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1 Introduction

The recent boom in U.S. crude oil production has been one of the most significant events

in oil markets. Often referred to as the shale boom, the large increase in oil production

brought about by the application of horizontal drilling and hydraulic fracturing has changed

the nation’s energy landscape and the dynamics of global oil markets. From 2010 to 2015,

U.S. crude production increased from 5.5 million barrels per day (mb/d) to 9.6 mb/d, and

imports of crude oil fell almost 2 mb/d.

An important facet of oil produced from shale is that it is predominantly light crude

oil. The U.S. refining sector, on the other hand, has a comparative advantage in processing

heavier crude oils relative to the rest of the world. The different oils are imperfect substitutes

for each other as inputs into the refining sector. As a result, the large, unexpected increase

in U.S. light oil production led to a mismatch of increased light crude inputs versus heavier

refining capacity in the U.S. This issue was particularly relevant until the end of 2015,

because the U.S. had an export ban on crude oil, a policy that had been put in place after

the 1973 oil embargo.

The shale boom and the mismatch between increased production of light crude oil and

the demand for that oil from U.S. refiners had some noticeable implications. For example,

light oil imports into the U.S. declined dramatically, as some of the shale production was

simply used to substitute for previously imported foreign light oil. Likewise, it was clear that

the export ban constrained trade flows of crude oil and, at certain periods of time, depressed

light oil prices in the U.S.1

What is less clear, though, is how and to what extent the shale boom and the export

ban may have affected other oil market and macroeconomic variables. For instance, what

quantitative impact did the light oil boom have on U.S. GDP? Did the export ban distort

economic outcomes enough to affect the broader economy? How did the boom and the ban

affect the refining sectors of the U.S. and the rest of the world? To address these questions,

we develop a dynamic stochastic general equilibrium (DSGE) model and investigate the

impact of the shale boom and the export ban on global oil markets, trade flows, the overall

1See, for example, Çakır Melek and Ojeda (2017) [18].
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U.S. economy, and the upstream and downstream energy industries. We show that the U.S.

oil boom has sizable impacts not only on upstream and downstream energy sectors, but also

on U.S. GDP and trade flows. The ban was a binding constraint with the distortions being

greatest in the refining sector.

In our model, the world economy consists of two countries, the U.S. and the rest of the

world (ROW). Both countries produce oil, a non-oil good and refined petroleum products

(fuel). Oil itself is only used in the production of fuel, while fuel is used as a consumption

good by households and as an intermediate input by firms that produce the non-oil good.

The non-oil good is used for consumption and investment spending in both countries. To

be able to study the effects of the shale boom and the export ban, we introduce a rich

model of oil and refined products production. First, oil is not a homogenous commodity,

a novel feature of the model. It comes in three types, light, medium and heavy. Second,

different types of crude oil are imperfect substitutes as inputs into the refining process to

produce fuel, another novel feature of the model. We calibrate our model to match a variety

of macroeconomic and oil market data, and take into account important differences in the

refining sectors of the U.S. and the rest of the world.

We model the U.S. shale oil boom as a series of positive productivity shocks that increase

U.S. light crude oil production, and then illustrate the general equilibrium repercussions. We

find that the light oil supply increase causes light oil prices to fall 20 percent and fuel prices

to fall about 14 percent, boosting both household and firm fuel consumption. All imported

light crude oil is backed out, leading to the U.S. becoming an exporter of light oil. U.S.

imports of medium and heavy crudes also decline, as refiners substitute away from medium

and heavy crudes. As a result, the U.S. oil trade balance improves significantly. Although

the oil and gas sector is a small part of the U.S. economy, the boom in light oil supply

increases U.S. GDP by more than 1.0 percent, a substantial impact, at one tenth of growth

from 2010 to 2015.

We then extend our baseline model to investigate the distortionary effects of the U.S.

crude oil export ban, as the ban was in place during most of the shale boom. We find that

the export ban was a binding constraint for several years, particularly in 2014 and 2015,

and would have remained a binding constraint had the policy not been removed at the end
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of 2015. Our model shows that the export ban policy distorted the price of light crude

oil in the U.S., making it artificially cheap relative to light oil in the ROW and relative

to other grades of crude oil. This discount provided a cost advantage to the U.S. refining

sector. As a result, the U.S. processed more light oil than it would otherwise, and gained

market share at the expense of the rest of the world. The overall impact on the world fuel

supply, however, was negligible, so was the impact on refined fuel prices, as there was no

ban on refined petroleum products trade. Moreover, we see a very small improvement in the

petroleum trade balance, due in part to increasing refined products exports. The impact on

U.S. GDP was very slight, though, partly because of the upstream and downstream sectors

being relatively minor components of U.S. GDP. Overall, our model does a good job in

explaining the changes seen in the data, despite the fact that we rely only on a single shock.

Finally, we examine the data to see if there is evidence that the export ban may have been

binding at some point in time. First, we do find evidence in line with model’s predictions

about the export ban. For example, the domestic price of light crude oil in the U.S. was

unusually low compared to the international benchmark starting in late 2013. Data also

show that U.S. crude oil exports continued increasing in 2016, despite lower production

levels. Finally, we explore to what extent certain loopholes in the export ban policy were

used to circumvent the ban. The data show that one such loophole, the ability to export to

Canada, was used in 2014 and 2015 to a much larger extent than before. We conclude that

the export ban was likely binding to some degree in 2014 and 2015.

Our model fits into the DSGE literature with oil, which includes works such as Backus

and Crucini (2000) [3], who look at the impact of oil supply shocks on terms of trade, trade

flows, and output, Bodenstein, Erceg and Guerrieri (2011) [11] who study the relationship

between oil prices and the trade balance, Nakov and Nuno (2013) [37] who model the oil

market as a dominant supplier and a competitive fringe, and Plante (2014) [38] who examines

optimal monetary policy in the face of oil shocks. Our work also has connections with the

international real business cycle literature, see for example Backus et al. (1992) [4], Backus

et al. (1994) [5], Crucini and Kahn (1996) [17]. To the best of our knowledge, we contribute

to this literature by being the first to introduce a distinction between different types of oil

in a DSGE model, the first to model the refining sector and the first to explore the impact
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of the U.S. crude oil export ban in such a modeling framework.

There are several recent papers analyzing the U.S. shale oil boom and its effects on global

oil prices, the global economy and the energy industry. Manescu and Nuno (2015) [33], using

a general equilibrium model, show that the shale boom resulted in an increase of 0.2 percent

of GDP for oil importers. Using a VAR model, Mohaddes and Raissi (2016) [36] show that

the oil supply shock increased global GDP by 0.16 to 0.37 percentage points. Kang et. al.

(2016) [27] find that a positive U.S. supply shock had a positive effect on U.S. stock returns

using a structural VAR approach.2

Langer et al. (2016) [31] analyze the lifting of the export ban using a numerical, partial

equilibrium model.3 They find that U.S. sweet crude exports expand significantly and the

sweet oil-importing ROW gains from not having to invest in refinery capacity. Farrokhi

(2016) [22] is the only study examining the oil export ban with a detailed refinery model in a

multi-country general equilibrium model of oil trade. He examines the effects of counterfac-

tual policies on oil prices and trade quantities across the world. He shows that if the crude

oil export ban had been lifted during the shale boom, U.S. crude oil prices would have risen

by 4.6 percent, U.S. refinery profits would have fallen by 6.3 percent, and refined product

prices would have risen by 0.1 percent.

The rest of the paper is organized as follows. We present the background information

and data in Section 2. Our general model framework is presented in Section 3. Section 4

provides the calibration, and results are discussed in Section 5. We introduce the crude oil

2Other studies include Walls and Zheng (2016) [44], Kilian (2016) [28] and Kilian (2017) [29], Bjornland

et.al. (2016) [10], Arezki et.al. (2017) [2], Bornstein et.al. (2017) [13], and Mohaddes and Pesaran (2017) [35].
3A number of non-academic studies by national and international organizations discuss the impact of

free trade policy relating to U.S. crude oil. These studies include Ebinger and Greenley (2014) [19], EIA

(2014) [40], Vidas et.al. (2014) [43], IHS (2014) [25], IHS (2015) [26], which are typically qualitative in

nature or rely on simple models in order to evaluate the impact. Overall, they argue that free trade would

increase the price of domestic crude oil, hence could result in higher production and lower price of gasoline,

benefiting consumers. The estimated decline in domestic gasoline prices change from 1.5 cents to 13 cents in

these studies. A Congressional Research Service report by Brown et al. (2014) [15] has a good background

analysis of the oil export ban and Bordoff and Houser (2015) [12] summarize several other reports on the

issue, while Brown et al. (2014) [14] and Medlock (2015) [34] provide more academic analyses of the export

ban.
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export ban and examine its implications in Section 6. Sensitivity analysis is undertaken in

Section 7 and we conclude in Section 8.

2 Data

Our goal in this section is to review some key data to gauge how the shale boom has affected

the oil market. To this end, we introduce data on crude oil production by type, U.S. imports

and exports of crude oil and refined products, and refiner use of different types of oil. Using

this data, we show the breakdown of production in the U.S. and the rest of the world,

characterize the extent to which refiners in the U.S. are specialized in processing different

types of oil and document how the data have changed since the onset of the shale boom.

2.1 Introduction to crude oil quality

Although crude oil is generally viewed as a homogenous commodity, crude oils vary across a

number of dimensions. These include density, sulfur content, and contamination with other

elements, such as certain metals.

The density of a crude oil is one of the more important measures used to distinguish

between different types of oil. The American Petroleum Institute gravity (API gravity) is a

commonly used measure of a crude oil’s density with values ranging from 10 to 70. A higher

API gravity indicates less density. Oils with higher API gravities are known as light oils,

those with low API gravities are known as heavy. Light oils tend to be preferred by refiners

as they require less processing to produce larger amounts of gasoline and diesel. As a result,

light oils often sell at a premium to medium and heavy crudes.

Sulfur content is another important characteristic that distinguishes crude oils. Oils with

high sulfur content are referred to as sour while those with low sulfur content are sweet. The

latter require less processing and are therefore preferred to sour oils. Generally speaking,

there is a correlation between a crude’s API gravity and the amount of sulfur present in

the oil. Although not always the case, lighter oils often have lower sulfur content, especially

when compared to heavy crudes.

