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1 Introduction

External validity is a major challenge in empirical social science. Modern identification strate-

gies allow researchers to identify causal effects for well-defined subpopulations. In many con-

texts, however, the population of policy interest differs from that for which we have credible

identification. In the context of instrumental variables, this tension is reflected in the LATE

critique (Imbens and Angrist, 1994), which highlights that IV methods uncover causal effects

only for those individuals whose behavior is changed by the instrument. In many random-

ized experiments a similar concern arises due to selection of the experimental sample, even if

compliance with the randomly assigned treatment is perfect.

As an example, consider Bloom, Liang, Roberts and Ying (2015), who report results from

an experimental evaluation of working from home in a Chinese firm. In the first stage of

the evaluation, workers at the firm were asked to volunteer for an experiment in which they

might have the opportunity to work from home. The study then randomized among eligible

volunteers, and compliance was excellent. The study estimates large productivity gains from

working from home. Given these results, one might reasonably ask whether the firm would

be better off having more of their employees work from home - or even having them all work

from home. To answer this question, we need to know the average treatment effect of working

from home in the entire population of workers.

The population of volunteers for the experiment differs from the overall population of

workers along some observable dimensions (for example, commute time and gender). It seems

plausible that they also differ on some unobservable dimensions, for example ability to self-

motivate, and thus that they may have different treatment effects. To the extent volunteers

have systematically different treatment effects than non-volunteers, the average treatment

effect estimated by the experiment will differ from that in the population of workers as a

whole. This issue - that the experimental sample differs from the population of policy interest

- is widespread in economics and other fields.1

If selection is driven entirely by observable variables, then one can reweight the sample to

1In medicine, for example, the efficacy of drugs is tested on study participants who may differ systematically
from the general population of possible users. See Stuart, Cole, Bradshaw and Leaf (2011) for discussion.
Within economics, Allcott (2015) shows that OPower treatment effects are larger in early sites than later sites,
and adjustments for selection on observables do not close this gap.
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obtain population-appropriate estimates (as in e.g. Stuart et al, 2011). However, when there

are concerns about selection on unobservable factors, adjusting for selection on observables

may be insufficient.

In this paper we provide a tractable framework for thinking about external validity of treat-

ment effects estimated from a selected sample. Our approach rests on the idea of reweighting

the sample to match the population. When the sample is selected on variables unobserved to

the researcher, the resulting weights cannot be directly calculated. Nonetheless, our frame-

work provides an intuitive way to bound the plausible range of selection bias.

The paper contains two key results. First, we develop a general representation result

which provides intuition about the magnitude of the external validity bias under sample

selection on either observed or unobserved variables. Second, we link the bias from selection

on unobserved variables to the bias from selection on observed variables. Using this result, we

show that a formal adjustment for selection on observables provides a benchmark for selection

on unobservables under intuitive assumptions.

We begin in Section 2 with our theoretical framework. We assume that we observe a

random sample from some population, which we label the trial population, and are interested

in the mean of some function of the data in a target population. We call this function

the target function, and call its mean in the target population the target moment. Later,

we show that a suitable choice of target function yields the average treatment effect (ATE)

in experimental settings. Under regularity conditions, including that the trial and target

populations are drawn from the same support, we can reweight the trial population to match

the target population. If the trial population is selected on unobserved variables, however,

the necessary weights are unknown.

Our first result shows that the bias in the sample average of the target function, as an

estimator for the target moment, is the product of three terms: (1) the standard deviation

of the target function, (2) the correlation between the weights and the target function, and

(3) the standard deviation of the weights. These measure, respectively, the variability of the

target function, the intensity of selection on the target function, and the overall degree of

sample selection. In the context of ATE estimation, this highlights that bias is larger when

(1) there is substantial treatment effect heterogeneity, (2) individual-level treatment effects

are highly correlated with selection into the sample, and (3) there is a lot of selection into the
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sample. We illustrate using data from the National Longitudinal Survey of Youth (NLSY),

a setting in which we observe the true weights to re-balance the sample to match the US

population. In this example, we take the target moments to be the means of several variables

in the US population.

This decomposition is not directly useable in practice, since both the correlation between

the weights and the target function and the standard deviation of the weights are unknown.

To eliminate dependence on the standard deviation of the weights, we consider the ratio of bias

in the target moment to bias in some benchmark moment whose value in the target population

is known. The only unknown term affecting this ratio is the intensity of selection on the target

moment relative to the benchmark moment. For example, if there are demographic variables

which we observe in both the trial and target populations, we could use selection on these

variables to benchmark selection on the target moment.

We again illustrate in the NLSY data, showing that we can compare bias across moments.

For example, we compare the degree of selection on college graduation to the degree of selection

on high school graduation or gender. Such comparisons highlight that selection on college

graduation is similar to that on high school graduation, but much more intense than that on

gender. While the ways in which the NLSY is selected are well-understood, these results show

that our approach recovers sensible answers in this setting.

In the second part of the paper we turn to the problem of ATE estimation. In the treatment

effect setting, a natural benchmark is adjustment for selection on observables (e.g. Hellerstein

and Imbens, 1999; Hotz, Imbens and Mortimer, 2005). In Section 3 we show how the selection

on observables adjustment relates to the overall bias in the trial population ATE under two

models of selection.

We show, first, that under the assumption of selection on the treatment effect - that is,

a model in which individuals are more likely to be in the sample if they have a higher (or

lower) treatment effect - the ratio of the total bias to the selection on observables adjustment

can be interpreted as measuring the degree of private information about the treatment effect.

We denote this by Φ. A value of Φ = 2, for example, indicates that there is as much private

information as there is observed information about the treatment effect.

Second, we show more generally that under the assumption of selection on some variable,

the ratio of total bias to selection on observables bias can be interpreted as measuring the
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relative importance of observables and unobservables in explaining the covariance between

the selection covariate and the treatment effect. We denote the ratio in this case by ΦA; it

has a similar interpretation in terms of private information. We note that in a model with

a large number of variables, a random subset of which are observed, Φ and ΦA both have

an interpretation as the ratio of total to observed variables. In both cases, these results link

an intuitively appealing object - the selection on observables adjustment - to the bias from

unobservable selection. Establishing this link, among other things, highlights the value of a

formal adjustment for selection on observables.

In Section 4 of the paper we discuss implementation. We consider a general setting in

which a researcher estimates an ATE in a trial population and is interested in the plausible

values of this ATE in the target population. We propose two approaches to this problem. The

first specifies a value of the target population ATE of particular relevance (e.g. zero average

effect) and calculates the Φ or ΦA required to yield this value. A larger Φ or ΦA indicates

a more robust result. In the second approach, the researcher specifies bounds on Φ and ΦA

and calculates the implied bounds on the target population ATE. Tighter bounds indicate a

more robust result. In both cases, the first step is to adjust for selection on observables. We

illustrate in a constructed example which provides intuition for the interpretation of Φ and

ΦA.

In Section 5 we turn to applications. We first briefly discuss the range of applications

for which this approach is likely to apply, focusing in particular on the role of the common

support assumption empirically. We apply our results to data drawn from Attanasio, Kugler

and Meghir (2011), Bloom et al (2015), Dupas and Robinson (2013), and Olken, Onishi, and

Wong (2014).

In both Attanasio et al (2011) and Bloom et al (2015) we suppose that individuals select

into the experiment - studying a job training program in the first case and working from

home in the second - based on their expected treatment effect. We correct for selection

on observables and then ask how much private information would be necessary to overturn

the result. In Attanasio et al (2011), correcting for selection on observables considerably

attenuates the effect, while in Bloom et al (2015) this attenuation is much smaller. As a

result, the effects in the latter paper appear more robust to concerns about selection.

In Dupas and Robinson (2013), which estimates the effect of a variety of savings treat-
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ments on multiple health outcomes, our approach reveals that some treatment-outcome pairs

are much more robust than others. Finally, Olken et al (2014) report results from an exper-

iment in Indonesia which shows very little impact on the outcomes they consider. We find,

however, that adjusting for selection on observables - and then further allowing for comparable

selection on unobservables - dramatically increases the results. This suggests that the small

effects estimated in this paper may reflect the choice of experimental population, rather than

ineffectiveness of the treatment.

A key input to these applications is a formal correction for selection on observables. Al-

though such corrections are well known in the econometrics and statistics literatures, they

are not commonly used in applied work. By linking the formal selection on observables ad-

justment to the overall bias allowing for selection on unobservables, we provide an additional

argument for correcting these observable differences formally, rather than simply discussing

the differences between trial and target population informally.

This paper contributes to the literature on external validity of ATE estimates. We relate

closely to the large literature studying selection on observables (e.g. Hellerstein and Imbens,

1999; Hotz et al, 2005; Cole and Stuart, 2010; Stuart et al, 2011; Imai and Ratkovic, 2014;

Dehejia, Pop-Eleches and Samii, 2015; Hartman, Grieve, Ramsahai and Sekhon, 2015), as

well as to the literature on propensity score reweighting (e.g. Hahn 1998 and Hirano, Imbens

and Ridder 2003). Both Alcott (2015) and Chyn (2016) highlight the issue of selection on

unobservables, although they do not provide a method to address it. Gechter (2015) considers

the same problem we do, and suggests bounds which result from assumptions on the level of

dependence between the individual outcomes in the treated and untreated states. This is a

different object than that bounded by our approach, and his results are complementary to

ours.

We also relate, more distantly, to the recent literature on external validity in instrumental

variables (Feller et al, 2016; Kowalski, 2016; Kline and Walters, 2016; Brinch, Mogstad

and Wiswall, 2017) and regression discontinuity (Bertanha and Imbens, 2014; Angrist and

Rokkanen, 2015; Rokkanen, 2015) settings. These connections are discussed in Section 6.

While we consider a different problem, our approach is conceptually similar to that of

Rosenbaum (2002, Chapter 4), Altonji, Elder and Taber (2005), and Oster (forthcoming).

Like these authors we ask how intense selection on some unobservable dimension would have
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to be, relative to selection on observable dimensions, to overturn a given result. Since the true

value for the relative intensity of selection is not identified from the available data, precisely

identifying the effect of interest is impossible without additional assumptions. Our goal is to

give researchers a transparent, interpretable framework through which to consider the range

of plausible assumptions and the implications for their results.

2 Sample Selection and Reweighting

To develop our framework, suppose that we have a sample of observations Xi from the trial

population. We denote distributions in the trial and target populations by PS and P , respec-

tively, and assume that we are interested in the mean of a target function t (Xi) of Xi in the

target population, EP [t (Xi)]. We will call this the target moment. By contrast, the sample

mean of the target function estimates EPS [t (Xi)] . For simplicity we assume an infinite sample

in developing our theoretical results, so the distribution of Xi under PS is known. Results on

inference, which account for sampling uncertainty, are developed in Section 4.1 below.

We assume that the support of Xi in the target population is a subset of its support in the

trial population and, more restrictively, that the distribution in the target population is abso-

lutely continuous with respect to that in the trial population. We maintain this assumption

for the remainder of the paper.

Assumption 1 The distribution PX of Xi under P is absolutely continuous with respect to

the distribution PX,S of Xi under PS.

Absolute continuity requires that for any setA, PrPS {Xi ∈ A} = 0 implies PrP {Xi ∈ A} =

0, and thus that all events which occur with zero probability in the trial population likewise

occur with zero probability in the target population. This is a strong assumption, but is im-

plied by probabilistic assignment as assumed in the literature on treatment effect estimation

(see, for example, Definition 3.5 in Imbens and Rubin 2015). Nonetheless, Assumption 1 will

fail if there are some values of Xi in the target population which are never observed in the

trial population. If this occurs, the reweighting approach developed in this paper no longer

applies. Even in this case, under limited deviations from absolute continuity one could build

on our results to derive bounds, though we do not pursue this possibility.
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Leading Case: Trial Population a Subset of Target Population In many contexts

the trial population is a subset of the target population. To discuss this case formally, define

a variable Si in the target population which indicates whether individual i is also part of the

trial population

Si =


1 if i is part of the trial population

0 otherwise.

If the distribution PX has density pX (x) then we can write the density in the trial population

in terms of pX (x) and the distribution of Si.
2

Lemma 1 Let PX have density pX (x). If EP [Si] > 0 then PX,S is absolutely continuous

with respect to PX and the density of PX,S is

pX,S (x) =
EP [Si|Xi = x]

EP [Si]
pX (x) . (1)

If we assume that Si is independent of Xi, this result implies that PX,S = PX and thus that

the distributions in the trial and target populations are the same. Consequently, EPS [t (Xi)] =

EP [t (Xi)] , and there is no extrapolation problem. Thus, external validity issues in this setting

arise directly from X-dependent selection into the trial population.

Illustration: To develop intuition, we begin by illustrating the selection problem in a

dataset commonly used in economics: the National Longitudinal Survey of Youth 1979 (NLSY-

79). The NLSY-79 is a longitudinal panel which began with youth aged 14 to 21 in 1979 and

has continued to the present. At each round data is collected on education, labor market

experiences, health, and other variables.

The NLSY oversampled certain groups (e.g. African-Americans). Due to this sampling

scheme, moments of these data (for example, means of variables) will not be unbiased for

those moments in the full population. We use the NLSY as illustration since in these data we

observe the true sampling weights. These weights allow us to reweight the NLSY to obtain a

representative sample from the US population.

