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Abstract

We study industries where the price that a firm sets serves as an investment into lower
cost or higher demand. We assess the welfare implications of the ensuing competition
for the market using analytical and numerical approaches to compare the equilibria
of a learning-by-doing model to the first-best planner solution. We show that dynamic
competition leads to low deadweight loss. This cannot be attributed to similarity between
the equilibria and the planner solution. Instead, we show how learning-by-doing causes
the various contributions to deadweight loss to either be small or partly offset each other.

1 Introduction

In many important industrial settings, the price that a firm sets plays the role of an invest-

ment. The investment role arises when the firm’s price affects not only its current profit

but also its future competitive position vis-à-vis its rivals. Examples include competition

to accumulate production experience on a learning curve or to acquire a customer base in

markets with network effects or switching costs. In these settings, a firm’s current sales

translate into lower cost or higher demand in the future, and the firm is thus able to shape

the evolution of the industry by pricing aggressively. The emergence of “big data” and

the increased recognition of the importance of customer data obtained over time as a by-

product of sales—summarized by the popular catch phrase “data is the new oil of the digital

economy”—may make the investment role of price even more pervasive.
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It is well understood that the investment role of price opens up a second dimension of

competition between firms, namely competition for the market. Competition is dynamic as

firms jostle for competitive advantage through the prices they set. For example, in their

review of the literature on network effects and switching costs, Farrell & Klemperer (2007)

point out that

[f]or a firm, it [the presence of switching costs and proprietary network effects]

makes market share a valuable asset, and encourages a competitive focus on

affecting expectations and on signing up pivotal (notably early) customers, which

is reflected in strategies such as penetration pricing; competition is shifted from

textbook competition in the market to a form of Schumpeterian competition for

the market in which firms struggle for dominance. (p. 1976)

This jostle for competitive advantage is a feature of both “new economy” industries (e.g.,

Amazon versus Barnes & Noble in e-book readers or Microsoft versus Sony in video game

consoles) and “old economy” industries (e.g., Boeing versus Airbus in aircraft and Intel

versus AMD in microprocessors).

At the same time, several high-profile antitrust cases, such as United States v. Microsoft

in the late 1990s and European Union v. Google initiated in 2015 have taken aim at the

market leaders in industries where the investment role of price is presumably important. This

raises a question that is less well understood: does unfettered competition for the market

when price serves as an investment warrant regulatory scrutiny? The answer depends on

how efficient dynamic competition is. If it is not very efficient and leads to high deadweight

loss, then there potentially are gains to be had from intervening in the industry. However,

if dynamic competition is very efficient, then the upside from regulatory scrutiny is limited,

barring explicitly anti-competitive behavior. The goal of this paper is hence to take a step

toward assessing the efficiency of dynamic competition when price serves as an investment.

It may seem intuitive that dynamic competition when price serves as an investment is

fairly efficient. This intuition becomes apparent by drawing a contrast with the rent-seeking

literature (Posner 1975). In rent-seeking models, firms compete for market dominance by

engaging in socially wasteful activities (e.g., lobbying). When price serves as an investment,

firms also compete for market dominance, though not through socially wasteful activities

but instead through low prices that transfer surplus to consumers. As a by-product of these

low prices, firms generate socially valuable learning economies in production or demand-side

economies of scale.

However, this intuition is incomplete. First, prices that are too low relative to marginal

cost can cause deadweight loss from over-production, just as prices that are too high can

cause deadweight loss from under-production. Second, dynamic competition may give rise to
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equilibria that entail predation-like behavior and monopolization of the industry in the long

run (Dasgupta & Stiglitz 1988, Cabral & Riordan 1994, Athey & Schmutzler 2001, Besanko,

Doraszelski, Kryukov & Satterthwaite 2010, Besanko, Doraszelski & Kryukov 2014). This

can cause welfare losses from monopoly pricing and suboptimal product variety. Third, as

firms attempt to balance the gains from possibly monopolizing their industry against the

losses from pricing aggressively as they jostle for competitive advantage, dynamic competi-

tion can distort entry behavior and result in coordination failures similar to the ones in natu-

ral monopoly markets highlighted by Bolton & Farrell (1990). Finally, dynamic competition

can also distort exit behavior if firms are reluctant to exit an industry destined to be monop-

olized and become caught up in wars of attrition (Maynard Smith 1974, Tirole 1988, Bulow

& Klemperer 1999).

In sum, dynamic competition when price serves as an investment may cause deadweight

losses through a number of distinct channels, and it is not a priori obvious what the magni-

tude of these deadweight losses may be. In this paper, we make a first attempt to assess how

efficient dynamic competition is. We do so in a model of learning-by-doing along the lines

of Cabral & Riordan (1994), Besanko et al. (2010), and Besanko et al. (2014) that involves

price competition in a differentiated products market with entry and exit. Learning-by-doing

is not only an important setting in its own right1 but also shares key features with other

settings such as network effects and switching costs (Besanko et al. 2014).

We use a combination of analytical and numerical approaches to compare the Markov

perfect equilibria of our learning-by-doing model to the solution of a first-best problem

that has a social planner controlling pricing, entry, and exit decisions. Deadweight loss is

the difference in the expected net present value of total surplus. We carefully explore the

parameter space and multiple equilibria using the homotopy or path-following method in

Besanko et al. (2010). We show that dynamic competition does indeed tend to lead to low

deadweight loss. Deadweight loss is less than 10% of the maximum value added by the

industry in more than 65% of parameterizations and less than 20% of value added in more

than 90% of parameterizations.2 Moreover, the investment role of price tends to be socially

beneficial; if we shut it down, then deadweight loss increases—often substantially—in more

than 80% of parameterizations.

We then point out that low deadweight loss does not arise because equilibrium behavior

1For empirical studies of learning-by-doing in a broad set of industries, see Wright (1936), Hirsch (1952),
DeJong (1957), Alchian (1963), Levy (1965), Kilbridge (1962), Hirschmann (1964), Preston & Keachie (1964),
Baloff (1971), Dudley (1972), Zimmerman (1982), Lieberman (1984), Gruber (1992), Irwin & Klenow (1994),
Jarmin (1994), Pisano (1994), Bohn (1995), Hatch & Mowery (1998), Benkard (2000), Shafer, Nembhard &
Uzumeri (2001), Thompson (2001), and Thornton & Thompson (2001).

2The maximum value added by the industry is the difference in the expected net present value of total
surplus of the first-best planner solution and an industry that remains empty forever. We explain the rationale
for this normalization in Section 3.2.
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and the industry dynamics that it implies are similar to the first-best planner solution.

On the contrary, especially the “best” equilibria that entail the lowest deadweight loss are

remarkably different from the first-best planner solution. We further show in an analytically

tractable special case of our learning-by-doing model that there is nothing about dynamic

competition when price serves as an investment that precludes potentially costly distortions

in equilibrium entry and exit behavior. Too much or early entry, respectively, too little or

late entry lead to wasteful duplication and delay (Bolton & Farrell 1990), and too much or

early exit, respectively, too little or late exit similarly lead to welfare losses. In addition,

what we call cost-inefficient exit leads to welfare losses if a lower-cost firm exits the industry

while a higher-cost firm does not.

We next seek to identify the mechanisms through which dynamic competition leads to

low deadweight loss. We decompose deadweight loss into a pricing distortion that captures

differences in equilibrium pricing behavior from the first-best planner solution and a remain-

ing non-pricing distortion that subsumes a suboptimal number of firms and products being

offered by these firms, a suboptimal exploitation of learning economies, and cost-inefficient

exit. The low deadweight loss boils down to three regularities in these components.

First, while the pricing distortion tends to be the largest contributor to deadweight loss,

in the best equilibria it is quite low and it is “not so bad” in the “worst” equilibria that entail

the highest deadweight loss. We provide analytical bounds on the pricing distortion. The

bounds make plain that this regularity is rooted in learning-by-doing itself. In particular, the

bounds tighten as firms move down their learning curves and improve their cost positions.

Second, the non-pricing distortion in the worst equilibria tends to be low because competition

for the market resolves itself quickly and winnows out firms in a fairly efficient way. Third,

in the best equilibria the non-pricing distortion tends to be higher. Dynamic competition

tends to lead to over-entry and under-exit.3 Too many firms have social costs in terms of

incurred setup costs and forgone scrap values but also offsetting social benefits in terms of

additional product variety. Learning-by-doing again accentuates these benefits by making

the additional product variety less costly to procure.

All in all, we show that dynamic competition when price serves as an investment works

remarkably well, not because competition for the market is a “magic bullet” that achieves

full efficiency, but because the various contributions to deadweight loss either are small or

partly offset each other. And this, in turn, happens because of learning-by-doing itself.

Related literature. Our paper is related to a large literature on dynamic competition in

settings where price plays an investment role. Besides the aforementioned models of learning-

3Interestingly, this contrasts with static models of imperfect competition with free entry (Dixit & Stiglitz
1977, Koenker & Perry 1981, Besanko, Perry & Spady 1990, Anderson, de Palma & Thisse 1992).
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by-doing, this includes the models of network effects in Mitchell & Skrzypacz (2006), Chen,

Doraszelski & Harrington (2009), Dube, Hitsch & Chintagunta (2010), and Cabral (2011);

switching costs in Dube, Hitsch & Rossi (2009) and Chen (2011); experience goods in Berge-

mann & Välimäki (1996) and Ching (2010); and habit formation in Bergemann & Välimäki

(2006). As we show in Besanko et al. (2014), these models share key features with our

leaning-by-doing model. In particular, a firm has two distinct motives for pricing aggres-

sively, namely to acquire competitive advantage or overcome competitive disadvantage—the

so-called advantage-building motive—and to prevent its rivals from acquiring competitive

advantage—the advantage-denying motive.4

While the literature has generally focused on characterizing equilibrium behavior rather

than anatomizing its implications for welfare, it has raised some red flags regarding the

efficiency of dynamic competition. Bergemann & Välimäki (1997) show that the equilib-

rium in their experience-goods model is inefficient because of an informational externality

between firms (see also Rob (1991) and Bolton & Harris (1999)). The literature on network

effects shows that an inferior product can be adopted and persist as the standard either

because consumers’ expectations are misaligned or favor the inferior product (Biglaiser &

Cremer 2016, Halaburda, Jullien & Yehezkel 2016). Nevertheless, none of these papers

directly addresses the question whether the investment role of price is socially beneficial.

Our learning-by-doing model also focuses more directly on entry and exit as generic ele-

ments of models of firm and industry dynamics (Jovanovic 1982, Hopenhayn 1992, Ericson

& Pakes 1995).

Competition for the market is often conceptualized through sequential winner-take-all

R&D races to produce disruptive innovations. In these Schumpeterian models of creative

destruction, an incumbent temporarily assumes a monopoly position only to be dislodged by

an entrant who has successfully invested in a superior technology (Aghion & Howitt 1992).

Evans & Schmalensee (2002) argue that an excessive focus on short-run market power in

this setting can obscure just how vulnerable to disruptive innovations market leaders can be,

a perspective that has influenced the direction of antitrust policy in the U.S. as it pertains

to high-tech industries. Segal & Whinston (2007) show that antitrust policies that protect

entrants at the expense of incumbents can have the salutary effect of increasing the rate of

innovation. Our paper complements this literature by investigating the welfare implications

of competition for the market in a very different type of setting, namely one where price

4The advantage-denying motive also arises in price-setting models with costly quantity or capacity adjust-
ment and, perhaps more surprisingly, quantity-setting models with costly price adjustments (menu costs).
This is because in these latter models a firm’s quantity has a direct effect on its rival’s price in the current
period and thus competitive position in the subsequent period (see Lapham & Ware (1994) and Jun & Vives
(2004) and the references therein). Finally, the advantage-denying motive arises in some investment models,
such as advertising models where goodwill accumulates according to a firm’s “share of voice” or advertising
is combative (see Jorgensen & Zaccour (2004) and the references therein).
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takes on the role of the investment.

Finally, similar to our analysis, Pakes & McGuire’s (1994) find in a quality-ladder model

that deadweight loss can be quite low even though equilibrium behavior and industry dy-

namics differ markedly from the first-best planner solution. Different from our analysis,

however, this finding pertains to a single parameterization, so it is not clear to what extent

it generalizes. In addition, in the quality-ladder model price does again not serve as an

investment, meaning that the mechanisms through which dynamic competition leads to low

deadweight loss are different.

Organization of paper. The remainder of this paper is organized as follows. Section 2

sets up our learning-by-doing model. Section 3 develops the first-best planner problem and

the welfare metrics we use in the subsequent analysis. Section 4 provides an analytical

characterization of equilibria and associated deadweight loss for a special case of our model.

Sections 5 and 6 present our numerical analysis of equilibria and associated deadweight

loss over a wide range of the parameter space and summarize the regularities that emerge.