Figure 2.1 shows how some important crude oil benchmarks vary in terms of their API
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Figure 2.1: Characteristics of various crude oils

gravity and sulfur content. West Texas Intermediate, the benchmark crude oil for the U.S.,

is an important example of a light crude oil, with an API near 40 and a relatively low sulfur

content. Other examples of light oils include Louisiana Light Sweet (LLS) and Brent which

is an important benchmark outside the U.S. Maya crude, produced in Mexico, is an example

of a heavy crude, a dense oil with a low API near 20 and a very high sulfur content relative

to other crude oils. Mars is a medium crude produced in the U.S. Gulf of Mexico. It has an

API and sulfur content in between the lights and Maya, and is similar in quality to Dubai,

an important benchmark outside the U.S.

Prices of similar quality oils tend to remain fairly close to each other.4 As quality differ-

ences become more pronounced, so do the price differences between the oils. For example, if

we consider the price of light, medium and heavy crude in the U.S. Gulf Coast, we see that

the price of LLS has, on average, been about 12 percent higher than Mars crude oil since

1997, when data became available for Mars, and 27 percent more expensive than Maya.

Not surprisingly, the relative prices of different oils also tend to be more volatile as the

quality differences become more pronounced. Using the Gulf Coast as an example again, we

constructed a monthly time series from 1997 to 2010 for the price ratios of LLS to Brent,

LLS to Mars and LLS to Maya. Figure 2.2 plots the coefficient of variation of these relative

4Factors such as transportation bottlenecks can occasionally cause prices of similar quality oils to deviate

substantially from each other. An example of this in recent years is the price of WTI.
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oil prices as a function of how different each pair is in terms of API gravity. The more

pronounced the quality differences become, the higher the coefficient of variation becomes.

While this chart only considers three relative prices, a similar pattern emerges when looking

at other crude oils.5

Figure 2.2: Coefficient of variation of relative oil prices
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2.2 Crude oil production

We rely on production data from the 2017 version of Eni’s World Oil and Gas Review [20].

It provides a breakdown of crude oil production into several different types. The breakdown

covers world output and production in a number of countries, including the U.S. The data are

available for a select number of years, including 2000, 2005 and from 2010 to 2016. Although

this is a limited time series, it covers years when oil production in the U.S. boomed due to

horizontal drilling and hydraulic fracking and does provide a snapshot of U.S. production

before the boom.

Other sources of data on crude production by type are available but, unfortunately, they

either have a limited time series or limited coverage. For example, the Energy Information

Administration has recently started releasing monthly production data by API gravity for

5For example, a similar pattern is found if one uses the Asian benchmarks Tapis, Dubai and Duri crudes

instead of LLS, Mars and Maya.
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the U.S. but the data only start in 2015. EIA (2015) [41] provides annual data but only for

2010 - 2013. We also constructed a longer time series for U.S. production using data from

DrillingInfo and several other sources. However, this method produces a time series that

often leaves a significant portion of production unclassified because of limited API gravity

information. Neither source provides information for countries outside the U.S. As a result,

we did not use these data for this paper.

We define different categories of crude oil using API gravity as our metric. We would

have preferred to further expand the categorization to include sulfur content but could not

because of data limitations. Following Eni, we define heavy crude oil as oil with an API less

than 26, medium from 26 up to 35, and light crude oil with an API of 35 and above. Using

these definitions, it is possible to construct a series for the U.S. and the rest of the world

(ROW) for oil production by type.6

Table 2.1 shows the production data in millions of barrels per day (mb/d). One feature

of the shale boom is that new production is primarily light oil. By 2015, light production

had increased by 4.4 mb/d in the U.S., more than tripling its 2010 level. Outside the

U.S., increased production was from medium and heavy crudes, with declines in light crude

production.

2.3 U.S. exports and imports: crude oil and refined products

The EIA provides disaggregated data on U.S. crude imports by API gravity, which allows

us to categorize imports into light, medium or heavy. Annual data go back until 1978. An

extensive time series is available for annual crude exports but the EIA does not provide a

breakdown by type. Given our interest in the shale boom, we focus on the more recent data

available for both imports and exports.

The left portion of Table 2.2 shows the import data by type for 2000, 2005 and 2010

to 2016. We note that the U.S. has been and continues to be a major importer of crude

oil. However, there have been some dramatic shifts in the quantity and types of oil being

6A small amount of world crude oil production, less than 1 percent of the total for most years, was

unclassified by Eni. We distribute the unclassified amount equally between light, medium and heavy crude

oil.
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Table 2.1: Crude oil production by type, mb/d

U.S. Rest of the world Total world

Light Medium Heavy Light Medium Heavy Light Medium Heavy

2000 2.1 2.9 0.8 20.1 34.9 7.6 22.2 37.8 8.4

2005 1.7 2.8 0.7 19.9 40.3 9.5 21.6 43.0 10.1

2010 2.1 2.8 0.6 20.8 38.8 9.9 23.0 41.6 10.4

2011 2.6 2.5 0.6 19.7 40.2 10.0 22.3 42.7 10.5

2012 3.5 2.4 0.6 20.1 41.0 9.8 23.6 43.4 10.4

2013 4.5 2.4 0.6 19.6 40.5 10.1 24.2 42.9 10.7

2014 5.9 2.4 0.6 19.0 41.4 10.2 24.8 43.8 10.9

2015 6.5 2.5 0.6 19.1 42.0 11.1 25.6 44.5 11.7

2016 5.9 2.5 0.6 19.3 42.6 10.9 25.2 45.1 11.4

imported. Since the shale boom, imports of light oil have fallen substantially and imports of

medium have declined. Imports of heavy crude have increased about 10 percent since 2010

and are up substantially since 2000. We note that imports of light oil picked up again in

2016, concurrent with the decline in U.S. light crude production that year.

The middle block of Table 2.2 shows the data for U.S. crude exports. From 2000 to 2013,

the U.S. exported a trivial amount of crude oil, typically under 100 kb/d. Exports picked up

noticeably starting in 2014, however, and have continued increasing every year since. The

increase in exports in 2014 and 2015 might seem at odds with the U.S. policy of prohibiting

exports of crude oil that was in place at the time. A short discussion on the policy will help

provide some context for this.

Until December 2015, there was a federal ban on crude oil exports whose motivation

dated back to the 1973 oil embargo. Although labeled a ban, exporting oil was possible

under certain circumstances. The most relevant exemption for recent export data was the

possibility to export crude oil to Canada.7 This could be done so long as the oil was not

7Another exemption regarded exports of Alaskan crude oil. However, exports from Alaska have been

negligible since 2000. More details can be found in Bausell et al. (2001) [8], Kumins (2005) [30] and Van

Vactor (1995) [42].
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Table 2.2: U.S. crude oil and refined products exports and imports, mb/d

U.S. crude imports U.S. crude exports U.S. refined products

Light Medium Heavy Total Net imports

2000 2.2 4.6 2.3 0.05 0.87

2005 2.3 4.3 3.5 0.03 2.00

2010 2.1 3.3 3.8 0.04 0.08

2011 1.7 3.3 4.0 0.05 -0.35

2012 1.4 3.1 4.0 0.07 -1.00

2013 0.9 3.0 3.9 0.13 -1.13

2014 0.6 2.7 4.1 0.35 -1.49

2015 0.6 2.6 4.2 0.47 -1.51

2016 0.9 2.6 4.4 0.52 -1.48

re-exported from Canada. This exemption was used heavily in both 2014 and 2015, with the

EIA export data showing that most U.S. exports of crude oil went to Canada which can be

seen in figure 2.3.

Figure 2.3: U.S. crude oil exports
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The rightmost column of Table 2.2 shows net imports of U.S. refined products. Over

the course of the shale boom there was a significant increase in the production of refined
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products. As the export ban did not apply to refined petroleum products, exports of products

increased significantly and by 2011 the United States had become a net exporter.

2.4 Refiner inputs by type of oil

We next construct an estimate of how much oil of each type is being processed by refiners

in the U.S. and ROW. Our estimate of U.S. refiner inputs by type is given by the following,

Inputjt = Productionj
t + Importsjt − Exportsjt ,

where each variable is for the U.S. and the types are indexed by j = l,m, h. The production

data comes from Eni, while the import and export data are from the EIA.

As mentioned previously, the EIA does not provide a breakdown of the export data

by type of oil. For most of the years considered, exports were relatively small and could

be ignored without significantly affecting our estimates. This is not true for 2014 and 2015,

however. Data available from Canada, along with analysis from several other sources, suggest

that most, if not all, of the oil exported to Canada was of the light variety.8 Given this, we

assume that all U.S. exports of crude oil from 2010 to 2016 were light. This has the effect of

lowering our estimate for U.S. refiner use of light crude oil, particularly from 2014 to 2016.

The estimate for ROW is then constructed by calculating the difference between world

oil production of type j and U.S. refiner use of type j. We note that it would be preferable

to account for crude oil inventory changes when making this calculation. However, we are

unaware of any data that would allow us to break inventory changes into the respective

types, even in the U.S. Outside of the U.S, data are also limited regarding overall crude oil

inventory changes. We do note, however, that changes in crude oil inventories in the U.S.

from year to year, at least, tend to be very small when compared to the other flow data we

are interested in. For example, crude inventories changed by +.02 mb/d, - .01 mb/d and +

.1 mb/d in 2010, 2011 and 2012, respectively. These are fairly small compared to the amount

of oil being processed by U.S. refiners each day.

Table 2.3 shows our estimates for refining inputs. As can be seen in the table, the U.S.

refinery sector is geared towards processing heavy crude oil relative to the rest of the world.

