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1 Introduction

The American writer Kurt Vonnegut began his career in the public relations division

of General Electric. One day, he saw a new milling machine operated by a punch-card

computer outperform the company’s best machinists. This experience inspired him to

write a novel called “Player Piano.” It describes a world in which school children take

a test at an early age that determines their fate. Those who pass, become engineers

and design robots used in production. Those who fail, have no jobs and live from

government transfers. Are we converging to this dystopian world? How should public

policy respond to the impact of automation on the demand for labor?

These questions have been debated ever since 19th-century textile workers in the

U.K. smashed the machines that eliminated their jobs. As the pace of automation

quickens and affects a wide range of economic activities, Bill Gates re-ignited this

debate by proposing that robots should be taxed. Policies that address the impact of

automation on the labor market have been discussed in the European Parliament and

have been implemented in South Korea.

In this paper, we use a simple model of automation to compare the equilibrium that

emerges under the current U.S. tax system (which we call the status quo), the first-best

solution to a planner’s problem without information constraints, and the second-best

solutions associated with different configurations of the tax system.

Our model has two types of workers which we call routine and non-routine. Routine

workers perform tasks that can be automated by using intermediate inputs that we

refer to as robots.1 We find that robot taxes are optimal as long as there is partial

automation. These taxes increase the wages of routine workers, and decrease those of

non-routine workers, giving the government an additional instrument to reduce income

inequality. With full automation, it is not optimal to tax robots. Routine workers no

1See Acemoglu and Autor (2011) and Cortes, Jaimovich and Siu (2017) for a discussion of the
impact of automation on the labor market for routine workers.
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longer work, so taxing robots distorts production decisions without reducing income

inequality.2

We model the current U.S. tax system using the after-tax income function proposed

by Feldstein (1969), Persson (1983), and Benabou (2000) and estimated by Heathcote,

Storesletten and Violante (2017). With this tax system, as the cost of automation falls,

the wages of non-routine workers rise while the wages of routine workers fall to make

them competitive with robot use. The result is a large rise in income inequality and a

substantial decline in the welfare of routine workers.

The level of social welfare obtained in the status quo is much worse than that

achieved in the first-best solution to an utilitarian social planner problem without in-

formation constraints. But this first-best solution cannot be implemented when the

government does not observe the worker type. The reason is that the two types of

workers receive the same level of consumption but non-routine workers supply more

labor than routine workers. As a result, non-routine workers have an incentive to act

as routine workers and receive their bundle of consumption and hours worked.

To circumvent this problem, we solve for the optimal tax system imposing, as in

Mirrlees (1971), the constraint that the government does not observe the worker type or

the workers’ labor input. The government can observe total income and consumption

of the two types of workers, as well as the use of robots by firms. We assume that

taxes on robots are linear for the reasons emphasized in Guesnerie (1995): non-linear

taxes on intermediate inputs are difficult to implement in practice because they create

arbitrage opportunities. A Mirrleesian optimal tax system can improve welfare relative

to the status quo. In fact, it can yield a level of welfare that is close to that of the

first-best allocation.

2These results show that the reason why it can be optimal to tax robots in our model differs from
the rationale used by Bill Gates to motivate robot taxation. Gates argued that robots should be taxed
to replace the tax revenue that the government collected from routine workers before their jobs were
automated. In our model, when there is full automation the government collects no tax revenue from
routine workers yet it is optimal not to tax robots.
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We also study the optimal policy when the tax schedule is constrained to take a

simple, exogenous form. We consider the income tax schedule proposed by Heathcote,

Storesletten and Violante (2017) and linear robot taxes. We compute the parameters

of the income tax function and the robot tax rate that maximize social welfare. We

find that income inequality can be reduced by raising marginal tax rates and taxing

robots. Tax rates on robot use can be as high as 30 percent. Routine workers supply a

constant number of hours over time even though their wages fall. This solution yields

poor outcomes in terms of efficiency and distribution.

We consider a modification of the Heathcote, Storesletten and Violante (2017) tax

schedule that allows for lump-sum transfers that ensure that all workers receive a min-

imum income. We find that this modification improves both efficiency and distribution

relative to a tax system without transfers. Hours worked by routine and non-routine

workers diverge over time. Full automation occurs in finite time, so hours worked by

routine workers fall to zero. Once full automation occurs, routine workers pay no in-

come taxes and the tax system can be designed so that the labor-supply decisions of

non-routine workers are not distorted. The economy with full automation resembles

the world of “Player Piano.” Only non-routine workers have jobs. Routine workers live

off government transfers and, despite losing their jobs, are better off than in the status

quo. The fact that full automation occurs in finite time reflects the rudimentary nature

of the tax system available to the government. When the government has access to a

more flexible non-linear tax schedule, as in the Mirrleesian solution, full automation

occurs only asymptotically.

One might expect optimal robot taxation to follow from well-known principles of

optimal taxation in the public finance literature. We know from the intermediate-goods

theorem of Diamond and Mirrlees (1971) that it is not optimal to distort production

decisions by taxing intermediate goods. Since robots are in essence an intermediate

good, taxing them should not be optimal.

The intermediate-good theorem relies on the assumption that “net trades” of differ-
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ent goods can be taxed at different rates. In our context, this assumption means that

the government can use different tax schedules for routine and non-routine workers.

We study two environments where there are limits to the government’s ability to tax

different workers at different rates, Mirrlees (1971)-type information constraints and

a simple exogenous tax system common to both types of workers. We find that it is

optimal to tax robots in both environments.

This finding seems to contradict the key result in Atkinson and Stiglitz (1976). These

authors show that when the income tax system is non-linear it is not optimal to distort

production decisions by taxing intermediate goods. But, as stressed by Naito (1999) and

Jacobs (2015), Atkinson and Stiglitz (1976)’s result depends critically on the assumption

that workers with different productivities are perfect substitutes in production. This

assumption does not hold in our model. Taxing robots can be optimal because it affects

relative productivities, loosening the incentive constraint of non-routine workers.

We extend our model to allow workers to switch their occupations by paying a cost.

In the first-best solution, workers who have a low cost of becoming non-routine workers

do so. Those with a high cost become routine workers. In the Mirrlees solution to the

model with occupational choice, it is optimal to use robot taxes to loosen the incentive

constraint of non-routine workers. The planner can use the income tax schedule to

redistribute income or to induce more agents to become non-routine workers. When

the cost of becoming non-routine are high (low), the planner resorts more (less) to using

the income tax schedule to redistribute income.

We generalize our static model to a dynamic setting in which robots are an invest-

ment good. The properties of the Mirleesian solution of the dynamic model are similar

to those of the static model. It is optimal to tax robots to loosen the incentive con-

straint of non-routine workers. The levels of taxation are similar to those of the static

model. The tax rate on robots converges to zero as the degree of automation converges

to one.

The paper is organized as follows. In Section 2, we describe our static model of
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automation. Subsection 2.1 describes the status-quo equilibrium, i.e. the equilibrium

under the current U.S. income tax system and no robot taxes. Subsection 2.2 describes

the first-best solution to the problem of an utilitarian planner. In subsection 2.3, we

analyze a Mirrleesian second-best solution to the planner’s problem. In subsection 2.4,

we study numerically the optimal tax system that emerges when income taxes are con-

strained to take the functional form proposed by Heathcote, Storesletten and Violante

(2017) both with and without lump-sum rebates. In subsection 2.5, we compare the

implications of different policies for social welfare and for the utility of different agents.

Subsection 2.6 discusses the model with endogenous occupation choice. In Section 3,

we analyze a dynamic model of automation. Section 4 relates our findings to classical

results on production efficiency and capital taxation in the public finance literature.

Section 5 concludes. To streamline the main text, we relegate the more technical proofs

to the appendix.

2 A simple model

We first discuss a simple model of automation that allows us to address the optimal

tax policy questions posed in the introduction. The model has two types of households

who draw utility from consumption of private and public goods and disutility from

labor. One household type supplies routine labor and the other non-routine labor.

The consumption good is produced with non-routine labor, routine labor, and robots.

Robots and routine labor are used in a continuum of tasks. They are both perfect

substitutes in performing these tasks.3

Households There is a continuum of unit measure of households. A mass πn of

households is composed of non-routine workers while πr households are composed of

3See Autor, Levy and Murmane (2003) for a study of the importance of tasks performed by routine
workers in different industries and a discussion of the impact of automating these tasks on the demand
for routine labor.
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routine workers. The index j = n, r, denotes the non-routine and routine labor type,

respectively.

An household of type j derives utility from consumption, cj, and from the provision

of a public good, G. The household also derives disutility from the hours of labor it

supplies, lj. Households have a unit of time per period, so lj ≤ 1. The household’s

utility function is given by

Uj = u(cj, lj) + v(G). (1)

Denote by ux = ∂u(c, l)/∂x where x = c, l and uxy = ∂2u(c, l)/∂x∂y. We assume

that uc > 0, ul < 0, ucc, ull < 0 and that consumption and leisure are normal goods:

ulc/ul − ucc/uc ≥ 0, and ull/ul − ucl/uc ≥ 0, where one of these conditions is a strict

inequality. Furthermore, we assume that utility satisfies the single-crossing property,

which is equivalent to assuming that ulll/ul + 1− ucll/uc > 0. Finally, we assume that

v′(G) > 0, v′′(G) < 0 and that u(c, l) satisfies standard Inada conditions.