Section 7 introduces our decomposition of deadweight loss and provides analytical bounds

on some of its components. Section 8 ties together the insights from the preceding sections

and offers a summary explanation of why dynamic competition leads to low deadweight loss

when price serves as an investment.

Throughout the paper we distinguish between propositions that are established through

formal arguments and results. A result either establishes a possibility through a numerical

example or summarizes a regularity through a systematic exploration of the parameter space.

Unless indicated otherwise, proofs of propositions are in the Appendix. The Online Appendix

contains additional results and technical details to support the analysis in the paper.

2 Model

We study a discrete-time, infinite-horizon dynamic stochastic game between two firms in an

industry that is characterized by learning-by-doing. At any point in time, firm n ∈ {1, 2}
is described by its state en ∈ {0, 1, . . . ,M}. A firm can be either an incumbent firm that

actively produces or a potential entrant. State en = 0 indicates a potential entrant. States

en ∈ {1, . . . ,M} indicate the cumulative experience or stock of know-how of an incumbent

firm. By making a sale in the current period, an incumbent firm can add to its stock of know-

how and, through learning-by-doing, lower its production cost in the subsequent period.

Competitive advantage and industry leadership are therefore determined endogenously in

our model. The industry’s state is the vector of firms’ states e = (e1, e2). It completely

describes the number of incumbent firms—and therefore the extent of product variety—
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along with their cost positions. If e1 > e2 (e1 < e2), then we refer to firm 1 as the leader

(follower) and to firm 2 as the follower (leader).

In each period, firms first set prices and then decide on exit and entry. During the price-

setting phase, the state changes from e to e′ depending on the outcome of the pricing game

between the incumbent firms. In particular, if firm 1 makes the sale and adds to its stock

of know-how, the state changes to e′ = e1+ = (min{e1 + 1,M}, e2); if firm 2 makes the sale,

the state changes to e′ = e2+ = (e1,min{e2 + 1,M}).
During the exit-entry phase, the state then changes from e′ to e′′ depending on the exit

decisions of the incumbent firms and the entry decisions of the potential entrants. We model

the entry of firm n as a transition from state e′n = 0 to state e′′n = 1 and exit as a transition

from state e′n ≥ 1 to state e′′n = 0. As the exit of an incumbent firm creates an opportunity

for a potential entrant to enter the industry, re-entry is possible. The state at the end of the

current period finally becomes the state at the beginning of the subsequent period.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,

we describe the remaining primitives.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of produc-

tion c(en) depends on its stock of know-how through a learning curve with a progress ratio

ρ ∈ [0, 1]:

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤M.
(1)

Because marginal cost decreases by 100(1 − ρ)% as the stock of know-how doubles, a lower

progress ratio implies stronger learning economies.

The marginal cost for a firm without prior experience, c(1), is κ > 0. Once the firm

reaches state m, the learning curve “bottoms out,” and there are no further experience-

based cost reductions. We accordingly refer to an industry in state e as a mature duopoly

if e ≥ (m,m) and as a mature monopoly if either e1 ≥ m and e2 = 0 or e1 = 0 and e2 ≥ m.

Demand. The industry draws customers from a large pool of potential buyers. One buyer

enters the market each period and purchases one unit of either one of the “inside goods”

that are offered by the incumbent firms at prices p = (p1, p2) or an “outside good” at an

exogenously given price p0. The probability that firm n makes the sale is given by the logit

specification

Dn(p) =
exp(v−pn

σ )
∑2

k=0 exp(
v−pk
σ )

=
exp(−pn

σ )
∑2

k=0 exp(
−pk
σ )

,

where v is gross utility and σ > 0 is a scale parameter that governs the degree of product

differentiation. As σ → 0, goods become homogeneous and the firm that sets the lowest price
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makes the sale for sure.5 If firm n is a potential entrant, then we set its price to infinity so

that Dn(p) = 0.

Throughout we assume that the outside good is supplied competitively and priced at its

marginal cost of production c0 ≥ 0. The price of the outside good p0 = c0 determines the

overall level of demand for the inside goods. As it decreases, the market becomes smaller,

and ultimately the industry is no longer viable.

Scrap values and setup costs. To facilitate the subsequent computations, we “purify”

mixed exit and entry strategies. If incumbent firm n exits the industry, it receives a scrap

value Xn drawn from a symmetric triangular distribution FX(·) with support [X−∆X ,X+

∆X ], where EX(Xn) = X and ∆X > 0 is a scale parameter. If potential entrant n enters the

industry, it incurs a setup cost Sn drawn from a symmetric triangular distribution FS(·) with
support [S−∆S, S+∆S], where ES(Sn) = S and ∆S > 0 is a scale parameter. Scrap values

and setup costs are independently and identically distributed across firms and periods, and

their realization is observed by the firm but not its rival.

Although in our model a firm formally follows a pure strategy in making its exit or entry

decision, the dependence of its decision on its randomly drawn, privately known scrap value,

respectively, setup cost implies that its rival perceives the firm as if it was following a mixed

strategy. As ∆X → 0 and ∆S → 0, the scrap value is fixed at X and the setup cost at S and

we revert to mixed exit and entry strategies (Doraszelski & Satterthwaite 2010, Doraszelski

& Escobar 2010).

2.1 Firms’ decisions

To analyze the pricing and exit decisions of incumbent firms and the entry decisions of

potential entrants, we work backwards from the exit-entry phase to the price-setting phase.

Combining exit and entry decisions, we let φn(e
′) denote the probability, as viewed from the

perspective of its rival, that firm n decides not to operate in state e′: if en > 0 so that firm

n is an incumbent, then φn(e
′) is the probability of exiting; if e′n = 0 so that firm n is an

entrant, then φn(e
′) is the probability of not entering.

We use Vn(e) to denote the expected net present value (NPV) of future cash flows to

firm n in state e at the beginning of the period and Un(e
′) to denote the expected NPV

of future cash flows to firm n in state e′ after pricing decisions but before exit and entry

decisions are made. The price-setting phase determines the value function Vn along with

the policy function pn with typical element Vn(e), respectively, pn(e); the exit-entry phase

determines the value function Un along with the policy function φn with typical element

Un(e
′), respectively, φn(e

′).

5If there is more than one such firm, each of them makes the sale with equal probability.
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Exit decision of incumbent firm. To simplify the exposition, we focus on firm 1; the

derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the

scrap value X1 in the current period and perishes. If it does not exit, its expected NPV is

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
,

where β ∈ [0, 1) is the discount factor. The probability of incumbent firm 1 exiting the

industry in state e′ is therefore φ1(e
′) = EX

[
1
[
X1 ≥ X̂1(e

′)
]]

= 1−FX (X̂1(e
′)), where 1 [·]

is the indicator function and X̂1(e
′) is the critical level of the scrap value above which exit

occurs. Moreover, the expected NPV of incumbent firm 1 in the exit-entry phase is given

by the Bellman equation

U1(e
′) = EX

[
max

{
X̂1(e

′),X1

}]

= (1− φ1(e
′))β

[
V1(e

′)(1− φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
+ φ1(e

′)EX

[
X1|X1 ≥ X̂1(e

′)
]
, (2)

where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry.

Entry decision of potential entrant. There is a large queue of potential entrants.

Depending on the number of incumbent firms, up to two potential entrants can enter the

industry in each period. If a potential entrant does not enter, it perishes. If it enters, it

becomes an incumbent firm without prior experience in the subsequent period. Hence, upon

entry, the expected NPV of potential entrant 1 is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)
]
.

In addition, potential entrant 1 incurs the setup cost S1 in the current period. The prob-

ability of potential entrant 1 not entering the industry in state e′ is therefore φ1(e
′) =

ES

[
1
[
S1 ≥ Ŝ1(e

′)
]]

= 1−FS(Ŝ1(e
′)), where Ŝ1(e

′) is the critical level of the setup cost be-

low which entry occurs. Moreover, the expected NPV of potential entrant 1 in the exit-entry

phase is given by the Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− φ1(e
′))
{
β[V1(1, e

′
2)(1 − φ2(e

′)) + V1(1, 0)φ2(e
′)]− ES

[
S1|S1 ≤ Ŝ1(e

′)
] }

, (3)
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where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry.6

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of

incumbent firm 1 is

V1(e) = max
p1

D1(p1, p2(e))(p1 − c(e1)) +

2∑

n=0

Dn(p1, p2(e))U1

(
en+

)

= max
p1

D1(p1, p2(e))(p1 − c(e1)) + U1(e) +

2∑

n=1

Dn(p1, p2(e))
[
U1

(
en+

)
− U1(e)

]
, (4)

where we let e0+ = e and use the fact that
∑2

n=0Dn(p) = 1. Because the maximand on

the right-hand side of Bellman equation (4) is strictly quasiconcave in p1 (given p2(e) and

e), the pricing decision p1(e) is uniquely determined by the first-order condition

p1(e)−
σ

1−D1(p(e))
− c(e1) +

[
U1

(
e1+
)
− U1(e)

]
+Υ(p2(e))

[
U1(e)− U1

(
e2+
)]

= 0, (5)

where p(e) = (p1(e), p2(e)) and

Υ(p2(e)) =
D2(p(e))

1−D1(p(e))
=

exp
(
−p2(e)

σ

)

exp
(
−p0

σ

)
+ exp

(
−p2(e)

σ

)

is the probability of firm 2 making a sale conditional on firm 1 not making a sale.

The pricing decision p1(e) impounds two distinct goals beyond static profitD1(p(e))(p1(e)−
c(e1)): the advantage-building motive U1

(
e1+
)
− U1(e) and the advantage-denying motive

U1(e) − U1

(
e2+
)
. The advantage-building motive is the reward that the firm receives by

winning a sale and moving down its learning curve. The advantage-denying motive is the

penalty that the firm avoids by preventing its rival from winning the sale and moving down its

learning curve. As we show in Besanko et al. (2014), the advantage-building and advantage-

denying motives arise in a broad class of dynamic models and together capture the investment

role of price.

2.2 Equilibrium and industry dynamics

Because the demand and cost specification is symmetric, we restrict ourselves to symmetric

Markov perfect equilibria (MPE) in pure strategies of our learning-by-doing model. Exis-

6See Appendix A for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e

′)
]

in equation (2) and

ES

[
S1|S1 ≤ Ŝ1(e

′)
]
in equation (3).

10



tence follows from the arguments in Doraszelski & Satterthwaite (2010). In a symmetric

equilibrium, the decisions taken by firm 2 in state e are identical to the decisions taken

by firm 1 in state (e2, e1). More formally, we have V2(e) = V1(e2, e1), U2(e) = U1(e2, e1),

p2(e) = p1(e2, e1), and φ2(e) = φ1(e2, e1). It therefore suffices to determine the value and

policy functions V1, U1, p1, and φ1 of firm 1.

Despite the restriction to symmetric equilibria, there is a substantial amount of multi-

plicity (as in Besanko et al. 2010, Besanko et al. 2014). Because the literature offers little

guidance regarding equilibrium selection, we make no attempt to do so and thus view all

equilibria that arise for a fixed set of primitives as equally likely. In doing, so we take the

ex ante perspective of a regulator that over time will confront a sequence of industries but

at present has little detailed knowledge about these industries.

To study the evolution of the industry under a particular equilibrium, we use the policy

functions p1 and φ1 to construct the matrix of state-to-state transition probabilities that

characterizes the Markov process of industry dynamics. From this, we compute the transient

distribution over states in period t, µt, starting from state (0, 0) (the empty industry with

just the outside good) in period 0. In line with our ex ante perspective, we have in mind a

nascent industry in which two firms have developed new products that can potentially draw

customers away from an established product (the outside good) but have not yet brought

them to market.7 The typical element µt(e) is the probability that the industry is in state

e in period t. Depending on t, the transient distributions can capture short-run or long-run

(steady-state) dynamics. We think of period 500 as the long run and, with a slight abuse of

notation, denote µ500 by µ∞. We use the transient distribution in period 500 rather than the

limiting (or ergodic) distribution to capture long-run dynamics because the Markov process

implied by the equilibrium may have multiple closed communicating classes.

3 First-best planner, welfare, and deadweight loss

3.1 First-best planner

Our welfare benchmark is a first-best planner who makes pricing, exit, and entry decisions to

maximize the expected NPV of total surplus (consumer plus producer surplus).8 In contrast

to the market, the planner centralizes and coordinates decisions across firms as in Bolton &

7Starting from state (0, 0) “stacks the deck” against finding small deadweight losses by fully recognizing
any distortions in the entry process (see Section 4). It is also an interesting setting in its own right as sellers of
next-generation products aiming to establish a “footprint” are a pervasive feature of the business landscape,
and one where the investment role of price is particularly salient.

