First version: September 2017. This version: June 23, 2021. We thank Pat Barnes, Amy Branum, Clint Carter, and John Sullivan for their assistance in accessing the restricted data used in this project at the California and Michigan Census Research Data Centers. We also thank Michelle Marcus, Adam Schickedanz, Barton Willage and seminar participants at the University of Notre Dame, the University of Connecticut, San Diego State University, Purdue University, Duke University, UCLA, UC Davis, Texas A&M, the University of Mannheim, Uppsala University, the Norwegian School of Economics, the National Bureau of Economic Research, and the Institute for Poverty Research. We also thank session participants at the Association of Public Policy and Management, the Population Association of America, and Western Economic Association annual meetings, for their helpful comments. This project was supported by funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, R01 HD093898), National Science Foundation (Grant 1327768), the Robert Wood Johnson Foundation, and a University of California Davis Interdisciplinary Frontiers in the Humanities and Arts seed grant. Wherry benefited from facilities and resources provided by the California Center for Population Research at UCLA (CCPR), which receives core support (R24-HD041022) from the NICHD. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2017 by Chloe N. East, Sarah Miller, Marianne Page, and Laura R. Wherry. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Multi-generational Impacts of Childhood Access to the Safety Net: Early Life Exposure to Medicaid and the Next Generation’s Health
Chloe N. East, Sarah Miller, Marianne Page, and Laura R. Wherry
NBER Working Paper No. 23810
September 2017, Revised June 2021
JEL No. I1,I13,I14,I18

ABSTRACT

We examine multi-generational impacts of positive in utero health interventions using a new research design that exploits sharp increases in prenatal Medicaid eligibility that occurred in some states. Our analyses are based on U.S. Vital Statistics Natality files, which enables linkages between individuals' early life Medicaid exposure and the next generation's health at birth. We find robust evidence that the health benefits associated with treated generations' early life program exposure extend to later offspring. Our results suggest that the returns on early life health investments may be substantively underestimated.

Chloe N. East
University of Colorado Denver
chloe.east@ucdenver.edu

Sarah Miller
Ross School of Business
University of Michigan
701 Tappan Street
Ann Arbor, MI 48109
and NBER
mille@umich.edu

Marianne Page
Department of Economics
University of California, Davis
Davis, CA 95616-8578
and NBER
mepage@ucdavis.edu

Laura R. Wherry
Wagner Graduate School of Public Service
New York University
295 Lafayette Street
New York, NY 10012
and NBER
laura.wherry@nyu.edu
1 Introduction

There is substantial evidence that health and socioeconomic inequalities persist across generations. A growing number of studies suggest that differences in early life health environments may causally contribute to these disparities. Negative shocks to the in utero environment, in particular, have been found to be harmful to individuals’ later life health and earnings. A handful of studies also examine positive interventions and find that policies intended to improve early life experiences generate better adult outcomes (Almond and Currie, 2011; Almond et al., 2018). By extension, literatures in economics, epidemiology and child development predict that the causal impacts of these interventions should echo beyond the exposed generation, onto later offspring. Little is known, however, about the extent to which the early life environment affects future generations, or the potential for public policy to alter such linkages.

We consider whether public health interventions experienced in utero affect the next generation’s health. We focus on the impact of the largest source of health-related services for low-income individuals in the United States: the Medicaid program. Changes in program rules during the 1980s expanded access to low-income pregnant women who were not already connected to Medicaid through the welfare system, and led to a dramatic increase in prenatal coverage. There was considerable variation in the timing and magnitude of these expansions across states, which prior empirical research has harnessed to document the program’s beneficial effects on cohorts who gained in utero access. We build on this “first generation” research to investigate whether positive policy interventions in one generation transmit to the next generation.

Our study makes three contributions. First, within the active “early origins” literature, the vast majority of causal studies confine their analyses to treated cohorts. While an ever-expanding number of animal experiments provide compelling evidence that the effects of early life environments can be transmitted to later generations,1 human studies are more rare. We contribute to this literature by using a quasi-experimental design to document multi-generational effects in humans. Second, we focus on documenting generationally persistent effects of a widespread policy-driven intervention. Most of what we do know about how early life health conditions affect later offspring comes from studies of exposure to disasters such as famine and disease outbreaks, which may not compare well to the effects of more common (and malleable) health experiences. This is an important gap – particularly in light of current political debates about the cost of publicly provided health insurance – as substantive multiplier effects to future generations would suggest that existing benefit-cost calculations underestimate the true value of government investments in children’s health.

Third, we advance knowledge of the impacts of the 1980s Medicaid expansions by putting forward a new research design that explicitly addresses ongoing debates about policy endogeneity, and the validity of using state-level variation in the expansions’ timing and magnitude as a natural experiment. Following the pioneering work of Currie and Gruber (1996a,b), most investigations employ an instrumental variables model to isolate policy effects from other potentially correlated changes in state characteristics. However, lack of information on the pre-expansion period (before 1979) has left open the possibility that estimates of the program’s benefits are contaminated by unobserved state

1Useful reviews of this literature include Daxinger and Whitelaw (2010, 2012); Heard and Martienssen (2014); Hochberg et al. (2011); Nadeau (2009).
pre-trends that were correlated with the expansions’ timing and magnitude. We have collected five additional years of information on state Medicaid rules, which allows us to measure state eligibility going back to 1975. With these measures, we estimate an event study model that allows flexible estimation of the dynamic effects of changes in Medicaid, and a direct assessment of the extent to which both Currie and Gruber’s estimates, and our own estimates of the program’s effects on the next generation’s health, reflect other underlying factors. To implement this, we classify states as either treated states or control states based on their expansion patterns across the 1975-1988 period, during which time prenatal Medicaid was made available to the lowest income families. Treated states are those that experienced sharp increases in Medicaid eligibility, while control states are those that trended more incrementally over time. We also use restricted data on Medicaid coverage among labor and delivery hospital discharges to validate the event study design, and provide important new evidence on the impacts of the expansions on actual take-up.

Our main analyses are based on information that is available in restricted-use versions of the U.S. Vital Statistics birth records. With these data, we analyze infant health outcomes among two generations. First, we consider those who were directly exposed to the expansions: infants born between 1975 and 1988. We call these cohorts the “first generation.” Most previous research has focused on a subset of these cohorts, who were born after 1979. Then, we move on to investigate whether the benefits of in utero Medicaid exposure affected the next generation by looking at birth outcomes among the first generation’s offspring. We call these infants the “second generation.” For the first generation, we use state and year of birth to assign policy generosity, and, for the second generation, we use mother’s state and year of birth to link to measures of mother’s early life Medicaid exposure.

We estimate Medicaid’s impacts on standard measures of infant health, including birthweight and low birthweight. These outcomes are strong candidates for a second generation exploration because previous research has shown that birthweight is tied to measures of maternal health such as obesity and diabetes, for which there is already evidence of long-term program effects (Miller and Wherry, 2019). Moreover, birthweight is highly predictive of later life health and economic outcomes, making it an outcome of particular interest. We also investigate other measures of second generation health, including variants of gestational length and weight-for-gestational age. Finally, we explore potential transmission mechanisms. In addition to confirming Medicaid’s impacts on the first generation’s health at birth as a potential pathway, we consider changes in first generation fertility patterns that might be indicative of selection, and changes in first generation health and health behaviors during pregnancy.

We find that the expansions increased the first generation’s likelihood of being enrolled in Medicaid at birth, and we validate the past research finding that the expansions reduced the fraction who were low birthweight. Then we go on to show that the benefits of expanding early life access to the program spill over onto the next generation’s health: mothers who were more likely to be eligible in utero gave birth to healthier offspring. A 10 percentage point increase in the first generation’s in utero eligibility increases the second generation’s average birthweight by approximately 7 grams. We also observe statistically significant reductions in very low birthweight and very preterm birth, and suggestive declines in the incidence of low birthweight and small-for-gestational age. The estimates are robust to a variety of specification checks, including alternative state and year control variables, changes in the sample definition, alternative measures of eligibility, and a version of the model that omits the control states.
They are also robust to new methods proposed by Callaway and Sant’Anna (2020) that account for issues of bias found in traditional two-way fixed effects and event study models.

Documenting the presence of multi-generational spillovers is an important contribution in its own right. Moreover, back-of-the-envelope calculations suggest that the magnitude of the spillovers is economically important. Our point estimates of the effects of in utero Medicaid access on the second generation’s birthweight suggest medical cost savings in the first year of life that are about 60 percent of the costs of providing the first generation with in utero coverage. Importantly, this calculation does not include any other benefits that were likely accrued to the second generation, such as later life savings in medical costs or social supports. Nor does it include benefits associated with previously documented improvements in the first generation’s health and economic outcomes. If these benefits were incorporated, the costs savings would be substantially larger.

We find no evidence that changes in overall fertility can explain the effects on infant health, but we do find a small shift in the racial composition of women giving birth: first-generation Medicaid exposure increases the fraction of second-generation births that are to white women, and decreases the fraction to Black women. Controlling for mothers’ demographic characteristics does not change the baseline results, however, and results are similar when we focus on white births, a sub-group for whom we would not expect to see effects if the main estimates are driven by changes in racial composition. Therefore, we do not believe that selection is driving the results.

Our results establish that public investments in prenatal health have persistent impacts beyond the treated generation. By quantifying these effects, we establish that benefit/cost ratios based only on outcomes directly experienced by cohorts who were immediately affected by the Medicaid expansions underestimate the program’s overall efficacy. More broadly, our analyses suggest that even “long-run” studies of early-life interventions may fail to capture the full extent of benefits conferred.

The remainder of our paper proceeds in the following way: Section 2 provides further information about the existing literature on “early life” health and multi-generational processes. In Section 3, we describe the Medicaid program and the nature of the 1980s expansions. Sections 4 and 5 describe our empirical strategy and data. We present our results in Section 6 and conclude with a discussion in Section 7.

2 Background

More than 40 years ago, Forsdahl (1977) put forward a provocative hypothesis that the period of gestation has significant impacts on individual health that reach well into adulthood. This theory gained further traction following Barker (1990), and in recent years there has been growing scientific agreement that the time both before, and immediately after birth, are critical periods when the developing body takes adaptive cues from its surrounding environment (often called the “Barker Hypothesis”). A key feature of the “fetal origins” hypothesis is that the health effects of the in utero environment can remain latent for many years. We have yet to achieve a full understanding of the processes underlying these phenomena, but a leading theory is that the fetus’s surrounding environment alters genetic programming through the “switching on” of specific genes.

Numerous economists and epidemiologists have used quasi-experimental designs to test the fetal origins hypothesis, and have found that in utero and early life health experiences can have important
effects on later life outcomes. Although the vast majority of studies have identified these effects using short-term, extreme events such as disease outbreaks and famines,² a few have recently emerged demonstrating the long term efficacy of more wide-spread, positive, health interventions.³ Most of these studies focus on historical events, or settings outside the U.S. Three exceptions, Bailey et al. (2020); Bitler and Figinski (2019); Hoynes et al. (2016), investigate the 1960’s roll-out of the U.S. Food Stamp program and find that access to the program in early childhood generated improvements in later life economic and health outcomes, including conditions related to cardiovascular disease such as obesity, high blood pressure, and diabetes.⁴

In this vein, recent work finds that changes to Medicaid rules that expanded coverage to low-income pregnant women had long-term benefits on their offspring. Focusing on variation generated by the targeted 1980s expansions, Miller and Wherry (2019) find that, like the Food Stamp program, in utero exposure to Medicaid reduced the likelihood of having metabolic-syndrome and circulatory-system linked chronic illnesses in adulthood. Importantly for our study, when these later life diseases are experienced during pregnancy, women and their children are put at risk for a variety of health problems, including an increased risk of gestational diabetes, complications related to high blood pressure, and preterm birth (Catalano and Ehrenberg, 2006). Moving beyond health, Miller and Wherry also document that in utero exposure to the program is associated with increases in educational attainment. Similar results are found in a large number of studies evaluating the long-term effects of the 1980s and 1990s expansions to broader age groups (Brown et al., 2020; Cohodes et al., 2016; Currie et al., 2008; Levine and Schanzenbach, 2009; Thompson, 2017; Wherry and Meyer, 2016; Wherry et al., 2017),⁵ although these studies do not separately examine the effect of in utero exposure from later childhood exposure. Miller and Wherry find that this distinction is important, with the prenatal expansions generating substantially bigger impacts.

Taken as a whole, the existing literature has generated two broad conclusions. First, early life health shocks have long-term impacts on the health and economic outcomes of those who experience them. Second, many widespread public health interventions targeted at children have substantive positive benefits that last well into adulthood. A natural question is whether these effects endure to the next generation. Economists have previously documented that health and economic status persist across multiple generations (Clark, 2014; Halliday et al., 2021; Solon, 2018), but quasi-experimental

²Examples from this large literature include Almond (2006); Almond and Mazumder (2005); Barreca (2010); Mazumder et al. (2010); Neelsen and Stratmann (2012) [disease], Almond et al. (2010); Almond and Mazumder (2011); Chen and Zhou (2007); Painter et al. (2005); Ravelli et al. (1976); Roseboom et al. (2001); Scholte et al. (2015); Stein et al. (1975); Susser (1992); van Ewijk (2011) [nutrition], Almond et al. (2009) [pollution]. Quasi-experimental studies of stress (Persson and Rossin-Slater, 2018) and pollution (Sanders, 2012) also find detrimental effects.

³E.g. Bhalotra and Venkataramani (2015); Bharadwaj et al. (2013); Büttikofer et al. (2019); Fitzsimmons and Vera-Hernández (2013); Glied and Neidell (2010).

⁴Related literatures examine the long-term effects of education interventions such as Head Start, which includes a health component (e.g. Carneiro and Ginja, 2014; Deming, 2009; Garces et al., 2002; Ludwig and Miller, 2007; Conti et al., 2016), and policies that reduce pollution exposure (Isen et al., 2017; Nilsson, 2009).