Household j chooses cj and lj to maximize utility ((1)), subject to the budget

constraint cj ≤ wjlj−T (wjlj), where wj denotes the wage rate received by the household

type j and T (·) denotes the income tax schedule.

Robot producers Final good producers can use robots in tasks i ∈ [0, 1]. The cost

of producing a robot is the same across tasks and is equal to φ units of output. Robots

are produced by competitive firms. A representative firm producing robots chooses xi

to maximize profits pixi − φxi. It follows that in equilibrium pi = φ and profits are

zero.

Final good producers The representative producer of final goods hires non-routine

labor (Nn), routine labor (ni) for each task i, and buys intermediate goods (xi) which

we refer to as robots, also for each task i. There is a continuum of tasks that can be

performed by either routine labor or robots. We denote by m the fraction of these

tasks that are automated, i.e. performed by robots. For convenience, we assume that
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automated tasks are those in the interval [0,m].4

The production function is given by

Y = A

[ˆ m

0

x
ρ−1
ρ

i di+

ˆ 1

m

n
ρ−1
ρ

i di

] ρ
ρ−1

(1−α)

Nα
n , α ∈ (0, 1), ρ ∈ [0,∞). (2)

The problem of the firm is to maximize profits, Y −wnNn−wr
´ 1

m
nidi−(1+τx)φ

´ m
0
xidi,

where Y is given by equation ((2)). The variable τx is an ad-valorem tax rate on

intermediate goods.

The optimal choices of Nn, xi for i ∈ [0,m], ni for i ∈ (m, 1] require that the

following first-order conditions be satisfied:

wn =
αY

Nn

, (3)

(1 + τx)φ = (1− α)Y

(ˆ m

0

x
ρ−1
ρ

s ds+

ˆ 1

m

n
ρ−1
ρ

s ds

)−1

x
− 1
ρ

i , for i ∈ [0,m] , (4)

wr = (1− α)Y

(ˆ m

0

x
ρ−1
ρ

s ds+

ˆ 1

m

n
ρ−1
ρ

s ds

)−1

n
− 1
ρ

i , for i ∈ (m, 1] . (5)

It follows that it is optimal to use the same level of routine labor, ni, in the 1−m tasks

that have not been automated and that the optimal use of robots is also the same in

the m automated tasks.

The optimal level of automation is m = 0 if wr < (1 + τx)px. The firm chooses to

fully automate (m = 1) and to employ no routine workers (ni = 0) if wr > (1 + τx)px.

If wr = (1 + τx)px, the firm is indifferent between any level of automation m ∈ [0, 1].

In this case, equations (4) and (5) imply that the levels of routine labor and robots are

the same across tasks,

mxi = X, for i ∈ [0,m], and (1−m)ni = Nr, for i ∈ (m, 1], (6)

where Nr denotes total routine hours and X denotes total robots. Using the fact that

xi = nj, with interior automation we obtain m = X/(Nr + X), and we can write the

4Since tasks are symmetric, there is no loss of generality associated with this assumption.
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production function as Y = A (X +Nr)
1−αNα

n . Since the technology has constant

returns to scale, profits are zero.

Government The government chooses taxes and the optimal level of government

spending, subject to the budget constraint

G ≤ πrT (wrlr) + πnT (wnln) + τxpx

ˆ m

0

xidi. (7)

Equilibrium An equilibrium is a set of allocations {cr, lr, cn, ln, G,Nr, X, xi, ni,m},
prices {wr, wn, px}, and a tax system {T (·), τx} such that: (i) given prices and taxes,

allocations solve the households’ problem; (ii) given prices and taxes, allocations solve

the firms’ problem; (iii) the government budget constraint is satisfied; and (iv) markets

clear.

The market clearing conditions for routine and non-routine labor are

(1−m)ni = Nr = πrlr, (8)

Nn = πnln.

The market-clearing condition for robots is redundant by Walras’ law. The market-

clearing condition for the output market is

πrcr + πncn +G ≤ Y − φ
ˆ m

0

xidi. (9)

In an equilibrium with automation (m ∈ (0, 1)) in which wr = (1 + τx)φ, we also

have

xi =
X

m
=

Nr

1−m
, for i ∈ [0,m] .

With interior automation, given aggregate labor supplies πrlr and πnln, the equilibrium

level of automation satisfies

m = 1−
[

(1 + τx)φ

(1− α)A

]1/α
πrlr
πnln

, (10)
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and the wage rates of both non-routine and routine labor are independent of preferences,

wn = α
A1/α(1− α)

1−α
α

[(1 + τx)φ]
1−α
α

, (11)

wr = (1 + τx)φ. (12)

The wage of routine workers is determined by the after-tax cost of robots. Because of

constant returns to scale, the ratio of inputs is pinned down, and so is the wage of the

non-routine worker. An increase in τx raises the wage of routine workers and lowers the

wage rate of non-routine agents. It is also useful to note that in any equilibrium the

income shares of total production are given by

wrπrlr
Y

= (1− α)(1−m), and
wnπnln
Y

= α.

An increase in automation reduces the income share of routine workers and does not

change the share of non-routine workers. In this sense, an increase in automation leads

to an increase in pre-tax income inequality.

2.1 The status-quo equilibrium

In this section, we describe the status-quo equilibrium, i.e. the equilibrium under the

current U.S. income tax system and no taxes on robot use (τx = 0). We model the U.S.

income tax system using the functional form for after-tax income proposed by Feldstein

(1969), Persson (1983), and Benabou (2000) and estimated by Heathcote, Storesletten

and Violante (2017). In this specification, the income tax paid by household j is given

by5

T (wjlj) = wjlj − λ(wjlj)
1−γ, (13)

where γ < 1. Using PSID data, Heathcote, Storesletten and Violante (2017) estimate

that γ = 0.181, which means that income taxes are close to linear. They find that their

5Income in Heathcote, Storesletten and Violante (2017) includes other sources of income, other
than labor earnings.
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specification fits the data with an R2 of 0.91. The parameter λ controls the level of

taxation, higher values of λ imply lower average taxes. The parameter γ controls the

progressivity of the tax code. When γ is positive (negative), the average tax rate rises

(falls) with income, so the tax system is progressive (regressive).

We assume in all our numerical work that the utility function takes the form:

u(cj, lj) + v(G) = log(cj)− ζ
l1+ν
j

1 + ν
+ χ log(G). (14)

These preferences, which have been used by Ales, Kurnaz and Sleet (2015) and Heath-

cote, Storesletten and Violante (2017), have two desirable properties. First, they are

consistent with balanced growth. Second, they are consistent with the empirical evi-

dence reviewed in Chetty (2006).

For these preferences and the status-quo tax specification, both households choose

to work the same number of hours, lj = [(1− γ) /ζ]1/(1+ν), which only depend on the

preference parameters, ζ and ν, and the progressivity parameter, γ.

Model calibration We set ζ = 10.63, so that in the status-quo equilibrium agents

choose to work 1/3 of their time endowment. We set ν = 4/3, so that the Frisch

elasticity is equal to 0.75, which is consistent with the estimates discussed by Chetty,

Guren, Manoli, and Weber (2011).

Following Heathcote et al. (2017), we choose χ = 0.233 so that the optimal ratio of

government to output is 18.9 percent, the same weight observed in the U.S. economy.6

The tax on robots is zero in the status quo (τx = 0). We assume that the level of

progressivity of the tax system is γ = 0.181, the value estimated by Heathcote, et al.

(2017). We adjust λ to satisfy the government budget constraint.7 On the production

6When utility takes the form (14), the optimal ratio of government spending to output is the same
for all the tax systems we consider.

7An alternative approach would have been to keep the tax schedule constant and adjust the level of
government spending to balance the government budget. However, this approach would make it more
difficult to compare the solutions for the different tax systems.
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side, we normalize A to one, choose α = 0.53 and πr = 0.55. These choices are

consistent with the share of labor income received by non-routine workers and the

fraction of workers that are routine estimated by Chen (2016).8 These values of A, α,

πr and parameter choices are used in all our numerical experiments.

In our quantitative analysis, we consider a sequence of static economies where the

cost of a robot falls geometrically over time, φt = φ0e
−gφt. We set gφ, the rate of decline

in the price of robots, equal to 0.0083. This value allows our model to match the decline

in task content estimated by Acemoglu and Restrepo (2018b) for the period 2000-2008.

We choose this period to abstract from the financial crises and focus on the period

where automation takes off in the U.S. We set φ0 = 0.4226 which is the lowest value of

φ consistent with no automation in the status-quo equilibrium (see equation (10)). We

assume that time zero corresponds to year 2000 and label our figures accordingly.