8Mermelstein, Nocke, Satterthwaite & Whinston (2014) consider the expected NPV of total surplus and,
to a lesser extent, also the expected NPV of consumer surplus as possible objectives of an antitrust authority.
We follow them in using the same discount factor for planner and firms.
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Farrell (1990). To “stack the deck” against finding small deadweight losses, we assume an

omniscient planner that has access to privately known scrap values and setup costs.9

Combining exit and entry decisions, we let ψFB
1,1 (e

′) denote the probability that the

planner in state e′ decides to operate both firms in the subsequent period, ψFB
1,0 (e

′) the

probability that the planner decides to operate only firm 1, ψFB
0,1 (e

′) the probability that the

planner decides to operate only firm 2, and ψFB
0,0 (e

′) the probability that the planner decides

to operate neither firm.

We use V FB(e) to denote the expected NPV of total surplus in state e at the beginning of

the period and UFB(e′) the expected NPV of total surplus in state e′ after pricing decisions

but before exit and entry decisions are made. The price-setting phase determines the value

function VFB along with the policy functions pFB
n for n ∈ {1, 2}; the entry-exit phase

determines the value function UFB along with the policy functions ψFB
ι

for ι ∈ {0, 1}2.
We refer to ι = (ι1, ι2) as the operating decisions of the first-best planner. Note that
∑

ι∈{0,1}2 ψ
FB
ι

(e′) = 1 and that the probability that firm 1 does not operate in state e′ is

φFB
1 (e′) =

∑1
ι2=0 ψ

FB
0,ι2 (e

′).

Operating decisions. Define

UFB
ι

(e′,X,S) =





βV FB(e′1ι1, e
′
2ι2) +X1(1− ι1) +X2(1− ι2) if e′1 6= 0, e′2 > 0,

βV FB(ι1, e
′
2ι2)− S1ι1 +X2(1− ι2) if e′1 = 0, e′2 > 0,

βV FB(e′1ι1, ι2) +X1(1− ι1)− S2ι2 if e′1 > 0, e′2 = 0,

βV FB(ι1, ι2)− S1ι1 − S2ι2 if e′1 = 0, e′2 = 0

(6)

to be the expected NPV of total surplus in state e′ given operating decisions ι ∈ {0, 1}2,
scrap values X = (X1,X2), and setup costs S = (S1, S2). Equation (6) distinguishes between

firm n actively producing in the current period (e′n > 0) and it being inactive (e′n = 0). If

firm n is active, then the first-best planner receives the scrap value Xn upon deciding not

to operate it in the subsequent period (ιn = 0); if firm n is inactive, then the planner incurs

the setup cost Sn upon deciding to operate it (ιn = 1). The optimal operating decisions are

UFB
(
e′,X,S

)
= max

ι∈{0,1}2
UFB
ι

(e′,X,S),

with associated operating probabilities

ψFB
ι

(
e′
)
= EX,S

[
1
[
UFB

(
e′,X,S

)
= UFB

ι
(e′,X,S)

]]
(7)

9As Bolton & Farrell (1990) discuss, a central authority may often have more limited information.
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for ι ∈ {0, 1}2. Finally, the Bellman equation in the exit-entry phase is

UFB(e′) = EX,S

[
UFB

(
e′,X,S

)]
. (8)

Pricing decisions. In the price-setting phase, the expected NPV of total surplus is

V FB(e) = max
p

CS(p) +

2∑

n=1

Dn(p)(pn − c(en)) +

2∑

n=0

Dn(p)U
FB
(
en+

)
, (9)

where the first term

CS(p) = σ ln

(
2∑

n=0

exp

(
v − pn

σ

))
= v + σ ln

(
2∑

n=0

exp

(−pn
σ

))
(10)

is consumer surplus and the second term is the static profit of incumbent firms.10 Because

the outside good is priced at cost, its profit is zero.

The solution to the maximization problem on the right-hand side of Bellman equation

(9) can be shown to exist and to be unique and is given by

pFB
n (e) = c(en)−

[
UFB

(
en+

)
− UFB(e)

]

for n ∈ {1, 2}. The pricing decision pFB
n (e) reflects the marginal cost of production c(en) of

incumbent firm n net of the marginal benefit to society of moving the firm down its learning

curve.

Solution and industry dynamics. The solution to the first-best planner problem exists

and is unique from the contraction mapping theorem. Without loss of generality, we take the

solution to be symmetric in that V FB(e) = V FB(e2, e1), U
FB(e) = UFB(e2, e1), p

FB
1 (e) =

pFB
2 (e2, e1), and ψ

FB
ι

(e) = ψFB
ι2,ι1(e2, e1) for ι ∈ {0, 1}2.

We again use the policy functions to construct the matrix of state-to-state transition

probabilities that characterizes the Markov process of industry dynamics and compute the

transient distribution over states in period t, µFB
t , starting from state (0, 0) in period 0.

3.2 Welfare and deadweight loss

To capture both short-run and long-run dynamics, our welfare metric is the expected NPV of

total surplus. Under a particular equilibrium, total surplus in state e is the sum of consumer

10If firm n is inactive, then we again set its price to infinity so that Dn(p) = 0 and its contribution to
CS(p) is zero.
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and producer surplus:

TS(e) = CS(e) + PS(e),

where, with a slight abuse of notation, we denote CS(p(e)) by CS(e), and PS(e) includes

the static profit Π(e) =
∑2

n=1Dn(p(e))(pn(e) − c(en)) of incumbent firms as well as their

expected scrap values and the expected setup costs of potential entrants.11 The expected

NPV of total surplus is

TSβ =
∞∑

t=0

βt
∑

e

µt (e)TS(e), (11)

where, recall, µt (e) is the probability that the industry is in state e in period t.

Under the first-best planner solution, we define the expected NPV of total surplus TSFB
β

analogously. By construction, TSFB
β = V FB(0, 0). The deadweight loss arising in equilib-

rium therefore is

DWLβ = TSFB
β − TSβ. (12)

Because DWLβ is measured in arbitrary monetary units, we normalize it to better

gauge its size and to make it more readily comparable across parameterizations. While

it seems natural to express DWLβ as a percentage of TSFB
β , in our learning-by-doing model

both TSFB
β and TSβ vary linearly with gross utility v (because consumer surplus does; see

equation (10)). Because v cancels out of DWLβ, we can therefore choose v to make DWLβ

any desired percentage of TSFB
β . Note that the chosen value does not affect the behavior of

industry participants in any way.

To avoid this issue, we normalize DWLβ by the maximum value added by the industry:

V Aβ = TSFB
β − TS∅

β ,

where TS∅

β = v−p0
1−β is the expected NPV of total surplus if the industry remains empty

forever with just the outside good. V Aβ can be interpreted as a bound on the contribution

of the inside goods to the expected NPV of total surplus. Similar to DWLβ, V Aβ does not

depend on v. We henceforth refer to
DWLβ

V Aβ
as the relative deadweight loss.

4 Is dynamic competition necessarily fully efficient?

In contrast to rent-seeking models, firms in our learning-by-doing model jostle for competitive

advantage by pricing aggressively rather than by engaging in socially wasteful activities. To

the extent that rents can be efficiently transferred from firms to consumers, one may thus

conjecture that dynamic competition is necessarily fully efficient. This conjecture, however,

11See Appendix A for the expression for PS(e) and its counterpart PSFB(e) under the first-best planner
solution.
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overlooks that dynamic competition extends beyond pricing into exit and entry. Even if

pricing is efficient, exit and entry may not be. Distortions in exit and entry can take the

form of over-exit (too much or early exit), under-exit (too little or late exit), over-entry (too

much or early entry), under-entry (too little or late entry), and cost-inefficient exit where

the lower-cost firm exits the industry while higher-cost firm does not.

We highlight distortions in exit and entry and demonstrate that dynamic competition

is not necessarily fully efficient in an analytically tractable special case of our model with a

two-step learning curve, homogeneous goods, and mixed exit and entry strategies:

Assumption 1 (Two-step learning curve)

1. M = m = 2;

2. σ = 0;

3. ∆X = ∆S = 0.

Because goods are homogeneous by part (2) of Assumption 1, the firm that sets the lowest

price makes the sale. Moreover, aggregate demand for the inside goods is inelastic at prices

below p0. There are therefore no distortions in pricing.

To rule out uninteresting scenarios we further assume:

Assumption 2 (Parameter restrictions)

1. p0 ≥ κ;

2. S > X ≥ 0;

3. β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
> S.

By part (1) of Assumption 2, the marginal cost of the outside good p0 = c0 is at least as

high as the marginal cost c(1) = κ of an incumbent firm at the top of its learning curve. By

part (2), the setup cost is positive and partially sunk and the scrap value is nonnegative.

By part (3), operating a single firm forever is socially beneficial.

The first-best planner solution is straightforward. Because goods are homogeneous and

product variety is not socially beneficial, the planner operates the industry as a natural

monopoly. In state (0, 0) in period 0, the planner decides to operate a single firm (say firm

1) in the subsequent period. In state (1, 0) in period 1, firm 1 charges any price below p0,

makes the sale, and moves down its learning curve. The industry remains in state (2, 0) in

period t ≥ 2 and firm 1 again makes the sale. The expected NPV of total surplus is thus12

TSFB
β = v−p0+β (v − κ)+

β2

1− β
(v − ρκ)−S =

v − p0

1− β
+β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
−S,

12The term v − p0 arises because the consumer purchases the outside good in state (0, 0).
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and the maximum value added by the industry is

V Aβ = β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
− S.

In the Online Appendix, we provide further details on the first-best planner solution and

the equilibria mentioned hereafter.

Proposition 1 (Two-step learning curve) Under Assumptions 1 and 2, there exists the

equilibrium shown in Table 1. The deadweight loss is

DWLβ =
φ1(0, 0)(1 − β)

1− βφ1(0, 0)
2
V Aβ +

(1− φ1(0, 0))
2

1− βφ1(0, 0)
2

(
S − βX

)
(13)

and the relative deadweight loss is

DWLβ

V Aβ
=
φ1(0, 0) − βφ1(0, 0)

2

1− βφ1(0, 0)
2

. (14)

Moreover,
d(1−φ1(0,0)

2)
dρ < 0 and

d(DWLβ/V Aβ)
dρ > 0: as learning economies strengthen, the

probability 1 − φ1(0, 0)
2 that the industry “takes off” increases and the relative deadweight

loss
DWLβ

V Aβ
decreases.

The deadweight loss arises because the entry process is decentralized and uncoordinated.

The industry can therefore suffer from over-entry and under-entry. To illustrate, we sketch

out the evolution of the industry in the equilibrium shown in Table 1. In state (0, 0) in

period 0, a single firm enters the industry with probability 2(1−φ1(0, 0))φ1(0, 0), both firms

enter with probability (1 − φ1(0, 0))
2, and no firms enter with probability φ1(0, 0)

2. The

industry continues to evolve as follows:

• Case 1. If a single firm (say firm 1) enters, then in state (1, 0) in period 1 it charges a

price just below the price of the outside good p0, makes the sale, and moves down its

learning curve. In state (2, 0) firm 1 remains in the industry (φ1(2, 0) = 0) and firm 2

does not enter (φ1(0, 2) = 1). The industry remains in state (2, 0) in period t ≥ 2, and

firm 1 again makes the sale.

• Case 2: Over-entry. If both firms enter, then in state (1, 1) in period 1 they charge

a price less than static marginal cost κ. One of the firms (say firm 1) makes the sale

and moves down its learning curve. In state (2, 1), the leader (firm 1) remains in the

industry (φ1(2, 1) = 0) and the follower (firm 2) exits (φ1(1, 2) = 1). The industry

moves to—and remains in—state (2, 0) in period t ≥ 2. Note that pricing in state
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 1 – 0
(0, 2) ∞ 1 – 0

(1, 0) p−0 0 p0 − κ+ β
1−β (p0 − ρκ) β

(
p0 − κ+ β

1−β (p0 − ρκ)
)

(1, 1) κ−
(

β
1−β (p0 − ρκ)−X

)
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β (p0 − ρκ) β

1−β (p0 − ρκ)

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table 1: Equilibrium. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1 charges just below
the price stated.

e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 1 – 0
(0, 2) ∞ 1 – 0

(1, 0) p−0 0 p0 − κ+ β
1−β (p0 − ρκ) β

(
p0 − κ+ β

1−β (p0 − ρκ)
)

(1, 1) κ
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ
(1−β)X−β(1−ρ)κ

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ−
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

(1− ρ)κ+X X

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table 2: Equilibrium with cost-inefficient exit. Two-step learning curve. In column labelled p1(e), superscript − indicates that
firm 1 charges just below the price stated.
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(1, 1) is so aggressive that both firms incur a loss of −
(

β
1−β (p0 − ρκ)−X

)
that fully

dissipates any future gains from monopolizing the industry.

• Case 3: Under-entry. If no firm enters, then the above process repeats itself in state

(0, 0) in period 1.

In short, the intuition that dynamic competition is necessarily fully efficient is incomplete.