⁵Three other studies document how the introduction of Medicaid between 1966 and 1970 improved later life health. Using geographic variation in program roll-out to identify the effects of exposure to Medicaid under age 6, Boudreaux et al. (2016) find that Medicaid reduced the probability of having a chronic health condition in adulthood. Using a similar strategy, Sohn (2017) finds that Medicaid’s initial roll-out was associated with lower adult mortality. Goodman-Bacon (2021) uses variation in pre-existing welfare eligibility levels (since Medicaid was originally linked to welfare receipt) and finds that the introduction of Medicaid reduced later life mortality and disability, increased employment, and reduced disability benefits for cohorts who were exposed to the program early in life.
investigations are rare. We know little about what drives the correlations, or the potential for policy based treatments to alter them. The dearth of work among social scientists likely results from the multiple challenges of identifying exogenous variation in early life health environments and linking that variation to data that provides relevant information on multiple generations.

These challenges can be overcome in biological studies, where an accumulation of evidence based on animal experiments finds that prenatal health shocks have persistent generational effects. As an example, studies have documented that rats that are malnourished before or during pregnancy produce offspring with smaller brains and reduced cognition, even if the offspring receive sufficient nutrition after birth. Importantly, these effects are not only observed in the immediate offspring, but are present in later generations as well. Similar multi-generational patterns have been found with in-utero exposure to disease, stress, and smoke. One explanation for this pattern is that the biological predecessors of the ovaries and sperm cells, which produce the next generation, are already present at the fetal stage and are therefore exposed to any insult experienced by the fetus.

In spite of the methodological challenges, a few epidemiologists and economists have been able to shed light on this question by exploiting historical shocks. Painter et al. (2008) investigate the multi-generational impacts of the Dutch Hunger Winter of 1944-1945, which reduced the food consumption of a previously well-nourished population by more than 75 percent. They find that the offspring of those who were exposed to the famine in utero had worse health in later life. Similarly, Almond et al. (2010) find that fetal exposure to malnutrition resulting from the 1959-1961 Chinese famine increased low birthweight incidence in the next generation. Looking beyond the effects of extreme nutritional deprivation to disease exposure, Richter and Robling (2016) find that the children of those who were exposed in utero to the 1918-1919 influenza pandemic grew up to have lower levels of educational attainment. Similarly, Black et al. (2019) find that Norwegian cohorts exposed to radioactive fallout during the in utero period had children with lower cognitive ability.

A small number of studies examine intergenerational health effects in the modern U.S. context. Two studies relate local variation in infant mortality rates at the time of the mother’s birth to her later offspring’s health. Here, the infant mortality rate proxies for broad disease exposure, which can be driven by many factors, including access to medical care. Almond et al. (2012) find that higher exposure to disease is associated with worse long-term outcomes and an increase in the probability that future offspring are below the low birthweight threshold. Almond and Chay (2006) focus on the dramatic improvements in Black infant mortality rates that coincided with the Civil Rights Act, and find that Black women born during the late 1960s had a reduced likelihood of giving birth to a low birthweight infant. A third study, Colmer and Voorheis (2020), documents improved educational outcomes among the grandchildren of cohorts who benefited from reductions in pollution exposure

6A few examples include Aerts and Van Assche (2006); Cowley and Griesel (1966); Dunn and Bale (2009); Jimenez-Chillaron et al. (2009); Martin et al. (2008); Martínez et al. (2014); Masuyama et al. (2015); Radford et al. (2014); Schöpper et al. (2012); Zamenhof et al. (1971).

7Examples include Francis et al. (1999); Grundwald and Brunton (2015); Maritz and Mutemwa (2014); Matthews and Phillips (2012); Morgan and Bale (2011); Rehan et al. (2012).

8A few studies also investigate multi-generational effects of health events that occur at later ages. van den Berg and Pinger (2016) investigate multi-generational effects of pre-pubertorial exposure to the German famine of 1916-1918 and find evidence of mental health effects on later generations, which they attribute to biological rather than social processes. Büttikofer and Salvanes (2020) find that in Norway, generational persistence in educational attainment was mitigated by a 1940s tuberculosis control program.
driven by the 1970 Clean Air Act Amendments.\footnote{Two additional studies examine the multi-generational effects of post-natal early life educational interventions that include a health component. Barr and Gibbs (2019) and Rossin-Slater and Wiist (2020) examine the effects of exposure to preschool in the U.S. and Denmark, respectively, on educational outcomes for the next generation and find positive effects. In addition, Barr and Gibbs find evidence of reduced teen pregnancy and criminal activity in the second generation.}

We build on this small number of studies by harnessing a policy driven increase in access to a widespread public health program that is a critical component of the U.S. safety net. This allows us to establish multi-generational linkages associated with more common and contemporaneous variation in early life health experiences, while simultaneously quantifying long-term benefits of the Medicaid program that have not been previously considered. Medicaid may alter biological associations across generations by increasing the use of prenatal care, which provides nutrition and drug counseling, immunizations, early diagnoses and direct interventions.\footnote{Several studies of Medicaid’s prenatal expansions document increased use or improved timing and adequacy of prenatal care (Currie and Gruber, 1996b; Dave et al., 2008; Dubay et al., 2001; Howell, 2001). Medical studies also provide support for prenatal care as a likely pathway (Lu et al., 2003).} Along these lines, Currie and Gruber (1996b) link changes in prenatal Medicaid access to reductions in treated cohorts’ probability of being low birthweight, and maternal birthweight is predictive of later offspring’s birthweight (e.g. Currie and Moretti, 2007; Black et al., 2007; Royer, 2009). Access to Medicaid may also reduce maternal stress: in an analysis of the Oregon Health Insurance Experiment, Finkelstein et al. (2012) find that those who gained health insurance through the experiment experienced substantive improvements in mental health. Several studies have linked parental and in utero stress to children’s well-being (Black et al., 2016; Camacho, 2008; Mansour and Rees, 2012; Persson and Rossin-Slater, 2018; Valente, 2011), with possible ramifications for the next generation’s health.

Besides biological pathways, Medicaid may of course affect the next generation’s health through its documented impacts on the treated generation’s human capital and earnings. As described earlier, numerous studies find that the Medicaid expansions had positive effects on treated cohorts’ educational and economic outcomes in adulthood, and it is well known that children living in high income families are healthier than children living in low income families (Currie and Almond, 2011; Case et al., 2002, 2005). This is intuitive, as parents with more income have more resources to invest in their children, experience lower stress levels (Aizer et al., 2016; Evans and Garthwaite, 2014) and engage in healthier behaviors (Hoynes et al., 2015).

3 Medicaid and the 1980s Expansions

Medicaid currently provides health insurance coverage for nearly half of all births in the U.S. (Markus et al., 2013). Eligibility criteria for pregnant women were relatively restrictive until the 1980s, when a series of state and federal policy changes greatly expanded access. We describe the inception of the Medicaid program, including which groups were initially eligible, and the later policy changes that expanded eligibility, below.

Created in 1965 as part of the Social Security Amendments, Medicaid was initially available to low-income, non-disabled women of reproductive age who received cash assistance through the Aid to Families with Dependent Children (AFDC) program.\footnote{Since Medicaid was initially tied directly to AFDC, many women received benefits from both programs. However, as we describe in detail in Appendix Section A.1, the policy variation we exploit is driven by expansions to Medicaid and not by changes in AFDC benefits.} Eligibility for AFDC was restricted to single...
women with at least one dependent child. Low-income women with first time pregnancies and those with marital partners did not qualify for coverage. Moreover, AFDC income eligibility thresholds were generally much lower than the federal poverty line. The average threshold was 61% of the federal poverty line (FPL) in 1979, and ranged from 24% to 99% across states.12

Because Medicaid is a joint federal-state program, the federal government sets mandatory eligibility requirements, but states have some flexibility to extend eligibility to other especially needy population groups. Dating back to 1966, a number of states exercised different options to extend eligibility to certain pregnant women not eligible for AFDC. The options offered coverage to specific groups of pregnant women, such as first-time pregnant women who would later qualify for AFDC, or pregnant women in two-parent families where the principal earner was unemployed and who met the income and resource requirements for AFDC.13 Some options extended eligibility to all pregnant women who were financially eligible for AFDC, but who did not meet the program’s family structure requirements (i.e. women who were not single mothers with dependent children). Adoption of these options was not uniform across states, and, prior to the 1980s, there were substantive differences in eligibility criteria that were applied to pregnant women.

Beginning in the early 1980s, there was emerging national consensus on the importance of prenatal care for pregnant women, which led to major changes to the Medicaid program (Howell, 2001). More states began to exercise options to expand Medicaid eligibility to pregnant women who did not meet the family structure requirements for AFDC, but who did meet the AFDC financial eligibility criteria. This wave of new optional state expansions was followed by two federal mandates requiring that all states expand. Figure 1 Panel (a) which is based on information we have gathered on state policy rules back to 1975, documents that these changes had a large effect: between 1975 and 1988 the share of women who qualified for pregnancy-related Medicaid climbed from about 12 to 20 percent.14 Here, and throughout the rest of the paper, we multiply all dichotomous variables by 100 for ease of presentation. Panel (b), which uses data on hospital discharges for labor and delivery between 1979-1988, shows that this increase corresponded to a steep increase in the share of mothers who were enrolled in the Medicaid program at the time of their child’s birth.15 To our knowledge, this is the first time that administrative data have been used to document that take-up patterns among pregnant women mirrored the eligibility expansions.16

Following the original terminology used by Currie and Gruber (1996b), we refer to these changes in eligibility as the “targeted” expansions. They differ from “broad” expansions that occurred later because they were aimed at very low income pregnant women (i.e. those with income levels below AFDC thresholds). Beginning in the late 1980s, the broad expansions allowed states to further expand coverage to pregnant women and children with higher incomes. We cannot make use of variation

\footnote{12}Authors’ calculation based on payment standard for a family of 3 in 1979.
\footnote{13}Appendix Section A provides a detailed discussion of each of the different state options described in this section.
\footnote{14}Additional information about the calculator and data used to calculate eligibility in this figure is provided in Section 4 and Appendix Section A.
\footnote{15}While the changes track quite well across both of these measures, there are a few years in which coverage actually exceeds eligibility. We believe this is due to the fact that our eligibility estimates are based on women of child-bearing age, whereas our estimates of coverage are derived from a sample of women actually giving birth. These groups may differ on some important dimensions such as age and income.
\footnote{16}Dave et al. (2010) use this source of hospital discharge data to examine the effects of later Medicaid expansions (1985-1996) on the health insurance coverage of pregnant women at the time of child birth.
generated by broad changes in our analyses because most of the affected cohorts are still too young to allow for multi-generational analyses. We note, however, that previous studies have documented that the targeted expansions had stronger effects on treated cohorts’ outcomes (Currie and Gruber, 1996b; Miller and Wherry, 2019). We also note that pregnant women who enrolled in Medicaid through the expansions received coverage for prenatal care and services, hospital and postpartum care, and one year of Medicaid eligibility for their newborns (Congressional Research Service, 1988).

With this background in mind, we investigate multi-generational effects of in utero Medicaid access by focusing on the offspring of cohorts who were born between 1975 and 1988. We refer to the mothers in these cohorts as the “first” (exposed) generation, and to their later infants as the “second” generation.

4 Empirical Strategy

4.1 Background

Currie and Gruber examine the impact of the prenatal Medicaid expansions on contemporaneous infant health by estimating a model that exploits variation in the magnitude of the expansions across states and over time. Specifically, they estimate:

\[
y_{nb} = \alpha + \phi E_{nb} + \mu_n + \lambda_b + \gamma X_{nb} + \epsilon_{nb}
\]

where \(y_{nb}\) is the fraction of infants born in state \(n\) and year \(b\) who were below the low birthweight threshold, \(\mu_n\) and \(\lambda_b\) are state of birth and year of birth fixed effects, respectively, and \(X_{nb}\) is a vector of state-year control variables that reflect the demographic, economic, and policy environment. \(E_{nb}\) is the fraction of women of child-bearing age in the state-year who were eligible for Medicaid in the event of a pregnancy. Currie and Gruber’s analyses, as well as later studies that build upon this research design, begin in 1979, on the eve of the Medicaid program’s rapid expansion.

Acknowledging that changes in states’ demographic and economic conditions could cause changes in the fraction eligible for Medicaid even without a change in policy, Currie and Gruber pioneered a “simulated instrument” approach in which they instrument actual eligibility with a simulated measure that isolates changes driven only by changes in Medicaid rules and is independent of changes in states’ demographic and economic characteristics. The simulated measure is constructed by applying Medicaid eligibility rules in each state and year to a national sample of potential mothers (women ages 15-44) drawn from each year of the Annual Social and Economic Supplement of the Current Population Survey. Our analyses also rely on simulated eligibility measures to capture changes in Medicaid policy, following the convention that has been adopted by much of the literature.17 Appendix Figure A1 shows that national trends in actual and simulated eligibility measures are very closely related.

Using this model, Currie and Gruber find that a 10 percentage point increase in prenatal Medicaid

17To create the simulated in utero measure, we use a national random sample of 3,000 women from each year of the Annual Social and Economic Supplement of the Current Population Survey (CPS). Since childhood eligibility was also changing for these cohorts, we also examine whether the changes in prenatal eligibility were correlated with changes in childhood eligibility, and whether including controls for childhood eligibility affects the estimates. To construct measures of simulated childhood eligibility, we use national random samples of 1,000 children at each age between 1 and 18 in each survey year and calculate the fraction of children in each state, year, and age that would be eligible for Medicaid based on state eligibility rules. We then add the estimates across ages for each cohort, to create a measure of cumulative simulated eligibility throughout childhood for each cohort and state and use this as a measure of generosity during childhood. We describe these calculations in more detail in Appendix Section A.3.
eligibility under the targeted expansions reduced the first generation’s incidence of low birthweight by 2.6 percent.\(^\text{18}\) Subsequent papers have extended their approach to look at outcomes associated with later childhood expansions by replacing \(Elig_{ab}\) with a measure of cumulative or average childhood eligibility from birth to age 18 (e.g. Brown et al., 2020; Cohodes et al., 2016; Thompson, 2017) and using a comparable simulated eligibility instrumental variables approach. Noting that the prenatal period is a particularly receptive stage of development, with the potential to yield large returns on investment, Miller and Wherry (2019) further extend this design by including separate measures of prenatal and later childhood eligibility. They find that this distinction is important, with most of the long-run health improvements driven by the expansions in prenatal access.