In our terminology, we define the NLSY sample as our trial population, and the reweighted

2We define all densities with respect to a fixed base measure µ. µ need not be Lebesgue measure, so our
results do not require that Xi be continuously distributed.
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representative sample as our target population. The availability of the weights makes it

possible to explicitly illustrate the reweighting calculations we develop below. In thinking

about settings where we do not observe the true weights, we can use these data with the

weights excluded to consider how to learn about the target population. In this example we

take the target moments to be the means of variables in the data, and defer discussion of

treatment effect estimation to Section 3. 4

2.1 Reweighting Algebra

When the trial and target populations differ, Assumption 1 implies that we can reweight the

trial population to match the target population.

Lemma 2 Under Assumption 1, for Wi = pX(Xi)
pX,S(Xi)

and any function f (·),

EP [f (Xi)] = EPS [Wif (Xi)] . (2)

Lemma 2 is a well-known result (see e.g. Horvitz and Thompson, 1952), and shows that we

can recover expectations under P by reweighting our observations from PS using the weights

Wi = pX(Xi)
pX,S(Xi)

, which compare the densities of the trial and target populations at each Xi.

If we knew these weights we could unbiasedly estimate the target moment EP [t (Xi)] by the

sample mean of Wit (Xi). Since we have assumed that we know PX,S , however, knowledge of

the weights Wi is equivalent to knowledge of PX . Absent perfect knowledge of the distribution

of Xi in the target population, these weights are thus infeasible.

While unknown, the weights Wi provide a useful lens through which to consider sample

selection. These weights are non-negative by construction, and taking f (·) = 1 in Lemma 2

confirms that EPS [Wi] = 1. An immediate corollary of Lemma 2 allows us to characterize the

bias of the sample mean of f (Xi) as an estimator for EP [f (Xi)] .

Corollary 1 For any function f (·), under Assumption 1 we have

EPS [f (Xi)]− EP [f (Xi)] = −CovPS (Wi, f (Xi)) .

9



If we further assume that EPS

[
f (Xi)

2
]

and EPS
[
W 2
i

]
are finite, then

EPS [f (Xi)]− EP [f (Xi)] = −σPS (Wi) ρPS (Wi, f (Xi))σPS (f (Xi)) , (3)

for σPS (Ai) and ρPS (Ai, Bi) the standard deviation of Ai and the correlation of Ai and Bi

under PS , respectively.

The final term in equation (3), σPS (f (Xi)) , measures the standard deviation of f (Xi)

in the trial population and can be estimated from the data. The correlation ρPS (Wi, f (Xi))

measures the strength of the relationship between the weights and f (Xi), and can loosely be

viewed as measuring the extent to which selection loads on f (Xi) . By the definition of the

correlation coefficient this quantity is smaller than one in absolute value. Lastly, the standard

deviation σPS (Wi) can be viewed as measuring the extent of selection on any dimension, since

the bounds on ρPS (Wi, f (Xi)) imply that for all functions f (·),

|EP [f (Xi)]− EPS [f (Xi)]| ≤ σPS (Wi)σPS (f (Xi)) . (4)

Thus, the mean of f (Xi) in the target population can differ from its mean in the trial popu-

lation by at most σPS (Wi) times its standard deviation.

One can make a loose analogy between the decomposition in equation (3) and the omitted

variables bias formula in linear regression. In regression, the bias in the coefficients for the

included variables is the product of the coefficient on the omitted variable with the regression

coefficient of the omitted variable on the included variables. Thus, what matters for bias

is not only the importance of the omitted variable but also the strength of its relationship

with the included variables. Analogously, for the external validity bias we study it matters

not only how strongly the trial population is selected (measured by σPS (Wi)) but also how

tightly selection is related to the variable of interest (measured by ρPS (Wi, f (Xi))).

The same decomposition applies to any collection of moments. In particular, suppose

we are interested in the mean of a vector of functions f1(Xi), f2(Xi), ..., fq(Xi) in the target
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population. Applying Corollary 1 to each element, we obtain

EPS [f1 (Xi)]− EP [f1 (Xi)] = −σPS (Wi) ρPS (Wi, f1 (Xi))σPS (f1 (Xi))

EPS [f2 (Xi)]− EP [f2 (Xi)] = −σPS (Wi) ρPS (Wi, f2 (Xi))σPS (f2 (Xi))
...

EPS [fq (Xi)]− EP [fq (Xi)] = −σPS (Wi) ρPS (Wi, fq (Xi))σPS (fq (Xi)) .

(5)

A key feature of this decomposition is that the standard deviation of the weights, σPS (Wi)

appears in all rows. This again reflects the fact that σPS (Wi) measures the degree of sample

selection along any dimension.

Illustration (continued): In the NLSY we observe the weights Wi. Therefore, we can

calculate all terms in the decomposition (5). In particular, we consider this decomposition

when taking f (Xi) to measure race (share white), high school completion, and gender (share

male).

The first two columns of Table 1 report the trial and target population means for these

variables in the NLSY. The final three columns show the elements of the bias decomposition in

equation (3). The difference in means for each variable is the product of these three elements.

The differences between trial and target population means reflect the sampling structure: the

NLSY over-samples racial minority groups and individuals from lower socioeconomic status

backgrounds. There are fewer whites and fewer high school graduates in the sample than in

the overall US population. The bias is largest for race, which reflects the very high correlation

between the sampling weights and race.

In contrast to race and education, there is little bias in the gender variable since the sample

is not selected on gender. This lack of selection is reflected in the very small correlation

between this variable and the weights. As noted above the standard deviation of weights is

the same in all rows, since this is a measure of selection on any dimension. 4

Even without further restrictions, the decomposition (3) provides a guide to intuition. In

particular, the bias in the sample mean of a given function of the data is larger when (a)

the sample is more heavily selected in general, (b) sample selection is more heavily weighted

toward the function in question, and (c) there is more variability in the function.
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2.2 Relative Selection

The central question of this paper is how we can use data from the trial population to draw

conclusions about the target moment. That is, we assume that we observe EPS [t (Xi)] and

would like to know EP [t (Xi)]. Corollary 1 shows that this is equivalent to knowing the

covariance between the weights Wi and t (Xi).

In most applications, we know some characteristics of the target population. In particular,

suppose we know the target-population mean of some benchmark function, EP [b (Xi)] . In such

cases, it is natural to consider the relative selection ratio

EP [t (Xi)]− EPS [t (Xi)]

EP [b (Xi)]− EPS [b (Xi)]
=
CovPS (Wi, t (Xi))

CovPS (Wi, b (Xi))
=
ρPS (Wi, t (Xi))σPS (t (Xi))

ρPS (Wi, b (Xi))σPS (b (Xi))
(6)

which compares the bias in the target moment to that in the benchmark moment, where we

have used Corollary 1 to express this bias ratio as a ratio of covariances. When we take this

ratio, the overall degree of selection σPS (Wi) drops out, so the only unknown term in the right-

hand side of this expression is the correlation ratio ρPS (Wi, t (Xi)) /ρPS (Wi, b (Xi)) , which

describes the intensity of selection on the target moment t (Xi) relative to the benchmark

moment b (Xi) . Thus, considering the relative selection ratio in equation (6) allows us to

abstract from the overall degree of selection and instead focus on the intensity of selection on

the target moment relative to the benchmark.

Illustration (continued): We next introduce three new variables - log wage, college com-

pletion and AFQT score (a measure of IQ available in the NLSY) - and explore the degree of

selection on these variables relative to various benchmarks. The first two columns of Table 2

show summary information for these variables (their trial and target population means).

The remaining columns of Table 2 show the values of the relative selection ratio for varying

benchmark functions; we consider means of the variables used in Table 1 as the benchmarks.

For example, the degree of selection on high school completion is very similar to that on college

completion - the entry in the second row, fifth column is 1.15. The selection on race is much

larger than the selection on any of the additional variables, so all of the values in Column 4

are small. On the other hand, the selection on each of these variables is much greater than

the selection on gender, so the values in Column 6 are very large. We can read these as saying
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that in order to correctly predict the target population mean of the additional variables, we

would have to assume that selection on these variables is much more intense than selection

on gender. 4

This illustration highlights that a natural way to learn about the degree of selection is to

use moments which are observed in both trial and target population. In particular, if we had a

new moment which was known in the trial population and unknown in the target population,

we could estimate its target population mean given a choice of benchmark function and a

value for the relative selection ratio. The key questions are then what benchmark functions

we should use and how to interpret the value of the relative selection ratio. The next section

discusses these issues in the context of ATE extrapolation.

3 Application to Treatment Effects

We turn now to assessing external validity of the ATE. The results developed above continue to

apply in this setting, except that individual-level treatment effects are not directly observed in

the data (we observe each individual in only a single treatment state) so we need to construct

a target function t(Xi) with mean equal to the ATE. In the first subsection below we discuss

a target function t (Xi) that estimates the ATE under random assignment to treatment.

We then turn to the choice of benchmark function b (Xi), and the interpretation of the

relative selection ratio. In many settings it seems plausible that selection into the trial popu-

lation is driven by expected treatment effects. In such settings, we show that if we take b (Xi)

to be the predicted treatment effect based on covariates, the relative selection ratio measures

the degree of private information (that is, information not captured by covariates) about the

treatment effect which is used in the selection process. We then extend this result to settings

where selection is on some dimension other than the treatment effect.

In both cases, the procedure we suggest first adjusts for selection on observables, and

then links the remaining degree of selection to private information in the selection process.

Adjusting for selection on observables is sometimes already done formally in experimental

papers (Chyn, 2016; Alcott, 2015) and is more commonly discussed intuitively (Dupas and

Robinson, 2013; Muralidaran, Singh and Ganimian, 2016). Our framework directly links these

adjustments to overall external validity bias.
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3.1 Moments for Treatment Effect Estimation

Inference on the ATE is complicated by the fact that even in the trial population we observe

each individual in only a single treatment state, and so never observe treatment effects at the

individual level. By choosing t (Xi) appropriately, our approach nonetheless allows us to draw

inferences about the ATE in the target population.

To develop these results we adopt the usual potential outcomes framework (see e.g. Imbens

and Rubin 2015). Formally, suppose we are interested in the effect of a binary treatment, with

Di ∈ {0, 1} a dummy equal to one when i is treated. We write the outcomes of individual i

in the untreated and treated states as Yi (0) , Yi (1), respectively. Assume that we observe a

vector of covariates for each individual, Ci, which are unaffected by treatment. The observed

outcome for i is

Yi = Yi (Di) = (1−Di)Yi (0) +DiYi (1) ,

and the observed data are Xi = (Yi, Di, Ci) . We are interested in inference on the ATE in the

target population EP [TEi] , where the treatment effect TEi = Yi (1) − Yi (0) measures the

effect of treatment on individual i.

We assume that treatment is randomly assigned in the trial population. In particular, we

assume that Di is independent of (Yi (0) , Yi (1) , Ci) under PS , with known mean EPS [Di] = d.

We can express the ATE in the trial population,

EPS [TEi] = EPS [Yi (1)− Yi (0)]

as the difference between the mean outcome in the treated and untreated groups,

EPS [Yi|Di = 1]− EPS [Yi|Di = 0] = EPS

[
Di

d
Yi −

(1−Di)

1− d
Yi

]
.

Thus, under random assignment of Di we can write the trial population ATE as EPS [Ti] for

Ti =
Di

d
Yi −

1−Di

1− d
Yi.

While our analysis is motivated by the fact that we cannot randomly assign treatment in

the target population, we define the distribution P as that which would arise were we able to
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randomly assign the target population to treatment, again with EP [Di] = d.3 This allows us

to write the target population ATE as EP [Ti]. Hence we can cast estimation of ATEs in the

target population into our general framework by taking t (Xi) = Ti.

3.2 Selection Models and the Choice of b (Xi)

To apply our approach to the ATE, in addition to setting t (Xi) = Ti we must specify a

benchmark function b (Xi) and develop methods for interpreting the relative selection ratio.

In this section, we show that for a large class of selection models, if we take b (Xi) to be

the predicted treatment effect given covariates, the relative selection ratio has an intuitive

interpretation in terms of private information used in the selection process. We first consider

the case where selection into the trial population is driven by expected treatment effects, and

then discuss the case where selection is driven by other variables.

Unobserved Variables Throughout this section we assume that in addition to Xi =

(Yi, Di, Ci) , there are also variables Ui which are unobserved by the researcher but may play

a role in the selection process. Further, we assume that the distribution of the covariates Ci

in the target population is known (though we discuss in Section 4.1 below how we can proceed

if we know only some aspects of this distribution). If there are variables which are observed

in the trial population but whose distribution in the target population is entirely unknown,

for the purposes of analysis we include these in Ui. For brevity of notation we will denote

the conditional expectation in the trial population of a random variable Bi given (Ci, Ui) by

B̃i = EPS [Bi|Ci, Ui], and the conditional expectation given Ci alone by B̂i = EPS [Bi|Ci] .

