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This paper revisits the issue of the relationship between operation scale and productivity in

agriculture. The research is motivated by three stylized facts characterizing world agriculture. First,

farming in low-income countries is small scale while farming in developed countries is large scale.

Figure 1 displays the proportions of operational holdings of farms that are below 10 acres across a

sample of developed and developing countries for which reliable data are available on the size

distribution of farms. As can be seen, only 10% or less of farms are below 10 acres in the United

States and Canada, while for the three most populous low-income countries - China, India, and

Indonesia - at least 80% of farms are below 10 acres. In major economies in Africa too, as seen in

the figure, only a small proportion of farms are above 10 acres. Note that these figures may

underestimate the extent of small-scale farming is in such countries to the extent that the

landholdings of a farm are fragmented into spatially-separated plots.

The second stylized fact is that the productivity of developed-country agriculture is

substantially higher than it is in low-income countries. For example, as shown in Figure 2, soybean

yields are four time higher in the United States, where farm scale is high, than they are in Indonesia,

India and the Philippines, where farms are small, and three times higher in Canada. This figure also

illustrates, however, why output per acre is insufficient to gage productivity - China appears to be an

outlier in that its yields are twice as high as those in the other three low-income countries in the

figure, despite its similarity in operational scale. However, this is misleading, as the fertilizer-intensity

in China, as seen in Figure 3, is 2.7 to 3.5 times higher than that in Indonesia, India, and the

Philippines and 5 times higher than that in the United States.1 Assessing productivity requires

attention to input use and its cost.

An implication of any positive causal relationship between production scale and agricultural

productivity implied by the differences in scale and productivity across countries is that there are too

many farms in the world, especially in low-income countries. It implies that enlarging the size of

farms via consolidation would increase overall agricultural output, with an accompanying substantial

reduction in the amount of employment in agriculture. Another implication is that the large amount

of labor devoted to farming observed in low-income countries should not solely be interpreted as a

symptom of underdevelopment and poverty but also in part a cause. Understanding the role of scale

economies in agriculture thus has major implications for not only the global supply of food but also

1The evidence suggests that fertilizer is over-used in China, with the marginal return on a dollar of
fertilizer less than 7 cents (Huang et al., 2008). The reasons for the high fertilizer intensity in China are the
large fertilizer subsidies and governmental resource assessments based on crop yields rather than net returns.
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for how best to improve overall per-capita incomes in countries where incomes are especially low.

Of course, differences between developed-country and developing-country agriculture are

due to more than scale. The best evidence on scale relevant for a low-income country would come

from a single country, based on farms in the same institutional environment, the same markets and

facing the same technology frontier. When farm scale and farm productivity are examined within a

country, however, we get the third stylized fact: there is an almost universal inverse relationship

between farm or plot size and productivity within developing countries, over the span of plot and

farm sizes observed in those countries, while increasing returns to scale are observed among the

larger farms in developed countries (e.g. Paul et al., 2004). 

Most of the literature documenting the inverse relationship in low-income countries is based

on data from Asia and Latin America (e.g, Schultz, 1964; Hayami and Otsuka, 1993; Binswanger et

al., 1995; Hazell, 2011; Vollrath, 2007; Kagin et al., 2015). Recent studies of newly-available

representative survey data from a number of African countries, used to describe the African

landholding distributions in Figure 1, confirm that this inverse relationship also exists there (Larson

et al., 2013; Carletto et al., 2013). Figure 4 provides a typical pattern, based on one of these data sets,

the Nigeria General Household Panel of 2015-16, which describes a representative sample of rural

households for whom there are accurate (GPS) measures of farm size. Based on per-acre yields, the

very smallest farms are substantially more productive. And, as noted, the span of farm sizes is quite

limited. The existing descriptive evidence on scale and farm productivity from data describing

farming in low-income countries thus does not support the notion there are too many farms.

There is a large literature focused on low-income countries that has also attempted to

address the puzzle of why the smallest farms are most productive, without little consensus. There is

general agreement that the inverse relationship is not spurious - specifically, not due to a correlation

of land quality and farm size (e.g., Carter, 1984; Bhalla and Roy, 1988; Benjamin, 1995; Barrett et al.,

2010) and/or measurement error that is correlated with scale (e.g., Ali and Deininger, 2014; Larson

et al., 2013; Carletto et al., 2013). However, a general shortcoming of this literature is that it may be

addressing the wrong puzzle. Given the global pattern of farm productivity, the puzzle that requires

explanation is why there is a U-shape relationship between farm productivity and scale - why the

smallest farms, which dominate low-income countries, are more productive than somewhat less

small farms there and why in the developed world the large-scale farms are not only more

productive on average, but productivity increases with scale. 

Seen from this global perspective, some of explanations for the inverse relationship observed
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in low-income countries are at best incomplete. For example, the idea that farms exclusively

managed and worked on by owner-operators and their families, which characterizes the smallest

farms, have an advantage, because of superior incentives, lower supervision costs, and lower unit-

labor costs (Yotopoulos and Lau, 1973; Carter and Wiebe, 1990; Binswanger-Mkhize, et al., 2009;

Hazel et al., 2010; ) while true, cannot explain why corporate farms, which are large scale, are even

more productive. A common finding in this literature is that the smallest farms use labor more

intensively than larger farms, which would generate higher per-acre output but not necessarily higher

productivity accounting for input costs, but the reasons for this are not settled.

One other salient difference between low-income and high-income country agriculture is the

degree to which mechanized implements are used. And there is evidence that larger farms and farms

that become larger are more likely to be mechanized within countries (Zaibet and Dunn, 1998;

Foster and Rosenzweig, 2011; Hornbeck and Naidu, 2014). However, in contexts in which all farms

are mechanized, such as in developed countries, the mere use of mechanized equipment cannot by

itself explain why larger farms are more productive than smaller farms.2 

This paper seeks to explain then the U-shaped relationship between farm productivity and

farm scale - both the initial fall in productivity as farm size increases from its lowest levels and the

continuous upward trajectory as scale increases after a threshold. The explanation focuses on two

factors: transaction costs in the labor market and economies of scale in machinery capacity.

Transaction costs in the labor market are especially important in agriculture because agricultural

operations are sequential and intermittent - labor is thus principally hired on a daily basis, with

employers and workers seeking matches at high frequency. Moreover, the amount of work needed

on a given day may vary, so there is daily variation in worker hours. We show that the existence of

fixed transaction costs, to the extent they are born by farmers, makes farmers at the margin at which

hiring labor would be productive on net (all family labor fully utilized) reluctant to hire labor. And, if

labor is hired at all, average unit labor costs will vary by operational scale because larger scale entails

more intensive use of labor. The result is a U-shape in which the smallest farms are most efficient in

their use of labor, slightly larger farms least efficient and larger farms as efficient as the smallest

2Some studies have suggested that access to capital and a greater ability to insure against risk may
explain why larger farms may be more productive than smaller farms. However, we show that the U-shaped
relationship between scale and productivity holds across plots for the same farmer, which effectively holds
constant the farmer’s ability to take risk, finance capital and make better allocative decisions. We thus abstract
from these considerations, but this does not imply they are not important determinants of agricultural
productivity in low-income countries.
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farms because the share of transaction costs in total labor expenditures are smallest.34

The existence of fixed labor market transaction cost can explain a U-shape, but it cannot

alone account for the higher productivity of larger farms compared to the smallest farms, positive

scale economies that continue at higher scales. For this, we focus on scale economies in machinery

capacity. There is ample evidence that agricultural machinery saves on labor costs (Hornbeck and

Naidu, 2014; Davis, 2016) and that mechanization is more likely on larger farms (Foster and

Rosenzweig, 2011). If there is a minimum farm scale at which mechanized equipment can be used,

then only larger farms can exploit this substitution to avoid the additional costs of hiring labor.5 But,

again, a single threshold cannot explain the continuing rise in productivity with scale. We show that

to explain the upper tail of the U requires there be economies of scale in the capacity of machines,

their ability to accomplish tasks at lower costs at greater operational scales. There are two conditions

that must be met: effective machine capacity can only be increased at larger scale and the pricing of

capacity must be non-linear. We address the question of whether these conditions are met within a

low-income country.

We are able to examine the role of transactions costs and machine capacity scale economies

as major factors accounting for the U-shape relationship between scale and productivity within a

low-income country because of the existence of unique data from the India ICRISAT VLS panel

survey. One key advantage of the ICRISAT survey is that the sampling scheme differs from almost

all household surveys, which almost always seek to achieve household representativeness. The

ICRISAT survey sampling frame is instead based on landholding size. As a consequence of this

sampling frame, larger farms are over-sampled and we are able to examine both small and larger

3Allen (1988) shows that one of the reasons that larger farms were more productive than smaller
farms in 18th century England, when mechanization was not a major factor, was that larger farms could hire
labor crews. Hiring a worker team saves on hiring costs compared with hiring workers individually, but is only
cost-effective for larger-scale operations.

4Foster and Rosenzweig (2011) highlight the additional supervision costs associated with using hired
labor as an explanation for labor under-utilization at farm scales above the smallest. But supervision costs
cannot explain why above a threshold larger farms become more efficient in the absence of labor-substituting
mechanization since it is not likely such costs diminish as the amount of hired work increases.

5The idea that there are physical constraints associated with the size of plots inhibiting mechanization
is well known. Bivar (2010), in her study of the French government- and union-led agricultural consolidation
program initiated in the early 1950's - motivated by the potential productivity-enhancing effects of
mechanization - cites documents written by the French Agriculture ministry that suggest for a tractor to be
able to turn around, a minimum plot size of 1.5-2 hectares is required. Of course, there are more mechanized
options today that require a smaller minimum scale, but these may have reduced performance, which is one of
the key hypotheses we test here.
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farms in a common environment. The data set thus contains the missing link between low-income

country agriculture and developed-country agriculture - because of the over-sampling the sample of

farms exhibits the U-shape that characterizes the global relationship between agricultural

productivity and scale. Representative household surveys in low-income countries do not contain

any large farms. As indicated in Figure 1, there are few farms even above 10 acres in such

environments. The U-shape is simply not visible in low-income country rural data sets because of

survey design.

To our knowledge, there are only two prior studies based on low-income country farm data 

that finds evidence of a U-shape. Kimhi (2006), using data on maize producers in Zambia, shows 

that dis-economies of scale characterize farms below 7.4 acres, which account for 84% of all farms,

but that productivity rises with scale above that threshold. Muyanga and Jayne (2016), recognizing

the representativeness sampling problem in existing data sets, obtain data from a dedicated survey of

medium-sized farms and a representative sample of small farmers in Kenya that reside in the same

villages. They also find the inverse relationship in the representative sample containing mostly small

farms, but positive scale economies for the larger farms (25-124 acres), measuring productivity both

in per-acre net returns, taking into account all input costs, and per-acre output. However, neither of

these studies provides evidence on the mechanisms behind the U-shape.

There are measurement issues in most existing data sets as well that have made it difficult to

identify the mechanisms that underlies scale economies that we focus on here. In many if not all

low-income country data sets agricultural labor time is measured in days rather than hours. While

time wages are generally paid on a daily basis for most agricultural operations, the true unit cost of

labor time will be masked if there is variation in per day hours. The ICRISAT data record labor time

use in hours and days. The data indicate that not only is there substantial variation in the average

hours per day workers provide, but the amount of daily hours within an agricultural operation differs

by operation scale. 

Based both on the wage schedules provided by farm employers and the daily wages and

hours reported by farm workers, we show that the average hourly wage decreases with the number

of hours worked, consistent with the existence of a daily fixed cost of employment. We also are able

to document that smaller farms (but not the smallest) on average employ more low-hour hired labor

across all of their operations than do larger farms. We show that as a consequence, the average

hourly wage, inclusive of the imputed cost of family labor, increases and then decreases with farm

scale. Consistent with this, we also find that for the same plot across time, when the amount of work
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increases due to more rainfall, on a smaller plot a higher average wage is paid while on a larger plot

average wages are lowered.

