patterns are similar for

short-run achievement test scores and longer-run postsecondary outcomes. Looking across demographic

and baseline achievement groups, we find no evidence that any subgroup places positive weight on school

effectiveness once we adjust for peer quality. Our estimates are also similar across applicant cohorts,

suggesting that the relationship between demand and effectiveness is stable over time.

The factors driving school popularity we uncover are noteworthy, but to translate them into implications

about the incentives schools face from demand-side forces requires isolating the causal impacts of school

attributes on preferences. Since effectiveness and peer quality are not randomly assigned to schools, our
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estimates need not capture causal effects of these attributes on preferences if other school characteristics

that influence demand are correlated with effectiveness or peer quality. We assess the potential for such

omitted variables bias by conditioning on other school characteristics that predict demand, including

measures of violent incidents, teacher education, and the school learning environment. This analysis reveals

that parents prefer safer schools and schools with more educated teachers, but adding these covariates does

not alter our main results characterizing the partial correlations between preferences, peer quality, and

school effectiveness. This robustness exercise provides some reassurance that our estimates capture causal

impacts of effectiveness on demand, though we cannot completely rule out the possibility that peer quality

and school effectiveness are correlated with other unobservables.

It’s worth cautioning that our findings do not mean that parents choose schools irrationally; they may

use peer characteristics to proxy for school effectiveness if the latter is difficult to observe, or value peer

quality independently of impacts on academic outcomes. Either way, our results imply that parents’ choices

penalize schools that enroll low achievers rather than schools that offer poor instruction. As a result, school

choice programs may generate stronger incentives for screening and selection than for improved academic

quality. We provide suggestive evidence that schools have responded to these incentives by increasing

screening in the years following the introduction of centralized assignment in New York City.

Our analysis complements Rothstein’s (2006) indirect test with a direct assessment of the relationships

among parent preferences, peer quality, and school effectiveness based on unusually rich choice and outcome

data. The results also contribute to a large literature studying preferences for school quality (Black, 1999;

Figlio and Lucas, 2004; Bayer et al., 2007; Hastings and Weinstein, 2008; Burgess et al., 2014; Imberman

and Lovenheim, 2016). These studies show that housing prices and household choices respond to school

performance levels, but they do not typically separate responses to causal school effectiveness and peer

quality. Our findings are also relevant to theoretical and empirical research on the implications of school

choice for sorting and stratification (Epple and Romano, 1998; Epple et al., 2004; Hsieh and Urquiola,

2006; Barseghyan et al., 2014; Altonji et al., 2015; Avery and Pathak, 2015; MacLeod and Urquiola, 2015;

MacLeod et al., 2017). In addition, our results help to reconcile some surprising findings from recent studies

of school choice. Cullen et al. (2006) find limited achievement effects of admission to preferred schools in

Chicago, while Walters (2018) documents that disadvantaged students in Boston are less likely to apply to

charter schools than more advantaged students despite experiencing larger achievement benefits. Angrist

et al. (2013) and Abdulkadiroğlu et al. (2018) report on two settings where parents opt for schools that

reduce student achievement. These patterns are consistent with our finding that school choices are not

driven by school effectiveness.

Finally, our analysis adds to a recent series of studies leveraging preference data from centralized school

assignment mechanisms to investigate school demand (Hastings et al., 2009; Harris and Larsen, 2014; Fack

et al., 2015; Abdulkadiroğlu et al., 2017a; Glazerman and Dotter, 2016; Kapor et al., 2017; Agarwal and

Somaini, forthcoming). Some of these studies analyze assignment mechanisms that provide incentives
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to strategically misreport preferences, while others measure academic quality using average test scores

rather than distinguishing between peer quality and school effectiveness or looking at longer-run outcomes.

We build on this previous work by using data from a strategy-proof mechanism to separately estimate

preferences for peer quality and causal effects on multiple measures of academic performance.

The rest of the paper is organized as follows. The next section describes school choice in New York

City and the data used for our analysis. Section 3 develops a conceptual framework for analyzing school

effectiveness and peer quality, and Section 4 details our empirical approach. Section 5 summarizes estimated

distributions of student preferences and school treatment effects. Section 6 links preferences to peer quality

and school effectiveness, and Section 7 discusses implications of these relationships. Section 8 concludes

and offers some directions for future research.

2 Setting and Data

2.1 New York City High Schools

The New York City public school district annually enrolls roughly 90,000 ninth graders at more than

400 high schools. Rising ninth graders planning to attend New York City’s public high schools submit

applications to the centralized assignment system. Before 2003 the district used an uncoordinated school

assignment process in which students could receive offers from more than one school. Motivated in part

by insights derived from the theory of market design, in 2003 the city adopted a coordinated single-offer

assignment mechanism based on the student-proposing deferred acceptance (DA) algorithm (Gale and

Shapley, 1962; Abdulkadiroğlu et al., 2005, 2009). Abdulkadiroğlu et al. (2017a) show that introducing

coordinated assignment reduced the share of administratively assigned students and likely improved average

student welfare.

Applicants report their preferences for schooling options to the assignment mechanism by submitting

rank-ordered lists of up to 12 academic programs. An individual school may operate more than one

program. To aid families in their decision-making the New York City Department of Education (DOE)

distributes a directory that provides an overview of the high school admission process, key dates, and

an information page for each high school. A school’s information page includes a brief statement of its

mission, a list of offered programs, courses and extracurricular activities, pass rates on New York Regents

standardized tests, and the school’s graduation rate (New York City Department of Education, 2003). DOE

also issues annual schools reports that list basic demographics, teacher characteristics, school expenditures,

and Regents performance levels. During the time period of our study (2003-2007) these reports did not

include measures of test score growth, though such measures have been added more recently (New York

City Department of Education, 2004, 2017).

Academic programs prioritize applicants in the centralized admission system using a mix of factors.
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Priorities depend on whether a program is classified as unscreened, screened, or an educational option

program. Unscreened programs give priority to students based on residential zones and (in some cases)

to those who attend an information session. Screened programs use these factors and may also assign

priorities based on prior grades, standardized test scores, and attendance. Educational option programs

use screened criteria for some of their seats and unscreened criteria for the rest. Random numbers are

used to order applicants with equal priority. A small group of selective high schools, including New York

City’s exam schools, admit students in a parallel system outside the main round of the assignment process

(Abdulkadiroğlu et al., 2014).

The DA algorithm combines student preferences with program priorities to generate a single program

assignment for each student. In the initial step of the algorithm, each student proposes to her first-choice

program. Programs provisionally accept students in order of priority up to capacity and reject the rest.

In subsequent rounds, each student rejected in the previous step proposes to her most-preferred program

among those that have not previously rejected her, and programs reject provisionally accepted applicants

in favor of new applicants with higher priority. This process iterates until all students are assigned to

a program or all unassigned students have been rejected by every program they have ranked. During

our study time period, students left unassigned in the main round participate in a supplementary DA

round in which they rank up to 12 additional programs with available seats. Any remaining students

are administratively assigned by the district. About 82 percent, 8 percent, and 10 percent of applicants

are assigned in the main, supplementary, and administrative rounds, respectively (Abdulkadiroğlu et al.,

2017a).

An attractive theoretical property of the DA mechanism is that it is strategy-proof: since high-priority

students can displace those with lower priority in later rounds of the process, listing schools in order of true

preferences is a dominant strategy in the mechanism’s canonical version. This property, however, requires

students to have the option to rank all schools (Haeringer and Klijn, 2009; Pathak and Sönmez, 2013).

As we show below, more than 70 percent of students rank fewer than 12 programs, meaning that truthful

ranking of schools is a dominant strategy for the majority of applicants. The instructions provided with

the New York City high school application also directly instruct students to rank schools in order of their

true preferences (New York City Department of Education, 2003). In the analysis to follow, we interpret

students’ rank-ordered lists as truthful reports of their preferences. We also probe the robustness of our

findings to violations of this assumption by reporting results based on students that rank fewer than 12

choices.2

2Along similar lines, Abdulkadiroğlu et al. (2017a) show that preference estimates using only the top ranked school, the
top three schools, and all but the last ranked school are similar.

6



2.2 Data and Samples

The data used here are extracted from a DOE administrative information system covering all students

enrolled in New York City public schools between the 2003-2004 and 2012-2013 school years. These data

include school enrollment, student demographics, home addresses, scores on New York Regents standard-

ized tests, Preliminary SAT (PSAT) scores, and high school graduation records, along with preferences

submitted to the centralized high school assignment mechanism. A supplemental file from the National

Student Clearinghouse (NSC) reports college enrollment for students graduating from New York City high

schools between 2009 and 2012. A unique student identifier links records across these files.

We analyze high school applications and outcomes for four cohorts of students enrolled in New York City

public schools in eighth grade between 2003-2004 and 2006-2007. This set of students is used to construct

several samples for statistical analysis. The choice sample, used to investigate preferences for schools,

consists of all high school applicants with baseline (eighth grade) demographic, test score, and address

information. Our analysis of school effectiveness uses subsamples of the choice sample corresponding to

each outcome of interest. These outcome samples include students with observed outcomes, baseline scores,

demographics, and addresses, enrolled for ninth grade at one of 316 schools with at least 50 students for

each outcome. The outcome samples also exclude students enrolled at the nine selective high schools that

do not admit students via the main DA mechanism. Appendix A and Appendix Table A1 provide further

details on data sources and sample construction.

Key outcomes in our analysis include Regents math standardized test scores, PSAT scores, high school

graduation, college attendance, and college quality. The high school graduation outcome equals one if a

student graduates within five years of her projected high school entry date given her eighth grade cohort.

Likewise, college attendance equals one for students who enroll in any college (two or four year) within

two years of projected on-time high school graduation. The college quality variable, derived from Internal

Revenue Service tax record statistics reported by Chetty et al. (2017b), equals the mean 2014 income

for children born between 1980 and 1982 who attended a student’s college. The mean income for the

non-college population is assigned to students who do not enroll in a college. While this metric does not

distinguish between student quality and causal college effectiveness, it provides a measure of the selectivity

of a student’s college. It has also been used elsewhere to assess effects of education programs on the

intensive margin of college attendance (Chetty et al., 2011, 2014b). College attendance and quality are

unavailable for the 2003-2004 cohort because the NSC data window does not allow us to determine whether

students in this cohort were enrolled in college within two years of projected high school graduation.

Descriptive statistics for the choice and outcome samples appear in Table 1. These statistics show that

New York City schools serve a disadvantaged urban population. Seventy-three percent of students are

black or hispanic, and 65 percent are eligible for a subsidized lunch. Data from the 2011-2015 American

Community Surveys shows that the average student in the choice sample lives in a census tract with a
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median household income of $50,136 in 2015 dollars. Observed characteristics are generally similar for

students in the choice and outcome samples. The average PSAT score in New York City is 116, about one

standard deviation below the US average (the PSAT is measured on a 240 point scale, normed to have a

mean of 150 and a standard deviation of 30). The five-year high school graduation rate is 61 percent, and

48 percent of students attend some college within two years of graduation.

2.3 Choice Lists

New York City high school applicants tend to prefer schools near their homes, and most do not fill their

choice lists. These facts are shown in Table 2, which summarizes rank-ordered preference lists in the choice

sample. As shown in column (1), 93 percent of applicants submit a second choice, about half submit

eight or more choices, and 28 percent submit the maximum 12 allowed choices. Column (2) shows that

students prefer schools located in their home boroughs: 85 percent of first-choice schools are in the same

borough as the student’s home address, and the fraction of other choices in the home borough are also high.

Abdulkadiroğlu et al. (2017a) report that for 2003-04, 193 programs restricted eligibility to applicants who

reside in the same borough. The preference analysis to follow, therefore, treats schools in a student’s home

borough as her choice set and aggregates schools in other boroughs into a single outside option. Column

(3), which reports average distances (measured as great-circle distance in miles) for each choice restricted

to schools in the home borough, shows that students rank nearby schools higher within boroughs as well.

Applicants also prefer schools with strong academic performance. The last column of Table 2 reports

the average Regents high school math score for schools at each position on the rank list. Regents scores

are normalized to have mean zero and standard deviation one in the New York City population. To earn a

high school diploma in New York state, students must pass a Regents math exam. These results reveal that

higher-ranked schools enroll students with better math scores. The average score at a first-choice school

is 0.2 standard deviations (σ) above the city average, and average scores monotonically decline with rank.

PSAT, graduation, college enrollment, and college quality indicators also decline with rank. Students and

parents clearly prefer schools with high achievement levels. Our objective in the remainder of this paper

is to decompose this pattern into components due to preferences for school effectiveness and peer quality.

3 Conceptual Framework

Consider a population of students indexed by i, each of whom attends one of J schools. Let Yij denote the

potential value of some outcome of interest for student i if she attends school j. The projection of Yij on

a vector of observed characteristics, Xi, is written:

Yij = αj +X ′iβj + εij , (1)
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where E [εij ] = E [Xiεij ] = 0 by definition of αj and βj . The coefficient vector βj measures the returns to

observed student characteristics at school j, while εij reflects variation in potential outcomes unexplained

by these characteristics. We further normalize E [Xi] = 0, so αj = E [Yij ] is the population mean potential

outcome at school j. The realized outcome for student i is Yi =
∑
j 1 {Si = j}Yij , where Si ∈ {1...J}

denotes school attendance.

We decompose potential outcomes into components explained by student ability, school effectiveness,

and idiosyncratic factors. Let Ai ≡ (1/J)
∑
j Yij denote student i’s general ability, defined as the average

of her potential outcomes across all schools. This variable describes how the student would perform at the

average school. Adding and subtracting Ai on the right-hand side of (1) yields:

Yij = ᾱ+X ′iβ̄ + ε̄i︸ ︷︷ ︸
Ai

+ (αj − ᾱ)︸ ︷︷ ︸
ATEj

+X ′i(βj − β̄) + (εij − ε̄i)︸ ︷︷ ︸
Mij

, (2)

where ᾱ = (1/J)
∑
j αj , β̄ = (1/J)

∑
j βj , and ε̄i = (1/J)

∑
j εij . Equation (2) shows that student i’s

potential outcome at school j is the sum of three terms: the student’s general ability, Ai; the school’s

average treatment effect, ATEj , defined as the causal effect of school j relative to an average school for an

average student; and a match effect, Mij , which reflects student i’s idiosyncratic suitability for school j.

Match effects may arise either because of an interaction between student i’s observed characteristics and

the extra returns to characteristics at school j (captured by X ′i(βj − β̄)) or because of unobserved factors

that make student i more or less suitable for school j (captured by εij − ε̄i).

This decomposition allows us to interpret variation in observed outcomes across schools using three

terms. The average outcome at school j is given by:

E [Yi|Si = j] = Qj +ATEj + E [Mij |Si = j] . (3)

Here Qj ≡ E [Ai|Si = j] is the average ability of students enrolled at school j, a variable we label “peer

quality.” The quantity E [Mij |Si = j] is the average suitability of j’s students for this particular school.