Figure 1 describes the effect of changes in the cost of automation. As time goes

by, φ falls causing the wage of routine workers to fall and that of non-routine workers

to rise. Since the utility function is logarithmic and wages are the only income source,

hours worked remain constant for both routine and non-routine workers. This property

reflects the offsetting nature of income and substitution effects. Given that as φ falls,

wages of routine workers fall and their hours worked remain constant, their income,

consumption, and utility fall. In contrast, non-routine workers benefit from rising

income, consumption and utility.

As φ falls, the parameter that controls the level of taxation, λ, rises, which implies

a decline in the overall level of taxation. This decline reflects the increasing share of

tax revenue paid by non-routine workers pay and the fact that, as φ falls, their income

rises faster than output.

In sum, our analysis suggests that the current U.S. tax system will lead to massive

8The equilibrium is independent of the value of ρ, the parameter that controls the elasticity of
substitution between different tasks. The reason for this result is that all the factors (non-routine
workers and/or robots) used in equilibrium to perform these tasks have the same marginal cost.

11



income and welfare inequality in response to a fall in the costs of automation.

2.2 The first-best allocation

The first-best allocation for this economy maximizes the weighted average of utilities,

subject only to resource feasibility, without taking into account implementability con-

straints arising from information or other constraints.

The weighted average of utilities assigns positive weights ωr and ωn to routine and

non-routine agents, respectively. These weights are normalized so that πrωr + πnωn =

1. The planning problem is to choose {cr, lr, cn, ln, G,m, {xi, ni}} to maximize social

welfare,9

πrωr [u(cr, lr) + v(G)] + πnωn [u(cn, ln) + v(G)] . (15)

The first-best allocation features production efficiency, because the robots’ marginal

productivity equals their marginal cost, φ. We focus on the case in which the planner

values redistribution to routine workers (the relatively poorer agent). If ωr ≥ 1, then the

planner gives more consumption to the routine worker, cr ≥ cn, and requires the more

productive non-routine worker to work more. This result implies that in the first-best

the utility of routine workers is higher than that of non-routine workers. Clearly, the

first-best solution cannot be implemented if the planner cannot discriminate between

household types. In this solution, non-routine households would have an incentive to

act as routine to benefit from a more generous consumption bundle.

In all our quantitative exercises, we assume that ωr = 1. Figure 2 illustrates the

properties of the first-best solution. In panel A, we see that full automation occurs only

asymptotically. However, 21 percent of the tasks are automated in the first period, 50

percent by 2017, and 75 percent by 2042. The real wage rate for both types of workers

9One interpretation of the social welfare function is as follows. Workers are identical ex-ante because
they do not know whether their skills can be automated or not, i.e. whether they will be routine or
non-routine workers. The planner maximizes the worker’s ex-ante expected utility.
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are the same as in the status-quo equilibrium.10 The consumption and utility of both

types of worker rise as φ falls. Figure 2 also shows that implementing the first-best

solution requires large transfers from non-routine to routine workers.

2.3 Mirrleesian optimal taxation

In this section, we characterize the optimal non-linear income tax when the planner

observes a worker’s total income but does not observe the worker’s type or labor supply,

as in the canonical Mirrlees (1971) problem. For the reasons emphasized in Guesnerie

(1995), we assume that robot taxes are linear.

In the Mirrlees (1971) model, the productivities of different agents are exogenous.

In our model, these productivities are endogenous and depend on τx. This property is

central to the question we are interested in studying: is it optimal to distort production

decisions by taxing the use of robots to redistribute income from non-routine to routine

workers to increase social welfare?

In the analytical description of the optimal policy, we focus attention on plans with

interior automation, m > 0.11 We also assume that φ ≤ αα(1−α)1−αA, so that if τx ≤ 0

non-routine workers earn a higher wage (wn ≥ wr) in an equilibrium with automation

(see equations (11) and (12)).

The Mirrleesian planning problem is to choose the allocations {cj, lj}j=r,n, G, and

the robot tax τx to maximize social welfare, defined in equation (15), subject to the

resource constraint

πrcr + πncn +G ≤ πnwnln
τx + α

α(1 + τx)
+
πrwrlr
1 + τx

. (16)

10The reason for this property is as follows. Equations (11) and (12) imply that wages depend on
technological parameters (α and A), the cost of automation, and the value of τx. Since τx = 0 in the
status quo and there is production efficiency in the first-best allocation, the wages are the same in
both allocations.

11We do not discuss the case where m = 0 because in this case the results in Stiglitz (1982) apply
to our model.
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and two incentive constraints (IC)

u(cn, ln) ≥ u

(
cr,

wr
wn
lr

)
, (17)

u(cr, lr) ≥ u

(
cn,

wn
wr
ln

)
, (18)

The wages of the two types of workers are given by equations (11) and (12).

Any competitive equilibrium satisfies equations (16), (17), and (18). In addition,

any allocation that satisfies these three equations can be decentralized as a competitive

equilibrium.

Household optimality implies that the utility associated with the bundle of consump-

tion and income assigned to agent j, {cj, lj}, must be at least as high as the utility asso-

ciated with any other bundle {c, l} that satisfies the budget constraint c ≤ wjl−T (wjl),

implying that u(cj, lj) ≥ u(c, l). In particular, routine workers must prefer their bundle,

{cr, lr}, to the bundle that they would get if they pretended to be non-routine workers

while keeping the routine wage, {cn, wnln/wr}. Similarly, non-routine workers must

prefer their bundle, {cn, ln}, to the bundle they would get if they pretended to be rou-

tine workers, {cr, wrlr/wn}. These requirements correspond to the two IC constraints,

(17), and (18), so these conditions are necessary.

We show in the Appendix that equation (16) is necessary by combining the first-

order conditions to the firms’ problems with the resource constraint, (9). In addition,

we show that conditions (16), (17), and (18), are also sufficient. To see that equations

(17) and (18) summarize the household problem, note that it is possible to choose a tax

function such that agents prefer the bundle {cj, lj} to any other bundle. For example,

the government could choose a tax function that sets the agent’s after-tax income to

zero for any choice of wjl different from wjlj, j = r, n. These results are summarized

in the following proposition.

Lemma 1. Equations (16), (18) and (17) characterize the set of implementable allo-

cations. These conditions are necessary and sufficient for a competitive equilibrium.
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Since the government can choose an arbitrary tax function, it is only bound by

the incentive constraints which characterize the informational problem. This property

means that the income tax function that is assumed here to implement the optimal

allocation is without loss of generality. Any other implementation would at least have

to satisfy the same two incentive constraints.

The tax on intermediate goods provides the government with an additional instru-

ment relative to the Mirrlees (1971) setting. The planner can use this instrument to

affect the income of the two types of workers but its use distorts production.

To bring the analysis closer to a canonical Mirrleesian approach, we maximize the

planner’s objective in two steps. First, we set τx to a given level and solve for the

optimal allocations. Second, we find the optimal level of τx. We define W (τx) as the

maximum level of social welfare, (15), subject to the incentive constraints, (17) and

(18), and the resource constraint, (16) for a given value of τx.

An optimal choice of τx requires that W ′(τx) = 0. We characterize optimal al-

locations in which the incentive constraint of the non-routine worker binds, and the

incentive constraint of the routine worker is slack. This pattern holds in all our numer-

ical exercises.

The expression for net output in the right-hand side of equation (16) can be written

as
τx + α

α(1 + τx)1/α

αA1/α(1− α)
1−α
α

φ
1−α
α

πnln + φπrlr.

The term (τx + α) /
[
α (1 + τx)

1/α
]

is equal to one for τx = 0 and strictly less than one

for τx 6= 0. This term is a measure of the production inefficiency created by the tax on

robots. With automation is incomplete, the planner is willing to pay a resource cost, in

terms of this production inefficiency, in order to loosen the incentive constraints that

are also functions of the robot tax.

Proposition 1. Suppose the optimal allocation is such that the non-routine workers’

incentive constraint binds and the incentive constraint for routine workers does not bind.
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Then, if automation is incomplete (m < 1 and lr > 0), robot taxes are strictly positive

(τx > 0). The optimal tax on robots satisfies

τx
1 + τx

=
α

1− α
πrφlr
πnwnln

[
1 +

ωrul (cr, lr)

µφ

]
, (19)

where µ denotes the multiplier on the resource constraint (16).

This proposition is proved in the appendix. To see the intuition for this result,

suppose that τx < 0. A marginal increase in τx has two benefits. First, it strictly

increases output and hence the amount of goods available for consumption. Second,

it reduces the relative wage wn/wr and makes the non-routine worker less inclined

to mimic the routine workers. This property can be easily seen from the incentive

constraint of the non-routine worker: u(cn, ln) ≥ u
(
cr,

wn
wr
ln

)
.

Consider instead τx = 0. Since a zero tax on robots maximizes output, for fixed la-

bor supplies, a marginal increase in that tax produces only second-order output losses.

