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Abstract

External validity is a challenge in treatment effect estimation. Even in randomized trials,
the experimental sample often differs from the population of interest. If participation deci-
sions are explained by observed variables such differences can be overcome by reweighting.
However, participation may depend on unobserved variables. Even in such cases, under a
common support assumption there exist weights which, if known, would allow reweighting
the sample to match the population. While these weights cannot in general be esti-
mated, we develop approximations which relate them to the role of private information in
participation decisions. These approximations suggest benchmarks for assessing external
validity.

1 Introduction

External validity is a major challenge in empirical social science. As an example, consider

Bloom, Liang, Roberts and Ying (2015), who report results from an experimental evaluation

of working from home in a Chinese firm. In the first stage of the evaluation, workers at the

firm were asked to volunteer for an experiment in which they might have the opportunity

to work from home. The study then randomized among eligible volunteers, and compliance

was excellent. The study estimates large productivity gains from working from home. Given

these results, one might reasonably ask whether the firm would be better off having more of

their employees work from home - or even having them all work from home. To answer this

∗Sophie Sun provided excellent research assistance. We thank Nick Bloom, Guido Imbens, Matthew
Gentzkow, Peter Hull, Larry Katz, Ben Olken, Jesse Shapiro, Andrei Shleifer and participants in seminars
at Brown University, Harvard University and University of Connecticut for helpful comments. Andrews grate-
fully acknowledges support from the Silverman (1978) Family Career Development chair at MIT, and from the
National Science Foundation under grant number 1654234.
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question, we need to know the average treatment effect of working from home in the entire

population of workers.

The population of volunteers for the experiment differs from the overall population of

workers along some observable dimensions (for example, commute time and gender). It seems

plausible that they also differ on some unobservable dimensions, for example ability to self-

motivate. For both reasons, volunteers may have systematically different treatment effects

than non-volunteers. In this case, the average treatment effect estimated by the experiment

will differ from that in the population of workers as a whole. This issue - that the experimental

sample differs from the population of policy interest - is widespread in economics and other

fields.1

In this paper we consider external validity of treatment effects estimated from a random-

ized trial in a non-representative sample. For average treatment effects estimated from a

randomized trial to be externally valid for a target population, they should coincide with the

average treatment effect in the target population. We focus on the case where participation

in the experiment is possibly non-random; we refer to this as the “participation decision,” al-

though note that it may be either a decision by an individual to enroll in a trial, or a decision

by a researcher to include a particular area or unit in their experimental set.

If participation is driven entirely by observable variables, this problem has a well-known

solution; one can reweight the sample to obtain population-appropriate estimates (as in e.g.

Stuart et al, 2011). However, when participation depends on unobservable factors, including

directly on the treatment effect, adjusting for differences in observable characteristics may be

insufficient.In the context of instrumental variables estimation with heterogenous treatment

effects, as in Imbens and Angrist (1994), Heckman et al (2006) refer to this possibility as

“essential heterogeneity.”2

Like Nyugen et al (2017), we observe that even when participation is driven by unob-

servable variables, under a common support assumption there exist weights which deliver the

1In medicine, for example, the efficacy of drugs is tested on study participants who may differ systematically
from the general population of possible users. See Stuart, Cole, Bradshaw and Leaf (2011) for discussion.
Within economics, Allcott (2015) shows that OPower treatment effects are larger in early sites than later sites,
and that adjustments for selection on observables do not close this gap.

2We use “participation” for the decision to take part in the randomized trial, rather than “selection,” to
distinguish the decision to join the trial from the treatment decision. We thank Peter Hull for suggesting this
terminology.
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average treatment effect – or any other moment of the data – for the population as a whole.

While these weights are in general unknown, they provide an natural lens through which to

consider external validity. In particular, the bias in the experimental estimate of the average

treatment effect, as an estimate for the average treatment effect in the population as a whole,

is given by the covariance of the individual-level treatment effect with these weights.

While the covariance of the treatment effect with the weights is a natural statistical object,

its magnitude is difficult to directly interpret. In our main result, we therefore model the

participation decision. We derive an approximation which relates external validity bias to

the role of unobservables in the participation decision. This approximation uses an estimate

of bias under the assumption that the participation decision is due entirely to observable

variables; we refer to this bias as the “participation on observables” bias. We show that the

ratio of the true bias to this participation on observables bias is inversely proportional to the

fraction of the covariance between the variables driving participation and the treatment effect

which is explained by the observables.

In the special case where participation is driven directly by the treatment effect, this

implies that the ratio of total bias to participation on observables bias is inversely proportional

to the R2 from regressing individual-level treatment effects on the observables. Thus, in this

setting our results highlight that the degree of private information about the treatment effect

determines the extent of external validity bias.

Our approximations yield expressions which involve unobservables, and so cannot be es-

timated from the data. Moreover, the plausible importance of unobservables relative to ob-

servables will vary across applications, not least depending on the available covariates. Thus

the point of our analysis is not to deliver definitive estimates or universal bounds, but instead

to reframe the question of external validity in terms of the relative importance of observable

and unobservable variables in a given context, since these are objects about which researchers

may have plausible intuition or priors.

To provide some intuition for the procedure we suggest, consider again the Bloom et

al (2015) example discussed above. Through the experimental data collection the authors

observe some demographic characteristics of the overall population of workers which can be

compared to the population who volunteer for the experiment. The first step in our procedure

is to formally adjust the treatment effect estimate to reflect differences in these observable
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features; we discuss a straightforward regression-based approach for this. The second step is

to calculate bounds on the population average treatment effect by combining the adjustment

for observable differences with an assumption about the relative importance of the observable

and unobservable features in driving the participation decision. In this case, the adjustment

would be informed by our sense of how much private information people have about their

relative productivity at home.

Our results rely on approximations which are developed by considering cases where the

bias is small. In a simulation example based on Muralidharan and Sundararaman (2011),

however, we find that these approximations remain reliable in an example with nontrivial

participation on unobservables.

To further illustrate, we apply our framework to four experimental papers: Attanasio,

Kugler and Meghir (2011), Bloom et al (2015), Dupas and Robinson (2013), and Olken,

Onishi, and Wong (2014). In each case we discuss the settings and describe how we might

identify data from the relevant target population. We then discuss the robustness of the

results to concerns about external validity.

Our results relate to a number of previous literatures, including those studying selection

on observables (e.g. Hellerstein and Imbens, 1999; Hotz et al, 2005; Cole and Stuart, 2010;

Stuart et al, 2011; Imai and Ratkovic, 2014; Dehejia, Pop-Eleches and Samii, 2015; Hartman,

Grieve, Ramsahai and Sekhon, 2015), and propensity score reweighting (e.g. Hahn 1998 and

Hirano, Imbens and Ridder 2003). Olsen et al (2013) derive expressions for the bias arising

from participation on unobservables, while Alcott (2015), Bell et al (2016), and Chyn (2016)

document such biases in applications.

Like us, Gechter (2015) and Nyugen et al (2017) provide methods for sensitivity analysis

when we are concerned about participation on unobservables. While our bounds assume limits

on the role of private information, Gechter (2015) assumes limits of the level of dependence

between the individual outcomes in the treated and untreated states, and Nyugen et al (2017)

assume limits on the mean of the unobservables. Hence, both approaches are complementary

to ours. Bell and Stuart (2016) emphasize the importance of considering external validity in

practice and discuss a variety of methods which may be used to evaluate threats to external

validity, while Olsen and Orr (2016) discuss strategies which may be used in the design of an

experiment to improve external validity.
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Our analysis builds on the literature on structural models for policy evaluation, reviewed

in Heckman and Vytlacil (2007a) and Heckman and Vytlacil (2007b). We follow this literature

in using a threshold crossing latent-index model to represent the participation decision, and

similar to Vytlacil (2002) we show that this model is not restrictive. While the primary focus

of this literature has been on instrumental variables models, the form of participation we

consider is allowed by the general frameworks of Heckman and Navarro (2007) and Heckman

and Vytlacil (2007a).

A particularly active recent strand of the structural policy evaluation literature considers

external validity in instrumental variable settings using the marginal treatment effect (MTE)

approach (see, for example, Brinch et al (2016), Kline and Walters (2016), Kowalski (2016),

and Mogstad et al (2017)). In contrast to these papers we are interested in applications where

there is perfect compliance with the assigned treatment, but there is an ex ante participation

decision. As a result there are no“always takers” in the settings we consider, which complicates

direct application of the MTE approach as in e.g. Brinch et al (2016). On the other hand, in

standard IV settings MTE approaches take advantage of information in the data we do not

use and so may deliver sharper conclusions.

Our approach is likewise related to the literature on sensitivity analysis, reviewed by

Rosenbaum (2002), that supposes that there is an unobserved variable which influences selec-

tion into treatment. While we consider the decision to participate in the experiment, rather

than selection into treatment, it seems likely that the methods studied in this literature could

be extended to our setting. Related approaches include Altonji Elder and Taber (2005) and

Oster (forthcoming). Finally we also relate, more distantly, to the recent literature on external

validity in regression discontinuity settings (Bertanha and Imbens, 2014; Angrist and Rokka-

nen, 2015; Rokkanen, 2015). This link, along with the connection to methods for instrumental

variables settings, is discussed further in Section 7.

In the next section, we briefly discuss the sorts of the external validity problems we aim to

address. Following that, we introduce the setting we consider and give sufficient conditions for

the existence of weights which recover the average treatment effect in the target population.

Section 4 develops our main approximation result. Section 5 discusses implementation of

our approach and illustrates in a constructed example based on data from Muralidharan and

Sundararaman (2011). Section 6 details our applications, while Section 7 discusses extensions
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of our results and Section 8 concludes.

2 Scope of Problem

Before introducing our framework, it is useful to be explicit about the range of problems to

which we hope to speak. To fix ideas, we first discuss two broad types of studies where we

expect our approach to be useful. We then briefly discuss the kinds of external validity issues

our approach is well-suited to address in the settings.

2.1 Settings

Experiments with a Participation Margin In many experimental settings there is an

explicit choice by participants to take part in the study. Quite often the treatment offered

is only available through the study. Examples include Attanasio, Kugler and Meghir (2011)

and Gelber, Ibsen and Kessler (2016) on job training, Bloom et al (2015) on working from

home, and Muraldiharan et al (2017) on computer-based tutoring. A key feature of these

experiments is that a broad population is offered the chance to be in the experiment, and

only those who volunteer are included in the randomization set. The estimates derived from

such experiments are therefore valid for the sample who choose to take part, but may not be

valid for the overall population. This is of particular concern if, for example, we think people

are more likely to participate when they expect a large treatment effect.

Experiments with Selected Locations or Units A second group of experiments are

those in which researchers select a set of areas or treatment units (schools, villages, etc)

in which to run their experiment, and the locations are selected non-randomly. Examples

include Muraldiharan and Sundararaman (2011) on teacher performance pay, Jensen (2012)

on education and job opportunities, Olken et al (2014) on block grants, and Alcott (2015)

on Opower. In contrast to the above, in these settings there is no individual participation

margin, and locations typically do not select themselves into the study. Nevertheless, the

selection of locations is often non-random in ways that may influence the results. As with

individual participation decisions, this concern is particularly acute when we think researchers

select units based in part on their predictions for the treatment effect.
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2.2 Types of External Validity

Having run an experiment of the sort described above, there are many external validity ques-

tions one could ask. We may wonder about extrapolation to a random sample, or to the full

population, or more broadly to other locations or time periods. We will briefly discuss the

role of our approach in addressing each of these extrapolation problems.

Extrapolation to Random Sample Our approach is most directly applicable if we want

to extrapolate from an experimental sample to a similarly sized random sample. This may be

relevant if, for example, one planned a policy where a treatment would be offered to employees

randomly rather than allowing them to select into it.

Extrapolation to Full Population In many settings our approach is also suited to con-

sidering extrapolation to a full population. This is a common type of external validity concern

in practice. For example, one might have evaluated a policy in a subset of locations in a state

or country and now want to extend to the whole area. Or one might have evaluated the

policy using individuals who volunteered for an experiment, and now want to extend it to all

individuals.

A complication is that treating the entire population could introduce important general

equilibrium or spillover effects. Where such issues arise it may well be interesting to undertake

the analysis we suggest, but to accurately predict the effect of treating the full population one

will need to separately account for effects arising from the scale of treatment.