8See Çakır Melek and Ojeda (2017) [18] for more details.
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Table 2.3: Refiner inputs by type, U.S. and rest of the world, mb/d

U.S. refiner inputs ROW refiner inputs

Light Medium Heavy Light Medium Heavy

2000 4.3 7.5 3.1 17.9 30.4 5.4

2005 4.1 7.0 4.2 17.6 36.0 6.0

2010 4.2 6.1 4.4 18.8 35.5 6.1

2011 4.2 5.8 4.5 18.1 37.0 6.0

2012 4.9 5.6 4.5 18.7 37.9 5.9

2013 5.3 5.3 4.5 18.9 37.5 6.2

2014 6.1 5.1 4.7 18.7 38.7 6.2

2015 6.6 5.1 4.8 19.0 39.4 6.9

2016 6.3 5.1 5.0 19.0 40.0 6.4

This can also be seen in Figure 2.4, where we plot 2010 data for illustrative purposes. In that

year, the U.S. alone processed more than 40 percent of the world’s heavy crude oil. On the

other hand, the U.S. processed about 18 percent of the world’s light crude, and only around

15 percent of the world’s medium crude. The over-weighting of the U.S. refining sector in

terms of how much heavy crude oil it processes reflects the fact that the U.S. has a number

of very large, complex refineries that are able to efficiently process heavy crude oils.

2.5 Summary: changes since 2010

There have been some dramatic changes not only in U.S. oil production but also in crude

imports, exports and refining data since the start of the shale boom. We take stock of these

in Table 2.4 by comparing how select data for the U.S. has changed from 2010 to 2015.

The impact of the new technology on production is immediately obvious. Light produc-

tion increased by 4.4 mb/d over the 5 year period. Production of other types was relatively

flat, with production of medium crudes down slightly and heavy crude production essentially

unchanged.
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Figure 2.4: Global refining shares by type of oil, U.S. and the ROW, 2010
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Refiner use of light oil also increased substantially, with U.S. refiners processing an addi-

tional 2.4 mb/d in 2015 vs. 2010. The increase was insufficient to absorb all new U.S. light

production. As a result, imports of light oil from other countries dropped sharply. There

was also an increase in exports, primarily to Canada, especially in 2015.

One feature of the data that does not receive much attention concerns imports and

refiners’ use of medium crude oil. U.S. refiners reduced their use of medium crudes by 1

mb/d, leading to a significant drop in imports. One possibility is that light oil may have

crowded out medium oil. We will return to this point later when discussing results from our

theoretical model.

Finally, U.S. refiners have continued increasing their usage of heavy crude oil over these

years. Based on the Eni data, world production of heavy crude was about 1.3 mb/d higher

in 2015 than in 2010. U.S. refiners processed about 40 percent of the increase, with the crude

being imported from other countries.

Motivated by these facts, the next section presents our theoretical framework used to

evaluate the impact of U.S. shale oil boom on upstream and downstream energy sectors,

trade flows, and the overall U.S. economy.
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Table 2.4: Change in select U.S. data from 2010 to 2015, mb/d

Production Imports Exports Refiner inputs

Light 4.4 -1.5 0.4 2.4

(204) (-73) (1017) (57)

Medium -0.3 -0.8 -1.0

(-9) (-23) (-17)

Heavy 0.02 0.4 0.5

(3) (12) (11)

Total 4.1 -1.9 0.4 1.8

(75) (-20) (1017) (13)

Note: % changes from 2010 to 2015 are presented in parentheses.

3 Baseline Model

The world economy is represented by a dynamic stochastic general equilibrium model that

consists of two countries, the U.S. and the rest of the world (ROW).9 We refer to the U.S. as

country 1 and ROW as country 2. Both countries produce three goods: crude oil, refined oil

products, and a non-oil good. Their preferences and technologies have the same functional

forms. Crude oil is produced using the non-oil good as an input and comes in three types:

light, medium or heavy crude. Production of refined products requires capital, labor, and a

composite of the three types of crude oil. The household consumption bundle is a composite

of refined products and the non-oil good. Finally, the non-oil good is produced using capital,

labor, and refined products. We abstract from internationally traded financial assets in the

model so trade balances each period in the model.

9See Backus and Crucini (2000) [3], Backus et al. (1992) [4], Backus et al. (1994) [5], Crucini and Kahn

(1996) [17], etc. for more details on this framework.
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3.1 Households

The utility of a typical household in country i, i = 1, 2, is characterized by

E0

∞
∑

t=0

βt
(cµi

i,tL
1−µi

i,t )γ

γ
, (3.1)

where ci,t and Li,t are aggregate consumption and leisure, respectively. The parameter

0 < β < 1 denotes the discount factor, µi governs the time spent in the workplace, and γ

governs the intertemporal elasticity of substitution. We assume that crude oil is not directly

consumed by households, but is used only in the production of refined products (fuel). The

variable c measures aggregate consumption and is a composite of the non-oil good, good a,

and refined products, good f , which are combined via an Armington aggregator with weights

wi and (1− wi) as follows

ci,t = [wi(c
a
i,t)

−ρ + (1− wi)(c
f
i,t)

−ρ]
−1

ρ ,

where 1
1+ρ

is the elasticity of substitution between cai,t and c
f
i,t. The aggregator function

captures the idea that these goods are imperfect substitutes, and the weights reflect how

consumption expenditures are allocated across these goods.

The household faces a budget constraint in period t stating that the combined expenditure

on consumption and investment must equal income:

cai,t + p
f
i,tc

f
i,t + Iai,t + I

f
i,t = W a

i,tn
a
i,t +W

f
i,tn

f
i,t +Ra

i,tK
a
i,t +R

f
i,tK

f
i,t +Πa

i,t +Πf
i,t +Πo

i,t. (3.2)

We assume good a is the numeraire and pfi,t denotes the relative price of good f in country

i. Moreover, the relative price of the investment goods is equal to that of the non-oil good.

W
j
i is the wage rate and Rj

i is the rental rate of capital in sector j, j = a, f , in country i.

Households own the firms operating in the economy and hence receive profits from all sectors:

Πa
i,t, Π

f
i,t, and Πo

i,t. Profits from the oil sector are given by Πo
i,t =

∑

k Π
ok
i,t where the three

types of oil are denoted by k = h, l or m for heavy, light and medium crude, respectively.

Investment in physical capital augments the capital stock Kj
i,t+1, j = a, f , according to

the following laws of motion

K
f
i,t+1 = (1− δ)Kf

i,t + I
f
i,t − Φ

(

I
f
i,t

K
f
i,t

)

K
f
i,t (3.3)

Ka
i,t+1 = (1− δ)Ka

i,t + Iai,t − Φ

(

Iai,t

Ka
i,t

)

Ka
i,t, (3.4)
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where Iji,t denotes investment in sector j = a, f , and δ is the depreciation rate. Physical

capital formation is subject to adjustment costs as in Baxter and Crucini (1995) [9] and

Christiano, Eichenbaum and Evans (2005) [16]. Costs are governed by a quadratic investment

adjustment cost function, Φ (·), which takes the following form

Φ

(

I
j
i,t

K
j
i,t

)

=
1

2δφi

(

I
j
i,t

K
j
i,t

− υ

)2

,

where j = a, f . φi > 0 governs the elasticity of investment-capital ratio with respect to

Tobin’s q, and υ denotes the steady state investment-capital ratio. Adjustment costs are

incorporated to slow investment responses to shocks.

Finally, household’s activities exhaust total hours available:

L̄i − Li,t − na
i,t − n

f
i,t = 0, (3.5)

where L̄i is the total amount of time available for work and leisure in country i.

Each household earns labor income, capital income, and receives profits. In every period

t, the household maximizes the utility function 3.1 with respect to consumption, labor supply,

investment, and end-of-period capital stock subject to its budget constraint 3.2, the laws of

motion for capital 3.3 and 3.4, and the time constraint 3.5. In doing so, prices and wages

are taken as given.

3.2 Firms and Production

Each country produces three goods, crude oil, refined products, and a non-oil good, by

perfectly competitive firms.

3.2.1 Crude Oil Production (Light, Medium, Heavy)

Each type of crude oil is produced by a representative profit-maximizing firm in country

i = 1, 2. Oil production costs are in terms of the non-oil good and are an increasing function

of oil production as in Balke, Plante, and Yucel (2015) [6]. We continue to denote the three

oil types by k = h, l or m.

The oil producing firm chooses its oil production to maximize profits:

Πok
i,t = poki,ty

ok
i,t − Ck

i,t,
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where

Ck
i,t =

(

yoki,t

zoki,t

)1+ 1

ηk
i

1 + 1
ηki

denotes the production costs, representing the quantity of the non-oil good needed to produce

a given amount of oil. These costs can be considered as (non-energy) inputs needed to

produce oil, such as rigs. yoki,t is production of oil type k and zoki,t represents a stochastic

process for the evolution of productivity. Marginal costs increase with production increases,

reflecting the difficulty of producing an additional unit of oil as oil production increases, and

decreases with higher productivity. The firm sells its output to refineries at a price of poki,t.

Profit maximization implies

poki,t = (zoki,t )
−1

(

yoki,t

zoki,t

)
1

ηk
i

,

where ηki is country i’s elasticity of supply for type k oil. This suggests that the higher the

elasticity of supply, the lower the marginal cost of producing a given amount of oil.

3.2.2 Refined Products Production

For the refining sector, we work with a production function in five inputs and restrict our

attention to the class of constant elasticity of substitution production technologies. This

type of production function is relatively simple and parsimonious, and gives a specification

that allows for different elasticities of substitution across inputs.

We assume that the production function is a constant returns to scale CES of a capital-

labor composite, itself a Cobb-Douglas function, and a composite of the three types of oil,

y
f
i,t =

[

w
f
i

(

z
f
i (n

f
i,t)

χ
f
i (Kf

i,t)
1−χ

f
i

)

−ρ
f
i

+ (1− w
f
i )G(o

fl
i,t, o

fm
i,t , o

fh
i,t )

−ρ
f
i

]

1

−ρ
f
i

(3.6)

where zfi represents productivity in the sector, and nf
i,t, K

f
i,t denote labor and capital inputs.

The parameter wf
i governs the share of value-added in gross output in country i, and χ

f
i

governs the labor share in value-added in country i, with 0 < w
f
i , χ

f
i < 1. The elasticity

of substitution between capital-labor composite and oil composite is 1

1+ρ
f
i

. Hence, we allow

for the possibility that the cost-shares and productivity levels vary across countries, and
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allow for the fact that it is hard to substitute between oil and other inputs when it comes

to producing fuel.