On the other hand, increasing τx generates a first-order gain from loosening the infor-

mational restriction. Therefore, starting from τx = 0, the planner can always improve

welfare with a marginal increase in τx.

Robot taxes are optimal only when automation is incomplete (m < 1), so that

routine workers are employed in production (lr > 0). When full automation is optimal

(m = 1, lr = 0) there is no informational gains from taxing robots. Since the robot tax

distorts production and does not help loosen the incentive constraint of the non-routine

agent, the optimal value of τx is zero. We prove this result in the appendix.

We now turn to the study of the optimal wedges. The optimality conditions imply

the following marginal rates of substitution:

ul(cn, ln)

uc(cn, ln)
= wn

τx + α

α(1 + τx)
,

ul(cr, lr)lr
uc(cr, lr)

=
ωr − ηn uc(cr,wrlr/wn)

uc(cr,lr)

ωr − ηn
ul(cr,wrlr/wn) 1

wn

ul(cr,lr)
1
wr

wrlr
1 + τx

,
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where ηnπr denotes the Lagrange multiplier of the incentive constraint of the non-

routine worker.

One property of the original Mirrlees (1971) model is that the labor-supply decision

of the high-ability agent should not be distorted. In our model, non-routine workers

are subsidized at the margin when automation is incomplete. This subsidy corrects for

the difference between the productivity as perceived by the firm (wn) and the marginal

increase in the resources available to the planner from a marginal increase in πnln, which

is equal to wn (τx + α) /α(1 + τx), where (τx + α) /α(1 + τx) > 1.12

Routine workers are taxed at the margin when automation is incomplete for two

reasons. First, this tax corrects the distortion created by robot taxes, which make the

wages of routine workers higher than the marginal increase in the resources available

to the planner from a marginal increase in πrlr. Second, taxing routine workers makes

it less appealing for non-routine workers to mimic routine workers and loosens the IC

of non-routine workers.

Figure 3 illustrates the properties of the equilibrium associated with Mirrleesian

optimal taxation. The process of automation begins later in the Mirrleesian solution

than in the first best. This property reflects the presence of robot taxes in the Mir-

rleesian solution. These taxes increase the wages of routine workers and decrease the

wages of non-routine workers. This wage compression loosens the incentive constraint

of non-routine workers, which allows the government to redistribute more income from

non-routine to routine workers.

The path for the tax rate on robots has a hump shape. The economy starts with

inequality in wages that makes redistribution desirable. Since initially the cost of

distorting automation is relatively small, the planner chooses a level of robot taxes

which halts the process of automation. As the costs of automation fall, robot taxes

increase to prevent automation from occurring. After this initial period, robot taxes

12The general-equilibrium effects emphasized by Stiglitz (1982) are reduced in our model to the
impact of the robot tax on pre-tax wages.
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fall. As robots become cheaper, it is inefficient to use routine workers so their labor

supply falls. This decline in routine hours makes robot taxes less useful as a tool for

income redistribution. In the limit, routine hours converge to zero and so do robot

taxes.

Consumption of non-routine workers is higher than that of routine workers. Since

non-routine workers work harder than routine workers, the former need to receive higher

consumption to satisfy their incentive constraint. Both types of workers see their con-

sumption rise as φ approaches zero. This outcome is achieved through large transfers

to the routine workers.

In the limit, routine households stop working and live off government transfers.

Those transfers are generous enough that the utilities of the two worker types are

equalized. The reason for this equalization is that, once routine workers supply zero

hours, there is no difference between the non-routine worker pretending to be routine

and that of the routine worker.

2.4 Optimal policy with simple income taxes

In this subsection, we compare the Mirrleesian allocation with the solution to a Ramsey

(1927)-style optimal taxation problem in which the tax schedule is assumed to take the

simple form described in equation (13). This function has two parameters, γ and λ.

When γ is zero, the tax system is linear with a rate λ. The tax system is progressive

when γ is greater than zero and regressive when γ is lower than zero. This function

has been widely used to study the U.S. income tax system and has recently been

estimated by Heathcote, Storesletten and Violante (2017). Our goal is to assess how

close the Ramsey solution with these simple taxes is to the Mirrleesian allocation. We

also consider a version of the problem where we allow for lump-sum transfers. These

transfers can be interpreted as a form of universal basic income.

We characterize the competitive equilibrium for this economy in the Appendix.

Using these equations, we can write the ratio of the consumption of routine and non-
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routine workers as:
cr
cn

=

[
(1− α)(1−m)

α

πn
πr

]1−γ

. (20)

Equation (20) shows that there are two ways to make the ratio cr/cn closer to one.

One way is to raise τx which leads to a fall in the level of automation, m. The other way

is to make γ closer to one, i.e. make the tax system more progressive. Both approaches

have drawbacks. Taxing robot distorts production. Increasing progressivity reduces

incentives to work.

Since we are interested in studying optimal taxation in an economy with automation,

we focus on equilibria where m > 0. In this case, equation (20) can be written as:

cr = cn

[
(1− α)

α

πn
πr

(
φ(1 + τx)

(1− α)A

)1/α
πrlr
πnln

]1−γ

. (21)

This condition results from the fact that the government must set the same income tax

schedule for both routine and non-routine agents.

The planner chooses allocations {cr, lr, cn, ln, G} and the tax parameters {τx, γ} to

maximize welfare, (15), subject to equation (21) and the following conditions

uc(cr, lr)cr +
ul(cr, lr)lr

1− γ
= 0, (22)

uc(cn, ln)cn +
ul(cn, ln)ln

1− γ
= 0, (23a)

and the resource constraint with interior automation, (16).

The constraints (22) and (23a) are the usual Ramsey implementability conditions.

We show in the Appendix that equations (21)-(16) are necessary and sufficient condi-

tions for a competitive equilibrium. We define η/cr as the multiplier on the constraint

(21) and by µ the multiplier on the resource constraint. In the Appendix we show that

the optimal tax rate on robots satisfies:

τx
1 + τx

=
α

1− α
η(1− γ)

µwnπnln
. (24)

19



Since the marginal utility of public expenditures is always positive, the marginal value

of resources to the planner, given by the multiplier µ, is strictly positive. The multiplier

η captures the marginal value of redistributing income to routine households, which is

limited by the assumptions on the income-tax function. If η > 0, the marginal value of

additional redistribution of income towards routine workers is positive and robot taxes

are strictly positive. The intuition for this result is that since the government has to use

the same income tax function for both types of workers, taxing robots helps redistribute

income by increasing the pre-income tax wage of routine workers and lowering that of

non-routine workers.

Figure 4 shows that the form of the tax function constrains heavily the outcomes

that can be achieved. As discussed above, the planner can redistribute income by

taxing robots or by increasing progressivity. Taxing robots distorts production and

higher progressivity reduces incentives to work. Since initially the cost of distorting

automation is relatively small, the planner chooses a level of robot taxes consistent with

no automation. Robot taxes are heavily used, reaching values as high as τx = 0.33. As

the costs of automation decline, the progressivity of the income tax rises. But there is

still a large divergence in wage rates, consumption and utility across the two types of

workers.

Optimal policy with lump-sum transfers The simple tax system studied in the

previous section can require very high production distortions. This is because the

alternative is to use progressive income taxes which heavily distort the labor supply. In

this section, we study a simple modification of the tax system: we allow the government

to give out a positive lump-sum transfer, Ω. In this specification, the after-tax income

of household j is λ(wjNj)
1−γ + Ω.

Combining the budget constraints of the two worker types, we obtain

cr − Ω

cn − Ω
=

[
(1− α)(1−m)

α

πn
πr

]1−γ

. (25)
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Comparing this equation with (20), it is clear that higher transfers bring cr and cn

closer together, holding everything else constant.

The planning problem is to choose allocations {cn, cr, lr, ln, G} and the tax param-

eters {τx, γ,Ω}, subject to the following conditions

uc(cj, lj) (cj − Ω) +
ul(cj, lj)lj

1− γ
= 0, j = r, n, (26)

cr − Ω = (cn − Ω)

[
(1− α)

α

πn
πr

(
φ(1 + τx)

(1− α)A

)1/α
πrlr
πnln

]1−γ

, (27)

u (cj, lj) ≥ u (Ω, 0) if Ω ≥ 0, j = r, n , (28)

and the resource constraint with interior automation, (16).

Conditions (26) are obtained from the budget constraints for each household type,

combining the first-order conditions to replace prices and taxes. The second condition

(27) imposes that the tax system is the same for both household types. With positive

lump-sum transfers and regressivity, γ < 0, the solution to the households problem

may not be interior, meaning that the household may choose to work zero hours and

set consumption equal to the transfer. The conditions (28) impose that the household’s

allocation does not yield lower utility than that corner solution. We show in the ap-

pendix that these conditions are necessary and sufficient for a competitive equilibrium

in the quantities {cn, cr, lr, ln, G} and the tax parameters {τx, γ,Ω}.
The optimal tax on robots satisfies

τx
1 + τx

=
α

1− α
η (1− γ)

µwnπnln

(
cr − Ω

cr

)
, (29)

where η/cr is the multiplier for the no-discrimination constraint (27) and µ is the

multiplier for the resource constraint.13 If the lump-sum transfer is chosen to be zero,

then the expression (29) is the same as in case without lump-sum transfers. The optimal

plan may feature cr = Ω, in which case the routine worker supplies zero labor hours.