Another major deficiency of existing data describing farming in low-income countries even

where mechanized equipment is used is that there is little or no information on the capacity of farm

equipment. The best surveys provide a detailed inventory of owned equipment by type (thresher,

tractor, sprayer) and value, but little or no information on power or capability (e.g., horsepower,

bushels processed per time unit). Thus, any empirical evidence on scale economies obtained from

such data must assume that within machine types machinery capability is homogeneous - an eight-

row harvester and a four-row harvester are not distinguished, even though their capabilities and

suitabilities to different production scales are likely quite different. Most data sets also do not

provide information on the time use and the rental price of equipment, by type or capacity. Thus it

has not been possible to measure scale economies in farming due to economies of scale in machine

capacity that could underlie the positively-sloped upper segment of the U. 

The ICRISAT data too do not provide direct information on the power or capacities of the

equipment that is used by the farmers. Tractors, for example, are not distinguished by horsepower

or speed or towing ability. However, we show how it is possible to identify the varying capacities of

one major type of equipment - sprayers - using the information provided on the amount of material

sprayed and the time use of sprayers. This enables us to estimate an effective capacity function

relating capacity- material sprayed per hour - to scale and to estimate the capacity pricing schedule.6

We find that, consistent with sprayer capacity scale economies, larger farms do less spraying per acre

and use higher-capacity and more expensive sprayers and we estimate that the implicit rental price of

capacity declines as capacity increases. Based on our structural estimates we are able to identify the

“optimal” scale of operation based on the sprayer scale economies - the scale at which additional

increases in scale would lower productivity, but below which operational scale is too low and thus

excessively labor-intensive, at least with respect to the control of weeds and insects.

In section 2, we describe the data and show that profits per acre exhibit a U-shape with

respect to both farm size and plot scale that is not due to relationships between size and soil quality

or size and measurement error or to differing characteristics (ability, liquidity) of farmers. We also

show that the average daily work hours of a worker varies substantially and that the hour-based wage

6Our measure of sprayer capacity is identical to that employed by sellers of sprayers. We are thus able
to compare our estimated capacity pricing schedule to those provided by sprayer vendors in the India and the
United States.
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schedules are consistent with the existence of labor-market transaction costs. We also provide

statistics on worker turnover and one component of fixed costs, worker distance to workplace that

support the assumption of the empirical importance of fixed costs. In section 3, we set out the

model, starting with a labor-only model in a market with transaction costs and then allowing the

possibility of using machinery that is heterogeneous in capacity and substitutable for labor. We show

that both models can replicate the U-shape, but with capacity scale economies the farm scale

economies persist beyond a threshold land size depending on the shapes of the effective capacity

and capacity pricing functions. 

Section 4 provides evidence that the marginal return to profits is U-shaped in farm or plot

scale, and describes evidence on the non-linear relationships between scale and the use of low-hour

hired inputs and average hourly labor and bullock prices, and on the non-linear effects of rainfall on

average input costs by plot size. All of these findings are consistent with labor-market transaction

costs playing an important role in the decline in productivity with scale at low scale. In section 5, we

examine equipment use and productivity, focusing on power sprayers. We show that descriptively,

consistent with capacity scale economies, per-acre sprayer hours and weeding hours decline and the

rental price of sprayer hours and sprayer capacity rises with farm scale after a threshold size. Our

structural estimates of the capacity price schedule for sprayers, based on the model, rejects the

hypothesis that capacity pricing is linear in capacity and thus is indicative of capacity scale economies

in India. Indeed, we find that the price parameter we estimate from the ICRISAT data is similar to

that characterizing the price schedule for power sprayers that are available throughout India.

However, both estimates imply a steeper slope for capacity pricing than we see in US pricing

schedules for power sprayers. The estimates suggest that a reduction in the sprayer price slope

parameter from that faced by ICRISAT farmers to that associated with US power sprayers, for a

farm at the median in the ICRISAT villages, would increase the capacity of the sprayer chosen by

5%, increase sprayer hours by 23.3% and reduce weeding hours by 3%.

Finally, our model-based estimates imply that effective capacity for power sprayers reaches

its maximum at a farm size of 25 acres. The fact that this limit to scale economies is at the extreme

right tail of the distribution of farm sizes in the ICRISAT setting (based on census landholding data)

does not imply that the optimal farm size in India is limited to 25 acres (even if all mechanized

inputs were characterized by the same parameters). Rather it is also consistent with a local

equilibrium trap. If the market availability of scale-dependent technologies depends on the existing

scale of operation, the largest farms have no incentive to increase scale because there are no readily
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available machines with effective capacity beyond their own operation size. The puzzle remains,

however, why if scale economies are positive up to 25 acres we do not see a move towards the

consolidation of land. Our findings suggest that this is an important topic of future research.7

1. The Data

a. Sampling and information content

We begin by describing the data we use. We do this for two reasons. The first is that we need

to show the phenomenon that requires explanation, namely a non-constant relationship between

farm productivity and scale that is not simply due to measurement error or omitted land quality. The

second reason is that the data provide unique information on plot and farm location, prices and

input characteristics, which motivate (and permit) the new explorations of the underlying causes of

non-linear agricultural scale economies.

Our principal data source is the six latest rounds of the India ICRISAT VLS panel survey,

covering the agricultural years 2009-2014. The survey has two components - a census of all

households in 18 villages in five states - Andhra Pradesh, Gujurat, Karnataka, Maharasthra, and

Madhya Pradesh - and a panel survey of the households in those villages, which includes 819

farmers. A key advantage of the ICRISAT survey is that the sampling differs from almost all

household surveys, which seek to achieve household representativeness, because the sampling frame

is based on landholding size. In particular, the survey contains in equal numbers landless

households, small-farm households, medium-farm households, and large farm households. As a

consequence of this sampling frame, we are able to examine both small and larger farms in a

common environment, unlike in most surveys of farm households in countries with similar

landholding distributions, in which most households own small plots.

The ICRISAT data are unique in other ways that are critical for identifying the underlying

mechanisms of scale economies. First, there is information on input quantities and prices by type of

input, by farm operation and by individual plot collected approximately every three weeks.8 The

7Note that the persistence and ubiquity of small farms in low-income countries does not necessarily
imply that our findings on scale economies must be incorrect. The output gains and increases in
mechanization from the mandatory post-war governmental land consolidation scheme in France, described by
Bivar (2010), from an initial distribution of land characterized by very small scales of operation that had
persisted for centuries, suggests instead a market failure. Discovering the source of the land market failure,
and remedies, thus may have high payoffs.

8The size of the basic unit of operation, the plot, is not a choice variable  - the size of a given named
plot does not vary from year to year. Similarly, farm sizes are stable. There is little change in the number of
plots owned by a farmer over the full span of the panel, from 2009-2014 -  only 5.8% of plots were bought or
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high-frequency input information is thus likely to be more accurate than that found in almost all

surveys, which collect information once or at best twice in an agricultural season. Second, there is

information on market input prices for workers, machinery, and animal traction collected at the

village level, in addition to that elicited from the households survey, by work time. Third,

importantly for identifying the role of mechanization in scale economies, there is information

enabling the measurement of the power and capacities of machines. Fourth, there is information on

how plots were acquired, e.g., inheritance or purchases, including information on the dates of

inheritance, along with information on all other assets of the household.

b. Descriptive information on scale and farm productivity.

Figure 5 displays from the village Census and from the surveyed households in 2014 the

cumulative distribution of farms by total owned (agricultural-use) landholdings along with the

sample-household distribution of plot sizes. The figure shows that the full population (census) land

distribution is similar to that of most low-income countries - 92% of land-owning households have

less than 10 acres. Because of the sampling scheme, however, we observe detailed information on

farms above 10 acres in the household sample - in contrast to the population distribution,

households with more than 10 acres of landholdings constitute almost 40% of the sample. 

The oversampling of larger farms is key to understanding the global relationship between

farm productivity and farm scale. The sampling scheme provides the missing link between

developed-country large-scale farming and low-income country small-farm agriculture within the

context of a single low-income country. This is because we are able to observe both the decline in

profitability by scale, characteristic of low-income countries, and its rise with scale, characteristic of

developed countries, in the same setting with comparable data across farms. Figure 6 displays the

lowess-smoothed relationship between average real (1999 rupees) profits per acre in the main

growing season (Kharif) and owned total landholdings for the full data set (2009-2014). As can be

seen, as in most low-income countries, there is a monotonic decline in per-acre profitability with

acreage below 10 acres. But then there is a monotonic increase, as is observed in developed

countries.

Using the detailed information of the data set, we can rule out two reasons for the U-shape

sold, and the main reasons for any land turnover were inheritance or family transfer. Almost all plots
therefore are inherited (0.74% of all plot observations involved a purchase of land). The 2014 Census data
indicate the leasing market is only somewhat thicker than the land sales market, with 8.4% of landowners
leasing out and 11.5% leasing in land.
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that have been suggested in the literature, which has focused on the decline in productivity with

scale below 10 acres: (a) measurement error in land size that is correlated with size and (b) land

quality that is correlated with land size. We can also rule out credit constraints and farmer ability as

the sole determinants of the U-shape relationship. With respect to measurement, we exploit the fact

that we have two independent, and different, elicitations of farm size in 2009. Each household was

visited and administered a Census questionnaire asking for the total number of acres of owned

unirrigated and owned irrigated land. At a separate time in the same crop year, the panel households

were asked to provide the acreage of each individual plot they owned. Thus, there are two sets of

information on acreage for each panel household collected at different times. We summed the

individual plot acreages to obtain total farm size from the survey and summed the reported total

acreages of irrigated and unirrigated land to obtain total farm size from the Census elicitation. We

then used the latter as an instrument for the former to estimate the effect of farm size on profits. 

Table 1 reports the OLS and IV profit estimates. The specifications also include dummy

variables for each village, capturing the influences of weather and prices at the village level. As can

be seen, the IV and OLS estimates are economically identical. However, the fundamental issue is not

how much measurement error there is in acreage reports, but whether measurement error leads to

bias that is correlated with farm size. For example, even if measurement error is on average small, it

may be proportionately large for small plot sizes, which would create a larger negative bias in the

relationship between size and per-acre profitability at small compared with big farms. To assess this

possibility, we obtained the coefficient of land size by land size, using the locally-weighted functional

coefficient model (LWFCM),9 obtained again using OLS and IV. Figure 7 displays the two land

coefficients by land size, indicating that measurement error is small at all acreages. Measurement

error does appear to increase with farm size above ten acres, suggesting that the upward component

of the U-shape for profits per acre displayed in Figure 6 may actually be slightly understated due to

measurement error. Measurement error, however, is clearly not the major cause of the downward

slope in profitability below 10 acres.

The U-shape also survives control for land quality. The survey provides, at the plot level,

multiple measures of plot characteristics. These include soil depth, distance of the plot from the

household residence, four categories of soil fertility, six levels of soil degradation, and 11 soil types.

Table 2 reports the relationship between real output and real Kharif profits and farm size for the full

9See Cai et al., 2006. The specification we use is locally linear in profits and farm size.
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sample. In the first column for each dependent variable, the specification only includes village/year

fixed effects. The second column estimate for each is from a specification additionally including all

the plot characteristics. The difference in estimates is negligible, despite the fact that the set of 24

variables associated with the plot characteristics are highly statistically significant for both profits and

gross output value.10

To assess whether credit constraints associated with farmer characteristics, such as total

wealth or ability, are responsible for the U-shape in the third and fourth columns for each

dependent variable we use information on output and profits at the plot level. The third column for

each reports the within-farmer-year estimate of plot size; the fourth column reports the within-

farmer-year estimate of the plot size effect including the soil characteristics of the plots. Again, the

estimates are virtually identical. The within-farmer-year plot size estimates are lower than the cross-

farmer farm size estimates, suggesting that farmer ability or wealth may play some role in the

relationship between farm size and productivity. 11

The key issue is whether variation in soil characteristics and farmer characteristics by acreage

are solely responsible for the U-shape. Figure 8 displays three plots: the relationship between per-

acre real profits and farm size repeated from Figure 6; that relationship estimated using LWFCM

from a specification including all of the soil characteristics in which the coefficients for farm size

and the soil characteristics can vary non-parametrically with farm size; and the LWFCM-estimated

relationship obtained solely from cross-plot variation within a farm and including the soil

characteristics. All three plots display the U-shape, with the LWFCM-estimated curves obtained at

mean soil and plot characteristics. Controls for soil quality evidently lower the observed profitability

of the smallest farms (soil quality and size are negatively related among small farms) but have little

effect on the upward slope. The within-farm estimates suggest that the U-shape also characterizes

plots within farmers.12 Thus, neither variation in farmer wealth or farmer ability or heterogeneity in

10Below, we will provide plot fixed-effects estimates of operational scale effects by plot size that
control completely for land quality.