In a Roy (1951)-style model in which students sort into schools on the basis of comparative advantage in

the production of Yi, we would expect this average match effect to be positive for all schools. Parents and

students may also choose schools on the basis of peer quality Qj , overall school effectiveness ATEj , or the

idiosyncratic match Mij for various outcomes.

4 Empirical Methods

The goal of our empirical analysis is to assess the roles of peer quality, school effectiveness, and academic

match quality in applicant preferences. Our analysis proceeds in three steps. We first use rank-ordered

choice lists to estimate preferences, thereby generating measures of each school’s popularity. Next, we
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estimate schools’ causal effects on test scores, high school graduation, college attendance, and college

choice. Finally, we combine these two sets of estimates to characterize the relationships among school

popularity, peer quality, and causal effectiveness.

4.1 Estimating Preferences

Let Uij denote student i’s utility from enrolling in school j, and let J = {1...J} represent the set of

available schools. We abstract from the fact that students rank programs rather than schools by ignoring

repeat occurrences of any individual school on a student’s choice list. Uij may therefore be interpreted as

the indirect utility associated with student i’s favorite program at school j. The school ranked first on a

student’s choice list is

Ri1 = arg max
j∈J

Uij ,

while subsequent ranks satisfy

Rik = arg max
j∈J\{Rim:m<k}

Uij , k > 1.

Student i’s rank-order list is then Ri = (Ri1...Ri`(i))′, where `(i) is the length of the list submitted by this

student.

We summarize these preference lists by fitting random utility models with parameters that vary ac-

cording to observed student characteristics. Student i’s utility from enrolling in school j is modeled as:

Uij = δc(Xi)j − τc(Xi)Dij + ηij , (4)

where the function c(Xi) assigns students to covariate cells based on the variables in the vector Xi, and

Dij records distance from student i’s home address to school j. The parameter δcj is the mean utility of

school j for students in covariate cell c, and τc is a cell-specific distance parameter or “cost.” We include

distance in the model because a large body of evidence suggests it plays a central role in school choices

(e.g., Hastings et al., 2009 and Abdulkadiroğlu et al., 2017a). We model unobserved tastes ηij as following

independent extreme value type I distributions conditional on Xi and Di = (Di1...DiJ)′. Equation (4) is

therefore a rank-ordered multinomial logit model (Hausman and Ruud, 1987).

The logit model implies the conditional likelihood of the rank list Ri is:

L (Ri|Xi, Di) =
`(i)∏
k=1

exp
(
δc(Xi)Rik − τc(Xi)DiRik

)∑
j∈J\{Rim:m<k} exp

(
δc(Xi)j − τc(Xi)Dij

) .
We allow flexible heterogeneity in tastes by estimating preference models separately for 360 covariate

cells defined by the intersection of borough, sex, race (black, hispanic, or other), subsidized lunch status,

above-median census tract income, and terciles of the mean of eighth grade math and reading scores.

This specification follows several recent studies that flexibly parametrize preference heterogeneity in terms
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of observable characteristics (e.g., Hastings et al., 2017 and Langer, 2016). Students rarely rank schools

outside their home boroughs, so covariate cells often include zero students ranking any given out-of-borough

school. We therefore restrict the choice set J to schools located in the home borough and aggregate all

other schools into an outside option with utility normalized to zero. Maximum likelihood estimation of

the preference parameters produces a list of school mean utilities along with a distance coefficient for each

covariate cell.

4.2 Estimating School Effectiveness

Our analysis of school effectiveness aims to recover the parameters of the potential outcome equations

defined in Section 3. We take two approaches to estimating these parameters.

Approach 1: Selection on observables

The first set of estimates is based on the assumption:

E [Yij |Xi, Si] = αj +X ′iβj , j = 1...J. (5)

This restriction, often labeled “selection on observables,” requires school enrollment to be as good as

random conditional on the covariate vector Xi, which includes sex, race, subsidized lunch status, the log

of median census tract income, and eighth grade math and reading scores. Assumption (5) implies that

an ordinary least squares (OLS) regression of Yi on school indicators interacted with Xi recovers unbiased

estimates of αj and βj for each school. This fully interacted specification is a multiple-treatment extension

of the Oaxaca-Blinder (1973) treatment effects estimator (Kline, 2011).3 By allowing school effectiveness

to vary with student characteristics, we generalize the constant effects “value-added” approach commonly

used to estimate the contributions of teachers and schools to student achievement (Koedel et al., 2015).

The credibility of the selection on observables assumption underlying value-added estimators is a matter

of continuing debate (Rothstein, 2010, 2017; Kane et al., 2013; Baicher-Hicks et al., 2014; Chetty et al.,

2014a, 2016, 2017a; Guarino et al., 2015). Comparisons to results from admission lotteries indicate that

school value-added models accurately predict the impacts of random assignment but are not perfectly

unbiased (Deming, 2014; Angrist et al., 2016b, 2017). Selection on observables may also be more plausible

for test scores than for longer-run outcomes, for which lagged measures of the dependent variable are not

available (Chetty et al., 2014a). We therefore report OLS estimates as a benchmark and compare these to

estimates from a more general strategy that relaxes assumption (5).

3We also include main effects of borough so that the model includes the same variables used to define covariate cells in
the preference estimates.
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Approach 2: Rank-ordered control functions

Our second approach is motivated by the restriction:

E [Yij |Xi, Di, ηi1...ηiJ , Si] = αj +X ′iβj + gj(Di, ηi1, .., ηiJ), j = 1...J. (6)

This restriction implies that any omitted variable bias afflicting OLS value-added estimates is due either to

spatial heterogeneity captured by distances to each school (Di) or to the preferences underlying the rank-

ordered lists submitted to the assignment mechanism (ηij). The function gj(·) allows potential outcomes to

vary arbitrarily across students with different preferences over schools. Factors that lead students with the

same observed characteristics, spatial locations, and preferences to ultimately enroll in different schools,

such as school priorities, random rationing due to oversubscription, or noncompliance with the assignment

mechanism, are presumed to be unrelated to potential outcomes.

Under assumption (6), comparisons of matched sets of students with the same covariates, values of

distance, and rank-ordered choice lists recover causal effects of school attendance. This model is there-

fore similar to the “self-revelation” model proposed by Dale and Krueger (2002; 2014) in the context of

postsecondary enrollment. Dale and Krueger assume that students reveal their unobserved “types” via the

selectivity of their college application portfolios, so college enrollment is as good as random among students

that apply to the same schools. Similarly, (6) implies that high school applicants reveal their types through

the content of their rank-ordered preference lists.

Though intuitively appealing, full nonparametric matching on rank-ordered lists is not feasible in prac-

tice because few students share the exact same rankings. We therefore use the structure of the logit choice

model in equation (4) to derive a parametric approximation to this matching procedure. Specifically, we

replace equation (6) with the assumption:

E [Yij |Xi, Di, ηi1...ηiJ , Si] = αj +X ′iβj +D′iγ +
J∑
k=1

ψk × (ηik − µη) + ϕ× (ηij − µη), j = 1...J, (7)

where µη ≡ E [ηij ] is Euler’s constant.4 As in the multinomial logit selection model of Dubin and McFadden

(1984), equation (7) imposes a linear relationship between potential outcomes and the unobserved logit

errors. Functional form assumptions of this sort are common in multinomial selection models with many

alternatives, where requirements for nonparametric identification are very stringent (Lee, 1983; Dahl, 2002;

Heckman et al., 2008).5

Equation (7) accommodates a variety of forms of selection on unobservables. The coefficient ψk rep-

resents an effect of the preference for school k common to all potential outcomes. This permits students

with strong preferences for particular schools to have higher or lower general ability Ai. The parameter ϕ

4The means of both Xi and Di are normalized to zero to maintain the interpretation that αj = E[Yij ].
5As discussed in Section 6, we also estimate an alternative model that includes fixed effects for first choice schools.
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captures an additional match effect of the preference for school j on the potential outcome at this specific

school. The model therefore allows for “essential” heterogeneity linking preferences to unobserved match

effects in student outcomes (Heckman et al., 2006). A Roy (1951)-style model of selection on gains would

imply ϕ > 0, but we do not impose this restriction.

By iterated expectations, equation (7) implies that mean observed outcomes at school j are:

E [Yi|Xi, Di, Ri, Si = j] = αj +X ′iβj +D′iγ +
J∑
k=1

ψkλk (Xi, Di, Ri) + ϕλj(Xi, Di, Ri), (8)

where λk (Xi, Di, Ri) ≡ E [ηik − µη|Xi, Di, Ri] gives the mean preference for school k conditional on a

student’s characteristics, spatial location, and preference list. The λk(·)’s serve as “control functions” cor-

recting for selection on unobservables (Heckman and Robb, 1985; Blundell and Matzkin, 2014; Wooldridge,

2015). As shown in Appendix B.1, these functions are generalizations of the formulas derived by Dubin

and McFadden (1984), extended to account for the fact that we observe a list of several ranked alternatives

rather than just the most preferred choice.

Note that equation (8) includes main effects of distance to each school; we do not impose an exclusion

restriction for distance. Identification of the selection parameters ψk and ϕ comes from variation in prefer-

ence rankings for students who enroll at the same school conditional on covariates and distance. Intuitively,

if students who rank school j highly do better than expected given their observed characteristics at all

schools, we will infer that ψj > 0. If these students do better than expected at school j but not elsewhere,

we will infer that ϕ > 0.

We use the choice model parameters to build first-step estimates of the control functions, then estimate

equation (8) in a second-step OLS regression of Yi on school indicators and their interactions with Xi,

controlling for Di and the estimated λk(·) functions.6 We adjust inference for estimation error in the

control functions via a two-step extension of the score bootstrap procedure of Kline and Santos (2012). As

detailed in Appendix B.2, the score bootstrap avoids the need to recalculate the first-step logit estimates

or the inverse variance matrix of the second-step regressors in the bootstrap iterations.

The joint distribution of peer quality and school effectiveness

Estimates of equations (5) and (7) may be used to calculate each school’s peer quality. A student’s predicted

ability in the value-added model is

Âi = 1
J

J∑
j=1

[
α̂j +X ′iβ̂j

]
, (9)

6The choice model uses only preferences over schools in students’ home boroughs, so λk(·) is undefined for students
outside school k’s borough. We therefore include dummies for missing values and code the control functions to zero for these
students. We similarly code Dik to zero for students outside of school k’s borough and include borough indicators so that the
distance coefficients are estimated using only within-borough variation. Our key results are not sensitive to dropping students
attending out-of-borough schools from the sample.

13



where α̂j and β̂j are OLS value-added coefficients. Predicted ability in the control function model adds

estimates of the distance and control function terms in equation (8). Estimated peer quality at school j is

then Q̂j =
∑
i 1{Si = j}Âi/

∑
i 1{Si = j}, the average predicted ability of enrolled students.

The end result of our school quality estimation procedure is a vector of estimates for each school,

θ̂j = (α̂j , β̂′j , Q̂j)′. The vector of parameters for the control function model also includes an estimate of the

selection coefficient for school j, ψ̂j . These estimates are unbiased but noisy measures of the underlying

school-specific parameters θj . We investigate the distribution of θj using the following hierarchical model:
θ̂j |θj ∼ N(θj ,Ωj),

θj ∼ N(µθ,Σθ).
(10)

Here Ωj is the sampling variance of the estimator θ̂j , while µθ and Σθ govern the distribution of latent

parameters across schools. In a hierarchical Bayesian framework µθ and Σθ are hyperparameters describing

a prior distribution for θj . We estimate these hyperparameters by maximum likelihood applied to model

(10), approximating Ωj with an estimate of the asymptotic variance of θ̂j .7 The resulting estimates of µθ
and Σθ characterize the joint distribution of peer quality and school treatment effect parameters, purged

of the estimation error in θ̂j .

This hierarchical model can also be used to improve estimates of parameters for individual schools. An

empirical Bayes (EB) posterior mean for θj is given by

θ∗j =
(

Ω̂−1
j + Σ̂−1

θ

)−1 (
Ω̂−1
j θ̂j + Σ̂−1

θ µ̂θ

)
,

where Ω̂j , µ̂θ and Σ̂θ are estimates of Ωj , µθ and Σθ. Relative to the unbiased but noisy estimate θ̂j , this

EB shrinkage estimator uses the prior distribution to reduce sampling variance at the cost of increased

bias, yielding a minimum mean squared error (MSE) prediction of θj (Robbins, 1956; Morris, 1983). This

approach parallels recent work applying shrinkage methods to estimate causal effects of teachers, schools,

neighborhoods, and hospitals (Chetty et al., 2014a; Hull, 2016; Angrist et al., 2017; Chetty and Hendren,

2017; Finkelstein et al., 2017). Appendix B.3 further describes our EB estimation strategy. In addition

to reducing MSE, empirical Bayes shrinkage eliminates attenuation bias that would arise in models using

elements of θ̂j as regressors (Jacob and Lefgren, 2008). We exploit this property by regressing estimates

of school popularity on EB posterior means in the final step of our empirical analysis.

4.3 Linking Preferences to School Effectiveness

We relate preferences to peer quality and causal effects with regressions of the form:

δ̂cj = κc + ρ1Q
∗
j + ρ2ATE

∗
j + ρ3M

∗
cj + ξcj , (11)

7The peer quality estimates Q̂j are typically very precise, so we treat peer quality as known rather than estimated when
fitting the hierarchical model.
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where δ̂cj is an estimate of the mean utility of school j for students in covariate cell c, κc is a cell fixed effect,

and Q∗j and ATE∗j are EB posterior mean predictions of peer quality and average treatment effects. The

variableM∗cj is an EB prediction of the mean match effect of school j for students in cell c. Observations in

equation (11) are weighted by the inverse sampling variance of δ̂cj . We use the variance estimator proposed

by Cameron et al. (2011) to double-cluster inference by cell and school. Two-way clustering accounts for

correlated estimation errors in δ̂cj across schools within a cell as well as unobserved determinants of

popularity common to a given school across cells. We estimate equation (11) separately for Regents test

scores, PSAT scores, high school graduation, college attendance, and college quality. The parameters ρ1,

ρ2, and ρ3 measure how preferences relate to peer quality, school effectiveness, and match quality.8

5 Parameter Estimates

5.1 Preference Parameters

Table 3 summarizes the distribution of household preference parameters across the 316 high schools and

360 covariate cells in the choice sample. The first row reports estimated standard deviations of the mean

utility δcj across schools and cells, while the second row displays the mean and standard deviation of

the cell-specific distance cost τc. School mean utilities are deviations from cell averages to account for

differences in the reference category across boroughs, and calculations are weighted by cell size. We adjust

these standard deviations for sampling error in the estimated preference parameters by subtracting the

average squared standard error from the sample variance of mean utilities.