In the equilibrium shown in Table 1, while the industry evolves towards the monopolistic

structure that the first-best planner operates, this may happen slowly over time due to either

over-entry or under-entry.13 Wasteful duplication and delay (Bolton & Farrell 1990) are both

integral parts of the equilibrium.14

The equilibrium shown in Table 1 further entails a war of attrition (Maynard Smith

1974, Tirole 1988, Bulow & Klemperer 1999) in state (2, 2), although state (2, 2) is off the

equilibrium path starting from state (0, 0). The war of attrition arises because a firm is

better off staying in the industry if its rival exits but worse off if its rival stays. As a firm

hopes to outlast its rival, it clings to the industry. The resulting non-operating probability

is φ1(2, 2) =
(1−β)X

β
1−β

(p0−ρκ)−βX
∈ (0, 1), whereas the first-best planner ceases to operate one of

the two firms in state (2, 2). Because the exit process is decentralized and uncoordinated,

the industry can suffer not only from over-exit but also from under-exit.15

Under Assumptions 1 and 2, there exist two other equilibria. Even in this special case of

our model, multiple equilibria are endemic. These equilibria differ from the one in Table 1

only in the exit-entry phase in state (1, 0). In the first equilibrium, the incumbent firm

exits the industry and the potential entrant enters (φ1(1, 0) = 1 and φ1(0, 1) = 0); in the

second equilibrium, the incumbent firm and the potential entrant play mixed strategies

(φ1(1, 0) =
S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

∈ (0, 1) and φ1(0, 1) =
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

∈ (0, 1)).

Because the exit-entry phase in state (1, 0) is off the equilibrium path starting from state

(0, 0), however, these equilibria give rise to the deadweight loss in equations (13) and (14).

Finally, under the additional assumption that X ≥ β
1−βκ(1− ρ), there exists the equilib-

rium, shown in Table 2, with cost-inefficient exit. In state (2, 1), the incumbent firms play

13The first term in equation (13) is due to under-entry and the “discount factor” φ
1
(0,0)(1−β)

1−βφ
1
(0,0)2

captures the

stochastic length of time over which under-entry may occur; the second term is due to over-entry and the

“discount factor”
(1−φ

1
(0,0))2

1−βφ
1
(0,0)2

captures the stochastic length of time over which over-entry can occur after

potentially many periods of under-entry.
14Treating the entry process as decentralized and uncoordinated by focusing on symmetric equilibria “stacks

the deck” against finding small deadweight losses. While asymmetric or correlated equilibria can avoid
wasteful duplication and delay, as Bolton & Farrell (1990) discuss it is far from clear how the firms will “find”
one of these equilibria without some process of explicit coordination.

15Coordination failures in exit and entry may be exacerbated if there are more than two firms (Cabral
1993, Vettas 1998). Intuitively, the support of the binomial distribution becomes more spread out with more
draws.
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mixed strategies. Hence, the lower-cost firm may exit the industry while the higher-cost firm

does not. Note that this equilibrium entails cost-inefficient exit not only in an ex post sense

but also in an ex ante sense as the lower-cost firm exits the industry with higher probability

than the higher-cost firm (φ1(2, 1) > φ1(1, 2)).

5 Numerical analysis and equilibrium

The special case of a two-step learning curve relies on extreme values of key parameters.

In doing so, it assumes away a meaningful role for product variety and competition from

the outside good that can be a source of distortions in pricing. Unfortunately, analytic

tractability rapidly declines beyond the two-step learning curve. Moreover, while theoretical

analysis has enabled us to establish that dynamic competition is not necessarily fully efficient,

theoretical analysis is ill-suited to answer the question of how efficient dynamic competition

is. We therefore turn to numerical analysis.

5.1 Computation and parameterization

To thoroughly explore the equilibrium correspondence and search for multiple equilibria

in a systematic fashion, we use the homotopy or path-following method in Besanko et al.

(2010).16 We caution that the homotopy algorithm cannot be guaranteed to find all equilibria

and refer to reader to Besanko et al. (2010) and Borkovsky, Doraszelski & Kryukov (2010,

2012) for additional discussion. We solve the first-best planner problem using value function

iteration combined with quasi-Monte Carlo integration (Halton sequences of length 10, 000)

to evaluate the operating probabilities in equation (7) and the Bellman equation (8).

Our learning-by-doing model has four key parameters: the progress ratio ρ ∈ [0, 1], the

degree of product differentiation σ > 0, the price of the outside good p0 = c0 ≥ 0, and

the expected scrap value X ∈ [−∆X , S + ∆S + ∆X ].17 To explore how the equilibria vary

with these parameters, we compute six two-dimensional slices through the equilibrium cor-

respondence along (ρ, σ), (ρ, p0), (ρ,X), (σ, p0), (σ,X), and (X, p0). We choose sufficiently

large upper bounds for σ and p0 so that beyond them “things don’t change much anymore.”

Back-of-the-envelope calculations yield σ ≤ 10 and p0 ≤ 20. Throughout we hold the re-

maining parameters fixed at the values in the second column of Table 3. While this baseline

parameterization is not intended to be representative of any particular industry, it is neither

entirely unrepresentative nor extreme.

16The equilibrium correspondence is H−1(ω) = {x|H(x,ω) = 0}, where ω = (ρ, σ, p0, X, . . .) are the
parameters of the model, x = (V1,U1,p1,φ1) are the value and policy functions, and H(x,ω) = 0 are the
Bellman equations and optimality conditions that define an equilibrium.

17The bounds on X follow from the economic requirement that upon exit a firm’s assets are valuable
(Xn ≥ 0) but that their value is limited by the firm’s initial outlay at the time of its inception (Xn ≤ Sn).
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parameter value grid

maximum stock of know-how M 30
cost at top of learning curve κ 10
bottom of learning curve m 15
progress ratio ρ 0.75 ρ ∈ {0, 0.05, . . . , 1}
gross utility v 10
product differentiation σ 1 σ ∈ {0.2, 0.3, . . . , 1, 1.3, 1.6, 2,

2.5, 3.2, 4, 5, 6.3, 7.9, 10}
price of outside good p0 10 p0 ∈ {0, 1, . . . , 20}
scrap value X, ∆X 1.5, 1.5 X ∈ {−1.5,−1, . . . , 7.5}
setup cost S, ∆S 4.5, 1.5
discount factor β 0.95

Table 3: Baseline parameterization and grid points.

An industry without firms is unlikely to attract the attention of a regulator. We therefore

exclude extreme parameterizations for which the industry is not viable in the sense that the

probability 1 − φ1(0, 0)
2 that the industry “takes off” is below 0.01. Unsurprisingly, these

parameterizations involve a highly attractive outside good with p0 < 5.

Due to the large number of parameterizations and multiplicity of equilibria, we require a

way to summarize them. In a first step, we average an outcome of interest over the equilibria

at a parameterization. This random sampling is in line with our decision to refrain from

equilibrium selection and ensures that parameterizations with many equilibria carry the

same weight as parameterizations with few equilibria.

In a second step, we randomly sample parameterizations. To make this practical, we

represent a two-dimensional slice through the equilibrium correspondence with a grid of

values for the parameters spanning the slice. The third column of Table 3 lists the grid

points we use for the four key parameters. We mostly use uniformly spaced grid points,

except for σ > 1, where the grid points approximate a log scale in order to explore very high

degrees of product differentiation. We associate each point in a two-dimensional grid with

the corresponding average over equilibria. We then pool the points on the six slices through

the equilibrium correspondence along (ρ, σ), (ρ, p0), (ρ,X), (σ, p0), (σ,X), and (X, p0) and

obtain the distribution of the outcome of interest.

5.2 Equilibrium and first-best planner solution

To illustrate the types of behavior that can emerge in our learning-by-doing model, we

examine the equilibria that arise at the baseline parameterization in Table 3. For two of these

three equilibria Figure 1 shows the pricing decision of firm 1, the non-operating probability

of firm 2, and the time path of the probability distribution over industry structures (empty,
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monopoly, and duopoly).18

The upper panels of Figure 1 exemplify what we call an aggressive equilibrium in Besanko

et al. (2014). The pricing decision in the upper left panel exhibits a deep well in state (1, 1)

with p1(1, 1) = −34.78. A well is a preemption battle where firms vie to be the first to

move down from the top of their learning curves. Such a battle is likely to ensue because

φ1(0, 0) = 0.04 implies that the probability that both firms enter the industry in period

0 is 0.92. After the industry has emerged from the preemption battle in state (1,1), the

leader (say firm 1) continues to price aggressively (p1(2, 1) = 0.08). Indeed, the pricing

decision exhibits a deep trench along the e1-axis with p1(e1, 1) ranging from 0.08 to 1.24

for e1 ∈ {2, . . . , 30}.19 A trench is a price war that the leader wages against the follower.

We can think of a trench is an endogenous mobility barrier in the sense of Caves & Porter

(1977). In the trench the follower (firm 2) exits the industry with a positive probability

of φ2(e1, 1) = 0.22 for e1 ∈ {2, . . . , 30} as the upper middle panel shows. The follower

remains in this exit zone as long as it does not win a sale. Once the follower exits, the leader

raises its price and the industry becomes an entrenched monopoly.20 This sequence of events

resembles conventional notions of predatory pricing.21 The industry may also evolve into a

mature duopoly if the follower manages to crash through the mobility barrier by winning a

sale but, as the upper right panel of Figure 1 shows, this is far less likely than an entrenched

monopoly.

The lower panels of Figure 1 are typical for what we call an accommodative equilibrium

in Besanko et al. (2014). There is a shallow well in state (1, 1) with p1(1, 1) = 5.05 as the

lower left panel shows. A preemption battle is again likely to ensue because φ1(0, 0) = 0.05

implies that the probability that both firms enter the industry in period 0 is 0.91. After

the industry has emerged from the preemption battle in state (1, 1), the leader enjoys a

competitive advantage over the follower. Without mobility barriers in the form of trenches,

however, this advantage is temporary and the industry evolves into a mature duopoly as the

lower right panel shows.

First-best planner solution. Figure 2 is analogous to Figure 1 and illustrates the first-

best planner solution. In state (0, 0) in period 0, the planner decides to operate a single firm

(say firm 1) in the subsequent period since ψFB
1,0 (0, 0) = ψFB

0,1 (0, 0) = 0.5. In period t ≥ 1,

18The third equilibrium is essentially intermediate between the two shown in Figure 1.
19Because prices are strategic complements, there is also a shallow trench along the e2-axis with p1(1, e2)

ranging from 3.63 to 4.90 for e2 ∈ {2, . . . , 30}.
20While our model allows for re-entry, whether it actually occurs depends on how a potential entrant

assesses its prospects in the industry. In this particular equilibrium, φ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so
that the potential entrant does not enter if the incumbent firm has moved down from the top of its learning
curve.

21In Besanko et al. (2014) we formalize the notion of predatory pricing and disentangle it from mere
competition for efficiency on a learning curve.
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Figure 1: Aggressive (upper panels) and accommodative (lower panels) equilibrium. Pricing
decision of firm 1 (left panels), non-operating probability of firm 2 (middle panels), and
time path of probability distribution over industry structures (right panels). Dots above
the surface in left panels are p1(e1, 0) for e1 > 0 and dots in middle panels are φ2(0, e2) for
e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline parameterization.
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Figure 2: First-best planner solution. Pricing decision of firm 1 (left panel), non-operating
probability of firm 2 (middle panel), and time path of probability distribution over industry
structures (right panel). Dots beside the surface in left panel are p1(e1, 0) for e1 > 0 and dots
in middle panel are φ2(0, e2) for e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline parameterization.

the planner marches firm 1 down its learning curve. As the left panel shows, pFB
1 (e) = 3.25

if e1 ∈ {15, . . . , 30} so that at the bottom of its learning curve firm 1 charges a price equal

to marginal cost. In short, the planner operates the industry as a natural monopoly.

As the middle panel shows, there is an exit zone somewhat similar to the one in the

aggressive equilibrium. Although state (1, 1) is off the equilibrium path starting from state

(0, 0), ψFB
1,0 (1, 1) = ψFB

0,1 (1, 1) = 0.04 implies that if both firms are at the top of their learning

curves, then the first-best planner ceases to operate one of them with probability 0.07 to

receive the scrap value. On the other hand, if both firms are part of the way down their

learning curves, then ψFB
1,1 (e) = 1 for e ≥ (3, 3) implies that the planner continues to operate

both to secure the social benefit of product variety.

Outside the baseline parameterization in Table 3, the first-best planner does not neces-

sarily operate the industry as a natural monopoly. In particular, if the degree of product

differentiation is sufficiently large, then the planner immediately decides to operate both

firms and continues to do so as they move down their learning curves.