11The ICRISAT survey farms are not especially fragmented. 43% have only one plot, and 74% have
two or less plots, with larger farm having more plots (correlation = 0.6). The correlation between average plot
size and total farm size is 0.7. We show below that the size of plots as well as farm size matter in determining
scale economies.

12Interestingly, Assunção and Braido (2007) found, controlling for farmer fixed effects, an inverse
relationship between output per acre and plot size but no uptick in productivity for larger plots using the
initial ICRISAT data from the period 1975-1984. In that period the availability of mechanized implements
was substantially lower than in the period covered by the latest rounds of the survey, 25 years later.
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plot or soil characteristics explains the U-shape association between per-acre profitability and scale.13

c. Fixed costs of labor hiring. 

In the next section we will set out a model to explain the U-shaped pattern of farm and plot

efficiency. We will focus on transaction costs in the labor market and scale economies in machinery

capacity. We do this because these aspects of the farming environment are evident in the data. With

respect to identifying a fixed cost component to hired labor, we use information from the price

schedules for hired labor and labor plus bullock pairs by farm operation. Information on daily wages

paid was obtained monthly from one informant from each of the three classes of farmers in the

2010 and 2011 rounds of the survey by farm operation according to the number of hours worked in

the day. The reports are obtained at the beginning of each month over the full year. 

The first salient feature of the data from the wage schedules is that a large fraction of

workers paid daily wages work less than eight hours in a day. That is, many workers are hired for less

than a full day. In the wage schedule reports, 31% of the daily wage reports for hired males were for

workers who worked less than eight hours; for bullock pairs and driver, over 58% of daily wages

paid were for work that was less than eight hours. This is in accord with the survey data on off-farm

employment reported by respondents. In the 2014 round, for example, 30.6% of respondents

working off farm for wages in agriculture operations during the peak Kharif season reported that

their average working hours were less than eight (29.8% reported that average hours were six hours

or less per day).

We computed hourly wages based on the monthly wage schedules and then regressed the log

of the hourly wage for the two categories of hired inputs on whether or not the work done was for

the full eight hours, with a full set of dummy variables for farm operation. Any hourly wage

difference by daily hours hired could be due to low-wage operations occurring in slack periods with

little work. The operation fixed effects ensure that this is not the case. The within-operation log

wage estimates are reported in Table 3, where it can be seen that while the daily wage is higher the

more hours a worker works in a day, farmers pay an hourly premium for low-hour work - workers

who work eight hours are paid a statistically-significant 33% less per hour than lower-hour workers;

13The U-shape is also not due solely due to different crop choices by plot size. Using only plots
devoted to cotton, one also observes the U-shape pattern of per-acre profits and plot size, as displayed in
Appendix Figure A. Cotton is the second largest cash crop in the ICRISAT sample, with 17% of all plots
devoted to cotton. 20% of plots are devoted to soybeans, but soybeans are not grown on the very small plots
that dominate the sample, so it is not possible to identify a U-shape relationship with that crop, but per-acre
profitability on soybean plots rises with plot size above 10 acres.
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a hired bullock pair and driver working eight hours is paid over 20% less per hour than his part-time

counterpart. The hourly premiums paid to low-hour workers is consistent with the existence of fixed

transaction costs for hiring workers compensated in part by employers. We will use the model to

infer how the existence of these fixed costs affect labor-intensity and profitability by land size.

Is it plausible there are significant fixed cost components in labor costs, as implied by the

labor price schedules? First, most agricultural laborers are hired on a daily basis. There are few

formal longer-term contracts, so each worker must be matched with a farmer who is seeking

workers for a given day’s task. Second, farms are also spatially separated from where workers and

farmers in the village reside, so travel costs are not trivial.14 The ICRISAT data provide the distance

of each plot from the farmers’ home (in the village center). The median distance is one kilometer.

The distance of plots to residences in the sample understates the average distance a worker

must travel to get to an employer because a significant proportion of workers residing in a village

work for a farmer located outside the village. The Yale EGC-CMF Tamil Nadu Panel Survey

contains a representative sample of rural households in 200 villages in the Indian state of Tamil

Nadu in 2011. In this sample, 21.3% of farmers located in the villages who employed any

agricultural laborers reported hiring laborers from outside the village. Consistent with this, 23.6% of

the survey respondents who worked for wages in agriculture reported working for a farmer located

outside the village. Among those traveling to a farm outside the village by foot or bicycle (63.8%),

the average distance to the non-village farm was two kilometers. The median distance to a non-

village farm for those traveling by bus (26.5%) was 8 kilometers. Finally, the median number of

individual farmers that an agricultural laborer worked for in total during the main growing season

(kharif) was seven. If at least some of these turnover/search and travel costs are born by farmers,

this will be manifested in hourly wage schedules that resemble those we see in the data.

d. Non-linear pricing of machinery capacity.

A second key component of our model is the existence of non-linear pricing in the cost

schedules for farm equipment by machine capacity. The ICRISAT data, like most data sets, has only

an incomplete description of farm equipment. The size or horsepower of tractors owned or used,

for example, are not provided. The inventory of owned equipment in the 2011 round does provide,

however, information on the price and horsepower of electric motors and submersible pumps.

Figure 9 displays the relationship from the inventory data between the cost per horsepower and total

14Typically, farmers and workers reside in a village center with farm plots surrounding the residential
area.
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horsepower for both sets of equipment. The figures clearly exhibit scale economies in pricing by

machine power. The information on pricing, is insufficient, however, to demonstrate the importance

of scale economies in equipment as an underlying mechanisms for farming scale economies, as we

will show, because what is also required is the technical relationship between horsepower (in this

case) and the ability of the equipment to accomplish agricultural tasks. We will demonstrate that

there is sufficient information on sprayers, a key piece of farm equipment, from the input data files

to pin down the relationships between machine power, machine capacity and price that is necessary

for identifying the link between equipment and farming scale economies.  

2. Model

a. Labor-only model with market transaction costs.

We develop a model with the goal of understanding the mechanisms that underlie the U-

shaped profitability and efficiency variation by farm and plot size. We focus on transaction costs in

the labor market and scale economies associated with farm machinery. We thus exclude

consideration of constraints on input use that arise from imperfections in credit or insurance

markets or relationships between farm size and farmer competence. Such constraints cannot explain

variation in the profitability among plots for a given farmer, which we have seen mimic the

profitability patterns observed across farmers sorted by total landholdings.15

Although agricultural production takes place in stages, to fix ideas we initially focus on a

one-stage agricultural production function. We assume that agricultural production is described by a

constant returns to scale production function g that consists of two inputs: land (a) and plant

nutrients (e). The amount of nutrients applied is itself described by a production process. For

example, the application of fertilizer requires labor time. Removing weeds, which reduces

competition for nutrients by the plants, can be accomplished using labor for pulling weeds, and/or

by spraying, using labor and a sprayer. We initially assume that the process of nutrient production

uses only labor, focusing on transaction costs in the labor market. We think that this model is by

itself applicable to settings such as in sub-Saharan Africa where landholdings are especially small and

mechanization is thus infeasible. We will subsequently generalize the model to include a

(heterogeneous) mechanized input that is substitutable with labor, as is the case in settings where

15In an appendix  we  explore directly the role of wealth differences and farmer ability in explaining
the U-shape and show they do not account for the U-shape.
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farm scale is above some threshold.16

The farm is endowed with total family labor time of l and can use family lf or hired lh labor

time to produce nutrients e. Thus total output is

(1) ( , )g a e

To highlight the role of labor market transaction costs we assume that family and hired labor time

are perfect substitutes, and the nutrient production function is e = lf + lh, which is also CRS.

Workers entering the labor market for off-farm work in a given day face a fixed entry cost per day as

a result of transaction costs and/or travel  (in effect we define a production stage as work done on a

particular day). This labor-market entry cost,  f,  may vary across households. As a consequence, in

equilibrium, farmers wishing to employ workers for just a few hours must at least partly compensate

these workers for this fixed cost.  We model this compensation as having a fixed and variable

component, consistent with observed wage schedules, so that the cost of hiring a worker for

hours is 1hl

(2) .  0 1( ) 0h h hw l l w w l  ø

With workers are fully compensated for the fixed costs of off-farm work. 0w f

Profits are defined as 

(3) 1( , , ) ( ) ( )h f h f h fa l l ag l l w l w l    

Costing out hired labor for the purpose of computing profits empirically is straightforward because

total payments to hired labor are readily observed.  Here, we cost out family labor using only( )hw l

the variable component of wages. This is correct under two conditions, as we discuss below: (a) if

the family is engaged in the external labor market regardless of the on farm labor supply or (b) if

transactions costs are fully compensated by the labor market.17

We assume that the farmer, with fixed endowments of family labor time and land, maximizes

16Our model can identify that threshold, given estimates of the farm production technology, price
schedules and available machine capacities.

17In principle one might also want to include the uncompensated component of the fixed cost of
entry (e.g., ) in the profits calculation; however, such an approach would be problematic when0f w
comparing profits in the model to those in the data as, in contrast to hired labor costs, this cost cannot be
directly observed. In practice, the model with fully compensated fixed costs seems to give the best match
between the theory and data. 
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profits plus labor income minus any fixed costs of entry into the labor market for any given land

area a

(4)   0 1( , , ) 0 ( )h f o oa l l l w f w l    L ø

subject to the constraint 

(5) o hl l l 

where  is off-farm work time. ol

The optimal labor allocations, and thus profitability, by area will depend importantly on

entry costs.  In general there will be three regimes, depending on land size and the magnitude of

labor market entry cost.18 There are two critical values of a that divide land size into regimes. For

land areas a>0 with  farmers will supply off-farm labor. For land areas , farmers*a a * **a a a 

will operate in autarchy, and for land areas  farmers will hire workers. In the first regime, at**a a

the lowest land sizes, family members work both on farm and off farm, as long as income working

both on and off-farm exceeds the income from on-farm work only. The upper-bound critical value

a* is where farmers do not hire workers and are just indifferent between entering the labor market

and not.

(6) ,* * * *
0 1( , ) ( , ) ( ) ( )f fg a l g a l w f w l l    

In that regime and at the regime upper bound for a, the marginal value product of family labor is

equal to w1:

(7) .* *
1( , )l ff a l w

The second regime is where farm size is sufficiently large so that the profitability of

employing all family labor on farm exceeds that from employing any family labor off farm but no

hired labor is employed on farm. This regime is not infinitesimal because of the existence of the

labor market entry cost that must be paid by the farmer when hiring labor. This will make farmers

reluctant to hire workers until land area reaches some threshold. Thus, in this regime, starting at

threshold land size a*, given the fixity of family labor, the marginal product of labor declines as land

18A fourth regime in which farmers are both working off farm and hiring in workers is not feasible as
long as f > w0 . The farmer will replace hired work with additional family on-farm work that has the same
opportunity cost at the margin until either hired work is zero and the fixed cost of hiring is saved or off-farm
work is zero and the fixed cost of off-farm work is saved.
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size increases and hence profitability per acre also falls. The opportunity cost of (family) labor

remains at the variable component of the wage w1. This will continue until land size = a**, where

farmers are just indifferent between hiring workers, and defraying worker entry costs, and working

only with family labor 

(8) .** ** ** **
0 1( , ) ( , )h hf a l f a l l w w l   

The threshold land size at which any hired workers are employed is higher the larger is the

transaction cost w0. 