Extrapolation to Additional Locations, Circumstances Perhaps the most ambitious

external validity goals relate to extrapolation to different time periods or locations - for ex-

ample, to times with better labor market conditions or to different states. This case is beyond

the scope of our approach, since we fundamentally rely on the assumption that the trial pop-

ulation is a subset of the target population. Bates and Glennerster (2017) provide a nuanced

discussion of the extent to which one can port the results of randomized trials between loca-

tions within developing countries, while Gechter (2015) develops formal extrapolation bounds

under assumptions on the relationship between treated and untreated outcomes.

As this discussion suggests, we view our approach as best suited to asking whether the
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results in a particular experiment are likely to extend to an overall population. As we illustrate

in our examples, this is often a question of policy interest. We turn now to developing our

theoretical framework, after which we return to implementation and applied examples.

3 Participation Decisions and Reweighting

We assume that we observe a sample of observations i from a randomized trial in some

population, and denote the distribution in this trial population by PS . We are interested in

the average treatment effect in a larger target population, whose distribution we denote by P .

In this section, we show that under mild conditions we can reweight the trial population to

match the target population. For simplicity we assume an infinite sample in developing our

theoretical results, so the distribution of observables under PS is known. Results on inference,

which account for sampling uncertainty, are developed in Section 5.1 below.

We consider a binary treatment, with Di ∈ {0, 1} a dummy equal to one when i is treated.

We write the outcomes of i in the untreated and treated states as Yi (0) , Yi (1), respec-

tively. We assume that we also observe a vector of covariates Ci for each individual which

are unaffected by treatment. Let Xi = (Yi (0) , Yi (1) , Ci) collect the potential outcomes and

covariates. We observe each unit in only a single treatment state, so the observed outcome

for i is

Yi = Yi (Di) = (1−Di)Yi (0) +DiYi (1) ,

and the observed data are (Yi, Di, Ci) . See Imbens and Rubin (2015) for further discussion of

the potential outcomes framework.

We assume that treatment is randomly assigned in the trial population.

Assumption 1 Under PS, Di ⊥ (Yi (0) , Yi (1) , Ci) and E [Di] = d for known d.

Under Assumption 1, we can express the average treatment effect (ATE) in the trial

population as

EPS [TEi] = EPS [Yi (1)− Yi (0)] = EPS [Ti] , Ti =
Di

d
Yi −

1−Di

1− d
Yi. (1)

Since Ti can be calculated from the data, this confirms that we can estimate the trial-
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population ATE from our experimental sample, as is well-understood.3

Our ultimate interest is not in the trial population ATE EPS [TEi], but instead in the

target population ATE EP [TEi].
4 We assume that the trial population is a subset of the

target population, and that there is a variable Si in the target population that indicates

whether individual i is also part of the trial population

Si =


1 if i is part of the trial population

0 otherwise.

If the distribution of Xi under P , PX , has density pX (x) then we can write the density in

the trial population in terms of pX (x) and Si.
5

Lemma 1 Let PX have density pX (x). If EP [Si] > 0 then PX,S is absolutely continuous

with respect to PX and the density of PX,S is

pX,S (Xi) =
EP [Si|Xi]

EP [Si]
pX (Xi) .

If we assume that Si is independent of Xi, this result implies that PX,S = PX and thus

that the distribution of Xi is the same in the trial and target populations. If, on the other

hand, Si is not independent of Xi, then we will have EPS [f (Xi)] 6= EP [f (Xi)] for some

functions f (·) . In particular, if participation is related to the treatment effect Yi(1) − Yi(0),

in general EPS [TEi] 6= EP [TEi] so the ATE in the trial population is biased as an estimate

of the ATE in the target population.

To draw conclusions about the target population based on data in the trial population, it

is important that all values of X which are present in the target population also have some

chance of appearing in the trial population.

3While we focus on random assignment of Di for simplicity, if one instead considers random assignment
conditional on covariates, with Di ⊥ (Yi (1) , Yi (0)) |Ci and EPS [Di|Ci] = d (Ci) for known d (·), we can instead

take Ti =
(

Di
d(Ci)

− 1−Di
1−d(Ci)

)
Yi and our results below will go through. This follows from well-known results in

the literature on propensity score reweighting- see Rosenbaum and Rubin (1983).
4Our analysis extends directly to other common target parameters in treatment effect settings. For example,

to calculate average treatment effects for subgroups defined based on covariates we can limit the trial and
target populations to these groups, while to calculate average treatment effects on the distribution function of

an outcome variable Ỹ at some y we can define Yi (0) = 1
{
Ỹi (0) ≤ y

}
and Yi (1) = 1

{
Ỹi (1) ≤ y

}
.

5We define all densities with respect to a fixed base measure µ. µ need not be Lebesgue measure, so our
results do not require that Xi be continuously distributed.
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Assumption 2 0 < EP [Si|Xi] for all Xi.

This assumption ensures that the distributions in the trial and target populations are

mutually absolutely continuous. If this assumption fails, so there are some values of Xi in the

target population which are never observed in the trial population, the reweighting approach

developed in this paper no longer applies. Even in this case, under limited deviations from

absolute continuity one could build on our results to derive bounds, though we do not pursue

this possibility.

Illustration: To develop intuition, we begin by illustrating the participation problem in

a dataset commonly used in economics: the National Longitudinal Survey of Youth 1979

(NLSY-79). The NLSY-79 is a longitudinal panel which began with youth aged 14 to 21 in

1979 and has continued to the present. At each round data is collected on education, labor

market experiences, health, and other variables.

The NLSY oversampled certain groups (e.g. African-Americans). Due to this sampling

scheme, moments of these data (for example, means of variables) will not be unbiased for

those moments in the full population. We use the NLSY as illustration since in these data

we observe sampling weights. These weights are intended to allow researchers to reweight the

NLSY to obtain a representative sample from the US population.6 Since the NLSY is not a

randomized trial, we take the moments of interest to be the means of demographic variables

in the data. We use the 1984 survey data for this illustration.

In our terminology, we define the NLSY sample as our trial population, and the reweighted

representative sample as our target population. The availability of the weights makes it

possible to explicitly illustrate the reweighting calculations we develop below. 4

3.1 Reweighting Algebra

When the trial and target populations differ, Assumption 2 implies that (in principle) we can

reweight the trial population to match the target population.

6The NLSY provides a number of different weights; we use the overall sampling weights, not the cross
sectional weights. One could raise concerns that the NLSY weights may not fully accurately match the overall
population. Given that our interest here is solely in illustration, however, we abstract away from these concerns.

10



Lemma 2 Under Assumption 2, for Wi = pX(Xi)
pX,S(Xi)

and any function f (·),

EP [f (Xi)] = EPS [Wif (Xi)] .

Lemma 2 is a well-known result (see e.g. Horvitz and Thompson, 1952), and shows that

we can recover expectations under PX by reweighting our observations from PX,S using the

weights Wi = pX(Xi)
pX,S(Xi)

, which compare the densities of the trial and target populations at each

Xi. Since Lemma 2 implies that EP [TEi] = EPS [WiTEi] , if we observed the weights Wi we

could estimate the ATE in the target population as EPS [WiTi] . The weights depend on both

the distribution in the target population and the potential outcomes, however, and so cannot

be calculated in practice.

While unknown, the weights Wi provide a useful lens through which to consider external

validity. These weights are non-negative by construction, and taking f (·) = 1 in Lemma 2

confirms that EPS [Wi] = 1. An immediate corollary of Lemma 2 allows us to characterize

the bias of the sample mean of f (Xi) as an estimator for EP [f (Xi)] . A closely related result

was previously derived in Olsen et al (2013).

Corollary 1 For any function f (·), under Assumption 2 we have

EPS [f (Xi)]− EP [f (Xi)] = −CovPS (Wi, f (Xi)) .

If we further assume that EPS

[
f (Xi)

2
]

and EPS
[
W 2
i

]
are finite, then

EPS [f (Xi)]− EP [f (Xi)] = −σPS (Wi) ρPS (Wi, f (Xi))σPS (f (Xi)) , (2)

for σPS (Ai) and ρPS (Ai, Bi) the standard deviation of Ai and the correlation of Ai and Bi

under PS , respectively.

The final term in equation (2), σPS (f (Xi)) , measures the standard deviation of f (Xi) in

the trial population. The correlation ρPS (Wi, f (Xi)) measures the strength of the relationship

between the weights and f (Xi), and can loosely be viewed as measuring the extent to which

the participation decision loads on f (Xi) . By definition this quantity is smaller than one

in absolute value. Lastly, the standard deviation σPS (Wi) can be viewed as measuring how
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much the trial and target populations differ along any dimension of Xi, since the bounds on

ρPS (Wi, f (Xi)) imply that for all functions f (·),

|EP [f (Xi)]− EPS [f (Xi)]| ≤ σPS (Wi)σPS (f (Xi)) . (3)

Thus, the mean of f (Xi) in the target population can differ from its mean in the trial popu-

lation by at most σPS (Wi) times its standard deviation.

The same decomposition applies to any collection of moments. In particular, suppose

we are interested in the mean of a vector of functions f1(Xi), f2(Xi), ..., fq(Xi) in the target

population. Applying Corollary 1 to each element, we obtain

EPS [f1 (Xi)]− EP [f1 (Xi)] = −σPS (Wi) ρPS (Wi, f1 (Xi))σPS (f1 (Xi))

EPS [f2 (Xi)]− EP [f2 (Xi)] = −σPS (Wi) ρPS (Wi, f2 (Xi))σPS (f2 (Xi))
...

EPS [fq (Xi)]− EP [fq (Xi)] = −σPS (Wi) ρPS (Wi, fq (Xi))σPS (fq (Xi)) .

(4)

A key feature of this decomposition is that the standard deviation of the weights, σPS (Wi)

appears in all rows. This again reflects the fact that σPS (Wi) measures the degree to which

the trial and target populations differ along any dimension of Xi.

Illustration (continued): In the NLSY we observe the weights Wi. Therefore, we can

calculate all terms in the decomposition (4). In particular, we consider this decomposition

when taking f (Xi) to measure race (share white), high school completion, and gender (share

male).

The first two columns of Table 1 report the trial and target population means for these

variables in the NLSY. The final three columns show the elements of the bias decomposition in

equation (2). The difference in means for each variable is the product of these three elements.

The differences between trial and target population means reflect the sampling structure: the

NLSY over-samples racial minority groups and individuals from lower socioeconomic status

backgrounds. There are fewer whites and fewer high school graduates in the sample than in

the overall US population. The bias is largest for race, which reflects the very high correlation

between the sampling weights and race.
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In contrast to race and education, there is little bias in the gender variable since the sample

is not selected on gender. This lack of selection is reflected in the very small correlation

between this variable and the weights. As noted above the standard deviation of the weights

is the same in all rows, since this is a measure of selection on any dimension. 4

While the decomposition (2) does not deliver precise conclusions about the degree of bias

without further restrictions, it provides a useful guide to intuition. In particular, the bias

in the trial population ATE is larger when (a) the trial and target populations differ more

in general, (b) participation decisions are more correlated with the treatment effect, and

(c) there is more variability in the treatment effect. In the next section we build on these

intuitions, introducing unobserved variables that drive participation decisions and developing

approximations which allow us to translate beliefs about the role of private information in

participation decisions to bounds on the plausible degree of external validity bias.

4 Bias Approximations

While the the results of the last section are helpful for developing intuition, to use these results

to draw quantitative conclusions about the bias of the sample average of Ti as an estimator

for EP [TEi] (i.e EPS [TEi] − EP [TEi]) we need to know certain properties of the weights

Wi. These weights, in turn, depend on distribution of Xi in the target population and so are

unknown in applications. In this section we develop approximate expressions for the weights

which allow us to express the bias EPS [TEi]−EP [TEi] in the trial population ATE in terms

of (a) the bias due to participation on observables and (b) the role of private information

in participation decisions. Bias from participation on unobservables can be estimated, so if

researchers have a view about the degree of private information in a given setting, they can

use these results to estimate the plausible degree of bias. Our approximations become exact

when the participation decision is nearly random, in a sense we make precise below, but we

find in the next section that they perform well in simulated examples where participation

decisions depend non-trivially on unobservables.
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4.1 Participation Model

Throughout this section we assume that in addition to Xi = (Yi (0) , Yi (1) , Ci) , there are also

variables Ui which are unobserved by the researcher but may play a role in the participation

decision. Further, we assume that the distribution of the covariates Ci in the target population

is known (though we discuss in Section 5.1 below how we can proceed if we know only some

aspects of this distribution). If there are variables which are observed in the trial population

but whose distribution in the target population is entirely unknown, for the purposes of

analysis we include these in Ui. See Nyugen et al (2017) for alternative approaches to using

variables observed in the trial population but not the target population.