Industry structure, conduct, and performance. To succinctly describe an equilib-

rium and compare it to the first-best planner solution, we use several metrics of industry
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aggr. accom. planner counter-
eqbm. eqbm. solution factual

structure:
expected short-run number of firms N1 1.92 1.91 1.00 2.00
expected long-run number of firms N∞ 1.08 2.00 1.00 2.00
conduct:
expected long-run average price p∞ 8.28 5.24 3.25 5.24
expected time to maturity Tm 19.09 37.54 15.02 53.91
performance:

expected NPV of consumer surplus CSβ 93.87 103.29 131.66 56.88
expected NPV of total surplus TSβ 96.02 105.45 110.45 92.02
deadweight loss DWLβ 14.43 5.01 – 18.43

relative deadweight loss
DWLβ

V Aβ
13.06% 4.54% – 16.69%

Table 4: Industry structure, conduct, and performance. Aggressive and accommodate equi-
librium, first-best planner solution, and static non-cooperative pricing counterfactual. Base-
line parameterization.

structure, conduct, and performance.22 The second, third, and fourth columns of Table 4

show these metrics for the aggressive and accommodative equilibrium and the planner solu-

tion. We discuss the fifth column of Table 4 in Section 6.1.

The expected short-run number of firmsN1 is just above 1.90 in both equilibria, compared

to NFB
1 = 1.00 in the first-best planner solution. In the aggressive equilibrium, the expected

long-run number of firms N∞ is 1.08, quite close to the planner solution. In contrast, in

the accommodative equilibrium, N∞ = 2.00. The aggressive equilibrium therefore mainly

involves over-entry and the accommodative equilibrium involves both over-entry and under-

exit.

The expected long-run average price pFB
∞ = 3.25 in the first-best planner solution is equal

to marginal cost at the bottom of the learning curve. It is much higher in both equilibria. In

the aggressive equilibrium, in particular, p∞ = 8.28 reflects the fact that the industry most

likely evolves into an entrenched monopoly.

The expected time to maturity Tm is the expected time until the industry first becomes

either a mature monopoly or a mature duopoly; it measures the speed at which firms move

down their learning curves. Learning economies are exhausted fastest in the first-best planner

solution with Tm,FB = 15.02, followed by the aggressive equilibrium with Tm = 19.10 and

the accommodative equilibrium with Tm = 37.50. This large gap arises because sales are

split between the inside goods in the accommodative equilibrium, as well as at least initially

with the outside good.

22See Appendix A for formal definitions.
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As the industry is substantially more likely to be monopolized in the aggressive equi-

librium than in the accommodative equilibrium, the expected NPV of consumer surplus

CSβ is lower, as is the expected NPV of total surplus TSβ. Consequently, the deadweight

loss DWLβ is higher in the aggressive equilibrium than in the accommodative equilibrium.

However, the relative deadweight loss
DWLβ

V Aβ
seems modest, with 13.06% of the maximum

value added by the industry in the aggressive equilibrium and 4.54% in the accommodative

equilibrium.

6 Does dynamic competition lead to low deadweight loss?

The relative deadweight loss
DWLβ

V Aβ
is modest more generally. Summarizing a large number
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Figure 3: Distribution of relative deadweight loss
DWLβ

V Aβ
. All equilibria (solid line), best equi-

librium (dotted line), and worst equilibrium (dashed line). Parameterizations and equilibria
within parameterizations weighted equally.

of parameterizations and equilibria, Figure 3 shows the cumulative distribution function

(CDF) of
DWLβ

V Aβ
as a solid line. Result 1 highlights some findings:

Result 1 The relative deadweight loss
DWLβ

V Aβ
is less than 0.05, 0.1, and 0.2 in 26.40%,

65.83%, and 92.03% of parameterizations, respectively. The median of
DWLβ

V Aβ
is 0.0777.

There is a large relative deadweight loss
DWLβ

V Aβ
for a small number of parameterizations.

Under these parameterizations, the industry almost fails to take off (in the sense that 1 −
φ1(0, 0)

2 ≈ 0.01) because the outside good is highly attractive. Near this “cusp of viability”
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the contribution of the inside goods to the expected NPV of total surplus is small and thus

V Aβ ≈ 0.

Recall that we average over equilibria at a given parameterization to obtain the dis-

tribution of
DWLβ

V Aβ
. To look behind these averages, we consider the best equilibrium with

the highest value of TSβ at a given parameterization as well as the worst equilibrium with

the lowest value of TSβ. Figure 3 shows the resulting distributions of
DWLβ

V Aβ
using a dot-

ted line for the best equilibrium and a dashed line for the worst equilibrium, and Result 2

summarizes:

Result 2 (1) For the best equilibrium, the relative deadweight loss
DWLβ

V Aβ
is less than 0.05,

0.1, and 0.2 in 44.25%, 71.11%, and 92.10% of parameterizations, respectively. The median

of
DWLβ

V Aβ
is 0.0571. (2) For the worst equilibrium, the relative deadweight loss

DWLβ

V Aβ
is less

than 0.05, 0.1, and 0.2 in 18.67%, 56.40%, and 91.80% of parameterizations, respectively.

The median of
DWLβ

V Aβ
is 0.0922.

Hence, even in the worst equilibria the relative deadweight loss
DWLβ

V Aβ
is modest for a wide

range of parameterizations.

In Appendix C we offer formal definitions of aggressive and accommodative equilibria

and link them to the worst, respectively, best equilibria. Although this link is far from

perfect, to facilitate the exposition and build intuition, in what follows we associate the best

equilibrium with an accommodative equilibrium and the worst equilibrium—to the extent

that it differs from the best equilibrium—with an aggressive equilibrium. If the equilibrium

is unique, then we associate it with an accommodative equilibrium.

6.1 Deadweight loss in perspective: static non-cooperative pricing coun-

terfactual

Is a relative deadweight loss
DWLβ

V Aβ
of 10% of the maximum value added by the industry

“small” and a relative deadweight loss of 30% “large”? To put these percentages in perspec-

tive, we show that the deadweight loss is lower than expected in view of the traditional role

of price as affecting current profit but not the evolution of the industry. To this end, we

shut down the investment role of price. In the price-setting phase, incumbent firm 1 is thus

left to maximize static profit

max
p1

D1(p1, p
SN
2 (e))(p1 − c(e1)),
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and the pricing decision pSN1 (e) in this static non-cooperative pricing counterfactual is

uniquely determined by the first-order condition

pSN1 (e) = c(e1) +
σ

1−D1(pSN (e))
,

where pSN (e) =
(
pSN1 (e), pSN2 (e)

)
. The expected NPV of incumbent firm 1 is

V SN
1 (e) = D1(p

SN (e))(pSN1 (e)− c(e1))

+USN
1 (e) +

2∑

n=1

Dn(p
SN (e))

[
USN
1

(
en+

)
− USN

1 (e)
]

and, in contrast to the pricing decision, accounts for the impact of a sale on the value of con-

tinued play. Finally, the exit-entry phase is as described in Section 2.1.23 Our computations

always led to a unique solution.

The fifth column of Table 4 shows our metrics for industry structure, conduct, and perfor-

mance for the static non-cooperative pricing counterfactual at the baseline parameterization.

Similar to the accommodative equilibrium, the counterfactual involves both over-entry and

under-exit (NSN
1 = 2.00 and NSN

∞ = 2.00). Learning economies are exhausted even more

slowly than in the accommodative equilibrium (Tm,SN = 53.91 > 37.45 = Tm) because

firms ignore the investment role of price in making their pricing decisions. The deadweight

loss DWLβ increases more than threefold relative to the accommodative equilibrium and by

more than a quarter relative to the aggressive equilibrium.

The investment role of price is socially beneficial more generally. Figure 4 shows the

distribution of the deadweight loss ratio
DWLSN

β

DWLβ
. Note that

DWLSN
β

DWLβ
is independent of our

normalization by V Aβ. Result 3 summarizes:

Result 3 DWLSN
β is at least as large as DWLβ in 80.11% of parameterizations, at least

twice as large in 44.01% of parameterizations, and at least five times as large in 13.66% of

parameterizations. The median of
DWLSN

β

DWLβ
is 1.7842.

DWLSN
β is smaller than DWLβ in a number of parameterizations that mostly involve

an unattractive outside good (p0 ≥ 15). The outside good constrains pricing decisions and

profitability much more in a monopolistic than in a duopolistic industry. A less attractive

outside good lifts this constraint and sharpens the incentive to monopolize the industry in

equilibrium. But if firms ignore the investment role of price in the static non-cooperative

pricing counterfactual, then a duopolistic industry with a lower deadweight loss emerges.

23Our static non-cooperative pricing counterfactual loosely corresponds to the version of the war of attrition
presented in Tirole (1988), with the addition of learning-by-doing and product differentiation.
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. Log scale. Parameterizations and

equilibria within parameterizations weighted equally.

Generally speaking, we conclude that dynamic competition leads to low deadweight loss.

The deadweight loss is low not only relative to the maximum value added by the industry,

it is also smaller than the deadweight loss that arises if firms ignore the investment role of

price.24 Put differently, the investment role of price is by and large socially beneficial. The

static non-cooperative pricing counterfactual also shows that a low deadweight loss is almost

certainly not hardwired into the primitives of our learning-by-doing model. Instead, there

is something in the nature of the investment role of price and dynamic competition that in

equilibrium leads to low deadweight loss.

6.2 Differences between equilibria and first-best planner solution

Dynamic competition leads to low deadweight loss despite distortions in pricing, exit, and

entry. Indeed, as we next show, there are typically substantial differences between the

equilibria and the first-best planner solution. Paradoxically, the best equilibrium can differ

even more from the planner solution than the worst equilibrium.

Recall that too low prices cause deadweight loss from overproduction, just as too high

prices cause deadweight loss from underproduction. To illustrate that the equilibria involve

prices that are too low, we first define 1 [p1(e) < c(e1) for some e ∈ {1, . . . ,M} × {0, . . . ,M}]
24It is also smaller than the deadweight loss that arises if firms collude in their pricing, exit, and entry

decisions. For the baseline parameterization in Table 3, the relative deadweight loss
DWLCO

β

V Aβ
in the collusive

solution is 14.32% of the maximum value added by the industry. In the Online Appendix, we provide further
details on the collusive solution.
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to indicate that a price is below the marginal cost of production in at least one state. Second,

we define 1
[
p1(e) < pFB

1 (e) for some e ∈ {1, . . . ,M} × {0, . . . ,M}
]
to indicate that a price

is below the first-best planner solution in some state. Result 4 summarizes the distribution

of these indicators:

Result 4 (1) p1(e) < c(e1) for some e ∈ {1, . . . ,M} × {0, . . . ,M} in all equilibria in

79.75% of parameterizations. (2) p1(e) < pFB
1 (e) for some e ∈ {1, . . . ,M} × {0, . . . ,M} in

all equilibria in 55.70% of parameterizations.

We caution that the states with too low prices are not necessarily on the equilibrium path

starting from state (0, 0).

We next turn from pricing to exit and entry and compare the expected short-run and

long-run number of firms between the equilibria and the first-best planner solution. Figure 5

shows the distribution of N1 −NFB
1 as a solid line and Result 5 highlights some findings:
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Figure 5: Distribution of N1 − NFB
1 . All equilibria (solid line), best equilibrium (dotted

line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

Result 5 N1 is larger than NFB
1 in 78.78% of parameterizations and smaller than NFB

1 in

0.15% of parameterizations. The median of N1 −NFB
1 is 0.7733.25

Thus, the equilibria typically have too many firms in the short run, consistent with over-

entry. They very rarely have too few firms in the short run. Figure 5 also breaks out the

25In stating Result 5, we take N1 to be equal to NFB
1 if

∣∣N1 −NFB
1

∣∣ < 0.0001 to account for the limited
precision of our computations. We proceed analogously in stating Result 6.
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best equilibrium as a dotted line and the worst equilibrium as a dashed line. Similar to our

examples in Section 5.2, there is no discernible difference between the best and the worst

equilibrium.

Figure 6 shows the distribution of N∞ − NFB
∞ as a solid line and breaks out the best

equilibrium as a dotted line and the worst equilibrium as a dashed line. Result 6 summarizes:
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Figure 6: Distribution N∞−NFB
∞ . All equilibria (solid line), best equilibrium (dotted line),

and worst equilibrium (dashed line). Parameterizations and equilibria within parameteriza-
tions weighted equally.

Result 6 (1) N∞ is larger than NFB
∞ in 53.77% of parameterizations and smaller than

NFB
∞ in 5.07% of parameterizations. The median of N∞ − NFB

∞ is 0.0038. (2) For the

best equilibrium, N∞ is larger than NFB
∞ in 59.21% of parameterizations and smaller than

NFB
∞ in 0.94% of parameterization. The median of N∞−NFB

∞ is 0.1327. (3) For the worst

equilibrium, N∞ is larger than NFB
∞ in 58.77% of parameterizations and smaller than NFB

∞

in 6.27% of parameterizations. The median of N∞ −NFB
∞ is 0.0167.

Thus, the equilibria regularly have too many firms in the long run, consistent with under-

exit. This tendency is exacerbated in the best equilibrium. The equilibria very rarely have

too few firms in the long run.