Consistent with the descriptive statistics in Table 1, the preference estimates indicate that households

dislike more distant schools. The mean distance cost is 0.33. This implies that increasing the distance to a

particular school by one mile reduces the odds that a household prefers this school to another in the same

borough by 33 percent. The standard deviation of the distance cost across covariate cells is 0.12. While

there is significant heterogeneity in distastes for distance, all of the estimated distance costs are positive,

suggesting that all subgroups prefer schools closer to home.

The estimates in Table 3 reveal significant heterogeneity in tastes for schools both within and between

subgroups. The within-cell standard deviation of school mean utilities, which measures the variation in δcj
across schools j for a fixed cell c, equals 1.12. This is equivalent to roughly 3.4 (1.12/0.33) miles of distance,

implying that households are willing to travel substantial distances to attend more popular schools. The

between-cell standard deviation, which measures variation in δcj across c for a fixed j, is 0.50, equivalent to

about 1.5 (0.50/0.33) miles of distance. The larger within-cell standard deviation indicates that students

8The control function version of our estimation procedure is closely related to classic selection-correction methods from
studies of labor supply decisions. In their review of identification of labor supply models, French and Taber (2011) detail a
procedure that estimates labor market participation probabilities in a first step, uses these probabilities to selection-correct a
wage equation in a second step, then relates participation to the unselected wage equation parameters in a third “structural
probit” step. Similarly, we use preference estimates to selection-correct equations for student outcomes, then link the selection-
corrected outcome estimates back to preferences to understand relationships between choices and treatment effects.
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in different subgroups tend to prefer the same schools.

5.2 School Effectiveness and Peer Quality

Our estimates of school treatment effects imply substantial variation in both causal effects and sorting

across schools. Table 4 reports estimated means and standard deviations of peer quality Qj , average

treatment effects ATEj , and slope coefficients βj . We normalize the means of Qj and ATEj to zero and

quantify the variation in these parameters relative to the average school. As shown in column (2), the

value-added model produces standard deviations of Qj and ATEj for Regents math scores equal to 0.29σ.

This is somewhat larger than corresponding estimates of variation in school value-added from previous

studies (usually around 0.15− 0.2σ; see, e.g., Angrist et al., 2017). One possible reason for this difference

is that most students in our sample attend high school for two years before taking Regents math exams,

while previous studies look at impacts after one year.

As shown in columns (3) and (4) of Table 4, the control function model attributes some of the variation

in Regents math value-added parameters to selection bias. Adding controls for unobserved preferences and

distance increases the estimated standard deviation of Qj to 0.31σ and reduces the estimated standard

deviation of ATEj to 0.23σ. Figure 1, which compares value-added and control function estimates for

all five outcomes, demonstrates that this pattern holds for other outcomes as well: adjusting for selection

on unobservables compresses the estimated distributions of treatment effects. This compression is more

severe for high school graduation, college attendance, and college quality than for Regents math and PSAT

scores. Our findings are therefore consistent with previous evidence that bias in OLS value-added models

is more important for longer-run and non-test score outcomes (see, e.g., Chetty et al., 2014b).

The bottom rows of Table 4 show evidence of substantial treatment effect heterogeneity across students.

For example, the standard deviation of the slope coefficient on a black indicator equals 0.12σ in the control

function model. This implies that holding the average treatment effectATEj fixed, a one standard deviation

improvement in a school’s match quality for black students boosts scores for these students by about a

tenth of a standard deviation relative to whites. We also find significant variation in slope coefficients for

gender (0.06σ), hispanic (0.11σ), subsidized lunch status (0.05σ), the log of median census tract income

(0.05σ), and eighth grade math and reading scores (0.11σ and 0.05σ). The final row of column (3) reports

a control function estimate of ϕ, the parameter capturing matching between unobserved preferences and

Regents scores. This estimate indicates a positive relationship between preferences and the unobserved

component of student-specific test score gains, but the magnitude of the coefficient is very small.9

Our estimates imply that high-ability students tend to enroll in more effective schools. Table 5 reports

correlations between Qj and school treatment effect parameters based on control function estimates for

9The average predicted value of (ηij − µη) for a student’s enrolled school in our sample is 2.0. Our estimate of ϕ
therefore implies that unobserved match effects increase average test scores by about one percent of a standard deviation
(0.006σ × 2.0 = 0.012σ).
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Regents math scores. Corresponding value-added estimates appear in Appendix Table A2. The estimated

correlation between peer quality and average treatment effects is 0.59. This may reflect either positive

peer effects or higher-achieving students’ tendency to enroll in schools with better inputs. Our finding that

schools with high-ability peers are more effective contrasts with recent studies of exam schools in New York

City and Boston, which show limited treatment effects for highly selective public schools (Abdulkadiroğlu

et al., 2014; Dobbie and Fryer, 2014). Within the broader New York public high school system, we find a

strong positive association between school effectiveness and average student ability.

Table 5 also reports estimated correlations of Qj and ATEj with the slope coefficients βj . Schools with

larger average treatment effects tend to be especially good for girls: the correlation between ATEj and

the female slope coefficient is positive and statistically significant. This is consistent with evidence from

Deming et al. (2014) showing that girls’ outcomes are more responsive to school value-added. We estimate

a very high positive correlation between black and hispanic coefficients, suggesting that match effects tend

to be similar for these two groups.

The slope coefficient on eighth grade reading scores is negatively correlated with peer quality and the

average treatment effect. Both of these estimated correlations are below -0.4 and statistically significant. In

other words, schools that enroll higher-ability students and produce larger achievement gains are especially

effective at teaching low-achievers. In contrast to our estimate of the parameter ϕ, this suggests negative

selection on the observed component of match effects in student achievement. A similar selection pattern

is documented by Walters (2018), who shows that lower-scoring students in Boston are less likely to apply

to charter schools despite receiving larger achievement benefits. Section 6 presents a more systematic

investigation of relationships between preferences and match effects.

Patterns of estimates for PSAT scores, high school graduation, college attendance, and college quality

are generally similar to results for Regents math scores. Appendix Tables A3-A6 present estimated distri-

butions of peer quality and school effectiveness for these longer-run outcomes. For all five outcomes, we

find substantial variation in peer quality and average treatment effects, a strong positive correlation be-

tween these variables, and significant effect heterogeneity with respect to student characteristics. Overall,

causal effects for the longer-run outcomes are highly correlated with effects on Regents math scores. This

is evident in Figure 2, which plots EB posterior mean predictions of average treatment effects on Regents

scores against corresponding predictions for the other four outcomes. These results are consistent with

recent evidence that short-run test score impacts reliably predict effects on longer-run outcomes (Chetty

et al., 2011; Dynarski et al., 2013; Angrist et al., 2016a).

5.3 Decomposition of School Average Outcomes

We summarize the joint distribution of peer quality and school effectiveness by implementing the decom-

position introduced in Section 3. Table 6 uses the control function estimates to decompose variation in
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school averages for each outcome into components explained by peer quality, school effectiveness, average

match effects, and covariances of these components.

Consistent with the estimates in Table 4, both peer quality and school effectiveness play roles in

generating variation in school average outcomes, but peer quality is generally more important. Peer quality

explains 47 percent of the variance in average Regents scores (0.093/0.191), while average treatment effects

explain 28 percent (0.054/0.191). The explanatory power of peer quality for other outcomes ranges from 49

percent (PSAT scores) to 83 percent (high school graduation), while the importance of average treatment

effects ranges from 10 percent (PSAT scores) to 19 percent (log college quality).

Despite the significant variation in slope coefficients documented in Table 4, match effects are unim-

portant in explaining dispersion in school average outcomes. The variance of match effects accounts for

only five percent of the variation in average Regents scores, and corresponding estimates for the other

outcomes are also small. Although school treatment effects vary substantially across subgroups, there is

not much sorting of students to schools on this basis, so the existence of potential match effects is of little

consequence for realized variation in outcomes across schools.

The final three rows of Table 6 quantify the contributions of covariances among peer quality, treat-

ment effects, and match effects. As a result of the positive relationship between peer quality and school

effectiveness, the covariance between Qj and ATEj substantially increases cross-school dispersion in mean

outcomes. The covariances between match effects and the other variance components are negative. This

indicates that students at highly effective schools and schools with higher-ability students are less appro-

priately matched on the heterogeneous component of treatment effects, slightly reducing variation in school

average outcomes.

5.4 Testing for Bias in Estimates of School Effectiveness

As described in Section 2, New York City’s centralized assignment mechanism breaks ties at random for

students with the same preferences and priorities. Abdulkadiroğlu et al. (2017b; 2019) derive methods for

using the random assignment implicit in such tie-breaking systems for impact evaluation. The core of this

approach uses student preferences and priorities along with the structure of the assignment mechanism

to derive a probability of assignment (propensity score) for each student to each school where random

tie-breaking occurs. Conditioning on the propensity score is sufficient to isolate the random component of

school assignment, generating valid instruments for school enrollment (Rosenbaum and Rubin, 1983). The

priority information necessary to produce lottery propensity scores is only available for the 2003 New York

City high school applicant cohort, and random assignment occurs for only a minority of schools. While

these data constraints prevent us from producing a lottery-based estimate of effectiveness for every school,

we can use the shifts in school attendance resulting from these lottery assignments to test the accuracy of

our value-added and control function estimates.
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To implement these tests we first construct DA mechanism-based propensity scores and then apply the

lottery-based test for bias in non-experimental estimators of school effectiveness proposed by Angrist et al.

(2016b; 2017). For a set of L lotteries, this test is implemented by estimating the following two-stage least

squares (2SLS) system:

Yi = κ0 + φŶi +
L∑
`=1

κ`pi` + ei, (12)

Ŷi = π0 +
L∑
`=1

[π`Zi` + ω`pi`] + υi, (13)

where Ŷi is the fitted value generated by a non-experimental estimation procedure (either value-added

or control function), Zi` is an indicator equal to one if student i is assigned to school `, and pi` is the

propensity score measuring student i’s probability of assignment to school `. The first stage coefficients

π` describe the non-experimental estimator’s predicted effects of assignment in each lottery, which are

non-zero because lottery offers shift students across schools. As described in Angrist et al. (2017), the

“forecast coefficient” φ should equal one if the estimator used to generate Ŷi correctly predicts the effects

of random lottery assignments on average, while the overidentification test for the system defined by (12)

and (13) measures whether the estimator has the same predictive validity in every lottery.

As shown in Table 7, this lottery-based test suggests that our value-added and control function esti-

mates accurately capture the causal effects of schools on student outcomes.10 Column (1) reports tests of

an “uncontrolled” model that measures school effectiveness as the unadjusted mean outcome at the school.

This model generates forecast coefficients far from one and decisive rejections of the overidentification test

for all three outcomes available for the 2003 cohort (Regents math, PSAT scores, and high school gradua-

tion), indicating that the available lotteries have power to detect bias in the most naive nonexperimental

estimators. Columns (2) and (3) show that the addition of controls for observed student characteristics

generates forecast coefficients much closer to one and overidentification tests that generally do not reject

at conventional levels. Unfortunately, we cannot use lotteries to validate our estimates for postsecondary

outcomes since college attendance data are not available for the 2003 applicant cohort, so estimates for

these outcomes should be viewed more cautiously.

While the estimates in Table 7 are encouraging, it’s worth noting that the lotteries available in New York

may have weak power to detect bias in our value-added and control function models. Specifically, the first

stage F-statistics for equation (13) are below the rule-of-thumb value of 10 commonly used to diagnose

weak instruments (Staiger and Stock, 1997), implying that the lotteries tend to shift students across

schools with similar estimated effectiveness. Columns (4)-(6) demonstrate that we obtain similar results

based on the Unbiased Jackknife Instrumental Variables (UJIVE) estimator proposed by Kolesar (2013).

10We validate our approach to reconstructing school lotteries by reporting relationships between lottery offers and students
characteristics in Table A7. Without controls for propensity scores, school offers are strongly correlated with baseline test
scores and other observables, but we cannot reject that offers at all schools are independent of observed characteristics after
controlling for the propensity scores. This indicates that our strategy successfully isolates randomized lottery assignments.
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The UJIVE estimator performs well with weak instruments and (unlike other common approaches such

as limited information maximum likelihood) it is robust to the presence of treatment effect heterogeneity.

The UJIVE estimates suggest that our non-experimental estimators are accurate, particularly the control

function estimator, for which we cannot reject forecast unbiasedness or the overidentifying restrictions

for any outcome (we reject forecast unbiasedness for the value-added estimator for PSAT scores). The

similarity of 2SLS and UJIVE also eases concerns about weak instrument bias in 2SLS, though the weak

first stage also indicates that tests based on both estimators are likely to have low power. Taken together,

the results in Table 7 suggest that our estimation strategies generate reliable measures of causal effects,

though the available lottery variation may be insufficient to detect modest violations.

6 Preferences, Peer Quality, and School Effectiveness

6.1 Productivity vs. Peers

The last step of our analysis compares the relative strength of peer quality and school effectiveness as

predictors of parent preferences. Table 8 reports estimates of equation (11) for Regents math scores, first

includingQ∗j and ATE∗j one at a time and then including both variables simultaneously. Mean utilities, peer

quality, and treatment effects are scaled in standard deviations of their respective school-level distributions,

so the estimates can be interpreted as the standard deviation change in mean utility associated with a one

standard deviation increase in Qj or ATEj .

Bivariate regressions show that school popularity is positively correlated with both peer quality and

school effectiveness. Results based on the OLS value-added model, reported in columns (1) and (2), imply

that a one standard deviation increase in Qj is associated with a 0.42 standard deviation increase in mean

utility, while a one standard deviation increase in ATEj is associated with a 0.24 standard deviation

increase in mean utility. The latter result contrasts with studies reporting no average test score impact

of attending preferred schools (Cullen et al., 2006; Hastings et al., 2009). These studies rely on admission

lotteries that shift relatively small numbers of students across a limited range of schools. Our results show

that looking across all high schools in New York City, more popular schools tend to be more effective on

average.

While preferences are positively correlated with school effectiveness, however, this relationship is entirely

explained by peer quality. Column (3) shows that when both variables are included together, the coefficient

on peer quality is essentially unchanged, while the coefficient on the average treatment effect is rendered

small and statistically insignificant. The ATEj coefficient also remains precise: we can rule out increases

in mean utility on the order of 0.06 standard deviations associated with a one standard deviation change

in school value-added at conventional significance levels. The control function estimates in columns (5)-(7)

are similar to the value-added estimates; in fact, the control function results show a small, marginally
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statistically significant negative association between school effectiveness and popularity after controlling

for peer quality.