The function G(·) is a constant returns to scale CES aggregate of the three types of oil

inputs, ofli,t, o
fm
i,t , o

fh
i,t . Using a CES aggregator allows us to introduce the idea that the oils

are imperfect substitutes for each other in a relatively parsimonious way. It also helps us

capture differences in how much oil is being consumed by the refining sector of each country.

We choose to work with the following nested-CES function:

G(ofli,t, o
fm
i,t , o

fh
i,t ) =

[

wo
i (o

fh
i,t )

−ρoili + (1− wo
i )
(

ωo
i (o

fl
i,t)

−ηoili + (1− ωo
i )(o

fm
i,t )

−ηoili

)

ρoili

ηoil
i

]

1

−ρoil
i

,

(3.7)

where light and medium crudes form their own composite. The wo
i and ωo

i terms are dis-

tribution parameters that control the relative use of the different types of oil in the sector.

The elasticity of substitution between light oil (or medium oil) and heavy oil is 1
1+ρoili

, and

the elasticity of substitution between light oil and medium oil is 1
1+ηoili

.

The use of this composite allows us to take a stand on whether light and medium crudes

are more or less substitutable with each other than with heavy crude oil. This is motivated

by the discussion in section 2, where it was shown that the relative price of light crude to

medium is much less volatile over time than the relative price of light to heavy.10 As we

show later, allowing the elasticity to be different between light and medium vs. heavy will

let us model this feature of the data.11

The representative producer of refined products in each country chooses nf
i,t, K

f
i,t, o

fl
i,t,

o
fm
i,t , and o

fh
i,t to maximize profits

Πf
i,t = p

f
i,ty

f
i,t −W

f
i,tn

f
i,t −R

f
i,tK

f
i,t − poli,to

fl
i,t − pomi,t o

fm
i,t − pohi,to

fh
i,t

subject to equations 3.6 and 3.7. In solving this problem, the producer takes as given

the wage W f
i,t, the rental price of capital Rf

i,t, and the prices of light, medium and heavy

10The higher volatility of the relative price of light to heavy oil could also be due to differences in the

volatility of supply shocks to medium or heavy crude. Data limitations prevent us from investigating this

possibility.
11Another signal that the two are more substitutable is that the prices of light and medium are typically

much closer to each other than they are to heavy crude oil. The processing of heavy crude oil also generally

requires some very specific capital, such as cokers, which are not required to process other oils.

19



oil poli,t, p
om
i,t , p

oh
i,t . The representative firm sells its output to households and non-oil good

producers at a price pfi,t.

3.2.3 Non-oil Good Production

Finally, a representative firm hires labor and rents capital from the household and purchases

refined products from refineries to produce non-oil good. In doing so, it uses a constant

returns to scale technology that combines a capital-labor composite with refined products.

The production function is

yai,t =
[

wa
i

(

zai,t(n
a
i,t)

χa
i (Ka

i,t)
1−χa

i

)

−ρai + (1− wa
i )(m

f
i,t)

−ρai

]
1

−ρa
i (3.8)

where zai,t represents a stochastic process for the evolution of productivity, na
i,t, K

a
i,t denote

labor and capital inputs, andmf
i,t is the input of refined products. The parameter χa

i controls

the share of labor in non-oil sector’s value-added in country i, wa
i controls the relative use

of capital-labor composite and refined products in the sector, and 1
1+ρai

is the elasticity

of substitution between capital-labor composite and refined products. The firm chooses

na
i,t, K

a
i,t, and m

f
i,t to maximize profits

Πa
i,t = yai,t −W a

i,tn
a
i,t −Ra

i,tK
a
i,t − p

f
i,tm

f
i,t,

subject to equation 3.8. The producer sells its output to households and oil producers.

3.3 Market Clearing

A competitive equilibrium for the world economy requires market clearing for all the goods,

i.e. that production of each good must equal the total use of that good,

yol1,t + yol2,t = o
fl
1,t + o

fl
2,t, (3.9)

yom1,t + yom2,t = o
fm
1,t + o

fm
2,t , (3.10)

yoh1,t + yoh2,t = o
fh
1,t + o

fh
2,t, (3.11)

y
f
1,t + y

f
2,t = c

f
1,t + c

f
2,t +m

f
1,t +m

f
2,t, (3.12)

ya1,t + ya2,t = ca1,t + ca2,t + Ia1,t + Ia2,t + I
f
1,t + I

f
2,t + C l

1,t + C l
2,t + Cm

1,t + Cm
2,t + Ch

1,t + Ch
2,t. (3.13)
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Trade balances every period. All the goods can be traded freely and no trade costs are

assumed, so both purchasing power parity (PPP) and law of one price hold:

pol1,t = pol2,t,

pom1,t = pom2,t ,

poh1,t = poh2,t,

p
f
1,t = p

f
2,t.

4 Calibration and solution method

4.1 Calibration

We solve the model numerically, which requires us to calibrate the model.12 Our model is

calibrated at an annual frequency. Country 1 represents the U.S. while country 2 represents

the rest of the world. Our main data sources are the U.S. Energy Information Adminis-

tration, the Oil and Gas Journal, the International Energy Agency, the Bureau of Labor

Statistics, the Bureau of Economic Analysis, the International Monetary Fund, the United

Nations, Bloomberg, World Input Output Database (WIOD), and Eni’s 2017 World Oil and

Gas Review. Appendix A contains a complete description of the data series used in the

calibration.

We choose the starting values for a number of the model’s variables and calibrate some

parameters to match certain moments of the data. Where possible, we calibrate an initial

steady state to match data from 2010, as this is the year before oil production in the U.S.

started booming. In certain cases, the steady state is chosen to match time-series averages

of the data. A number of parameters and starting values are then determined implicitly

through the steady state equations. Finally, the parameters for the shock processes, along

with several model parameters, are calibrated using simulated method of moments. The

starting values and moments used in the model calibration are shown in Table 4.1. Table 4.2

presents the values of the model’s parameters. A discussion of the moment-matching exercise

is deferred until later.

12We use the Dynare software package developed by Adjemian et al. (2011) [1] to solve our model.
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Several parameters related to preferences, capital accumulation and production functions

are calibrated to be equal across countries. The discount factor β is set 0.96. The depreciation

rate of capital, δ, is set to 0.10. We set the capital adjustment cost parameter, φ, to 4, in line

with Christiano, Eichenbaum and Evans (2005) [16]. The curvature parameter determining

the household’s coefficient of relative risk aversion, γ, is set at −1, as in Backus and Crucini

(2000) [3] or Backus, Kehoe and Kydland (1994) [5]. The elasticity of substitution between

refined petroleum products and the non-oil good consumption, given by 1
1+ρ

, is set at 0.20.

This produces a low price elasticity of demand for refined products, with a value that is within

the range of the literature.13 Following Bodenstein, Erceg and Guerrieri (2011) [11], we

constrain this elasticity to be equal for households and firms in both countries. The elasticity

of supply of oil is set to 0.13, consistent with Bornstein, Krusell and Rebelo (2017) [13]. This

ensures that supply of oil is fairly inelastic in response to price changes, a key feature of the

data.

Without loss of generality, we normalize U.S. GDP to 1, which allows us to calibrate sev-

eral variables in terms of GDP-ratios. The total time available in the U.S., L̄1 is normalized

to 1. The share of world GDP due to the U.S. was 17% in 2010 and the U.S. population

share was 4.5%, based on UN data. We use these facts to calibrate ROW GDP and the

total time available in ROW, L̄2. For both the U.S. and ROW, we assume an average time

allocation of 2
3
to leisure.

The relative price of fuel, pf , is also normalized to 1. We set cf1 equal to 2.2% of U.S.

GDP, based on data from the BEA for household spending on gasoline and heating oil in

2010. Non-household petroleum spending in the U.S., mf
1 , is set to 2.2% of GDP, based on

BEA and EIA data.

The calibration for household and firm petroleum use in ROW is obtained using data from

several sources. The World Input Output Database (WIOD) provides data on “coke and

refined petroleum products” by firms as an intermediate input and also final consumption

of the good by households for 40 countries.14 The EIA provides data on world consumption

of petroleum and other liquids by region and end-use sector. Finally, Exxon 2016 Energy

13For example, see the discussion in Baumeister and Hamilton (2016) [7].
14See Timmer et al. (2015) [39] for details on the database.
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Table 4.1: Baseline Calibration: Targets

U.S.

Description Symbol Value

GDP yg1 1

Fuel prices pf1 1

Total time L̄1 1

Time allocated to leisure L1 2/3

Household fuel use cf1 0.022

Firm fuel use mf
1 0.022

Fuel production yf1 0.995
(

cf1 +mf
1

)

Total oil production yo1 = yol1 + yom1 + yoh1 0.35 yf1

Light oil production yol1 0.390 yo1

Medium oil production yom1 0.504 yo1

Heavy oil production yoh1 0.106 yo1

Total oil input to refiners of1 = ofl1 + ofm1 + ofh1 2.675 yo1

Light oil used by refiners ofl1 0.286 of1

Medium oil used by refiners ofm1 0.415 of1

Heavy oil used by refiners ofh1 0.299 of1

Relative price of light oil to medium pol/pom 1.06

Relative price of light oil to heavy pol/poh 1.18

Cost-share of oil in refining
∑k=l,m,h

k

(

pokofk1

)

/
(

pf1y
f
1

)

0.774

ROW

GDP yg2 83% of world GDP

Total time L̄2 95.5% of world population

Time allocated to leisure L2 2/3 L̄2

Total oil production yo2 = yol2 + yom2 + yoh2 0.927% of world total

Light oil production yol2 0.300 yo2

Medium oil production yom2 0.559 yo2

Heavy oil production yoh2 0.141 yo2

Total fuel production yf2 1.017 of2

Household fuel use cf2 1/2 of firm use
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Table 4.2: Baseline Calibration: Parameter values

Shared parameters

Description Symbol Parameter value

Discount factor β 0.96

Curvature parameter in utility function γ −1

Depreciation rate of capital δ 0.10

Elasticity of investment-capital ratio w.r.to Tobin’s q φ 4

Elasticity of substitution (fuel, non-oil good) 1/(1 + ρ) 0.20

Elasticity of substitution in refining (light, medium crude) 1/(1 + ηoil) 3.65

Elasticity of substitution in refining (heavy, composite) 1/(1 + ρoil) 2.13

Elasticity of substitution in refining (value-added, oil) 1/(1 + ρf ) 0.285

Elasticity of oil supply, for k = l,m, h ηk 0.13

U.S.