It would be natural to extend this framework to examine the expansions’ impact on second generation outcomes. As Currie and Gruber note, however, identification in this model rests on the assumption that state Medicaid policy was exogenous to treated cohorts’ birth outcomes. Although previous analyses have included a large number of state and year varying controls, some researchers have argued that the changes are not “randomly occurring natural experiments,” and they speculate that estimates of the expansions’ impacts reflect other underlying state level changes (Dave et al., 2008). The traditional research design has previously been estimated with very limited years of data from the pre-expansion era, which restricts researchers’ ability to test for differential changes across states prior to the expansions. Therefore, we have collected additional years of information on state program rules, and use these data to document changes in state-level prenatal Medicaid eligibility back to 1975.\(^\text{19}\) Then we implement a more transparent event-study design that allows direct examination of the extent to which state-level pre-period outcomes varied with state-level Medicaid expansions, and addresses concerns about potential contaminants.

Our analyses start by documenting the evolution of state-level Medicaid eligibility. Appendix Figure A2 shows the time path of eligibility from 1975-1988 for each of the fifty states. It is immediately clear that states exhibit different expansion patterns, and that these patterns fall into two dominant types: many states experienced gradual increases in eligibility throughout the period (e.g. California and Rhode Island), while others exhibit flat, low levels of prenatal coverage during the 1970s that are later punctuated by a large, abrupt, increase (e.g. South Carolina and Maine).

This is exactly what the discussion in Section 3 should lead us to expect. Specifically, in early years, states that initially embraced strict eligibility criteria and did not avail themselves of the state options, exhibit low eligibility levels that change very little. In later years, we observe discrete jumps in these states that correspond to a large, voluntary state-level expansion or one of the later federally mandated expansions. In contrast, states that took early advantage of the existing state options to cover low-income pregnant women exhibit smaller, more gradual increases that start earlier, and are less pronounced in the wake of the federal changes.

\(^\text{18}\)We replicate this result using their empirical approach in Appendix Table A1. Note that, for the purpose of this replication, we follow Currie and Gruber and express the outcome as the number of low birthweight births per 1000 infants. The first column displays the results reprinted from their paper and the second column is our replication exercise. The remaining columns update the analysis to cluster standard errors by state (column 3), add the state by year controls we implement in our model, described in detail below (column 4), and weight by the number of births in each cell (column 5).

\(^\text{19}\)Information on eligibility prior to 1975 is very spotty, therefore we begin our sample period in 1975.
4.2 Classification of Treatment and Control States

Using Appendix Figure A2 as a guide, we organize states into “treated” states (those that experienced a sharp jump in eligibility) and “control” states (those for whom eligibility trended smoothly). Our event study is based on differences in the evolution of prenatal eligibility across these two groups. The treatment group consists of the 28 states in which eligibility was stagnant for a minimum of the five years between 1975 and 1979, and that later experienced a large positive shock. We focus on shocks that took place between 1980 and 1985 to ensure that we have at least five “post-event” years over which to observe the expansions’ effects. We include the 22 remaining states as “control” states to help identify secular changes that were separate from the Medicaid expansions.20

Figure 2 shows which states we classify as control states, which states we classify as treatment states, and the timing of the expansion for the treatment states. Given that “treatment” requires a large, abrupt increase in eligibility, it is unsurprising that treated states are disproportionately located in the South and Midwest, where Medicaid was less generous in the pre-expansion period, and transfer policies have historically been less generous.21 Figure 3 Panel (a) provides further insights into the sources of our identifying variation by combining all of the treated states together, and documenting how the changes in eligibility break down by source. The sources are shown additively from most to least restrictive (shown from lowest to highest lines on the graph), and include changes in eligibility driven by: changes in AFDC rules (solid blue line), targeted expansions occurring via state options (long dashed red line), targeted expansions occurring under federal mandates (short dashed green line), and broader income-based expansions (dash dot yellow line). The last category is concentrated at the end of the period, and reflects optional state expansions that included pregnant women with family incomes up to the poverty line.22

It is easy to see that prior to the 1980s, Medicaid eligibility in treated states was largely determined by state AFDC rules, and that these states were less likely to take up state options than the control states. Beginning in the early 1980s, a few treatment states increased eligibility through the state options. This was followed by a sizeable bump under the federal mandates. Between 1975 and 1988, prenatal eligibility roughly doubled in treatment states, from just under 9 percent to 18 percent. In contrast, Figure 3 Panel (b) shows that control states started off with higher eligibility, because they had already implemented the state options, and that eligibility gradually increased over time as more

20 We did not have a specific algorithm to define treatment and control states or event time. Rather, each of the four authors individually classified states based on Appendix Figure A2, and then we decided on a consistent classification as a group. We relied on measures of simulated eligibility, rather than actual eligibility, to ensure that changes in eligibility are driven by policy changes and not by demographic or economic shifts, and there were few classification discrepancies across the authors. States with large changes outside the 1980-1985 period are included in the control group, but the few states that fall into this category do not affect our results: we show that estimates are similar when we drop the control states from the analysis.

21 Prior work has found that racism played a role in generating a less generous safety net (Lee and Roemer, 2006), and, Appendix Table A2 shows that treated states have slightly higher Black populations than control states. We multiply all dichotomous variables by 100 for ease of presentation. There are a few small differences in other demographic and economic characteristics across treatment and control states. Our analyses include state fixed effects to account for any time-invariant differences, and we show that our estimates are robust to including a large number of state-year varying economic and policy controls, and region-year fixed effects that control for common shocks to outcomes within regions over time.

22 Under the Omnibus Budget Reconciliation Act of 1986, states were allowed to expand Medicaid to pregnant women with family incomes below 100% FPL starting in April 1987. See additional discussion in Appendix Section A.1, along with more detailed breakouts of the different eligibility paths in Appendix Figures A19 and A20.
options were adopted. As a result, the federal mandates had smaller effects on eligibility.

Figure 4 demonstrates that among treated states there is also variation in when the large jumps occur. States are grouped together by the initial year of the abrupt increase (the “expansion year”), and eligibility is plotted relative to the year prior to expansion, with the number of states expanding in each year shown in parentheses. While the most common expansion years are 1982 (11 states) and 1985 (7 states), when federal policy provided states with new options to expand coverage (1982), and mandated expansion of coverage to more women (1985), there are also states that experience large expansions in every other year between 1980 and 1985. In our main event study framework, we rely on the differential timing of expansions across states, as well as differences between treated and control states, to identify the effects of Medicaid separately from time trends.

4.3 Event Study

The event study takes the following form:

\[
y_{nb} = \alpha + \sum_{t=-5,t\neq -1}^{3} \beta_t 1\{b - e^*_n = t\} + \mu_n + \lambda_b + \gamma X_{nb} + \epsilon_{nb}
\]

(2)

where \(y_{nb}\) is an outcome for individuals born in state \(n\) and year \(b\). Initially, we estimate the expansions’ effects on the first generation’s in utero Medicaid eligibility and coverage at birth. Then, in line with the existing literature, we examine the first generation’s health outcomes at birth. The primary goal of our study, however, is to understand whether the benefits associated with the first generation’s prenatal access to Medicaid had spillover effects onto their offspring. To do so, we replace first generation outcomes with the outcomes of the offspring of women who were born in state \(n\) and year \(b\).

The key regressors are the series of dummy variables \(1\{b - e^*_n = t\}\) that take on a value of one for each event time year, where event time is defined for each treated state relative to the year in which it first experienced a discrete jump in eligibility \((e^*_n)\). We omit the year before each state’s large expansion \(t = -1\), so the estimated \(\beta_t\)s are relative to the year before the expansion occurred. For example, \(\beta_1\) is the effect one year after the discrete change in eligibility, relative to one year before the jump. We do not define event time for the control states since they do not experience a large discrete expansion. The control states help estimate secular trends across cohorts and the effects of the control variables.

As in previous studies, we include first generation state of birth fixed effects \(\mu_n\), to account for fixed differences in the outcomes of mothers and their children across states, and first generation year of birth fixed effects \(\lambda_b\), to account for national changes over time. Our baseline model also follows the literature by incorporating a large number of first generation state and year of birth control variables.

23See Appendix A.1 for more details on these policy changes.

24By choosing to classify treated states as those with a large, abrupt eligibility change in the middle of the 1975-1988 period, we are able to observe at least 5 years before the event and 4 years after the event. We bin event time observations that are more than 5 years before the event and more than 4 years after the event. We estimate, but do not report these coefficients, because they are based on an unbalanced sample. Binning allows us to separately identify treatment effects from secular time trends even when we do not include the control states in the model (Schmidheiny and Siegloch, 2019).

25A potential concern is that using partially treated states (those with smaller and less abrupt changes in eligibility) as a control group will lead to biased estimates (Schmidheiny and Siegloch, 2019). Figure 9 documents that the pattern of estimates is similar (albeit with larger standard errors) when the control states are not included in the analyses. We also note that there is little difference in the magnitude of the eligibility changes across treated states (Figure 4). Therefore, we do not use variation in the magnitude of the expansions as an additional source of identifying variation in our model.
including the unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws, state Medicaid restrictions for abortion, and population demographic controls for each state and year. Sensitivity analyses include versions of the model that eliminate the control variables, or add additional controls, such as region-year fixed effects, and state-year controls at the time of the second generation’s birth, which we discuss in more detail below. Our results are not sensitive to their inclusion. Our estimates are weighted by the size of the second generation birth cohort. We cluster our standard errors by mothers’ state of birth.

Appendix Figure A3 plots second generation health outcomes by event time, where each treatment timing group is shown in a different color. Control states are shown in pink, with event time centered at 1982. It is easy to see that, consistent with the decades long national trend in infant health (United Health Foundation, 2020; Wang, 2010), and pre-dating the expansions, second generation health was declining. Linear trend estimates based on pre-expansion data are shown in solid lines, and clearly vary across state groups, possibly reflecting differing trends in state demographic characteristics, the demographics of women giving birth, adoption of health technologies, or changes in state policies, including expansions of prenatal Medicaid eligibility that occurred before those we study here. Appendix Figure A4 documents that first generation health also trended differently across state groups. To ensure that our estimates are not contaminated by state differences in pre-expansion trajectories, we remove linear pre-trends following the two-step de-trending procedure implemented in Goodman-Bacon (2020) and described in more detail in Section 5.

This research design is a departure from the conventional approach, which exploits state and cohort variation in the timing and magnitude of the expansions but does not address potential differences in states’ pre-period trajectories. Another advantage of our research design is that it provides non-parametric estimates of the expansions’ dynamic effects. Assuming that treatment effects are homogeneous across treatment groups, estimates generated by the event study will be unbiased, even in the case of staggered treatment timing. As described below, we examine the importance of this assumption using the method proposed by Callaway and Sant’Anna (2020) and obtain very similar results.

5 Data

Our measures of Medicaid eligibility are based on data in the Annual Social and Economic Supplement of the Current Population Survey and are described in more detail in Section 4 and Appendix Section A.3. We also analyze Medicaid take-up among pregnant mothers using restricted-use data from the National Hospital Discharge Survey (NHDS). The NHDS data provide discharge-level information for a nationally representative sample of non-Federal, short-stay hospitals, and include the expected payer for the hospital visit. This allows us to identify births paid for by Medicaid. Because the NHDS data are based on administrative hospital records, they are not subject to misreporting issues that are common in survey data (see Davern et al., 2009; Klerman et al., 2005), but unlike our other data series, they are not available before 1979. In our event study analyses, we estimate the pre-period coefficients using

26 The results are robust to weighting by the size of the first generation cohort instead.
27 We acknowledge that if some pregnant women did not enroll in Medicaid until delivery then the NHDS data could produce an upper bound estimate of the fraction of infants who gained in utero coverage. Using Medicaid claims data, Ellwood and Kenney (1995) document that the share of women with Medicaid deliveries who enrolled during the first
all available data. We also apply the NHDS survey weights. Using diagnosis and procedure codes based on the International Classification of Diseases coding system28 we identify 187,488 labor and delivery hospitalizations with expected payer information between 1979 and 1988.

To conduct our main analyses of birth outcomes, we use the 1975-2017 U.S. Vital Statistics Natality Data Files.29 These files contain individual birth records for the full census of U.S. births. The data include information on infants’ health, gender, parity, and year and state of birth. They also include detailed demographic information about each infant’s mother, including her state of birth and age, which allows us to approximate her year of birth.30 The latter variables are critical to our second generation analyses, as they allow measures of \textit{in utero} Medicaid eligibility to be matched to each mother in the first generation. In the second generation analyses we exclude infants whose mothers were born outside of the United States, as well as mothers born in Arizona, which did not adopt a state Medicaid program until 1982.

We begin by using the event study framework to reassess Currie and Gruber’s first-generation results. Currie and Gruber focus on the incidence of low birthweight (less than 2500 grams) among infants born between 1979 and 1992. Appendix Table A1 shows that we are able to replicate their results when we apply their research design to the same cohorts. Moving forward, our event study analysis changes the included cohorts in two ways. First, because a convincing event study requires pre-period data, we add the four cohorts born between 1975 and 1978. Second, the second generation analyses would ideally include all births to women born between 1975 and 1992, but many women born in the 1990s have not given birth by 2017, so we focus on cohorts born between 1975 and 1988. This ensures that all first generation cohorts that were affected by the targeted prenatal expansions are included, while allowing us to observe each cohort’s fertility through age 28. The analyses of second generation outcomes is restricted to infants whose mothers meet this age criteria to ensure that each maternal cohort contributes equally to the identifying variation, and that cohort-level comparisons are across women who are giving birth at the same age. We further restrict the second generation analyses to first births only, as this generates a more representative sample of births across cohorts. During our time frame, 81\% of first births, and 62\% of all births, were to women aged 28 or younger.31 We test the robustness of our results to both of these restrictions below.

The second generation analyses include infants born between 1990 and 2017.32 We examine the impacts of the prenatal expansions on the next generation’s average birthweight and incidence of low birthweight. These outcomes are standard measures of infant health and are highly predictive of later life health, cognitive and economic outcomes (e.g. Black et al., 2007; Figlio et al., 2014). We also explore

28Details are found in Appendix Section D.
29Beginning in 2005, mother’s state of birth information is only available in the restricted access data, so we use the restricted data from 2005-2017.
30Miller and Wherry (2016) show that using age to impute birth year leads to nearly identical simulated eligibility assignments as using actual birth year.
31Authors’ calculations from the Vital Statistics Natality Files.
32We restrict births to women ages 15 or older. The second generation sample, therefore begins in 1990, since this is year that the 1975 cohort turns 15.
other outcomes available in the national natality data, including very low birthweight (weighing less than 1500 grams), gestational length (in weeks), preterm (born before 37 weeks gestation), and very preterm (born before 28 weeks gestation). As described in Kramer (1987a,b), birthweight is determined in part by gestational length. For this reason, we also consider a common measure of intrauterine growth: whether the infant is below the 10th percentile of birthweight for gestational age (“small for gestational age”).