We finally turn to the speed at which firms move down their learning curves. Recall

that the expected time to maturity Tm depends on both the number of incumbent firms and

their pricing decisions. Figure 7 shows the distribution of Tm − Tm,FB as a solid line and

30



breaks out the best equilibrium as a dotted line and the worst equilibrium as a dashed line.

Result 7 summarizes:
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Figure 7: Distribution of Tm − Tm,FB. All equilibria (solid line), best equilibrium (dotted
line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

Result 7 (1) Tm is larger than Tm,FB in 90.69% of parameterizations and smaller than

Tm,FB in 8.35% of parameterizations.26 The median of Tm − Tm,FB is 5.2502. (2) For

the best equilibrium, Tm is larger than Tm,FB in 91.97% of parameterizations and smaller

than Tm,FB in 6.46% of parameterization. The median of Tm − Tm,FB is 11.3581. (3) For

the worst equilibrium, Tm is larger than Tm,FB in 90.49% of parameterizations and smaller

than Tm,FB in 8.69% of parameterizations. The median of Tm − Tm,FB is 6.6216.

The speed of learning in the equilibria is generally too slow. Moreover, the best equilibrium

exhausts learning economies even more slowly than the worst equilibrium. This is because

pricing is initially less aggressive and more firms split sales in an accommodative equilibrium

than in an aggressive equilibrium.

7 Why does dynamic competition lead to low deadweight

loss?

Section 6 leaves us with a puzzle. Dynamic competition leads to low deadweight loss, but this

is not because the equilibrium resembles the first-best planner solution. On the contrary, the

26In stating Result 7, we take Tm to be equal to Tm,FB if
∣∣Tm − Tm,FB

∣∣ < 0.1.
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best equilibrium can differ even more from the planner solution than the worst equilibrium.

7.1 Decomposition

To better understand why dynamic competition leads to low deadweight loss, we quantify

the importance of three factors that together make up deadweight loss: pricing conduct, exit

and entry conduct, and market structure. We accordingly decompose the deadweight loss

in equation (12) as

DWLβ = TSFB
β − TSβ = DWLPR

β +DWLEE
β +DWLMS

β ,

where

DWLPR
β =

∞∑

t=0

βt
∑

e

µt(e)
[
CSFB(e) + ΠFB(e)− (CS(e) + Π(e))

]
, (15)

DWLEE
β =

∞∑

t=0

βt
∑

e

µt(e)
[
PSFB(e)−ΠFB(e)− (PS(e)−Π(e))

]
, (16)

DWLMS
β =

∞∑

t=0

βt
∑

e

[
µFB
t (e)− µt (e)

]
TSFB(e), (17)

and, recall, Π(e) =
∑2

n=1Dn(p(e))(pn(e)− c(en)). Π
FB(e) is defined analogously.

CS(e)+Π(e) is the sum of consumer surplus and the static profit of the incumbent firms

in state e. The pricing distortion DWLPR
β in equation (15) is the incremental deadweight

loss due to state-wise differences in pricing conduct between the equilibrium and the first-best

planner solution.27

PS(e)−Π(e) is the difference of producer surplus and the static profit of the incumbent

firms in state e and thus the part of producer surplus that accounts for scrap values and

setup costs. The exit and entry distortion DWLEE
β in equation (16) is therefore the incre-

mental deadweight loss due to state-wise differences in exit and entry conduct between the

equilibrium and the first-best planner solution. Expected inflows from scrap values in state

e contribute positively to PS(e)−Π(e) and expected outflows from setup costs negatively.

A positive value of DWLEE
β thus reflects a tendency for over-entry or under-exit relative to

the first-best planner solution while a negative value reflects a tendency for under-entry or

over-exit.

The market structure distortion DWLMS
β in equation (17) is the incremental deadweight

loss due to differences in the evolution of the industry over time between the equilibrium

27In our model, there is no distinction between price and quantity distortions. As demand is invertible,
consumer surplus in equation (10) can be written as a function of quantities rather than prices.
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and the first-best planner solution. Recall that the state e completely describes the num-

ber of incumbent firms—and therefore the extent of product variety—along with their cost

positions. A negative value of DWLMS
β therefore indicates that the equilibrium puts more

weight on more favorable market structures with higher values of TSFB(e) than the planner

solution; a positive value indicates the reverse. Note that TSFB(e) is high if firms’ cost

positions in state e in relation to the price of the outside good yield large gains from trade.

TSFB(e) is also high if a large number of firms fosters product variety. Perhaps less obvi-

ously, TSFB(e) is high if in state e there are too many firms from the perspective of the

first-best planner, thus allowing the planner to receive scrap values by ceasing to operate

excess firms. Of course, these last two effects of the number of firms are mutually exclu-

sive. The factors contributing to a negative value of DWLMS
β are therefore over-entry and

under-exit as well as fast exploitation of learning economies. The factors contributing to a

positive value ofDWLMS
β are under-entry, over-exit, slow exploitation of learning economies,

and cost-inefficient exit. Cost-inefficient exit contributes to a positive value of DWLMS
β in

the same way as slow exploitation of learning economies by rendering firms’ cost positions

less favorable. Table 5 summarizes the distortions that the signs of DWLEE
β and DWLMS

β

indicate.

term positive negative

DWLEE
β over-entry, under-exit under-entry, over-exit

DWLMS
β under-entry, over-exit, slow ex-

ploitation of learning economies,
cost-inefficient exit

over-entry, under-exit, fast ex-
ploitation of learning economies

Table 5: Decomposition terms and contributing distortions.

DWLEE
β and DWLMS

β can offset each other as they depend on over-entry and under-exit

in opposite ways. We therefore define the non-pricing distortion as DWLNPR
β = DWLEE

β +

DWLMS
β . It reflects (1) the net social loss from a suboptimal number of firms (setup costs

net of scrap values net of social benefits of product variety), (2) the gross social loss from

a suboptimal exploitation of learning economies, and (3) the gross social loss from cost-

inefficient exit.

Examples. Table 6 illustrates the decomposition for the aggressive and accommodative

equilibria at the baseline parameterization. The pricing distortion DWLPR
β = 10.78 is the

largest part of deadweight loss DWLβ = 14.43 in the aggressive equilibrium. It is mainly

driven by the high expected long-run average price p∞ = 8.28 (see Table 4) that results as

the industry most likely evolves into a mature monopoly. In the accommodative equilibrium,

the pricing distortion DWLPR
β = 2.35 is a smaller part of deadweight loss DWLβ = 5.01
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DWLβ DWLPR
β DWLEE

β DWLMS
β DWLNPR

β

aggr. eqbm. 14.43 10.78 4.67 -1.01 3.66
accom. eqbm. 5.01 2.35 7.32 -4.67 2.66

Table 6: Decomposition. Aggressive and accommodative equilibrium. Baseline parameteri-
zation.

because the industry evolves into a mature duopoly. Interestingly, DWLPR
β is small even

though the expected long-run average price p∞ = 5.24 is almost two-thirds larger than in

the first-best planner solution (pFB
∞ = 3.25).28

In the accommodative equilibrium, the largest part of deadweight loss DWLβ = 5.01

is the exit and entry distortion DWLEE
β = 7.32. This reflects both wasteful duplication

of setup costs due to over-entry and scrap values that firms forgo in equilibrium due to

under-exit. The latter is analogous to the wasteful duplication of per-period, avoidable fixed

costs that arises in the standard war of attrition model in Tirole (1988).29 In contrast, in

the aggressive equilibrium DWLEE
β = 4.67 is a smaller part of DWLβ = 14.43 because the

follower is likely to eventually exit the industry and receive the scrap value.

In both equilibria, the market structure distortion DWLMS
β is negative, indicating that

the industry spends more time in favorable market structures than in the first-best planner

solution. This is driven by over-entry and under-exit as opposed to fast exploitation of

learning economies. Indeed, in both equilibria learning economies are exhausted more slowly

(Tm = 19.10 and Tm = 37.50, see again Table 4) than in the planner solution (Tm,FB =

15.02).

As DWLMS
β partially offsets DWLEE

β , the non-pricing distortion DWLNPR
β = 3.66 is

much smaller than the pricing distortion DWLPR
β = 10.78 in the aggressive equilibrium.

In the accommodative equilibrium the non-pricing distortion DWLNPR
β = 2.66 is slightly

larger than the pricing distortion DWLPR
β = 2.35.

General results. These patterns generalize. Summarizing a large number of parameter-

izations and equilibria, Figure 8 shows the distribution of
DWLPR

β

DWLβ
,

DWLEE
β

DWLβ
,

DWLMS
β

DWLβ
, and

DWLNPR
β

DWLβ
. We scale each term of the decomposition by DWLβ to better gauge its size.

Result 8 highlights some findings:

28Dynamic first-best prices
(
pFB
1 (e), pFB

2 (e)
)
, in turn, coincide with static first-best prices (c(e1), c(e2)) if

e ≥ (m,m).
29In the Online Appendix, we establish that our model with scrap values is equivalent to a model with

per-period, avoidable fixed costs but without scrap values.
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Figure 8: Distribution of
DWLPR

β

DWLβ
,

DWLEE
β

DWLβ
,

DWLMS
β

DWLβ
, and

DWLNPR
β

DWLβ
. Parameterizations and

equilibria within parameterizations weighted equally.

Result 8 (1) The pricing distortion DWLPR
β is positive in 96.44% of parameterizations.30

The median of
DWLPR

β

DWLβ
is 0.6565. (2) The exit and entry distortion DWLEE

β is positive in

81.26% of parameterizations. The median of
DWLEE

β

DWLβ
is 0.5728. (3) The market structure

distortion DWLMS
β is negative in 70.07% of parameterizations. The median of

DWLMS
β

DWLβ
is

−0 .2279 . (4) The non-pricing distortion DWLNPR
β is positive in 92.03% of parameteriza-

tions. The median of
DWLNPR

β

DWLβ
is 0.3435.

DWLEE
β is typically positive by part (2) of Result 8 because of over-entry and under-exit.31

Also because of over-entry and under-exit, DWLMS
β is typically negative by part (3), as the

speed of learning in the equilibria is generally too slow (see Figure 7 and Result 7).32 Thus,

as highlighted in Result 9, DWLMS
β typically offsets DWLEE

β so that DWLNPR
β is very

often smaller than its largest component (in absolute value):

Result 9 |DWLNPR
β | is smaller than max

{∣∣∣DWLEE
β

∣∣∣ ,
∣∣∣DWLMS

β

∣∣∣
}

in 88.64% of parame-

terizations.

30In stating Result 8, we take DWLPR
β to be zero if

∣∣∣∣
DWLPR

β

DWLβ

∣∣∣∣ < 0.001. We proceed analogously for the

other terms of the decomposition.
31DWLEE

β is zero in 14.87% of parameterizations and negative in just 3.87% of parameterizations (see
again footnote 30).

32DWLMS
β can be positive if the degree of product differentiation σ is sufficiently large to ensure that the

industry evolves into a mature duopoly under the equilibrium and the first-best planner solution. In this
case, the positive value of DWLMS

β reflects mainly the slow exploitation of learning economies.
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Parts (1) and (4) of Result 8 show that generally both pricing and non-pricing distortions

contribute to deadweight loss. As Result 10 shows, the pricing distortion is often larger than

the non-pricing distortion:

Result 10 The pricing distortion DWLPR
β is larger than the non-pricing distortion DWLNPR

β

in 73.23% of parameterizations.

Armed with these patterns in the decomposition terms, we delve into the mechanisms

through which dynamic competition leads to low deadweight loss. We proceed separately

according to type of equilibrium.

7.2 Why is the best equilibrium so good?

The deadweight loss in the best equilibrium is small although it often differs greatly from

the first-best planner solution. Recall that we associate the best equilibrium with an accom-

modative equilibrium. To see why the deadweight loss in an accommodative equilibrium is

small, recall from Result 10 that the pricing distortion is often larger than the non-pricing

distortion. In a first step, we show that the pricing distortion DWLPR
β is small. In a sec-

ond step, we argue that the non-pricing distortion DWLNPR
β is small because of the social

benefit of product variety.

Why is the pricing distortion small? At first blush, there appears to be no reason

for the pricing distortion in an accommodative equilibrium to be particularly small. At

the baseline parameterization, equilibrium prices (p1(e), p2(e)) substantially exceed static

first-best prices (c(e1), c(e2)) even once the industry becomes a mature duopoly.

Proposition 2, however, bounds the contribution CSFB(e) + ΠFB(e) − (CS(e) + Π(e))

to the pricing distortion DWLPR
β by the demand for the outside good D0(p(e)):

Proposition 2 Consider a symmetric state e = (e, e), where e > 0. If p0 ≥ κ, p1(e) > c(e),

and D0(p(e)) <
1
2 , then

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ (p1(e)− c(e))2

σ
D0(p(e))(1 −D0(p(e))). (18)

Note that the bound on the right-hand side of equation (18) approaches zero as the demand

for the outside good approaches zero. This often has bite: as the incumbent firms move

down their learning curves, they improve their cost positions relative to the price of the

outside good and drive the share of the outside good close to zero. Exceptions occur only if

learning economies are weak—ρ is close to 1—or inconsequential because the outside good

is highly attractive.
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While the bound on the right-hand side of equation (18) relies on logit demand, the

intuition is more general. To a first-order approximation, the deadweight loss due to market

power decreases as demand becomes less price elastic (Harberger 1954). With logit demand,

a decrease in the price elasticity of aggregate demand for the inside goods is associated with

a decrease in the demand for the outside good. With linear demand, the aggregate demand

for the inside goods similarly becomes less elastic as their prices—and with them the demand

for the outside good—decrease.