Weight on value-added in refining production wf
1 .9578

Labor’s share in refining value-added χf
1 0.164

Weight on ofl1 in refining production ωo
1 0.4891

Weight on ofh1 in refining production wo
1 0.2891

Labor’s share in non-oil production χa
1 0.60

Weight on fuel in non-oil production (1− wa
1) 5.1382e− 09

Weight on fuel in utility function (1− w1) 3.1589e− 08

Weight on leisure in utility function µ1 0.3787

ROW

Weight on value-added in refining production wf
2 0.9334

Labor’s share in refining value-added χf
2 0.297

Weight on ofl2 in refining production ωo
2 0.471

Weight on ofh2 in refining production wo
2 0.1784

Labor’s share in non-oil production χa
2 0.55

Weight on fuel in non-oil production (1− wa
2) 7.4458e− 09

Weight on fuel in utility function (1− w2) 1.5165e− 09

Weight on leisure in utility function µ2 0.3935
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Outlook [21] provides data on world oil use by end-use sector. Based on our calculations

using different sources, we assume a ratio of 0.50 for the ratio of household use of petroleum

to firm use for 2010, allowing us to pin down steady state values of household use and firm

use of refined products for the ROW.

We rely on data from the World Input Output Database to calibrate the labor-share of

value-added in the non-oil sector, given by χa
1 and χa

2. The database provides annual data

on labor compensation and total value-added for 40 countries (including the U.S.), with the

time series running from 1995 to 2011 for most countries. We use this data to generate a

time series for the labor share of total value-added in each country and take an average over

2000− 2009. The value for the U.S. is obtained as χa
1 = 0.60. To get the labor share of total

value-added for the ROW, we find the share of global GDP due to each country, excluding

the U.S., and use these shares to weight each country’s average labor-share. We then sum

the weighted labor shares to get our estimate for the ROW, χa
2 = 0.55.

U.S. refined products production equaled 99.5% of total domestic refined products con-

sumption in 2010, which we use to set yf1 . The total volume of crude oil processed by U.S.

refiners that year was about 93.6% of total U.S. refinery production.15 To determine the

shares of each type of oil processed in the U.S. refineries, we use the estimates presented

in subsection 2.4. These shares determine the starting values for ofk1 for k = l,m, h. Total

ROW fuel production, yf2 , is set to match data on refinery gains for the ROW that come

from the EIA and IEA.

We set total U.S. oil production to match the fact that U.S. production in 2010, in mb/d,

was 35% of U.S. refinery output of fuel. The U.S. share in global oil production in 2010 was

0.073, which determines total ROW oil production. The steady state values of light, medium,

and heavy oil production for both the U.S. and ROW are set to match the shares of each

type of oil in total production, based on Eni data presented in subsection 2.2.

Oil price data is used to set two moments in the model, the relative price of light oil to

medium and the relative price of light oil to heavy. As a proxy for light, medium and heavy

oil prices, we consider LLS, Dubai and Maya prices, respectively.16 We construct annual

15This is due to a volumetric expansion that occurs when crude oil is processed into refined petroleum

products.
16Due to data limitations, we use Dubai for medium oil price, not Mars in our calibration. They both
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averages for relative oil prices using monthly data from Bloomberg, and set the steady state

price ratios to their 2010 averages.

We match the average cost share of crude oil in gasoline and diesel prices in the U.S.

for 2010, 77.4%, to determine the weight wf
1 . For the labor share of value-added in the

refining sector, χf
1 and χ

f
2 , we rely on data from the World Input Output Database. This

database provides annual data on labor compensation and value-added in the petroleum

and coal products sector for 38 countries (including the U.S.), and covers about 75% of

global refining capacity. We generate a time series for the labor share of value-added for

each country and find the average labor share over 2000 − 2009. The value for the U.S. is

obtained as 0.164. To get the ROW labor share, we used data from the Oil&Gas Journal

on refining capacity in 2010 to find the share of refining capacity in each country out of

the total excluding the U.S. We use these shares to weight each country’s labor-share and

sum across these countries to get our estimate for the ROW, 0.297. This implies that U.S.

refining sector is more capital intensive than the ROW refining sector.

In our calibration, the oil and fuel trade balances match 2010 data for the U.S., which

implicitly determines the non-oil trade balance at the steady state as we have abstracted

from financial assets in the model.

4.2 Moment-matching exercise

The parameters governing the autoregressive processes for the productivity shocks are not

determined by the deterministic steady state. We also need to calibrate the elasticities of

substitution across different oil inputs, given by ηoil and ρoil, as well as the elasticity of

substitution between value-added and oil in the refining production function, given by ρf .

To calibrate these parameters, we use simulated method of moments, a standard technique

in the business cycle literature, to have the model match several time-series properties of the

data.

We use data on U.S. and ROW real GDP as well as U.S. and ROW crude oil production

to help guide the calibration of the shocks. The ROW GDP series is an index of the trade-

have similar API gravity, and the coefficient of variations for LLS to Mars price ratio and LLS to Dubai

price ratio are roughly the same, 0.055 and 0.056 over 1997-2016, respectively.
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weighted average of GDP series for 40 countries from the Database of Global Economic

Indicators.17 Data on U.S. and ROW oil production are based on the EIA World Crude Oil

Production Including Lease Condensate series. We would have preferred to use time series

data on oil production by type but we do not have a sufficiently long time series available,

even for the U.S. We average the monthly and quarterly observations for oil production and

GDP, respectively, to produce an annual time series and then take the log of the annual

series.

As we do not explicitly model trends in economic variables, oil or otherwise, we de-trend

the data using a one-sided HP filter. For the oil production and refiner input series we filter

the entire sample from 1973 to 2016. For the GDP series, we start the filter in 1981, as this

is the first year for which we have an annual average for ROW GDP.

The left and right panels of Figure 4.1 plot the de-trended data series for GDP and oil

production, respectively. The gray bars in the GDP figure denote NBER recessions. We

note that the GDP series picks up the Great Recession, U.S. recessions in the early 1990s

and early 2000s, and the above trend growth in the ROW GDP in the mid-2000s due to

the BRICs. The de-trended oil production series clearly show the impact of the shale boom

and subsequent production decline in the U.S., as well as the long period from 2005 to 2013

where production outside the U.S. remained range-bound between about 68 to 70 million

barrels per day.

In our calibration exercise, we constrain the autocorrelations and volatilities of the pro-

ductivity shocks for different oil types to be equal, although they can differ between the

U.S. and ROW. Ideally, we would prefer to allow these to be different across types within

countries but we do not have a sufficiently long time series to do this. This leaves a total of

8 parameters that need to be calibrated for the shocks.

We choose 8 moments from the de-trended data to calibrate the parameters: the first-

order autocorrelations and the volatilities of each data series. Our goal in the exercise is to

calibrate the shock parameters so as to have the model simulated data match these moments

in the data. We trim the sample to run from 1986 to 2010. We remove data after 2010 to

remove the influence of the shale boom, as we want to treat that as the “shock” in our DSGE

17See Grossman et al. (2014) [23] for more details.
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Figure 4.1: De-trended GDP and oil production, U.S. vs. the ROW
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model. We start in 1986 to start our oil production series following the collapse of OPEC

production cuts around that time.

We jointly estimate those 8 parameters with the elasticities. We constrain the elasticities

to be equal across countries, so there are a total of three that need to be calibrated. We

use three moments in the data as targets for the calibration: the correlation between (real)

light and medium oil prices, the correlation between (real) light and heavy oil prices, and

the volatility of total crude oil inputs to U.S. refiners. We have chosen these moments as

the elasticities in the model play a key role in determining the values of those moments in

model-simulated data. For the oil price data, we use annual price data on LLS, Dubai and

Maya crude oils from 1991 to 2016. We start in 1991 as this is the first year for which we

have regular price data on heavy crude oil (Maya). The refiner input series is obtained from

the EIA and runs from 1973 to 2016. As with the GDP and oil production series, we filter

the data using a one-sided HP filter, and then calculate the statistics of interest from the

filtered data.

The results of the moment matching exercise for the shock parameters are presented in

Table 4.3. And, the moments are reported in Table 4.4, which compares the properties of
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Table 4.3: Calibration of shock parameters

Shock type AR(1) coefficient Volatility

Technology (U.S.) .614 .0087

Technology (ROW) .371 .0074

Oil supply (U.S.) .694 .0279

Oil supply (ROW) .737 .0325

the model to actual data. In terms of matching the targeted moments, the model does a

good job. It closely replicates the observed volatilities of U.S. and ROW oil supply and GDP,

and the observed volatility of total crude oil inputs to U.S. refiners. The model’s ability to

match the (non-targeted) light oil price volatility is weaker, but still the model can account

for about 60% of the light oil price volatility. We note that other works that use a similar

modeling framework, such as Bodenstein, Erceg and Guerrieri (2011) [11], also have trouble

matching oil price volatility at business cycle frequencies.

Our exercise leads to an elasticity between light and medium ( 1
1+ηoil

) of 3.65 and the

elasticity between heavy and composite ( 1
1+ρoil

) at 2.13. Light and medium oil are more

substitutable with each other than with heavy oil, in line with our intuition. The value

for the elasticity between value-added and oil, at a very low value of 0.285, is also in line

with our intuition, i.e. it is very difficult to substitute between oil and other inputs in the

production of refined petroleum products.