Since we can take Ui to include (Yi (0) , Yi (1)) , it is without loss of generality to assume

that participation depends only on (Ci, Ui) , so Si is conditionally independent of the potential

outcomes

Si ⊥ (Yi (0) , Yi (1)) | (Ci, Ui) . (5)

Analogous to Assumption 2, we further assume that every value of (Ci, Ui) may appear in

the trial population, where we now strengthen this assumption by bounding the conditional

probability of participation away from zero and one.

Assumption 3 Equation (5) holds, and there exists ν > 0 such that ν < EP [Si|Ci = c, Ui = u] <

1− ν for all (c, u).

Assumption 3 implies Assumption 2. To develop our approximation results, it will be help-

ful to model participation using a threshold-crossing latent index model. Under Assumption

3, this is without loss of generality.

Lemma 3 Under Assumption 3 we can write

Si = 1 {g (Ci, Ui) ≥ Vi} , (6)

where Vi is continuously distributed with Lipschitz density pV independently of (Ci, Ui, Yi (0) , Yi (1))

and has support equal to R, and g (Ci, Ui) is bounded.

This result shows that since we do not restrict the functional form of g (Ci, Ui) , it is
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without loss of generality to assume a latent index model.7 Thus, similar to Vytlacil (2002),

a sufficiently flexible latent index model imposes no restrictions beyond those implied by

Assumption 3. See also Vytlacil (2006). The independence condition (5) then implies that

there exist weights Wi that depend only on g (Ci, Ui) and allow us to calculate the target-

population mean of any function f (Xi) .

Lemma 4 Under Assumption 3, there exist weights

Wi =
p (Ci, Ui)

pS (Ci, Ui)
= w (g (Ci, Ui))

for a continuously differentiable function w, such that for any function f (·)

EP [f (Xi)] = EPS [Wif (Xi)] .

Lemma 4 builds on Lemma 2 by showing that under Assumption 3, we can take the weights

Wi to depend only on the function g (Ci, Ui) in the latent index model. This result directly

captures the bias, but the function w (·) is unknown and depends on the data generating

process, so this result is still not directly useable in practice.

4.2 Approximate Weights

To obtain more easily interpretable expressions, we consider Taylor approximations to Wi. In

particular, since w (·) is a smooth function, Taylor expansion around EPS [g (Ci, Ui)] suggests8

Wi ≈W ∗i = w0 + w1g (Ci, Ui) .

With this approximation, as in Corollary 1 we have

EPS [f (Xi)]− EP [f (Xi)] ≈ −CovPS (W ∗i , f (Xi)) = −w1CovPS (g (Ci, Ui) , f (Xi)) . (7)

7In fact, the proof shows it is without loss to assume that the error Vi is normal as in e.g. Heckman (1979).
Hence, unlike in the literature on empirical implications of the Roy model, e.g. Heckman and Honore (1990),
normality of Vi imposes no restrictions in our setting beyond those implied by Assumption 3.

8First-order Taylor approximation yields w1 = w′(EPS [g (Ci, Ui)]), w0 = w(EPS [g (Ci, Ui)]) −
w1EPS [g (Ci, Ui)].
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Thus, the bias in the trial-population mean of f (Xi) is proportional to the covariance between

the participation variable g (Ci, Ui) and f (Xi).

Our next result shows that this approximation becomes arbitrarily accurate when partic-

ipation is nearly random. To formalize this idea, we make the following assumption.

Assumption 4 We can write

g (Ci, Ui) = κ · h (Ci, Ui)

for a constant κ.

For a fixed data generating process, Assumption 4 is without loss of generality, since we

can always take κ = 1 and h (Ci, Ui) = g (Ci, Ui) . To develop our approximations, however,

we will hold the distribution of (Xi, Ui) in the target population, as well as the function h,

fixed and take κ to zero, so participation becomes entirely random in the limit. Assumption

4 thus specifies precisely how the participation decision approaches the fully random case.

Proposition 1 Under Assumptions 3 and 4, for any f (Xi) such that EP

[
f (Xi)

2
]

is finite

CovPS (Wi, f (Xi)) = CovPS (W ∗i , f (Xi)) +O
(
κ2
)
,

as κ→ 0. In particular, if CovP (g (Ci, Ui) , f (Xi)) 6= 0 then

CovPS (Wi, f (Xi))

CovPS (W ∗i , f (Xi))
→ 1.

This proposition shows that when participation is nearly random, the approximation error

in (7) vanishes. In particular, while the overall degree of bias CovPS (Wi, f (Xi)) tends to zero

as κ→ 0, the approximation error vanishes even faster.

If we apply our bias approximation (7) with f (Xi) = TEi equal to the treatment effect,

EPS [TEi]− EP [TEi] ≈ −w1CovPS (g (Ci, Ui) , TEi) , (8)

so the bias in the trial population ATE is approximately proportional to the covariance of the

treatment effect with g (Ci, Ui) . Even if this covariance were known, however, this formula is
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not usable due to the unknown constant of proportionality w1. To eliminate this term, we

compare the true bias to the bias from participation on observables.

Corrections for participation on observables, including Hotz et al (2005) and Stuart et

al (2011), adjust the average treatment effect for differences between the trial and target

populations in the distribution of the covariates Ci. Given enough data and a sufficiently

flexible specification, these methods consistently estimate EP [EPS [TEi|Ci]] , which can be

interpreted as the ATE corrected for participation on observables. In particular, this param-

eter begins with the average treatment effect conditional on each value of the covariates in

the trial population, EPS [TEi|Ci] , and then averages over these conditional effects using the

distribution of covariates in the target population. Since we have assumed the distribution

of covariates in the target population is known and that we observe data from a randomized

experiment in the trial population, this is a quantity we can estimate.

If we apply our bias approximation (7) with f (Xi) = EPS [TEi|Ci] , then since EPS [EPS [TEi|Ci]] =

EPS [TEi] by the law of iterated expectations, we see that

EPS [TEi]− EP [EPS [TEi|Ci]] ≈ −w1CovP (g (Ci, Ui) , EPS [TEi|Ci]) (9)

= −w1CovP (EPS [g (Ci, Ui) |Ci] , EPS [TEi|Ci])

where the equality follows from another application of the law of iterated expectations. Thus,

the correction for participation on observables (9) takes the same form as the true bias (8),

except that we consider the covariance of g (Ci, Ui) (or EPS [g (Ci, Ui) |Ci]) with the conditional

average treatment effect EPS [TEi|Ci] rather than the true treatment effect TEi. If we take

the ratio of the true bias to the participation on observables bias, we see that

EP [TEi]− EPS [TEi]

EP [EPS [TEi|Ci]]− EPS [TEi]
≈ CovPS (g (Ci, Ui) , TEi)

CovPS (EPS [g (Ci, Ui) |Ci] , EPS [TEi|Ci])
= Φ,

where the constant of proportionality w1 drops out and we are left with a ratio of covariances.

While the ratio Φ may initially appear rather involved, it has an intuitive interpretation.

In particular, Φ−1 is the share of the covariance between g (Ci, Ui) and TEi which is explained
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by covariates. To further draw this out, note that we can write

Φ = 1 +
CovPS (g (Ci, Ui)− EPS [g (Ci, Ui) |Ci] , TEi − EPS [TEi|Ci])

CovPS (EPS [g (Ci, Ui) |Ci] , EPS [TEi|Ci])
. (10)

The numerator in the second term is the covariance between the residuals from nonparamet-

rically regressing g (Ci, Ui) and EPS [TEi] on the covariates Ci, while the denominator is the

covariance between the fitted values.

If the covariates fully explain any relationship between participation decisions and treat-

ment effects, the numerator in (10) is zero and Φ = 1. For this to be the case it suf-

fices either that the unobservables Ui are uninformative about participation, so g (Ci, Ui) =

E [g (Ci, Ui) |Ci], or that they are uninformative about the treatment effect, so EPS [TEi|Ci, Ui] =

EPS [TEi|Ci] . In either case, correcting for participation on observables is enough to recover

the ATE in the target population, and EP [TEi] = EP [EPS [TEi|Ci]] .

By contrast, if private information plays a role in both participation decisions and the

treatment effect, there is scope for bias. If the covariance between the residuals is of the

same sign as that between the fitted values, we will have Φ ≥ 1. This need not be the case

in general, however, and the plausible range of values of Φ will vary across different settings

depending on the set of available covariates Ci, the plausible set of unobservables Ui, and our

beliefs about how participation is determined.

Special Case: Participation on the Treatment Effect An important special case arises

when we assume that participation decisions are based directly on the predicted treatment

effect given Ci and Ui, potentially along with some set of unrelated variables.

Assumption 5 Suppose that

g (Ci, Ui) = α1EP [TEi|Ci, Ui] + gC (Ci) + gU (Ui) ,

where EPS [gU (Ui) |Ci] = 0 and

CovPS (TEi, gC (Ci)) = CovPS (TEi, gU (Ui)) = 0.

Intuitively, we can think of this as the case where participation depends on the predicted
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treatment effect EPS [TEi|Ci, Ui], a function of covariates which is unrelated to the treatment

effect and, potentially, a function of unobservables which is unrelated to both the treatment

effect and the covariates. Note that if we include the potential outcomes (Yi(0), Yi(1)) among

the unobservables, EPS [TEi|Ci, Ui] = TEi, so Assumption 5 allows the possibility of direct

participation on the treatment effect.

Under Assumption 5, we obtain a simplified expression for Φ.

Lemma 5 Under Assumption 5,

Φ =
V arPS (EPS [TEi|Ci, Ui])
V arPS (EPS [TEi|Ci])

.

Thus, under Assumption 5, Φ measures the variance of treatment effects predicted based on

(Ci, Ui), relative to the variance of treatment effects predicted based on Ci alone. This can

be interpreted as a measure for the degree of private information about the treatment effect

used in participation decisions. When there is a large amount of private information the true

bias in the ATE will be much larger than the participation on observables bias EPS [TEi] −

EP [EPS [TEi|Ci]]. By contrast, when there is little private information the target-population

ATE will be close to EP [EPS [TEi|Ci]]. In the extreme case where participation is directly

on the treatment effect and EPS [TEi|Ci, Ui] = TEi, Φ−1 measures the share of treatment

effect heterogeneity captured by the covariates, specifically the R2 from nonparametrically

regressing TEi on Ci.

To further explore the structure of Φ in this case, analogous to (10) we can write

Φ = 1 +
V arPS (EPS [TEi|Ci, Ui]− EPS [TEi|Ci])

V arPS (EPS [TEi|Ci])
.

Unlike in (10), however, the second term involves a ratio of variances and so is always positive.

Thus, under Assumption 5 we know that Φ ≥ 1 so that, up to approximation error,

EP [TEi]− EPS [TEi]

EP [EPS [TEi|Ci]]− EPS [TEi]
≥ 1.

Thus, if correcting for participation on observables reduces our estimate of the target-population

average treatment effect, allowing for additional participation on unobservables implies still-
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further reductions, and likewise for increases. We thus see that, unlike the general case, the

assumption of participation on the treatment effect delivers unambiguous predictions about

the sign of the bias from participation on unobservables.9

5 Implementation and Example

This section discusses implementation of our approach and examines performance in a con-

structed example.

5.1 Implementation

Our assumption of random assignment, Assumption 1, ensures that we can estimate the

ATE EPS [TEi] in the trial population. We are interested in the range of plausible values

for the ATE in the target population. To assess the plausible of bias from participation on

unobservables, we consider two distinct approaches. First, we can consider a particular value

for the ATE in the target population, t∗P , and ask how important a role private information

would have to play in participation decisions to obtain this value. Alternatively, we can

assume limits the degree of private information and calculate the implied range of ATEs.

For both approaches, an important first step is correction for participation on observables.