At a** workers are hired and the marginal product of labor rises to the market wage 

(9) . ** **
1( , )l hf a l l w 

However, average labor costs rise at a** because of the necessity of paying transaction costs, which

are a large component of labor costs when hired workers are employed at low hours. Then, as land

area increases above a**, average labor costs fall, as the fixed component becomes a smaller share of

labor costs, and profitability per acre rises ultimately reaching that for the smallest-acreage farms.

To show that the model is capable of replicating the U-shape between profitability per-acre

and farm scale, we simulate the model, assuming a Cobb-Douglas production function with a land

share (α) equal to a half and with w0=2, w1=1/2, l=2 and f=2. Figure 10 displays a U-shaped pattern

between per-acre profitability and farm size. The three regimes are evident : on the smallest farms,

where family members are working both on and off farm, changes in acreage have no effect on

profits per acre. At 2.5 acres, farms become autarchic with respect to labor, and profitability per acre

declines as land size increases because family labor time is fixed, thus lowering productivity.  At 11.8

acres in the simulation the farm begins to hire workers so average profitability starts to rise and

continues to rise up to the initial value observed for the smallest farms as transaction costs become

an infinitesimal component of total costs.

Figure 11 plots the pattern of labor costs per acre by farm size from simulations of the same

model. As for per-acre profits in Figure 6, labor per acreage is initially flat with respect to acres

because the marginal return of on-farm labor is fixed by the marginal return to labor given that these

farmers are all working in the market.  As acreage rises, however, they eventually leave the off-farm

labor market and apply their labor to their own farm. Because of the fixed costs of hiring workers,

they do not immediately add workers via the labor market. Consequently, farm labor stays constant

as acreage rises and total labor costs per acre falls. At some point profitability falls so low that a

farmer is willing to take on hired workers and so labor expenditures then rise discontinuously. They
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then fall as acreage rises and the fixed cost is distributed over more hours of hired work.  

Finally, Figure 12 traces out the relationship between the average price of labor and farm

size, showing that larger farms, due to the compensation of hired labor for transaction costs, pay

higher average prices for labor than do the smallest farms. We will test for these relationships below.

One limitation of the above model is that production takes place in a single stage. With

multiple stages, the fixed costs of hiring workers (and other inputs) will accrue in each stage. To

capture this idea we augment the production function to two stages

(10) . 1 1 2 2( , , )f h f hg a l l l l 

The resulting average profits (red) and marginal profits (blue) with respect to acreage are plotted in

Figure 13.19  The marginal profit line now rises in two steps. In the first step the farmer transitions

from autarchy in both stages to hiring in the more intensive stage and autarchy in the less intensive

stage. In the second step the farmer transitions to hiring in both stages. As should be evident, as the

number of stages increases this curve will rise smoothly with acreage.  Note further that the average

profitability now falls and rises smoothly with acreage. 

b. Adding heterogeneous machinery.

Labor market transaction costs evidently are sufficient to explain why profitability per acre

initially falls as scale increases, with profitability then rising, as in our data, if any labor is hired. It can

explain why small farms tend to be autarchic and why in African countries that have very low-scale

farms and infrequently employ hired labor, per-acre profitability declines with farm scale and never

rises. But the existence of such labor-market costs cannot explain why above some threshold farm

size average profitability continues to rise above the initial per-acre profitability of the smallest

farms, which is what we observe globally and in our data. Indeed, as seen in Figure 10, the labor-

only model implies that at the highest farm sizes profitability per acre would never exceed that for

the smallest (regime-1) farms. The smallest African farms would be the most proftitable on earth!

We now relax the assumption that the only input used is labor time and allow for the use of

farm machinery to accomplish farm tasks. We allow machine time and labor time to be substitutes

and emphasize the key feature of machinery, heterogeneity in machine capacity. We define capacity,

consistent with definitions used for most farm equipment, as the amount of processed acreage a

machine can accomplish per unit of time (e.g., acres covered per hour by irrigation or insecticide,

19To capture the difference is labor intensities, we consider a Cobb-Douglas with factors shares for a,
e1, and e2 of ½, 1/3 and 1/6, respectively. 
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acres of corn per hour harvested). Unlike for manual labor, where individual heterogeneity in

productivity per unit of time (within gender) is relatively low (and unrewarded in the market where

time wages dominate (Foster and Rosenzweig, 1996), farm equipment devoted to specific tasks vary

significantly in capacity and command different prices associated with capacity.20 Thus we need to

distinguish machine time and machine capacity, with the farmer choosing both machine capacity,

based on acreage and capacity prices, and how much time to employ the machine. 

To capture these ideas we redefine the nutrient production function as 

(11) ,
1/( , , ) ( ( ) ((1 ) ) )

( )l m

q
e l q m l qm

a
    


  

where is machine capacity and is the number of units of time the machine is employed. Theq m

parameter captures output per hour of labor time and the parameter captures the extent of 

substitutability between labor and machines.21 Farmers can choose among machines of different

capacities q. However, effective machine capacity depends on farm size. To model this, we define the

function  with capturing the loss associated with using a large capacity machine on a( )a '( ) 0a 

small plot, so that effective capacity is (1- q/ ) q. For example, a sprayer that can cover a radius( )a

of z yards would be cost ineffective on farms where the radii of farmed area are significantly less

than z yards, assuming that machine prices rises with capacity. Similarly, it is not cost effective to

rent an 8-row harvester for land that has four rows of crops. 

We also allow for economies of scale in farm machinery capacity, such that the rental cost

per unit of time xm for a machine increases at a decreasing rate with machine capacity:

(12) , m qx p q

where 0<ν<1 and assuming Finally, we assume that operation of the machinery requires of1.q  

family labor per hour of machine operation so that the hourly cost of a machine inclusive of labor is

20Farmers - that is the decision-makers - may differ importantly in capability relevant for making
allocative decisions. We assume in the model, as is traditional, that all allocative decisions are correct, given
technology and prices. We provide in an Appendix tests of whether farmer ability is correlated with owned
landholdings. As noted, the within-farmer plot-specific relationships between profits and acreage indicate that
any such a correlation is not solely responsible for the profitability patterns observed across landholdings of
different size

21Some labor will be complementary with machine use, the labor used to actually run the machines,
as we specify below. 
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.pq w 

Profits, augmented to include the use of farm machinery, are 

(13) .( , , , , ) ( , ( , , )) ( ) ( )h f h f h f qa l l q m g a e l l q m w l wl w p q m      

In this model machine capacity is determined only by acreage, the parameter , and the ratio θw/p.

The overall productivity of nutrients and the substitution of labor and machines in the nutrient

production function affect the hours of machinery use but not machine capacity. In particular, q,

solves

(14)  = 0.
       12

1 (2 )
a q w

q a q
p

  
   

   

While a closed form solution for (14) is not generally available, it is evident that optimal capacity

depends on the relationship between machine cost and capacity ( ) and on the effective capacity of

machines by area , as well as the different prices. ( )a

Scale economies in farm production associated with machinery thus require both that

effective machine capacity depends on acreage and that there are economies of scale in machine

capacity. If there were no cost advantage to using higher-capacity machines, even large farmers

would use the smallest capacity machine. And if there were only a cost advantage to using larger-

capacity machines but no relationship between effective capacity and area given actual capacity we

would not observe small machines being employed on small plots. We will obtain estimates of ν

from actual price lists and from our survey data. These indicate non-linear pricing of capacity. The ν

estimates will also allow us to identify non-parametrically the  function, as shown below.( )a

The model implies that not only will the use of machinery increase with farm scale and with

rising labor costs but so will the machine capacity chosen by the farmer. Implicitly differentiating

(14), we get

> 0,
 

       
2 '

2 4
q a

a q a

d

q

q

da q a


       



which is positive as long as 22, and '( ) 0a 

22This expression must be positive as the first-order condition for q implies q<φ(a)/2<φ(a) and the

second-order condition requires .    2 4 0a q a q      
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  

       

2
2

0
2 4

q a qdq

dw pq a q a q a q

 
     


 
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The mechanism here is that at higher wages for the machine operator one wants to use fewer hours

of machines per unit of nutrient added and this is only possible if the machine is higher capacity. On

the other hand, an increase in the baseline cost of machinery tends to lower machinery capacity

because it affects both the cost of capacity and the cost of machinery

,
  

       

2

2

2
0

2 4
q a q w qdq

dp p a q a q a q

 
     


  

   

and a reduction in scale economies of will similarly lower capacity at any given scale of operation:

.
    

       
  

    

2
2 ln 2

0
2 4 2 4

q a q w q q q a qdq

d p a q a q a q a q a q

  
           

 
   

      

As noted, the determination of machine capacity q is, in the context of the model,

independent of the return to nutrients; it simply involves minimizing the cost of producing a unit of

nutrients using a machine, given land area. On the other hand the optimal number of hours the

machine of capacity q is employed depends on nutrient use and on the cost of labor used to provide

nutrients not associated with machine use. For example, mechanized sprayers may be used to spread

herbicide and thus control competition for nutrients by preventing weed growth. Alternatively, labor

may be used to remove weeds once they have grown. The determination of optimal machine use is

thus considerably more complicated than the choice of optimal capacity, and analytical derivatives

cannot in general be signed. We therefore proceed by calibrating the model to key parameters in the

data and then use the calibrated model to examine how machine and labor use respond to

underlying costs.

The full profit function, incorporating (11) and (13) is  

(1 )/( , , , , ) ( ( ) (1 )( (1 ) ) ) ( )
( )h f o q

q
a l l q m p a l q m wl w p q m

a
         


      

With these basic results in place, we now consider how economies of scale in machinery
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capacity affect the relationship between average profitability and acreage, by simulating the model

incorporating machinery, adding the parameters , δ=0.65, ν=0.32, , p0=1.4, ξ=1, and1 

to the initial labor-only model.23 Figure 14 displays the plots derived from the two2( ) / 40a a 

models - the initial model with only labor, from Figure 10, and the model with labor and machinery.

Both figures display the U-shaped patter for average-profitability. The key differences are that in the

model that permits machine use and incorporates economies of scale in machine capacity, the

decline in per-acre profits halts at an earlier point in the land distribution and per-acre profitability

eventually rises above that implied by the labor-only model. Thus at the highest farm size, profits per

acre exceed those of the smallest farms, replicating what we see across when comparing small-farm

agriculture and large-farm agriculture across countries.24

Figure 15 displays expenditures per acre for labor in the labor-only model, from Figure 12,

and for labor and machinery per-acre labor expenditures in the model with both labor and

machinery. Labor expenditures decline with acreage at the lower farm sizes in both models.

However, as can be seen, starting at around 9 acres machines are used to augment family labor. 

With a high substitutability assumed in the simulation between labor and machine time, the use of

machinery occurs before the threshold acreage for hiring labor in the no-machinery model and thus

no hired labor is employed in the model incorporating machine use. Thus labor expenditures per

acre continue to fall as acreage increases. In addition, however, as scale increases farmers employ

higher-capacity machines. This lowers the cost of producing nutrients, given ν<1. The net effect on

expenditures is thus ambiguous because, depending on the factor elasticity of demand, the farmer

may choose to increase nutrients per acre. At the parameter values chosen, machine expenditures

per acre rise with acreage but at a decreasing rate.25 

23The parameters of the machinery price function are from our estimates based on the data, as
described below.

24Given our simplifying assumption in the simulation that labor and machinery are perfect substitutes
the increase in effective machine capacity with acreage, given ν<1, and consequent decrease in the need for
labor means that the farmers never exit autarchy. Average profitability thus rises continuously beyond the
threshold at which hired labor is used in the model without machinery solely due to machine capacity
economies.  

25Finally, the patterns of labor and machinery expenditures by land size have implications for how
yields and profits per acre differ as operational scale increases. Simulation results from the model permitting
machine use indicate that both per-acre yields and profits display the U-shape but they differ in slope size and
the location of the nadir. The change in the gap between per-acre profits and output value initially reflects
how labor expenses change as farm size increases. As the farm moves to autarchy with increasing scale both
labor expenses per acre and yields per acre drop but the gap between the two also declines, reflecting the fall
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3. Identifying Scale Dis-economies due to Labor Market Transaction Costs

a. Production function and profit function methods.