5 Results

We model the shale oil boom as an exogenous shock that lowers the cost of producing light

oil in the U.S., i.e. a positive shock to zoL1,t . In order to generate a path for the shocks, we

conduct the following exercise. We have data on the annual percent change in U.S. light

oil production from 2010 to 2015. We numerically solve for the values of the productivity

shocks that would generate the same percentage changes in the model. We then feed these

shocks into the model and analyze how various variables respond to the increased light oil
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Table 4.4: Properties of the key variables, Data vs Model

Data Model

Autocorrelation/ Autocorrelation/

Variable Correlation Volatility Correlation Volatility

U.S. oil production (total) 0.698 0.03 0.698 0.03

ROW oil production (total) 0.737 0.024 0.737 0.024

U.S. GDP 0.714 0.016 0.712 0.016

ROW GDP 0.495 0.011 0.495 0.011

U.S. refiner inputs/runs (total) 0.024 0.024

light and medium oil prices 0.981 0.981

light and heavy oil prices 0.954 0.954

Log of light oil price 0.154 0.093

production.

Given the large number of variables in the model, we choose to focus on a subset of

the results of particular interest and importance in the paper. Figure 5.1 shows impulse

responses of the important variables from the oil market and the broader economy to a light

oil productivity shock. Figure 5.2 shows impulse responses of additional variables primarily

related to the oil and refining sectors. Units are percentage deviations of each variable from

its starting point, calibrated in most cases to line up with 2010 data.

The top left panel of Figure 5.1 shows the path of U.S. light oil production, which by

default lines up with the data. Total U.S. production rises by about 75 percent by 2015.

The rise in U.S. oil production induces a small decline in oil production outside the U.S.

which falls by more than 2 percent. The increase in U.S. oil production pushes world oil

production up by around 3.7 percent by 2015.

The increased light oil supply reduces the price of light oil by 20 percent by 2015. The

decline is the same in the U.S. and ROW, as there is free trade in crude. The price of light

crude falls by more than the prices of medium and heavy crudes, as shown by Figure 5.2

bottom row, as the supply increase is solely in light crude oil. Given that crude oil is only
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used in the refining sector to produce fuel and that it accounts for a bulk of the cost of

producing fuel, world fuel prices fall, by around 14 percent. However, the increase in light

oil use by U.S. refiners is not enough to absorb all the new light oil production so there is

a sharp decline in imports of light crude. Indeed, the supply increase is large enough to

make the U.S. a net exporter of light crude oil in 2013. As refiners substitute away from

medium and heavy crudes, both imports and uses of medium and heavy crudes by U.S.

refiners decline.

The lower relative price of light oil leads to more processing of light crude by both U.S.

and ROW refiners. Light and medium crudes are closer substitutes for each other than with

heavy crude oil, hence medium oil inputs into the refinery process decline more than heavy

oil inputs. Moreover, fuel prices declining less than light oil prices creates the incentive for

refiners to process more light oil and produce fuel. Hence, refined products production in

both the U.S. and the ROW increases. But, the increase in ROW production is much larger

than the increase in U.S. fuel production, as ROW refineries have a relative advantage in

processing light oil. U.S. fuel production is about 0.7 percent higher in 2015 than 2010, while

ROW fuel production is up almost 4 percent.

The decline in oil imports translates into an improved oil trade balance. The U.S. oil

trade balance as a share of GDP improves by more than one percentage point by 2015. With

higher production of fuel in the ROW, the U.S. imports more fuel as demand is higher,

hence the U.S. fuel trade balance as a share of GDP slightly deteriorates. Overall, there is

a substantial improvement in total petroleum trade balance, as it is driven primarily by oil.

Turning to the broader economy, we find that cheaper fuel prices increase household

fuel consumption by about 4.0 percent and aggregate consumption by around 1.2 percent.

Although not presented in the figures, lower fuel prices also boost firm fuel use, which leads

to an increase in marginal product of capital, causing investment and non-oil output to

increase. Although the oil and gas sector is less than 1.5 percent of GDP, the shale boom

has a substantial effect on the broader economy. Overall, the increase in light oil production

boosts U.S. GDP by more than 1.0 percent in 2015 versus 2010 levels. Given that the

increase in U.S. GDP was 10.8 percent from 2010 to 2015, the effect of the shale boom is

significant, at about one tenth of growth.
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Figure 5.1: Impulse responses to a light oil productivity shock, baseline (no export ban)

2010 2015 2020
0

100

200

300

2010 2015 2020
0

50

100

2010 2015 2020
-3

-2

-1

0

2010 2015 2020
-30

-20

-10

0

2010 2015 2020
-30

-20

-10

0

2010 2015 2020
-15

-10

-5

0

2010 2015 2020
-200

-100

0

2010 2015 2020
0

5

10

15

2010 2015 2020
-0.5

0

0.5

1

2010 2015 2020
0

2

4

2010 2015 2020
-0.03

-0.02

-0.01

0

2010 2015 2020
-0.002

-0.001

0

-0.002

2010 2015 2020
0

2

4

2010 2015 2020
0

0.5

1

1.5

2010 2015 2020
0

0.5

1

1.5

Note: Units are percent deviations from the steady state.

32



Figure 5.2: Impulse responses to a light oil productivity shock, baseline (no export ban)
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6 The Extended Model: Impact of the Crude Oil Ex-

port Ban

In our framework presented in Section 3, there are no restrictions on trade. During most of

the shale boom, though, a crude oil export ban was in place. We extend our baseline model

to incorporate the U.S. crude oil export ban as follows. The export ban is modeled as an

exogenously given constraint that prevents (net) imports of all types of crude oil in the U.S.

from becoming negative, i.e. exports are impossible. At its most basic level, this means

having inequality constraints in the model, one for each type of oil. These constraints are

given by

o
f
k1,t

− yok1,t ≥ 0 (6.1)

for k = h,m, l. Further mathematical details about how we set up the export ban can be

found in the Appendix B.

We point out several important facets of this constraint using the case of light oil as

an example. First, if the constraint binds, then part of the oil market in the U.S. becomes

segmented from the rest of the world. This would create a wedge between domestic light oil

prices and foreign light oil prices. Second, the constraint itself is endogenous in the sense

that both refiner use of light oil and production of light oil are endogenous variables. For

example, the ability of refiners to substitute away from using other oils towards light oil has

implications for when the constraint might bind and what kind of price differentials it is

likely to generate.

To solve the model with inequality constraints, we use the Guerrieri and Iacoviello (2015)

[24] OccBin toolkit for Dynare, allowing us to examine the possibility that the export ban

could bind for some period of time. The length of the time is endogenously determined by

the shocks that hit the economy and the structure of the economy.

6.1 Results

Our goal is to investigate the potential effects of the U.S. oil export ban, both on oil markets

and the broader economy. Our experiment is the same as in the previous section. We
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start from an initial steady state and feed in a series of positive light oil supply shocks that

replicate the actual path of the change in U.S. light oil production seen in the data from

2010 to 2015. To briefly highlight our findings, the extended model predicts that the ban

was binding for several years and distorted a number of economic outcomes, particularly

those related to the refining sector.

Figures 6.1 and 6.2 show the impulse responses of the same set of variables presented in

Figures 5.1 and 5.2, respectively. The solid lines show the model with free trade case while

the dashed lines show the responses in the model that accounts for the ban.

We first turn to the most basic question: was the ban binding at any point in time? Our

model says yes, primarily in 2014 and 2015 but also to a small extent in 2013. The extended

model also suggests that the ban would have remained a constraint on the economy in 2016

given the expected path of oil production.

We next ask to what extent the ban affected economic outcomes. We find that the

implications of the ban are relatively important for oil prices. The price of light crude oil in

the U.S. becomes artificially cheap relative not only to light crude oil in the ROW, but also

compared to other grades of crude oil. We note that the model predicts a decline of about

27 percent in U.S. light oil prices, compared to a 20 percent decline in the model with free

trade. Likewise, the decline in the relative prices of light to both medium and heavy crudes

is more than 5 percentage points greater than in case of free trade.

Since oil supply elasticities are very low, the price distortions generated by the ban have

only minor implications for crude production levels. U.S. oil production is slightly lower with

ban in place, while ROW production is slightly higher.

With exports prohibited, refiners must be incentivized to absorb the excess supply when

the export ban binds. The discounts that emerge between light oil in the U.S. and the rest

of world, as well as against other grades of crude, is the needed incentive. The oil price

discount leads to a significantly higher use of light oil by U.S. refiners than occurs under the

model with free trade. This increased use of light oil crowds out the use of medium crude

by U.S. refiners, and reduces the amount of light crude processed by ROW refiners, relative

to the free trade case.

U.S. refiners produce significantly more refined petroleum product when the ban binds.
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Extra production from the U.S. crowds out fuel production by ROW refiners and, in fact,

we find that world fuel production is essentially the same whether the export ban is taken

into account or not. As a result, the impact of the crude oil ban on fuel prices is negligible

since there is always free trade in refined petroleum products.

With the export ban in place, the improvement in the U.S. oil balance is lower than the

free trade case. The U.S. oil trade balance as a share of GDP goes up from a deficit of 2

percent in 2010 to a deficit of 1 percent in 2015, very close to what we observe in the data.

Compared to the free trade case, the U.S. produces more fuel and becomes a net exporter of

refined products by 2014 in the model. The overall balance sees a very small improvement

relative to the free trade case.

Although the oil ban creates substantial distortions in the refining sector, the spillovers

to the broader economy appear limited. There is essentially no impact on fuel consumption,

and a minor impact on aggregate consumption and real GDP.

Finally, in Table 6.1, we focus on how several variables have changed from 2010 to 2015 in

the data, and compare those changes with the changes predicted by the model. By default,

U.S. light oil production in the model grows by exactly the same amount as the data. The

model generates a 27 percent decrease in light oil prices, somewhat smaller than the decline

seen in the data. We find the fall in net oil imports and increase in U.S. light refiner inputs

in the model are very close to changes in the data. Overall, the model has done a good job

in explaining some of the changes seen in the data despite the fact that we only relied on a

single shock to generate these changes.
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Figure 6.1: Impulse responses to a light oil productivity shock, with and without export

ban
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Figure 6.2: Impulse responses to a light oil productivity shock, with and without export

ban
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Table 6.1: Percent changes from 2010 to 2015: Model vs. Data

Variable Data Model

U.S. light oil production 204 204

U.S. light oil prices -42 -27

U.S. - ROW light oil price differential -4 -10

U.S. light oil imports (net) -95 -100

U.S. light refiner inputs 57 53

Note: Annual data for real LLS and Brent oil prices are considered for the U.S. and the ROW light oil

prices, respectively.