3.2.1 Selection Framework

Our results are based on a model for selection into the trial population. As in Lemma 1

we assume that the trial population is a subset of the target population, and define Si to

be an indicator for membership in the trial population (that is, observation i in the target

3While we focus on simple random assignment of Di, if one instead considers random assignment conditional
on covariates, with Di ⊥ (Yi (1) , Yi (0)) |Ci and EPS [Di|Ci] = d (Ci) for known d (·), we can instead take

Ti =
(

Di
d(Ci)

− 1−Di
1−d(Ci)

)
Yi and our results below will go through provided we assume the same mechanism for

assignment to treatment (conditional on covariates) in the target population. This follows from well-known
results in the literature on propensity score reweighting- see Rosenbaum and Rubin (1983).
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population also belongs to the trial population if and only if Si = 1). Selection depends on the

covariate Ci, the unobservable Ui and an independent idiosyncratic variable Vi. We assume

that Si is determined by a standard latent index model:

Assumption 2 The selection dummy Si satisfies

Si = 1 {g (Ci, Ui) ≥ Vi} , (7)

where Vi is continuously distributed with density pV independently of (Ci, Ui, Yi (0) , Yi (1)) ,

and has support equal to R. We further assume that 0 < EP [Si|Ci, Ui] < 1 for all Ci, Ui.

This assumption nests a wide variety of parametric and nonparametric selection models.

The restriction that 0 < EP [Si|Ci, Ui] < 1 ensures that distributions in the trial and target

populations are mutually absolutely continuous, so Assumption 1 holds.

Given this assumption we can show that the expected treatment effect given (Ci, Ui) is

the same in the trial and target populations.

Lemma 3 Under Assumption 2, the conditional expectation of the treatment effect given

(Ci, Ui) is the same in the trial and target populations

EPS [TEi|Ci, Ui] = EP [TEi|Ci, Ui] = T̃Ei.

3.2.2 Selection on Treatment Effects

We first consider the case where selection into the sample is driven by expected treatment

effects T̃Ei. Since we can take Ui to include TEi, this also covers the case of direct selection

on the treatment effect, with T̃Ei = TEi.

Assumption 3 The function g in equation (7) is of the form

g (Ci, Ui) = c · T̃Ei (8)

for some constant c ∈ R.

Under this assumption, we show that the weights to rebalance the joint distribution of the

covariates and the expected treatment effects can be written in terms of T̃Ei.
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Lemma 4 Under Assumptions 2 and 3, the weights to rebalance
(
Ci, T̃Ei

)
can be written as

Wi =
p
(
Ci, T̃Ei

)
pS

(
Ci, T̃Ei

) = w
(
T̃Ei

)

for a continuously differentiable function w.4

This result implies that in order to calculate the mean of any function f
(
Ci, T̃Ei

)
in the

target population it suffices to reweight based on T̃Ei, EP

[
f
(
Ci, T̃Ei

)]
= EPS

[
Wif

(
Ci, T̃Ei

)]
.

Since Lemma 3 implies that EP [TEi] = EP

[
T̃Ei

]
, this covers the ATE as a special case.

This does not provide an implementable procedure, however, since T̃Ei is unobserved and the

function w (·) is unknown and depends on the underlying selection process.

Approximate Bias: To overcome both of these difficulties, we consider an approximation

to Wi. Specifically, we consider a Taylor approximation to Wi = w
(
T̃Ei

)
around the ATE

in the trial population,5

Wi ≈W ∗i = w0 + w1T̃Ei.

Using W ∗i we obtain approximate bias expressions for any function f
(
Ci, T̃Ei

)
, since by

Corollary 1,

EP

[
f
(
Ci, T̃Ei

)]
− EPS

[
f
(
Ci, T̃Ei

)]
= CovPS

(
Wi, f

(
Ci, T̃Ei

))
≈ CovPS

(
W ∗i , f

(
Ci, T̃Ei

))
= w1CovPS

(
T̃Ei, f

(
Ci, T̃Ei

))
.

(9)

In the Appendix we show that under the assumption that T̃Ei is bounded and mild regu-

larity conditions, the error in this approximation vanishes when selection is primarily driven

by idiosyncratic factors, so the constant c in equation (8) is small (holding the distribution

of Vi fixed).6 Thus, equation (9) can be viewed as an approximation around the case where

selection into the sample is purely random. To use this result to assess external validity of

4In fact, these weights suffice to rebalance (Ci, Ui) .
5First-order Taylor approximations yields w1 = w′(EPS [TEi]), w0 = w′(EPS [TEi])− w1EPS [TEi].
6In particular, while Cov (W ∗i , f (Xi)) and Cov (Wi, f (Xi)) both tend to zero as c → 0, we show that the

approximation error is of lower order.
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the ATE, the proof of Proposition 1 below shows that equation (9) implies

CovPS (Wi, TEi) = CovPS (Wi, Ti) ≈ CovPS (W ∗i , Ti) ,

so we can use the weights W ∗i to obtain approximate expressions for the bias in the ATE.

Benchmark Function: To construct a relative selection ratio as in equation (6) we take

as our benchmark moment the predicted treatment effect based on the covariates Ci

b (Xi) = T̂i = EPS [Ti|Ci] = EPS [TEi|Ci] = T̂Ei.

The target population mean of this moment,

EP

[
T̂i

]
= EP [EPS [TEi|Ci]]

corresponds to the estimate of the ATE corrected for selection on observables (as in e.g. Hotz

et al (2005), Stuart et al (2011)). The difference

EP

[
T̂i

]
− EPS

[
T̂i

]
= EP

[
T̂i

]
− EPS [Ti]

thus measures the adjustment for selection on observables, where EPS

[
T̂i

]
= EPS [Ti] by the

law of iterated expectations.

For this choice of benchmark, we can relate the relative selection ratio to the degree of

private information used in the selection process:

Proposition 1 Under Assumptions 2 and 3, provided w1 6= 0

EP [TEi]− EPS [TEi]

EP

[
T̂Ei

]
− EPS [TEi]

=
EP [Ti]− EPS [Ti]

EP

[
T̂i

]
− EPS [Ti]

≈ CovPS (W ∗i , Ti)

CovPS

(
W ∗i , T̂i

) =
V arPS

(
T̃Ei

)
V arPS

(
T̂Ei

) = Φ.

To interpret this result, recall that

Φ =
V arPS

(
T̃Ei

)
V arPS

(
T̂Ei

) =
V arPS (EPS [TEi|Ci, Ui])
V arPS (EPS [TEi|Ci])

.
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Thus Φ measures the variance of treatment effects predicted based on (Ci, Ui), relative to the

variance of treatment effects predicted based on Ci alone. This can be interpreted as a measure

for the degree of private information about the treatment effect used in the selection process.

In the extreme case where selection is directly on the treatment effect and T̃Ei = TEi, Φ−1

measures the share of treatment effect heterogeneity captured by the covariates (specifically

the R2 from nonparametrically regressing TEi on Ci).

By the law of total variance,

Φ = 1 +
EPS

[
V arPS

(
T̃Ei|Ci

)]
V arPS

(
T̂Ei

) ,

so Φ ≥ 1. This is intuitive, and reflects the fact that since selection is based on (Ci, Ui) , the

selection process always uses at least as much information about the treatment effects as is

contained in the covariates.

Proposition 1 shows that under the assumption of selection on the treatment effect, the

ratio of bias in the ATE to bias in the average of T̂Ei = T̂i depends on the amount of private

information used in selection. When there is a large amount of private information the true

bias in the ATE will be much larger than the bias in T̂Ei. By contrast, when there is little

private information the bias in the ATE will be close to that in T̂Ei. In the extreme case

where we assume no private information, Φ = 1 and EP [TEi] = EP

[
T̂i

]
so we can obtain

the target population ATE by correcting for differences in the distribution of the covariates

Ci between the trial and target populations. In this case our approach coincides with existing

alternatives which correct for selection on observables.

Even when we do not assume selection on observables, one implication of the results above

and the fact that Φ ≥ 1 is that (up to approximation error)

EP [TEi]− EPS [TEi]

EP

[
T̂Ei

]
− EPS [TEi]

=
EP [Ti]− EPS [Ti]

EP

[
T̂i

]
− EPS [Ti]

≥ 1.

Thus, if correcting for selection on observables reduces the estimated ATE, assuming agents

have private information will lead to still-larger reductions.
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3.2.3 Selection on Other Variables

While the assumption of selection on the treatment effect (Assumption 3) is often plausible,

it does not apply in all settings. In this section we generalize our results to allow selection on

some variable Ai 6= TEi. Since the results are quite similar to those in the case with selection

on observables, we present them with minimal discussion except where they differ.

Assumption 4 The function g in equation (7) is of the form

g (Ci, Ui) = c · Ãi

for c ∈ R.

Lemma 3 immediately generalizes to this setting.

Lemma 5 Under Assumptions 2 and 4, the conditional expectations of TEi and Ai given

(Ci, Ui) are the same in the trial and target populations

EPS [TEi|Ci, Ui] = EP [TEi|Ci, Ui] = T̃Ei.

EPS [Ai|Ci, Ui] = EP [Ai|Ci, Ui] = Ãi.

As before the weights to rebalance the joint distribution of the covariates and expected

treatment effects can be written as a function of Ãi.

Lemma 6 Under Assumptions 2 and 4, the weights to rebalance
(
Ci, T̃Ei, Ãi

)
can be written

as

Wi =
p
(
Ci, T̃Ei, Ãi

)
pS

(
Ci, T̃Ei, Ãi

) = w
(
Ãi

)
for a continuously differentiable function w.

Approximate Bias: We next consider a Taylor approximation to the weights w
(
Ãi

)
.

Taylor expanding w
(
Ãi

)
around EPS [Ai] yields

Wi ≈W ∗i = w0 + w1Ãi.
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As before, these weights yield approximate bias expressions for any function f
(
Ci, T̃Ei, Ãi

)
,

EP

[
f
(
Ci, T̃Ei, Ãi

)]
− EPS

[
f
(
Ci, T̃Ei, Ãi

)]
= CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
≈ CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

))
= w1CovPS

(
Ãi, f

(
Ci, T̃Ei, Ãi

))
.

(10)

Provided Ãi is bounded, the error in this approximation again vanishes when the constant c

in equation (7) is small.

Proposition 1 immediately extends to this case.

Proposition 2 Under Assumptions 2 and 4, provided w1 6= 0

EP [TEi]− EPS [TEi]

EP

[
T̂Ei

]
− EPS [TEi]

=
EP [Ti]− EPS [Ti]

EP

[
T̂i

]
− EPS [Ti]

≈ CovPS (W ∗i , Ti)

CovPS

(
W ∗i , T̂i

) =
CovPS

(
Ãi, T̃Ei

)
CovPS

(
Âi, T̂Ei

) = ΦA.

To interpret ΦA, note that

ΦA =
CovPS

(
Ãi, T̃Ei

)
CovPS

(
Âi, T̂Ei

) =
CovPS (EPS [Ai|Ci, Ui] , EPS [TEi|Ci, Ui])

CovPS (EPS [Ai|Ci] , EPS [TEi|Ci])

measures the covariance between the predictions for Ai and TEi based on (Ci, Ui), relative

to the covariance of the predictions based on the covariates Ci alone. By the law of total

covariance,

ΦA = 1 +
EPS

[
CovPS

(
Ãi, T̃Ei|Ci

)]
CovPS

(
Âi, T̂Ei

) . (11)

The numerator in the second term measures the average covariance between Ãi and T̃Ei after

controlling for Ci, and can also be written as

EPS

[
CovPS

(
Ãi, T̃Ei|Ci

)]
= CovPS

(
Ãi − Âi, T̃Ei − T̂Ei

)
.

The ratio in equation (11) therefore measures the covariance of the residuals from nonpara-

metrically regressing Ãi and T̃Ei on the covariates, divided by the covariance of the fitted

values. Thus, if the covariance of Ãi and T̃Ei is driven primarily by covariates this term will

be small, while if the covariance is driven primarily by private information this term will be
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large.

Unlike for Φ there are not universal bounds on ΦA. In particular ΦA can be larger or

smaller than one in absolute value, and can be either positive or negative. Together with the

more complicated interpretation of ΦA, this means that to assess external validity of the ATE

when we think selection is on some variable Ai not equal to the treatment effect we must

think carefully about the likely role of observable and unobservable variables in explaining

the covariance between Ai and TEi. In an important special case, however, the interpretation

simplifies to that for selection on treatment effects above.

Selection on the Treatment Effect and Orthogonal Variables A useful special case

arises when selection is driven by a combination of the treatment effect and unrelated variables.

In particular, suppose that

Ai = α1TEi + α2f (Ci) + α3h (Ui) ,

where α1 6= 0,

CovPS (f (Ci) , TEi) = CovPS (h (Ui) , TEi) = 0,

and

CovPS (EPS [h (Ui) |Ci] , TEi) = 0.

This allows selection to depend on the covariates and unobservables through functions f (Ci)

and h (Ui) other than T̃Ei, but requires that these functions be uncorrelated with the treat-

ment effect. The last restriction further requires that h (Ui) remain uncorrelated with the

treatment effect even after we take its conditional expectation given Ci. A simple sufficient

condition is that EPS [h (Ui) |Ci] = EPS [h (Ui)], so h (Ui) is mean-independent of the covari-

ates. Under these conditions,

CovPS

(
Ãi, T̃Ei

)
CovPS

(
Âi, T̂Ei

) =
V arPS

(
T̃Ei

)
V arPS

(
T̂Ei

) = Φ,

so we recover the relatively more straightforward interpretation for the selection ratio discussed

in the selection on treatment effects case above.
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4 Implementation and Example

This section discusses implementation of our approach and examines performance in a con-

structed example. It is important to note that our approach relies on the model and assump-

tions described in Section 3. To the extent that one wants to model the selection process

differently, the objects we suggest here can still be calculated but will not have the same

interpretation.