Recall that the ATE corrected for participation on observables is EP [EPS [TEi|Ci]] . Provided

the distribution of Ci in the target population is known, to calculate this correction we only

need an estimate of EPS [TEi|Ci] . In this section we discuss a simple approach based on linear

regression of the treatment effect proxy Ti on functions of covariates, which can be applied

even with limited knowledge of the features of the target population. Similar linear corrections

are considered in Hotz et al (2005) to account for residual differences after matching. More

broadly, linear corrections for differences in the distribution of covariates between groups have

been widely studied - see for example Kline (2011) and references therein. In settings with

richer data on the target population, one can also apply our general approach together with

9Note, further, that since the resulting expressions to not depend on g (Ci, Ui), we can bound Φ using
properties of the treatment effect. For example, in the special case where we observe Ui in the trial population
but its distribution in the target population is unknown, we can estimate V arPS (EPS [TEi|Ci, Ui]) directly.
Even when Ui is unobserved in the trial population, we know that V arPS (EPS [TEi|Ci, Ui]) ≤ V arPS (TEi) ,
and so can use known bounds on V arPS (TEi), perhaps under assumptions on the degree of dependence between
Yi (0) and Yi (1) as in Gechter (2015), to bound Φ.
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more sophisticated corrections for participation on observables, including matching as in Hotz

et al (2005) and propensity-score reweighting as in Stuart et al (2011).

Given the participation on observables adjustment, we implement our two approaches

to robustness. First, taking the target value of interest as t∗P we evaluate robustness by

calculating the value of Φ sufficient to produce t∗P . A natural target value in many treatment

effect settings is zero. Let us denote the resulting Φ by Φ (t∗P ). To calculate Φ (t∗P ) , we simply

compare the implied total adjustment to the participation on observables adjustment,

Φ (t∗P ) =
t∗P − EPS [TEi]

EP [EPS [TEi|Ci]]− EPS [TEi]
.

Alternatively, also using the participation on observables adjustment, we can impose

bounds Φ ∈ [ΦL,ΦU ] . Under these bounds we know that (assuming the participation on

observables correction is positive),10 EP [TEi] lies in the interval

EPS [TEi]+[ΦL (EP [EPS [TEi|Ci]]− EPS [TEi]) ,ΦU (EP [EPS [TEi|Ci]]− EPS [TEi])] . (11)

With the participation on observables correction and the trial population ATE, EPS [TEi] ,

we can thus easily calculate the implied range of values for EP [TEi].

The plausible range of values for Φ will depend on the context. Consider first the case

where we think that participation decisions are driven by the treatment effect along with vari-

ables unrelated to treatment, in the sense of Assumption 5. In this case Φ can be interpreted

as a measure of the degree of private information about treatment effects used in participation

decisions. For example, suppose we find that a value of Φ = 2 is necessary to eliminate a

positive result. This indicates that the unobservables would have to be at least as informative

about the treatment effect as the observables in order for the effect in the target population

to be zero.11 If we have a rich set of covariates which seems likely to be informative about

treatment effect heterogeneity relative to the plausible sources of private information, we can

10If it is instead negative, then EP [TEi] lies in the interval

EPS [TEi] + [ΦU (EPS [TEi|Ci]− EPS [TEi]) ,ΦL (EPS [TEi|Ci]− EPS [TEi])] .

11In particular, if we regress the predicted treatment effects based on both unobservables and observables on
the observables alone, the R2 must be less than 0.5.
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then conclude that our result is robust to plausible levels of private information. If, on the

other hand, the available covariates seem unlikely to be very informative about the treatment

effect, then a value of Φ = 2 may be quite plausible, suggesting that our result is not robust.

The interpretation is similar under more general assumptions about participation deci-

sions. For example, consider a case where experimental locations were chosen on accessibility,

but we do not observe accessibility measures. In this case Φ measures the relative impor-

tance of the observables and unobservables in explaining the covariance between accessibility

and the treatment effect. If we think that our covariates suffice to construct a good proxy

for accessibility, or that they explain much more treatment effect heterogeneity than do the

plausible unobservables, then finding that a value of Φ = 2 is needed to overturn our results

should reassure us about their robustness. On the other hand, if neither of these conditions

hold we may remain concerned about external validity even if a large value of Φ is needed to

overturn our results.

Further intuition may be provided by thinking about the share of relevant variables missed

by our observed covariates. In Appendix B.1, we describe a model where a large number of

latent factors drive treatment effects and participation decisions, and a random subset of these

are measured by Ci while the rest are measured by Ui. In this setting Φ can be interpreted

as the ratio of the total to the observed factors. In particular, Φ = 2 reflects a case where the

observed covariates capture 50% of the latent factors.12

5.1.1 Correction for Participation on Observables

To implement the approaches discussed above, we need an estimate of EP [EPS [TEi|Ci]] −

EPS [TEi] . As noted in Section 3 we can estimate EPS [TEi] by the sample average of Ti

as defined in (1), so the challenge is estimation of EP [EPS [TEi|Ci]], the ATE corrected for

participation on observables.

In our applications below, we first estimate EPS [TEi|Ci] by regressing Ti on a vector of

functions of the covariates r (Ci) whose mean EP [r (Ci)] in the target population is known,

Ti = r (Ci)
′ δ + ei,

12The assumptions needed for this interpretation are considerably stronger than those required for the rest of
our results. We thus regard the model yielding this result more as a way to build intuition than as a description
of a plausible data generating process.
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where we assume r (Ci) includes a constant. We then approximate EP [EPS [TEi|Ci]] by

EP [r (Ci)]
′ δ. If we assume a linear model for treatment effect heterogeneity,

EPS [TEi|Ci] = EPS [Ti|Ci] = r (Ci)
′ δ,

then this procedure exactly recovers EP [EPS [TEi|Ci]] . If on the other hand we consider

the linear specification as an approximation, then this procedure delivers an approximation

to EP [EPS [TEi|Ci]] , where the approximation error will vanish as we consider rich sets of

functions r (Ci) .
13

An advantage of the regression approach we use in this paper is that it can be implemented

based on knowledge of EP [r (Ci)] alone, and so does not require us to know the full distribution

of Ci in the target population. In settings where more is known about the distribution of Ci

under P , however, one could also consider other methods, for example matching as in Hotz

et al (2005), or propensity score reweighting as in Stuart et al (2011). Such approaches again

yield estimates of the ATE corrected for participation on observables, EP [EPS [TEi|Ci]], which

can be plugged into our approach exactly as described above.

5.1.2 Inference

Thus far, we have conducted our analysis treating the distribution of observables in the trial

population as known. In applications we observe only a finite sample from the trial population,

however, and need to account for sampling uncertainty. In discussing inference we focus

on the case of simple random sampling, where treatment is assigned iid across units. For

discussion of the complications arising from other randomization schemes see Bugni, Canay

and Shaikh (2017). The development of inference results for our approach under more general

randomization schemes is an interesting question for future work.

Under the assumption of simple random assignment, we can conduct inference using the

bootstrap.14 Bootstrap standard errors for Φ (t∗P ) become unreliable when the correction

13Ideally we would include interactions and higher-order terms in r (Ci), although this may be infeasible
given data constraints. Nonetheless, whenever possible researchers should at a minimum include linear and
squared terms in the covariates, since this will capture differences between the trial and target populations in
the means and variances of these variables. In settings with richer data one should consider even more moments
- interactions between the variables, higher moments of the distribution of each variable, etc.

14Note that when we estimate the distribution in the target population from a sample, we should bootstrap
target population quantities as well in order to obtain accurate measures of uncertainty.
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for participation on observables is close to zero, however. In this case, the denominator

in Φ (t∗P ) is almost zero, which results in problems very similar to those that arise from

weak instruments.15 In Appendix B.2 we discuss how to construct reliable confidence sets for

Φ (t∗P ). These confidence sets are close to the usual ones when the participation on observables

correction is large, but can be unbounded when it is small.

Confidence sets for the ATE EP [TEi] are more straightforward. In particular, for (σ̂L, σ̂U )

bootstrap standard errors for our estimates (γ̂L, γ̂U ) of the lower and upper bounds in (11),

we can construct a (conservative) level 1− α confidence interval for EP [TEi] as

[min {γ̂L − σ̂Lcα, γ̂U − σ̂Ucα} ,max {γ̂L + σ̂Lcα, γ̂U + σ̂Ucα}] ,

for cα the two-sided level 1 − α normal critical value (e.g. 1.96 for a 95% confidence set).16

Alternatively, one can report (γ̂L, γ̂U , σ̂L, σ̂U ), which allows readers to construct the confidence

set of their choice.

5.2 Example

We illustrate our approach in an example. To ensure that we know the true bias while also

having an empirically reasonable distribution for the data, we use a constructed example

based on a real experiment.

5.2.1 Data and Empirical Approach

We base our example on data from Muralidharan and Sundararaman (2011), which is a

randomized evaluation of a teacher performance pay scheme in India. The project includes

student-level data from roughly 300 schools across the state of Andhra Pradesh. Teachers in

“incentive” schools were paid more for better student test scores, while those in control schools

were not. The primary outcome is student test scores. Muralidharan and Sundararaman

(2011) find that student test scores increase as a result of incentive pay.

15The participation on observables correction EP [EPS [TEi|Ci]] − EPS [TEi] plays the same role as the
first-stage parameter in linear IV, so problems arise when this difference is close to zero relative to sampling
variability.

16In fact, one can typically use a critical value smaller than cα, though more computation is required to
derive the exact value. We do this in our applications - see Appendix B.2 for details.
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To construct our example, we define the distribution of the target population to be the

empirical distribution in the Muralidharan and Sundararaman (2011) data. That is: although

it would also be reasonable to ask about the external validity of their results to a broader

population, for this exercise we assume that they are studying the target population and we

ask what conclusions we would draw if we observed only a selected subset. To abstract from

issues of sampling variability, we collapse the data to the school level and sample from the

data with replacement to create a large target population.

We predict treatment effects based on school-level characteristics: average teacher edu-

cation, average teacher training, average teacher salary, average household income, a school

infrastructure index, the share of the student population who is scheduled tribe or scheduled

caste, and average teacher absence. We also include dummies for which mandal (a geographic

area) the school is in. We can think of these controls as capturing differences across areas in

how effective the program is.

From this target population, we extract a trial population based either on the predicted

treatment effect or on area-level characteristics. This process is described in more detail in

each case below. Under both schemes the ATE in the trial population exceeds that in the

target population. Our sample construction is such that if we observed all of the school-level

characteristics in both the trial and target populations, we could recover the target population

treatment effect using the participation on observables adjustment. Our approach, then, is to

explore what happens as we treat increasingly large sets of the characteristics as unobserved.

5.2.2 Participation on Treatment Effect

We first model participation on the predicted treatment effect. We create a predicted treat-

ment effect EP [TEi|Ci, Ui] by defining Ti as in (1) above and regressing Ti on the full

set of controls for school-level characteristics. We include schools in the trial population if

EP [TEi|Ci, Ui] ≥ Vi where Vi is normally distributed with the same mean as EP [TEi|Ci, Ui]

and a standard deviation three times as large.17

The ATE in the target population is 0.074.18 The ATE in the trial population is consider-

ably larger, 0.15. If we assume that we observe all the characteristics used in the participation

17The mean of Vi ensures that roughly half of the target population will be in the trial population.
18This is slightly smaller than the effect in the original paper since we collapse to the school level.
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decision, the adjustment for participation on observables delivers the correct value 0.074 for

the target population ATE.

We next consider the case where we cannot observe some of the variables used in the

participation decision. We vary the size of the subset which is unobserved, considering what

happens when we eliminate just one variable, then 10%, 20%, 30%, and 50% of the variables

(chosen at random).19 In each case we calculate the ATE correcting for participation on

observables, where there is now also participation on unobservables. We consider all possible

single-variable eliminations, while for the other cases we take 200 draws at random.

The first column of Panel A of Table 2 shows the average participation on observables

adjusted ATE for each exclusion set. When only one covariate is treated as unobserved (the

last row in Panel A) the estimate is extremely close to the target population ATE, since the

unobservables are quite limited. As we treat larger sets as unobserved the estimate is further

from the target population ATE and closer to the trial population estimate.

The second column of Panel A in this table reports the average value of Φ to match the

target population treatment effect for each specification. This value is largest when the largest

share of covariates is excluded. It is worth noting that the average values of Φ are quite close

to the actual ratio of the number of total covariates to the observed covariates, reflecting the

results for cases with many covariates developed in Appendix B.1.

We can visualize the range of values Φ which generate the target population ATE, given

each set of unobservables. This is done in Figure 1. As we exclude a larger set of variables,

the range of Φ goes up, consistent with the presence of more private information in the

participation decision. These values of Φ correspond directly to the relative importance of the

observed versus unobserved covariates in predicting the treatment effect.

To see this more directly, we calculate the ratio of the R-squared from regressing Ti on the

observed covariates to the R-squared from regressing on all the school characteristics. This

R-squared is equivalent to the variance ratio in Lemma 5, which approximates the true bias

by Proposition 1. We graph this against the value of Φ to match the true bias. Deviations

from equality arise from approximation error. Figure 2 suggests such error here is limited.