13See the appendix for the derivation.
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In this limiting case, there is no role for redistributing by affecting the relative wages,

and robot taxes should be set to zero.

Figure 5 illustrates the properties of this allocation. Workers have two sources of

income: wages and transfers. For this reason, income and substitution effects of changes

in wages are no longer offsetting. As a consequence, the two types of workers supply a

different number of hours and their hours vary with φ.

The optimal solution with lump-sum transfers features full automation even when

robots are still relatively expensive. In contrast, full automation occurs only asymptot-

ically with Mirrleesian taxes and optimal simple taxes. Once full automation occurs,

routine households have no labor income. Since only non-routine workers pay income

taxes, the planner designs the tax system to avoid distorting their marginal labor-supply

decisions. This result is achieved by increasing the regressivity of the tax system (i.e.

lowering γ < 0) so that, given the level of taxation implied by λ, the marginal income

tax rate for non-routine workers is zero. In this way, the taxation of non-routine house-

holds is effectively equivalent to lump-sum taxes.14 The level of transfers is chosen so

that the non-routine worker is indifferent between the interior solution, with positive

labor, and the corner solution with zero labor and consumption equal to transfers. For

a higher level of transfers, both agents would supply zero labor.15

The availability of lump-sum transfers is essential for full automation to occur in

finite time. Without lump-sum transfers, a routine worker who drops out of the labor

force has zero consumption. For this reason, routine workers never drop out of the labor

force.

One surprising result is that full automation occurs with this restricted tax system

and not in the Mirrleesian solution which also allows for lump-sum transfers. The intu-

14The same logic implies that in a representative-agent economy it is possible to use the Heathcote
et al. (2018) tax function to obtain the same allocation as with lump-sum taxes. This allocation is
achieved by choosing a regressive tax system such that the marginal tax rate is zero. Government
expenditures are financed with the revenue raised by the infra-marginal tax rates.

15In the appendix, we show a numerical example of the individual agent’s problem with one such
solution.
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ition for this result is as follows. Because preferences are separable and have constant

Frisch elasticity, the marginal disutility of labor converges to zero as labor hours ap-

proach zero. For this reason, a Mirrleesian planner finds it optimal to have routine

workers supply positive labor, even if productivity is very low. With a general tax

function it is possible to implement very different marginal distortions for both types of

worker. As we have seen before, the Mirrleesian solution features a negative marginal

distortion for non-routine workers, and a positive marginal distortion for routine work-

ers. This solution cannot be obtained with the simple tax function. The restrictions on

the marginal distortions associated with this function are such that the planner prefers

a corner solution for the labor supply of routine workers. By excluding routine work-

ers from the labor force, the planner can design the simple tax system to target only

non-routine workers, reducing their marginal tax rate to zero so that in effect they are

taxed in a lump-sum fashion.

In such an equilibrium, income is redistributed through a large lump-sum transfer.

This transfer can be interpreted as a minimum income that is guaranteed to all agents

in the economy. When automation is incomplete, robot taxes are used as an additional

source of redistribution and τx can be as high as 37 percent. Complete automation

occurs shortly after 2050, once the cost of robots drops below φ = 0.27.

2.5 Comparing different policies

In this section, we compare the first-best allocation with the allocations associated with

different policies in terms of social welfare and the utility of routine and non-routine

workers. In the figures discussed below, we use the labels FB, SQ, OT, ST and STL to

refer to the first-best, status-quo, Mirrleesian optimal taxes, simple taxes, and simple

taxes with lump-sum transfers, respectively.

Figure 6 shows the welfare of the utilitarian social planner under the different poli-

cies, between the years 2000 and 2150. Recall that the level of φ in the year 2000 was

chosen as the lowest value for which there is no automation in the status quo. Social
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welfare rises as the costs of automation fall both for the first best and for all the policies

we consider. We see that the Mirrlees allocation is relatively close in terms of welfare

to the first-best allocation. The solution with simple taxation and lump-sum trans-

fers ranks next in terms of welfare, followed by the solution with simple taxes without

rebates. The status quo is by far the worst allocation.

A fall in the cost of automation can have very different consequences for routine and

non-routine workers. To illustrate this property, we measure the utility of the two types

of workers relative to the status-quo equilibrium in year 2000. We call this allocation

the no-automation benchmark. Panel A (B) of Figure 7 shows how much routine (non-

routine) workers would have to be compensated in the no-automation benchmark to be

as well off as in the policy under consideration, for the different years. The measure is

computed as a percentage of consumption.

Panel A of Figure 7 shows that the utility of routine workers in the first-best al-

location improves as φ falls over time. In contrast, in the status quo, routine workers

become increasingly worse as automation becomes more pronounced. With Mirrleesian

optimal taxation, routine workers are always made better off. With simple income

taxes, routine workers are not made better off until after 2150. We can see that includ-

ing a universal form of income is a simple way of recovering gains for routine workers.

Indeed, shortly after 2050 the routine worker is almost as well off in this solution as in

the solution with Mirrleesian taxes.

Panel B of Figure 7 shows that non-routine workers prefer the no-automation bench-

mark to the first best while automation costs are relatively high (almost until 2100).

This preference reflects the large transfers that non-routine workers make to routine

workers in the first best. Once automation costs fall by 62 percent relative to their

2000 value, which happens in 2116, non-routine workers prefer the first best to the

no-automation benchmark. The reason is that the wage of non-routine workers is high

enough to compensate for the transfers they make to routine workers. Starting in 2015,

non-routine workers prefer the status quo to all other allocations. This preference
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results from a combination of high wages and relatively low taxes in the status quo.

Routine workers always rank the first-best allocation first, Mirrleesian optimal taxa-

tion second, simple taxes with lump-sum transfers third, simple taxes without lump-sum

transfers fourth, and the status quo last. The utility for the allocation with simple taxes

and lump-sum transfers approaches that under Mirrleesian taxes as the cost of automa-

tion falls. In contrast, non-routine workers rank the status quo first and the first best

last. Mirrleesian optimal taxation and simple taxes with and without transfers rank in

between the two extremes.

2.6 The simple model with endogenous occupation choice

In this section, we study the optimal tax policy in a version of our model that allows

agents to choose whether to become routine or non-routine workers. In this model,

taxing robots affects the relative wages of routine and non-routine workers thereby

affecting occupation choices.

Our analysis is related to Saez (2004), Scheuer (2014), Rothschild and Scheuer

(2013), and Gomes, Lozachmeur and Pavan (2017). These authors characterize Mirrlees-

style optimal tax plans in models with endogenous occupation choice. Saez (2004) con-

siders a setting in which agents choose their occupation but hours worked are fixed.

Income is proportional to the wage rate so the government can infer a worker’s occu-

pation from the workers’ income. This property allows the government to design the

income tax schedule to effectively tax different occupations at different rates. As a

result, it is not optimal to distort production. Gomes, Lozachmeur and Pavan (2017)

consider a setting in which agents choose both their occupation and hours worked.

They find that the optimal tax plan does not feature production efficiency.

In our model, workers have different preferences for the two occupations. They

choose both their occupation and the number of hours worked. In our numerical ex-

amples, production efficiency is generally not optimal as long as the costs of changing

occupations are significantly high.
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Households There is a continuum of measure one of households indexed by the oc-

cupation preference parameter θ ∈ Θ ⊆ R. This parameter is drawn from a distribution

F with continuous density f . Household preferences are given by

u (cθ, lθ) + v(G)−Oθθ, (30)

where cθ and lθ denote the consumption and income of household θ, respectively. The

indicator Oθ denotes the household’s occupation choice. It takes the value 1 when the

household chooses a non-routine occupation and 0 otherwise. The wage rate earned

by the household depends on the individual occupation choice. It is equal to wr if the

household chooses a routine occupation and equal to wn otherwise.

The utility representation above has the following interpretation: households have

heterogeneous preferences with respect to different occupations. A household with a

positive θ prefers, all else equal, a routine occupation. A household with a negative θ

prefers, all else equal, a non-routine occupation.

The households maximize their utility subject to the budget constraint

cθ ≤ wθlθ − T (wθlθ) . (31)

It is useful to define the set of households that choose to become non-routine workers,

Θn ≡ {θ ∈ Θ : Oθ = 1} and the set of households that choose to become routine workers

Θr ≡ Θ\Θn.