6.2 Longer-term Increase in U.S. Light Oil Supply

Our experiment presented in section 5 and subsection 6.1 matches U.S. light crude production

up until 2015. After that, the path of production is assumed to decline at a pace determined

by the persistence of the productivity shocks. However, forecasts as of late 2015 pointed to

further increases in U.S. shale production in years to come. In this section, we investigate

how incorporating a more persistent increase in U.S. light oil supply matching these forecasts

affects our results.

To capture expectations of shale production beyond 2015, we use the EIA’s forecast for

light (tight) oil production from 2016 to 2020, found in their 2016 Annual Energy Outlook

(AEO) report. This version of the AEO was put together at the end of 2015 and, therefore,

presents forecasts that would have been made using information available before the ban was

lifted. We derive a set of shocks that ensure U.S. light crude production grows at the pace

seen in those forecasts.

Figure 6.3 shows the main set of results under this experiment. The EIA forecasts

predicted continued but smaller increases in light oil production post-2015. As a result, the

model predicts the export ban would have been a binding constraint through 2020, leading

to a persistent gap between U.S. and foreign light oil prices. U.S. light oil prices are 10

percentage points lower than they would be without the ban. U.S. refiners significantly

ramp up their use of light oil, and due to the persistent cost advantage, increase output
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more than 12 percent, at the expense of refiners elsewhere.

We find that the ban’s macroeconomic implications are somewhat amplified under this

scenario, although the difference is small. The oil balance as a share of GDP deteriorates

by about 0.5 percentage points compared to the no ban scenario. The fuel balance, on the

other hand, becomes positive by 2014 and improves significantly at more than 0.3 percent

of GDP by 2020. The impact on U.S. household fuel consumption does not change much as

the impact on fuel prices is negligible, although aggregate consumption rises slightly due to

a slight increase in non-oil good consumption. A persistent increase in light oil production

leads to nearly a 1.5 percent increase in U.S. GDP by 2020 and the export ban slightly

amplifies that magnitude.
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Figure 6.3: Impulse responses when production follows the EIA forecasts through 2020
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6.3 Was the ban binding in reality?

According to our model, the export ban on crude oil was a binding constraint from 2013 to

2015. We now try to review evidence from the data to see whether the model prediction is

consistent with the data.18

We approach this question in two ways. First, we consider several predictions from the

model that can be checked in the data. We focus primarily on variables that are closely

connected to the market for light crude oil. Second, we take advantage of the fact that the

U.S. crude oil export ban had several loopholes. These loopholes could act as release valves

for pressure that might arise in the market if the ban became a binding constraint.

We focus on three predictions of the model if the export ban was binding at some point

in time. First, an unusually large spread should develop between light oil in the U.S. and

outside the U.S. Second, the model predicts that imports of light oil should become zero.

Finally, and related to the second, if the ban is a binding constraint, it could actually prevent

exports of light crude oil.

First, we turn to the prediction that light crude oil in the U.S. should sell at a discount

to light oil outside the U.S. if the ban binds.19 Using West Texas Intermediate crude prices

may be problematic as the interior of the U.S. faced some logistical constraints that affected

prices of WTI relative to other benchmarks. Given this, we instead use Louisiana Light

Sweet (LLS) as our light oil price. This is a light crude oil similar in nature to WTI but is

priced in the Gulf Coast of the U.S. We use Brent crude for our measures of foreign light oil

prices.

Figure 6.4 plots the relative price of LLS to Brent. Starting in late 2013, we see that

the relative price of LLS to Brent declined to unusually low levels compared to where it was

in previous years. This continued through much of 2015. After the ban was removed, the

relative price has generally remained close to levels seen in the years before 2013, and has

18Çakır Melek and Ojeda (2017) [18] analyzes oil market data for the same time period and provides

evidence that the ban distorted oil flows and prices during the shale boom.
19We do not consider the predictions regarding the price of light relative to medium and heavy as there

were changes in the supply of both those types of crude outside the U.S. that would have impacted their

prices. Since we have not modeled those changes in supply, we focus on light crude oil.
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Figure 6.4: Relative price of Louisiana Light Sweet to Brent crude oil
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never fallen to the abnormal levels seen in late 2013 and early 2014.

A review of Table 2.2 suggests that the second prediction of the model does not appear to

hold in the data. At no point in time did imports of “light” crude oil become zero. However,

the EIA import data allows us to consider more disaggregated slices of the crude import

data for light oil, which are shown in Figure 6.5. When we look at the import data for crude

oil with API gravity higher than 40, we see that these imports did, indeed, fall to near zero

for several years.

We point out here that our modeling decision to define “light” oil as API gravity 35 and

above is driven by data limitations for the production data. It is known from other analysis

that most U.S. shale oil actually has API of 40 and above.20 When viewed from this context,

it seems natural that the first crude oils that would get crowded out are those of relatively

high API gravity. And indeed, we see that imports of very light crude approach zero first,

followed by those slightly below.

Finally, we are able to make firm statements about whether the ban constrained exports,

because the ban was removed at the end of 2015 and we now have export data for 2016. We

plot this data in Figure 2.3. The black line shows total crude exports, and it shows that

U.S. crude exports increased in 2016 compared to 2015, despite the fact that U.S. crude

production actually declined that year.

20EIA (2015) [41].
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Figure 6.5: U.S. imports of light crude oil by API gravity
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The export ban policy had a loophole in it that allowed for exports of crude oil to Canada,

so long as the crude oil was to be processed in Canada and the fuels used for domestic

consumption therein. In other words, if the desire to export crude oil was large enough, it

was possible to try and use this loophole to export crude to Canada and indirectly back out

Canadian imports of oil from another country. The dashed red line shows that exports of

crude to Canada did indeed start increasing in 2013 through 2015. Since this loophole was

not heavily used at any point before this time, this suggests that the ban had likely become

binding.

Overall, we believe the evidence presented here is very suggestive that the crude oil export

ban became a binding constraint sometime in 2013 and remained a constraint through 2015.

7 Sensitivity analysis

In our baseline calibration, we restricted the supply elasticity of different types of oil to

be equal to each other across the two countries. In reality, though, the supply of shale oil

appears to be more responsive to price changes than other types of oil production. Shale

producers are smaller and more nimble than many conventional oil producers, and shale wells

can come online significantly faster than many other types of oil wells. In order to investigate

the implications this might have on the results, we consider an alternative calibration where
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we set the price-elasticity of supply for U.S. light oil production to 0.39, three times its

baseline value.

Figure 7.1 presents the results for this case. The set of variables in the figure are the

same as those presented in Figure 6.1. To generate the responses, we fed in the same set of

shocks that were used in the baseline model with the export ban. The solid lines are the

responses from the baseline model, and the dashed lines are from the alternative calibration.

Overall, the higher light oil supply elasticity amplifies all of the responses. A higher

elasticity of supply means lower production costs for light oil producers in the U.S., leading

to higher output than the low supply elasticity case. This in turn brings a sharper decline

in light oil imports, lower light oil prices, increased use of light oil inputs by U.S. refineries

and more U.S. fuel production. The increase in light oil production improves the oil balance,

and the higher fuel production leads to an improved fuel balance. Fuel prices decline about

2.5 percentage points more than the baseline, increasing fuel consumption and aggregate

consumption by U.S. households. The increase in GDP is more than 1.1 percent by 2015.

In sum, the higher supply elasticity for light oil makes U.S. consumers better off.

We next consider the importance of the elasticity of substitution between different oil

types in the refining sector. In the baseline calibration, the two elasticities are set equal

across countries. However, the U.S. refining system is well known to be the most complex

in the world. It also has a very large and diverse set of refiners, from those that specialize

in just processing one type of oil to others that can choose to vary their crude inputs. So, it

seems plausible that the U.S. refining complex is more able to substitute between different

crude types than the rest of the world, particularly for light and medium crudes.

We consider this by setting the elasticity of substitution between light and medium oil,

ηoil, to be different in the U.S. vs. ROW. Our baseline calibration is based on an elasticity

of substitution value of 3.65. We increase the value for the U.S. elasticity by 50 percent, to

5.475.

Figure 7.2 shows the main set of results for this exercise. Overall, we do not find many

major changes in the results. The price of light oil declines less than the baseline model.

This occurs as refiners in the U.S. are more easily able to substitute towards light oil from

medium, which means a smaller price discount is required to get refiners to process the excess
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supply of light oil. We find that fuel production by U.S. refiners increases by less than the

baseline calibration, leading to less crowding out of ROW production. We do not find any

significant impacts on the broader economy.
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Figure 7.1: Impulse responses with higher U.S. light oil supply elasticity (.39 vs .13)

2010 2015 2020
0

100

200

300

2010 2015 2020
0

50

100

Baseline With high elasticity

2010 2015 2020
-3

-2

-1

0

2010 2015 2020
-40

-20

0

2010 2015 2020
-30

-20

-10

0

2010 2015 2020
-20

-10

0

2010 2015 2020
-150

-100

-50

0

2010 2015 2020
0

50

100

2010 2015 2020
0

5

10

15

2010 2015 2020
0

1

2

3

2010 2015 2020
-0.03

-0.02

-0.01

0

2010 2015 2020
-2

0

2

4
10

-3

2010 2015 2020
0

2

4

6

2010 2015 2020
0

0.5

1

1.5

2010 2015 2020
0

0.5

1

1.5

Note: Units are percent deviations from the steady state.

47



Figure 7.2: Impulse responses with higher ηoil in U.S. refining
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8 Conclusion

In this paper we introduce a two-country DSGE model that incorporates a refining sector

and different types of crude oil. The model is used to consider the effects of the shale oil

boom and the U.S. crude oil export ban on both the oil and refining sectors, as well as the

broader economy. The introduction of different types of crude oil, which are modeled as

imperfect substitutes as inputs into the refining process, allows us to take into account the

fact that oil produced from shale plays is primarily light crude oil and that refining sectors

in the U.S. and the rest of the world specialize in processing different types of oil.