Columns (4) and (8) of Table 8 explore the role of treatment effect heterogeneity by adding posterior

mean predictions of match quality to equation (11), also scaled in standard deviation units of the distribu-

tion of match effects across schools and cells.11 The match coefficient is negative for both the value-added

and control function models, and the control function estimate is statistically significant. This reflects

the negative correlation between baseline test score slope coefficients and peer quality reported in Table

5: schools that are especially effective for low-achieving students tend to be more popular among high-

achievers and therefore enroll more of these students despite their lower match quality. This is consistent

with recent studies of selection into early-childhood programs and charter schools, which also find negative

selection on test score match effects (Cornelissen et al., 2016; Kline and Walters, 2016; Walters, 2018).

Figure 3 presents a graphical summary of the links among preferences, peer quality, and treatment

effects by plotting bivariate and multivariate relationships between mean utility (averaged across covariate

cells) and posterior predictions of Qj and ATEj from the control function model. Panel A shows strong

positive bivariate correlations for both variables. Panel B plots mean utilities against residuals from a

regression of Q∗j on ATE∗j (left-hand panel) and residuals from a regression of ATE∗j on Q∗j (right-hand

panel). Adjusting for school effectiveness has little effect on the relationship between preferences and peer

quality. In contrast, partialing out peer quality eliminates the positive association between popularity and

effectiveness.

6.2 Controls for Other School Attributes

The results in Table 8 show that reported preferences are uncorrelated with causal effects on test scores

after controlling for peer quality. Correlations between popularity and effectiveness may fail to capture

the causal effects of school effectiveness on parent demand if other determinants of parent preferences are

correlated with school effectiveness.12 It’s worth noting that for omitted variables bias to explain our

finding that parents do not place positive weight on effectiveness conditional on peer quality, an omitted

amenity that parents value would need to be negatively correlated with effectiveness after controlling for

Qj . Since we might expect any omitted variables to be positively correlated with both effectiveness and

demand (as is the case with peer quality itself), this sort of selection bias seems implausible. Nevertheless,

we investigate the potential for such omitted variable bias by adding controls for other important school

attributes to equation (11). The sensitivity of regression coefficients to controls for observables is a common

11Equation (11) captures the projection of cell mean utility on peer quality and cell mean treatment effects. In the control
function model the projection of student-specific utility on student-specific treatment effects also includes the idiosyncratic
match component ϕηij . Our small estimate of the matching coefficient ϕ implies this term is negligible, so we focus on
relationships at the cell mean level for both the value-added and control function models.

12An analogous problem arises in studies of teacher and school value-added, which often analyze relationships between
teacher or school effects and observed characteristics without quasi-experimental variation in the characteristics (see, e.g.,
Kane et al., 2008 and Angrist et al., 2013).
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diagnostic for assessing the scope for selection on unobservables (Altonji et al., 2005; Oster, forthcoming).

We explore the impact of controlling for three school covariates. The first is a measure of the quality

of the school environment derived from New York City’s Learning Environments Survey. This survey is

taken each year by New York City students in grades 6 through 12 as well as parents and teachers. We

construct an overall school environment score by taking the first principle component of the Safety and

Respect, Communication, Engagement, and Academic Expectations summary measures from the school

survey. Second, we add a measure of violent and disruptive incidents (VADI) per student reported by the

New York State Department of Education. Finally, we control for the fraction of teachers with Master’s

degrees as reported on New York school report cards distributed between 2005 and 2007.

As shown in Table 9, our main conclusions are unaffected by the addition of these control variables.

Column (1) reports coefficients from a regression that includes only the three covariates and cell indicators.

Results from this model show that parents prefer schools with fewer violent incidents and those with more

teachers with Master’s degrees. Perhaps surprisingly, the summary school environment score is uncorrelated

with parent demand. The remaining columns add our measures of peer quality and school treatment effects.

Columns (2) and (8) show that adding a control for peer quality reduces the magnitude of the VADI and

Master’s degree coefficients, though these remain statistically significant. The coefficient on the school

environment score is slightly negative in models that include peer quality, reflecting this variable’s negative

correlation with peer quality. Columns (6) and (10) demonstrate that the coefficient on school average

treatment effects remains close to zero in models that control for school covariates, while the peer quality

coefficient remains large and positive. While we cannot control for all unobserved factors that influence

preferences for schools, the robustness of our results to controls for observed characteristics suggests that

our key findings are unlikely to be driven by omitted variable bias.

6.3 Preferences and Effects on Longer-run Outcomes

Parents may care about treatment effects on outcomes other than short-run standardized test scores. We

explore this by estimating equation (11) for PSAT scores, high school graduation, college attendance, and

log college quality.

Results for these outcomes are similar to the findings for Regents math scores: preferences are positively

correlated with average treatment effects in a bivariate sense but are uncorrelated with treatment effects

conditional on peer quality. Table 10 reports results based on control function estimates of treatment effects.

The magnitudes of all treatment effect coefficients are small, and the overall pattern of results suggests

no systematic relationship between preferences and school effectiveness conditional on peer composition.

We find a modest positive relationship between preferences and match effects for log college quality, but

corresponding estimates for PSAT scores, high school graduation, and college attendance are small and

statistically insignificant. This pattern contrasts with results for the Norwegian higher education system,
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reported by Kirkebøen et al. (2016), which show sorting into fields of study based on heterogeneous earnings

gains. Unlike Norwegian college students, New York City’s high school students do not prefer schools with

higher academic match quality.

6.4 Heterogeneity in Preferences for Peer and School Quality

Previous evidence suggests that parents of higher-income, higher-achieving students place more weight

on academic performance levels when choosing schools (Hastings et al., 2009). This pattern may reflect

either greater responsiveness to peer quality or more sensitivity to causal school effectiveness. If parents

of high-achievers value school effectiveness, choice may indirectly create incentives for schools to improve

because better instruction will attract high-ability students, raising peer quality and therefore demand

from other households. In Table 11 we investigate this issue by estimating equation (11) separately by sex,

race, subsidized lunch status, and baseline test score category.

We find that no subgroup of households responds to causal school effectiveness. Consistent with previous

work, we find larger coefficients on peer quality among non-minority students, richer students (those

ineligible for subsidized lunches), and students with high baseline achievement. We do not interpret this

as direct evidence of stronger preferences for peer ability among higher-ability students; since students are

more likely to enroll at schools they rank highly, any group component to preferences will lead to a positive

association between students’ rankings and the enrollment share of others in the same group.13 The key

pattern in Table 11 is that, among schools with similar peer quality, no group prefers schools with greater

causal impacts on academic achievement.

6.5 Changes in Demand Over Time

If parents do not have perfect information about school quality we might expect changes in demand over

time as parents learn more about which schools are effective. The evolution of choice behavior is of

particular interest in our sample since New York City changed from an uncoordinated assignment process

to a coordinated single-offer system in 2003, the first year of our data (Abdulkadiroğlu et al., 2017a). Table

A8 assesses whether parents systematically select more effective schools over time by reporting estimates

of equation (11) based on preference models fit separately for each of the four applicant cohorts in our

sample. The results reveal remarkably stable patterns of choice: in each year the coefficient on peer quality

is large and positive, the coefficient on the average treatment effect is a precise zero, and the match effect

coefficient is zero or negative. Evidently, more experience with the centralized matching process did not

lead to a stronger relationship between preferences and effectiveness for parents in New York City. This

suggests that either parents do not learn much about school effectiveness over time, or the patterns we

identify reflect preferences for other school attributes rather than a lack of information about effectiveness.

13This is a version of the “reflection problem” that plagues econometric investigations of peer effects (Manski, 1993).
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6.6 Alternative Specifications

We investigate the robustness of our key results by estimating a variety of alternative specifications, reported

in Appendix Tables A9 and A10. To assess the sensitivity of our estimates to reasonable changes in our

measure of school popularity, columns (1)-(4) of Appendix Table A9 display results from models replacing

δ̂cj in equation (11) with the log share of students in a cell ranking a school first or minus the log sum of

ranks in the cell (treating unranked schools as tied). These alternative measures of demand produce very

similar results to the rank-ordered logit results in Table 8.

Estimates based on students’ submitted rankings may not accurately describe demand if students

strategically misreport their preferences in response to the 12-choice constraint on list length. As noted

in Section 2, truthful reporting is a dominant strategy for the 72 percent of students that list fewer than

12 choices. Columns (5) and (6) of Appendix Table A9 report results based on rank-ordered logit models

estimated in the subsample of unconstrained students. Results here are again similar to the full sample

estimates, suggesting that strategic misreporting is not an important concern in our setting.

Our preference estimation approach models students’ choices among all schools in their home boroughs.

Students may be unaware of some schools and therefore consider only a subset of the available alternatives.

A conservative approach to defining consideration sets is to assume students are only aware of the schools

ranked on their preference lists. Columns (7) and (8) of Appendix Table A9 show results based on preference

estimates that omit all unranked alternatives from the choice set. This approach produces similar estimates

as well.

Equation (8) parameterizes the relationship between potential outcomes and preference rankings through

the control functions λk(·). Columns (1)-(4) of Appendix Table A10 present an alternative parameteriza-

tion that replaces the control functions with fixed effects for first choice schools. This approach ignores

information on lower-ranked schools but more closely parallels the application portfolio matching approach

in Dale and Krueger (2002; 2014). As a second alternative specification, columns (5)-(8) report estimates

from a control function model that drops the distance control variables from equation (8). This model relies

on an exclusion restriction for distance, a common identification strategy in the literature on educational

choice (Card, 1995; Neal, 1997; Booker et al., 2011; Mountjoy, 2017; Walters, 2018). These alternative

approaches to estimating school effectiveness produce no meaningful changes in the results.

7 Discussion

The findings reported here inform models of school choice commonly considered in the literature. Theo-

retical analyses often assume parents know students’ potential achievement outcomes and choose between

schools on this basis. For example, Epple et al. (2004) and Epple and Romano (2008) study models in

which parents value academic achievement and consumption of other goods, and care about peer quality
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only insofar as it produces higher achievement through peer effects. Hoxby (2000) argues that school choice

may increase achievement by allowing students to sort on match quality. Such models imply that demand

should be positively correlated with both average treatment effects and match effects conditional on peer

quality, a prediction that is inconsistent with the pattern in Table 8.

Parents may choose between schools based on test score levels rather than treatment effects. Cullen

et al. (2006) suggest confusion between levels and gains may explain limited effects of admission to preferred

schools in Chicago. Since our setting has substantial variation in both levels and value-added, we can more

thoroughly investigate this model of parent decision-making. If parents choose between schools based on

average outcomes, increases in these outcomes due to selection and causal effectiveness should produce

equal effects on popularity. In contrast, we find that demand only responds to the component of average

outcomes that is due to enrollment of higher-ability students. That is, we can reject the view that parental

demand is driven by performance levels: demand places no weight on the part of performance levels

explained by value-added but significant weight on the part explained by peer quality.

It is important to note that our findings do not imply parents are uninterested in school effectiveness.

Without direct information about treatment effects, for example, parents may use peer characteristics as

a proxy for school quality, as in MacLeod and Urquiola (2015). In view of the positive correlation between

peer quality and school effectiveness, this is a reasonable strategy for parents that cannot observe treatment

effects and wish to choose effective schools. Effectiveness varies widely conditional on peer quality, however,

so parents make substantial sacrifices in academic quality by not ranking schools based on effectiveness.

Table 12 compares Regents math effects for observed preference rankings vs. hypothetical rankings in

which parents order schools according to their effectiveness. The average treatment effect of first-choice

schools would improve from 0.07σ to 0.43σ if parents ranked schools based on effectiveness, and the average

match effect would increase from −0.04σ to 0.16σ. This implies that the average student loses more than

half a standard deviation in math achievement by enrolling in her first-choice school rather than the most

effective option.

The statistics in Table 12 suggest that if information frictions prevent parents from ranking schools based

on effectiveness, providing information about school effectiveness could alter school choices considerably.

These changes may be particularly valuable for disadvantaged students. As shown in Appendix Table A11,

gaps in effectiveness between observed first-choice schools and achievement-maximizing choices are larger for

students with lower baseline achievement. This is driven by the stronger relationship between peer quality

and preferences for more-advantaged parents documented in Table 11. These results suggest reducing

information barriers could lead to differential increases in school quality for disadvantaged students and

reduce inequality in student achievement. On the other hand, the patterns documented here may also reflect

parents’ valuation of school amenities other than academic effectiveness rather than a lack of information

about treatment effects. It is also important to note that our estimates capture average impacts of changing

an individual student’s rankings, holding fixed the behavior of other students; we might expect schools’
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treatment effect parameters to change if all students changed behavior simultaneously due to changes in

peer effects or other inputs.

Regardless of why parents respond to peer quality rather than school effectiveness, our results have

important implications for the incentive effects of school choice programs. Since parents only respond to

the component of school average outcomes that can be predicted by the ability of enrolled students, our

estimates imply a school wishing to boost its popularity must recruit better students; improving outcomes

by increasing causal effectiveness for a fixed set of students will have no impact on parent demand. Our

results therefore suggest that choice may create incentives for schools to invest in screening and selection.

The evolution of admissions criteria used at New York City’s high schools is consistent with the impli-

cation that schools have an increased incentive to screen applicants due to parents’ demand for high-ability

peers. After the first year of the new assignment mechanism, several school programs eliminated all

lottery-based admissions procedures and became entirely screened. In the 2003-04 high school brochure,

36.8 percent of programs are screened, and this fraction jumps to 40.3 percent two years later. The Beacon

High School in Manhattan, for example, switched from a school where half of the seats were assigned

via random lottery in 2003-04 to a screened school the following year, where admissions is based on test

performance, an interview and a portfolio of essays. Leo Goldstein High School for Sciences in Brooklyn

underwent a similar transition. Both high schools frequent lists of New York City’s best public high schools

(Linge and Tanzer, 2016). Compared to the first years of the new system, there has also been growth in the

number of limited unscreened programs, which use a lottery but also give priority to students who attend

an open house or high school fair. Compared to unscreened programs, prioritizing applicants who attend

an information session provides an ordeal that favors applicants with time and resources thus resulting in

positive selection (Disare, 2017). The number of limited unscreened programs nearly doubled from 106 to

210 from 2005 to 2012 (Nathanson et al., 2013).

8 Conclusion

A central motivation for school choice programs is that parents’ choices generate demand-side pressure for

improved school productivity. We investigate this possibility by comparing estimates of school popularity

and treatment effects based on rank-ordered preference data for applicants to public high schools in New

York City. Parents prefer schools that enroll higher-achieving peers. Conditional on peer quality, however,

parents’ choices are unrelated to causal school effectiveness. Moreoever, no subgroup of parents systemat-

ically responds to causal school effectiveness. We also find no relationship between preferences for schools

and estimated match quality. This indicates that choice does not lead students to sort into schools on the

basis of comparative advantage in academic achievement.

This pattern of findings has important implications for the expected effects of school choice programs.