Mirrleesian optimal taxation The production side is the same as in previous sec-

tions. We maintain the assumption that the only instrument the government has to

directly affect production is a proportional tax on robots. With these assumptions, the

firms’ decisions, when automation is interior, can be summarized by the constraint
ˆ

Θ

cθf (θ) dθ +G ≤ τx + α

α(1 + τx)

ˆ
Θn

wθlθf (θ) dθ +

´
Θr
wθlθf (θ) dθ

1 + τx
. (32)

As in Rothschild and Scheuer (2013), we characterize a direct implementation where

households declare their type θ and get assigned an allocation (cθ, lθ,Oθ). Income
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and consumption are observable, but the government cannot observe labor, wage or

sectoral choice. Given this informational asymmetry, the constraints that guarantee

truth-telling are as follows. The first condition is the same incentive constraint on the

choice of hours worked that we have used before:

u (cθ, lθ) ≥ u

(
cθ′ ,

wθ′

wθ
lθ′

)
, ∀θ, θ′ ∈ Θ. (33)

This labor-supply incentive constraint guarantees that households choose the assigned

allocation, given the occupation choice.

The second condition is the incentive constraint for the choice of occupation of an

individual of type θ:

u (cθ, lθ)−Oθθ ≥ u (cθ′ , lθ′)−Oθ′θ, ∀θ, θ′ ∈ Θ. (34)

This occupation-choice incentive constraint ensures that households choose their as-

signed occupation. The other conditions are that the occupation choice, Oθ, defines

the sets Θn and Θr and that (32) holds.16

To characterize the necessary and sufficient conditions for incentive-compatible oc-

cupation choice, it is useful to define Uθ ≡ u (cθ, lθ).

Lemma 2. An allocation is incentive compatible for occupation choice if and only if

for θ, θ′ ∈ Θi then Uθ = Uθ′ ≡ Ui for i = r, n, and there exists a threshold θ∗ = Un−Ur
such that (i) if θ ≤ θ∗ then θ ∈ Θn; (ii) if θ > θ∗ then θ ∈ Θr.

This result follows directly from the incentive constraints. The first part of the

lemma states that all agents who share the same occupation choice must have the same

16These constraints do not explicitly take into account the possibility that agent θ might choose an
allocation (Cθ′ , Yθ′) at a different occupational choice than Oθ′ . However, those additional constraints
are redundant. To see this result, suppose that agent θ deviates to an allocation (Cθ′ , Yθ′) and occupa-
tional choice Oθ̂ which is different from that of Oθ′ . From the intensive margin incentive constraint for

agent θ̂ it follows that u(Cθ′)−v(Yθ′/wθ̂)−Oθ̂θ ≤ u(Cθ̂)−v(Yθ̂/wθ̂)−Oθ̂θ ≤ u(Cθ)−v(Yθ/wθ)−Oθθ,
where the last inequality follows from the extensive margin incentive constraint for θ. This condition
also guarantees that when choosing his own assignment, Oθ is optimal.
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utility level. This property results from the fact that they can mimic the choices of

another household in the same group at zero cost. So, if an allocation was better than

all others for the same occupation, all agents would choose that allocation.

The second part of the proposition establishes that the incentive constraints for the

extensive margin choice can be summarized by a single threshold rule. Agents with θ

lower than θ∗ choose a non-routine occupation and the remaining agents become routine

workers.

The planner maximizes a weighted average of utilities, where the weight on agents

of type θ is ω(θ) ≥ 0 with
´
ω(θ)f (θ) dθ = 1.

Proposition 2. In the optimal plan, if θ, θ′ ∈ Θi then wθlθ = wθ′lθ′ ≡ wili and cθ =

cθ′ ≡ ci, for i = r, n.

Agents who choose the same occupation have the same preferences for consumption

and leisure and the same productivity. They differ only in their value of θ which enters

separably in their utility function. Since the planner has an utilitarian welfare function,

the optimal plan sets the same consumption and hours worked for all agents with the

same occupation.

Using these results, we can see that, for a fixed τx, the optimal plan solves the

following optimization problem:

W (τx) = u (cn, ln)

ˆ θ∗

−∞
ω(θ)f (θ) dθ+u (cr, lr)

ˆ ∞
θ∗

ω(θ)f (θ) dθ+v(G)−
ˆ θ∗

−∞
ω(θ)θf (θ) dθ,

subject to

θ∗ = u (cn, ln)− u (cr, lr) ,

F (θ∗)cn + [1− F (θ∗)] cr +G ≤ F (θ∗)wnln
τx + α

α(1 + τx)
+

[1− F (θ∗)]wrlr
1 + τx

.

and two incentive constraints which are the same as those of the model with fixed

occupations (equations (17) and (18)). Optimizing with respect to τx requires W ′(τx) =

0.
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The solution to this problem can be decentralized with a mechanism in which the

government sets τx to its optimal level and sets income taxes such that

T (wnln) = wnln − cn, and T (wrlr) = wrlr − cr,

and T (y) = y −max
{
c|u (ci, li) ≥ u

(
c, y

wi

)
, for i = r, n

}
for other levels of y.

Numerical analysis We now explore the properties of the occupation choice model

with some numerical examples. We use the same preference and production parameters

as in previous sections.17 We set Θ = R and assume that F (θ) is a normal distribution

with mean zero and standard deviation σ. This choice ensures that half the population

has a preference for routine work and the other half for non-routine work. We solve the

model for two values of σ, 1 and 7.5.

Figure 8 shows the first-best solution for both values of σ. We can see that lower

dispersion of θ is associated with a higher share of non-routine workers. This property

makes intuitive sense, since having more agents with θ close to zero implies that it is

easier to switch them to more productive non-routine occupations. This higher fraction

of non-routine workers also results in higher consumption and lower working hours

for all households. Because it is easier to switch agents to non-routine occupations,

automation advances faster when dispersion is lower.

Figure 9 shows the Mirrleesian solution for the same levels of σ. When dispersion is

high, robot taxes are positive and are similar to the benchmark case without occupation

choice. However, in the case of σ = 1 dispersion is low and the tax on robots is always

zero.

Taxation has a direct distribution effect on after-tax income and an indirect dis-

tribution effect on the choice of occupation. The optimal plan balances the costs and

benefits of these two forms of redistribution. For σ = 1, the costs of indirect redistri-

bution are low, so the planner induces a higher fraction of the population to become

17In the numerical analysis we compare the Mirrleesian solution to the first-best solution in this
environment. We solve for the first best in the appendix.
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non-routine. In fact, for low automation costs the share of non-routine workers becomes

almost as high as in the first-best allocation. Since taxes on robots are desirable only

insofar as they improve the direct redistribution mechanism, the reduced importance

of this form of redistribution also implies that taxes on robots should be lower.

For σ = 7.5, the costs of indirect redistribution are high, so the planner resorts

to using more direct redistribution. This approach results in higher consumption and

lower hours worked for routine workers. Because hours worked decline faster when σ

is higher, automation also advances more rapidly as φ falls over time. We can also see

that the share of non-routine workers is much lower than in the first best.

3 A dynamic model

In this section, we generalize the previous results to a dynamic model in which robots

are an investment good.

Households and preferences As in our static environment, the model features two

types of households, routine (r) and non-routine (n). We normalize the size of the

population to one, and assume that there are πr routine workers and πn non-routine

workers. These households differ permanently in the type of labor they supply.

The utility function of household j is given by

Uj =
∞∑
t=0

βt [u (cj,t)− h(lj,t) + v(Gt)] ,

where u′(c) > 0, h′(l) > 0, v′(G) > 0, and u′′(c) < 0, h′′(l) > 0, v′′(G) < 0 denote

respectively the first and second derivatives of each function.

As is well known, without weak separability between consumption and leisure, the

uniform taxation result in Atkinson and Stiglitz (1976) fails. In a dynamic setting,

this failure would mean that the optimal plan features intertemporal distortions, i.e.

it is optimal to tax consumption in different periods at different rates. This reason
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to tax capital is orthogonal to the one we focus on and, for that reason, we assume

separability.18

Technology Production of the final good combines robots with routine and non-

routine workers, according to the production function, Yt = F (Nn,t, Nr,t, Xt) where Yt

denotes total production at time t, and Nr,t and Nn,t denote the total number of routine

and non-routine labor hours supplied by the households, respectively.

We assume that the production function has constant returns to scale. An house-

hold’s effective contribution to production yj,t is observable and equal to the household’s

marginal productivity multiplied by the total number of hours supplied yj,t = Fj(t)lj,t,

for j = r, n, where Fj(t) = ∂F (Nr,t, Nn,t, Xt)/∂Nj,t. We define the marginal produc-

tivity of robots in period t as Fx(t) = ∂F (Nr,t, Nn,t, Xt)/∂Xt. As in the previous

section, we assume that robots share a higher degree of complementarity with non-

routine work than with routine work. For that end, we assume that εFr/Fn,x(t) =

d log (Fr(t)/Fn(t)) /d logXt < 0.