4.1 Implementation

Consider a case where we have an estimate of the ATE EPS [TEi] in a trial population. We are

interested in the range of plausible values for the ATE in the target population. To account

for the possibility of further selection on unobservables, we discuss two distinct approaches.

First, we can consider a particular value for the ATE in the target population, t∗P , and ask

how much private information would have to be present in the selection process to obtain this

value. Alternatively, we can impose bounds on the degree of private information and calculate

the implied range of ATEs.

For both approaches, an important first step is correction for selection on observables,

and specifically estimation of T̂Ei = T̂i = EPS [TEi|Ci] . In this section we discuss a simple

approach based on linear regression of the treatment effect proxy Ti on functions of covariates,

which can be applied even with limited knowledge of the features of the target population. In

settings with richer data on the target population, one can also apply our general approach

together with more sophisticated corrections for selection on observables.

Given the selection on observables adjustment, we can evaluate robustness by calculating

the value of Φ or ΦA sufficient to overturn our conclusions. To do this, we consider a target

value of interest t∗P (a natural value in many treatment effect settings is zero) and calculate

the value Φ or ΦA required to yield an ATE of t∗P in the target population, EP [TEi] = t∗P . Let

us denote this value by Φ (t∗P ) (calculations based on ΦA are identical). To calculate Φ (t∗P ) ,

we simply compare the implied total adjustment to the selection on observables adjustment,

Φ (t∗P ) =
t∗P − EPS [Ti]

EP

[
T̂i

]
− EPS [Ti]

.
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Alternatively, we can impose bounds Φ ∈ [ΦL,ΦU ] . Under these bounds we know that

(assuming the selection on observables correction is positive),7

EP [TEi] ∈ EPS [Ti] +
[
ΦL

(
EP

[
T̂i

]
− EPS [Ti]

)
,ΦU

(
EP

[
T̂i

]
− EPS [Ti]

)]
. (12)

With the selection on observables correction and the trial population ATE, EPS [TEi] , we can

thus easily calculate the implied range of values for EP [TEi].

Up to this point, the calculations are the same under either model of selection. Interpreting

the results, however, requires taking a stand on the selection process.

Selection on Treatment Effects Consider first the case where we model the selection

process by assuming that units are selected on the treatment effect. In this case the key

object is Φ, which can be interpreted as a measure of the degree of private information about

treatment effects used in the selection process. For example, suppose we find that a value of

Φ = 2 is necessary to eliminate a positive result. This indicates that the unobservables would

have to be at least as informative about the treatment effect as the observables in order for

the effect in the target population to be zero.8

Further intuition may be provided by thinking about the share of relevant variables missed

by our observed covariates. In Appendix B.2, we describe a model where a large number of

latent factors drive the treatment effect, and a random subset of these are measured by Ci

while the rest are measured by Ui. In this setting Φ can be interpreted as the ratio of the total

to the observed factors. In particular, Φ = 2 reflects a case where the observed covariates

capture 50% of the latent factors.9

Selection on Other Variables The second case is one in which we model the section

process as occurring on another variable which is not observed in the target population. For

7If it is instead negative, then

EP [TEi] ∈ EPS [Ti] +
[
ΦU
(
EP
[
T̂i
]
− EPS [Ti]

)
,ΦL

(
EP
[
T̂i
]
− EPS [Ti]

)]
.

8In particular, if we regress the predicted treatment effects based on both unobservables and observables on
the observables alone, the R2 must be less than 0.5.

9The assumptions needed for this interpretation are considerably stronger than those required for the rest of
our results. We thus regard the model yielding this result more as a way to build intuition than as a description
of a plausible data generating process.
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example, we might have a case where experimental locations were selected on accessibility,

but we do not observe accessibility measures. In this case the ratio of the total to observable

adjustment measures the relative importance of the observables and unobservables in explain-

ing the covariance between this selection variable and the treatment effect, which we denote

by ΦA.

As above, suppose we find that a value of ΦA = 2 is necessary to eliminate a positive

result. This means that unobservables would have to explain as much of the covariance of Ai

and TEi as the observables in order for the effect in the target population to be zero. Again,

in the model described in Appendix B.2 one can relate ΦA to the share of factors captured

by the covariates, and a value of ΦA = 2 can be interpreted as a case where the observed

covariates capture 50% of the latent factors.

4.1.1 Correction for Selection on Observables

To implement the approaches discussed above, we need an estimate of EP

[
T̂i

]
−EPS [Ti] . We

can estimate EPS [Ti] by the sample average of Ti, so the challenge is estimation of EP

[
T̂i

]
,

the ATE corrected for selection on observables.

In our applications below we estimate T̂i by regressing Ti on a vector of functions of the

covariates r (Ci) whose mean EP [r (Ci)] in the target population is known,

Ti = r (Ci)
′ δ + ei,

where we assume r (Ci) includes a constant. We then approximate EP

[
T̂i

]
by EP [r (Ci)]

′ δ.

If we assume a linear model for treatment effect heterogeneity,

EPS [Ti|Ci] = EPS [TEi|Ci] = r (Ci)
′ δ,

then this procedure exactly recovers EP

[
T̂i

]
= EP

[
T̂Ei

]
. If on the other hand we consider

the linear specification as an approximation, then this procedure delivers an approximation

to EP

[
T̂i

]
, where the approximation error will vanish as we consider rich sets of functions

r (Ci) .
10

10Ideally we would include interactions and higher-order terms in r (Ci), although this may be infeasible
given data constraints. Nonetheless, whenever possible researchers should at a minimum include linear and
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An advantage of the regression approach we use in this paper is that it can be implemented

based on knowledge of EP [r (Ci)] alone, and so does not require us to know the full distribution

of Ci in the target population. In settings where more is known about the distribution of Ci

under P , however, one could also consider other methods, for example matching as in Hotz

et al (2005), or propensity score reweighting as in Stuart et al (2011). Such approaches again

yield estimates of the ATE corrected for selection on observables, EP

[
T̂i

]
, which can be

plugged into our approach exactly as described above.

4.1.2 Inference

Thus far, we have conducted our analysis treating the distribution PS in the trial population

as known. In applications we observe only a finite sample from PS , however, and need to ac-

count for sampling uncertainty. In discussing inference we focus on the case of simple random

sampling, where treatment is assigned iid across units. For discussion of the complications

arising from other randomization schemes see Bugni, Canay and Shaikh (2017). The develop-

ment of inference results for our approach in such settings is an interesting question for future

work.

Under the assumption of simple random assignment, we can conduct inference using the

bootstrap.11 Bootstrap standard errors for Φ (t∗P ) become unreliable when the correction for

selection on observables is close to zero, however. In this case, the denominator in Φ (t∗P )

is almost zero, which results in problems very similar to those that arise from weak instru-

ments.12 In Appendix B.3 we discuss how to construct reliable confidence sets for Φ (t∗P ).

These confidence sets are close to the usual ones when the selection on observables correction

is large, but can be unbounded when it is small.

Confidence sets for the ATE EP [TEi] are more straightforward. In particular, for (σ̂L, σ̂U )

squared terms in the covariates, since this will capture differences between the trial and target populations in
the means and variances of these variables. In settings with richer data one should consider even more moments
- interactions between the variables, higher moments of the distribution of each variable, etc.

11Note that when we estimate the distribution in the target population from a sample, we should bootstrap
target population quantities as well in order to obtain accurate measures of uncertainty.

12The selection on observables correction EP
[
T̂i
]
−EPS [Ti] plays the same role as the first-stage parameter

in linear IV, so problems arise when this difference is close to zero relative to sampling variability.
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bootstrap standard errors for our estimates (γ̂L, γ̂U ) of

(γL, γU ) =
(
EPS [Ti] + ΦL

(
EP

[
T̂i

]
− EPS [Ti]

)
, EPS [Ti] + ΦU

(
EP

[
T̂i

]
− EPS [Ti]

))
,

we can construct a (conservative) level 1− α confidence interval for EP [TEi] as

[min {γ̂L − σ̂Lcα, γ̂U − σ̂Ucα} ,max {γ̂L + σ̂Lcα, γ̂U + σ̂Ucα}] ,

for cα the two-sided level 1 − α normal critical value (e.g. 1.96 for a 95% confidence set).13

Alternatively, one can report (γ̂L, γ̂U , σ̂L, σ̂U ), which allows readers to construct the confidence

set of their choice.

4.2 Example

We illustrate our approach in an example. To ensure that we know the true form of selection

while also having an empirically reasonable distribution for the data, we use a constructed

example based on a real experiment.

4.2.1 Data and Empirical Approach

We base our example on data from Muralidharan and Sundararaman (2011), which is a

randomized evaluation of a teacher performance pay scheme in India. The project includes

student-level data from roughly 300 schools across the state of Andhra Pradesh. Teachers in

“incentive” schools were paid more for better student test scores, while those in control schools

were not. The primary outcome is student test scores. Muralidharan and Sundararaman

(2011) find that student test scores increase as a result of incentive pay.

To construct our example, we define the distribution of the target population to be the

empirical distribution in the Muralidharan and Sundararaman (2011) data. To abstract from

issues of sampling variability, we collapse the data to the school level and sample from the

data with replacement to create a large target population.

We predict treatment effects based on school-level characteristics: average teacher edu-

cation, average teacher training, average teacher salary, average household income, a school

13In fact, one can typically use a critical value smaller than cα, though more computation is required to
derive the exact value. We do this in our applications. See Appendix B.3 for details.
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infrastructure index, the share of the student population who is scheduled tribe or scheduled

caste, and average teacher absence. We also include dummies for which mandal (a geographic

area) the school is in. We can think of these controls as capturing differences across areas in

how effective the program is.

From this target population, we extract a trial population selected either on the predicted

treatment effect or on area-level characteristics. This selection process is described in more

detail in each case below. Under both schemes the ATE in the trial population exceeds that in

the target population. Our sample construction is such that if we observed all of the school-

level characteristics in both the trial and target populations, we could recover the target

population treatment effect using the selection on observables adjustment. Our approach,

then, is to explore what happens as we treat increasingly large sets of the characteristics as

unobserved.

4.2.2 Selection on Treatment Effect

We first model selection on the predicted treatment effect. We create a predicted treatment

effect T̃Ei by defining Ti as in Section 3 above and regressing Ti on the full set of controls for

school-level characteristics. We select schools into the trial population if T̃Ei ≥ Vi where Vi

is normally distributed with the same mean as T̃Ei and a standard deviation three times as

large.14

The ATE in the target population is 0.074.15 The ATE in the trial population is consid-

erably larger, 0.15. If we assume that we observe all the characteristics used in the selection

process, the adjustment for selection on observables delivers the correct value 0.074 for the

target population ATE.

We next consider the case where we cannot observe some of the variables used in the se-

lection process. We vary the size of the subset which is unobserved, considering what happens

when we eliminate just one variable, then 10%, 20%, 30%, and 50% of the variables (chosen

at random).16 In each case we calculate the ATE correcting for selection on observables,

where there is now also selection on unobservables. We consider all possible single-variable

14The mean of Vi ensures that roughly half of the population will be in treatment, and the larger standard
deviation limits approximation error, since we approximate around the fully random case.

15This is slightly smaller than the effect in the original paper since we collapse to the school level.
16Performance in this example remains quite good even when we exclude 80% of the variables.
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eliminations, while for the other cases we take 200 draws at random.

The first column of Panel A of Table 3 shows the average selection on observables adjusted

ATE for each exclusion set. When only one covariate is treated as unobserved (the last row in

Panel A) the estimate is extremely close to the target population ATE, since the unobservables

are quite limited. As we treat larger sets as unobserved the estimate is further from the target

population ATE and closer to the trial population estimate.

The second column of Panel A in this table reports the average value of Φ to match the

target population treatment effect for each specification. This value is largest when the largest

share of covariates is excluded. It is worth noting that the average values of Φ are quite close

to the actual ratio of the number of total covariates to the observed covariates, reflecting the

intuition described in cases with many covariates.

We can visualize the range of values Φ which generate the target population ATE, given

each set of unobservables. This is done in Figure 1. As we exclude a larger set of variables, the

range of Φ goes up, consistent with the presence of more private information in the selection

process. These values of Φ correspond directly to the relative importance of the observed

versus unobserved covariates in predicting the treatment effect. To see this more directly,

we calculate the ratio of the R-squared from regressing the treatment effect proxy Ti on the

observed covariates to the R-squared from regressing on all the school characteristics. We

graph this against the value of Φ to match the true bias. Deviations from equality arise from

approximation error. Figure 2 suggests such error here is limited.

4.2.3 Selection on Covariates: Results

We next model selection on features of the data other than the treatment effect. In particular,

we imagine that we select areas based on mandal-level teacher training. We divide the sample

into quartiles based on the mandal-level average of teacher training, and then calculate the

average treatment effect within each quartile, which we use as our Ãi. In practice, this puts

more weight on mandals with the highest teacher training values, and on areas in the second

quartile of training. This approximates a case where experimental locations are selected

on average teacher training, with a preference for teacher training levels predictive of high

treatment effects.17

17The selection on teacher training here is non-linear, reflecting the actual patterns in the data.
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Given this index Ãi, we select schools into the sample if Ãi ≥ Vi where Vi is normally

distributed with the same mean as Ãi and a standard deviation three times as large.

Although the structure of the sample selection is similar to the selection on treatment

effects case discussed above, the difference in ATEs between the trial and target populations

is less extreme. The target population ATE is again 0.074, while that in the trial population

is 0.119.