Our results on match quality suggest choice is unlikely to increase allocative efficiency. Our findings
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regarding peer quality and average treatment effects suggest choice may create incentives for increased

screening rather than academic effectiveness. If parents respond to peer quality but not causal effects, a

school’s easiest path to boosting its popularity is to improve the average ability of its student population.

Since peer quality is a fixed resource, this creates the potential for socially costly zero-sum competition

as schools invest in mechanisms to attract the best students. MacLeod and Urquiola (2015) argue that

restricting a school’s ability to select pupils may promote efficiency when student choices are based on

school reputation. The impact of school choice on effort devoted to screening is an important empirical

question for future research.

While we have shown that parents do not choose schools based on causal effects for a variety of educa-

tional outcomes, we cannot rule out the possibility that preferences are determined by effects on unmeasured

outcomes. Our analysis also does not address why parents put more weight on peer quality than on treat-

ment effects. If parents rely on student composition as a proxy for effectiveness, coupling school choice with

credible information on causal effects may strengthen incentives for improved productivity and weaken the

association between preferences and peer ability. Distinguishing between true tastes for peer quality and

information frictions is another challenge for future work.
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Figure 1: Comparison of value-added and control function estimates of school average treatment effects

Notes: This figure plots school average treatment effect (ATE) estimates from value-added models against corresponding estimates from models including control functions that adjust for selection on unobservables. Value-added 
estimates come from regressions of outcomes on school indicators interacted with gender, race, subsidized lunch status, the log of census tract median income, and eighth grade math and reading scores. Control function models add 
distance to school and predicted unobserved tastes from the choice model. Points in the figure are empirical Bayes posterior means from models fit to the distribution of school-specific estimates. Dashed lines show the 45-degree line.
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Figure 2: Relationships between effects on test scores and effects on long run outcomes
A. Regents math scores and PSAT scores B. Regents math scores and  high school graduation

Notes: This figure plots estimates of causal effects on Regents math scores against estimates of effects on longer-run outcomes. Treatment effects are empirical Bayes posterior 
mean estimates of school average treatment effects from control function models. Panel A plots the relationship between Regents math effects and effects on PSAT scores. 
Panels B, C, and D show corresponding results for high school graduation, college attendance, and log college quality.

C. Regents math scores and college attendance D. Regents math scores and log college quality
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Figure 3: Relationships among preferences, peer quality, and Regents math effects
A. Bivariate relationships

B. Multivariate relationships

Notes: This figure plots school mean utility estimates against estimates of peer quality and Regents math average treatment effects. Mean utilities are school average residuals 
from a regression of school-by-covariate cell mean utility estimates on cell indicators. Peer quality is defined as the average predicted Regents math score for enrolled students. 
Regents math effects are empirical Bayes posterior mean estimates of school average treatment effects from control function models. The left plot in Panel A displays the 
bivariate relationship between mean utility and per quality, while the right plot shows the bivariate relationship between mean utility and Regents math effects. The left plot in 
Panel B displays the relationship between mean utility and residuals from a regression of peer quality on Regents math effects, while the right plot shows the relationship 
between mean utility and residuals from a regression of Regents math effects on peer quality. Dashed lines are ordinary least squares regression lines.
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Choice sample Regents math PSAT HS graduation College
(1) (2) (3) (4) (5)

Female 0.497 0.518 0.532 0.500 0.500

Black 0.353 0.377 0.359 0.376 0.372

Hispanic 0.381 0.388 0.384 0.399 0.403

Subsidized lunch 0.654 0.674 0.667 0.680 0.700

Census tract median income $50,136 $50,004 $49,993 $49,318 $49,243

Bronx 0.231 0.221 0.226 0.236 0.239

Brooklyn 0.327 0.317 0.335 0.339 0.333

Manhattan 0.118 0.118 0.119 0.116 0.116

Queens 0.259 0.281 0.255 0.250 0.253

Staten Island 0.065 0.063 0.064 0.059 0.059

Regents math score 0.000 -0.068 0.044 -0.068 -0.044

PSAT score 120 116 116 116 115

High school graduation 0.587 0.763 0.789 0.610 0.624

Attended college 0.463 0.588 0.616 0.478 0.478

College quality $31,974 $33,934 $35,010 $31,454 $31,454

N 270157 155850 149365 230087 173254
Notes: This table shows descriptive statistics for applicants to New York City public high schools between the 2003-2004 and 
2006-2007 school years. Column (1) reports average characteristics and outcomes for all applicants with complete 
information on preferences, demographics, and eighth-grade test scores. Columns (2)-(5) display characteristics for the 
Regents math, PSAT, high school graduation, and college outcome samples. Outcome samples are restricted to students with 
data on the relevant outcome, enrolled in for ninth grade at schools with at least 50 students for each outcome. Regents math 
scores are normalized to mean zero and standard deviation one in the choice sample. High school graduation equals one for 
students who graduate from a New York City high school within five years of the end of their eighth grade year. College 
attendance equals one for students enrolled in any college within two years of projected high school graduation. College 
quality is the mean 2014 income for individuals in the 1980-1982 birth cohorts who attended a student's college. This variable 
equals the mean income in the non-college population for students who did not attend college. The college outcome sample 
excludes students in the 2003-2004 cohort. Census tract median income is median household income measured in 2015 
dollars using data from the 2011-2015 American Community Surveys. Regents math, PSAT, graduation, and college outcome 
statistics exclude students with missing values.

Table 1. Descriptive statistics for New York City eighth graders
Outcome samples



Fraction Same Regents
reporting borough Distance math score

(1) (2) (3) (4)
Choice 1 1.000 0.849 2.71 0.200

Choice 2 0.929 0.844 2.94 0.149

Choice 3 0.885 0.839 3.04 0.116

Choice 4 0.825 0.828 3.12 0.085

Choice 5 0.754 0.816 3.18 0.057

Choice 6 0.676 0.803 3.23 0.030

Choice 7 0.594 0.791 3.28 0.009

Choice 8 0.523 0.780 3.29 -0.013

Choice 9 0.458 0.775 3.31 -0.031

Choice 10 0.402 0.773 3.32 -0.051

Choice 11 0.345 0.774 3.26 -0.071

Choice 12 0.278 0.787 3.04 -0.107
Notes: This table reports average characteristics of New York City high schools by student 
preference rank. Column (1) displays fractions of student applications listing each choice. 
Column (2) reports the fraction of listed schools located in the same borough as a student's 
home address. Column (3) reports the mean distance between a student's home address and 
each ranked school, measured in miles. This column excludes schools outside the home 
borough. Column (4) shows average Regents math scores in standard deviation units 
relative to the New York City average.

Table 2. Correlates of preference rankings for New York City high schools



Mean Within cells Between cells Total
(1) (2) (3) (4)

School mean utility - 1.117 0.500 1.223
(0.045) (0.003) (0.018)

Distance cost 0.330 - 0.120 0.120
(0.006) (0.005) (0.005)

Number of students
Number of schools
Number of covariate cells
Notes: This table summarizes variation in school value-added and utility parameters across schools and 
covariate cells. Utility estimates come from rank-ordered logit models fit to student preference rankings. 
These models include school indicators and distance to school and are estimated separately in covariate 
cells defined by borough, gender, race, subsidized lunch status, an indicator for above or below the 
median of census tract median income, and tercile of the average of eighth grade math and reading 
scores. Column (1) shows the mean of the distance coefficient across cells weighted by cell size. 
Column (2) shows the standard deviation of school mean utilities across schools within a cell, and 
column (3) shows the standard deviation of a given school's mean utility across cells. School mean 
utilities are deviated from cell averages to account for differences in the reference category across cells. 
Estimated standard deviations are adjusted for sampling error by subtracting the average squared 
standard error of the parameter estimates from the total variance.
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Table 3. Variation in student preference parameters
Standard deviations
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Mean Std. dev. Mean Std. dev.
(1) (2) (3) (4)

Peer quality 0 0.288 0 0.305
- (0.012) - (0.012)

ATE 0 0.290 0 0.233
- (0.012) - (0.014)

Female -0.048 0.062 -0.029 0.062
(0.005) (0.006) (0.005) (0.006)

Black -0.112 0.130 -0.108 0.120
(0.011) (0.011) (0.010) (0.011)

Hispanic -0.097 0.114 -0.085 0.105
(0.010) (0.011) (0.010) (0.012)

Subsidized lunch 0.001 0.052 0.026 0.054
(0.005) (0.006) (0.005) (0.006)

Log census tract median income 0.020 0.037 0.013 0.045
(0.005) (0.007) (0.005) (0.006)

Eighth grade math score 0.622 0.105 0.599 0.105
(0.007) (0.006) (0.007) (0.006)

Eighth grade reading score 0.159 0.048 0.143 0.052
(0.004) (0.004) (0.004) (0.004)

Preference coefficient (𝜓j) - - -0.001 0.007
(0.001) (0.000)

Match coefficient (𝜑) - - 0.006 -
(0.001)

Table 4. Distributions of peer quality and treatment effect parameters for Regents math scores
Value-added model Control function model

Notes: This table reports estimated means and standard deviations of peer quality and school treatment effect 
parameters for Regents math scores. Peer quality is a school's average predicted test score given the 
characteristics of its students. The ATE is a school's average treatment effect, and other treatment effect 
parameters are school-specific interactions with student characteristics. Estimates come from maximum 
likelihood models fit to school-specific regression coefficients. Columns (1) and (2) report estimates from an 
OLS regression that includes interactions of school indicators with sex, race, subsidized lunch, the log of the 
median income in a student's census tract, and eighth grade reading and math scores. This model also includes 
main effects of borough. Columns (3) and (4) show estimates from a control function model that adds distance 
to each school and predicted unobserved preferences from the choice model. Control functions and distance 
variables are set to zero for out-of-borough schools and indicators for missing values are included.



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score Reading score

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ATE 0.588

(0.052)

Female 0.078 0.299
(0.078) (0.101)

Black 0.006 0.107 -0.177
(0.077) (0.106) (0.142)

Hispanic -0.013 0.115 -0.235 0.922
(0.080) (0.112) (0.150) (0.028)

Subsidized lunch 0.045 -0.168 0.066 -0.038 0.004
(0.086) (0.117) (0.140) (0.153) (0.159)

Log census tract income 0.035 0.068 -0.010 -0.239 -0.045 -0.280
(0.099) (0.134) (0.162) (0.176) (0.188) (0.183)

Eighth grade math score -0.075 0.037 -0.074 -0.005 -0.007 0.060 0.027
(0.064) (0.083) (0.099) (0.102) (0.109) (0.113) (0.130)

Eighth grade reading score -0.418 -0.452 -0.193 -0.090 -0.078 0.004 0.086 0.256
(0.068) (0.094) (0.117) (0.130) (0.138) (0.135) (0.155) (0.099)

Preference coefficient (𝜓j) 0.429 0.247 0.212 -0.083 -0.058 -0.127 0.316 -0.241 -0.281
(0.063) (0.092) (0.104) (0.106) (0.111) (0.116) (0.130) (0.083) (0.099)

Table 5. Correlations of peer quality and treatment effect parameters for Regents math scores
Control function parameters

Notes: This table reports estimated correlations between peer quality and school treatment effect parameters for Regents math scores. The ATE is a school's average 
treatment effect, and other treatment effect parameters are school-specific interactions with student characteristics. Estimates come from maximum likelihood models fit 
to school-specific regression coefficients from a control function model controlling for observed characteristics, distance to school and unobserved tastes from the 
choice model.



High school
Regents math PSAT score/10 graduation College attendance Log college quality

(1) (2) (3) (4) (5)
Total variance of average outcome 0.191 1.586 0.012 0.016 0.021

Variance of peer quality 0.093 0.781 0.010 0.010 0.009

Variance of ATE 0.054 0.160 0.002 0.003 0.004

Variance of match 0.008 0.027 0.002 0.002 0.001

2Cov(peer quality, ATE) 0.081 0.745 0.005 0.008 0.011

2Cov(peer quality, match) -0.023 -0.061 -0.003 -0.003 -0.002

2Cov(ATE, match) -0.022 -0.068 -0.004 -0.005 -0.003

Table 6. Decomposition of school average outcomes

Notes: This table decomposes variation in average outcomes across schools into components explained by student characteristics, school 
average treatment effects (ATE), and the match between student characteristics and school effects. Estimates come from control function 
models adjusting for selection on unobservables. Column (1) shows results for Regents math scores in standard deviation units, column (2) 
reports estimates for PSAT scores, column (3) displays estimates for high school graduation, column (4) reports results for college attendance, 
and column (5) shows results for log college quality. The first row reports the total variance of average outcomes across schools. The second 
row reports the variance of peer quality, defined as the average predicted outcome as a function of student characteristics and unobserved 
tastes. The third row reports the variance of ATE, and the fourth row displays the variance of the match effect. The remaining rows show 
covariances of these components.



Uncontrolled Value-added Control function Uncontrolled Value-added Control function
(1) (2) (3) (4) (5) (6) 

Forecast coefficient 0.599 0.965 0.967 0.598 0.961 0.963
(0.040) (0.038) (0.038) (0.040) (0.046) (0.045)

p -value: 0.000 0.354 0.388 0.000 0.343 0.376

Overid. 𝜒2(123) stat. 174.1 84.88 86.50 174.1 84.88 86.50
p -value: 0.000 0.996 0.995 0.002 0.996 0.995

First stage F -stat. 91.1 6.1 5.9 91.1 6.1 5.9
Number of lotteries
Number of students

Forecast coefficient 0.306 0.879 0.912 0.296 0.815 0.862
(0.049) (0.048) (0.048) (0.050) (0.083) (0.084)

p -value: 0.000 0.012 0.066 0.000 0.025 0.101

Overid. 𝜒2(123) stat. 145.8 112.9 106.8 145.7 111.7 106.1
p -value: 0.079 0.732 0.851 0.0792 0.759 0.861

First stage F -stat. 62.9 2.3 2.1 62.9 2.3 2.1
Number of lotteries
Number of students

Forecast coefficient 0.333 0.905 0.914 0.329 0.893 0.901
(0.063) (0.076) (0.076) (0.064) (0.093) (0.094)

p -value: 0.000 0.214 0.262 0.000 0.245 0.295

Overid. 𝜒2(123) stat. 205.1 145.6 147.7 205.1 145.6 147.7
p -value: 0.000 0.080 0.064 0.000 0.080 0.064

First stage F -stat. 92.1 5.4 5.0 92.1 5.4 5.0
Number of lotteries
Number of students

Table 7. Lottery-based tests for bias in estimates of school effectiveness
2SLS UJIVE

Panel A. Math

124 124

Notes: This table reports the results of lottery-based tests for bias in estimates of school effectiveness. The sample is restricted to students 
who have non-degenerate risk for at least one school and lotteries with 100 or more students at risk. Students are considered to have risk 
at a given school if their propensity score is strictly between zero and one and they are in a score cell with variation in school offers. 
Columns (1) and (4) measure school effectiveness as the school mean outcome, columns (2) and (5) use value-added estimates, and 
columns (3) and (6) use control function estimates. Forecast coefficients and overidentification tests in columns (1)-(3) come from two-
stage least squares regressions of test scores on the fitted values from the non-lottery estimation procedure, instrumenting with school-
specific lottery offer indicators and controlling for school-specific propensity scores. Columns (4)-(6) use the Unbiased Jackknife 
Instrumental Variables (UJIVE) estimator of Kolesar (2013) instead of 2SLS.