A unit of robot capital is produced using φt units of output. The stock of robots

evolves according to:

Xt+1 = (1− δX)Xt + it/φt,

where δX denotes the depreciation rate of robots. The resource constraint in period t

can be written as

πrcr,t + πncn,t +Gt + φt [Xt+1 − (1− δX)Xt] ≤ F (πnln,t, πrlr,t, Xt) . (35)

First-best allocation Given any Pareto weights for routine and non-routine house-

holds, ωr, ωn ≥ 0, normalized such that ωrπr + ωnπn = 1, the planner’s objective

18Since we assume that utility is time separable, weak separability between the vector of consump-
tions and the vector of hours worked requires strict separability between consumption and leisure in
each period.
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function is
∞∑
t=0

βt

{∑
j=n,r

ωjπj [u (cj,t)− h(lj,t)] + v(Gt)

}
. (36)

The first-best allocation maximizes this welfare function subject to the resource con-

straints (35). The solution to this problem implies the following efficiency conditions,

which equate marginal rates of substitution to marginal rates of transformation

h′(lj,t)

u′(cj,t)
= Fj(t),

and
u′(cj,t)

βu′(cj,t+1)
=
Fx(t+ 1) + φt+1(1− δx)

φt
,

for j = r, n. In addition to these conditions, the first-best allocation also requires that

ωru
′(cr,t) = ωnu

′(cn,t).

These conditions together with the resource constraint with equality characterize the

Pareto frontier, as we let the weights vary.

Planning problem We solve the problem of a planner who maximizes a weighted-

sum of household utilities subject to incentive and resource constraints. The solution

of this problem cannot yield lower welfare than the solution of a non-linear taxation

problem, and, as we show in the appendix, it is possible to find taxes that implement

the optimal solution.

The incentive constraints for this problem are

∞∑
t=0

βt [u (cr,t)− h(lr,t)] ≥
∞∑
t=0

βt
[
u(cn,t)− h

(
Fn(t)

Fr(t)
ln,t

)]
, (37)

∞∑
t=0

βt [u (cn,t)− h(ln,t)] ≥
∞∑
t=0

βt
[
u(cr,t)− h

(
Fr(t)

Fn(t)
lr,t

)]
. (38)

The planning problem is to maximize (36) subject to (37) and (38) and the resource

constraints (35). We characterize the optimal allocations in which the incentive con-

straint of the non-routine worker (38) binds and the incentive constraint of the routine
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worker (37) does not bind. This pattern generally holds whenever the planner values

redistribution to the routine worker. We check that this property holds in our numerical

exercises.

It is useful to define the following agent-specific intratemporal and intertemporal

wedges

τnj,t ≡ 1− h′(lj,t)

u′ (cj,t)

1

Fj(t)
, (39)

and

τ kj,t+1 ≡ 1− u′(cj,t)

βu′(cj,t+1)

φt
Fx(t+ 1) + φt+1(1− δx)

. (40)

The next proposition states results analogous to those we obtained for the static model:

as long as automation is incomplete, there are positive wedges in the accumulation of

robots.

Proposition 3. In the optimal plan, the intertemporal wedge is the same for the two

worker types, τ kr,t+1 = τ kn,t+1. If routine labor hours are strictly positive (lr,t+1 > 0), then

the intertemporal wedge is strictly positive, τ kr,t+1 = τ kn,t+1 > 0.

Proof: See Appendix.

As in the static model, it is optimal to tax robots when the hours worked by routine

households are positive. Since robots are a form of capital, their use is taxed by creating

a positive intertemporal wedge which distorts the accumulation of capital goods. Notice

also that in this economy the intertemporal marginal rates of substitution of the two

agents are equated.

To compare the dynamic model with the static model, it is useful to interpret the

intertemporal wedge as a tax on the rental cost of capital. This rental cost, inclusive

of tax, is given by [
φt

u′(cj,t)

βu′(cj,t+1)
− φt+1(1− δx)

]
(1 + τxt+1), (41)

where τxt+1 denotes the tax rate. This rate is not indexed by j because the optimal

intertemporal wedges are the same for all worker types.
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The intuition for the expression for the rental cost is as follows. Renting out a unit

of robot capital at time t+ 1 requires investing φt in robots at time t. This investment

has an opportunity cost of φtu
′(cj,t)/βu

′(cj,t+1). At the end of the period, the rentor

receives 1 − δx robot units each of which is worth φt+1. Since the rental cost inclusive

of taxes is equated to the marginal productivity of robots (Fx(t+ 1)). the optimal tax

rate, τxt+1, is given by:[
φt

u′(cj,t)

βu′(cj,t+1)
− φt+1(1− δx)

]
(1 + τxt+1) = Fx(t+ 1).

Quantitative analysis In this section, we solve the planning problem and quantify

the effects of advances in automation for the optimal taxation of robots and income.

We assume that the cost of robots declines geometrically over time, φt = φe−gφt, which

means that the dynamic problem features investment-specific technical change as in

Greenwood, Hercowitz and Krusell (1997). The baseline scenario assumes perfect sub-

stitutability between robots and routine workers, as in related work on the effects

of automation (see Acemoglu and Restrepo (2018a) and Cortes, Jaimovich, and Siu

(2017)). The production function is given by

F (πnln, πrlr, X) = A (X + πrlr)
1−α (πnln)α ,

where A denotes total factor productivity and α is the share of non-routine workers in

production. The assumption that the elasticity between routine and non-routine labor

is unitary is important because it ensures the existence of a balanced growth path which

is reached asymptotically, as the hours supplied by routine workers converge to zero.

We use the same preferences as in our static model (equation (14)):

Uj =
∞∑
t=0

βt

[
log (cr,t)− ζ

l1+ν
r,t

1 + ν
+ χ log (Gt)

]
.

Recall that these preferences are compatible with balanced growth and consistent with

the empirical evidence reviewed in Chetty (2006).

34



The optimal plan maximizes ωrπrUr + ωnπnUn subject to the incentive constraint

(38) and the flow resource constraint (35). We check numerically that the incentive

constraint (37) does not bind.

The model is calibrated with the same values of ωr, ωn, πr, πn, ζ, ν, χ, α, A, and

gφ used in the static model. We choose β = 1/1.04, δx = 0.1. We set the initial stock

of robots in 2000 equal be zero so, as in the static model, there is no automation in

the year 2000. We choose the cost of robots in 1999 to be the lowest value consistent

with no automation in 2000 in the status-quo equilibrium. We solve our dynamic model

using a modified version of the algorithm proposed by Slav́ık and Yazici (2014) which

we discuss in the appendix.

Figure 10 displays the optimal policy solution. The properties of this solution are

similar to those of the static model. The maximum value of the optimal robot tax is

14 percent, which is higher than the maximum value attained in the static model (9

percent). The tax rate on robots converges to zero as the degree of automation, defined

as mt = Xt/ (Xt + πrlr,t), converges to one.

Technical progress induces a fall over time in the relative productivity of routine

workers. For this reason, it is optimal for the number of routine hours of work to

decline over time. As routine hours fall, there is less incentive for the planner to tax

robots to distort the ratio of wages and loosen the incentive constraint of non-routine

workers. As routine hours converge to zero, the optimal robot tax converges to zero.

This mechanism is also present in our static model.

4 Relation to the public finance literature

In this section we discuss how our results relate to classical results on production effi-

ciency and taxation of capital in the public finance literature.
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Relating our results to Diamond and Mirrlees (1971) Our results stand in

sharp contrast to the celebrated Diamond and Mirrlees (1971) result that an optimal

tax system should ensure efficiency in production and therefore leave intermediate goods

untaxed. In our framework, this property would imply that the tax on robots should

be zero.

At the heart of the failure of the Diamond and Mirrlees (1971) intermediate-good

theorem in our model is the fact that the government cannot discriminate between the

two types of workers. If tax functions could be worker specific, production efficiency

would be recovered in our model. To see this result, consider type-specific tax functions

of the form used by Heathcote et al. (2018) with different tax levels, λr and λn, but

with the same progressivity parameter

Ti (wili) = wili − λi (wili)1−γ .

In this case, household optimality requires

−ul(cj, lj)lj
uc(cj, lj)

= λj (1− γ) (wjlj)
1−γ , and cj = λj (wjlj)

1−γ .

Given that the planner can choose λr and λn to target each marginal rate of substitution

independently, the only constraints faced by the planner are the resource constraint (16)

which can be written as

πrcr + πncn +G ≤ τx + α

α(1 + τx)1/α

αA1/α(1− α)
1−α
α

φ
1−α
α

πnln + φπrlr,

and the implementability conditions

uc(cj, lj)cj +
ul(cj, lj)lj

1− γ
= 0, for j = r, n.

These three conditions are necessary and sufficient for an equilibrium. Recall that the

term (τx + α) /α(1 + τx)
1/α ≤ 1, and is strictly less than one if τx 6= 0.

The robot tax only affects directly the resource constraint and not the imple-

mentability conditions. Since the robot tax does not interfere with incentives, it is
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chosen to maximize output for given levels of hours worked. This objective is achieved

by not distorting production, setting τx = 0.