Under a free trade scenario, we find that a light oil boom of the same magnitude as the

shale boom in the U.S. reduces light oil prices by 20 percent, increases U.S.’ use of light

crude at the expense of other types, and makes the U.S. a net exporter of light crude oil.

It also lowers fuel prices by about 14 percent, and increases U.S. GDP by more than 1.0

percent, a significant impact.

Taking the export ban into account, our model predicts that the ban was binding in

2013 through 2015. The impact of the ban was primarily concentrated in the energy sector,

especially the refining sector. Light oil prices were artificially low in the U.S. relative to the

rest of the world, and refiners in the U.S. processed more light oil than they would have

otherwise. The impact of the ban on GDP and fuel prices was negligible. Although we

only relied on a single shock to generate changes, overall, the model has done a good job in

explaining changes seen in the data.
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APPENDIX

A Data Sources

The following series are available from Bloomberg:

Brent crude price: Bloomberg European Dated Brent Forties Oseberg Ekofisk (BFOE)

price. (Bloomberg ID: EUCRBRDT).

Dubai crude price: Bloomberg Arabian Gulf Dubai Fateh crude oil spot price. (Bloomberg

ID: PGCRDUBA).

Louisiana Light Sweet crude price: Bloomberg light Louisiana sweet crude oil spot

price. (Bloomberg ID: USCRLLSS).

Mars crude price: Bloomberg Deepwater Sour Mars Blend crude oil spot price. (Bloomberg

ID: USCRMARS).

Maya crude price: Bloomberg Latin America Maya crude oil spot price to U.S.

(Bloomberg ID: LACRMAUS).

The following series are available from the U.S. Energy Information Administration:

U.S. crude oil exports: Annual data in thousands of barrels per day. Total exports

and exports to Canada.

U.S. crude oil imports by API gravity: Annual data in millions of barrels per day.

Data is broken into seven bins: API gravity 20 or less, 20.1 to 25.0, 25.1 to 30, 30.1 to 35.0,

35.1 to 40.0, 40.1 to 45.0, and 45.1 and above. We define heavy imports as those of API

gravity 25.0 and below, medium as 25.1 to 35.0, and light as 35.1 and above.

U.S. crude oil input to refiners: Annual data in millions of barrels per day. EIA

series name is U.S. refinery and blender net input of crude oil.

U.S. refinery processing gains: Annual data in millions of barrels per day.

U.S. refinery production: Sum of U.S. crude oil input to refineries, refinery processing

gain and petroleum products adjustment series found in Table 4a of the Short-term Energy

Outlook.

U.S. total spending on fuel: Annual, nominal series in billions of dollars. This series

is calculated as total spending on petroleum excluding LPG. Series is from Table ET1 of the
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State Energy Data 2015: Prices and Expenditures report.

Cost-share of crude oil in fuel production: Monthly data from the Gasoline and

Diesel Fuel Update report. We take a simple average of the cost-share for gasoline and diesel

(excluding taxes).

U.S. consumption of refined products: Annual series in millions of barrels per day.

Calculated as total consumption excluding hydrocarbon gas liquids, ethanol and biodiesel.

Consumption of biodiesel estimated as the difference between renewables and oxygenate

production and fuel ethanol production. All series from Table 4a of the Short-term Energy

Outlook.

Net imports of refined products: Annual series in millions of barrels per day. Cal-

culated as total consumption of refined products minus U.S. refinery production.

The following series are from the Bureau of Economic Analysis:

U.S. real GDP: Quarterly data in chained, 2009 dollars.

U.S. nominal GDP: Annual, billions of dollars.

U.S. household spending on fuel: Annual, nominal series in billions of dollars. Sum of

Personal Consumption Expenditures on “gasoline motor vehicle fuels, lubricants and fluids”

and “fuel oil and other fuels.”

U.S. oil trade balance: Constructed using annual series on imports and exports of

crude oil, in millions of dollars.

U.S. fuel trade balance: Constructed using annual series on imports and exports of

“fuel oil” and “other petroleum products,” in millions of dollars.

Data available from other sources:

Rest-of-world real GDP: Quarterly series based on 39 countries. Individual data

is aggregated with U.S. trade weights. Source: Database of Global Economic Indicators,

Federal Reserve Bank of Dallas.

U.S. crude oil production by API gravity: Annual series in thousands of barrels

per day. Data is available for ultra light and light crude oil, three types of medium crude

and heavy crude. Source: World Oil and Gas Review 2017, Eni.

World crude oil production by API gravity: Annual series in thousands of barrels

per day. Data is available for light, medium and heavy crude production. Source: World Oil
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and Gas Review 2017, Eni.

U.S. firm spending on fuel: Annual, nominal series in billions of dollars. Calculated

as total spending on fuel minus household spending. Source: Authors’ calculations.

Refining capacity by country: Annual series for crude distillation capacity (atmo-

spheric), in barrels per day. Data source: 2010 Worldwide Refining Survey, Oil&Gas Journal.

World refinery processing gains: Annual data in millions of barrels per day. Data

source: International Energy Agency.

Labor compensation and value-added: Annual, nominal series for the petroleum and

coal sector, and the total economy. Available for 40 countries, including the U.S. Source:

World Input Output Database.

U.S. share of world GDP: Annual series. U.S. share of PPP-adjusted world GDP.

Data source: International Monetary Fund.

U.S. and world population: Annual series, total population. Data source: United

Nations.

Rest-of-world fuel use: Data is for 2010 and comes from the Energy Information

Administration’s International Energy Outlook 2014 and Exxon’s 2016 Energy Outlook.

B Modeling the export ban

We address the U.S. oil export ban in the model as follows. We assume that crude oil is

distributed by perfectly competitive firms, called distributors of crude oil. A distributor’s

problem is a tool for us to model an export ban on crude oil, which will be introduced into

the distributor’s problem as an inequality constraint. Moreover, we assume that there are

iceberg trade costs for shipping crude oil. Adding trade costs allows the model to generate

a small, positive spread between crude oil prices in the U.S. and the ROW. This is a feature

of the data due to the costs of importing the marginal barrel of oil into the U.S. To match

this feature of the data we work with a simple form of iceberg trade costs. If country 1

imports om1,t units of crude oil, then τo2o
m
1,t units will be lost in transit, where τo2 > 0 is the

iceberg cost of moving crude oil from country 2 to country 1. We assume there is no cost of

moving crude oil within country 1 or country 2. This form of trade costs implies that crude
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oil imports are given by om1,t =
o
f
1,t−yo

1,t

1−τo2
.

B.1 Distributors of crude oil

A perfectly competitive distributor purchases crude oil in domestic spot market or imports

it, and then re-sells it to refined products producers (refineries) costlessly. In country 1,

crude oil of type k can be purchased in the domestic spot market at price pok11,t or imported

from country 2 at pok2,t. The oil distributor chooses output and imports of type k crude oil to

maximize the present discounted value of cash flow

E0

∞
∑

t=0

βtλ1,t

{

pok1,to
fk
1,t − pok11,ty

ok
1,t − pok2 o

mk
1,t

}

subject to

o
fk
1,t = yok1,t + (1− τo2) o

mk
1,t

omk
1,t ≥ 0

where omk
1,t is the import of type k crude oil, ofk1,t is type k crude oil demand by the refineries,

and τo2 is the parameter determining the cost of importing crude oil from country 2.21

So, the crude oil export ban in country 1 (U.S.) is modeled as an inequality constraint

that prevents (net) imports of all types of crude oil, k = l,m, h, in country 1 from becoming

negative, i.e. crude oil exports are impossible. For instance, consider the case of light

oil, then the constraint would translate into
o
fl
1,t−yol

1,t

(1−τo2)
≥ 0. As both refiner use of light oil

and production of light oil are chosen by the distributor, the constraint is endogenous.

Therefore, the ability of refiners to substitute away from other types of oils towards light oil

has implications for how strongly the constraint will bind and what kind of price differentials

it is likely to generate.

Let ψk
t be the multiplier on the inequality constraint for tyke k crude oil. The first order

conditions for the distributor’s optimization problem are then given by

pok1,t = pok11,t

21Note that λi,t is the lagrange multiplier on the household’s budget constraint in country i.
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implying the spot price and the retail price of type k crude oil are the same, and

pok2,t = (1− τo2) p
ok
1,t +

ψk
t

λ1,t
,

and

ψk
t o

mk
1,t = 0.

In the case where the ban does not bind, ψk
t equals zero and the price of type k oil in

the U.S., pok1,t, will be equal to the cost of importing the marginal barrel of type k oil from

country 2. Due to shipping costs, there is a small, positive gap between type k crude prices

in the U.S. and ROW. Moreover, the type k oil market clearing condition in this case will

be given by

yok1,t + yok2,t − τo2o
mk
1,t = o

fk
1,t + o

fk
2,t.

However, when the ban binds, a gap is introduced between domestic and foreign type k

crude prices, and type k crude oil market becomes segmented from the rest of the world,

implying that ofk1,t = yok1,t and o
fk
2,t = yok2,t.

The distributor’s problem in country 2 is simply to choose output of type k crude oil to

maximize

E0

∞
∑

t=0

βtλ2,t

{

pok2,to
fk
2,t − pok22,t

(

yok2,t − omk
1,t

)

}

subject to

o
fk
2,t = yok2,t − omk

1,t .

The first order condition for the distributor’s optimization problem is given by

pok2,t = pok22,t.

In our simulations of the model with the export ban, we assumed τo2 = 0.
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B.2 Solution method

It is useful to briefly map our model conditions into the notation used in Guerrieri and

Iacoviello (2015) [24]. In our model, country 1’s crude oil exports are subject to an occa-

sionally binding constraint, omk
1,t ≥ 0 for k = l,m, h. The complementary slackness condition

implies that ψk
t = 0 when the constraint is slack. When the constraint binds, omk

1,t = 0.

The conditions in the reference regime, M1, encompass ψk
t = 0, and the function g captures

omk
1,t ≥ 0. The conditions in alternative regime, M2, encompass the case when omk

1,t = 0 and

the function h captures ψk
t > 0.
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