19Performance in this example remains quite good even when we exclude 80% of the variables.
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5.2.3 Participation on Other Unobsrevables

We next model a case where participation is driven by features of the data other than the

treatment effect. In particular, we imagine that we select areas based on mandal-level teacher

training. We divide the sample into quartiles based on the mandal-level average of teacher

training, and then calculate the average treatment effect within each quartile, which we use

as our g (Ci, Ui). In practice, this puts more weight on mandals with the highest teacher

training values, and on areas in the second quartile of training. This approximates a case

where experimental locations are chosen based on average teacher training, with a preference

for teacher training levels predictive of high treatment effects.20

Given this index g (Ci, Ui), we include schools in the sample if g (Ci, Ui) ≥ Vi where Vi is

normally distributed with the same mean as g (Ci, Ui) and a standard deviation three times

as large. Although the structure of the sample construction is similar to the participation on

treatment effects case discussed above, the difference in ATEs between the trial and target

populations is less extreme. The target population ATE is again 0.074, while that in the trial

population is 0.119.

We again consider the case where we cannot observe a subset of the variables used in the

construction of the index g (Ci, Ui). As above, we consider varying the size of the subset which

is unobserved and calculate the same participation on observables quantities as above.

Panel B of Table 2 replicates Panel A for this setting. When we treat larger sets as

unobserved, the estimate is further from the target population ATE, and closer to the trial

population estimate. The values of Φ are largest for the largest exclusion set, and reflect the

share of covariates missing from the observable set.

Figure 3 plots the distribution of the values Φ that would generate the target popula-

tion ATE as we consider different sets of observables. With small exclusion sets the values

are relatively small, although with large sets of variables treated as unobserved the results

are noisier, and sometimes imply very large values of Φ to match the true treatment effect.

Figure 4, graphs the value of Φ to match the true bias against the ratio of the covariance of

g (Ci, Ui) , EPS [TEi|Ci, Ui] to the covariance of EPS [g (Ci, Ui) |Ci] , EPS [TEi|Ci]; the correla-

tion is also very strong.

20The effects of teacher training here is non-linear, reflecting the actual patterns in the data.
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6 Applications

This section discusses a number of specific examples applying our framework to papers in

the literature. In each case, we describe the setting, our identification of a plausible target

population, and our results.

6.1 Attanasio, Kugler and Meghir (2011)

Setting Attanasio et al (2011) report results from an evaluation of a job training program

in Colombia. The program provided vocational training to poor men and women in several

cities. We focus here on the results for women since there were concerns about the validity of

the program randomization for men. The results show large positive impacts on employment,

hours and days worked, and salaries for women.

The experimental sample consists of individuals who applied to be in the program at a

number of program centers. In many cases more people applied to be in the program than

there was space in the center, and the evaluation is based on randomizing program enrollment

among eligible individuals who chose to apply.

As discussed in Section 2.1, Attanasio et al (2011) is representative of the broad class

of papers in which participants volunteer for a study and treatment is randomized among

volunteers.

In this case, a possible question of interest for policy is whether it would be a good idea

to extend the vocational training program to all individuals - perhaps making it part of a

school curriculum.21 If the ATE estimated in this experiment is valid for such an expansion,

the answer is likely yes. Given the sample construction, however, it seems unlikely that the

ATE for the experimental sample is representative of that for the population as a whole. In

particular, individuals who volunteer may be those who expect vocational training to work

for them. The in-sample ATE could then be biased upwards relative to the full population

ATE.

21This is an example of a setting where one may also want to consider the possible general equilibrium effects
of a broad expansion; those effects will not be captured by our adjusted estimate. By contrast, such concerns
would be less pressing if one instead considered an expansion to a small, random subset of the population.
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Target Population Data A key step in implementing our approach in any setting is to

identify the target population of interest and to find a data source for comparable information

on that group. In this case, a natural target population is all eligible individuals in the cities

in question. In the original paper, the authors note that there is a nationally representative

survey, the National Household Survey, which can be used to provide target population esti-

mates. The authors provide some general comparisons to this population, but do not formally

adjust for differences in population characteristics.

The program studied in Attanasio et al (2011) is generally not open to people with degrees

beyond high school.22 We therefore exclude individuals with more than a high school education

from the target population and think of our results as a bound on the population effect for

those with a high school degree or less.23

Appendix Table 1 reports summary statistics on the target population and the experimen-

tal group. As noted in the original paper, the target population is slightly less educated and

less likely to be employed, but similarly likely to have a formal contract conditional on employ-

ment. The differences in education reflect that a much larger share of the trial population has

completed high school. This might argue for using a dummy for high school completion in our

correction for participation on observables, rather than the mean and variance of education.

In fact, the results are very similar under both approaches.

Results Table 3 implements our calculations for each of the primary outcomes reported in

Table 4A of Attanasio et al (2011) - that is, the main results for women on which the authors

focus.24

Column 2 shows the baseline effects, which are mostly significant and show better labor

market outcomes for the treatment group. Column 3 shows the estimate after correcting for

participation on observables as described in Section 5.1 above. This correction substantially

22See http://www.dps.gov.co/que/jov/Paginas/Requisitos.aspx
23We also exclude from the analysis the small number of people in the trial population who report having

more than a high school degree, who should not have been eligible (this is only 1% of the sample and makes
little difference to the trial population results). These individuals may have been included in error, have special
circumstances, or have reported their education incorrectly.

24We implement this as described above, constructing Ti and regressing it on the covariates. A complication
is that there was a variation across cities and programs in the share of people randomized into the treatment
group. As the authors note, in most cases the shares were close to 50% (which is the average). If we observed
the exact share in treatment for each course we could use that in the construction of Ti. This was used in a
robustness check discussed in the original paper but we were unable to get the data from the authors. We
therefore use 50%, but note that it is an approximation.
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attenuates the estimates; in some cases the adjusted effect is zero or negative. The primary

reason is that there is substantial treatment effect heterogeneity on education. While the

magnitude of the differences in education may seem fairly small, when scaled by the large

degree of heterogeneity on this dimension the implied treatment effect difference is substantial.

The results on increased wage and salary earnings are the least affected.

Columns 4 and 5 show two measures of external validity. First, Column 4 reports bounds

on the target population ATE under the assumption that Φ ∈ [1, 2]. For the most part these

bounds are much less encouraging about the effectiveness of the program than are the baseline

estimates. The only exception is earnings, where the impacts seem somewhat robust. Second,

Column 5 shows the value of Φ corresponding to a zero ATE. These figures are, in some

cases, less than 1 - this implies that the unobservables would have to operate in the opposite

direction of the observables to produce an effect of zero, which as noted above in section 4.2

is ruled out if one assumes participation on the treatment effect.

Confidence sets are reported in Columns 4 and 5. In Column 4 these are generally large,

corresponding to the relatively large adjustments. The confidence sets in Column 5, which

are mostly infinite, illustrate the fairly poor inference properties of Φ(0) in this setting. As

we discuss above this is a known issue, and is related to the problem of weak instruments.25

6.2 Bloom, Liang, Roberts, and Ying (2015)

Setting Bloom et al (2015) report results from an experiment in a Chinese firm designed

to evaluate the productivity consequences of working from home. The firm operates a call

center, so it is possible for workers to perform their duties from home.

The design of the experiment is as follows. First, workers at the firm were informed of the

possibility of working from home and given an opportunity to volunteer for the program. Ap-

proximately 50% of them did so. Treatment was then randomized among eligible volunteers.

Eligibility was enforced only after volunteering, and was based on several criteria including

whether the individual had a private bedroom. The results suggest substantial productivity

gains - about 0.2 standard deviations on a combined productivity measure - from working

from home.

25The confidence set we use here is asymptotically optimal, so the poor performance seems to reflect funda-
mental difficulties in conducting inference on Φ(0), rather than a poor choice of confidence set.
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In this case, a question of interest for the firm may be whether it would be sensible to

have many or all eligible call center employees work from home.26 If the ATE estimated in

the experiment is valid for the entire workforce, then the answer is likely yes. In fact, given

the expense of running an office, this might be a good policy even if the ATE on productivity

were zero or slightly negative.

Given the sample construction it seems plausible that the ATE for the experimental sample

is not representative of that for the population as a whole. Individuals may be more likely

to volunteer if they expect working from home to work for them. The in-sample ATE could

therefore be biased upwards relative to the full population ATE.

Target Population Data It is straightforward to identify the target population for this

study: it is all workers at the firm with private bedrooms.27 Bloom et al (2015) collect some

basic characteristics for this overall population of workers. These can then be compared to

the volunteers.

Appendix Table 2 reports summary statistics in the overall population and experimental

group. There are some differences: the volunteer group has a longer commute, is more likely

to be male, and more likely to have children. As suggested above, when we correct for

participation on observables we use these variables and allow them to enter linearly and (for

non-binary variables) squared.

Results Table 4 shows results. Column 2 shows the baseline effect for the primary outcome

in the paper, which is the increase in overall performance. Column 3 shows estimates from

the regression-based correction for participation on observables. This slightly decreases the

effect, from 0.22 to about 0.20.28

Columns 4 and 5 again show the two measures of external validity. Column (4) illustrates

26Again, however, there could be additional impacts of such a major expansion which would require additional
attention.

27Note that the restriction to private bedrooms arises because eligibility for the program is limited to this
group. It is therefore appropriate to consider the target population as all eligible workers, rather than all
workers.

28We implement this adjustment as described above, by regressing the constructed Ti on the observables.
An alternative approach is to regress the outcome on covariates for the treatment group and the control group
separately and difference the predicted values. Assuming successful randomization, these will yield similar
results. In this case there is some imbalance across treatment and control in commute time - specifically, the
treatment group has longer commutes on average than the control group. As a result, these two approaches
yield slightly different coefficients. In Appendix Table 3 we report these results using the alternative approach.
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the bounds on the effect if we assume Φ ∈ [1, 2]. The lower bound is still well above zero, and

the confidence interval indicates a significant effect. Column 5 shows the value of Φ which

corresponds to an ATE of zero; this figure is a bit above 12, implying that the unobservables

would have to be substantially more important than the observables in order to deliver an

ATE of zero in the population.

6.3 Dupas and Robinson (2013)

Setting Our third application uses data from Dupas and Robinson (2013), who analyze the

impact of informal savings technologies on investments in preventative healthcare and vulner-

ability to health shocks. The experiment, run in Kenya, includes four treatment arms, each

of which provided a different technology (a safe box for money, a locked box, and two health-

specific savings technologies). The outcomes include investments in health and measures of

whether people have trouble affording medical treatments.

The experiment finds significant results for some combinations of outcomes and treatments.

We focus on the combinations of outcomes and treatments which the authors suggest should

be significant based on their theory. The first two columns of Table 5 list these combinations.

Most of these effects are significant at conventional levels (see Table 3 in Dupas and Robinson

(2013)).

The experiment was run through Rotating Savings and Credit Associations (ROSCAs),

and participants were required to be enrolled in a ROSCA at the start.29 External validity

concerns again arise here because of the sampling frame: ROSCA participants are likely to

be a non-representative group. Most notably, ROSCAs are designed in part as a savings and

investment mechanism, so participants may differ on characteristics related to their respon-

siveness to savings products.

From a policy standpoint, however, there is interest in how to increase savings behaviors

broadly, not just among ROSCA participants. We would therefore like to evaluate the external

validity of these results relative to the overall population.

To frame this in our language, our concern is that there is some feature - say, interest in

29ROSCAs are informal savings groups common in many developing countries. Although the setup varies,
typically these groups come together on a regular basis and contribute to a common pot of money which is
taken home by one member on a rotating basis.
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saving - which influences ROSCA participation and also co-varies with the treatment effect.

We observe some correlates of this feature, but there is further private information among

the participants. The question is how important this private information would have to be

in order to produce ATEs equal to zero. We can use our approach to calculate sensitivity

values Φ for each outcome-treatment pair in the data. These can be interpreted as measuring

how much of the covariance between the participation variable and the treatment effect would

need to be due to private information in order to eliminate the result. As above, higher values

point to a more robust result.

Target Population Data Column 1 of Appendix Table 4 shows summary statistics for

the sample in Dupas and Robinson (2013). To perform an adjustment for participation on

observables, it is necessary to observe the same variables for people who do not participate

in ROSCAs. In an appendix to Dupas and Robinson (2013), the authors provide evidence

on differences between ROSCA participants and non-participants using a second survey run

in the same area. These differences can be used to construct population-level values for the

covariates. These are shown in Column 2 of Appendix Table 4. We use these to adjust for

participation on observables, where we allow the variables listed to enter linearly.