We collapse the data into cells based on the first generation’s state of birth and year of birth. We then merge each cell with corresponding measures of actual and simulated Medicaid eligibility, and with information on states’ economic conditions (state unemployment rate and per capita income), demographic composition (age distribution, marital status, educational attainment and race), safety net generosity, and abortion policies. Additional details about these control variables and sources are provided in Appendix Section D.

As discussed in Section 4, second generation outcomes were trending differently in treatment and control states in the pre-expansion era. To ensure that our estimates are not contaminated by differential linear pre-trends, we directly remove them using the two-step de-trending method implemented in Goodman-Bacon (2020). For each treated state and outcome, we estimate a linear trend using data only from years prior to the expansion, then extrapolate this estimated trend through all years of data, and subtract the predicted values of each outcome from the observed values. Since control states do not have a clear expansion year, the linear “pre-trend” is estimated using data from 1975-1981, as 1982 is the year of the national trend break in eligibility (Figure 1). The underlying assumption in the event study model is therefore that outcomes would have continued to follow their linear pre-trends in the absence of the expansions. Since linear pre-trends are removed from our analysis, the event study provides information on any remaining non-linear differences across states in the pre-period.

6 Results

6.1 Eligibility Estimates

Figure 5 provides “first stage” event study estimates based on equation (2), where Panel (a) shows the estimated change in prenatal eligibility and Panel (b) shows the estimated change in simulated prenatal eligibility, both of which are calculated using the CPS, as described in Appendix Section A.3. Recall that both of these variables capture the fraction of women who are eligible for Medicaid, rather than the fraction who received Medicaid. The horizontal axis denotes the number of years before and after the expansion. Event time zero is the first year of the expansion. We omit event time -1, so all estimates are relative to the year before the expansion. The estimates are plotted along with their 95% confidence intervals.

It is immediately clear that after accounting for differences in linear pre-period trends there are no remaining pre-expansion differences between treatment and control states, and that in treated states, the period following the expansion is associated with an abrupt increase in both actual and simulated eligibility. This is expected because of the way in which we assign treatment, and is evidence of a strong

This variable is constructed using two potentially noisy variables, increasing the likelihood that the variable is measured with error.

An exception is that we do not de-trend the NHDS payment data, given the limited number of pre-expansion years.
first stage. Our estimates indicate that four years after the initial expansion, simulated eligibility had increased by 6.6 percentage points. Coefficient and standard error estimates are reported in Table 1.

Appendix Figure A5 shows the results of a variety of additional analyses, with the baseline estimates shown as solid black circles. Alternative specifications include models that eliminate the state-year controls (solid blue triangles), add region-year fixed effects (solid green square), and employ eligibility measures that have not been de-trended (hollow gray circle). The estimates barely change across these specifications. Taken together, the results provide strong evidence that the timing of the expansions was not correlated with other location and time specific factors. We also see that the estimates are comparable when the model is weighted by the number of first generation (female) births, rather than the number of second generation births (hollow purple square), and when we estimate the model without including the control states (hollow red triangle).35

6.2 Medicaid Coverage at Birth

Although Figure 5 confirms that eligibility increased in the wake of the expansions, we would not expect broader eligibility to translate into better infant health outcomes without a corresponding increase in program take-up. To investigate Medicaid take-up we estimate the event study model using NHDS data on Medicaid coverage at the time of birth. Figure 6 shows estimates based on equation (2), where the dependent variable is the fraction of hospitalized births that were covered by Medicaid. As in Figure 5, the pre-expansion estimates are close to zero, and there is a clear increase in coverage following the initial expansion.36 Importantly, within four years of the initial expansion, the fraction of births covered by Medicaid had increased by 4.6 percentage points, which, when compared to the 6.6 percentage point increase in simulated eligibility, implies a 70% take-up rate among newly eligible mothers. In contrast to Figure 5, however, the increase in coverage phases in more slowly, suggesting that it took time for program take-up to fully respond. Given this, we anticipate a similar ramp-up pattern in the health estimates.

6.3 First Generation Estimates

Having established the event study’s validity, we use the same model to re-examine Currie and Gruber’s first generation results. Independent of our upcoming second generation analyses, here we make an important contribution to the literature by shedding light on the extent to which previous estimates of the expansions’ effects may have been confounded by the presence of other changes that were occurring within states.

Figure 7 and Appendix Table A3 present our event study estimates of the expansions’ effects on the fraction of first generation newborns who were low birthweight. The estimates strongly support Currie and Gruber’s original findings. Our pre-period estimates are close to zero and not distinguishable
from each other, and there is an abrupt decrease in low birthweight in the treated states, compared to the control states, immediately following treated states’ initial expansion. The magnitude of the low birthweight estimates grows over the post-expansion period, so that, four years post treatment, the incidence of low birthweight has declined by 0.25 percentage points (p<0.001), or 3.4 percent of the treated states’ pre-period mean (Table 1).37 When coupled with our estimated 6.6 percentage point increase in prenatal eligibility, the results suggest that a 10 percentage point increase in eligibility reduces the incidence of low birthweight in the first generation by 0.37 percentage points, or about 5 percent. As a point of comparison, Currie and Gruber estimate that a 10 percentage point increase in eligibility led to a 2.6 percent decline in low birthweight.

To interpret these effects as causal, it must be the case that the timing of the expansions was unrelated to other factors that affect prenatal health. For example, one might be concerned that a state’s decision to expand was influenced by the state of its economy. To check for this, we examine how our estimates change under the same set of alternative specifications described in Section 6.1, which include models that eliminate the state-year controls or add region-year fixed effects, a version of the baseline model that does not remove linear pre-trends, and a version of the model that does not include the control states. Appendix Figure A8 Panel (a) shows that estimates are similar across the specifications. The coefficient estimates during the post-period are smaller when we do not account for pre-existing linear trends, supporting the possibility that control states’ early adoption of the expansion options may have already altered their infant health trajectories prior to the 1980s. Unsurprisingly, given the reduced sample size, confidence intervals are larger when we estimate the model without including the control states.

Taken as a whole, our event study analysis bolsters the credibility of Currie and Gruber’s landmark findings. The new research design also provides insights into the time path of effects, specifically, that the expansions’ impact on the first generation’s health took time to fully ramp up. A likely explanation is that it took time for pregnant women to learn about their eligibility and enroll in the program. Moreover, although improvements in the first generation’s birthweight are not a necessary pre-condition for the presence of second generation effects, the results presented in Figure 7 allude to mothers’ health at birth as a potential conduit, as previous studies have documented intergenerational linkages in low birthweight (e.g. Currie and Moretti, 2007).38

6.4 Second Generation Estimates

Figure 8 shows the relationship between \textit{in utero} Medicaid access and second generation outcomes. Focusing first on birthweight (Panel (a)), we see evidence of an increase following the expansions. The magnitude of the effect grows over time, and is 4.7 grams higher four years after expansion. Although the impacts on some of the other infant health outcomes are less precisely estimated, we see largely similar patterns, particularly at the lower end of the birthweight distribution (low birthweight and very low birthweight). We also see evidence of a decrease in very preterm births. As discussed in Section 5,

37Recall that for ease of presentation, we multiply all of the dichotomous variables by 100.
38We also consider the expansions’ effects on average birthweight and the incidence of very low birthweight, which are not examined in the original Currie and Gruber paper. Event study estimates and robustness analyses are provided in Panels (b) and (c) of Appendix Figure A8 and Appendix Table A3. The estimated effects are suggestive of expansion related declines in very low birthweight. We do not examine changes in outcomes related to gestational length because prior to 1981 the birth certificate records have a high rate of missing values for this variable.
low birthweight and prematurity are of particular interest because they are closely linked to other early and later life health and cognitive outcomes. Also, low birthweight and preterm births are associated with maternal health characteristics that are known to have been affected by the prenatal expansions (Institute of Medicine, 2017; Miller and Wherry, 2019).\footnote{For example, low birthweight has been linked to chronic hypertension, pre-pregnancy diabetes, and maternal obesity (Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes, 2007).} We also see some evidence of improvements in small-for-gestational age, which is indicative of improvements in intrauterine growth.

As with the first generation estimates, Figure 9 shows that the second generation results are, for the most part, similar when we employ the specification checks described in Section 6.1. Excluding the state-year covariates, or adding region-year fixed effects does not change the results. The figure also documents similar patterns when we use different weights (mother rather than child cohort size). We see larger deviations from the baseline estimates when we do not account for pre-existing differences in state trends (gray circles in the Figure). When we remove control states from our sample, the estimated intergenerational effects become larger but more imprecise.

Appendix Figure A9 shows the sensitivity of the estimates to additional sets of state-year controls. During the 1980s and 1990s, Medicaid coverage was also extended to older and higher income children.\footnote{We describe these eligibility changes and how we construct our childhood eligibility measures in detail in Appendix Section A.} If the prenatal expansions we focus on are correlated with these other childhood expansions, then we might be erroneously attributing the observed health improvements among second generation infants to their mothers’ \textit{in utero} coverage when, in fact, the improvements result from mothers’ increased Medicaid access in later childhood. Most studies estimate the impact of expanding children’s access to Medicaid using a single index that aggregates eligibility across the length of childhood, without considering the connections between \textit{in utero} and later childhood expansions. In Appendix Figure A10, we use the same event study framework to directly estimate the relationship between the prenatal expansions and the childhood expansions, and find no evidence that they are correlated. Therefore, it is unsurprising that our second generation estimates are very similar when we add measures of later childhood eligibility to our baseline model (shown in the solid purple triangles in Appendix Figure A9).

Appendix Figure A9 also documents that the results are similar when we control for mother’s own eligibility during adulthood (open green circles), and when we control for the second generation’s own prenatal eligibility (open pink triangles).\footnote{See the discussion in Appendix Sections A and B for detailed information about how we construct these other eligibility variables.} They are also unaffected when we include the same set of state-year controls listed in Section 4 augmented with additional controls describing the generosity of welfare and access to family planning services, but measured in the child’s year of birth rather than the mother’s year of birth (shown in the solid blue squares).\footnote{Additional details on these control variables are found in Appendix Section D.}

A remaining concern with event study estimates is that they may be biased in the presence of heterogeneous treatment effects across expansion timing groups (Sun and Abrahm, 2020). To alleviate this concern, we implement a new estimation method proposed by Callaway and Sant’Anna (2020) that is robust to heterogeneous treatment effects across groups. Essentially, this approach avoids using earlier treated units as controls for later treated units (which are comparisons that can lead to biased
estimates). The results are shown in Appendix Figure A11. Across all outcomes, the results are very similar to our baseline estimates. This reassures us that the baseline event study results are robust to possible treatment effect heterogeneity.

Next, we verify that our results are not sensitive to our sample selection criteria. Appendix Figure A12 shows estimates based on a second generation sample of higher parity births. This sample generates similar birthweight and low birthweight estimates as the main sample, but we no longer observe improvements in the incidence of very preterm or small-for-gestational-age. Tabulations we ran using pre-period data indicate that these outcomes are less common among higher order births, which may explain the difference. Appendix Figure A13 shows what happens when we relax our baseline maternal age restriction from ages 15-28 to include births to older mothers (recall that this produces a sample that is unbalanced in maternal age). Again, the estimates are very similar to those produced by our main sample.

Finally, we repeat our analysis including only children of foreign-born mothers, who are excluded in the main analysis, and who we assume were unaffected by the first generation prenatal expansions, since the first generation was not born in the U.S. This placebo check is another way of addressing concerns about unexplained cohort x state specific changes in infant health that are correlated with, but separate from, exposure to the prenatal expansions. We use the state of residence at the time of the child’s birth to assign policy and control variables. The results from this analysis are found in Appendix Figure A14. We do not detect any changes in infant health that correspond with the expansions’ timing.

6.4.1 Magnitudes

Our results show that the benefits of prenatal Medicaid spill over onto later offspring. The 6.6 percentage point increase in in-utero eligibility generated by the 1980s expansions increased the second generation’s average birthweight by a statistically significant 4.7 grams. This corresponds to an increase per newly eligible woman of about 71 grams (2 percent relative to the mean). Comparable estimates for low birthweight and very low birthweight are 1.8 percentage points and 1.2 percentage points. These are meaningfully-sized estimates; for example, the magnitude of the effect of a mother’s in-utero eligibility on her child’s birthweight is a bit less than half of the observed gap in average birthweight between mothers with, and without, a high school degree at the beginning of our sample period.

Of course, not everyone in the first-generation who became eligible for Medicaid under the expansions actually received coverage. We therefore interpret the estimated effects per newly eligible woman.

43 We implement the Callaway and Sant’Anna method using R code they provided. We use the same weighting as in our main analysis (by size of birth cohort) and cluster by state. We do not include control variables in this model to simplify comparisons across estimators.

44 Specifically, with this method, we find that four years after the expansion average birthweight had increased by 4.2 grams, low birthweight had decreased by 0.09 percentage points, very low birthweight decreased by 0.08 percentage points, very preterm decreased by 0.05 percentage points, and small-for-gestation-age decreased by 0.14 percentage points.

45 We note that in our application of this method, we continue to rely on the control states as a comparison group and that some of these states may have experienced similar expansions in eligibility (i.e. “treatment”) prior to our study period. Our results should be interpreted with this caveat in mind.

46 We note that the sample of births to foreign-born women is much smaller than the sample of births to U.S.-born women. For example, in 1980 there are an average of 19,000 births per state to US-born women, compared to 4,500 births to foreign-born women. Not surprisingly, the estimates for the sample of births to foreign-born women are accompanied by larger confident intervals.
as “intent to treat” estimates, where treatment is defined as enrollment in the program. Assuming that the benefits of Medicaid eligibility accrue only to those who were actually enrolled in utero, and that there were no effects on those who were eligible but did not enroll, we can obtain the treatment effect of Medicaid enrollment by dividing the estimated expansion effects by the estimated increase in Medicaid coverage in Table 1 (4.6 percentage points in the fourth year of expansion). This calculation implies that among the offspring of women whose pregnant mothers enrolled in Medicaid, average birthweight increased by a little over 100 grams.\footnote{We obtain this estimate by dividing 4.768 grams by the 4.6 percentage point increase in Medicaid coverage.} Similarly, the treatment effect estimates for low birthweight and very low birthweight are 2.6 and 1.8 percentage points, respectively. While some of these treatment effect estimates are large in comparison to our baseline means, it is important to note that the early expansions targeted very poor pregnant women for whom the incidence of low birthweight and very low birthweight would have been higher than in the full population.