22515 22515
Panel B. PSAT

124 124
16554 16554
Panel C. High School Graduation

124 124
32131 32131



(1) (2) (3) (4) (5) (6) (7) (8)
Peer quality 0.416 0.438 0.406 0.407 0.439 0.437

(0.061) (0.063) (0.067) (0.057) (0.059) (0.059)

ATE 0.244 -0.033 -0.022 0.219 -0.051 -0.047
(0.047) (0.046) (0.047) (0.046) (0.043) (0.043)

Match effect -0.072 -0.172
(0.047) (0.054)

N

Table 8. Preferences for peer quality and Regents math effects

Notes: This table reports estimates from regressions of school popularity on peer quality and school effectiveness. School 
popularity is measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. 
Covariate cells are defined by borough, gender, race, subsidized lunch status, an indicator for students above the median of 
census tract median income, and tercile of the average of eighth grade math and reading scores. Peer quality is constructed 
as the average predicted Regents math score for enrolled students. Treatment effect estimates are empirical Bayes posterior 
mean predictions of Regents math effects. Mean utilities, peer quality, and treatment effects are scaled in standard deviation 
units. Columns (1)-(4) report results from value-added models, while columns (5)-(8) report results from control function 
models. All regressions include cell indicators and weight by the inverse of the squared standard error of the mean utility 
estimates. Standard errors are double-clustered by school and covariate cell. 
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Value-added models Control function models



(1) (2) (3) (5) (6) (7) (8) (9) (10)
Peer quality 0.310 0.314 0.286 0.299 0.303 0.308

(0.060) (0.059) (0.060) (0.056) (0.056) (0.056)

ATE 0.157 -0.005 0.005 0.144 -0.008 -0.003
(0.042) (0.039) (0.040) (0.040) (0.035) (0.035)

Match effect -0.068 -0.142
(0.039) (0.044)

School Environment Score 0.015 -0.123 -0.037 -0.123 -0.128 -0.122 -0.034 -0.121 -0.118
(0.042) (0.044) (0.044) (0.044) (0.045) (0.045) (0.044) (0.045) (0.046)

VADI Per Student -0.331 -0.222 -0.284 -0.223 -0.223 -0.226 -0.288 -0.227 -0.213
(0.042) (0.038) (0.039) (0.039) (0.039) (0.038) (0.039) (0.038) (0.038)

% Teachers with Masters + 0.418 0.347 0.400 0.347 0.344 0.347 0.406 0.346 0.336
(0.040) (0.036) (0.039) (0.036) (0.038) (0.037) (0.039) (0.037) (0.042)

N

Table 9. Preferences for peer quality and Regents math effects with controls for additional school characteristics
Value-added models Control function models

20200
Notes: This table reports estimates from regressions of school popularity on peer quality and school effectiveness along with controls for other school attributes. 
School popularity is measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. Covariate cells are defined by 
borough, gender, race, subsidized lunch status, an indicator for students above the median of census tract median income, and tercile of the average of eighth 
grade math and reading scores. Peer quality is constructed as the average predicted Regents math score for enrolled students. Treatment effect estimates are 
empirical Bayes posterior mean predictions of Regents math effects. Mean utilities, peer quality, and treatment effects are scaled in standard deviation units. 
Columns (2)-(5) report results from value-added models, while columns (6)-(9) report results from control function models. All regressions include cell 
indicators and include the following school controls: school environment score, VADI per student, and percent of teachers with master’s degrees plus. The 
school environment score is a measure that combines the following school survey summary scores from the NYC Learning Environments Survey: Safety and 
Respect, Communication, Engagement and Academic Expectations using principle components analysis.  VADI (Violent and Disruptive incidents) per student is 
constructed using Violent and Disruptive Incident Reporting data from the NYS department of education. Percent of teachers with master’s degrees plus comes 
from the NY school report cards from 2005-2007. We use the latest year of data available. School environment scores, VADI per student, and percent of 
teachers with masters degrees are scaled in standard deviation units. All regressions weight by the inverse of the squared standard error of the mean utility 
estimates. Standard errors are double-clustered by school and covariate cell. 



(1) (2) (3) (4) (5) (6) (7) (8)
Peer quality 0.467 0.430 0.235 0.322

(0.070) (0.070) (0.054) (0.065)

ATE 0.325 -0.092 0.103 -0.174 0.273 0.132 0.199 0.029
(0.056) (0.074) (0.045) (0.054) (0.048) (0.054) (0.059) (0.080)

Match effect -0.049 -0.065 -0.017 0.053
(0.047) (0.044) (0.050) (0.061)

N

Table 10. Preferences for peer quality and school effectiveness by outcome

Notes: This table reports estimates from regressions of school popularity on peer quality and school effectiveness separately by outcome. School 
popularity is measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. Covariate cells are 
defined by borough, gender, race, subsidized lunch status, an indicator for students above the median of census tract median income, and tercile of 
the average of eighth grade math and reading scores. Peer quality is constructed as the average predicted outcome for enrolled students. Treatment 
effect estimates are empirical Bayes posterior mean predictions from control function models. Mean utilities, peer quality, and treatment effects are 
scaled in standard deviation units. All regressions include cell indicators and weight by the inverse of the squared standard error of the mean utility 
estimates. Standard errors are double-clustered by school and covariate cell. 

PSAT score College attendance Log college qualityHigh school graduation
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Male Female Black Hispanic Other Eligible Ineligible Lowest Middle Highest
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Peer quality 0.432 0.441 0.396 0.370 0.705 0.410 0.501 0.251 0.395 0.686
(0.060) (0.064) (0.060) (0.063) (0.128) (0.057) (0.077) (0.055) (0.062) (0.092)

ATE -0.075 -0.021 -0.047 -0.011 -0.192 -0.036 -0.076 -0.015 -0.029 -0.117
(0.047) (0.043) (0.045) (0.044) (0.094) (0.042) (0.050) (0.042) (0.042) (0.059)

Match effect -0.177 -0.169 -0.200 -0.144 -0.149 -0.180 -0.155 -0.166 -0.169 -0.125
(0.054) (0.054) (0.056) (0.066) (0.061) (0.054) (0.054) (0.061) (0.058) (0.055)

N 10795 10889 7467 7433 6784 11043 10641 7264 7286 7134

Table 11. Heterogeneity in preferences for peer quality and Regents math effects

Notes: This table reports estimates from regressions of school popularity on peer quality and school effectiveness separately by student subgroup. School 
popularity is measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. Peer quality is constructed as the average 
predicted Regents math score for enrolled students. Treatment effect estimates are empirical Bayes posterior mean predictions of Regents math effects from control 
function models. Mean utilities, peer quality, and treatment effects are scaled in standard deviation units. Peer quality is constructed as the average predicted 
Regents math score for enrolled students. All regressions include cell indicators and weight by the inverse of the squared standard error of the mean utility 
estimates. Standard errors are double-clustered by school and covariate cell. 

By sex By race By subsidized lunch By eighth grade test score tercile



Peer quality ATE Match Peer quality ATE Match
(1) (2) (3) (4) (5) (6)

Choice 1 0.112 0.071 -0.037 0.286 0.427 0.162

Choice 2 0.057 0.055 -0.020 0.182 0.352 0.108

Choice 3 0.021 0.045 -0.012 0.087 0.275 0.113

Choice 4 -0.013 0.036 -0.006 0.105 0.247 0.103

Choice 5 -0.046 0.027 -0.002 0.124 0.228 0.092

Choice 6 -0.074 0.019 -0.001 0.103 0.209 0.085

Choice 7 -0.097 0.014 0.001 0.118 0.197 0.075

Choice 8 -0.114 0.012 0.001 0.099 0.169 0.066

Choice 9 -0.127 0.007 0.001 0.064 0.333 0.111

Choice 10 -0.139 0.004 0.003 0.046 0.165 0.063

Choice 11 -0.146 0.003 0.003 0.028 0.157 0.056

Choice 12 -0.156 -0.002 0.002 0.013 0.146 0.053

Observed rankings Rankings based on effectiveness

Notes: This table summarizes Regents math score gains that parents could achieve by ranking 
schools based on effectiveness. Columns (1)-(3) report average peer quality, average treatment 
effects, and average match quality for students' observed preference rankings. Columns (4)-(6) 
display corresponding statistics for hypothetical rankings that list schools in order of their treatment 
effects. Treatment effect estimates come from control function models. All calculations are restricted 
to ranked schools within the home borough. 

Table 12. Potential achievement gains from ranking schools by effectiveness
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Appendix A: Data

The data used for this project were provided by the NYC Department of Education (DOE). This Appendix

describes the DOE data files and explains the process used to construct our working extract from these

files.

A.1 Application Data

Data on NYC high school applications are controlled by the Student Enrollment Office. We received all

applications for the 2003-2004 through 2006-2007 school years. Application records include students’ rank-

ordered lists of academic programs submitted in each round of the application process, along with school

priorities and student attributes such as special education status, race, gender, and address. The raw

application files contained all applications, including private school students and first-time ninth graders

who wished to change schools as well as new high school applicants. From these records we selected the

set of eighth graders who were enrolled as NYC public school students in the previous school year.

A.2 Enrollment Data

We received registration and enrollment files from the Office of School Performance and Accountability

(OSPA). These data include every student’s grade and building code, or school ID, as of October of

each school year. A separate OSPA file contains biographical information, including many of the same

demographic variables from the application data. We measure demographics from the application records

for variables that appeared in both files and use the OSPA file to gather additional background information

such as subsidized lunch status.

OSPA also provided an attendance file with days attended and absent for each student at every school

he or she attended in a given year. We use these attendance records to assign students to ninth-grade

schools. If a student was enrolled in multiple schools, we use the school with the greatest number of days

attended in the year following their final application to high school. A final OSPA file included scores on

New York State Education Department eighth grade achievement tests. We use these test scores to assign

baseline math and English Language Arts (reading) scores. Baseline scores are normalized to have mean

zero and standard deviation one in our applicant sample.

A.3 Outcome Data

Our analysis studies five outcomes: Regents math scores, PSAT scores, high school graduation, college

attendance, and college quality. We next describe the construction of each of these outcomes.

The Regents math test is one of five tests NYC students must pass to receive a Regents high school

diploma from the state of New York. We received records of scores on all Regents tests taken between
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2004 and 2008. We measured Regents math scores based on the lowest level math test offered in each year,

which changed over the course of our sample. For the first three cohorts the lowest level math test offered

was the Math A (Elementary Algebra and Planar Geometry) test. In 2007, the Board of Regents began

administering the Math E (Integrated Algebra I) exam in addition to the Math A exam; the latter was

phased out completely by 2009. We assign the earliest high school score on either of these two exams as

the Regents math outcome for students in our sample. The majority of students took Math A in tenth

grade, while most students taking Math E did so in ninth grade.

PSAT scores were provided to the NYC DOE by the College Board for 2003-2012. We retain PSAT

scores that include all three test sections: math, reading, and writing (some subtests are missing for some

observations, particularly in earlier years of our sample). If students took the PSAT multiple times, we

use the score from the first attempt.

High school graduation is measured from graduation files reporting discharge status for all public school

students between 2005 and 2012. These files indicate the last school attended by each student and the

reason for discharge, including graduation, equivalent achievement (e.g. receiving a general equivalency

diploma), or dropout. Discharge status is reported in years 4, 5, and 6 from expected graduation based on

a student’s year of ninth grade enrollment; our data window ends in 2012, so we only observe 4-year and

5-year high school discharge outcomes for students enrolled in eighth grade for the 2006-2007 year. We

therefore focus on 5-year graduation for all four cohorts. Our graduation outcome equals one if a student

received either a local diploma, a Regents diploma, or an Advanced Regents diploma within 5 years of her

expected graduation date. Students not present in the graduation files are coded as not graduating.

College outcomes are measured from National Student Clearinghouse (NSC) files. The NSC records

enrollment for the vast majority of post-secondary institutions, though a few important New York City-area

institutions, including Rutgers and Columbia University, were not included in the NSC during our sample

period.14 The NYC DOE submitted identifying information for all NYC students graduating between 2009

and 2012 for matching to the NSC. Since many students in the 2003-04 eighth grade cohort graduated in

2008, NSC data are missing for a large fraction of this cohort. Our college outcomes are therefore defined

only for the last three cohorts in the sample. For these years we code a student as attending college if she

enrolled in a post-secondary institution within five years of applying to high school. This captures students

who graduated from high school on time and enrolled in college the following fall, as well as students that

delayed high school graduation or college enrollment by one year.

We measure college quality based on the mean 2014 incomes of students enrolled in each institution

among those born between 1980 and 1982. These average incomes are reported by Chetty et al. (2017b).

Fewer than 100 observations in the NSC sample failed to match to institutions in the Chetty et al. (2017b)

sample. For students who enrolled in multiple postsecondary institutions, we assign the quality of the first

institution attended. If a student enrolled in multiple schools simultaneously, we use the institution with

14In addition, about 100 parents opted out of the NSC in 2011 and 2012.
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the highest mean earnings.

A.4 Matching Data Files

To construct our final analysis sample, we begin with the set of high school applications submitted by

students enrolled in eighth grade between the 2003-2004 and 2006-2007 school years. We match these

applications to the student enrollment file using a unique student identifier known as the OSISID and

retain individuals that appear as eighth graders in both data sets. If a student submits multiple high

school applications as an eighth grader, we select the final application for which data is available. We then

use the OSISID to match applicant records to the OSPA attendance and test scores files (used to assign

ninth grade enrollment and baseline test scores), and the Regents, PSAT, graduation, and NSC outcome

files.

This merged sample is used to construct the set of 316 high schools that enrolled at least 50 students

with observations for each of the five outcomes, excluding selective schools that do not participate in the

main DA round. The final choice sample includes the set of high school applicants reporting at least one

of these 316 schools on their preference lists. The five outcome samples are subsets of the choice sample

with observed data on the relevant outcome and enrolled in one of our sample high schools for ninth grade.