Results Table 5 shows the results. For most of the analyses adjustment for participation

on observables moves the coefficient towards zero, suggesting the patterns of participation are

such that those with larger treatment effects are more likely to be in the sample. However,

there is substantial variation across the outcome-treatment pairs in the degree of sensitivity.

For example, the relationship between the treatments and the variable measuring whether

people have trouble affording treatment is fairly robust. The participation on observables

adjustment is extremely small and in one case goes in the opposite direction, suggesting that

adjustments for participation on observables actually increase the ATE. By contrast, the

results for investment in health show larger adjustments.

These differences are reflected in the metrics of external validity in Columns 5 and 6. The

bounds in Column 5 for the trouble affording treatment outcome generally remain close to the

baseline effect. In contrast, the bounds for investments in health suggest less robust impacts.
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6.4 Olken, Onishi, and Wong (2014)

Setting Olken et al (2014) report results from an experiment in Indonesia which provides

block grants to villages to improve maternal health and child education. A subset of the grants

include performance incentives, and the paper reports data on a wide variety of outcomes.

The primary conclusion of the paper is that these grants have little or no effect on outcomes.

The estimates are fairly small and mostly insignificant.

To implement the experiment, the government approached provinces, giving them the op-

portunity to take part. Five provinces volunteered to participate. Within these provinces, the

richest 20% of districts were excluded from participation, as were the 28% of districts which

did not have access to the rural infrastructure project through which the program was admin-

istered. Among the remaining districts, 20 were randomly selected, and sub-districts within

these were eligible for the program if they were less than 67% urban. There were 300 eligible

sub-districts and these were randomized into one of two treatment groups - with or without

incentives - or the control group. The experimental sample is clearly not a simple random

sample, and as the authors note the sub-districts eligible for inclusion in the experiment differ

on some observable dimensions from the overall population.

Target Population Data To apply our approach, we need to identify a set of characteristics

from the target population. The concern is that the sub-districts in the experiment are not

representative of all of Indonesia. We therefore focus on sub-district-level characteristics. The

data collected in the experiment did not include comparable information about the target

population. However, we can extract these data from a nationally representative survey of

Indonesia (SUSENAS) which we merge at the level of the sub-district with the data used

in Olken et al (2014). The target population corresponds to all of Indonesia.30 This is an

example of how our approach might be used in a setting like this, where an experiment includes

a subset of locations within a country or region, and external data is available for the entire

region.

30The set of covariates we use do not include those on which the sample is constructed, so the common support
assumption remains plausible here. For example, as shown in Appendix Table 5 the differences between the
means of the covariates in the sample and target population are of the same order as the variability within the
sample.
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Results Appendix Table 5 shows summary statistics both for Indonesia overall and for the

sub-districts in the study. Relative to the country overall, households in districts in the sample

are more likely to have a dirt floor and to receive cash transfers (consistent with having lower

income on average) but also have higher rates of vaccination and contraceptive use.

Table 6 shows the results. As noted, the baseline impact is insignificant for most outcomes.

However, a notable feature of this setting is that in all cases but one correction for participation

on observables increases the estimated size of the effect. Consequently, most of the sensitivity

measures in Column 5 are negative. Under our baseline assumptions, these results suggest

that the effects in the trial population may actually understate the overall effects in the target

population in many cases.

This is made most concrete by Column 4 of Table 6, which shows bounds under the

assumption that Φ ∈ [1, 2]. For all of the outcomes, the bounds are substantially more en-

couraging about the impact of the experiment than are the baseline effects. Based on the

confidence intervals, many of these adjusted effects are significantly different from zero. In

this case, our analysis casts doubt on the conclusion that this intervention does not change

outcomes. It may simply be that the population used for the trial is not the one for which

this intervention was most effective.

7 Discussion

While our primary focus in this paper is on external validity of ATEs estimated from random-

ized trials, one could potentially apply analogous approaches in regression discontinuity and

instrumental variables settings. In this section we briefly discuss these possibilities, as well as

application of our results to estimate non treatment-effect moments in the target population.

Regression Discontinuity Regression discontinuity estimates are identified from behavior

at the discontinuity; this leads to concern that treatment effects may differ for individuals

distant from the discontinuity (Bertanha and Imbens, 2014; Angrist and Rokkanen, 2015;

Rokkanen, 2015). Consider a sharp RD design with running variable Ri for individual i,

where Di = 1 {Ri ≥ r∗} is an indicator for Ri exceeding some threshold r∗. The regression

discontinuity approach estimates the treatment effect by a regression of Yi on Di in a small
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neighborhood of Ri around r∗. We can define the observations in an infinitesimal neighborhood

of r∗ as the trial population. The target population is the population for the full range of

Ri. We can then treat this problem as in the experimental case above.31 Note, however, that

relative to approaches proposed in the literature, our approach does not exploit additional

structure from the regression discontinuity setting and so may yield less precise results.

Instrumental Variables The central component of the LATE critique is that instrumental

variables approaches identify the ATE and other quantities only in the population of compliers,

which may differ from the population of interest. In the language of this paper, we can

define PS as the distribution in the population of compliers and P as the distribution in the

overall population, including compliers, never takers and always takers. It is then possible to

proceed in the same way as above. Unlike recent work on external validity in instrumental

variables models by Kowalski (2016), Brinch et al ( 2017), and Mogstad et al (2017), however,

our approach again does not exploit the additional structure imposed by the instrumental

variables setting, and so again may yield less precise results.

Non-Treatment Effect Moments We focus on cases where the unknown moment of

interest in the target population is an ATE. However, as should be clear from the development

of the theory in Section 3, our approach is not limited to estimating ATEs. Of particular

interest may be cases where the object of interest is the mean of some variable in the target

population.

An example of this sort is polling data: surveys collect voting intentions in a trial popu-

lation and the object of interest is the voting intentions in a target population. It is common

to reweight polling data to match observable demographics in the target population. Our

approach could be used in concert with such reweighting to think systematically about possi-

ble participation on unobservables (for example: people who respond to polling calls may be

more passionate about the election, or have a lower value of time).

31For our absolute continuity assumption (Assumption 2) to hold, Ci must not include Ri.
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8 Conclusion

This paper considers the problem of external validity when the trial population for a study

differs from the target population of interest. We focus on the case where participation in

the trial population is driven, at least in part, by characteristics which are unobserved by

the researcher. We analyze this problem through the lens of reweighting. We show that this

framework can be used to bound the target population moments under assumptions about

the relative importance of observables and unobservables in explaining participation.

Our approach is straightforward to implement. The only added data requirement beyond

what would be used in the main analysis in a paper is knowledge of some characteristics of the

target population. In many cases we could use, for example, demographic variables, where the

moments in the target population are available from standard public datasets. In designing

experiments going forward the range of application for this technique might be improved by

either collecting some minimal data on a target population or by structuring data collection

in the trial population to ensure comparability with known features of the target population.
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Figure 1: Histogram of Values of Φ to Match Population Effect
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Notes: This figure shows the values of Φ which would match the population effect in the example based on

Muraldiharan and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example

the sample is constructed based on the predicted treatment effect, where the prediction is constructed using

observables and unobservables.
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Figure 2: Relationship between Φ and R-Squared Ratio
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Notes: This figure shows the relationship between the values of Φ to match the population effect and the

relative R-squared in a regression of the treatment effect on all variables in the example based on Muraldiha-

ran and Sundararaman (2011) with 10-50% covariates treated as unobserved. In this example the sample is

constructed based on the predicted treatment effect, where the prediction is constructed using observables and

unobservables. The 45 degree line is plotted in black.
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Figure 3: Histogram of Values of Φ to Match Population Effect
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Notes: This figure shows the values of Φ which would match the population effect in the example based on

Muraldiharan and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example

the sample is constructed based on mandal-level average teacher training.
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Figure 4: Relationship between Φ and R-squared Ratio
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Notes: This figure shows the relationship between the values of Φ to match the population effect and the relative

R-squared in a regression of the treatment effect on all variables in the example based on Muraldiharan and

Sundararaman (2011) with 10-50% of the covariates treated as unobserved. In this example the sample is

constructed based on mandal-level average teacher training. The 45 degree line is plotted in black.
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Table 1: Bias Decomposition

Variable Trial Pop. Mean Target Pop. Mean σPS
(fj (Xi)) ρPS

(Wi, fj (Xi)) σPS
(Wi)

White (0/1) 0.59 0.80 0.492 0.519 0.815

HS Completion (0/1) 0.84 0.89 0.363 0.163 0.815

Male (0/1) 0.50 0.51 0.50 0.017 0.815

Notes: This table illustrates the bias decomposition in the NLSY. σPS
(fj (Xi)) is the standard deviation of the moments,

ρPS
(Wi, fj (Xi)) is the correlation between the weights and the moments and σPS

(Wi) is the standard deviation of the
weights.

Table 2: Auxiliary Evidence, Participation Models with Varying Exclusion Sets

Panel A: Participation on Treatment Effect

Average Participation-on-Obs. Effect Average Φ

Exclude 50% 0.111 2.05

Exclude 30% 0.098 1.49

Exclude 20% 0.090 1.27

Exclude 10% 0.083 1.14

Exclude only one covariate 0.076 1.02

Panel B: Participation on Mandal Teacher Training

Average Participation--on-Obs. Effect Average Φ

Exclude 50% 0.092 2.09

Exclude 30% 0.087 1.56

Exclude 20% 0.082 1.31

Exclude 10% 0.079 1.16

Exclude only one covariate 0.075 1.04

Notes: This table illustrates the evidence from the constructed example in Section 4. The sample is constructed based
either on the predicted treatment effect (Panel A) or the Mandal-level average of teacher training (Panel B). We then
calculate the average value for Φ which would match the target population treatment effect, treating different sets of the
covariates as unobserved.

46



Table 3: Application: Attanasio et al( 2011)

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

(1) (2) (3) (4) (5)

Employment 0.062 -0.007 [-0.076, -0.007] 0.89

(0.02,0.11) (-0.15, 0.14) (-0.31, 0.16) (-∞,∞)

Paid Employment 0.056 -0.007 [-0.071, -0.007] 0.88

(0.01, 0.10) (-0.14, 0.13) (-0.30, 0.16) (-∞,∞)

Days Worked in Last Month 1.53 0.13 [-1.26, 0.13] 1.09

(0.39, 2.68) (-3.06, 3.33) (-6.47, 3.94) (-∞,∞)

Hours/Week 3.46 0.51 [-2.45, 0.51] 1.17

(0.82,6.10) (-7.29, 8.31) (-14.7, 9.8) (-∞,∞)

Job Tenure -1.30 -0.75 [-0.75,-0.20] 2.37

(-2.48,-0.17) (-3.49, 1.98) (-4.56, 4.15) (-∞,∞)

Wage and Salary Earnings 31,116 24,336 [17,555, 24,336] 4.58

(14,104, 48,129) (-4677, 53,350) (-27,566, 62,678) (−∞,−1.6] ∪ [0.9,∞)

Self-Employment Earnings 5213 -2194 [-9603, -2194] 0.70

(-9982, 20,410) (-33,603, 29,214) (-59,518, 40,311) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Attanasio et al (2011). The target population
moments are generated using a nationally representative survey of the same areas in which the study was run. Analytic
and bootstrap confidence intervals are reported in Columns (2) and (3), respectively, while the confidence sets in Columns
(4) and (5) are computed as described in Appendix B.3, with simulation-based critical values c∗α used in Column (4).