We can also compare our estimates of the expansions’ effects across generations. We note that the first generation receives a direct and clearly defined treatment, which is access to Medicaid coverage during the in utero period. In contrast, the second generation’s treatment includes a bundle of biological and economic exposures experienced by their mother over the course of her life (as a result of her access to Medicaid) and subsequently passed on to her infant. It is therefore not clear \textit{ex ante} which generation should experience larger effects, or whether effects must be present at birth in the first generation in order for the second generation to be plausibly affected. Comparing the estimates in columns 4 and 6 in Table 1 we see that the decline in low birthweight experienced by the second generation is about 48\% as large as the effect in the first generation. This is consistent with \citeauthor{currie_moretti_2007} (2007), who find that the probability of being low birthweight is nearly 50 percent higher among children whose mothers were themselves born below the low birthweight threshold.\footnote{Other studies have estimated smaller intergenerational birthweight correlations \citep{black_etal_2007, royer_2009} but importantly, \citeauthor{currie_moretti_2007} (2007) find that poverty increases the transmission of low birthweight from mother to child.}

Finally, we consider the implications for the program’s return on investment. \citeauthor{currie_gruber_1996b} (1996b) report that the targeted expansions increased Medicaid spending per eligible woman by $450 (this cost is estimated in 1981 and we inflate to 2011 dollars). We compare this with the medical cost associated with lower birthweight averted in the second generation. Based on estimates provided in \citeauthor{almond_etal_2005}, we calculate that each additional gram of birthweight reduces hospital costs by $8.29.\footnote{\citeauthor{almond_etal_2005} (2005) estimate that an additional gram of birthweight reduces hospital charges by $22 for infants in the 2000-2100 gram range in 2000 dollars, or $28.60 in 2011 dollars. Since hospital charges do not accurately reflect hospital resource costs (due to markups), we deflate this estimate using national charge-to-cost ratios \citep{bai_anderson_2015} to arrive at $8.29 per gram.} Our estimates suggest that first generation eligibility increases average second generation birthweight by 71 grams, resulting in about $589 in savings per first generation woman made eligible. Given the amount of time that has passed, we discount these cost savings back to the period of the initial Medicaid outlays (1981), using the discount rate recommended by the Department of Commerce for life-cycle studies (3\%, see \citeauthor{lavappa_kneifel_2016}, 2016). For this calculation, we assume cost savings accrue equally across all second generation birth years.\footnote{We estimate cost savings for each second generation birth year from 1995 to 2017, since the first expansions occurred in 1980, and these treated mothers were age 15 starting in 1995.} This calculation suggests that the expansions generated average cost savings of $287 per newly eligible woman, or more than 60\% of the cost of the
initial investment. Notably, this calculation is focused solely on benefits that translate to the second generation, and ignores any improvements in the first generation’s health and human capital. The calculation also ignores medical cost savings that result from any second generation health improvements in later life that are tied to better health at birth, as well as improvements in later life earnings (and tax revenues), which have also been tied to birthweight (e.g. Black et al., 2007; Bharadwaj et al., 2018).

It may also be reasonable to expect that health benefits accruing to the first two generations will continue to be passed on in the future, albeit incompletely. We could therefore model the intergenerational benefits of the Medicaid program as an annuity that pays off once each generation. We assume that half of the benefit to the mother’s generation is transmitted to the child, and then only half of that received benefit to the child’s offspring, and so forth, such that the benefit of an investment decays exponentially across generations. Applying a 3% discount rate, and assuming that half of the health benefit is transmitted to the next generation (as we observe for low birthweight), we calculate that accounting for the intergenerational aspects of the program’s effects in this way results in estimated benefits that are more than 30% higher than what would be observed if the analysis focused only on the first generation.

6.4.2 Additional Outcomes

We can extend our analysis of the intergenerational effects of the Medicaid expansions by looking at additional health indicators, including the presence of congenital anomalies, whether the birth was associated with any abnormal conditions, and the sex ratio at birth. Congenital anomalies are more common among low birthweight and preterm infants, and have been linked to environmental factors that are often associated with low income, including poorer access to nutritious foods, health care and screening (World Health Organization, 2012). Similarly, some abnormal conditions such as NICU admission or surfactant replacement therapy could be indicative of underlying health conditions. Our examination of the sex ratio is motivated by the Trivers-Willard hypothesis, which suggests that, because male fetuses are more sensitive to negative health environments than female fetuses, improvements in maternal health might disproportionately reduce the number of in utero losses that are male (Trivers and Willard, 1973). The results of these analyses are provided in Appendix Figure A15 and lend further support to the hypothesis that the expansions’ health benefits extended beyond the treated generation. Although there is no evidence that the expansions affected abnormal conditions at birth, the patterns of estimates for congenital anomalies and the sex ratio are similar to our main results.

51 Using the discount rate recommended by the Office of Management and Budget of 0.5% instead, the discounted value of the benefits is $520 (U.S. Office of Management and Budget, 2016). Details of these calculations are in the Appendix D.4.

52 Specifically, we assume the Medicaid investment generates a payoff that falls by 50% in value and is paid out every 25 years. The present value of such a payoff of size X would be:

$$X \times \frac{0.5}{(1 + r)^{25}}.$$

Since $\frac{0.5}{(1 + r)^{25}} < 1$ we can apply the rules for geometric series. Plugging in $r = 0.03$ for a 3% discount rate, this simplifies to $8X \times 1.31$.

53 Examples of abnormal conditions include the provision of assisted ventilation, NICU admission, surfactant replacement therapy, antibiotics, seizures, or significant birth injury.
6.5 Mechanisms

6.5.1 Changes in Fertility or Maternal Characteristics

What are the mechanisms generating these intergenerational spillovers? We investigate potential pathways using additional information provided in the natality files. First, we consider changes in the first-generation’s fertility. The same (or related) biological processes that lead to improvements in the first generation’s health may have also affected the first generation’s fecundity.\footnote{We are not able to measure total fertility because we cannot observe most of our first-generation cohorts throughout their childbearing years.} We also consider whether the Medicaid expansions led to changes in the composition of women giving birth: if children are a normal good, then Medicaid induced increases in the first generation’s earnings might also lead to increases in the desired number of children. On the other hand, improved economic opportunities might also lead to delays in childbearing (Brown et al., 2020).\footnote{Brown et al. (2020) estimate that each additional year of Medicaid eligibility from birth to age 18 is associated with a 1.2 percentage point reduction in the probability that a woman has her first child by age 28, but the authors do not examine the effect of in utero eligibility on fertility.}

We explore these potential mechanisms in Figure 10. We estimate regressions similar to equation (2), replacing the dependent variable with measures of fertility or maternal characteristics (age, educational attainment, marital status and race).\footnote{Three of the outcomes analyzed in this section and the next (Section 6.5.2) – mother’s educational attainment, prenatal care utilization, and race – were affected by the introduction of the 2003 revision of the U.S. Standard Certificate of Live Birth. This revised version replaced the 1989 version that was in use during the remainder of the period covered by our analyses. See Appendix Section D for more details on how we account for this change in our analyses.} We find no evidence that the Medicaid expansions lead to changes in fertility behavior; neither the likelihood of having a first birth, nor the age at first birth, are affected by the expansions. In addition to their statistical insignificance, the point estimates are very small (four years after the expansions, there is a 0.3% decrease in the first birth rate and a 0.1% increase in age at first birth, relative to the baseline means).

We do see some evidence of changes in the characteristics of mothers, particularly with respect to race. The expansions are associated with an increase in the fraction of births to white mothers (0.7% relative to the pre-treatment mean) and a decrease in the fraction of births to Black mothers (3% relative to the pre-treatment mean). Since white infants tend to be healthier on average than Black infants, we consider whether the shift towards white births explains the expansions’ apparent effects on the second generation’s health. To do this, we use the estimated effects four years after the primary expansion. Table 2 shows that by year four the fraction of births to white mothers had increased by 0.54 percentage points, with a roughly similar decrease in the fraction of births to Black mothers.\footnote{We appreciate that by year four the estimated effects on racial composition are no longer statistically significant, but we use these estimates, which are very similar to the estimates in year 3, so as to be consistent with the focal event year used in the rest of the paper.} A back-of-the-envelope calculation based on this compositional shift suggests that selection can explain, at most, about 30 percent of the overall effect of the Medicaid expansion on average birthweight.\footnote{If we apply these estimates to the race specific averages for birthweight (3329.6 for children of white mothers and 3080.5 grams for children of Black mothers), we predict an increase in average birthweight of 1.24 grams due solely to the expansion’s effect on the racial composition of births (i.e. 3329.6*0.005 - 3080.5*0.005). This estimate is 26% of the program’s estimated increase in the second generation’s average birthweight of 4.7 grams in year 4 of the expansion. We also explore whether the observed changes in infant health persist when we restrict the sample of second generation births to white mothers (78%) of the sample. The results, shown in Appendix Figure A16, are very similar to those produced by the full baseline sample, indicating that selection based solely on race cannot explain all of our findings. Unfortunately,}
addition, we re-estimate our main model directly controlling for mother’s education, marital status, and race. The results, shown in Appendix Figure A17, are very similar to our baseline estimates. This is a strong indication that the observed health improvements are not driven by changes in the composition of mothers giving birth.59

6.5.2 Maternal Health and Behaviors

Finally, we consider the role of maternal health and maternal health behaviors. The results of these analyses should be interpreted cautiously, as health conditions reported on birth certificates are relatively limited and known to be under-reported (Lain et al., 2012).60 Nevertheless, Appendix Figure A18 hints at the presence of biological pathways. We see suggestive evidence that the prenatal expansions reduced the incidence of medical risk factors among first generation mothers, which include diabetes, chronic hypertension, pregnancy-related hypertension, and eclampsia. Consistent with first-generation studies that document a positive link between early-life Medicaid and later-life metabolic health (e.g. Thompson, 2017; Miller and Wherry, 2019), the decline in maternal medical risk is driven by a reduction in pregnancy-related hypertension. As described in Section 2, an improvement in this outcome would be expected to reduce the likelihood of giving birth to a low birthweight or preterm infant.61

7 Conclusion

Social scientists have long known that children’s outcomes are predicted by their parents’ socioeconomic status (e.g. Mazumder, 2005; Solon, 1992), and recent research suggests that health plays an important role in the intergenerational transmission process (Halliday et al., 2020, 2021). The extent to which the impacts of policy-driven health investments spill over onto later generations has been largely unexplored, however. Understanding such effects is important, both because it sheds light on how economic and health status are conferred across generations, and because it provides insights on the extent to which generationally persistent disadvantage can be ameliorated by policy choices. Furthermore, if safety net programs’ benefits extend beyond treated generations, then those benefits need to be accounted for in order to accurately assess both net-costs to the government and their total value to recipients (direct and indirect). Neglecting policies’ multi-generational effects could result in dramatic undervaluation.

In this paper, we provide new evidence that expanding health related services to low-income pregnant women has persistent impacts on later generations’ health. We introduce a new event study approach to analyze the effects of the 1980s Medicaid expansions that exploits large, discrete jumps in state eligibility resulting from a combination of state policy choices and federal mandates. Using this new approach, we confirm previous studies’ findings that the targeted expansions generated im-

59It is also possible that marital matching changed. Unfortunately, there is limited information about fathers’ characteristics provided on birth certificates (age, race, and Hispanic origin), which makes a direct examination of this hypothesis infeasible.

60We do not examine changes in alcohol or tobacco use due to limited availability on the birth certificate records for all states and years. Alcohol use is only available through 2006. Information on tobacco use is available through 2008. This would only allow us to observe women through age 18 and age 20, respectively, if we were to balance the sample on mothers’ age at birth.

61Surprisingly, we do see some evidence that Medicaid eligibility is associated with reductions in the use of prenatal care during pregnancy. If anything, this would lead us to expect worse infant health outcomes, and suggests that the effects would be larger in the absence of this association.
provements in the first generation’s birth outcomes. Then we document that this “treated” generation went on to give birth to healthier offspring. Our results do not appear to be driven by changes in the first generation’s fertility behavior or selection into childbearing. Instead, the positive spillovers likely reflect improvements in the first generation’s health and economic outcomes prior to giving birth. In particular, our analyses suggest that Medicaid-induced health gains among first generation mothers may be an important underlying mechanism.