Table A1 displays the impact of each restriction on sample size for the four cohorts in our analysis sample.
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Appendix B: Econometric Methods

B.1 Rank-Ordered Control Functions

This section provides formulas for the rank-ordered control functions in equation (8). The choice model is

Uij = δc(Xi)j − τc(Xi)Dij + ηij = Vij + ηij ,

where Vij ≡ δc(Xi)j − τc(Xi)Dij represents the observed component of student i’s utility for school j and

ηij is the unobserved component. The control functions are given by λij = E[ηij − µη|Xi, Di, Ri] =

E[ηij |Ri, Vi] − µη, where Vi = (Vi1, ..., ViJ)′. To compute the conditional mean of ηij , it will be useful to

define the following functions for any set of mean utilities S and subset S′ ⊆ S:

P (S′|S) =

∑
v∈S′

exp(v)∑
v∈S

exp(v)
,

I(S) = µη + log
(∑

v∈S exp(v)
)
.

P (S′|S) gives the probability that an individual chooses an option in S′ from the set S when the value

of each option is the sum of its mean utility and an extreme value type I error term, while I(S) gives

the expected maximum utility of choosing an option in S, also known as the inclusive value. We provide

expressions for the control functions for two cases: (1) when a student ranks all available alternatives, and

(2) when the student leaves some alternatives unranked.

B.1.1 All alternatives ranked

Control function for the highest-ranked alternative

Without loss of generality label alternatives in decreasing order of student i’s preferences, so that Rij = j

for j = 1...J . The control function associated with the highest ranked alternative is

λi1 = −(Vi1 + µη) + E [Ui1|Ri, Vi]

= −(Vi1 + µη) +

∫∞
−∞

∫ u1
−∞

∫ u2
−∞ ....

∫ uJ−1
−∞

[
u1
∏J
j=1 f(uj |Vij)

]
duJ ...du2du1∏J−1

j=1 P (Vij |Vij ....ViJ)
,

where f(u|V ) = exp (V − u− exp(V − u)) is the density function of a Gumbel random variable with

location parameter V . This simplifies to

λi1 = −(Vi1 + µη) +
∏J
j=1 P (Vij |Vij ....ViJ)× I(Vi1...ViJ)∏J−1

j=1 P (Vij |Vij ....ViJ)
.

= −Vi1 + (I(Vi1...ViJ)− µη)
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= − logP (Vi1|Vi1...ViJ),

which coincides with the control function for the best alternative in the multinomial logit model of Dubin

and McFadden (1984). This shows that knowledge of the rankings of less-preferred alternatives does not

affect the expected utility associated with the best choice.

Control functions for lower-ranked alternatives

To work out λij for j > 1, define the following functions:

Gi0(u) = 1,

Gik(u) =
∫ ∞
u

f(x|Vik)Gi(k−1)(x)dx, k = 1...J .

It can be shown that

Gik(u) =
k∑
j=1

Bjik [1− F (u|I(Vj ...Vk)− µη)],

where F (u|V ) = exp(− exp(V − u)) is the Gumbel CDF with location V , and the coefficients Bjik are:

B1
i1 = 1,

Bjik = −Bji(k−1) × P (Vik|Vij ....Vik) , k > 1, j 6= k,

Bkik =
k−1∑
j=1

Bji(k−1), k > 1.

Then for j > 1, we have

λij = −(Vij + µη) +

∫∞
−∞

∫∞
uj

∫∞
uj−1

...
∫∞
u2

∫ uj
−∞

∫ uj+1
−∞ ...

∫ uJ−1
−∞

[
uj
∏J
k=1 f(uk|Vik)

]
duJ ...duj+1du1...duj∏J−1

k=1 P (Vik|Vik....ViJ)

= −(Vij + µη) +
∫∞
−∞ ujf(uj |I(Vij ...ViJ)− µη)Gi(j−1)(uj)duj∏j−1

k=1 P (Vik|Vik....ViJ)

= −(Vij + µη) +
∑j−1
m=1B

m
i(j−1) [I(Vij ...ViJ)− P (Vij ...ViJ |Vim...ViJ)I(Vim...ViJ)]∏j−1

k=1 P (Vik|Vik....ViJ)
.

B.1.2 Unranked alternatives

To derive the control functions for a case in which some alternatives are unranked, assign arbitrary labels

`(i) + 1....J to unranked schools. The control functions for all ranked alternatives can be obtained by

defining a composite unranked alternative with observed utility Viu = I (Vik : k > `(i))− µη and treating

this as the lowest-ranked option in the calculations in section B.1.1. The control function for an unranked

alternative j > `(i) is defined by the expression

λij + (Vij + µη) = E
[
Uij |Ui1 > ... > Ui`(i), Ui`(i) > Uik ∀k > `(i), Vi

]
55



=

∫∞
−∞

∫∞
uj

∫∞
u`(i)

∫∞
u`(i)−1

...
∫∞
u2

∫ u`(i)
−∞ ..

∫ u`(i)
−∞ uj

∏J
k=1 f(uk|Vik)du`(i)+1duj−1duj+1...duJdu1...du`(i)duj∏`(i)

k=1 P (Vik|Vik...ViJ)

=

∫∞
−∞ ujf(uj |Vij)

[∫∞
uj
f
(
u`(i)|I(S−ji (`(i)))− µη

)
Gi(`(i)−1)(u`(i))du`(i)

]
duj

P (Vi`(i)|S−ji (`(i)))−1 ×
∏`(i)
k=1 P (Vik|Vik...ViJ)

,

where S−ji (m) = {Vik : k ≥ m}\{Vij} is the set of i’s mean utilities for alternatives m and higher excluding

alternative j. When `(i) = 1, we have Gi(`(i)−1)(u`) = 1 and this expression collapses to

λij = P (Vij |Vi1...ViJ)
1− P (Vij |Vi1...ViJ) logP (Vij |Vi1...ViJ),

which is the expression derived by Dubin and McFadden (1984) for the expected errors of alternatives that

are not selected in the multinomial logit model. For `(i) > 1, we have

λij = −(Vij + µη)

+

`(i)−1∑
m=1

Bmi(`(i)−1)

[
(1− P (S−j

i (`(i))|S−j
i (m)))I(Vij)− P (Vij |Vi`(i)..ViJ )I(Vi`(i)..ViJ ) + P (S−j

i (`(i))|S−j
i (m))P (Vij |Vim..ViJ )I(Vim..ViJ )

]
P (Vi`(i)|S

−j
i (`(i)))−1 ×

`(i)∏
k=1

P (Vik|Vik...ViJ )

.

B.2 Two-Step Score Bootstrap

We use a two-step modification of the score bootstrap of Kline and Santos (2012) to conduct inference

for the control function models. Let ∆ = (δ11...δ1J , τ1...δC1...δCJ , τC)′ denote the vector of choice model

parameters for all covariate cells. Maximum likelihood estimates of these parameters are given by:

∆̂ = arg max
∆

∑
i

logL(Ri|Xi, Di; ∆),

where L(Ri|Xi, Di; ∆) is the likelihood function defined in Section 4.1, now explicitly written as a function

of the choice model parameters.

Let Γ = (α1, β
′
1, ψ1...αJ , β

′
J , ψJ , γ

′, ϕ)′ denote the vector of outcome equation parameters. Second-step

estimates of these parameters are

Γ̂ =
[∑

i

Wi(∆̂)Wi(∆̂)′
]−1

×
∑
i

Wi(∆̂)Yi,

where Wi(∆) is the vector of regressors in equation (8). This vector depends on ∆ through the control

functions λj(Xi, Di, Ri; ∆), which in turn depend on the choice model parameters as described in Appendix

B.1.

The two-step score bootstrap adjusts inference for the extra uncertainty introduced by the first-step

estimates while avoiding the need to recalculate ∆̂ or to analytically derive the influence of ∆̂ on Γ̂. The
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first step directly applies the approach in Kline and Santos (2012) to the choice model estimates. This

approach generates a bootstrap distribution for ∆̂ by taking repeated Newton-Raphson steps from the

full-sample estimates, randomly reweighting each observation’s score contribution. The bootstrap estimate

of ∆ in trial b ∈ {1...B} is:

∆̂b = ∆̂−
[∑

i

(
∂2 logL(Ri|Xi,Di;∆̂)

∂∆∂∆′

)]−1

×
∑
i

ζbi

(
∂ logL(Ri|Xi,Di;∆̂)

∂∆

)
,

where the ζbi are iid random weights satisfying E
[
ζbi
]

= 0 and E
[
(ζbi )2] = 1. We draw these weights from

a standard normal distribution.

Next, we use an additional set of Newton-Raphson steps to generate a bootstrap distribution for Γ̂.

The second-step bootstrap estimates are:

Γ̂b = Γ̂−
[∑

i

Wi(∆̂)Wi(∆̂)′
]−1

×
∑
i

[
−ζbiWi(∆̂)(Yi −Wi(∆̂)′Γ̂)−Wi(∆̂b)(Yi −Wi(∆̂b)′Γ̂)

]
.

The second term in the last sum accounts for the additional variability in the second-step score due to the

first-step estimate ∆̂. We construct standard errors and conduct hypothesis tests involving Γ using the

distribution of Γ̂b across bootstrap trials.

B.3 Empirical Bayes Shrinkage

We next describe the empirical Bayes shrinkage procecure summarized in Section 4.2. Value-added or

control function estimation produces a set of school-specific parameter estimates,
{
θ̂j

}J
j=1

. Under the

hierarchical model (10), the likelihood of the estimates for school j conditional on the latent parameters

θj and the sampling variance matrix Ωj is:

L
(
θ̂j |θj ,Ωj

)
= (2π)−T/2 |Ωj |−1/2 exp

(
− 1

2 (θ̂j − θj)′Ω−1
j (θ̂j − θj)

)
,

where T = dim(θj). We estimate Ωj using conventional asymptotics for the value-added models and the

bootstrap procedure described in Section B.2 for the control function models. Our approach therefore

requires school-specific samples to be large enough for these asymptotic approximations to be accurate.

An integrated likelihood function that conditions only on the hyperparameters is:

LI(θ̂j |µθ,Σθ,Ωj) =
∫
L(θ̂j |θj ,Ωj)dF (θj |µθ,Σθ)

= (2π)−T/2 |Ωj + Σθ|−1/2 exp
(
− 1

2 (θ̂j − µθ)′ (Ωj + Σθ)−1 (θ̂j − µθ)
)
.

EB estimates of the hyperparameters are then(
µ̂θ, Σ̂θ

)
= arg max

µθ,Σθ

∑
j

logLI
(
θ̂j |µθ,Σθ, Ω̂j

)
,

where Ω̂j estimates Ωj .

By standard arguments, the posterior distribution for θj given the estimate θ̂j is
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θj |θ̂j ∼ N
(
θ∗j ,Ω∗j

)
,

where

θ∗j =
(
Ω−1
j + Σ−1

θ

)−1 (Ω−1
j θ̂j + Σ−1

j µθ

)
,

Ω∗j =
(
Ω−1
j + Σ−1

θ

)−1.

We form EB posteriors by plugging Ω̂j , µ̂θ and Σ̂θ into these formulas.
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All cohorts 2003-2004 2004-2005 2005-2006 2006-2007
(1) (2) (3) (4) (5)

All NYC eighth graders 368,603 89,671 93,399 94,015 91,518

In public school 327,948 78,904 83,112 84,067 81,865

With baseline demographics 276,797 68,507 67,555 68,279 72,456

With address data 275,405 67,644 67,377 68,108 72,276

In preference sample 270,157 66,125 66,004 67,163 70,865

In Regents math sample 155,850 40,994 41,022 39,177 34,657

In PSAT sample 149,365 31,563 37,502 39,480 40,820

In high school graduation sample 230,087 56,833 56,979 57,803 58,472

In college sample 173,254 0 56,979 57,803 58,472
Notes: This table displays the selection criteria for inclusion in the final analysis samples. Preference models are 
estimated using the sample in the fourth row, and school effects are estimated using the samples in the remaining rows.

Table A1. Sample restrictions



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score

(1) (2) (3) (4) (5) (6) (7) (8)
ATE 0.531

(0.042)

Female 0.133 0.232
(0.077) (0.082)

Black -0.033 -0.007 -0.287
(0.074) (0.082) (0.133)

Hispanic -0.002 -0.028 -0.414 0.939
(0.077) (0.086) (0.135) (0.022)

Subsidized lunch 0.093 -0.133 0.098 -0.027 0.065
(0.088) (0.097) (0.145) (0.151) (0.155)

Log census tract income -0.288 -0.108 -0.210 -0.140 -0.048 -0.200
(0.111) (0.129) (0.185) (0.202) (0.212) (0.220)

Eighth grade math score -0.108 0.033 -0.104 -0.005 0.054 0.012 -0.083
(0.064) (0.069) (0.098) (0.100) (0.105) (0.118) (0.150)

Eighth grade reading score -0.564 -0.425 -0.036 -0.065 -0.064 0.071 0.374 0.244
(0.065) (0.079) (0.124) (0.123) (0.130) (0.134) (0.181) (0.103)

Value-added parameters
Table A2. Correlations of peer quality and treatment effect parameters for Regents math scores, value-added model

Notes: This table reports estimated correlations between peer quality and school treatment effect parameters for Regents math scores. The ATE is a 
school's average treatment effect, and other treatment effect parameters are school-specific interactions with student characteristics. Estimates come 
from maximum likelihood models fit to school-specific regression coefficients from a value-added model controlling for observed characteristics.



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score Reading score Pref. coef.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mean 0 0 -0.033 -0.284 -0.259 -0.006 -0.005 0.963 1.032 -0.003

- - (0.010) (0.026) (0.027) (0.011) (0.010) (0.016) (0.011) (0.001)

Standard deviation 0.884 0.401 0.111 0.333 0.352 0.111 0.059 0.240 0.152 0.017
(0.056) (0.048) (0.012) (0.023) (0.026) (0.017) (0.022) (0.016) (0.073) (0.011)

Correlations:                  ATE 0.979
(0.086)

Female -0.251 -0.315
(0.094) (0.068)

Black -0.130 -0.253 0.020
(0.124) (0.090) (0.160)

Hispanic -0.168 -0.274 0.112 0.932
(0.094) (0.079) (0.150) (0.123)

Subsidized lunch -0.197 -0.211 0.252 -0.131 -0.120
(0.144) (0.101) (0.117) (0.135) (0.124)

Log census tract income 0.198 0.280 -0.228 -0.183 -0.122 -0.545
(0.219) (0.212) (0.241) (0.264) (0.247) (0.276)

Eighth grade math score 0.709 0.701 -0.117 -0.005 -0.090 -0.099 0.022
(0.123) (0.102) (0.093) (0.125) (0.108) (0.135) (0.220)

Eighth grade reading score 0.164 0.249 -0.219 0.011 -0.084 0.108 0.446 0.246
(0.230) (0.121) (0.074) (0.067) (0.065) (0.072) (0.198) (0.287)

Preference coefficient (𝜓j) 0.377 0.291 -0.159 -0.114 -0.062 -0.157 0.334 0.100 -0.109
(0.280) (0.145) (0.039) (0.038) (0.055) (0.066) (0.117) (0.074) (0.105)

Table A3. Joint distribution of peer quality and treatment effect parameters for PSAT scores/10
Control function parameters

Notes: This table shows the estimated joint distribution of peer quality and school treatment effect parameters for PSAT scores divded by 10. The ATE is a school's average treatment 
effect, and other treatment effect parameters are school-specific interactions with student characteristics. Estimates come from maximum likelihood models fit to school-specific 
regression coefficients from a control function model controlling for observed characteristics, distance to school and unobserved tastes from the choice model.