Why is the non-pricing distortion small? Recall that the non-pricing distortionDWLNPR
β =

DWLEE
β +DWLMS

β reflects the net social loss from a suboptimal number of firms as well as

the gross social losses from suboptimal exploitation of learning economies and cost-inefficient

exit. Recall, too, that, broadly speaking, in particular accommodative equilibria have too

many firms, both in the short run and in the long run, consistent with over-entry and under-

exit (Results 5, 6, and parts (2) and (3) of Result 8). Negative values of DWLMS
β thus tend

to offset positive values of DWLEE
β (Result 9).

Of course, too many firms give rise to a social loss from the wasteful duplication of setup

costs due to over-entry and scrap values that firms forgo in equilibrium due to under-exit.

However, there is a “silver lining”: too many firms give rise to a social benefit from additional

product variety. Because of the social benefit of product variety, the net social loss from

too many firms is small. This is especially relevant because accommodative equilibria tend

to arise when the degree of product differentiation σ is high (see Appendix C). Hence, the

social benefit of product variety tends to be large.

Learning economies accentuate the silver lining of additional product variety. Suppose

the industry evolves into a mature duopoly in an accommodative equilibrium and into a

mature monopoly in the first-best planner solution, and that there is no further exit and

entry. Then there exists a period t∗ such that for period t ≥ t∗, the equilibrium transient

distribution µt (e) puts all mass on state e, where e ≥ (m,m), and the first-best transient

distribution µFB
t (e) puts all mass on state e, where either e1 ≥ m and e2 = 0 or e1 = 0

and e2 ≥ m. Because learning economies are exhausted and there is no further exit and

entry, we have TSFB(e) = TSFB(m,m) if e ≥ (m,m), and TSFB(e) = TSFB(m, 0) if

either e1 ≥ m and e2 = 0 or e1 = 0 and e2 ≥ m. Moreover, TSFB(m,m) = CSFB(m,m)

and TSFB(m, 0) = CSFB(m, 0) because the planner sets static first-best prices. Hence, the

market structure distortion DWLMS
β can be approximated as

t∗∑

t=0

βt
∑

e

[
µFB
t (e)− µt (e)

]
TSFB(e)− βt∗+1

1− β

[
CSFB(m,m)− CSFB(m, 0)

]
,

where the last term can be thought of as a reduction in DWLMS
β —and thus in the non-
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pricing distortion DWLNPR
β —due to the social benefit of additional product variety. From

equation (10) it is straightforward to establish that

CSFB(m,m)− CSFB(m, 0)

= σ

(
ln

(
exp

(−p0
σ

)
+ 2exp

(−c(m)

σ

))
− ln

(
exp

(−p0
σ

)
+ exp

(−c(m)

σ

)))
,

where c(m) = κρlog2 m from equation (1), and

d(CSFB(m,m)− CSFB(m, 0))

dρ
= − (2D1(c(m), c(m)) −D1(c(m),∞)) κρlog2 m−1 log2m < 0,

since 2D1(c(m), c(m)) = 2

2+exp
(
−
(

p0−c(m)
σ

)) > 1

1+exp
(
−
(

p0−c(m)
σ

)) = D1(c(m),∞). Hence, as

learning economies strengthen, the reduction in DWLMS
β and DWLNPR

β due to the social

benefit of additional product variety increases.

7.3 Why is the worst equilibrium not so bad?

Recall that we associate the worst equilibrium with an aggressive equilibrium. To see why

the deadweight loss in an aggressive equilibrium is small (albeit not as small as in the best

equilibrium), we show in a first step that the pricing distortion DWLPR
β is small. In a second

step, we argue that the non-pricing distortion DWLNPR
β is small because of a fairly efficient

winnowing out of firms.

We emphasize that the arguments below do not imply that the deadweight loss in an

aggressive equilibrium is close to zero. Rather, each one speaks to an economic force in

the model that serves as a “headwind” that prevents the deadweight loss from becoming

excessively large.

Why is the pricing distortion small? There again appears to be no reason for the

pricing distortion in an aggressive equilibrium to be small. At the baseline parameteriza-

tion, the industry evolves into a mature monopoly. Proposition 2 bounds the contribution

CSFB(e) + ΠFB(e) − (CS(e) + Π(e)) to the pricing distortion DWLPR
β by the degree of

product differentiation σ and the advantage-building motive U1

(
e1+
)
− U1 (e):
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Proposition 3 Consider a state e = (e, 0), where e > 0. Then

CSFB(e) + ΠFB(e)− (CS(e) + Π(e))

<

{
σ if 0 ≤ U1

(
e1+
)
− U1 (e) < σ

(
1 + exp

(
p0−c(e)

σ

))
,

σ +
∣∣U1

(
e1+
)
− U1 (e)

∣∣ otherwise.

(19)

Note that the bound on the right-hand side of equation (19) approaches σ as the incumbent

firm moves down its learning curve and U1

(
e1+
)
− U1 (e) approaches zero. While Propo-

sition 3 relies on logit demand, the intuition that the threat of substitution to the outside

good holds market power in check transcends the logit specification.

Proposition 3 has bite because aggressive equilibria tend to arise when the degree of

product differentiation σ is low (see Appendix C). This is intuitive: pricing aggressively

to marginalize one’s rival or altogether force it from the industry is especially attractive if

products are close substitutes so that firms on an equal footing would fiercely compete.

Why is the non-pricing distortion small? While an aggressive equilibrium usually

involves delayed exit (relative to the first-best planner solution), it involves rather brisk

eventual exit. Thus, the industry usually quickly evolves towards the first-best market

structure in an aggressive equilibrium, which tends to keep DWLMS
β , and thus DWLNPR

β ,

small. The small non-pricing distortion reflects the resulting relatively low net social loss

from a suboptimal number of firms. Put another way, in an aggressive equilibrium, this net

social loss is small because competition for the market resolves itself quickly and winnows

out firms in a fairly efficient way.

8 Summary and conclusion

We study industries where price serves as an investment. The investment role arises when a

firm’s price affects not only its current profit but also its future competitive position vis-à-

vis its rivals. Competition is dynamic as firms jostle for competitive advantage through the

prices they set.

Our starting point is the conjecture that dynamic competition is necessarily fully efficient

in our learning-by-doing model because firms merely transfer rents to consumers by pricing

aggressively rather than engage in socially wasteful activities as in rent-seeking models. We

argue that this conjecture overlooks that dynamic competition extends beyond pricing into

exit and entry. As we show in the special case of a two-step learning curve, even if pricing is

efficient, exit and entry are not, and there are coordination failures (Bolton & Harris 1999)
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and wars of attrition (Maynard Smith 1974, Tirole 1988, Bulow & Klemperer 1999). In sum,

dynamic competition when price serves as an investment is not a “magic bullet”.

Still, our analysis suggests that in settings where price plays an investment role, dynamic

competition is fairly efficient. Deadweight loss tends to be low (Results 1 and 2) and the

investment role of price socially beneficial (Result 3). This is surprising because equilibrium

behavior and industry dynamics often differ markedly from the first-best planner solution.

In particular, dynamic competition tends to lead to too low prices (Result 4), too many firms

in the short run and in the long run (Results 5 and 6), and too slow learning (Result 7).

So why is dynamic competition fairly efficient? The answer boils down to the key fun-

damental that gives rise to the investment role of price in the first place: learning-by-doing.

The pricing distortion tends to be the largest contributor to deadweight loss (part (i)

of Result 8 and Result 10). Our bounds on the pricing distortion tighten as the incumbent

firms move down their learning curves (Propositions 2 and 3). If the industry evolves into a

mature duopoly in an accommodative equilibrium, this happens because the demand for the

inside goods becomes less elastic as the incumbent firms improve their cost positions relative

to the outside good and drive the share of the outside good close to zero. If the industry

evolves into a mature monopoly in an aggressive equilibrium, the bound further tightens as

the degree of product differentiation decreases and the threat of substitution to the outside

good holds market power in check. Moreover, this is precisely when aggressive equilibria

tend to arise in the first place.

The non-pricing distortion comprises the exit and entry distortion and the market struc-

ture distortion. In an aggressive equilibrium, the non-pricing distortion tends to be low

despite the wasteful duplication of setup costs due to over-entry because competition for the

market resolves itself quickly and winnows out firms in a fairly efficient way. In an accom-

modative equilibrium, the non-pricing distortion tends to be higher. However, the market

structure distortion tends to partly offset the exit and entry distortion (parts (ii) and (iii)

of Result 8 and Result 9). Too many firms give rise not only to a social loss from incurred

setup costs due to over-entry and forgone scrap values due to under-exit, but also to a so-

cial benefit from additional product variety. Learning-by-doing accentuates this benefit by

making product variety less costly to procure.

Put simply, when price serves as an investment, dynamic competition is fairly efficient

because of the efficiency-enhancing properties of the investment.

From a regulatory perspective, our analysis suggests that in settings where price serves as

an investment, the upside from interventions and policies aimed at shaping competition for

the market is likely to be limited. As we show in Besanko et al. (2014), blunt pricing conduct

restrictions can lead to substantial welfare losses. Although more subtle pricing conduct

restrictions can lead to welfare gains, typically by eliminating equilibria that entail predation-
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like behavior, achieving these gains in practice requires detailed knowledge of demand and

cost primitives. Unless the regulator executes flawlessly based on this knowledge, it may

therefore be preferable not to intervene at all and tolerate the “not so bad” welfare losses

that typically arise under dynamic competition.

A caveat to our analysis is that interventions and policies remain appropriate that fore-

stall collusion between firms that otherwise engage in competition for the market or ex-

clusionary practices by these firms, such as forcing customers to sign long-term exclusive

contracts. Our analysis should thus be interpreted as suggesting that there is little in the

fundamentals of dynamic competition when price serves as an investment that suggests that

antitrust actions have a sizeable upside.

Appendix A Omitted expressions

Exit decision of incumbent firm. The probability of incumbent firm 1 exiting the
industry in state e′ is

φ1(e
′) = 1− FX(X̂1(e

′))

=





1 if X̂1(e
′) < X −∆X ,

1
2 −

[X̂1(e′)−X]
2∆X

if X̂1(e
′) ∈ [X −∆X ,X +∆X ],

0 if X̂1(e
′) > X +∆X

and the expectation of the scrap value conditional on exiting the industry is

EX

[
X1|X1 ≥ X̂1(e

′)
]

=

∫ X+∆X

F−1
X

(1−φ1(e
′))
X1dFX(X1)

φ1(e
′)

=
1

φ1(e
′)

[
ZX (0)− ZX

(
1− φ1(e

′)
)]
,

where

ZX (1− φ) =
1

∆2
X





−1
6

(
X −∆X

)3
if 1− φ ≤ 0,

1
2

(
∆X −X

) (
F−1
X (1− φ)

)2
+ 1

3

(
F−1
X (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆X +X

) (
F−1
X (1− φ)

)2 − 1
3

(
F−1
X (1− φ)

)3 − 1
3X

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
X +∆X

)3 − 1
3X

3
if 1− φ ≥ 1

and

F−1
X (1− φ) = X +∆X





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.
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Entry decision of potential entrant. The probability of potential entrant 1 not entering
the industry in state e′ is

φ1(e
′) = 1− FS(Ŝ1(e

′))

=





1 if Ŝ1(e
′) < S −∆S,

1
2 −

[Ŝ1(e′)−S]
2∆S

if Ŝ1(e
′) ∈ [S −∆S , S +∆S ],

0 if Ŝ1(e
′) > S +∆S

and the expectation of the setup cost conditional on entering the industry is

ES

[
S1|S1 ≤ Ŝ1(e

′)
]

=

∫ F−1
S

(1−φ1(e
′))

S−∆S
S1dFS(S1)

(1− φ1(e
′))

=
1

φ1(e
′)

[
ZS

(
1− φ1(e

′)
)
− ZS (1)

]
,

where

ZS (1− φ) =
1

∆2
S





−1
6

(
S −∆S

)3
if 1− φ ≤ 0,

1
2

(
∆S − S

) (
F−1
S (1− φ)

)2
+ 1

3

(
F−1
S (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆S + S

) (
F−1
S (1− φ)

)2 − 1
3

(
F−1
S (1− φ)

)3 − 1
3S

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
S +∆S

)3 − 1
3S

3
if 1− φ ≥ 1

and

F−1
S (1− φ) = S +∆S





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.