Our study offers a new perspective on health inequalities and the potential role for government intervention. Generational persistence in the impacts of early life environments suggest that historical differences in fetal health conditions between advantaged and disadvantaged groups may undermine contemporaneous efforts to close health and economic gaps. At the same time, our results indicate that early life health investments have payoffs that extend well beyond those that social policymakers usually consider. It is notable that Medicaid’s second generation effects are observed among cohorts who were born during roughly the same time frame for which recent studies by Aizer and Currie (2014) and Currie and Schwandt (2016a,b) document large improvements in child health and declining health inequality. Investigating a more complete range of program benefits to later generations is an important goal of future work, and is critical in light of increasing debates about the efficacy of the U.S. safety net.
References

Masuyama, H., T. Mitsui, E. Nobumoto, and Y. Hiramatsu (2015, July). The Effects of High-Fat Diet Exposure In Utero on the Obesogenic and Diabetogenic Traits Through Epigenetic Changes

Figure 1: Trends in Prenatal Medicaid Eligibility and Medicaid Coverage at Birth, 1975 to 1988

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules and from the National Hospital Discharge Survey. For eligibility estimates, state averages are weighted using the number of births in each state-year cohort. For coverage estimates, sample weights are applied. See text for further details.
Figure 2: Treatment and Control States

Notes: See text for further details. Not pictured is Alaska (1982 Expander) and Hawaii (Control). Arizona is omitted due to the late start date of their Medicaid program.
Figure 3: Prenatal Eligibility by Source and Treatment Status, 1975-1988

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. Each line represents Medicaid eligibility through each of the state options and federal mandates. Specifically, we construct this figure by calculating the fraction of women who would be eligible under each pathway in an additive fashion that reflects the order of eligibility pathways from lowest to highest pathway on the figure. These pathways are discussed in more detail in Appendix Section A.
Figure 4: Trends in Simulated Prenatal Medicaid Eligibility Relative to Year Prior to Large Expansion

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. Difference in simulated eligibility from the year prior to the large expansion in each group of treated states is depicted. The number of treated states in each group is listed in parenthesis. See text for further details.
Figure 5: Event Study Coefficients for Prenatal Eligibility

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure 6: Event Study for Medicaid Coverage Among Labor and Delivery Hospital Discharges

Notes: Estimated for hospital discharges for labor and delivery between 1979-1988. Regressions are weighted by NHDS sample weights and include state of birth and year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by state.
Figure 7: Event Study for First-Generation Outcome: Low Birth Weight

Notes: Estimated for infants born in 1975-1988. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by birth cohort size and include state of birth and year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by infant’s state of birth.
Figure 8: Event Study for Second Generation Outcomes

(a) Birthweight
(b) Low birthweight
(c) Very low birthweight
(d) Gestational length
(e) Preterm
(f) Very Preterm
(g) Small for Gestational Age

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure 9: Event Study for Second Generation Outcomes, Robustness to Alternative Controls and Specifications

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects. Unless indicated otherwise, regressions also include state-year control variables. Standard errors are clustered by mother’s state of birth.
Figure 10: Event Study for Fertility Outcomes and Maternal Characteristics

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth. Additional controls for the share of births with revised birth certificate records are included for education, marital status, and race outcomes, and the share of births with birth certificate records allowing for the report of multiple race categories are included for the race outcomes. Standard errors are clustered by mother’s state of birth.
Table 1: Event Study Estimates on Eligibility, Coverage, and Health Outcomes

<table>
<thead>
<tr>
<th>Event Time</th>
<th>First Stage</th>
<th>First Gen.</th>
<th>Second Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual Eligibility</td>
<td>Simulated Eligibility</td>
<td>Coverage At Birth</td>
</tr>
<tr>
<td>Event Time 3</td>
<td>6.013***</td>
<td>6.578***</td>
<td>4.6***</td>
</tr>
<tr>
<td></td>
<td>(1.171)</td>
<td>(1.094)</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Event Time 2</td>
<td>5.735***</td>
<td>6.047***</td>
<td>5.7***</td>
</tr>
<tr>
<td></td>
<td>(0.952)</td>
<td>(0.859)</td>
<td>(1.1)</td>
</tr>
<tr>
<td>Event Time 1</td>
<td>5.789***</td>
<td>5.752***</td>
<td>3.7***</td>
</tr>
<tr>
<td></td>
<td>(0.906)</td>
<td>(0.796)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Event Time 0</td>
<td>4.856***</td>
<td>4.677***</td>
<td>2.6***</td>
</tr>
<tr>
<td></td>
<td>(0.551)</td>
<td>(0.528)</td>
<td>(0.7)</td>
</tr>
<tr>
<td>Event Time -1</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>Event Time -2</td>
<td>-0.342</td>
<td>-0.524</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td>(0.491)</td>
<td>(0.544)</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Event Time -3</td>
<td>-0.310</td>
<td>-0.356</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td>(0.591)</td>
<td>(0.573)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Event Time -4</td>
<td>-0.193</td>
<td>0.035</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>(0.640)</td>
<td>(0.572)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Event Time -5</td>
<td>-0.537</td>
<td>0.265</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>(0.774)</td>
<td>(0.612)</td>
<td>(1.6)</td>
</tr>
<tr>
<td>Mean Y – Overall Sample</td>
<td>14</td>
<td>15</td>
<td>16.8</td>
</tr>
<tr>
<td>Mean Y – Treated States in 1975</td>
<td>8.46</td>
<td>9.36</td>
<td>14.3</td>
</tr>
<tr>
<td>N</td>
<td>700</td>
<td>700</td>
<td>187,488</td>
</tr>
</tbody>
</table>

Notes: Models of eligibility and first generation low birthweight estimated for all infants born 1975-1988. Model of coverage uses hospital discharges related to labor and delivery for 1979-1988. Models of second generation health outcomes estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation for all outcomes except coverage. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by birth cohort size or survey weights where applicable and include state and year of birth (first generation) or mother's state of birth and mother's year of birth fixed effects (second generation). All models include controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by state of birth (first generation) or mother's state of birth (second generation). We report the mean of the outcome variable without de-trending for the full sample and for treated states in 1975 (for coverage we use the first year of data available: 1979). Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
Table 2: Event Study Estimates on Fertility Outcomes and Maternal Characteristics

<table>
<thead>
<tr>
<th>Event Time</th>
<th>First Birth Rate</th>
<th>Age at First Birth</th>
<th>High School Education</th>
<th>Married</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Time 3</td>
<td>-0.190 (0.515)</td>
<td>0.028 (0.032)</td>
<td>-0.524 (0.484)</td>
<td>0.390 (0.308)</td>
<td>0.539 (0.386)</td>
<td>-0.549 (0.388)</td>
<td>0.010 (0.104)</td>
</tr>
<tr>
<td>Event Time 2</td>
<td>0.172 (0.416)</td>
<td>0.011 (0.023)</td>
<td>-0.524 (0.383)</td>
<td>0.280 (0.229)</td>
<td>0.491* (0.280)</td>
<td>-0.551* (0.281)</td>
<td>0.059 (0.094)</td>
</tr>
<tr>
<td>Event Time 1</td>
<td>0.098 (0.405)</td>
<td>-0.008 (0.021)</td>
<td>-0.362 (0.276)</td>
<td>0.155 (0.196)</td>
<td>0.354** (0.173)</td>
<td>-0.388** (0.185)</td>
<td>0.034 (0.068)</td>
</tr>
<tr>
<td>Event Time 0</td>
<td>0.084 (0.318)</td>
<td>-0.008 (0.009)</td>
<td>-0.228 (0.195)</td>
<td>0.076 (0.182)</td>
<td>0.111 (0.166)</td>
<td>-0.150 (0.158)</td>
<td>0.039 (0.047)</td>
</tr>
<tr>
<td>Event Time -1</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>Event Time -2</td>
<td>-0.071 (0.158)</td>
<td>0.024* (0.013)</td>
<td>0.264 (0.170)</td>
<td>0.125 (0.134)</td>
<td>-0.123 (0.131)</td>
<td>0.088 (0.124)</td>
<td>0.035 (0.078)</td>
</tr>
<tr>
<td>Event Time -3</td>
<td>-0.129 (0.249)</td>
<td>0.024 (0.018)</td>
<td>0.144 (0.263)</td>
<td>0.137 (0.224)</td>
<td>0.015 (0.165)</td>
<td>-0.004 (0.180)</td>
<td>-0.011 (0.072)</td>
</tr>
<tr>
<td>Event Time -4</td>
<td>0.094 (0.255)</td>
<td>0.032* (0.016)</td>
<td>0.241 (0.292)</td>
<td>0.219 (0.213)</td>
<td>0.008 (0.179)</td>
<td>0.019 (0.195)</td>
<td>-0.027 (0.081)</td>
</tr>
<tr>
<td>Event Time -5</td>
<td>-0.131 (0.342)</td>
<td>0.020 (0.019)</td>
<td>-0.038 (0.403)</td>
<td>-0.096 (0.312)</td>
<td>-0.146 (0.237)</td>
<td>0.074 (0.244)</td>
<td>0.072 (0.109)</td>
</tr>
<tr>
<td>Mean Y – Overall Sample</td>
<td>54.69</td>
<td>21.67</td>
<td>74.87</td>
<td>42.50</td>
<td>77.76</td>
<td>19.70</td>
<td>2.54</td>
</tr>
<tr>
<td>Mean Y – Treated States in 1975</td>
<td>62.28</td>
<td>21.38</td>
<td>73.13</td>
<td>51.68</td>
<td>77.15</td>
<td>21.27</td>
<td>1.59</td>
</tr>
<tr>
<td>N</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Additional controls for the share of births with revised birth certificate records are included for education, marital status, and race outcomes, and the share of births with birth certificate records allowing for the report of multiple race categories are included for the race outcomes. Standard errors are clustered by mother’s state of birth. We report the mean of the outcome variable without de-trending. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
A Mother’s Eligibility at the Time of Birth and During Childhood

A.1 Additional Details on Prenatal Eligibility and the 1980s Expansions

In this section, we describe in more detail the pathways for prenatal Medicaid eligibility in our study period. At the beginning of this period, the primary pathway for Medicaid eligibility for pregnant women was through the AFDC program. To qualify for AFDC and its Medicaid benefit, women needed to be single parents, and therefore already have at least one dependent child, as well as meet the AFDC financial eligibility criteria. The solid red line in Appendix Figure A19 tracks the fraction of women who were eligible for AFDC, and, therefore, qualified for prenatal Medicaid coverage under this eligibility pathway in the event of a pregnancy.\(^{62}\)

In addition, optional state AFDC and/or Medicaid eligibility programs expanded coverage to certain groups that, while not specifically targeting pregnant women, sometimes included pregnant women. Some states had AFDC-Unemployed Parent (AFDC-UP) programs, which allowed two-parent families in which the principal earner was unemployed to qualify for AFDC and Medicaid. In addition, optional state Ribicoff children programs allowed minors who met the financial standards for AFDC, but did not qualify due to family structure, to receive Medicaid coverage. Finally, some states also had “Medically Needy” programs that provided coverage for individuals with incomes higher than AFDC levels but with large medical expenses. These three eligibility pathways are depicted in the next three lines on Appendix Figure A19 – the red dashed line, the yellow dashed line, and green dashed line, respectively. As may be seen here, these options predated the study period and there was little to no change in prenatal eligibility under these pathways by 1988.

The focus of our paper is expansions in prenatal Medicaid eligibility that occurred starting in the 1980s under both state options and federal mandates. The 1980s saw a larger number of states exercising existing and new options to extend Medicaid eligibility, followed by two federal law changes that mandated Medicaid eligibility for pregnant women meeting the AFDC financial requirements but not other AFDC eligibility criteria. We describe these changes that specifically impacted prenatal eligibility next.

First, a number of states offered AFDC benefits, and Medicaid coverage, to first-time pregnant women provided that they met the financial criteria for AFDC under an ”AFDC unborn” option. However, the Omnibus Reconciliation Act of 1981 (OBRA81) restricted participation for these women

\(^{62}\)We construct this figure by calculating the fraction of women who would be eligible under each pathway in an additive fashion that reflects the order of eligibility pathways from the most to least restrictive on the figure (shown from lowest to highest lines on the graph). So, for example, we calculate the fraction of women eligible under AFDC rules only to plot the solid red line. Then we calculate how many more women would be eligible under the AFDC-UP rules to plot the dashed red line, and so on.
until the sixth month of pregnancy. Following Currie and Gruber (1994), we considered this a source of prenatal eligibility if the state covered women starting during the first trimester of pregnancy. The role of the AFDC unborn pathway on prenatal eligibility may be seen in Appendix Figure A19 in the light blue dashed line.

Second, despite the OBRA81 restriction on AFDC eligibility for unborn children, states exercised alternative options under the Medicaid program (rather than AFDC) to cover pregnant women. A new “Ribicoff unborn” option introduced in 1982 allowed states to provide Medicaid coverage to unborn children, which meant coverage of pregnant women, whose family income qualified them for AFDC. This is shown in the dark blue dashed line.

Third, dating as far back as 1966, some states exercised additional options to cover women with a first-time pregnancy, and pregnant women in two-parent families where the principal earner was unemployed, as long as the families met the financial requirements for AFDC. We call these options “pre-DEFRA state options” since they effectively cover the same groups as a federal mandate to cover these groups under the Deficit Reduction Act (DEFRA, effective October 1984). These state options are shown in the purple dashed line, and the DEFRA mandated changes are shown in the solid purple line.

Fourth, some states also had optional rules in place to provide Medicaid coverage to all AFDC financially eligible pregnant women, regardless of family structure or employment status. We refer to this as a “pre-COBRA state option”, since the Consolidated Omnibus Budget and Reconciliation Act (COBRA, effective July 1986) required states to extend Medicaid eligibility to all pregnant women meeting the AFDC financial requirements. This state option is in the pink dashed line and the federal mandate is in the solid pink line.

Finally, the Omnibus Reconciliation Act of 1986 (OBRA86) authorized states to further expand eligibility for pregnant women with incomes up to the poverty line starting in April 1987 (i.e. “income expansions”). States were only beginning to take up this option at the very end of our study period. As may be seen in Appendix Figure A19 in the dashed red line, broad income expansions came in late during the period and were only adopted on a very small scale.

Appendix Figure A20 displays the role of the different eligibility pathways separately for our treated and control states. The treated states experienced clear increases in the use of pre-DEFRA state options starting in 1980, followed by pre-COBRA state options and the introduction of the federal mandates. The control states were already exercising both pre-DEFRA and pre-COBRA state options throughout the 1970s, and only experienced very gradual increases in prenatal eligibility during the 1980s.

A potentially important point for interpreting our results is that Medicaid eligibility sometimes comes with AFDC eligibility, so we may be estimating the impact of both AFDC and Medicaid. However, the policy changes we exploit in the treated states – pre-DEFRA and pre-COBRA options, DEFRA, and COBRA – only expanded eligibility for Medicaid and not AFDC. Additionally, while control states experience a decline in AFDC Unborn between 1980 and 1982, which also means a reduction in AFDC, we do not believe our results are generated by this change, due to the fact that we get very similar results when we omit all the control states in Appendix Figure 9.

Each option and the sources for the relevant eligibility rules are listed below. We relied heavily on the Appendix of Currie and Gruber (1994) for information about the different options for Medicaid.
eligibility during this period, as well as the sources used by these authors. We supplemented this information with additional sources to compile rules for earlier years.

1. **AFDC and AFDC-UP**: AFDC program parameters and information on the presence of state AFDC-UP programs for the 1975-1996 years were taken from the Urban Institute’s Transfer Income Model, version 3 (TRIM3). Using these parameters, we were able to calculate whether a family was eligible for either program based on state rules, monthly total family income, and family size. For the AFDC-UP program, we assume that a two-parent family is eligible if the state had a program and their maximum hours worked were less than 1200 in the prior year. Following Currie and Gruber (1994), we adjust family income for minors residing with their parents by subtracting the needs standard for a family of that size. For adults ages 19 and older residing with their parents, we do not include parents’ income in the eligibility determination.