Standard methods used in the literature to identify the existence of scale economies have

been to estimate production functions or profit functions. The model helps clarify the circumstances

under which scale dis-economies associated with transaction costs in the labor market can be

detected by these two methods. By construction the model is constant returns to scale in land and

nutrients. Scale economies thus do not operate through the technology but through (a) the cost of

labor (b) the selection of machine capacity.  For illustration we assume a Cobb-Douglas form for (1).

We first consider the labor-only model incorporating labor market fixed costs as above, and where

, so output ise h fe l l l  

(15) . 1
ey a l 

When the production function is estimated directly, say by regressing the log of output on

log of land and labor time, 

(16) .0 1 2ln ln ln ey a l    

is identified. The standard test for scale economies is then whether . This equality holds 1 2 1  

of course under the assumed production function as

(17) .1 2
ln ln1 1
ln ln e

y y

a l
   

     
 

Thus, estimating the production function will correctly identify that there are not scale economies in

the production function. However, such an approach will miss the presence of scale economies

more generally. The reason is that the fixed costs of labor affect the cost of inputs and thus the level

of inputs but not the relationship between inputs and outputs. 

We now examine how the sources of scale economies in the model are manifested in profit

function estimates in the labor-only model with labor-market transaction costs, again specifying the

production technology as Cobb-Douglas with nutrients linear in labor time. The first implication of

the model is that the existence of transaction costs in the labor market imply that estimates of the

profit function area parameter will differ by regime; that is the parameters of the profit function will

be a function of land area. Thus, unlike when directly estimating the production function, scale dis-

in per-acre labor expenses when the farm is relying only on its fixed family labor endowment in autarchy.
Then as the farmer begins to use machines the gap between per-acre yields and per-acre profits widens as the
farmer is increasingly able to take advantage of higher-capacity machinery, saving on labor expenses and
exploiting scale economies in machine capacity. 
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economies associated with input transaction costs can be detected.

In the smallest-area, off-farm labor regime, profits are

(27) 1
1f fa l w l

   

Using the fact that the marginal product of family labor must equal it follows that the regression1w

(28) 0 1ln ln a   

yields 

(29) ,1 1 

which (correctly) implies that profits exhibit constant returns to scale in this regime. In the autarchy

regime, at higher land area levels, however, labor is constrained at the family endowment . Thel

same regression yields
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where the numerator in the fraction is the positive amount by which the marginal product of labor

exceeds the variable component of the wage, . Thus, in the autarchy regime there are decreasing1w

returns to scale, the marginal effect of land area in this range decreases with area.  Finally, in the

regime in which hired labor is employed on farm and transaction costs diminish proportionally with

scale

(31) ,0
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and there are increasing returns - β1 rises with land area. 

In sum, as acreage increases in the labor-only model, the marginal effect of land area on

profits is initially constant, then negative, and then positive. Testing for the existence of transaction

costs in the labor market, if labor market transaction costs are the source of scale economies, thus

entails a search for this pattern of profit-function β1 coefficients by land area. If farm machinery is

not employed at low acreages, as our model simulations imply, the profit-function approach, but not

estimates from a production function, will correctly identify the scale dis-economies associated with

labor market transaction costs - that is, the decrease in profitability with acreage. 

The uptick in the marginal effect of land on profitability beyond a land area threshold can be

explained by both the presence of labor market transaction costs and the employment of farm

machinery that is characterized by scale economies in capacity. This is because estimates of the effect
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of land size on farm profits by land area will also reflect machine capacity scale economies and

pricing. To see this we incorporate into the Cobb-Douglas production function machine scale

economies as in the model with  so that Profits optimized with respect to0  (1 / ( )).e mq q a 

machine capacity, in this special case, are therefore
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Using the fact that the first-order condition for machine hours must be satisfied, a regression of ln

profits on ln area

(33) 0 1ln ln a   

yields the coefficient 
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The profit function parameter is again a function of land area, and is greater than 1 if .26'( ) 0a 

We first test for varying β1 coefficients in the profit function by land size. As noted, an initial

decline in the β1 coefficient as farm scale increases is consistent with the existence of labor market

transaction costs. We estimated a locally-linear profit equation using LWFCM of the following form:

yijt = β0(aij) + β1(aij)aij + G βn(aij)Xijt + δjt(aij) + ηijt(aij)

where the yijt are total profits over the kharif season for a farmer i in village j in year t; the Xijn are soil

characteristics, the δjtk are village/time fixed effects (capturing village-level time-varying input prices

and weather); and the ηijt are time-varying land specific iid errors. Figure 16 plots the coefficient β1

and its 95% confidence interval by farm size. The figure corresponds to the implications of the

model in which there are decreasing returns to scale at smaller farm sizes, as larger farms first use

sub-optimal amounts of labor and then employ more-expensive low-hour hired labor. Of course, the

subsequent rise in β1 - increasing returns - is consistent both with a fall in average labor costs due to

the proportionate decline in the fixed cost component of hired labor expenditures and with the

exploitation of scale economies associated with farm machinery. 

The model incorporating fixed transaction costs in the labor market implies that the smallest

26Similarly, estimation of a production function identifies the existence of scale economies if they are
due to machine capacity pricing and capacity economies of scale. For example, if the total rental cost of
machinery, , is used as a measure of the capital input, as is common in estimating agriculturalmx pq m
production functions, the regression of ln y = β0 + β1 ln a + β2 ln xm  yields β1 = α + a(1 - ν)(1 - α)[φN(a)/φ(a)]
and . Thus, the sum of the β’s exceeds 1 if  and .2 1   '( ) 0a  1 
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farms are efficient producers because they spend within each operation some of their time to off-

farm work and thus allocate the optimal amount of family labor time to own production, priced at

the marginal cost of labor. As land size increases less time is spent off farm until all family labor time

is devoted to own farm production. We should therefore observe days of off-farm work by family

members to decline with land size. This is what we see in Figure 17, which plots the lowess-

smoothed relationship between average days per month male and female members of land-owning

households spend in off-farm work. For the smallest farms, prime-age males spend on average

almost 16 days of the month working off farm; at 10 acres this drops to only 6.5 days.27

If at higher acreages farmers are reluctant to hire labor because of transaction costs then

total own farm labor costs (family + hired) per acre should also fall with land size. The first and

second columns of Table 4 report village/year fixed effects estimates of the effect of farm size on

the log of labor costs per acre without and with, respectively, controls for land quality. Both

estimates indicate that as farm size increases the labor-land ratio declines - for every one acre

increase in farm size there is a four percent fall in per-acre labor costs. The estimates are similar

when we control comprehensively for all farm-level characteristics (wealth, ability) by using

farmer/year fixed effects, reported in columns there and four of the table. - as plot size increases,

per-acre labor costs decrease by about four percent. However, the fall in per-acre labor costs could

be simply due to the substitution of machinery for labor. We need to show that transaction costs

play a significant role in the decline of labor intensity at lower acreages.

b. Direct tests of the role of labor market transaction costs in determining scale economies.

To test more directly that a mechanism for the U-shape in the marginal effect of land size on

profits is due to changes in unit labor costs by land size, we first plotted the relationship between the

real average hourly wage and farm size. In the ICRISAT data, family labor is priced at the marginal

or eight-hour wage (as if fixed costs were fully born by the employer), while hired labor is priced at

the wage actually paid. Since the latter will be higher per-hour for low-hour hired labor according to

the wage schedule, we should see that moving from the smallest farms to the largest, the average

hourly wage first rises, as farms initially employ only family labor and then employ low-hour hired

labor. At some threshold, the average wage paid falls as less low-hour labor is used. This is what we

see in Figure 18.

To further test that the marginal land size effect on unit labor costs differs by land size, we

27There is no relationship between farm size and total days worked in the month. Own farm
production time concomitantly rises with farm size
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estimated the relationships between the fraction of operations in the kharif season that employ

low–hour (hours<=6) daily hired male labor, hired tractor services, and hired bullock pair services

and the corresponding average hourly wages for each. We allow the marginal effect of land size to

differ by land size by employing a quadratic in land. The estimates, which include village/year fixed

effects and the plot characteristics, are reported in Table 5. For all three factors we see that the

fraction of low-hour operations declines with farm size, and for both hired male labor and hired

bullock pairs so do average wages. Thus, these estimates account for the rise in profitability per acre,

and fall in unit-costs, above some threshold due to the declining use of high-cost hired labor and

hired bullock pairs. The exception is for tractors, for which the effect is statistically insignificant but

positive. This may reflect the fact that on larger farms more expensive tractors with more capacity

are hired, an issue we will discuss below.

There are three limitations to the estimates in Table 5. First, there may be incomplete control

for land characteristics, which may be correlated with land size and with input use. Second, the

model and the labor cost figure suggests that a quadratic specification will not fully capture the

change in the marginal effect of labor demand with farm size. Third, farm acreage is positively

correlated with farmer wealth, so the acreage effects will in part reflect wealth effects. To remedy

these limitations, we exploit the plot-specific panel feature of the data and intertemporal rainfall

variation to estimate using plot fixed effects the effects of rainfall on plot-specific input usage and

average input costs by plot size.28

For most levels of rainfall in the semi-arid tropics in which the ICRISAT farmers are

located, increases in rainfall increase input productivity and thus should increase input use. The

exceptions are inputs that are employed in the planting stage, which principally occurs before the

major component of the rainfall realization is known. Tractor use is mostly confined in the sample

to planting-stage operations (tillage, plowing). Thus we use tractor employment as a placebo -

rainfall should neither affect tractor hours nor the average per-hour rental price of tractors. On the

other hand, for small plots higher levels of rainfall will increase average wages if the additional

28Plot size and not just total farm size will matter for input costs as long as operations differ across
plots in the same time period. To gage the synchronicity of plot operations, we exploited the daily calendar of
operation start dates in the survey. We used these to compute the standard deviation of the start date of each
operations across plots for farmers with two or more plots and the standard deviation of the distribution of
average operation-specific start dates across farmers in the same village. Note that if in all operations the days
of initiation were the same, the average standard deviations would be zero. Appendix Table 1A in the
appendix reports these results, which show that the average standard deviations in operation start dates across
plots for the same farmer are significantly different from zero and almost as large as those characterizing the
synchronicity of operations across farmers.. 
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rainfall induces the hiring of low-hour post-planting labor while for the larger plots, increases in

rainfall induces a shift from low- to normal-hour operations and average input costs decline.

We first establish that rainfall does indeed increase plot-level productivity and affects the

demand for inputs. In the first column of Table 6 plot fixed-effects estimates of rainfall and rainfall

squared on kharif-season profits from each plot are reported. As expected, increases in rainfall

increase profits. And, in the second column, the estimates indicate that increases in rainfall also

increase the number of hours of hired labor employment and hired bullock pairs, but the latter

effect is only statistically significant at the .07 level (one-tailed test), consistent with bullocks being

primarily used in the early stages of the production cycle. The effect of rainfall on tractor hours, as

expected, is not statistically significant by conventional standards and is economically insignificant as

well. In parallel, an increase in rainfall decreases both average hired male labor and bullock rental

costs, but has no effect on the hourly cost of tractors.

Having found that variation in rainfall on a given plot affects its profitability, the number

hired labor hours, and per-hour hired labor costs on average, we then estimated the effects of

rainfall on the fraction of operations on the plot that employ low-hour hired male labor and the

average wage paid by plot size, using LWFCM. The plot fixed-effect estimates of the effects of

rainfall at mean rainfall by plot size on low-hour labor use, and the associated 95% confidence

interval, are reported in Figure 19. The figure is consistent with the shifting of regimes of labor

employment in the model - at small plot sizes, increases in rainfall statistically significantly increase

hired low-hour labor use while for larger plots low-hour labor operations are statistically significantly

reduced when rainfall increases.29 And in Figure 20, among the larger plots increases in rainfall

statistically significantly reduce average hourly hired labor costs.30

4. Identifying Equipment Scale Economies as a Source Farm Scale Economies: the Case of Sprayers.

Figure 6 indicates that beyond a threshold plot size there are positive scale economies that

continue up through the largest land size. Our model implies that if the reduction in the importance

of input transaction costs were the only source of scale economies, or if machinery was employed by

larger farms only to completely eliminate the use of hired labor, then larger farms would be no more

29Because, as noted, plot size and farm size, and thus farmer wealth, are positively correlated in the
data, the rainfall coefficients at small plot sizes may be underestimated due to credit-market or liquidity
constraints on the ability of small farmers to employ additional hired labor. More relaxed liquidity or credit
constraints for larger farmers, however, cannot explain the negative effect of rainfall on per-unit labor costs.