We again consider the case where we cannot observe a subset of the variables used in the

construction of the index Ãi. As above, we consider varying the size of the subset which is

unobserved and calculate the same selection on observables quantities as above.

Panel B of Table 3 replicates Panel A for this selection procedure. When we treat larger

sets as unobserved, the estimate is further from the target population ATE, and closer to

the trial population estimate. The values of ΦA are largest for the largest exclusion set, and

reflect the share of covariates missing from the observable set.

Figure 3 plots the distribution of the values ΦA that would generate the target population

ATE as we consider different sets of observables. With small exclusion sets the values are

relatively small, although with large sets of variables treated as unobserved the results are

noisier, and sometimes imply very large values of ΦA to match the true treatment effect. This

is also reflected in Figure 4, which graphs the value of ΦA to match the true bias against the

ratio of the covariance of Ãi, T̃Ei to the covariance of Âi, T̂Ei. There is a strong relationship

here, but it is not as tight as in the case of treatment effects. It is worth noting that as we

increase the share of missing covariates, the behavior of this ratio is more erratic.

5 Applications

This section discusses a number of specific examples applying our framework to papers in

the literature. Before moving to these examples, however, we briefly discuss in what sorts of

applications we expect our approach to be useful.

5.1 Scope of Application

The problem of external validity is quite broad, and encompasses a wide variety of different

questions. Many of the examples we discuss below focus on extrapolating from a sample of
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people to the broader population from which they are drawn, but one might also be interested

in extrapolating from one location to another, or from one time period to another. A further

sort of external validity concern relates to the general equilibrium consequences of treating

an entire population as opposed to a small sample, regardless of how the sample was selected.

Our approach is better suited to handling some of these problems than others.

To make the range of different external validity concerns concrete, consider a (hypothetical)

experiment studying a job training program. Imagine this is a small program, run in a single

city, at a time of high unemployment rates. Selection into the program is based on a lottery

among individuals who express interest. There are at least four types of extrapolation we

might be interested in: extrapolation to a similarly sized random sample of the full population,

extrapolation to the full population, extrapolation to a time period with a lower unemployment

rate, and extrapolation to other locations. We will briefly discuss the role of our approach in

addressing each of these extrapolation problems.

Extrapolation to Random Sample Our approach is most directly applicable if we want

to extrapolate to a similarly sized random sample. In the hypothetical job training example

above, for example, we might want to extrapolate to the average treatment effect on a random

sample from the city’s population. Our main assumption (Assumption 1) is plausible in this

setting, and there is a clear intuition for how to apply the models outlined in Section 3 to

model selection (in our hypothetical example, the decision to volunteer).

Extrapolation to Full Population In many settings our approach is also potentially

suited to considering extrapolation to a full population. In the job training example above,

for instance, we might want to know what would happen if the program were expanded

to cover everyone in the city. A complication, however, is that in some settings treating

the entire population could introduce important general equilibrium or spillover effects. In

settings where such issues arise it may well be interesting to undertake the analysis we suggest,

but to accurately predict the effect of treating the full population one will need to separately

account for additional effects arising from the scale of treatment.

An additional problem in extrapolating to the full population relates to our assumption

of common support - Assumption 1 – which rules out the possibility that there are types in
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the target population that never arise in the trial population. This rules out extrapolation

to people who could not be included in the experiment. If our hypothetical job training

experiment is limited to high school dropouts, for instance, then our approach cannot speak

to the impact on college graduates.

Extrapolation to Additional Locations, Circumstances Perhaps the most ambitious

external validity goals relate to extrapolation to different time periods or locations - in our

example, to times with better labor market conditions or to different cities. Assuming the

researcher has data on some observable characteristics in the two locations or time periods

it is in principal possible to use a reweighting-based approach. However, in these cases the

models developed in Section 3 do not apply, since the trial population is not a subset of

the target population. Moreover, if we run our job training experiment in a large city and

then want to extrapolate to a rural area it may be possible to match the rural population on

age or education, but it seems difficult to develop intuition about the relationship between

the observable selection and the unobservable selection, where the unobservable contains all

unmeasured differences between the two locations. Bates and Glennerster (2017) provide

a nuanced discussion of the extent to which one can port the results of randomized trials

between locations within developing countries.

Below, we develop four examples which fit in the first two extrapolation categories. Where

relevant, we highlight possible general equilibrium issues. In each case, the key empirical input

is an adjustment for selection on observables. Although it is common to informally discuss the

relationship between the sample and the overall population of interest in experimental settings,

formal adjustments for differences in observable characteristics are less frequently considered.

Implementing such adjustments requires observing features of the target population which

can be matched to the trial population.

The first two examples below consider cases where we model selection as occurring on

the treatment effect. In the last two examples, it seems more plausible to model selection as

occurring on other features of the data.
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5.2 Attanasio, Kugler and Meghir (2011)

Setting Attanasio et al (2011) report results from an evaluation of a job training program

in Colombia. The program provided vocational training to poor men and women in several

cities. We focus here on the results for women since there were concerns about the validity of

the program randomization for men. The results show large positive impacts on employment,

hours and days worked, and salaries for women.

The experimental sample consists of individuals who applied to be in the program at a

number of program centers. In many cases more people applied to be in the program than

there was space in the center, and the evaluation is based on randomizing program enrollment

among eligible individuals who chose to apply.

Attanasio et al (2011) is representative of a broader class of papers in which participants

volunteer for a study and treatment is randomized among volunteers. Examples include

Gelber, Isen and Kessler (2016), also on job training, and Muralidharan et al (2017) on

computer-based tutoring in India.

In the particular case of Attanasio et al (2011), a question of interest for policy is whether

it would be a good idea to extend the vocational training program to all individuals - perhaps

making it part of a school curriculum.18 If the ATE estimated in this experiment is valid

for such an expansion, the answer is likely yes. Given the selection procedure, however, it

seems unlikely that the ATE for the experimental sample is representative of that for the

population as a whole. In particular, individuals who select into the sample may be those

who expect vocational training to work for them. The in-sample ATE could then be biased

upwards relative to the full population ATE.

Target Population Data A key step in implementing our approach is to identify the target

population of interest and to find a data source for comparable information on that group.

In this case, a natural target population is all eligible individuals in the cities in question.

In the original paper, the authors note that there is a nationally representative survey, the

National Household Survey, which can be used to provide target population estimates. The

18This is an example of a setting where one may also want to consider the possible general equilibrium
effects of a broad expansion; those effects will not be captured by our adjusted estimate. By contrast, such
concerns would be less pressing if one instead considered an expansion to a small, randomly selected subset of
the population.
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authors provide some general comparisons to this population, but do not formally adjust for

differences in population characteristics.

The program studied in Attanasio et al (2011) is generally not open to people with degrees

beyond high school.19 We therefore exclude individuals with more than a high school education

from the target population. We also exclude from the analysis the small number of people in

the trial population who report having more than a high school degree, who should not have

been eligible (this is only 1% of the sample and makes little difference to the trial population

results).20

Appendix Table 1 reports summary statistics on the target population and the experimen-

tal group. As noted in the original paper, the target population is slightly less educated and

less likely to be employed, but similarly likely to have a formal contract conditional on em-

ployment. The differences in education reflect that a much larger share of the trial population

has completed high school. This might argue for using a dummy for high school completion in

our correction for selection on observables, rather than the mean and variance of education.

In fact, the results are very similar under both approaches.

Results Table 4 implements our calculations for each of the primary outcomes reported in

Table 4A of Attanasio et al (2011) - that is, the main results for women on which the authors

focus.21

Column 2 shows the baseline effects, which are mostly significant and show better labor

market outcomes for the treatment group. Column 3 shows the estimate after correcting

for selection on observables as described in Section 4.1 above. This correction substantially

attenuates the estimates; in some cases the adjusted effect is zero or negative. The primary

reason is that there is substantial treatment effect heterogeneity on education. While the

magnitude of the differences in education may seem fairly small, when scaled by the large

degree of heterogeneity on this dimension the implied treatment effect difference is substantial.

19See http://www.dps.gov.co/que/jov/Paginas/Requisitos.aspx
20These individuals may have been included in error, have special circumstances, or have reported their

education incorrectly.
21We implement this as described above, constructing Ti and regressing it on the covariates. A complication

is that there was a variation across cities and programs in the share of people randomized into the treatment
group. As the authors note, in most cases the shares were close to 50% (which is the average). If we observed
the exact share in treatment for each course we could use that in the construction of Ti. This was used in a
robustness check discussed in the original paper but we were unable to get the data from the authors. We
therefore use 50%, but note that it is an approximation.
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The results on increased wage and salary earnings are the least affected.

Columns 4 and 5 show two measures of external validity. First, Column 4 reports bounds

on the target population ATE under the assumption that Φ ∈ [1, 2]. For the most part these

bounds are much less encouraging about the effectiveness of the program than are the baseline

estimates. The only exception is earnings, where the impacts seem somewhat robust. Second,

Column 5 shows the value of Φ corresponding to a zero ATE. These figures are, in some

cases, less than 1 - this implies that the unobservables would have to operate in the opposite

direction of the observables to produce an effect of zero.

Confidence sets are reported in Columns 4 and 5. In Column 4 these are generally large,

corresponding to the relatively large adjustments. The confidence sets in Column 5, which

are mostly infinite, illustrate the fairly poor inference properties of Φ(0) in this setting. As

we discuss above this is a known issue, and is related to the problem of weak instruments.22

5.3 Bloom, Liang, Roberts, and Ying (2015)

Setting Bloom et al (2015) report results from an experiment in a Chinese firm designed

to evaluate the productivity consequences of working from home. The firm operates a call

center, so it is possible for workers to perform their duties from home.

The design of the experiment is as follows. First, workers at the firm were informed of the

possibility of working from home and given an opportunity to volunteer for the program. Ap-

proximately 50% of them did so. Treatment was then randomized among eligible volunteers.

Eligibility was enforced only after volunteering, and was based on several criteria including

whether the individual had a private bedroom. The results suggest substantial productivity

gains - about 0.2 standard deviations on a combined productivity measure - from working

from home.

In this case, a question of interest for the firm may be whether it would be sensible to

have many or all eligible call center employees work from home.23 If the ATE estimated in

the experiment is valid for the entire workforce, then the answer is likely yes. In fact, given

the expense of running an office, this might be a good policy even if the ATE on productivity

22The confidence set we use here is asymptotically optimal, so the poor performance seems to reflect funda-
mental difficulties in conducting inference on Φ(0), rather than a poor choice of confidence set.

23Again, however, there could be additional impacts of such a major expansion which would require additional
attention.
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were zero or slightly negative.

Given the selection procedure it seems plausible that the ATE for the experimental sample

is not representative of that for the population as a whole. Individuals may be more likely

to select into the sample if they expect working from home to work for them. The in-sample

ATE could therefore be biased upwards relative to the full population ATE.

Target Population Data It is straightforward to identify the target population for this

study: it is all workers at the firm with private bedrooms.24 Bloom et al (2015) collect some

basic characteristics for this overall population of workers. These can then be compared to

the volunteers.

Appendix Table 2 reports summary statistics in the overall population and experimental

group. There are some differences: the volunteer group has a longer commute, is more likely to

be male, and more likely to have children. As suggested above, when we correct for selection

on observables we use these variables and allow them to enter linearly and (for non-binary

variables) squared.

Results Table 5 shows results. Column 2 shows the baseline effect for the primary outcome

in the paper, which is the increase in overall performance. Column 3 shows estimates from

the regression-based correction for selection on observables. This slightly decreases the effect,

from 0.22 to about 0.20.25

Columns 4 and 5 again show the two measures of external validity. Column (4) illustrates

the bounds on the effect if we assume Φ ∈ [1, 2]. The lower bound is still well above zero, and

the confidence interval indicates a significant effect. Column 5 shows the value of Φ which

corresponds to an ATE of zero; this figure is a bit above 12, implying that the unobservables

would have to be substantially more important than the observables in order to deliver an

ATE of zero in the population.

24Note that the restriction to private bedrooms arises because eligibility for the program is limited to this
group. It is therefore appropriate to consider the target population as all eligible workers, rather than all
workers.

25We implement this adjustment as described above, by regressing the constructed Ti on the observables.
An alternative approach is to regress the outcome on covariates for the treatment group and the control group
separately and difference the predicted values. Assuming successful randomization, these will yield similar
results. In this case there is some imbalance across treatment and control in commute time - specifically, the
treatment group has longer commutes on average than the control group. As a result, these two approaches
yield slightly different coefficients. In Appendix Table 3 we report these results using the alternative approach.
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5.4 Dupas and Robinson (2013)

Setting Our third application uses data from Dupas and Robinson (2013), who analyze the

impact of informal savings technologies on investments in preventative healthcare and vulner-

ability to health shocks. The experiment, run in Kenya, includes four treatment arms, each

of which provided a different technology (a safe box for money, a locked box, and two health-

specific savings technologies). The outcomes include investments in health and measures of

whether people have trouble affording medical treatments.

The experiment finds significant results for some combinations of outcomes and treatments.

We focus on the combinations of outcomes and treatments which the authors suggest should

be significant based on their theory. The first two columns of Table 6 list these combinations.

Most of these effects are significant at conventional levels (see Table 3 in Dupas and Robinson

(2013)).

The experiment was run through Rotating Savings and Credit Associations (ROSCAs),

and participants were required to be enrolled in a ROSCA at the start.26 External validity

concerns again arise here because of the sampling frame: ROSCA participants are likely to

be a selected group. Most notably, ROSCAs are designed in part as a savings and investment

mechanism, so participants may differ on characteristics related to their responsiveness to

savings products.