2. **Ribicoff children and unborn options**: Information on Ribicoff children programs for 1988 forward were drawn from materials provided by Bruce Meyer and used in Meyer and Rosenbaum (2001). Rules for the 1985-1986 years were drawn from the TRIM3 database and for 1983 from the 1983 Health Care Financing Administration (HCFA)’s *Analysis of State Medicaid Program Characteristics* report. State rules regarding coverage of unborn children under Ribicoff programs, which meant coverage of pregnant women whose income qualified them for AFDC, were taken from the 1983 HCFA report as well. We were unable to locate earlier records of these state Ribicoff programs. We therefore assume that the same Ribicoff children provisions were in place during earlier years, with the exception of the unborn children, which was established in 1982.63

3. **Medically Needy**: State Medically Needy thresholds as a percent of poverty were drawn from TRIM3 (for years 1985 forward), the 1981, 1983, 1984, and 1986 *Medicare and Medicaid Data Books* issued by the Health Care Financing Administration, and the 1977 and 1979 *Data on the Medicaid Program* reports. For the in between years when we were unable to locate Medically Needy rules, we impute the values as the average of the thresholds for the years book-ending the given year. For 1975, we assume the rules were the same as those in place in 1976. Following the description of state Medically Needy programs in these sources, we include all pregnant women who were categorically eligible for state Medicaid programs and compare their net income to the Medically Needy income thresholds for their family size.

4. **AFDC-unborn**: Prior to OBRA 1981, many states offered AFDC coverage for first-time pregnant women. Following Currie and Gruber (1996b), we consider this as a pathway to Medicaid if the state covered a woman starting in her first trimester. Information on the presence of these programs and whether states included the unborn child in the benefit calculation were taken from the 1974, 1976, 1978, 1980, 1981 *Characteristics of State Plans for Aid to Families with Dependent Children* reports published by the Department of Health and Human Services. For

63In 1982, a new Medicaid eligibility category was established for pregnant women by Congress. This is described by Sara Rosenbaum in her 1983 report “The Prevention of Infant Mortality: The Unfulfilled Promise of Federal Health Programs for the Poor.” Prior to this new category, it appears that states were able to cover unborn children under the regular Ribicoff children program, but we were unable to find any additional information about states doing so.
any policy changes that occurred between reports, we use the midpoint of the dates reported as the implementation date.

5. **Pre-DEFRA state option 1:** Separately, a number of states offered Medicaid coverage to first-time pregnant women from the point of medical verification provided that they met the financial criteria for AFDC. Information on this option for all states and the implementation dates are taken from Hill (1987).

6. **Pre-DEFRA state option 2:** Some states offered Medicaid coverage to pregnant women in two-parent families if the principal earner was unemployed and the family met the AFDC financial eligibility criteria. Information on this option for all states and the implementation dates are also from Hill (1987).

7. **Pre-COBRRA state option:** Some states offered Medicaid coverage to all pregnant women meeting the financial eligibility criteria for AFDC. Information on this option for all states and the implementation dates are also from Hill (1987).

A.2 Mother’s Childhood Eligibility

In addition to changes in prenatal eligibility, eligibility for children who were not traditionally eligible for AFDC and with family income levels exceeding AFDC cutoffs was also expanded starting in the 1980s. These eligibility changes were first introduced as state options and later by federal mandate. The eligibility changes were first more “targeted” (following the terminology first used by Currie and Gruber, 1996b) to the lowest income children – those whose families met the income and resource eligibility criteria for AFDC but who did not otherwise meet the family structure requirements for the AFDC program. The later “broad” eligibility expansions extended eligibility to children with incomes that exceeded the AFDC eligibility levels, and are often referred to as poverty-related expansions. Eligibility levels for children continued to grow during the 1990s as Medicaid eligibility changes continued to be phased in, and later through the 2000s under optional state expansions to higher income children under the Children’s Health Insurance Program (CHIP).

Given these concurrent changes in childhood eligibility, we examine the correlation between the mother’s *in utero* and childhood eligibility in the paper. We also control for her simulated childhood eligibility as a robustness check. Each eligibility pathway and the sources for the relevant eligibility rules are listed below.

For the years 1975 to 1996, Medicaid eligibility is calculated under the eligibility rules for the AFDC and the AFDC-Unemployed Parents (AFDC-UP) programs, optional state programs (e.g. Ribicoff children, Medically Needy described above), and both targeted and poverty-related expansions for children. For the years 1997 to 2006, public eligibility under Medicaid and state Children’s Health Insurance Programs (CHIP) is calculated under the rules for poverty-related Medicaid expansions and additional Medicaid expansions or new state programs under CHIP.

Sources for eligibility rules under pathways related to AFDC, AFDC-UP, Ribicoff children, and Medically Needy programs are listed in Section A.1. Information on the poverty-related Medicaid expansions, and later CHIP-related expansions in eligibility by state, including the population targeted, implementation date, and income cutoffs were compiled from the sources below. Income disregard rules
by state and year were downloaded from the Urban Institute’s TRIM3 database.

- **Maternal and Child Update**, National Governors Association: 9/97, 9/98, 2/99, 1/00, 2/01, 2/02, 2/03

A.3 Construction of Eligibility Measures

To construct measures of the mother’s eligibility at the time of birth and during childhood (ages 1-18), we used detailed eligibility rules compiled for each state during the period 1975 to 2006. Eligibility was estimated using the year of the eligibility determination and family characteristics, including family structure, income, and information on parental employment. We calculate eligibility during each month of a given year and use the average monthly eligibility level for that year.

We used the 1977-1989 Annual Social and Economic Supplements (ASEC) of the Current Population Survey (CPS) to estimate mother’s eligibility for public health insurance at the time of birth which is our measure of prenatal eligibility. This measure was estimated using women ages 15-44 and determining their eligibility in event of a pregnancy by state and year during the period 1975-1988. To construct a simulated eligibility measure, we drew a national sample of 3,000 women ages 15-44 for each year and estimated eligibility for this sample using state-specific eligibility rules during that year. Not all states are identifiable in the 1976 CPS, so, to estimate eligibility for the 1975 year, we relied on the CPS for next year (i.e. 1977 year of data) and deflate dollar values using the CPI-U.\(^{64}\)

We used the 1977-2007 ASEC to estimate eligibility for childhood Medicaid coverage by single year of age for cohorts born between 1975-1988. We assumed that birth year was equal to calendar year minus age in order to estimate eligibility by birth year x age x state. These estimates were then added across ages 1-18 in order to create a measure of cumulative childhood eligibility for each birth year by state. To construct a simulated eligibility measure, we used a national sample of 1,000 children of each age for each year and estimated eligibility for this sample using state-specific eligibility rules during that year.

B Mother’s Adult Eligibility

When examining public health insurance eligibility for the first generation during adulthood, we consider eligibility for low-income parents under Medicaid Section 1931 criteria in each state, as well as expanded eligibility for health care coverage for parents and childless adults under both waiver and

\(^{64}\)In the 1976 CPS, 38 states cannot be separately identified but share state codes with other states.
state-funded programs. We also consider expansions under the Affordable Care Act. Information on state eligibility thresholds for coverage for adults for the years 1998-2017 were compiled from the sources listed below.

- **Maternal and Child Update**, National Governors Association: 2002 through 2010 reports

Federal law for family coverage under Section 1931 requires that states disregard at least $90 of earned income per month when assessing Medicaid eligibility (Birnbaum 2000). In 2000, most states were using this minimum earnings disregard in eligibility determinations (Broaddus et al. 2001). Therefore, we chose to apply this rule for all states for the years 1998-2013. For 2014-2017, following the implementation of the Affordable Care Act Medicaid expansions, a standard disregard of five percentage points of the federal poverty level is built into the eligibility thresholds.

We construct a measure of average cumulative adult Medicaid simulated eligibility from age 19 to the age we observe women at child birth by state and birth year cohort. This measure is constructed using a sample of adults ages 19-28 from the Annual Social and Economic Supplements (ASEC) of the Current Population Survey (CPS). We use a random national sample of 1,000 adults per year of age and survey year and estimated eligibility for this sample using state-specific eligibility rules during that year.
C Second Generation’s Own *In Utero* Eligibility at the Time of Birth

To calculate the second generation child’s own *in utero* eligibility (which is the same as the first generation mother’s prenatal eligibility at the time of second generation child’s birth), we use the eligibility rules under Medicaid Section 1931 eligibility, poverty-related Medicaid expansions for pregnant women, expanded Medicaid rules authorized under the Balanced Budget Act of 1997, and separate state programs created under the State Children’s Health Insurance Program over the period 1989-2017. Income eligibility cutoffs by state and year were compiled from the sources listed under Appendix Sections A and B.

We use the 1990-2018 Annual Social and Economic Supplements (ASEC) of the Current Population Survey (CPS) to estimate mother’s simulated eligibility for public health insurance at the time of infant’s birth. This measure of *in utero* eligibility was estimated using women ages 15-44. We drew national sample of 3,000 women ages 15-44 for each year between 1990-2017 and estimated eligibility in event of a pregnancy for this sample using state-specific eligibility rules during that year.

D Additional Details on Data Construction

D.1 State-Year Control Variables

In our main analyses we include controls for state economic conditions, demographics, safety net policy, and abortion policy based on the state and year of mother’s birth (first generation). These controls are described in detail below. In additional robustness checks, we include these same variables, as well as several additional variables also described below, at the time of the second generation’s birth.

We include the following demographic controls: the fraction of the state population between the ages of 0-4, 5-17, 18-24, 25-44, 44-64; state fraction of Black race and claiming a race other than white or Black; state fraction with a high school degree, some college, college or more. These were constructed by the authors using the ASEC.

We include the following economic controls: state median household income (from the U.S. Bureau of Labor Statistics) and unemployment rate (from the U.S. Census Bureau). We include maximum welfare benefits at the time of the mother’s birth. In addition, in certain specifications, we include the following measures of welfare generosity at the time of the second generation’s birth: state welfare family cap; whether the state had an EITC program, whether the state had implemented TANF. The sources are:

- Urban Institute TRIM3 Program Rules for 1990-1995
- NBER TAXSIM
- Tax Credits for Working Families
We include the following measures of family planning coverage at the time of the mother’s birth: state parental consent and notification laws for abortion and state Medicaid restrictions for abortion. In addition, in certain specifications, we also include the following at the time of the second generation’s birth: mandatory delay for abortion laws; income based and duration based Medicaid family planning waivers; state mandate for private health insurance coverage of contraceptives; an indicator that emergency contraceptives can be provided over-the-counter; an indicator that minor may consent to contraceptive services in all or limited circumstances. The sources are:

- State Policies in Brief from the Guttmacher Institute on Medicaid Family Planning Eligibility Expansions, Minors’ Access to Contraception, State Funding of Abortion Under Medicaid, Mandatory Waiving Periods for Abortion and Parental Involvement in Minors’ Abortions

- Insurance Coverage for Contraception Laws by the National Conference of State Legislatures

D.2 Additional Details on Birth Certificate Revision

The variables used to examine mother’s (i.e. first generation’s) educational attainment, prenatal care utilization, and race were affected by the introduction of the 2003 revision of the U.S. Standard Certificate of Live Birth, which replaced the 1989 revision that was in use during the remainder of the period covered by our analyses. State adoption of the revision is staggered over the period. By January 2011, 36 states and the District of Columbia had implemented the revised birth certificate. These states represent 83 percent of births to U.S. residents (*Centers for Disease Control and Prevention, 2011*). Starting in 2011, the CDC no longer made available certain data items from the unrevised birth certificate, including maternal education and prenatal care utilization. As a result, information on these variables is incomplete, and only available for states that had fully implemented the 2003 revision. Fourteen states in 2011, 12 states in 2012, 9 states in 2013, 3 states in 2014, and 2 states in 2015 have
incomplete information for these data fields. By 2016 all states had implemented the revised birth certificate.

In addition, even when the data fields are available, these measures are not considered comparable before and after the 2003 revision. Prior to the revision, mother’s education was classified into years of education: no formal education, 1-8 years of elementary school, 1-4 years of high school, 1-4 years of college, and 5 or more years of college. The 2003 revision classified mother’s education into the following categories: 8th grade or less; 9th through 12th grade with no diploma; high school graduate or GED completed; some college credit, but not a degree; associate degree; Bachelor’s degree; Master’s degree; and, doctorate or professional degree. In our analyses, we code high school or less as having at least 4 years of high school under the 1989 revision, and being a high school graduate or having a GED completed under the 2003 revision. In addition, changes occurred in information collected on mother’s race with the 2003 revision including more detailed race categories. Also, beginning in 2003, states had the option of allowing the report of multiple race categories. These multiple race combinations are bridged to a single race category for comparability to other reporting areas and years.

We address the incomparability of these measures after the birth certificate revision by including in regressions for which maternal education, race, or prenatal care utilization are dependent variables or used to define subgroups, a measure of the fraction of birth records in that cell (mother’s birth year x mother’s state of birth) with a revised birth certificate. Additionally, for regressions with maternal race as a dependent variable or for which race was used to define subgroups, we also include a control for the fraction of birth records in each cell that allowed for the reporting of multiple race categories.

D.3 Identifying Labor and Delivery Hospitalizations in the National Hospital Discharge Survey

We identify hospitalizations related to labor and delivery in the National Hospital Discharge survey using ICD-9 diagnosis and procedure codes and following the method validated in Kuklina et al. (2008). First, we code all visits with a diagnosis code starting with “V27” (corresponding to live or still births) or “650” (normal delivery) as discharges related to labor and delivery. Second, if the first three or four digits of the procedure code falls in the subsequent list, we classify the hospitalization as being a labor or delivery: “7251”, “7252”, “7253”, “7254”, “7271”, “7279”, “728”, “720”, “721”, “7221”, “7229”, “7231”, “7239”, “7322”, “7359”, “736”, “740”, “741”, “742”, “744”, “7499”, “724”, “726” or “729.” These codes are associated with different obstetrics procedures. Finally, we exclude discharges with a diagnosis code that indicates an ectopic pregnancy or abortive outcome.