30The effects of rainfall on per-acre profits does not vary by plot size over the full range of plot sizes.
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productive than the smallest farms unless there are also machinery-specific economies of scale,

which is not what we observe in our sample, or across the world. In this section we adduce indirect

and direct evidence on machine scale economies, inclusive of estimation of capacity pricing

schedules and the parameters of the effective capacity function, the fundamental components of

such scale economies.

As in most data sets describing farming where mechanized equipment is used, we see that

larger farms are more likely to be using mechanized farm equipment, as shown in Figure 21 for

tractors and sprayers. There has been scant evidence, however, on the relationship between machine

capacity and scale. The data on usage of machinery, as seen in Figure 22, is suggestive of the rise in

machine capacity with farm scale - while average hours of equipment use per acre first increases with

scale, above 12 acres per-acre use of both types of equipment declines with farm size. This decline in

machine use on a per-acre basis as farm size increases among larger farms is consistent with machine

capacity scale economies. However, these patterns are not directly informative about whether

machine capacity actually increases with farm size, whether there are scale economies in capacity due

to non-linear capacity pricing, or at what scale, if any, capacity scale economies dissipate completely.

To address these issues we need a measure of machine capacity. 

The capacities of machines used by farmers are rarely, if ever, available in data sets based on

household surveys from low-income countries. The ICRISAT data set, however, permits the

computation of capacity for one type of equipment - sprayers.  This is because there is information

on the amount of material sprayed  - weedicide and insecticide - as well as information on hours of

sprayer usage by plot and operation. These data can thus be used to compute capacity - amount

sprayed per hour. Sprayer capacity is typically given in spray rates for a given nozzle size - material

volume per time unit. The relevance of this measure for farming scale is that flow rates translate

directly into area sprayed per hour, given a target amount of material per area. 

Another advantage of sprayer technology is that we can exploit the information on input use

by operation to directly measure the labor savings from spraying. This is because an important

alternative to spraying for protecting plant nutrients is weeding, which is typically done manually.

The data provide the hourly rental rate for the sprayer used and labor usage for both spraying and

weeding operations. Figure 23 displays the relationships between per-acre expenditures on sprayers

and on the labor used in spraying and weeding. As can be seen, as farm size increases farmers are
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using more expensive, and thus, as we will see, higher-capacity sprayers;31 and weeding labor costs

per -acre plummet while per-acre labor time used in spraying only slightly increases with scale.

We focus on sprayer technology so that we can for the first time obtain direct evidence from

data in a low-income setting on how capacity heterogeneity in equipment contributes to economies

of scale in agriculture that persists above a farm (plot) size threshold, conditional on machine use.

This, of course, does not mean that sprayer technology is the sole source of economies of scale due

to mechanization. But spraying weedicide and insecticide is an important operation. Spraying labor

costs alone account for 13.6% of total input costs in the Kharif season. And as can be seen in Figure

22 there are more hours of use of sprayers at every land size than hours of use for tractors, the next

most used machinery.

The data on asset ownership from the last round of the ICRISAT survey indicates that

ICRISAT farmers use two types of sprayers - manual sprayers, whose median cost in 2014 is 700

rupees, and power sprayers, whose median cost is 2700 rupees. Of the 10% of farmers who own a

sprayer, 25% own a power sprayer. Table 7 reports, based on these data, regressions of tractor

ownership, ownership of any sprayer, and, conditional on owning a sprayer, ownership of a power

sprayer on land size and land wealth (based on the farmer’s own assessment of the rental value of

the land). As can be seen scale, not just wealth, matters for equipment ownership: net of wealth,

farmers with more land area are more likely to own a tractor and sprayer; and they are more likely to

own a power sprayer if they own any sprayer.32

Even among power sprayers, however, there is heterogeneity in capacity. Table 8 provides

information taken from the web site of an Indian purveyor of power sprayers (KrisanKraft) that

provides power sprayer prices by precisely the measure of capacity we can construct from the

ICRISAT data - the amount a sprayer can broadcast in litres per hour. A notable feature of the

listing is that there are substantial differences in sprayer capacities - the spray rate of the highest-

capacity power sprayer is over 13 times that of the lowest-cost model. More importantly, the posted

price schedule exhibits economies of scale in sprayer capacity, the sprayer price per unit of capacity

31The per-hour price of the sprayer used increases monotonically with acreage. As noted, the average
hourly wage falls with acreage at medium farm sizes and is constant at larger farm sizes.

32The market value of land fully captures land quality in a well-functioning market. However, the
effect of scale conditional on the value of land may under-estimate scale economies because the value of land
may reflect in part the existence of scale economies, with per-acre rental prices varying positively with land
size. Over all acreages we find that the reported rental prices of individual plots do indeed rise with total
acreage.
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decreases as capacity increases.33  

The survey data on input usage suggest that farmers are exploiting economies of scale in

spraying. Table 9 reports village/year fixed effects estimates of the effects of land size on the use of

any sprayer, on weeding hours per acre, on sprayer hours per acre, on the log of the price of the

sprayer used, and on the sprayer flow rate (capacity) net of the effects of the land quality variables.

These estimates indicate that net of year-village effects, larger landowners use pricier and higher-

capacity sprayers and larger landowners spend less time per acre in both spraying and weeding

compared with smaller farmers. 

To test directly for scale economies in spraying and the limits, if any, to sprayer scale

economies we use the structure of the model, simultaneously estimating the effective capacity

function  and the key parameter of the price function from the information on the capacity( )a 

and per-hour rental prices of the sprayers used by the ICRISAT farmers. The challenge for

estimation is that we observe only the capacity of the sprayer that is used by the farmer: capacity and

the per-capacity price are choice variables. As a consequence we use GMM using land area and land

area squared as instruments. 

Equation (14) solves for the optimal choice of q and embeds within it the effective capacity

function and the capacity pricing parameter . It also contains, however an additive term that

includes the village wage rate w and the base price p of the capacity pricing schedule, which may be

endogenously determined. We thus rearrange (14) and difference across randomly selected pairs of

households i and i’ in each village j to eliminate w and p in (14). Taking the log (12), we then get

moment conditions of the following form

(14)  .
   

  
   

  
1 1

' ' '
'

' '

1 (2 ) 1 (2 )
, 0

2 2
ij ij ij i j i j i j

ij i j

ij ij i j i j

q a q q a q
E a a

a q a q

        

 

         
   

(14)   . ' ' 'ln( ) ln( ) ln( ) ln( ) 0 , 0ij ij i j i j ij i jE x q x q a a     

We parameterize and employ GMM using land area and land area squared as2
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instruments to and the .kb

33We will formally test below whether the sprayer capacity ν parameter is less than one in the
KrisanKraft price schedule and in the ICRISAT data based on the sprayers rented by the farmers.
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If b1>0 and b2<0, we can identify a maximum farm scale at which further increases in

acreage could not exploit existing equipment scale economies. This establishes the land size at which

per-acre profits are maximized  - the technologically-determined optimal land size at which further

increases in scale would not increase productivity but below which, given that b1>0, farms are less

productive net of costs. It is important to note that we can only identify the farm scale upper bound,

if any, based on machinery that is actually available to the ICRISAT farmers. Machinery scale

economies for farm sizes beyond the maximum scale of the farms in the population, if any, cannot

be estimated because machinery for such farm sizes would not be marketed - they would not be

available for rent or purchase. Farmers (and policy-makers) would thus have limited knowledge of

how expansion of scale beyond that in the population would reap benefits via machine scale

economies. 

More importantly, finding a maximum located at the upper tail of the actual land distribution

would suggest an equilibrium trap - no single farmer would attempt to expand land size beyond this

truly local maximum because there are no available machines that could be used to exploit the

increase in scale. However, if there were a land consolidation so that a sufficient number of farms

were above this threshold, there might be enough demand for higher-capacity machinery to support

a market for them. There would then be enhanced farm efficiency at larger scale than is found in the

setting.

Table 10 reports the GMM estimates of the effective capacity and pricing function

parameters and their robust standard errors. All parameters are precisely estimated. We can reject the

hypothesis that ν = 1 and thus that there are no scale economies arising from the cost of higher

capacity machines. We can also compare our estimate of ν based on the sprayers used by the

ICRISAT farmers to that characterizing the price schedule for the four power sprayers sold by

KrisanKraft, listed in Table 8, and to that for four power sprayers offered in the United States, as

surveyed in Stiles and Stark (2016). The estimated ν’s are reported in Table 11. As can be seen, our

GMM estimate of ν for the sprayers used by ICRISAT farmers is comparable to that for the

KrisanKraft sprayers that are sold across India. However the estimated India sprayer ν is more than

double that for the sprayers sold in the United States - economies of scale are evidently substantially

greater for the power sprayers available in the United States. 

The estimates of the bk indicate that . Thus, smaller farms are less cost-effective than( ) 0a 

larger farms, given that ν is substantially less than one. The estimates also indicate that there is a land

scale at which effective capacity reaches a maximum. The point estimate of the maximum is 24.5
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acres, with a 95% confidence interval of 3.6 acres. The 2014 Census of all households in the 20
ICRISAT VLS villages indicates that only 1.1% of households owning land have total landholdings

above even the estimated lower bound of the maximum (20.9 acres). As expected, there are

essentially no farms that could exploit further scale economies, given the sprayers that are available.

It does not suggest, as noted, that larger farms than are observed in the ICRISAT area would not be

more productive; rather it is consistent with an equilibrium trap in which none of the largest farmers

has an incentive to expand given the available sprayers in India. Of course, that most farms are

below this maximum, conditional on the local availability of machinery, implies that there are other

barriers to land consolidation, resulting in an excess number of farmers. 

How does variation in ν affect the choice of machine capacity q and machine and labor usage

m and l?  To gage the magnitudes of these effects using our estimates, we calibrate the additional

parameters of the model, enhancing the production technology to allow for n  non-plant-protection

factors whose normalized input price is set to one: 
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For the rest of the parameters of the model, we set α = 0.27, β = 0.65,, and ω = 0.83 by calculating

factor shares from average weeding cost, spraying cost, other input costs and the value of output.

We set θ = 1 (one worker per machine), as it is the mode based on the data on machine and labor

hours. The values of ξ = 0.3 and δ = 0.65 are set to match the level and change with respect to scale

of average weeding and spraying costs. The base-cost of sprayer capacity pq = 3.7 is determined

based on the average sprayer rental cost net of capacity using the estimate of ν. The value p0 = 33.8

matches average profits given other information. The wage w = 21 is set to the average wage for a

full 8-hour day.

Table 12 contains the calibrated elasticities and their computed standard errors, based on the

sprayer GMM error covariance matrix for farms at the median (3 acres) of the farm size distribution

in the ICRISAT villages.34 The first three rows display the elasticities with respect to the change in

34Let  denote the vector of endogenous variables, the1 , , ,K n m l q  2 , , , , , , , ,o qK a w p p     

vector of calibrated parameters, , the vector of estimated parameters, and K4 < K2,K3> the3 0 1 2, , ,K b b b 
combined vector of exogenous variables. Then an analytic expression for the matrix of implicit derivatives is
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the ν . The estimates suggest that a reduction in the sprayer price slope parameter ν from that faced

by ICRISAT farmers to that characterizing the price schedule for US power sprayers would increase

the capacity of the sprayer chosen by 5%, increase sprayer hours by 23.3% and reduce weeding

hours by 3% even for these very small farms. 