From a policy standpoint, however, there is interest in how to increase savings behaviors

broadly, not just among ROSCA participants. We would therefore like to evaluate the external

validity of these results relative to the overall population.

To frame this in our language, our concern is that there is some feature - say, interest in

saving - which influences selection into the sample and also co-varies with the treatment effect.

We observe some correlates of this feature, but there is further private information among

the participants. The question is how important this private information would have to be in

order to produce ATEs equal to zero. We can use our approach to calculate sensitivity values

ΦA for each outcome-treatment pair in the data. These can be interpreted as measuring how

much of the covariance between the selection variable and the treatment effect would need to

26ROSCAs are informal savings groups common in many developing countries. Although the setup varies,
typically these groups come together on a regular basis and contribute to a common pot of money which is
taken home by one member on a rotating basis.
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be due to private information in order to eliminate the result. As above, higher values point

to a more robust result.

Target Population Data Column 1 of Appendix Table 4 shows summary statistics for the

sample in Dupas and Robinson (2013). To perform an adjustment for selection on observables,

it is necessary to observe the same variables for people who do not participate in ROSCAs.

In an appendix to Dupas and Robinson (2013), the authors provide evidence on differences

between ROSCA participants and non-participants using a second survey run in the same

area. These differences can be used to construct population-level values for the covariates.

These are shown in Column 2 of Appendix Table 4. We use these to adjust for selection on

observables, where we allow the variables listed to enter linearly.

Results Table 6 shows the results. For most of the analyses adjustment for selection on

observables moves the coefficient towards zero, suggesting the patterns of selection are such

that those with larger treatment effects are more likely to be in the sample. However, there

is substantial variation across the outcome-treatment pairs in the degree of sensitivity. For

example, the relationship between the treatments and the variable measuring whether people

have trouble affording treatment is fairly robust. The selection on observables adjustment is

extremely small and in one case goes in the opposite direction, suggesting that adjustments

for selection on observables actually increase the ATE. By contrast, the results for investment

in health show larger adjustments.

These differences are reflected in the metrics of external validity in Columns 5 and 6. The

bounds in Column 5 for the trouble affording treatment outcome generally remain close to the

baseline effect. In contrast, the bounds for investments in health suggest less robust impacts.

5.5 Olken, Onishi, and Wong (2014)

Setting Olken et al (2014) report results from an experiment in Indonesia which provides

block grants to villages to improve maternal health and child education. A subset of the grants

include performance incentives, and the paper reports data on a wide variety of outcomes.

The primary conclusion of the paper is that these grants have little or no effect on outcomes.

The estimates are fairly small and mostly insignificant.
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To implement the experiment, the government approached provinces, giving them the op-

portunity to take part. Five provinces volunteered to participate. Within these provinces, the

richest 20% of districts were excluded from participation, as were the 28% of districts which

did not have access to the rural infrastructure project through which the program was admin-

istered. Among the remaining districts, 20 were randomly selected, and sub-districts within

these were eligible for the program if they were less than 67% urban. There were 300 eligible

sub-districts and these were randomized into one of two treatment groups - with or without

incentives - or the control group. The experimental sample is clearly not a simple random

sample, and as the authors note the sub-districts eligible for inclusion in the experiment differ

on some observable dimensions from the overall population.

Target Population Data To apply our approach, we need to identify a set of characteristics

from the target population. The concern is that the sub-districts in the experiment are not

representative of all of Indonesia. We therefore focus on sub-district-level characteristics. The

data collected in the experiment did not include comparable information about the target

population. However, we can extract these data from a nationally representative survey of

Indonesia (SUSENAS) which we merge at the level of the sub-district with the data used

in Olken et al (2014). The target population corresponds to all of Indonesia.27 This is an

example of how our approach might be used in a setting like this, where an experiment includes

a subset of locations within a country or region, and external data is available for the entire

region.

Results Appendix Table 5 shows summary statistics both for Indonesia overall and for the

sub-districts in the study. Relative to the country overall, households in districts in the sample

are more likely to have a dirt floor and to receive cash transfers (consistent with having lower

income on average) but also have higher rates of vaccination and contraceptive use.

Table 7 shows the results. As noted, the baseline impact is insignificant for most outcomes.

However, a notable feature of this setting is that in all cases but one correction for selection

on observables increases the estimated size of the effect. Consequently, most of the sensitivity

27The set of covariates we use do not include those on which the sample is constructed, so the common support
assumption remains plausible here. For example, as shown in Appendix Table 5 the differences between the
means of the covariates in the sample and target population are of the same order as the variability within the
sample.
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measures in Column 5 are negative. Under our baseline assumptions, these results suggest

that the effects in the trial population may actually understate the overall effects in the target

population in many cases.

This is made most concrete by Column 4 of Table 7, which shows bounds under the

assumption that ΦA ∈ [1, 2]. For all of the outcomes, the bounds are substantially more

encouraging about the impact of the experiment than are the baseline effects. Based on the

confidence intervals, many of these adjusted effects are significantly different from zero. In

this case, our analysis casts doubt on the conclusion that this intervention does not change

outcomes. It may simply be that the population used for the trial is not the one for which

this intervention was most effective.

6 Discussion

While our primary focus in this paper is on external validity of ATEs estimated from random-

ized trials, one could potentially apply analogous approaches in regression discontinuity and

instrumental variables settings. In this section we briefly discuss these possibilities, as well as

application of our results to estimate non treatment-effect moments in the target population.

Regression Discontinuity Regression discontinuity estimates are identified from behavior

at the discontinuity; this leads to concern that treatment effects may differ for individuals

distant from the discontinuity (Bertanha and Imbens, 2014; Angrist and Rokkanen, 2015;

Rokkanen, 2015). Consider a sharp RD design with running variable Ri for individual i,

where Di = 1 {Ri ≥ r∗} is an indicator for Ri exceeding some threshold r∗. The regression

discontinuity approach estimates the treatment effect by a regression of Yi on Di in a small

neighborhood of Ri around r∗. We can define the observations in an infinitesimal neighborhood

of r∗ as the trial population. The target population is the population for the full range of

Ri. We can then treat this problem as in the experimental case above.28 Note, however, that

relative to approaches proposed in the literature, our approach does not exploit additional

structure from the regression discontinuity setting and so may yield less precise results.

28For our absolute continuity assumption (Assumption 1) to hold, Xi must not include Ri.
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Instrumental Variables The central component of the LATE critique is that instrumental

variables approaches identify the ATE and other quantities only in the population of compliers,

which may differ from the population of interest. In the language of this paper, we can define

PS as the distribution in the population of compliers and P as the distribution in the overall

population, including compliers, never takers and always takers. It is then possible to proceed

in the same way as above. Unlike recent work on external validity in instrumental variables

models by Kowalski (2016) and Brinch et al ( 2017), however, our approach again does not

exploit the additional structure imposed by the instrumental variables setting, and so again

may yield less precise results.

Non-Treatment Effect Moments We focus on cases where the unknown moment of

interest in the target population is an ATE. However, as should be clear from the development

of the theory in Section 2, our approach is not limited to estimating ATEs. Of particular

interest may be cases where the object of interest is the mean of some variable in the target

population.

An example of this sort is polling data: surveys collect voting intentions in a trial popu-

lation and the object of interest is the voting intentions in a target population. It is common

to reweight polling data to match observable demographics in the target population. Our ap-

proach could be used in concert with such reweighting to think systematically about possible

selection on unobservables (for example: people who respond to polling calls may be more

passionate about the election, or have a lower value of time).

7 Conclusion

This paper considers the problem of external validity when the trial population for a study

differs from the target population of interest. We focus on the case where the trial population

is selected, at least in part, on characteristics which are unobserved by the researcher. We

analyze this problem through the lens of reweighting. We show that this framework can

be used to bound the target population moments under assumptions about the intensity

of selection on the portion of the treatment effect explained by observables relative to the

unobservable.
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Our approach is straightforward to implement. The only added data requirement above

what would be used in the main analysis in a paper is knowledge of some characteristics of the

target population. In many cases we could use, for example, demographic variables, where the

moments in the target population are available from standard public datasets. In designing

experiments going forward the range of application for this technique might be improved by

either collecting some minimal data on a target population or by structuring data collection

in the trial population to ensure comparability with known features of the target population.
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Figure 1: Histogram of Values of Φ to Match Population Effect
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Notes: This figure shows the values of Φ which would match the population effect in the example based on

Muraldiharan and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example

the data are selected on the predicted treatment effect, where the prediction is constructed using observables

and unobservables.
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Figure 2: Relationship between Φ and R-Squared
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Notes: This figure shows the relationship between the values of Φ to match the population effect and the

relative R-squared in a regression of the treatment effect on all variables in the example based on Muraldiharan

and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example the data

are selected on the predicted treatment effect, where the prediction is constructed using observables and

unobservables. The 45 degree line is plotted in black.
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Figure 3: Histogram of Values of ΦA to Match Population Effect
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Notes: This figure shows the values of ΦA which would match the population effect in the example based on

Muraldiharan and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example

the data are selected on mandal-level average teacher training.
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Figure 4: Relationship between ΦA and Covariance Ratio
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Notes: This figure shows the relationship between the values of ΦA to match the population effect and the

relative R-squared in a regression of the treatment effect on all variables in the example based on Muraldiharan

and Sundararaman (2011) with varying sets of covariates treated as unobserved. In this example the data are

selected on mandal-level average teacher training. The 45 degree line is plotted in black.
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Table 1: Bias Decomposition

Variable Trial Pop. Mean Target Pop. Mean σPS
(fj (Xi)) ρPS

(Wi, fj (Xi)) σPS
(Wi)

White (0/1) 0.59 0.80 0.492 0.519 0.815

HS Completion (0/1) 0.84 0.89 0.363 0.163 0.815

Male (0/1) 0.50 0.51 0.50 0.017 0.815

Notes: This table illustrates the bias decomposition in the NLSY. σPS
(fj (Xi)) is the standard deviation of the moments,

ρPS
(Wi, fj (Xi)) is the correlation between the weights and the moments and σPS

(Wi) is the standard deviation of the
weights.

Table 2: Relative Selection on Additional Moments

Relative Selection Ratio for Comparison With:

Additional Variable Trial Pop. Mean Target Pop. Mean White HS Completion Male

Log Hourly Wage 1.60 1.64 0.15 0.48 4.72

College Completion (0/1) 0.23 0.29 0.36 1.15 11.18

AFQT Score 41.0 48.1 0.59 1.87 18.15

Notes: This table illustrates the difference between trial and target population on three additional variables in
the NLSY. The relative selection ratio (defined in equation (6)) is the ratio of the standardized bias on each
additional variable relative to that on the initial benchmark variables.

Table 3: Auxiliary Evidence, Selection Models with Varying Exclusion Sets

Panel A: Select on Treatment Effect

Average Selection-on-Obs. Effect Average Φ

Exclude 50% 0.111 2.05

Exclude 30% 0.098 1.49

Exclude 20% 0.090 1.27

Exclude 10% 0.083 1.14

Exclude only one covariate 0.076 1.02

Panel B: Select on Mandal Teacher Training

Average Selection-on-Obs. Effect Average ΦA

Exclude 50% 0.092 2.09

Exclude 30% 0.087 1.56

Exclude 20% 0.082 1.31

Exclude 10% 0.079 1.16

Exclude only one covariate 0.075 1.04

Notes: This table illustrates the evidence from the constructed example in Section 4. The sample is selected based either
on the predicted treatment effect (Panel A) or the Mandal-level average of teacher training (Panel B). We then calculate
the average value for Φ or ΦA which would match the target population treatment effect, treating different sets of the
covariates as unobserved.
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Table 4: Application: Attanasio et al( 2011)

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

(1) (2) (3) (4) (5)

Employment 0.062 -0.007 [-0.076, -0.007] 0.89

(0.02,0.11) (-0.15, 0.14) (-0.31, 0.16) (-∞,∞)

Paid Employment 0.056 -0.007 [-0.071, -0.007] 0.88

(0.01, 0.10) (-0.14, 0.13) (-0.30, 0.16) (-∞,∞)

Days Worked in Last Month 1.53 0.13 [-1.26, 0.13] 1.09

(0.39, 2.68) (-3.06, 3.33) (-6.47, 3.94) (-∞,∞)

Hours/Week 3.46 0.51 [-2.45, 0.51] 1.17

(0.82,6.10) (-7.29, 8.31) (-14.7, 9.8) (-∞,∞)

Job Tenure -1.30 -0.75 [-0.75,-0.20] 2.37

(-2.48,-0.17) (-3.49, 1.98) (-4.56, 4.15) (-∞,∞)

Wage and Salary Earnings 31,116 24,336 [17,555, 24,336] 4.58

(14,104, 48,129) (-4677, 53,350) (-27,566, 62,678) (−∞,−1.6] ∪ [0.9,∞)

Self-Employment Earnings 5213 -2194 [-9603, -2194] 0.70

(-9982, 20,410) (-33,603, 29,214) (-59,518, 40,311) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Attanasio et al (2011). The target population
moments are generated using a nationally representative survey of the same areas in which the study was run. Analytic
and bootstrap confidence intervals are reported in Columns (2) and (3), respectively, while the confidence sets in Columns
(4) and (5) are computed as described in Appendix B.3, with simulation-based critical values c∗α used in Column (4).