Table 4: Application: Bloom et al (2015)

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

(1) (2) (3) (4) (5)

Job Performance 0.222 0.204 [0.185, 0.204] 12.08

(0.172, 0.272) (0.149, 0.258) (0.125, 0.252) (−∞,−39.2] ∪ [5.3,∞)

Notes: This table shows the application of our sensitivity procedure to Bloom et al (2015). The target population
moments comes from the study. Analytic and bootstrap confidence intervals are reported in Columns (2) and (3), respec-
tively, while the confidence sets in Columns (4) and (5) are computed as described in Appendix B.3, with simulation-based
critical values c∗α used in Column (4).
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Table 6: Application: Olken et al (2014)

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

(1) (2) (3) (4) (5)

Prenatal Visits 0.198 1.51 [1.51,2.83 ] -0.15

(-0.505, 0.902) (0.72, 2.30) (0.67, 4.13) (-0.64, 0.35)

Assisted Delivery 0.008 0.119 [0.11, 0.231] -0.067

(-0.074, 0.089) (0.021, 0.217) (0.027,0.372) (-0.56, 0.43)

Postnatal Visits -0.197 0.059 [0.059,0.316] 0.768

(-0.44, 0.048) (-0.29,0.41) (-0.24, 0.78) (0.25, 8.75)

Iron Pills 0.045 0.284 [0.284,0.524] -0.191

(-0.137, 0.229) (0.031, 0.538) (0.067, 0.857) (-1.18, 0.32)

Immunization 0.004 0.102 [0.102,0.20] -0.040

(-0.054, 0.062) (0.023, 0.181) (0.031, 0.305) (-0.55, 0.44)

No. Weight Checks 0.147 0.419 [0.419,0.692] -0.54

(-0.009, 0.304) (0.199, 0.640) (0.223,0.990) (-1.53, -0.03)

Vitamin A Supplements 0.015 0.185 [0.185,0.335] -0.089

(-0.148, 0.179) (-0.026, 0.397) (-0.005,0.636) (-1.58, 0.91)

Malnourished 0.002 0.016 [0.016,0.032] -0.117

(-0.026, 0.030) (-0.019,0.053) [(-0.019, 0.083) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Olken et al (2014). The target population
moments are generated using location-level variables from a nationally representative survey (SUSENAS). Analytic and
bootstrap confidence intervals are reported in Columns (2) and (3), respectively, while the confidence sets in Columns
(4) and (5) are computed as described in Appendix B.3, with simulation-based critical values c∗α used in Column (4).
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Appendix A: Proofs

Proof of Lemma 1 This result is immediate from Bayes Theorem. Note, in particular,
that for any measurable set A,

P rPS {Xi ∈ A} = PrP {Xi ∈ A|Si = 1} =

∫
A
pX (x|Si = 1) dµ

while by Bayes Theorem we can take

pX (x|Si = 1) =
EP [Si|Xi = x]

EP [Si]
pX (x) .

Thus,

PrPS {Xi ∈ A} =

∫
A

EP [Si|Xi = x]

EP [Si]
pX (x) dµ.

2

Proof of Lemma 2 Assumption 2 implies that PX is absolutely continuous with respect
to PX,S , and the density of PX with respect to PX,S is given by pX

pX,S
. The result follows

immediately. 2

Proof of Corollary 1 By the definition of the covariance,

EP [f (Xi)] = EPS [Wif (Xi)]
= CovPS (f (Xi) ,Wi) + EPS [f (Xi)]EPS [Wi] .

As noted in the text, however, EPS [Wi] = 1 by Lemma 2, so the result follows. 2

Proof of Lemma 3 Let Vi ∼ N (0, 1) , noting that this distribution satisfies the conditions
assumed in the Lemma. Let g (Ci, Ui) = F−1

N (EP [Si|Ci = c, Ui = u]) , for F−1
N the standard

normal inverse cdf, and note that Pr {g (Ci, Ui) ≥ Vi|Ci, Ui} = EP [Si|Ci = c, Ui = u] by con-
struction. Note, finally, that

F−1
N (ν) ≤ g (Ci, Ui) ≤ F−1

N (1− ν)

by construction, which completes the proof.2

Proof of Lemma 4 If we apply Lemma 2 with (Ci, Ui) in place of Xi, we see that for any
function f (Ci, Ui) ,

EP [f (Ci, Ui)] = EPS [Wif (Ci, Ui)] = EPS

[
p(C,U) (Ci, Ui)

p(C,U),S (Ci, Ui)
f (Ci, Ui)

]
.

Moreover, from Lemma 1 with (Ci, Ui) in place of Xi, we see that

Wi =
p(C,U) (Ci, Ui)

p(C,U),S (Ci, Ui)
=

EPS [Si]

EPS [Si|Ci, Ui]
=

1− E [FV (g (Ci, Ui))]

1− FV (g (Ci, Ui))
= w (g (Ci, Ui))
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for FV the distribution function of Vi. Our assumptions imply that w (·) is continuously
differentiable, as desired.

To complete the proof, note that since (Yi (0) , Yi (1)) ⊥ Si|Ci, Ui, for all f (·) we have

EPS [f (Xi) |Ci, Ui] = EP [f (Xi) |Ci, Ui] .

Thus,

EPS [w (g (Ci, Ui)) f (Xi)] = EPS [w (g (Ci, Ui))EP [f (Xi) |Ci, Ui]] = EP [f (Xi)] ,

which completes the proof. 2

Proof of Proposition 1 We first show that

CovPS (Wi, f (Xi)) = CovPS (W ∗i , f (Xi)) +O
(
κ2
)
.

Recall from the proof of Lemma 4 that

Wi =
1− E [FV (κ · h (Ci, Ui))]

1− FV (κ · h (Ci, Ui))
,

where only the denominator depends on h (Ci, Ui).

Mean-Value Expansion of Wi: For brevity of notation, let hi = h (Ci, Ui) . Let us consider
a mean-value expansion of Wi around EPS [hi] :

Wi =
1− EP [FV (κ · hi)]
1− FV (κ · EPS [hi])

+
1− EP [FV (κ · hi)]
(1− FV (κ · h∗i ))

2 κ · fV (κ · h∗i ) (hi − EPS [hi]) ,

for h∗i a value between EPS [hi] and hi. Note that W ∗i is of the same form, but substitutes
EPS [hi] for h∗i . Since Vi is continuously distributed, for any ε > 0 there exists κε such that
for all κ ∈ [0, κε] ,

P rP {FV (κ · hi) ∈ [FV (0)− ε, FV (0) + ε]} = 1.

Thus, for such κ we know that

1− EP [FV (κ · hi)]
(1− FV (κ · h∗i ))

2 ≤
1− EP [FV (κ · hi)]
(1− FV (0)− ε)2 .

If we consider the difference
Wi −W ∗i =(

1− EP [FV (κ · hi)]
(1− FV (κ · h∗i ))

2 κ · fV (κ · h∗i )−
1− EP [FV (κ · hi)]

(1− FV (κ · EPS [hi]))
2κ · fV (κ · EPS [hi])

)
(hi − EPS [hi]) ,
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note that this is bounded in absolute value by∣∣∣∣(1−EP [FV (κ·hi)]
(1−FV (κ·h∗i ))

2 − 1−EP [FV (κ·hi)]
(1−FV (κ·EPS [hi]))

2

)
κ · fV (κ · h∗i ) (hi − EPS [hi])

∣∣∣∣
+

∣∣∣∣ 1−EP [FV (κ·hi)]
(1−FV (κ·EPS [hi]))

2 (κ · fV (κ · h∗i )− κ · fV (κ · EPS [hi])) (hi − EPS [hi])

∣∣∣∣ .
The fact that fV (v) is Lipschitz implies that for κ ∈ [0, κε] the second term is bounded in
absolute value by

1

(1− FV (0)− ε)2κ
2K (hi − EPS [hi])

2 = κ2K2 (hi − EPS [hi])
2 ,

for K the Lipschitz constant and K2 another constant. For the first term, note that another
mean-value expansion yields

1− EP [FV (κ · hi)]
(1− FV (κ · h∗i ))

2 −
1− EP [FV (κ · hi)]

(1− FV (κ · EPS [hi]))
2 = 2

1− EP [FV (κ · hi)]
(1− FV (κ · h∗i ))

3 κ·fV
(
κ · h̃i

)
(h∗i − EPS [hi])

for h̃i a value between h∗i and EPS [hi]. Since fV (v) is Lipschitz and integrates to one we know
that it it bounded above by K, and thus that the first term is bounded in absolute value by

1− EP [FV (κ · hi)]
(1− FV (0)− ε)3 κ2K2 (hi − EPS [hi])

2 .

Thus, we see that
|Wi −W ∗i | ≤ κ2K∗ (hi − EPS [hi])

2

for a constant K∗.
Next, for some function f (Xi) , let us consider the approximation error

CovPS (Wi, f (Xi))− CovPS (W ∗i , f (Xi)) = CovPS (Wi −W ∗i , f (Xi))

= EPS [(Wi −W ∗i ) f (Xi)]− EPS [Wi −W ∗i ]EPS [f (Xi)] .

Using our bounds above, for κ ∈ [0, κε] the first term is bounded in absolute value by

κ2K∗ · EPS
[
(hi − EPS [hi])

2 |f (Xi)|
]
,

while the second is bounded by κ2K∗ · EPS
[
(hi − EPS [hi])

2
]
|EPS [f (Xi)]| .

This almost completes the argument, except that these terms we have used as bounds
themselves depend on κ, since they are calculated in the target population. Thus, we next
show that these terms are well-behaved for small κ.

Behavior of moments for small κ Note that

EPS

[
(hi − EPS [hi])

2 |f (Xi)|
]

= EP

[
W−1
i (hi − EPS [hi])

2 |f (Xi)|
]
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= EP

[(
1− FV (κ · hi)

1− EP [FV (κ · hi)]

)
(hi − EPS [hi])

2 |f (Xi)|
]
.

Since

EP

[(
1− FV (κ · hi)

1− EP [FV (κ · hi)]
− 1

)2
]
→ 0

as κ→ 0, the Cauchy-Schwarz inequality implies that

EP

[(
1− FV (κ · hi)

1− EP [FV (κ · hi)]
− 1

)
(hi − EPS [hi])

2 |f (Xi)|
]
→ 0,

and thus that

EPS

[
(hi − EPS [hi])

2 |f (Xi)|
]
→ EP

[
(hi − EP [hi])

2 |f (Xi)|
]

as κ→ 0. Under our assumptions, we can likewise show that

EPS [|f (Xi)|]→ EP [|f (Xi)|]

and
EPS

[
(hi − EPS [hi])

2
]
→ EP

[
(hi − EP [hi])

2
]

as κ→ 0.

Completing the proof of first statement: Combing these results, we see that under our
assumptions above,

CovPS (Wi −W ∗i , f (Xi)) = O
(
κ2
)

as κ→ 0.

Proof of Second Statement We next show that

CovPS (Wi, f (Xi))

CovPS (W ∗i , f (Xi))
→ 1.

By the argument above we know that

CovPS (Wi, f (Xi))

CovPS (W ∗i , f (Xi))
=

CovPS (Wi, f (Xi))

CovPS (Wi, f (Xi)) +O (κ2)
.

Next, note that by Corollary 1,

CovPS (Wi, f (Xi)) = EP [f (Xi)]− EPS [f (Xi)] ,

which we can re-write as

EP

[(
1− 1− FV (κ · hi)

1− EP [FV (κ · hi)]

)
f (Xi)

]
.

Note that the assumption that fV (·) is Lipschitz, together with the fact that it is positive
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and integrates to one, implies that it is bounded. The dominated convergence theorem thus
implies that ∂

∂κEP [FV (κ · hi)] = EP [hifV (κ · hi)] , and that

∂

∂κ

1− FV (κ · hi)
1− EP [FV (κ · hi)]

= − hifV (κ · hi)
1− EP [FV (κ · hi)]

+
1− FV (κ · hi)

(1− EP [FV (κ · hi)])2EP [hifV (κ · hi)] .

Since this quantity is bounded for small κ, another application of the dominated convergence
theorem implies that

∂

∂κ
CovPS (Wi, f (Xi)) =

EP

[(
hifV (κ · hi)

1− EP [FV (κ · hi)]
− 1− FV (κ · hi)

(1− EP [FV (κ · hi)])2EP [hifV (κ · hi)]
)
f (Xi)

]
,

and thus that CovPS (Wi, f (Xi)) is continuously differentiable in κ on a neighborhood of zero.
Evaluating this derivative at κ = 0 yields

∂

∂κ
CovPS (Wi, f (Xi))|κ=0 = EP

[(
hifV (0)

1− EP [FV (0)]
− EP [hifV (0)]

1− EP [FV (0)]

)
f (Xi)

]
.

Thus, we see that this derivative is nonzero so long as hi is correlated with f (Xi) and fV (0) 6=
0, which we have already assumed. The result follows immediately. 2

Proof of Lemma 5 Note that by the law of iterated expectations and the fact that
EP [TEi|Ci, Ui] = EPS [TEi|Ci, Ui] ,

EPS [g (Ci, Ui) |Ci] = α1EPS [TEi|Ci] + gC (Ci) .