The estimates also indicate how changes in wage rates affect plant protection inputs, with

endogenous sprayer capacity choice. In particular, a doubling of the wage reduces the usage of

sprayers by 76%, reflecting the fact that each hour of sprayer use is assumed to require one hour of

labor, but reduces weeding hours by 130%. The disproportionate decline in weeding hours reflects

the substitution of sprayer capacity for labor, as sprayer capacity increases by 3% in response to the

wage change. Finally, sprayer capacity choice is considerably more sensitive to scale than to wage

rates: a doubling of farm size (in this case to only 6 acres) would increase the capacity of sprayers

used by 30% and increase sprayer use by 140%. The increase in scale, which pushes up the capacity

and use of sprayers, results in a decline in the per-acre number of weeding hours by 10%, reflecting

again the substitution between mechanized spraying and labor-intensive weeding in protecting plant

nutrients. 

5.  Conclusion

Much of the recent literature on economic development in agriculture has focused on the

adoption of new technology. The thrust of the argument is that productivity differences across

countries are importantly driven by the fact that farmers in low income countries do not have access

to the same types of seeds and inputs that are available in other countries. One of the salient

differences in agricultural sectors between countries of very different productivities, however, the

scale of operations, has been relatively ignored.35 The evidence on persistent differences in

productivity within countries associated with scale cannot be easily understood to be a consequence

We use the delta method to compute an estimate of the standard errors of these derivatives. If Ω is the
variance-covariance of the estimates of K3 then for any particular element γij of Γ:

1 1

1 3 3 1 3 3

( ) ( ) ( ) '
' ' ' ' ' '

ij ij ij ij
ij

d d d ddK dK
Var

dK dK dK dK dK dK

   
    

where is just a sub-matrix of . This expression is evaluated at the estimated values of K31 3/ 'dK dK 1 4/ 'dK dK

and K2  and the calibrated parameters. Note that because the analytic expressions for the implicit derivatives
depend both on the estimated parameters and the endogenous variables, the variance of the estimated
derivative depends both directly on the variance-covariance of the estimated parameters and indirectly
through the effects of this variance-covariance matrix on the estimated optimal endogenous variables. 

35Seed technologies across low-income and developed-country agriculture are in fact not that
different. Most of the cotton grown by the ICRISAT farmers is modern BT cotton, with cotton being the
second most cultivated crop by area planted.
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of differential lack of access to technologies given evidence on the transmission of technologies

between farmers over time. If farmers within an area have equal access and markets for inputs work

reasonably well, marginal products should be equated across farmers and thus it is unclear why there

should be any differences in productivity across farms. Moreover, despite the global differences in

farm productivity indicating higher productivity among larger farms, almost all of the evidence from

within low-income countries suggests that agricultural productivity and scale are inversely related

over the full distribution of farm sizes observed in those countries. Understanding what lies at the

source of these differentials by scale may thus be indicative of important barriers to development in

rural areas of low-income countries.

In this paper we examined unique data from India that allows us to look at agricultural

operations among a wider distribution of farm scales than is typically observed in low-income

countries because of the over-sampling of larger farms. We found a distinctive U-shaped pattern in

which both small and large farmers are more productive, in terms of both yield and profitability,

than intermediate sized farmers. This pattern replicates within one rural setting what is observed

across countries, with productivity decreasing in scale for smaller farms and increasing in scale for

larger farms. We showed that these productivity patterns by scale are not attributable to differences

in measured aspects of land quality. We also established that measurement error in area, that might

lead to high profitability per acre on small farms, is small and does not importantly explain the

observed patters. In addition we found that the U-shape pattern is observed across plots for the

same farmer, thus ruling out the importance of credit access as the main explanation of higher

profitability among large farmers. 

We proposed two alternative mechanisms that drive productivity differences by scale and

can account together for the U-shape patter by scale across countries of the world and in India. We

first considered the role of fixed costs in the hiring of labor and other inputs. We provided evidence

that in fact many workers work for less than a full day, that the hourly price of a workers is higher

when workers are used for part of day, and that intermediate sized farmers are most likely to employ

workers part time. A similar pattern is observed for rented equipment. The implication of this

pattern is that small farmers will be relatively efficient because the shadow price of family worker

time is set by the outside market, as most smallholders work part-time off farm. As farm size grows

however, the farm moves to autarchy and is reluctant to take on hired workers for just a few hours

per operation. This leads to lower yields and profitability per acre. Eventually, this strategy proves

costly and there is discrete jump upward in total work per acre due to the hiring of non-family

35



workers. 

Transaction costs in hired inputs can explain the U-shaped relationship between size and

productivity, but cannot explain the continuous rise in profitability by scale beyond a threshold of

farm size. The second mechanism we focus on to explain this component of the U-shape is the

adoption of machine technology that is differentially adapted to farm size. The idea is that higher

capacity machines do more work per hour and that the cost of these higher machines does not

increase proportionately with capacity. However, large machines cannot be used at full capacity on

small farms or plots. As a result large farmers use more productive machines and small farmers, if

they use machines at all, use less productive machines that are also less cost-effective. This leads to

an increase in yield and profitability as farm size increases.

We focused in particular on power sprayers because we are able to measure capacity based

on time use and the amount that is sprayed. We showed that sprayers fit well with our model -

optimal sprayer capacity increases with farm size and the shadow price of sprayer capacity increases

less than proportionally as capacity increases. The mechanisms of hired-input transaction costs and

economies of scale in machinery together allowed us to replicate the patterns of agricultural

profitability and input costs per acre by farm size that are observed in our data and across countries

of the world. Based on our parameter estimates, we found in particular that in our sample,

economies of scale peter out at the very top of the land distribution (25 acres), suggesting that

average farm size in India is, along this one dimension of technology that we can precisely estimate,

too small - there are too many farms. We also find that the pricing of power sprayer capacity in India

exhibits less scale economies than in the United States. Indian farmers as a consequence use less

sprayer capacity and employ more weeding labor than they would if they has access to US sprayer

technology. However, this difference in labor use and associated loss in productivity due to differing

technologies is substantially less than the productivity differences across small and large farms in

India.

Our results thus suggest that there are barriers to agricultural productivity growth that may

not be easily overcome through individual investment decisions or cross-country technology

transfer. First, on the labor cost side, the fixed costs of the hiring represent real costs associated with

travel to farms and searching for work that may be particularly acute in relative sparsely-populated

areas and/or areas where a small fraction of total land is arable. These geographic features can

largely be taken as exogenous. Moreover, fluctuating labor demand is intrinsic to most agricultural

production processes. Labor in agriculture does not substitute well across time because certain tasks
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must be carried out a specific times in the growing season. Farmers needing to execute a task cannot

simply wait until they have enough undone tasks accumulated to hire a worker for a full day. Nor are

multi-day contracts that reduce search costs likely to be a panacea as demand for labor is episodic.

There is the potential to aggregate tasks by expanding acreage, but since different tasks will have

different levels of labor demand, the optimal farm size for one stage will not be the same as the

optimal farm size for other tasks. 

Second, the ability to make profitable use of larger farms depends critically on access to and

the pricing of larger-capacity machines. Again the episodic demand is likely to play a role. A single

large farmer set among smaller farmers is unlikely to be able to justify the purchase of a large

machine on his own. If there were multiple large farmers than one farmer might be the owner and

then rent it to other farmers. Indeed there is currently an active market for tractors in many Indian

villages. Our key finding that scale economies for sprayers have a limit that is precisely at the top of

the land-size distribution suggest an equilibrium trap. While we see the adoption of larger-scale

power sprayers,  equipment such that as available to large Brazilian soy farmers is simply unavailable

in most parts of India because there are no farms of that scale to demand them. In short, without a

simultaneous expansion of large farms it is difficult to see how one expands the scale of available

technologies, but it is difficult to see how this expansion would take place if such technologies were

not available.

Finally, even barring cultural, economic, or legal barriers to the buying or selling of land, the

U-shaped profitability curve complicates the process of transition from profitable small-holder

agriculture to (more) profitable large-scale agriculture that makes use of hired labor. Land is likely to

be accumulated through a series of individual transactions. In a world of one-acre farmers one

would need twenty-five separate transactions among contiguous neighbors to get to an efficiently

sized farms based on our sprayer exercise. This number of transactions would be complicated even

in a relatively competitive market, but the need for contiguous plots raises important issues such as

hold-up problems that will fully extract the rents that would otherwise accrue to a farmer who puts

together a large farm.

In short, despite evidence of the potential gains to profitability of large farms, small farms

are likely to be the dominant force of production in low income countries for the foreseeable future 

without external intervention. In India, the higher population density and increased availability of

equipment increases the potential to move to large farms relative to Sub-Saharan Africa, but it seems

unlikely that there will be a large-scale transition absent an expansion in high-paying employment
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opportunities that draw workers out of the agricultural sector, thus raising wages and encouraging

farmers to expand machine usage. In other areas, such as Brazil we have seen a substantial transition

to large-scale agricultural production in many areas. This reflects the availability of large-scale

machines, the conversion of land that has previously been used for low intensity activities such as

grazing, and the development of an effective series of highly profitable export markets. 

In summary, the documented differences in productivity by farm size that have received

substantial attention within countries over the years are not only indicative of underlying inequality

in rural areas. They are also a barometer for the efficacy of markets in the allocation of technologies,

workers, and ultimately land to their most productive usage. Imperfections in these markets

importantly underlie the differences in profitability within villages and the identification and

alleviation of these imperfections are ultimately required for the agricultural sector in low-income

rural areas to reach its full potential.  
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Figure 1. Percent of Households with Operational Landholdings Below 10 Acres,

by Country
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Figure 2. Soybean Yields (Metric Tons per Hectare) in 2016, by Country

(Source: USDA, 2016)
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Figure 3. Fertilizer Intensity (Kilograms per Hectare) in 2014, by Country

(Source: World Bank, 2016)
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Figure 10: Profits per acre by farm-scale: 

simulation based on the model with only labor



Figure 11: Input costs per acre by farm-scale: 

simulation based on the model with only labor



Figure 12: Average wage by farm-scale: 

simulation based on the model with only labor



Figure 13: Profits per acre by farm-scale: 

simulation based on the model with two labor stages



Figure 14: Profits per acre versus farm-scale: 

simulation based on the model with and without machines



Figure 15: Labor and machine costs per acre versus farm-scale: 

simulation based on the model with and without machines
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Figure 16. LWFCM Estimates of the Effects of Land Size on Profits with 95% CI,

Net of Soil Quality and Time/Village Fixed Effects, by Farm Size

(ICRISAT VLS, 2009-14)



Figure 17. Average Days per Month Worked Off Farm, by Farm Size

Male and Female Workers Aged 21-59

(ICRISAT VLS 2014)
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Figure 18. Average Hourly Wage Paid for Male Labor, by Farm Size

(ICRISAT VLS 2009-14)
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with 95% CI, by Plot Size (ICRISAT VLS 2009-14)
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(ICRISAT 2009-14)
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Figure 21. Fraction of Farms using Sprayers and Tractors, by Farm Size

(ICRISAT VLS 2009-14)



0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Tractor Sprayer

Figure 22. Per-Acre Equipment Hours for Tractors and Sprayers, by Farm Size

(ICRISAT VLS 2009-14)



0.07

200.07

400.07

600.07

800.07

1000.07

1200.07

1400.07

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Weeding Labor Costs per Acre

Total Sprayer Costs per Acre

Sprayer Labor Costs per Acre

Figure 23. Real Weeding and Sprayer Labor Costs and Total Sprayer Costs per Acre, by Farm Size

(ICRISAT VLS 2009-14)



5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Appendix Figure A1. Lowess-Smoothed Relationship of Profits per Acre and Owned Plot Size,

Cotton Plots Only

(ICRISAT Survey, 2009-14)



2500

3000

3500

4000

4500

5000

5500

6000

0 1 2 3 4 5 6 7 8 9 10 11

Appendix Figure A2. Lowess-Smoothed Relationship of Profits per Acre and Owned Area

(ICRISAT VLS Survey, 2009)
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With Lowess-smoothed Average (ICRISAT VLS 2009)
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Table 1
Measurement Error Test: The Effect of Total Owned Area on Profits, 

by Estimation Procedure, Using the Survey and Census Owned Land Self-reports in 2009

Variable Profits Owned Land -
Survey

Estimation Procedure OLS IV OLS

Total owned land  - survey, sum of plot
sizes

4324.2
(1305.8)

4433.5
(1328.1)

-

Owned land - Census, sum of irrigated and
non-irrigated land

- - 0.9637
(0.0128)

Village fixed effects Y Y Y

N 306 306 306

Standard errors in parentheses clustered at the village level. Profits are for
the Kharif season.