Table 5: Application: Bloom et al (2015)

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

(1) (2) (3) (4) (5)

Job Performance 0.222 0.204 [0.185, 0.204] 12.08

(0.172, 0.272) (0.149, 0.258) (0.125, 0.252) (−∞,−39.2] ∪ [5.3,∞)

Notes: This table shows the application of our sensitivity procedure to Bloom et al (2015). The target population
moments comes from the study. Analytic and bootstrap confidence intervals are reported in Columns (2) and (3), respec-
tively, while the confidence sets in Columns (4) and (5) are computed as described in Appendix B.3, with simulation-based
critical values c∗α used in Column (4).
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Table 7: Application: Olken et al (2014)

Outcome Baseline Effect Observable Adjusted Bounds, ΦA ∈ [1, 2] ΦA(0)

(1) (2) (3) (4) (5)

Prenatal Visits 0.198 1.51 [1.51,2.83 ] -0.15

(-0.505, 0.902) (0.72, 2.30) (0.67, 4.13) (-0.64, 0.35)

Assisted Delivery 0.008 0.119 [0.11, 0.231] -0.067

(-0.074, 0.089) (0.021, 0.217) (0.027,0.372) (-0.56, 0.43)

Postnatal Visits -0.197 0.059 [0.059,0.316] 0.768

(-0.44, 0.048) (-0.29,0.41) (-0.24, 0.78) (0.25, 8.75)

Iron Pills 0.045 0.284 [0.284,0.524] -0.191

(-0.137, 0.229) (0.031, 0.538) (0.067, 0.857) (-1.18, 0.32)

Immunization 0.004 0.102 [0.102,0.20] -0.040

(-0.054, 0.062) (0.023, 0.181) (0.031, 0.305) (-0.55, 0.44)

No. Weight Checks 0.147 0.419 [0.419,0.692] -0.54

(-0.009, 0.304) (0.199, 0.640) (0.223,0.990) (-1.53, -0.03)

Vitamin A Supplements 0.015 0.185 [0.185,0.335] -0.089

(-0.148, 0.179) (-0.026, 0.397) (-0.005,0.636) (-1.58, 0.91)

Malnourished 0.002 0.016 [0.016,0.032] -0.117

(-0.026, 0.030) (-0.019,0.053) [(-0.019, 0.083) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Olken et al (2014). The target population
moments are generated using location-level variables from a nationally representative survey (SUSENAS). Analytic and
bootstrap confidence intervals are reported in Columns (2) and (3), respectively, while the confidence sets in Columns
(4) and (5) are computed as described in Appendix B.3, with simulation-based critical values c∗α used in Column (4).
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Appendix A: Proofs

Proof of Lemma 1 This result is immediate from Bayes Theorem. Note, in particular,
that for any measurable set A,

P rPS {Xi ∈ A} = PrP {Xi ∈ A|Si = 1} =

∫
A
pX (x|Si = 1) dµ

while by Bayes Theorem we can take

pX (x|Si = 1) =
EP [Si|Xi = x]

EP [Si]
pX (x) .

Thus,

PrPS {Xi ∈ A} =

∫
A

EP [Si|Xi = x]

EP [Si]
pX (x) dµ.

2

Proof of Lemma 2 We have assumed that PX is absolutely continuous with respect to PX,S ,
and the density of PX with respect to PX,S is given by pX

pX,S
. The result follows immediately.

2

Proof of Corollary 1 By the definition of the covariance,

EP [f (Xi)] = EPS [Wif (Xi)]
= CovPS (f (Xi) ,Wi) + EPS [f (Xi)]EPS [Wi] .

As noted in the text, however, EPS [Wi] = 1 by Lemma 2, so the result follows. 2

Proof of Lemma 3 Applying Lemma 1 conditional on (Ci, Ui), we know that the weights
to rebalance the conditional distribution of TEi are

Wi =
EP [Si|Ci, Ui]

EP [Si|Ci, Ui, TEi]
=
EP [Si|Ci, Ui]
EP [Si|Ci, Ui]

= 1,

where in the second equality we have used the fact that Si is independent of TEi given
(Ci, Ui) . Thus, since EP [TEi|Ci, Ui] = EPS [WiTEi|Ci, Ui] by Lemma 2 applied conditional
on (Ci, Ui) , the result follows immediately. 2

Proof of Lemma 4 By Lemma 1, we know that the weights to rebalance
(
Ci, T̃Ei

)
are

Wi =
EP [Si]

EP

[
Si|Ci, T̃Ei

] =

1− PrP
{
Vi ≤ c · T̃Ei

}
1− PrP

{
Vi ≤ c · T̃Ei|Ci, T̃Ei

} =
1− PrP

{
Vi ≤ c · T̃Ei

}
1− PrP

{
Vi ≤ c · T̃Ei|T̃Ei

} ,
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where in the second equality we have used the assumption of selection on the treatment effect.
Since we have assumed that Vi is continuously distributed it follows from Assumption 2 that
this is a continuously differentiable function of T̃Ei. 2

Proof of Proposition 1 Note that

EP [TEi]− EPS [TEi]

EP

[
T̂Ei

]
− EPS [TEi]

=
EP

[
T̃Ei

]
− EPS

[
T̃Ei

]
EP

[
T̂Ei

]
− EPS

[
T̂Ei

] =
CovPS

(
Wi, T̃Ei

)
CovPS

(
Wi, T̂Ei

) ,
where the first equality follows from the law of iterated expectations and Lemma 3. Applying
approximation (9) in the main text, we see that

CovPS

(
Wi, T̃Ei

)
CovPS

(
Wi, T̂Ei

) ≈ CovPS

(
W ∗i , T̃Ei

)
CovPS

(
W ∗i , T̂Ei

) =
CovPS

(
W ∗i , T̃i

)
CovPS

(
W ∗i , T̂ i

) ,
where the second equality again follows from the law of iterated expectations. Note, however,
that

CovPS

(
W ∗i , T̃Ei

)
CovPS

(
W ∗i , T̂Ei

) =
CovPS

(
T̃Ei, T̃Ei

)
CovPS

(
T̃Ei, T̂Ei

) =
V arPS

(
T̃Ei

)
V arPS

(
T̂Ei

) ,
where the first equality follows from the definition of W ∗i while the second again follows from
the law of iterated expectations. 2

Proof of Lemma 5 Follows by the same argument as Lemma 3. 2

Proof of Lemma 6 Follows by the same argument as Lemma 4. 2

Proof of Proposition 2 Follows by the same argument as Proposition 1. 2
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Appendix B: Additional Results

This appendix details several results mentioned in the main text. We first provide formal
justification for the approximate weights W ∗i used in equation (9) of the main text, and show
that the error in this approximation vanishes when selection is close to random. We then
discuss a model, mentioned in Section 4.1 of the main text, under which Φ and ΦA and can
be interpreted as the share of relevant factors captured by the observed covariates. Finally,
we provide additional details of and justification for our inference procedures.

Appendix B.1 Justification of Approximate Weights W ∗
i

In the main text we claim that the error from using the approximate weights vanishes when we
consider small values of c, so selection is nearly random. In this section we formalize this claim
under regularity conditions. Without loss of generality, we focus on the case where selection
is on Ãi (since we can recover the treatment effects case by setting T̃Ei = Ãi). Formally, we
assume:

Assumption 5 1. The density fV of Vi is Lipschitz with Lipschitz constant K, and fV (0) >
0.

2. The support of Ãi is bounded.

3. EP

[
f
(
Ci, T̃Ei, Ãi

)2
]

is finite.

Under this assumption, we obtain the following result:

Proposition 3 Under Assumptions 2, 4, and 5, as c→ 0,

CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
= CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

))
+O

(
c2
)
.

Proof of Proposition 3

To show this result, recall note the proof of Lemma 1, generalized to selection on Ãi, shows
that

Wi =
1− PrP

{
Vi ≤ c · Ãi

}
1− PrP

{
Vi ≤ c · Ãi|Ãi

} .
Letting FV denote the cdf of Vi, we can re-write this as

Wi =
1− EP

[
FV

(
c · Ãi

)]
1− FV

(
c · Ãi

) ,

where only the denominator depends on Ãi.
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Mean-Value Expansion of Wi: Let us consider a mean-value expansion of Wi around
EPS [Ai] :

Wi =
1− EP

[
FV

(
c · Ãi

)]
1− FV (c · EPS [Ai])

+
1− EP

[
FV

(
c · Ãi

)]
(1− FV (c ·A∗i ))

2 c · fV (c ·A∗i )
(
Ãi − EPS [Ai]

)
,

for A∗i a value between EPS [Ai] and Ai. Note that W ∗i is of the same form, but substitutes
EPS [Ai] for A∗i . Since Vi is continuously distributed, for any ε > 0 there exists cε such that
for all c ∈ [0, cε] ,

P rP {FV (c ·Ai) ∈ [FV (0)− ε, FV (0) + ε]} = 1.

Thus, for such c we know that

1− EP
[
FV

(
c · Ãi

)]
(1− FV (c ·A∗i ))

2 ≤
1− EP

[
FV

(
c · Ãi

)]
(1− FV (0)− ε)2 .

If we consider the difference
Wi −W ∗i =1− EP

[
FV

(
c · Ãi

)]
(1− FV (c ·A∗i ))

2 c · fV (c ·A∗i )−
1− EP

[
FV

(
c · Ãi

)]
(1− FV (c · EPS [Ai]))

2 c · fV (c · EPS [Ai])

(Ãi − EPS [Ai]
)
,

the fact that fV (v) is Lipschitz implies that for c ∈ [0, cε] the difference is bounded in absolute
value by

1

(1− FV (0)− ε)2 c
2K
(
Ãi − EPS [Ai]

)2
= c2K∗

(
Ãi − EPS [Ai]

)2
,

for a constant K∗. Thus, we see that

|Wi −W ∗i | ≤ c2K∗
(
Ãi − EPS [Ai]

)2
.

Next, for some function f
(
Ci, T̃Ei, Ãi

)
, let us consider the approximation error

CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
−CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

))
= CovPS

(
Wi −W ∗i , f

(
Ci, T̃Ei, Ãi

))
= EPS

[
(Wi −W ∗i ) f

(
Ci, T̃Ei, Ãi

)]
− EPS [Wi −W ∗i ]EPS

[
f
(
Ci, T̃Ei, Ãi

)]
.

Using our bounds above, for c ∈ [0, cε] the first term is bounded in absolute value by

c2K∗ · EPS
[(
Ãi − EPS [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣] ,
while the second is bounded by c2K∗ · EPS

[(
Ãi − EPS [Ai]

)2
] ∣∣∣EPS [f (Ci, T̃Ei, Ãi)]∣∣∣ .

This almost completes the argument, except that these terms we have used as bounds
themselves depend on c, since they are calculated in the target population. Thus, we next
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show that these terms are well-behaved for small c.

Behavior of moments for small c Note that

EPS

[(
Ãi − EPS [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣] = EP

[
W−1
i

(
Ãi − EPS [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣]

= EP

 1− FV
(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)]
(Ãi − EPS [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣
 .

Since

EP


 1− FV

(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)] − 1

2
→ 0

as c→ 0, the Cauchy-Schwarz inequality implies that

EP

 1− FV
(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)] − 1

(Ãi − EPS [Ai]
)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣

→ 0,

and thus that

EPS

[(
Ãi − EPS [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣]→ EP

[(
Ãi − EP [Ai]

)2 ∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣]
as c→ 0. Under our assumptions, we can likewise show that

EPS

[∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣]→ EP

[∣∣∣f (Ci, T̃Ei, Ãi)∣∣∣]
and

EPS

[(
Ãi − EPS [Ai]

)2
]
→ EP

[(
Ãi − EP [Ai]

)2
]

as c→ 0.

Completing the argument: Combing these results, we see that under our assumptions
above,

CovPS

(
Wi −W ∗i , f

(
Ci, T̃Ei, Ãi

))
= O

(
c2
)

as c→ 0. 2

Using this result, we can show that the approximation error from using W ∗i instead of Wi

is of lower order than the bias as c→ 0.

Corollary 2 Under Assumptions 2, 4, and 5, if CovP

(
Ãi, f

(
Ci, T̃Ei, Ãi

))
6= 0 then

CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

)) → 1
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as c→ 0.

Proof of Corollary 2: By Proposition 3 we know that

CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

))
= CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
+O

(
c2
)
,

and thus that

CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
CovPS

(
W ∗i , f

(
Ci, T̃Ei, Ãi

)) =
CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
+O (c2)

.

Next, note that by Corollary 1,

CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
= EP

[
f
(
Ci, T̃Ei, Ãi

)]
− EPS

[
f
(
Ci, T̃Ei, Ãi

)]
,

which as in the proof of Proposition 3 we can re-write as

EP

1−
1− FV

(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)]
 f

(
Ci, T̃Ei, Ãi

) .
Note that the assumption that fV (·) is Lipschitz, together with the fact that it is positive
and integrates to one, implies that it is bounded. The dominated convergence theorem thus

implies that ∂
∂cEP

[
FV

(
c · Ãi

)]
= EP

[
ÃifV

(
c · Ãi

)]
, and that

∂

∂c

1− FV
(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)] = −
ÃifV

(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)]+
1− FV

(
c · Ãi

)
(

1− EP
[
FV

(
c · Ãi

)])2EP

[
ÃifV

(
c · Ãi

)]
.