Thus, by another application of the law of iterated expectations

CovPS (EPS [g (Ci, Ui) |Ci] , EPS [TEi|Ci]) = α1V arPS (EPS [TEi|Ci])+α1CovPS (TEi, gC (Ci))

where the second term is zero by assumption. Likewise,

CovPS (g (Ci, Ui) , EPS [TEi|Ci, Ui]) = CovPS (g (Ci, Ui) , TEi) = α1V arPS (EPS [TEi|Ci, Ui]) .

2
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Appendix B: Additional Results

This appendix details several results mentioned in the main text. We first discuss a model,
mentioned in Section 5.1 of the main text, under which Φ can be interpreted as the share of
relevant factors captured by the observed covariates. We then provide additional details of
and justification for our inference procedures.

Appendix B.1 Interpretation of Φ Under Random Selection of Observables

To build intuition for the behavior of Φ we consider a model in which the observable covariates
represent a random subset of a larger collection of latent factors.

Similar to Altonji et al. (2010), let us suppose that both the covariates Ci and the
unobservables Ui are driven by a set of J unobserved factors Fi, with J = dim (Ci)+dim (Ui).
Let us also suppose that the factors Fi are conditional mean independent, in the sense that

EPS [Fi,j |Fi,1, ..., Fi,j−1, Fi,j+1, ..., Fi,J ] = 0

for all j, so knowing the values of the other factors doesn’t help us predict the value of the
jth factor.

Suppose that FC,i and FU,i collect non-overlapping subsets of the factors, of size JC and
J − JC respectively, and that Ci and Ui are then generated as

Ci = µC + ΛCFC,i

Ui = µU + ΛUFU,i,

where ΛC and ΛU have full rank. Note that EPS [Ui|Ci] = µU and EPS [Ci|Ui] = µC , so the
observables and unobservables are conditional mean independent.

Finally, let us suppose that both g (Ci, Ui) and EPS [TEi|Fi] are linear in the factors,

g (Ci, Ui) = µg + γ′FFi

EPS [TEi|Fi] = µTE + δ′TEFi.

This implies that the conditional expectations of these variables given covariates are linear in
Ci as well

EPS [g (Ci, Ui) |Ci] = µ̂g + γ′CCi,

EPS [TEi|Ci] = µ̂TE + γ′CCi.

For SC and SU are the selection matrices corresponding to FC,i and FU,i,

(FC,i, FU,i) = (SCFi, SUFi) ,

the coefficients above are defined as

(γC , δC) =
(
Λ−1
C SCγF ,Λ

−1
C SCδF

)
and

(µ̂g, µ̂TE) =
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(
µg − γ′CµC , µTE − δ′CµC

)
.

Under these assumptions, the fact that Ui and Ci are orthogonal implies that

Φ =
γ′CΣCδC + γ′UΣUδU

γ′CΣCδC

for ΣC and ΣU the variance matrices of Ci and Ui.

Random Selection of Factors: Thus far, we have treated the mapping from factors to
variables as fixed. To obtain restrictions on Φ, let us instead model the selection of observable
factors as random. In particular, suppose that non-overlapping sets of factors of size JC and
J−JC are drawn uniformly at random. Again denote vectors containing these factors by FC,i
and FU,i, respectively. Suppose that Ci and Ui are then generated as

Ci = ΛCFC,i

Ui = ΛUFU,i,

where ΛC and ΛU again have full rank but may be random conditional on the set of factors
selected.

Denoting expectations over the variable construction step by EF , note that

EF
[
γ′CΣCδC

]
=
JC
J
γ′FΣF δF

while
EF

[
γ′CΣCδC + γ′UΣUδU

]
= γ′FΣF δF .

Therefore, we see that
EF [γ′CΣCδC + γ′UΣUδU ]

EF
[
γ′CΣCδC

] =
J

JC
,

which is simply the inverse of the fraction of factors captured by the covariates. Unfortunately,
however,

EF [Φ] 6=
EF [γ′CΣCδC + γ′UΣUδU ]

EF
[
γ′CΣCδC

] =
J

JC
,

since the expectation of a ratio is not generally equal to the ratio of expectations.
This difficulty resolves if we take the number of factors to be large. In particular, let

σ2
j denote the variance of factor j, and γj , δj the coefficients on this factor. Suppose that(
σ2
j , γj , δj

)
are drawn iid from some distribution such that 0 < EF

[
σ2
j γ

2
j + σ2

j δ
2
j

]
<∞. If we

take J → ∞ and assume that JC/J → κC , then by the weak law of large numbers and the
continuous mapping theorem

Φ→p
1

κC
,

so Φ has a natural interpretation in terms of the fraction of the factors captured by the
covariates relative to the unobservables.
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Appendix B.2 Inference Details

Here we discuss inference on the quantities we propose, including confidence sets for Φ (t∗P )
which remain valid when EP [EPS [TEi|Ci]]−EPS [TEi] is small, and the justification for the
confidence set proposed for the case when we have bounds Φ ∈ [ΦL,ΦU ] .

Appendix B.2.1 Confidence Set for Φ (t∗P )

To construct a confidence set for Φ (t∗P ), let(
σ̂2

1 σ̂12

σ̂12 σ̂2
2

)
denote the bootstrap estimate for the variance-covariance matrix of consistent and asymptot-

ically normal estimates
(
β̂1, β̂2

)
for(

β1

β2

)
=

(
t∗P − EPS [TEi]

EP [EPS [TEi|Ci]]− EPS [TEi]

)
.

We can use a version of the confidence set proposed by Anderson and Rubin (1949) and Fieller
(1954). In particular, define the AR statistic evaluated at φ as

AR (φ) =

(
β̂1 − β̂2φ

)2

V̂ ar
(
β̂1 − β̂2φ

) =

(
β̂1 − β̂2φ

)2

σ̂2
1 − 2φσ̂12 + σ̂2

2φ
2
.

Note that β1 − β2Φ (t∗P ) = 0. To construct a level α confidence set for Φ (t∗P ) we can simply
collect the set of values where AR (φ) is less than a level 1− α χ2

1 critical value:

CS =
{
φ : AR (φ) ≤ χ2

1,1−α
}
.

One can show that this confidence set has correct coverage in large samples even when β2

is close to (or exactly) zero. Moreover, when β2 is large this confidence set behaves like the
usual one, and so does not sacrifice efficiency in this case.

Appendix B.2.1 Confidence Set for EP [TEi] Under Bounds on Φ

We next justify the proposed confidence set for EP [TEi] under the assumption Φ ∈ [ΦL,ΦU ] .
For (σ̂L, σ̂U ) bootstrap standard errors for our estimates (γ̂L, γ̂U ) of

(EPS [TEi] + ΦL (EP [EPS [TEi|Ci]]− EPS [TEi]) , EPS [TEi] + ΦU (EP [EPS [TEi|Ci]]− EPS [TEi])) ,

we proposed constructing a level 1− α confidence interval for EP [TEi] as

[min {γ̂L − σ̂Lcα, γ̂U − σ̂Ucα} ,max {γ̂L + σ̂Lcα, γ̂U + σ̂Ucα}] ,

To understand this procedure, note that EP [TEi] is contained in the bounds implied by
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[ΦL,ΦU ] if and only if

min {γL, γU} ≤ EP [TEi] ≤ max {γL, γU} ,

or equivalently, either

Ha
0 : max {(γL − EP [TEi]) ,− (γU − EP [TEi])} ≤ 0

or
Hb

0 : max {− (γL − EP [TEi]) , (γU − EP [TEi])} ≤ 0

holds.
However, this is the union of two hypotheses of the sort commonly tested in the literature

on moment inequalities. Standard arguments in that literature show that the test that rejects

Ha
0 : max {(γL − EP [TEi]) ,− (γU − EP [TEi])} ≤ 0

only if

max

{
γ̂L − EP [TEi]

σ̂L
,− γ̂U − EP [TEi]

σ̂U

}
> c∗α

for c∗α the 1− α quantile of max {ξ1, ξ2} for

ξ ∼ N

(
0,

(
1 σ̂LU

σ̂Lσ̂U
σ̂LU
σ̂Lσ̂U

1

))

has size at most α in large samples (where σ̂LU is the bootstrap estimate of the covariance
between ΦL and ΦU ). Since we are interested in testing Ha

0 ∪Hb
0, we thus consider the test

which rejects only if our tests for Ha
0 and Hb

0 both reject. For a given hypothesized value
EP [TEi], this test rejects if and only if

min

{
max

{
γ̂L − EP [TEi]

σ̂L
,− γ̂U − EP [TEi]

σ̂U

}
,max

{
− γ̂L − EP [TEi]

σ̂L
,
γ̂U − EP [TEi]

σ̂U

}}
> c∗α.

To form a confidence set, we can collect the set of non-rejected values, which is exactly

[min {γ̂L − σ̂Lc∗α, γ̂U − σ̂Uc∗α} ,max {γ̂L + σ̂Lc
∗
α, γ̂U + σ̂Uc

∗
α}] .

Thus, this gives us a (conservative) level 1− α confidence interval for EP [TEi] .
The confidence interval stated in the text is obtained by further noting that for all c,

Pr {max {ξ1, ξ2} > c} ≤ Pr {ξ1 > c}+ Pr {ξ2 > c} ,

which implies that c∗α ≤ cα for cα the two-sided level α normal critical value. Thus, we can
form our confidence intervals with conventional critical values, though we will obtain better
power by instead using the alternative (slightly more computationally intensive) critical value
c∗α.
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Appendix C: Tables and Figures

Table 1: Observable Characteristics, Attanasio et al (2011)

Variable Population: Mean (SD) Sample: Mean (SD)

Age 21.6 (2.26) 22.8 (2.04)
Education 8.5 (2.98) 10.2 (1.6)

Prior Employment 0.205 (0.404) 0.468 (0.449)
Prior Contract 0.034 (0.018) 0.068 (0.252)

Prior Formal Employment 0.026 (0.16) 0.066 (0.249)

Notes: This table illustrates the moments in the sample and population for the Attanasio et al (2011) paper.

Table 2: Observable Characteristics, Bloom et al (2015)

Variable Population: Mean (SD) Sample: Mean (SD)

Age 24.4 (3.30) 24.7 (3.65)
Gross Wage 3.13 (0.84) 3.09 (0.78)

Any Children 0.155 (0.362) 0.201 (0.402)
Married 0.265 (0.442) 0.310 (0.463)

Male 0.385 (0.487) 0.438 (0.497)
At Least Tertiary Educ 0.456 (0.498) 0.399 (.490)
Commute Time (Min) 96.9 (61.1) 111.7 (62.7)

Job Tenure 32.4 (19.7) 31.2 (20.6)

Notes: This table illustrates the moments in the sample and population for the Bloom et al (2015) paper.

Table 3: Application: Bloom et al (2015), Alternative Covariate Approach

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

Job Performance 0.271 0.289 [0.289, 0.309] -14.7

(0.22, 0.32) (0.23,0.34) (0.241, 0.370) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Bloom et al (2015). The moments comes from
the study. Standard errors are bootstrapped. This table shows an alternative approach to adjusting for covariates, by
regressing the outcome on covariates separately for treatment and control and generating the difference in predicted
values to estimate the average treatment effect.
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Table 4: Observable Characteristics, Dupas and Robinson (2013)

Variable Population: Mean Sample: Mean

Age 40.95 39.03
Female 0.681 0.737

Hyperbolic 0.152 0.159
Time Inconsistent 0.175 0.177

High Discount Rate 0.467 0.442
Education 5.67 6.31

Female X Married 0.495 0.555
Female X Hyperbolic 0.110 0.116

Female X Time Inconsistent 0.108 0.127
Female X High Discount 0.318 0.334

Notes: This table illustrates the moments in the sample and population for the Dupas and Robinson (2013) paper.
The difference between ROSCAs and Non-ROSCAS is drawn from external data, helpfully provided by the authors.
Note that since we are inferring the population mean from data on the difference we cannot match the trial and target
populations on standard deviations.

Table 5: Observable Characteristics, Olken et al (2014)

Variable Population: Mean (SD) Sample: Mean (SD)

Dirt Floor Share 0.174 0.226 (0.244)
Cash Transfer Share 0.347 0.360 (0.227)
Avg. # Vaccinations 7.40 8.14 (2.58)

Avg. Length Breastfeed 15.6 15.7 (4.34)
Literate Share 0.908 0.917 (0.070)

Contraceptive Share 0.215 0.233 (0.099)

Notes: This table illustrates the moments in the sample and population for the Olken et al (2014) paper. The restricted
moment come from the SUSENAS data on Indonesia, which is merged with the Olken et al (2014) data at the subdistrict
level.
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