Table 2
Does Land Quality Affect Estimates of the Relationship Between Real Output Value and Profits and Area?

(Kharif Seasons 2009-14)

Variable Real Output Value Real Profits

Farm size (acres) 9138.9
(676.3)

9053.4
(671.2)

- - 3911.8
(501.4)

3871.9
(500.7)

- -

Plot size (acres) - - 7390.6
(1463.8)

7548.6
(1506.0)

- - 5841.8
(1474.0)

5939.5
(1521.7)

Village/year FE Y Y - - N Y - -

24 plot characteristics/categories N Y N Y N N N Y

Farmer/year fixed effects N N Y Y N N Y Y

H0: Plot and household
characteristics = 0 F(24,107) [p]

- 8.45
[.0000]

- 1.22
[.239]

- 3.61
[.0000]

- 1.22
[.245]

Number of observations 3,835 3,835 7,865 7,865 3,835 3,835 7,865 7,865

Standard errors in parentheses clustered at the village/year level.



Table 3
Operation Fixed Effects Estimates:

the Percentage Difference in Hourly Wage Rates Paid for Eight Hours
versus Less than Eight Hours of Work, by Input

(2010 and 2011 ICRISAT Monthly Price Schedules)

Variable Hired Male Labor Hired Bullock Pair +
Driver

Worked eight hours in the day versus
<8

-0.332
(0.0314)

-0.223
(0.0454)

Mean wage (rupees) 22.1
(9.34)

78.7
(39.6)

Percent working <8 hours 30.7 58.4

N 729 450

Standard errors in parentheses.  Hourly wage rates constructed by dividing reported daily
wages by the report of hours worked.



Table 4
Log Total Labor Costs per Acre and Area: Cross-Farm and Within-Farm Estimates

(Kharif Seasons 2009-14)

Variable (1) (2) (3) (4)

Farm size (acres) -0.0576
(0.00750)

-0.0388
(0.00486)

- -

Plot size (acres) - - -0.0497
(0.0172)

-0.0437
(0.0168)

Village/year FE Y Y - -

24 plot characteristics/categories N Y N Y

Farmer/year fixed effects N N Y Y

H0: Plot and household characteristics =
0 F(24,107) [p]

- 3.99
[.0000]

- 8.17
[.0000]

Number of observations 3,177 3,177 5,786 5.786

Standard errors in parentheses clustered at the village/year level.



Table 5
Plot Size and Fraction of Operations that Employ Hired Inputs at Low (<=6 ) Daily Hours and the Average Hourly Wage Paid,

by Input Type (Kharif Seasons 2009-14)

Variable Fraction of Operations <6 Hours/Day Average Hourly Wage

Input type Hired Male
Labor

Hired
Tractor

Hired
Bullock Pair

Hired Male
Labor

Hired
Tractor

Hired
Bullock Pair

Plot size (acres) -.0165
(.00306)

-.0197
(.00247)

-.0170
(.00306)

-.183
(.0876)

1.25
(.769)

-.866
(.306)

Plot size squared x10-3 .450
(.112)

.449
(.0682)

.555
(.117)

8.29
(3.23)

18.3
(32.4)

29.3
(10.9)

Village/year FE Y Y Y Y Y Y

25 Plot and household characteristics Y Y Y Y Y Y

Number of observations 6,777 6,777 6,777 6,777 6,777 6,777

Standard errors in parentheses clustered at the village/year level.



Table 6
Plot Fixed Effects Estimates: The Effects of Kharif-Season Rainfall on Profits, Hours Employed and Average Hourly Wage Rates,

by Input Type (Kharif Seasons, 2009-14)

Variable Profits Hours Employed Average Hourly Wage

Input type - Hired Male
Labor

Hired
Tractor

Hired
Bullock Pair

Hired Male
Labor

Hired
Tractor

Hired
Bullock Pair

Rainfall (mm) 38.1
(17.1)

.182
(.0701)

.00362
(.00316)

.0347
(.0248)

-.0158
(.00672)

.0130
(.0601)

-.0593
(.0355)

Rainfall squared x10-3 -21.2
(8.59)

-.107
(.0377)

-.00214
(.00161)

-.0500
(.0268)

.00778
(.00398)

-.0132
(.0282)

.0757
(.0331)

Year and plot FE Y Y Y Y Y Y Y

H0: Rain and rain squared
= 0  F(2,n)  [p]

3.09
[.0504]

4.18
[.0183]

0.99
[.3742]

1.97
[.1452]

3.47
[.0352]

0.28
[.7589]

3.02
[.0538]

Number of observations 5,291 3,987 4,016 2,523 3,987 4,016 2,523

Standard errors in parentheses clustered at the village/year level.



Table 7
Farm Size, Wealth and Mechanization (Ownership): 2014 ICRISAT VLS Round

Variable Owns a Tractor Owns a Power Sprayer

Sample
All Farmers All Farmers

Farmers Who Own
Any Sprayer

Total owned land (acres) .0125
(.00415)

.0107
(.00474)

.0133
(.00494)

Total rental value of land
(wealth) x 10-5

.0506
(.0146)

.0512
(.0166)

.0273
(.0144)

Village FE Y Y Y

Percent owning 3.5 10.3 24.8

Number of farmers 652 652 288

Standard errors in parentheses clustered at the village level. All specifications include the
head’s age and schooling.



Table 8
Cost and Capacities of Indian KrisanKraft Power Sprayers, 2017

Power sprayer Litres/Hour Current Price (Rupees)

180 7830

420 12260

1320 25900

2400 27900



Table 9
Estimates of the Effects of Owned Land Size

on Sprayer Use, Weeding Hours per Acre, Sprayer Hours per Acre, Log Sprayer Price per hour, and Sprayer Flow Rate

Variable Any sprayer use
Weeding hours per

acre
Sprayer hours per

acre
Sprayer log price

per hour Sprayer flow rate

Estimation procedure OLS OLS OLS OLS OLS

Owned area 0.006197
(0.0009879)

-0.5631
(0.1286)

-0.4063
(0.0853)

 0.01335
(0.00669)

0.01360
(0.00667)

All land characteristics Y Y Y Y Y

Village/year fixed effects Y Y Y Y Y

N 3,374 3,374 1,219 1,219 1,219

Standard errors in parentheses clustered at the village/year level.



Table 10
GMM Estimates of the Effective Capacity Function ö(a) and Price Parameter õ

Coefficient Point Estimate Robust SE

õ 0.316 0.124

b0 5.58 0.0375

b1 0.933 0.0343

b2 -0.0190 0.00211

H0: õ < 1, ÷2(1) [p] 30.4 [.0000]

Maximum land size (acres) = ö(a)N  = -b1/(2*b2) = 0 24.5 1.84

N 617

Instruments: owned land area and land area squared.



Table 11
Estimates of Sprayer í, by Source

Country India United States

Source ICRISAT Survey,
2009-2014

KrisanKraft Price
List (2016)

Stiles and Stark
(2016)

Estimation procedure IVa OLS OLS

í 0.5802
(0.1200)

0.5209
(0.0605)

0.1458
(0.0789)

H0: í = 1, F(1,x)
[p]

÷2=12.2
[0.0005]

F(1,2)= 62.8
[0.0156]

F(1,2)=117.1
     [0.0084]

N 1,219 4 4

Village/year fixed
effects

Y N N

aFirst-stage includes log of owned area and all land quality characteristics. Standard error
clustered at the village/year level.



Table 12
Elasticities for Changes in Area, õ and Wage Rates on Sprayer Capacity (q), Sprayer Hours

(m) and Weeding Labor Hours (l) for a Farm of Median Size (3 acres),
from the Calibration and GMM Estimates

Coefficient Point Estimate Robust SE

dq/dõ -0.0498 0.0728

dm/dõ -0.233 0.113

dl/dõ  0.0299 0.130

dq/da 0.297 0.0124

dq/dw 0.0292 0.0399

dm/dw -0.756 0.977

dl/dw -1.365 0.112



Appendix Table A1
Mean Standard Deviations (Days) of First Operation Dates Across Plots

Within and Across Farmers, by Operation
(Kharif Season 2014)

Operation/sample
Cross-Plot within

Farmera

Cross-Farmer within
Village

Sowing 9.55
(14.7)
N=713

14.8
(10.9)
N=946

Fertilizing 20.2
(19.7)
N=464

24.8
(14.2)
N=647

Weeding 16.6
(15.9)
N=737

19.3
(9.8)

N=984

Spraying 17.7
(19.5)
N=447

22.4
(12.0)
N=664

Threshing 13.7
(13.5)
N=468

18.0
(8.31)
(678

Harvesting 21.8
(19.7)
N=914

24.9
(12.4)

N=1,133

aFarmers with two or more plots.  Standard errors in parentheses. 



Appendix Table A2
Test of Farmer Ability Bias: Profit Function Estimates for Farm Size<11 Acres

(Kharif Season 2009)

Variable/Estimations Procedure OLS IV IV

Owned cultivated land (acres)a -725.7
(302.1)

-1284.9
(636.4)

-1254.5
(656.6)

Rental value of owned cultivated landa 0.1341
(0.0644)

0.2245
(0.0853)

0.2102
(0.1167)

Total wealtha 0.00596
(0.00298)

0.00763
(0.00624)

0.00720
(0.00667)

Total value of inheritance - - 0.000153
(0.000857)

Village FE Y Y Y

Sargan overidentification test: ÷2(4) [p] - 1.292
[.863]

1.270
[.736]

H0: Owned land orthogonal to the error,
Durbin-Wu-Hausman ÷2(1) [p]

- 0.4603
[.498]

-

H0: Owned land, land value, and total wealth
orthogonal to the error, Durbin-Wu-Hausman
÷2(3) [p]

- 1.408
[.704]

-

Number of observations 466 466 466

Standard errors in parentheses robust to error clustering and heteroscedasticity. aEndogenous
variable. Identifying instruments include total inherited land, the real value of inherited land,
the real value of nonland inherited wealth, average village rainfall since inheritance, the
standard deviation of rainfall since inheritance, and the two rainfall variables interacted with
inherited land area.



Appendix Table A3
First-Stage Profit Function Estimates for the Test of Farmer Ability Bias, Farm Size<11 Acres

(Kharif Season 2009)

Variable
Owned

Cultivated Land

Rental Value of
Owned Cultivated

Land
Total Wealth

Total inherited land area 0.563
(0.2436)

2205
(1492)

13749
(26989)

Real value of inherited land  (x 10-5) 0.0148
(0.0194)

743
(119)

-1840
(2147)

Real value of inherited nonland
wealth (x 10-5)

0.291
(0.0603)

593
(369)

0.450
(0.0668)

Mean rainfall since year of
inheritance (MR)

0.00587
(0.00242)

8.16
(14.8)

-129
(268)

Standard deviation of rainfall since
year of inheritance (SDR)

-.0134
(0.00368)

-89.0
(22.5)

-387
(407)

MR x total inherited land area -.00108
(0.000396)

-7.07
(2.43)

-13.2
(43.9)

SDR x total inherited land area 0.00336
(0.000668)

24.6
(4.09)

37.5
(74.0)

Village FE Y Y Y

Partial R2 of excluded instruments 0.338 0.291 0.142

H0: Excluded instruments = 0,
F(7,441) [p]

32.1
[.000]

25.9
[.000]

10.4
[.000]

Number of observations 466 466 466

Standard errors in parentheses robust to error clustering and heteroskedasticity.