Producer surplus (decentralized exit and entry). Producer surplus in state e is

PS(e) =

2∑

n=1

PSn(e),

where

PS1(e) = Π1(e) +

2∑

n=0

Dn(p(e))
{
1 [e1 > 0]φ1

(
en+

)
EX

[
X1|X1 ≥ X̂1

(
en+

)]

−1 [e1 = 0]
(
1− φ1

(
en+

))
ES

[
S1|S1 ≤ Ŝ1

(
en+

)]}

is producer surplus of firm 1 in state e with

Π1(e) = D1(p(e))(p1(e)− c(e1)).

PS2(e) and Π2(e) are analogous.
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Producer surplus (centralized exit and entry). Producer surplus in state e is

PSFB(e) = ΠFB(e) +

2∑

n=0

Dn

(
pFB(e)

)

×
{
ψFB
1,1

(
en+

)
EX,S

[
−1 [e1 = 0]S1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

1,1

(
en+,X,S

)]

+ψFB
1,0

(
en+

)
EX,S

[
−1 [e1 = 0]S1 + 1 [e2 > 0]X2|UFB

(
en+,X,S

)
= UFB

1,0

(
en+,X,S

)]

+ψFB
0,1

(
en+

)
EX,S

[
1 [e1 > 0]X1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

0,1

(
en+,X,S

)]

+ψFB
0,0

(
en+

)
EX,S

[
1 [e1 > 0]X1 + 1 [e2 > 0]X2|UFB

(
en+,X,S

)
= UFB

0,0

(
en+,X,S

)] }

with ΠFB(e) =
∑2

n=1Dn

(
pFB(e)

) (
pFB
n (e)− c(en)

)
and pFB(e) =

(
pFB
1 (e), pFB

2 (e)
)
.

Industry structure, conduct, and performance. The expected short-run and long-run
number of firms is

N1 =
∑

e

µ1 (e)N(e), N∞ =
∑

e

µ∞ (e)N(e),

where number of firms in state e is

N(e) =

2∑

n=1

1 [en > 0] .

The expected long-run average price is

p∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
p(e),

where (share-weighted) average price in state e is

p(e) =

2∑

n=1

Dn(p1(e), p2(e))

1−D0(p1(e), p2(e))
pn(e).

The expected time to maturity is

Tm = E [min {t ≥ 0|et ∈ Ω}| e0 = (0, 0)] ,

where et is the state of the industry in period t and

Ω = {(m, 0), . . . , (M, 0), (0,m), . . . , (0,M), (m,m), . . . , (M,M)}

is the set of states in which the industry is either a mature monopoly or a mature duopoly.
min {t ≥ 0|et ∈ Ω} is the so-called first passage time into the set of states Ω. It can be shown
that Tm is the solution to a system of linear equations (Kulkarni 1995, equation (4.72)).

The expected NPV of consumer surplus CSβ is defined analogously to the expected NPV
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of total surplus TSβ in equation (11).

Appendix B Proofs

Proof of Proposition 1. The proof proceeds in two steps. First, we show that given the
policy functions, the value functions solve the Bellman equations (2), (3), and (4). Second,
we show that there is no profitable one-shot deviation in any state of the industry. The
details of this analysis are presented in the Online Appendix.
Proof of Proposition 2. Define the sum of consumer surplus and static profit to be

Φ(p) = CS(p, p) + 2D1(p, p)(p − c(e)).

Using this definition, in a symmetric state e = (e, e), where e > 0, we can write

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) = Φ(pFB
1 (e))− Φ(p1(e)).

We have

Φ′(p) = − 1

σ
(p− c(e))D0(p, p)(1 −D0(p, p)), (20)

Φ′′(p) = − 1

σ2
((p− c(e))(1 − 2D0(p, p)) + σ)D0(p, p)(1 −D0(p, p)). (21)

Hence, Φ(p) is strictly quasiconcave in p and attains its maximum at p = c(e). Thus, we
obtain

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ Φ(c(e)) − Φ(p1(e)). (22)

We bound the right-hand side of equation (22). Let p̃ be such that D0(p̃, p̃) = 1
2 , so

1−2D0(p, p) ≥ 0 for all p ≤ p̃ becauseD0(p, p) increases in p. Equation (21) implies that Φ(p)
is strictly concave in p over the interval [c(e), p̃]. This interval is non-empty: the assumption
p0 ≥ κ coupled with κ ≥ c(e) implies D0(c(e), c(e)) ≤ D0(κ, κ) ≤ 1

3 <
1
2 = D0(p̃, p̃). As

D0(p, p) increases in p, it must be that c(e) < p̃.
By assumption, p1(e) ∈ [c(e), p̃]. From Theorem 21.2 in Simon & Blume (1994) and

equation (20) we therefore have

Φ(c(e)) − Φ(p1(e)) ≤ Φ′(p1(e))(c(e) − p1(e))

=
(p1(e)− c(e))2

σ
D0(p1(e), p1(e))(1 −D0(p1(e), p1(e))). (23)

This establishes Proposition 2.
Proof of Proposition 3. Define the sum of consumer surplus and static profit to be

Φ(p) = CS(p,∞) +D1(p,∞)(p − c(e)).

Using this definition, in a state e = (e, 0), where e > 0, we can write

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) = Φ(pFB
1 (e))− Φ(p1(e)).
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We have

Φ′(p) = − 1

σ
(p− c(e))D0(p,∞)(1 −D0(p,∞)),

Φ′′(p) = − 1

σ2
((p− c(e))(1 − 2D0(p,∞)) + σ)D0(p,∞)(1−D0(p,∞)).

Hence, Φ(p) is strictly quasiconcave in p and attains its maximum at p = c(e). Thus, we
obtain

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ Φ(c(e)) − Φ(p1(e)),

where Φ(c(e)) = v − c(e) + σ ln
(
1 + exp

(
c(e)−p0

σ

))
.

p1(e) is uniquely determined by the solution to the first-order condition (5); it can be
written as

p1(e) = c(e) −
[
U1

(
e1+
)
− U1 (e)

]
+ σ

(
1 +W

(
exp

(
p0 − c(e) +

[
U1

(
e1+
)
− U1 (e)

]

σ
− 1

)))
,

where W (·) is the Lambert W function. Defining x = p0−c(e)
σ and y =

U1(e1+)−U1(e)

σ , this
can be further written as

p1(e) = c(e) + σ (−y + 1 +W (exp(x+ y − 1))) .

Hence,

Φ(p1(e)) = v − c(e) + σ

(
ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
+

y

1 +W (exp(x+ y − 1))
− 1

)

and

Φ(c(e)) = v − c(e) + σ ln (1 + exp(−x)) .

It follows that

Φ(c(e)) − Φ(p1(e))

= σ

(
ln (1 + exp(−x))− ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
− y

1 +W (exp(x+ y − 1))
+ 1

)

(24)

= σ

(
ln (1 + exp(x))− ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1)) +

yW (exp(x+ y − 1))

1 +W (exp(x+ y − 1))

)
.

(25)

Some properties of the Lambert W function are that W (z) is increasing in z, W (0) = 0,
and W (z exp(z)) = z for all z ≥ 0.
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Case 1: y < 1 + exp(x). We first show that if y < 1 + exp(x), then

ln (1 + exp(−x))− ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
+ 1 < 1. (26)

To see this, note that equation (26) is equivalent to

ln (1 + exp(−x)) ≤ ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)

⇔ exp(−x) < 1

W (exp(x+ y − 1))

⇔ exp(x) > W (exp(x+ y − 1)) .

If y = 1+exp(x), then the right-hand side isW (exp(x+ exp(x))) =W (exp(x) exp(exp(x))) =
exp(x). Moreover, because W (z) is increasing in z, exp(x) > W (exp(x+ y − 1)) for all
y < 1 + exp(x).

Consider equation (24). From equation (26) it follows that

Φ(c(e)) − Φ(p1(e)) < σ

(
1− y

1

1 +W (exp(x+ y − 1))

)
.

Moreover, 0 < 1
1+W (exp(x+y−1)) < 1. Therefore, if y < 0, then

Φ(c(e)) − Φ(p1(e)) < σ (1 + |y|) (27)

and, if y ≥ 0, then

Φ(c(e)) − Φ(p1(e)) < σ. (28)

Case 2: y ≥ 1 + exp(x). We first show that if y ≥ 1 + exp(x), then

ln (1 + exp(x)) − ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1)) < 1. (29)

To see this, note that

ln (1 + exp(x))− ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1))

≤ ln (1 + exp(x))− ln (1 +W (exp(x+ exp(x))))−W (exp(x+ exp(x)))

= ln (1 + exp(x))− ln (1 + exp(x))− exp(x) = − exp(x) < 1.

Consider equation (25). From equation (29) it follows that

Φ(c(e)) − Φ(p1(e)) < σ

(
1 + y

W (exp(x+ y − 1))

1 +W (exp(x+ y − 1))

)
.

Moreover, 0 < W (exp(x+y−1))
1+W (exp(x+y−1)) < 1. Because y ≥ 1 + exp(x) > 0, we have

Φ(c(e)) − Φ(p1(e)) < σ (1 + y) . (30)
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Collecting equations (27), (28), and (30) establishes Proposition 3.

Appendix C Aggressive and accommodative equilibria

We offer formal definitions of aggressive and accommodative equilibria, but note from the
outset that any attempt to classify equilibria is fraud with difficulty because the different
equilibria lie on a continuum and thus morph into each other in complicated ways as we vary
the parameters of the model.

Our definition of an aggressive equilibrium hones in on a trench in the pricing decision,
and our definition of an accommodative equilibrium on a lack of exit from a duopolistic
industry:

Definition 1 An equilibrium is aggressive if

p1(e) < p1(e1, e2 + 1), p2(e) < p2(e1, e2 + 1), φ2(e) > φ2(e1, e2 + 1)

for some state e > (0, 0) with e1 > e2.

Definition 2 An equilibrium is accommodative if

φ1(e) = φ2(e) = 0

for all states e > (0, 0).

These definitions are not exhaustive. The percentage of equilibria classified as aggressive is
96.88%, the percentage of equilibria classified as accommodative is 1.99%, and the percentage
of unclassified equilibria is 1.13%. Our computations always led to a unique accommodative
equilibrium but often to multiple aggressive equilibria at a given parameterization.

An aggressive equilibrium exists if the degree of product differentiation σ is sufficiently
low. As competition in a duopolististic industry becomes fiercer, monopolizing the industry
becomes more attractive. Other factors contributing to the existence of an aggressive equi-
librium are a high expected scrap value X and a high price of the outside good p0. The first
factor makes it easier for a firm to induce its rival to exit the industry and the second makes
monopolizing the industry more attractive by allowing the surviving firm to charge a higher
price. Conversely, an accommodative equilibrium exists if the degree of product differentia-
tion σ is sufficiently high. Other factors contributing to the existence of an accommodative
equilibrium are a low expected scrap value X and a low price of the outside good p0.

Our definitions of aggressive and accommodative equilibria are linked, however imper-
fectly, to worst, respectively, best equilibria. Table 7 shows that 49.09% of parameterizations
have a unique equilibrium and that the equilibrium is classified as accommodative in 83.40%
of these parameterizations. Moreover, 50.91% of parameterizations have multiple equilibria
and the worst equilibrium is classified as aggressive in 97.96% of these parameterizations.
However, the best equilibrium is classified as accommodative in 40.54% of these parameteri-
zations and as aggressive in 43.36% of these parameterizations. This far from perfect link ap-
pears to reflect that our definition of an accommodative equilibrium is quite stringent. While
there is an aggressive equilibrium at all parameterizations with multiple equilibria, there may
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unique equilibrium multiple equilibria multiple equilibria
incl. accomm. eqbm.

49.09% 50.91% 21.98%

best worst best worst

aggressive 3.32% 43.36% 97.96% 5.84% 96.85%
accommodative 83.40% 40.54% 1.36% 93.93% 3.15%
unclassified 13.28% 16.10% 0.68% 0.22% 0.00%

Table 7: Percentage of parameterizations with a unique equilibrium, multiple equilibria, and
multiple equilibria including an accommodative equilibrium (upper panel) and, within each
of these, percentage of parameterizations at which the best or worst equilibrium is aggressive,
accommodative, or unclassified (lower panel). Unweighted.

not be an accommodative equilibrium. The rightmost column of Table 7 restricts attention
to parameterizations with multiple equilibria that include an accommodative equilibrium.
The best equilibrium is classified as accommodative in 93.93% of these parameterizations
and the worst equilibrium is classified as aggressive in 96.85% of these parameterizations. To
facilitate the exposition and build intuition, we therefore associate the best equilibrium with
an accommodative equilibrium and the worst equilibrium—to the extent that it differs from
the best equilibrium—with an aggressive equilibrium. If the equilibrium is unique, then we
associate it with an accommodative equilibrium.
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