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score Reading score Pref. coef.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mean 0 0 0.063 -0.006 -0.013 -0.013 0.002 0.132 0.062 0.000

- - (0.004) (0.007) (0.008) (0.003) (0.003) (0.003) (0.002) (0.000)

Standard deviation 0.100 0.043 0.047 0.090 0.103 0.024 0.024 0.034 0.027 0.006
(0.004) (0.008) (0.004) (0.007) (0.007) (0.003) (0.004) (0.002) (0.002) (0.000)

Correlations:                  ATE 0.590
(0.106)

Female -0.072 -0.549
(0.070) (0.170)

Black -0.226 -0.296 -0.069
(0.069) (0.195) (0.142)

Hispanic -0.174 -0.237 -0.078 0.956
(0.067) (0.196) (0.135) (0.013)

Subsidized lunch 0.169 -0.120 0.119 0.171 0.264
(0.096) (0.238) (0.169) (0.180) (0.176)

Log census tract income 0.039 0.032 -0.412 -0.113 -0.168 0.177
(0.103) (0.244) (0.154) (0.196) (0.193) (0.203)

Eighth grade math score -0.396 -0.619 0.075 -0.168 -0.114 0.051 0.036
(0.060) (0.166) (0.098) (0.109) (0.107) (0.128) (0.134)

Eighth grade reading score -0.571 -0.570 -0.125 0.188 0.094 -0.194 0.140 0.475
(0.059) (0.180) (0.112) (0.136) (0.134) (0.153) (0.157) (0.103)

Preference coefficient (𝜓j) 0.625 0.437 0.123 -0.110 -0.049 0.021 -0.117 -0.246 -0.470
(0.044) (0.180) (0.084) (0.089) (0.086) (0.120) (0.123) (0.078) (0.078)

Table A4. Joint distribution of peer quality and treatment effect parameters for high school graduation
Control function parameters

Notes: This table shows the estimated joint distribution of peer quality and school treatment effect parameters for high school graduation. The ATE is a school's average treatment effect, 
and other treatment effect parameters are school-specific interactions with student characteristics. Estimates come from maximum likelihood models fit to school-specific regression 
coefficients from a control function model controlling for observed characteristics, distance to school and unobserved tastes from the choice model.



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score Reading score Pref. coef.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mean 0 0 0.075 -0.010 -0.011 -0.008 0.002 0.118 0.064 -0.002

- - (0.003) (0.009) (0.009) (0.003) (0.003) (0.002) (0.002) (0.000)

Standard deviation 0.099 0.053 0.035 0.122 0.120 0.031 0.019 0.030 0.024 0.005
(0.118) (0.022) (0.004) (0.009) (0.009) (0.005) (0.007) (0.013) (0.009) (0.002)

Correlations:                  ATE 0.862
(0.158)

Female -0.074 -0.307
(0.017) (0.031)

Black -0.035 -0.455 0.040
(0.021) (0.066) (0.160)

Hispanic -0.135 -0.471 -0.024 0.947
(0.019) (0.031) (0.043) (0.019)

Subsidized lunch 0.110 0.235 -0.005 -0.390 -0.339
(0.027) (0.078) (0.139) (0.119) (0.117)

Log census tract income -0.215 0.127 -0.182 -0.722 -0.674 0.316
(0.065) (0.238) (0.287) (0.246) (0.241) (0.242)

Eighth grade math score -0.204 -0.188 0.265 -0.067 -0.028 0.073 -0.437
(0.073) (0.179) (0.074) (0.073) (0.056) (0.110) (0.129)

Eighth grade reading score -0.290 -0.121 -0.131 -0.346 -0.364 -0.198 0.217 0.304
(0.112) (0.197) (0.078) (0.083) (0.082) (0.105) (0.219) (0.171)

Preference coefficient (𝜓j) 0.770 0.524 0.144 0.106 0.059 0.003 -0.210 -0.072 -0.314
(0.119) (0.130) (0.068) (0.056) (0.057) (0.129) (0.233) (0.238) (0.183)

Table A5. Joint distribution of peer quality and treatment effect parameters for college attendance
Control function parameters

Notes: This table shows the estimated joint distribution of peer quality and school treatment effect parameters for college attendance. The ATE is a school's average treatment effect, and 
other treatment effect parameters are school-specific interactions with student characteristics. Estimates come from maximum likelihood models fit to school-specific regression 
coefficients from a control function model controlling for observed characteristics, distance to school and unobserved tastes from the choice model.



Peer
quality ATE Female Black Hispanic Sub. lunch Log tract inc. Math score Reading score Pref. coef.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mean 0 0 0.048 -0.037 -0.035 -0.006 -0.001 0.103 0.058 -0.002

- - (0.002) (0.006) (0.006) (0.002) (0.002) (0.002) (0.002) (0.000)

Standard deviation 0.097 0.063 0.027 0.081 0.084 0.022 0.013 0.031 0.019 0.004
(0.078) (0.017) (0.003) (0.006) (0.006) (0.004) (0.004) (0.010) (0.006) (0.004)

Correlations:                  ATE 0.931
(0.051)

Female 0.114 0.084
(0.018) (0.021)

Black -0.065 -0.258 -0.023
(0.019) (0.029) (0.157)

Hispanic -0.239 -0.354 -0.127 0.946
(0.018) (0.021) (0.059) (0.048)

Subsidized lunch -0.063 0.060 0.253 -0.334 -0.208
(0.035) (0.038) (0.082) (0.085) (0.071)

Log census tract income 0.030 -0.028 -0.333 -0.529 -0.553 0.036
(0.060) (0.068) (0.121) (0.132) (0.135) (0.109)

Eighth grade math score 0.533 0.728 0.381 -0.143 -0.151 0.146 -0.550
(0.078) (0.063) (0.054) (0.072) (0.040) (0.066) (0.151)

Eighth grade reading score 0.296 0.479 -0.027 -0.266 -0.275 -0.355 0.089 0.466
(0.064) (0.033) (0.018) (0.019) (0.020) (0.046) (0.088) (0.070)

Preference coefficient (𝜓j) 0.750 0.623 0.135 0.033 -0.061 -0.086 0.139 0.310 0.161
(0.076) (0.041) (0.008) (0.019) (0.009) (0.021) (0.050) (0.059) (0.033)

Table A6. Joint distribution of peer quality and treatment effect parameters for log college quality
Control function parameters

Notes: This table shows the estimated joint distribution of peer quality and school treatment effect parameters for college quality. The ATE is a school's average treatment effect, and 
other treatment effect parameters are school-specific interactions with student characteristics. Estimates come from maximum likelihood models fit to school-specific regression 
coefficients from a control function model controlling for observed characteristics, distance to school and unobserved tastes from the choice model.



Uncontrolled Controlled
(1) (2)

Black 74.53 0.873
(0.000) (0.842)

Hispanic 54.86 0.897
(0.000) (0.788)

Female 15.71 1.115
(0.000) (0.181)

Log census tract median income 116.4 1.134
(0.000) (0.147)

Subsidized lunch 30.46 1.184
(0.000) (0.080)

Eighth grade math score 27.96 1.059
(0.000) (0.311)

Eighth grade reading score 30.06 1.034
(0.000) (0.380)

Schools 124 124
Students 53,327 32,131
Notes: This table reports F-statistics from school-specific tests for 
balance, computed by regressing covariates on dummies indicating 
offers at each school in the sample and testing that the coefficients on 
all offer dummies are jointly zero. P-values reported in parentheses.  
Column (2) controls for linear school-specific propensity score controls 
and school-specific dummies for degenerate p-score values. The 
sample is restricted to students who have non-degenerate risk for at 
least one school and lotteries with 100 or more students at risk. 
Students are considered to have risk at a given school if their 
propensity score is strictly between zero and one and they are in a score 
cell with variation in school offers.

Table A7. Tests for covariate balance in admission lotteries



2003-2004 2004-2005 2005-2006 2006-2007 2003-2004 2004-2005 2005-2006 2006-2007
(1) (2) (3) (4) (5) (6) (7) (8)

Peer Quality 0.384 0.455 0.538 0.465 0.412 0.478 0.570 0.505
(0.072) (0.077) (0.076) (0.074) (0.065) (0.067) (0.066) (0.064)

ATE -0.044 -0.029 -0.031 -0.009 -0.061 -0.061 -0.071 -0.050
(0.056) (0.055) (0.054) (0.050) (0.053) (0.052) (0.050) (0.047)

Match Effect -0.090 -0.054 -0.057 -0.062 -0.175 -0.181 -0.165 -0.160
(0.053) (0.056) (0.051) (0.048) (0.058) (0.062) (0.056) (0.053)

N 17141 18493 18787 19286 17141 18493 18787 19286

Table A8. Yearly preferences for peer quality and Regents math effects
Value-added models Control function models

Notes: This table reports estimates from regressions of school popularity on peer quality and school effectiveness. School popularity is 
measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. We estimate this model on 
four subsamples: one from each school year. Covariate cells are defined by borough, gender, race, subsidized lunch status, an indicator 
for students above the median of census tract median income, and tercile of the average of eighth grade math and reading scores. Peer 
quality is constructed as the average predicted Regents math score for enrolled students across all years. Treatment effect estimates are 
empirical Bayes posterior mean predictions of Regents math effects across all years. Mean utilities, peer quality, and treatment effects are 
scaled in standard deviation units. Columns (1)-(4) report results from value-added models, while columns (5)-(8) report results from 
control function models. All regressions include cell indicators and weight by the inverse of the squared standard error of the mean utility 
estimates. Standard errors are double-clustered by school and covariate cell. 



Control Control Control Control
Value-added function Value-added function Value-added function Value-added function

(1) (2) (3) (4) (5) (6) (7) (8)
Peer quality 0.487 0.542 0.036 0.038 0.445 0.485 0.373 0.386

(0.071) (0.062) (0.005) (0.005) (0.077) (0.068) (0.026) (0.029)

ATE -0.009 -0.034 -0.001 -0.002 -0.040 -0.073 -0.021 -0.027
(0.045) (0.040) (0.003) (0.003) (0.054) (0.049) (0.026) (0.024)

Match effect -0.091 -0.219 -0.004 -0.012 -0.092 -0.184 -0.049 -0.106
(0.043) (0.047) (0.003) (0.004) (0.050) (0.055) (0.023) (0.027)

N

Table A9. Preferences, peer quality, and math effects, alternative measures of popularity

Notes: This table reports estimates from regressions of alternative measures of school popularity on peer quality and school effectiveness. The dependent variable in 
columns (1) and (2) is the log of the share of students in a covariate cell ranking each school first, and the dependent variable in columns (3) and (4) is minus the log of 
the sum of ranks for students in the cell. Unranked schools are assigned one rank below the least-preferred ranked school. Columns (5) and (6) restrict preference 
estimation to students that ranked fewer than 12 choices. Columns (7) and (8) estimate preferences using only the schools on a student's choice list, omitting unranked 
alternatives from the likelihood. Covariate cells are defined by borough, gender, race, subsidized lunch status, an indicator for students above the median of census tract 
median income, and tercile of the average of eighth grade math and reading scores. Peer quality is constructed as the average predicted Regents math score for enrolled 
students. Treatment effect estimates are empirical Bayes posterior mean predictions of Regents math effects. Columns (1), (3), (5), and (7) report results from value-
added models, while columns (2), (4), (6), and (8) report results from control function models. All regressions include cell indicators. Standard errors are double-
clustered by school and covariate cell. 

Log first-choice share Omitting unranked schools

15892 21684

Minus log sum of ranks Fewer than 12 choices

20898 19842



(1) (2) (3) (4) (5) (6) (7) (8)
Peer quality 0.367 0.400 0.406 0.397 0.402 0.408

(0.053) (0.054) (0.067) (0.058) (0.060) (0.060)

ATE 0.209 -0.058 -0.036 0.236 -0.009 -0.027
(0.045) (0.043) (0.045) (0.046) (0.044) (0.045)

Match effect -0.092 -0.129
(0.049) (0.041)

N

Table A10. Preferences, peer quality, and math effects,  alternative treatment effect models

21684
Notes: This table reports estimates from regressions of school popularity on peer quality and alternative measures of school effectiveness. 
Estimates in columns (1)-(4) come from an OLS regression of Regents math scores on school indicators interacted with covariates, with controls 
for distance and fixed effects for first choice schools. Estimates in columns (5)-(8) come from a regression of Regents math scores on school 
indicators interacted with covariates and control functions measuring mean preferences for each school, excluding distance controls. School 
popularity is measured as the estimated mean utility for each school and covariate cell in the choice model from Table 4. Covariate cells are 
defined by borough, gender, race, subsidized lunch status, an indicator for students above the median of census tract median income, and tercile 
of the average of eighth grade math and reading scores. Peer quality is constructed as the average predicted Regents math score for enrolled 
students. Treatment effect estimates are empirical Bayes posterior mean predictions of Regents math effects. Mean utilities, peer quality, and 
treatment effects are scaled in standard deviation units. All regressions include cell indicators and weight by the inverse of the squared standard 
error of the mean utility estimates. Standard errors are double-clustered by school and covariate cell. 

Matched first choice model Distance instrument model



Peer quality ATE Match Peer quality ATE Match
Baseline quartile (1) (2) (3) (4) (5) (6) (7)

Lowest -0.084 0.015 0.015 0.312 0.452 0.356 0.779

Second 0.011 0.042 0.005 0.395 0.469 0.122 0.545

Third 0.127 0.074 -0.011 0.329 0.464 0.018 0.419

Highest 0.399 0.155 -0.157 0.106 0.324 0.149 0.475

Table A11. Potential achievement gains from ranking schools by effectiveness, by baseline test score quartile
Observed rankings Rankings based on effectiveness Increase in 

effectiveness

Notes: This table summarizes Regents math score gains that parents could achieve by ranking schools based on effectiveness., 
separately by baseline math score quartile. Columns (1)-(3) report average peer quality, average treatment effects, and average match 
effects for schools ranked first by students in each quartile. Columns (4)-(6) display corresponding statistics for hypothetical rankings 
that list schools in order of their treatment effects. Column (7) reports the difference in treatment effects (ATE+match) between the 
top-ranked school when rankings are based on effectiveness and the observed top-ranked school. Treatment effect estimates come 
from control function models. All calculations are restricted to ranked schools within the home borough.