Since this quantity is bounded for small c, the dominated convergence theorem implies that

∂

∂c
CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
=

EP

 ÃifV

(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)] − 1− FV
(
c · Ãi

)
1− EP

[
FV

(
c · Ãi

)]EP [ÃifV (c · Ãi)]
 f

(
Ci, T̃Ei, Ãi

) ,
and thus that CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))
is continuously differentiable in c on a neighbor-

hood of zero. Evaluating this derivative at c = 0 yields

∂

∂c
CovPS

(
Wi, f

(
Ci, T̃Ei, Ãi

))∣∣∣
c=0

= EP

 ÃifV (0)

1− EP [FV (0)]
−

EP

[
ÃifV (0)

]
1− EP [FV (0)]

 f
(
Ci, T̃Ei, Ãi

) .
Thus, we see that this derivative is nonzero so long as Ãi is correlated with f

(
Ci, T̃Ei, Ãi

)
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and fV (0) 6= 0, which we have already assumed. Provided this derivative is nonzero, the
result follows immediately. 2

Appendix B.2 Interpretation of Φ and ΦA Under Random Selection of Ob-
servables

To build intuition for the behavior of Φ and ΦA, we consider a model in which the observable
covariates represent a random subset of a larger collection of latent factors. As above, we
focus on the case with selection on Ãi, while results under selection on T̃Ei follow as a special
case.

Similar to Altonji et al. (2010), let us suppose that both the covariates Ci and the
unobservables Ui are driven by a set of J unobserved factors Fi, with J = dim (Ci)+dim (Ui).
Let us also suppose that the factors Fi are conditional mean independent, in the sense that

EPS [Fi,j |Fi,1, ..., Fi,j−1, Fi,j+1, ..., Fi,J ] = 0

for all j, so knowing the values of the other factors doesn’t help us predict the value of the
jth factor.

Suppose that FC,i and FU,i collect non-overlapping subsets of the factors, of size JC and
J − JC respectively, and that Ci and Ui are then generated as

Ci = µC + ΛCFC,i

Ui = µU + ΛUFU,i,

where ΛC and ΛU have full rank. Note that EPS [Ui|Ci] = µU and EPS [Ci|Ui] = µC , so the
observables and unobservables are conditional mean independent.

Finally, let us suppose that the conditional expectations of both Ai and TEi are linear in
the factors,

EPS [Ai|Fi] = µA + γ′FFi

EPS [TEi|Fi] = µTE + δ′FFi.

This implies that the conditional expectations of these variables are linear in Ci, Ui as well:

Ãi = µ̃A + γ′CCi + γ′UUi,

Âi = µ̂A + γ′CCi,

T̃Ei = µ̃TE + δ′CCi + δ′UUi,

and
T̂Ei = µ̂TE + γ′CCi.

For SC and SU are the selection matrices corresponding to FC,i and FU,i,

(FC,i, FU,i) = (SCFi, SUFi) ,

the coefficients above are defined as

(γC , γU , δC , δU ) =
(
Λ−1
C SCγF ,Λ

−1
U SUγF ,Λ

−1
C SCδF ,Λ

−1
U SUδF

)
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and
(µ̃A, µ̂A, µ̃TE , µ̂TE) =(

µA − γ′CµC − γ′UµU , µA − γ′CµC , µTE − δ′CµC − δ′UµU , µTE − δ′CµC
)
.

Under these assumptions, the fact that Ui and Ci are orthogonal implies that

ΦA =
γ′CΣCδC + γ′UΣUδU

γ′CΣCδC

for ΣC and ΣU the variance matrices of Ci and Ui.

Random Selection of Factors: Thus far, we have treated the mapping from factors to
variables as fixed. To obtain restrictions on ΦA, let us instead model the selection of observable
factors as random. In particular, suppose that non-overlapping sets of factors of size JC and
J−JC are drawn uniformly at random. Again denote vectors containing these factors by FC,i
and FU,i, respectively. Suppose that Ci and Ui are then generated as

Ci = ΛCFC,i

Ui = ΛUFU,i,

where ΛC and ΛU again have full rank but may be random conditional on the set of factors
selected.

Denoting expectations over the variable construction step by EF , note that

EF
[
γ′CΣCδC

]
=
JC
J
γ′FΣF δF

while
EF

[
γ′CΣCδC + γ′UΣUδU

]
= γ′FΣF δF .

Therefore, we see that
EF [γ′CΣCδC + γ′UΣUδU ]

EF
[
γ′CΣCδC

] =
J

JC
,

which is simply the inverse of the fraction of factors captured by the covariates. Unfortunately,
however,

EF [ΦA] 6=
EF [γ′CΣCδC + γ′UΣUδU ]

EF
[
γ′CΣCδC

] =
J

JC
,

since the expectation of a ratio is not generally equal to the ratio of expectations.
This difficulty resolves if we take the number of factors to be large. In particular, let

σ2
j denote the variance of factor j, and γj , δj the coefficients on this factor. Suppose that(
σ2
j , γj , δj

)
are drawn iid from some distribution such that 0 < EF

[
σ2
j γ

2
j + σ2

j δ
2
j

]
<∞. If we

take J → ∞ and assume that JC/J → κC , then by the weak law of large numbers and the
continuous mapping theorem

ΦA →p
1

κC
,
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so ΦA has a natural interpretation in terms of the fraction of the factors captured by the
covariates relative to the unobservables.

Appendix B.3 Inference Details

Here we discuss inference on the quantities we propose, including confidence sets for Φ (t∗P )

which remain valid when EP

[
T̂i

]
− EPS [Ti] is small, and the justification for the confidence

set proposed for the case when we have bounds Φ ∈ [ΦL,ΦU ] .

Appendix B.3.1 Confidence Set for Φ (t∗P )

To construct a confidence set for Φ (t∗P ), let(
σ̂2

1 σ̂12

σ̂12 σ̂2
2

)
denote the bootstrap estimate for the variance-covariance matrix of consistent and asymptot-

ically normal estimates
(
β̂1, β̂2

)
for

(
β1

β2

)
=

(
t∗P − EPS [Ti]

EP

[
T̂i

]
− EPS [Ti]

)
.

We can use a version of the confidence set proposed by Anderson and Rubin (1949) and Fieller
(1954). In particular, define the AR statistic evaluated at φ as

AR (φ) =

(
β̂1 − β̂2φ

)2

V̂ ar
(
β̂1 − β̂2φ

) =

(
β̂1 − β̂2φ

)2

σ̂2
1 − 2φσ̂12 + σ̂2

2φ
2
.

Note that β1 − β2Φ (t∗P ) = 0. To construct a level α confidence set for Φ (t∗P ) we can simply
collect the set of values where AR (φ) is less than a level 1− α χ2

1 critical value:

CS =
{
φ : AR (φ) ≤ χ2

1,1−α
}
.

One can show that this confidence set has correct coverage in large samples even when β2

is close to (or exactly) zero. Moreover, when β2 is large this confidence set behaves like the
usual one, and so does not sacrifice efficiency in this case.

Appendix B.3.1 Confidence Set for EP [TEi] Under Bounds on Φ

We next justify the proposed confidence set for EP [TEi] under the assumption Φ ∈ [ΦL,ΦU ] .
For (σ̂L, σ̂U ) bootstrap standard errors for our estimates (γ̂L, γ̂U ) of

(γL, γU ) =
(
EPS [Ti] + ΦL

(
EP

[
T̂i

]
− EPS [Ti]

)
, EPS [Ti] + ΦU

(
EP

[
T̂i

]
− EPS [Ti]

))
,
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we proposed constructing a level 1− α confidence interval for EP [TEi] as

[min {γ̂L − σ̂Lcα, γ̂U − σ̂Ucα} ,max {γ̂L + σ̂Lcα, γ̂U + σ̂Ucα}] ,

To understand this procedure, note that EP [TEi] is contained in the bounds implied by
[ΦL,ΦU ] if and only if

min {γL, γU} ≤ EP [TEi] ≤ max {γL, γU} ,

or equivalently, either

Ha
0 : max {(γL − EP [TEi]) ,− (γU − EP [TEi])} ≤ 0

or
Hb

0 : max {− (γL − EP [TEi]) , (γU − EP [TEi])} ≤ 0

holds.
However, this is the union of two hypotheses of the sort commonly tested in the literature

on moment inequalities. Standard arguments in that literature show that the test that rejects

Ha
0 : max {(γL − EP [TEi]) ,− (γU − EP [TEi])} ≤ 0

only if

max

{
γ̂L − EP [TEi]

σ̂L
,− γ̂U − EP [TEi]

σ̂U

}
> c∗α

for c∗α the 1− α quantile of max {ξ1, ξ2} for

ξ ∼ N

(
0,

(
1 σ̂LU

σ̂Lσ̂U
σ̂LU
σ̂Lσ̂U

1

))

has size at most α in large samples (where σ̂LU is the bootstrap estimate of the covariance
between ΦL and ΦU ). Since we are interested in testing Ha

0 ∪Hb
0, we thus consider the test

which rejects only if our tests for Ha
0 and Hb

0 both reject. For a given hypothesized value
EP [TEi], this test rejects if and only if

min

{
max

{
γ̂L − EP [TEi]

σ̂L
,− γ̂U − EP [TEi]

σ̂U

}
,max

{
− γ̂L − EP [TEi]

σ̂L
,
γ̂U − EP [TEi]

σ̂U

}}
> c∗α.

To form a confidence set, we can collect the set of non-rejected values, which is exactly

[min {γ̂L − σ̂Lcα, γ̂U − σ̂Ucα} ,max {γ̂L + σ̂Lcα, γ̂U + σ̂Ucα}] .

Thus, this gives us a (conservative) level 1− α confidence interval for EP [TEi] .
The confidence interval stated in the text is obtained by further noting that for all c,

Pr {max {ξ1, ξ2} > c} ≤ Pr {ξ1 > c}+ Pr {ξ2 > c} ,

which implies that c∗α ≤ cα for cα the two-sided level α normal critical value. Thus, we can
form our confidence intervals with conventional critical values, though we will obtain better
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power by instead using the alternative (more computationally intensive) critical value c∗α.
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Appendix C: Tables and Figures

Table 1: Observable Sample Selection, Attanasio et al (2011)

Variable Population: Mean (SD) Sample: Mean (SD)

Age 21.6 (2.26) 22.8 (2.04)
Education 8.5 (2.98) 10.2 (1.6)

Prior Employment 0.205 (0.404) 0.468 (0.449)
Prior Contract 0.034 (0.018) 0.068 (0.252)

Prior Formal Employment 0.026 (0.16) 0.066 (0.249)

Notes: This table illustrates the moments in the sample and population for the Attanasio et al (2011) paper.

Table 2: Observable Sample Selection, Bloom et al (2015)

Variable Population: Mean (SD) Sample: Mean (SD)

Age 24.4 (3.30) 24.7 (3.65)
Gross Wage 3.13 (0.84) 3.09 (0.78)

Any Children 0.155 (0.362) 0.201 (0.402)
Married 0.265 (0.442) 0.310 (0.463)

Male 0.385 (0.487) 0.438 (0.497)
At Least Tertiary Educ 0.456 (0.498) 0.399 (.490)
Commute Time (Min) 96.9 (61.1) 111.7 (62.7)

Job Tenure 32.4 (19.7) 31.2 (20.6)

Notes: This table illustrates the moments in the sample and population for the Bloom et al (2015) paper.

Table 3: Application: Bloom et al (2015), Alternative Covariate Approach

Outcome Baseline Effect Observable Adjusted Bounds, Φ ∈ [1, 2] Φ(0)

Job Performance 0.271 0.289 [0.289, 0.309] -14.7

(0.22, 0.32) (0.23,0.34) (0.241, 0.370) (-∞,∞)

Notes: This table shows the application of our sensitivity procedure to Bloom et al (2015). The moments comes from
the study. Standard errors are bootstrapped. This table shows an alternative approach to adjusting for covariates, by
regressing the outcome on covariates separately for treatment and control and generating the difference in predicted
values to estimate the average treatment effect.
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Table 4: Observable Sample Selection, Dupas and Robinson (2013)

Variable Population: Mean Sample: Mean

Age 40.95 39.03
Female 0.681 0.737

Hyperbolic 0.152 0.159
Time Inconsistent 0.175 0.177

High Discount Rate 0.467 0.442
Education 5.67 6.31

Female X Married 0.495 0.555
Female X Hyperbolic 0.110 0.116

Female X Time Inconsistent 0.108 0.127
Female X High Discount 0.318 0.334

Notes: This table illustrates the moments in the sample and population for the Dupas and Robinson (2013) paper.
The difference between ROSCAs and Non-ROSCAS is drawn from external data, helpfully provided by the authors.
Note that since we are inferring the population mean from data on the difference we cannot match the trial and target
populations on standard deviations.

Table 5: Observable Sample Selection, Olken et al (2014)

Variable Population: Mean (SD) Sample: Mean (SD)

Dirt Floor Share 0.174 0.226 (0.244)
Cash Transfer Share 0.347 0.360 (0.227)
Avg. # Vaccinations 7.40 8.14 (2.58)

Avg. Length Breastfeed 15.6 15.7 (4.34)
Literate Share 0.908 0.917 (0.070)

Contraceptive Share 0.215 0.233 (0.099)

Notes: This table illustrates the moments in the sample and population for the Olken et al (2014) paper. The restricted
moment come from the SUSENAS data on Indonesia, which is merged with the Olken et al (2014) data at the subdistrict
level.
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