D.4 Additional Details on Discounting of Long-Run Benefits

To calculate the discounted value of the second generation benefits, we estimate that in 2011 $s the value of the benefits from increasing birthweight by 71 grams (our estimated change in birthweight for each newly eligible woman in the first generation) is $589. We then apply this value of the benefit to each second generation birth cohort, and calculate the discounted value of this benefit between 1981 and each birth cohort. We have chosen 1981 as the reference point because this is the year for which we have estimated Medicaid costs (Currie and Gruber, 1996b). We then take the average discounted value across second generation birth cohorts to generate a summary measure. We do this for two different discount rates: 1) 0.5%, which is the discount rate recommended for 20-year studies by the
Office of Management and Budget (U.S. Office of Management and Budget, 2016), and 2) 3%, which is the discount rate recommended for life-cycle studies by the Department of Commerce (Lavappa and Kneifel, 2016).
Figure A1: Trends in Actual and Simulated Prenatal Medicaid Eligibility, 1975 to 1988

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. See text for further details.
Figure A2: Trends in Simulated Prenatal Medicaid Eligibility by State, 1975 to 1988
Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. See text for further details.
Figure A3: Trends in Second Generation Outcomes by Expansion Cohort

Notes: Figure plots average values by event time for states that expanded Medicaid eligibility at different years, and the control states, as denoted by the legend. These averages are produced using first-born infants of mothers born in 1975-1988 and ages 15-28. For treated states, the linear trend is estimated using all pre-period years for each treatment cohort. For control states, we use the period 1975-1981 to estimate this trend.
Figure A4: Trends in First Generation Outcomes by Expansion Cohort

Notes: Figure plots average values by event time for states that expanded Medicaid eligibility at different years, and the control states, as denoted by the legend. These averages produced using infants born in 1975-1988. For treated states, the linear trend is estimated using all pre-period years for each treatment cohort. For control states, we use the period 1975-1981 to estimate this trend.
Figure A5: Event Study for Prenatal Eligibility, Robustness to Alternative Controls and Specifications

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year) except where otherwise noted. Standard errors are clustered by mother’s state of birth.
Figure A6: Event Study for Prenatal Eligibility, Robustness to using a Pooled National Sample to Calculate Eligibility Measure

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A7: Event Study for Prenatal Eligibility, Robustness to Controls for Mother’s Eligibility at Other Ages, Second Generation’s Own Prenatal Eligibility, and State-Year Controls in Second Generation

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A8: Event Study for First Generation Outcomes, Robustness to Alternative Controls and Specifications

Notes: Estimated for infants born in 1975-1988. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation except where otherwise noted. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by birth cohort size and include state of birth and year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year) except where otherwise noted. Standard errors are clustered by infant’s state of birth.
Figure A9: Event Study for Second Generation Outcomes, Robustness to Controls for Mother’s Eligibility at Other Ages, Second Generation’s Own Prenatal Eligibility, and State-Year Controls in Second Generation

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A10: Event Study for Childhood Eligibility

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A11: Event Study for Second Generation Outcomes, Robustness to Callaway and Sant’Anna

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size. Standard errors are clustered by mother’s state of birth.
Figure A12: Event Study for Second Generation Outcomes, Parity=2+

(a) Birthweight

(b) Low birthweight

(c) Very low birthweight

(d) Gestational length

(e) Preterm

(f) Very Preterm

(g) Small for Gestational Age

Notes: Estimated for infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state and parity group prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A13: Event Study for Second Generation Outcomes, All Mom Ages

(a) Birthweight
(b) Low birthweight
(c) Very low birthweight
(d) Gestational length
(e) Preterm
(f) Very Preterm
(g) Small for Gestational Age

Notes: Estimated for first-born infants of mothers born in 1975-1988. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A14: Event Study Coefficients for Second Generation Outcomes, Foreign-Born Mothers Only

Notes: Estimated for first-born infants of mothers born outside of the U.S. in 1975-1988 and ages 15-28. We use the state of residence at child’s birth rather than mother’s state of birth to assign policy and control variable information. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of residence and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of residence.
Figure A15: Event Study for Second Generation Outcomes, Other Outcomes

(a) Any Congenital Anomalies
(b) Any Abnormal Conditions
(c) Female

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). An additional control for the share of births with missing information for each type of outcome is included. Standard errors are clustered by mother’s state of birth.
Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by mother’s state of birth.
Figure A17: Event Study for Second Generation Outcomes, Robustness to Controlling for Mother’s Demographics

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). We also include controls for mother’s education, marital status, and race. Standard errors are clustered by mother’s state of birth.
Figure A18: Event Study for Second Generation Outcomes, Mother’s Health Behaviors and Health Outcomes

Notes: Estimated for first-born infants of mothers born in 1975-1988 and ages 15-28. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. Regressions are weighted by second generation birth cohort size and include mother’s state of birth and mother’s year of birth fixed effects and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). An additional control for the share of births with revised birth certificate records is included for the outcomes related to prenatal care utilization. Standard errors are clustered by mother’s state of birth.
Figure A19: Prenatal Eligibility by Source, 1975-1988

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. Each line represents Medicaid eligibility through each of the state options and federal mandates. Specifically, we construct this figure by calculating the fraction of women who would be eligible under each pathway in an additive fashion that reflects the order of eligibility pathways from the most to least restrictive on the figure. These pathways discussed in more detail in Appendix Section A.1.
Figure A20: Prenatal Eligibility by Source and Treatment Status, 1975-1988

Notes: Authors’ calculation from the Current Population Survey and Medicaid eligibility rules. Each line represents Medicaid eligibility through each of the state options and federal mandates. Specifically, we construct this figure by calculating the fraction of women who would be eligible under each pathway in an additive fashion that reflects the order of eligibility pathways from the most to least restrictive on the figure. These pathways discussed in more detail in Appendix Section A.1.
Table A1: Replication of Currie and Gruber (1996) Low Birth Weight Result Using Simulated Eligibility IV Approach

<table>
<thead>
<tr>
<th></th>
<th>Currie and Gruber (1996)</th>
<th>Replication</th>
<th>Cluster by State</th>
<th>Add State Controls</th>
<th>Weight by # Births</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Expansions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal eligibility</td>
<td>-4.347*</td>
<td>-5.876**</td>
<td>-5.876</td>
<td>-5.207</td>
<td>-6.956*</td>
</tr>
<tr>
<td></td>
<td>(2.601)</td>
<td>(2.927)</td>
<td>(5.013)</td>
<td>(4.927)</td>
<td>(3.950)</td>
</tr>
<tr>
<td>Mean Y</td>
<td>68.12</td>
<td>68.09</td>
<td>68.09</td>
<td>68.09</td>
<td>68.96</td>
</tr>
<tr>
<td>N</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Targeted Expansions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.294)</td>
<td>(3.819)</td>
<td>(6.568)</td>
<td>(7.013)</td>
<td>(5.194)</td>
</tr>
<tr>
<td>Mean Y</td>
<td>68.12</td>
<td>68.09</td>
<td>68.09</td>
<td>68.09</td>
<td>68.96</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>N</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the number of low birth weight births per 1000 births. Models are estimated for all births born between 1979-1992. All models include state of birth and year of birth fixed effects. Where noted, regressions are weighted by the birth cohort size and controls for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by infant’s state of birth, where noted. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
Table A2: Infant Health, Fertility, Maternal Characteristics, Eligibility, and Controls in Base Year

<table>
<thead>
<tr>
<th>First Generation Infant Health Outcomes</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Birthweight</td>
<td>7.28</td>
<td>7.44</td>
<td>7.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Generation Infant Health Outcomes</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birthweight</td>
<td>3286.69</td>
<td>3276.99</td>
<td>3296.67</td>
</tr>
<tr>
<td>Low Birthweight</td>
<td>7.22</td>
<td>7.52</td>
<td>6.92</td>
</tr>
<tr>
<td>Very Low Birthweight</td>
<td>1.39</td>
<td>1.45</td>
<td>1.32</td>
</tr>
<tr>
<td>Gestational Length</td>
<td>39.08</td>
<td>39.02</td>
<td>39.14</td>
</tr>
<tr>
<td>Preterm</td>
<td>10.62</td>
<td>11.17</td>
<td>10.05</td>
</tr>
<tr>
<td>Very Preterm</td>
<td>0.76</td>
<td>0.82</td>
<td>0.70</td>
</tr>
<tr>
<td>Small for Gestational Age</td>
<td>11.14</td>
<td>11.25</td>
<td>11.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Generation Fertility Outcomes</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Birth Rate</td>
<td>59.36</td>
<td>62.28</td>
<td>56.34</td>
</tr>
<tr>
<td>Age at First Birth</td>
<td>21.44</td>
<td>21.38</td>
<td>21.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Generation Maternal Characteristics</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School Education</td>
<td>73.84</td>
<td>73.13</td>
<td>74.57</td>
</tr>
<tr>
<td>Married</td>
<td>49.69</td>
<td>51.68</td>
<td>47.65</td>
</tr>
<tr>
<td>White</td>
<td>78.71</td>
<td>77.15</td>
<td>80.32</td>
</tr>
<tr>
<td>Black</td>
<td>19.31</td>
<td>21.27</td>
<td>17.28</td>
</tr>
<tr>
<td>Other</td>
<td>1.98</td>
<td>1.59</td>
<td>2.40</td>
</tr>
<tr>
<td>Any Prental Care</td>
<td>98.99</td>
<td>98.99</td>
<td>98.98</td>
</tr>
<tr>
<td>Num Prental Visits</td>
<td>11.57</td>
<td>11.57</td>
<td>11.55</td>
</tr>
<tr>
<td>1st Trimester Prental</td>
<td>79.46</td>
<td>79.39</td>
<td>79.54</td>
</tr>
<tr>
<td>Any Medical Risk Factor</td>
<td>7.93</td>
<td>8.43</td>
<td>7.41</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.81</td>
<td>1.82</td>
<td>1.79</td>
</tr>
<tr>
<td>Chronic Hypertension</td>
<td>0.58</td>
<td>0.62</td>
<td>0.53</td>
</tr>
<tr>
<td>Pregnancy-Related Hypertension</td>
<td>5.45</td>
<td>5.90</td>
<td>4.98</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>0.56</td>
<td>0.58</td>
<td>0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Demographics</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married</td>
<td>45.26</td>
<td>45.52</td>
<td>44.98</td>
</tr>
<tr>
<td>Black</td>
<td>12.23</td>
<td>14.51</td>
<td>9.87</td>
</tr>
<tr>
<td>Other</td>
<td>1.75</td>
<td>1.06</td>
<td>2.45</td>
</tr>
<tr>
<td>High School Drop Out</td>
<td>33.27</td>
<td>34.86</td>
<td>31.62</td>
</tr>
<tr>
<td>High School Education</td>
<td>37.59</td>
<td>36.68</td>
<td>38.52</td>
</tr>
<tr>
<td>Some College</td>
<td>23.88</td>
<td>23.26</td>
<td>24.51</td>
</tr>
<tr>
<td>Population Age 0-4</td>
<td>19.56</td>
<td>19.89</td>
<td>19.23</td>
</tr>
<tr>
<td>Population Age 5-17</td>
<td>23.14</td>
<td>23.61</td>
<td>22.66</td>
</tr>
<tr>
<td>Population Age 18-24</td>
<td>12.97</td>
<td>13.14</td>
<td>12.79</td>
</tr>
<tr>
<td>Population Age 25-44</td>
<td>26.04</td>
<td>26.13</td>
<td>25.94</td>
</tr>
<tr>
<td>Population Age 45-64</td>
<td>20.20</td>
<td>19.69</td>
<td>20.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Economic and Policy Variables</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment Rate</td>
<td>8.33</td>
<td>7.30</td>
<td>9.39</td>
</tr>
<tr>
<td>Income per Capita</td>
<td>27.55</td>
<td>26.32</td>
<td>28.83</td>
</tr>
<tr>
<td>Max AFDC Benefits for Fam of 4</td>
<td>1235.74</td>
<td>1038.43</td>
<td>1438.86</td>
</tr>
<tr>
<td>Whether Consent/Notification for Abortion</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whether Medicaid covers Abortion</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicaid Generosity</th>
<th>Full Sample</th>
<th>Treated States</th>
<th>Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Prenatal Eligibility</td>
<td>11.63</td>
<td>8.46</td>
<td>14.90</td>
</tr>
<tr>
<td>Simulated Prenatal Eligibility</td>
<td>12.64</td>
<td>9.36</td>
<td>16.02</td>
</tr>
</tbody>
</table>

| Number of States | 50 | 28 | 22 |

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Birth Weight</th>
<th>Low Birth Weight</th>
<th>Very Low Birth Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Time 3</td>
<td>1.200</td>
<td>-0.247***</td>
<td>-0.065**</td>
</tr>
<tr>
<td></td>
<td>(2.764)</td>
<td>(0.077)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Event Time 2</td>
<td>1.437</td>
<td>-0.236***</td>
<td>-0.052**</td>
</tr>
<tr>
<td></td>
<td>(2.233)</td>
<td>(0.055)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Event Time 1</td>
<td>0.440</td>
<td>-0.134***</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(1.830)</td>
<td>(0.042)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Event Time 0</td>
<td>-0.842</td>
<td>-0.100**</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>(1.583)</td>
<td>(0.039)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Event Time -1</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>Event Time -2</td>
<td>0.163</td>
<td>-0.034</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(1.312)</td>
<td>(0.039)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Event Time -3</td>
<td>-1.185</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(1.705)</td>
<td>(0.039)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Event Time -4</td>
<td>-1.284</td>
<td>0.043</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>(1.870)</td>
<td>(0.049)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Event Time -5</td>
<td>-2.098</td>
<td>0.034</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(2.446)</td>
<td>(0.057)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Mean Y</td>
<td>3338.34</td>
<td>6.92</td>
<td>1.18</td>
</tr>
<tr>
<td>N</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

Notes: Models are estimated for all infants born 1975-1988. The dependent variables are the average birthweight, the percent low birthweight, and the percent very low birthweight in each state by year of birth cell. Pre-period trend is estimated and removed from all observations for each state prior to the event study estimation. For treated states, this is estimated in using all pre-period years for each state. For control states, we use the period 1975-1981 to estimate this trend. All models include include state of birth and year of birth fixed effects. Regressions are weighted by the birth cohort size and control for state-year variables (unemployment rate, personal income per capita, maximum welfare benefit for a family of 4, indicators for state parental consent and notification laws and state Medicaid restrictions for abortion, and demographic controls for each state and year). Standard errors are clustered by infant’s state of birth. We report the mean of the outcome variable without de-trending. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.