When the tax system requires that all workers face the same income-tax function

(λr = λn), the planner must satisfy the following additional implementability constraint

cr
cn

=

(
wrlr
wnln

)1−γ

. (42)

The value of τx no longer appears only in the resource constraint; it also appears

in equation (42) because the wage ratio is a function of τx. To relax restriction (42), it

might be optimal to choose values of τx that are different from zero. This result depends

crucially on the fact that different labor types interact differently with the intermediate

good, which means that distorting the use of intermediate goods affects in different

ways the wage rates of routine and non-routine workers. If the production function

was weakly separable in labor types and intermediate inputs, the wage ratio would be

independent of the usage of intermediate inputs and production efficiency would be

optimal. In our model, robots are substitutes of routine workers and complements of

non-routine workers. A tax on robots decreases the wage rate of non-routine workers

and increases the wage rate of routine workers. This property implies that it can be

optimal to use robot taxes.

Relating our results to Atkinson and Stiglitz (1976) Our result that in the

Mirrleesian optimal taxation problem production efficiency is not optimal stands in

contrast with the well-known result in Atkinson and Stiglitz (1976) that, for preferences

that are separable in commodities and leisure, uniform commodity taxation is optimal.

Since uniform taxation can be interpreted as production efficiency, their result seems

to contradict ours.

The difference between our results and those of Atkinson and Stiglitz (1976) stem

from the determinants of worker productivity. In Atkinson and Stiglitz (1976), workers’

productivities are exogenous. In our setup workers’ productivity are endogenous so,
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it may be optimal to deviate from production efficiency to induce changes in those

productivities. In particular, by taxing robots the Mirrleesian planner is able to change

pre-tax wages through general-equilibrium effects, relaxing the incentive constraint, and

improving welfare.19

Naito (1999) shows that uniform taxation may not be optimal in an economy in

which the intensity of high- and low-skilled workers in production varies across goods.

This form of production non-separability implies that commodities interact differently

with different agent types and, as a result, it might be optimal to deviate from uniform

commodity taxation.20 Similarly, in our model the assumption that production is not

separable in the use of robots and the two labor types is key to generate deviations

from production efficiency.

The intuition for the importance of general-equilibrium effects of taxation on wages

and prices is the same we emphasized in our discussion of proposition 1. Because

the planner does not know the type of the agent and only observes income, it is re-

stricted to use incentive-compatible tax systems. Since different types interact dif-

ferently with the intermediate good, distorting production decisions may help in the

screening process. To see this property, it is useful to write the incentive constraint as:

u(ci, li) ≥ u (cj, wjlj/wi). Crucially, this incentive constraint involves the wage ratio.

Whenever the taxation of intermediate goods affects this ratio, production efficiency

may no longer be optimal. When intermediate goods are not separable in production

from the two labor types, taxing intermediate goods affects the wage ratio and it might

be optimal to distort production.

The importance of general-equilibrium effects of taxes on wages in shaping the

optimal tax policy was originally emphasized by Stiglitz (1982) and Stern (1982) in

19An important assumption is that when workers imitate others, they retain their productivity. See
Scheuer and Werning (2016) for a discussion.

20Jacobs (2015) shows that production efficiency is generally not optimal in a model where com-
modity prices are exogenous but wages are not. In his model, goods are produced with commodities
and labor according to production functions that are worker specific. Taxation of commodities has a
differential impact on the marginal productivities and wages of the different workers.
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a Mirrlees (1971) environment. Mirrlees assumes that production is linear in labor,

so taxation does not affect wages through general-equilibrium effects. Stiglitz (1982)

and Stern (1982) show that when production is not linear in labor, the optimal tax

schedule is more regressive than in the Mirrlees model and the top marginal income tax

is negative instead of zero.21 The reason for this result is that it is optimal to encourage

high-skilled workers to exert more effort so as to reduce their relative wages, making

their incentive constraint easier to satisfy.

Relating our results to the literature on the optimal taxation of capital The

public-finance literature discusses several reasons why it might be optimal to tax capital,

introducing intertemporal distortions.22 First, it might be optimal to use intertemporal

distortions to confiscate the initial stock of capital. Second, intertemporal distortions

can be optimal when the elasticities of the marginal utility of consumption and labor

are time varying. Third, intertemporal distortions can be used to provide insurance in

models with idiosyncratic risk. All three reasons are absent in our model.

We consider Mirleesian taxes which allow for lump-sum taxation so there is no

reason to confiscate the initial stock of capital. In addition, we assume that utility is

separable in consumption and labor and the disutility of labor is isoelastic. Werning

(2007) shows that under these conditions and with perfect substitutability of labor

types, the optimal tax on capital is zero. Because our dynamic model abstracts from

idiosyncratic risk, the reasons for capital taxation discussed in Golosov, Kocherlakota

and Tsyvinski (2003) do not apply.

Our results are related to work by Slav́ık and Yazici (2014). These authors study

optimal taxation in a model with two types of capital, structures and equipment, and

21Rothschild and Scheuer (2013) generalize the results of Stern (1982) and Stiglitz (1982) to an
environment in which occupational choice is endogenous and there is a continuous distribution of
agent types.

22For a recent overview of the literature on optimal capital taxation in a dynamic Ramsey setting
see Chari, Nicolini and Teles (2018).
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no technical progress. They assume that equipment raises the marginal product of

skilled workers relative to that of unskilled workers. In their set up, the optimal tax

on equipment rises over time. In contrast, the optimal tax on robots in our model

converges to zero. As discussed in Section 3, this property reflects the presence of

technical progress in our model.

In sum, the classical results on production efficiency in the public finance literature

depend on one of two key assumptions: (i) the government can tax differently every

consumption good and labor type; or (ii) the environment is such that production

distortions do not help in shaping incentives. Both assumptions fail in our model. On

the one hand, the government cannot design the income tax system to independently

target each type of worker. On the other hand, robots are substitutes for routine

workers and complements to non-routine workers, so a tax on robots affects the ratio

of the wages of these two types of workers.

5 Conclusions

Our analysis suggests that without changes to the current U.S. tax system, a sizable

fall in the costs of automation would lead to a massive rise in income inequality. Even

though routine workers keep their jobs, their wages fall to make them competitive with

the possibility of automating production.

Income inequality can be reduced by raising the marginal tax rates paid by high-

income individuals and by taxing robots to raise the wages of routine workers. But this

solution involves a substantial efficiency loss. A Mirrleesian optimal income tax can

reduce inequality at a smaller efficiency cost than the variants of the U.S. tax system

discussed above, coming close to the levels of social welfare obtained in the first-best

allocation.

An alternative, less ambitious, approach is to amend the tax system to include a

transfer that is independent of income. The desirability of this type of universal basic
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income system has been debated since Thomas More proposed it in his 1516 book,

Utopia. With this transfer in place, it is optimal in our model to tax robots for values

of the automation cost that lead to partial automation. For values of the automation

cost that lead to full automation, it is not optimal to tax robots. Routine workers

lose their jobs and live off government transfers, just like in Kurt Vonnegut’s “Player

Piano.”
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A Appendix

A.1 The first-best allocation

We define the first-best allocation in this economy as the solution to an utilitarian wel-

fare function, absent informational constraints. This absence implies that the planner

can perfectly discriminate among agents and enforce any allocation. The optimal plan

solves the following problem

W = maxωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn +G ≤ A

[ˆ m

0

xρi di+

ˆ 1

m

nρi di

] 1−α
ρ

(πnln)α − φ
ˆ m

0

xidi, [µ],

ˆ 1

m

nidi = πrlr, [η].

The first-order conditions with respect to ni and xi are

µ(1− α)A

[ˆ m

0

xρi di+

ˆ 1

m

nρi di

] 1−α
ρ
−1

(πnln)α nρ−1
i = η, ∀i ∈ (m, 1]

(1− α)A

[ˆ m

0

xρi di+

ˆ 1

m

nρi di

] 1−α
ρ
−1

(πnln)α xρ−1
i = φ, ∀i ∈ [0,m].

The first equation implies that the marginal productivity of routine labor should be con-

stant across the activities that use routine labor. This property means that (1−m)ni =

πrlr for i ∈ (m, 1] and ni = 0, otherwise. The same property applies to robots used in

the activities where they are used, xi = x for i ∈ [0,m] and xi = 0, otherwise.

To characterize the optimal allocations we replace ni and xi in the planner’s problem,

which can be rewritten as

W = maxωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn +G ≤ A

[
mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ

(πnln)α − φmx, [µ].

44



The first-order conditions with respect to x and m are, respectively,

(1− α)A

[
mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ
−1

Nα
n x

ρ−1 = φ,

1− α
ρ

A

[
mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ
−1

Nα
n

[
xρ − (1− ρ)

(
πrlr

1−m

)ρ]
= φx.

The ratio of these two equations implies that if automation is positive, m ∈ (0, 1), then

x = πrlr/(1−m). Using this condition, we obtain

W = maxωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn +G ≤ A

(
πrlr

1−m

)1−α

(πnln)α − φm πrlr
1−m

, [µ].

The first-order condition with respect to the level of automation implies that

(1−α)A
1

(1−m)2−α (πrlr)
1−α (πnln)α−φ πrlr

(1−m)2
= 0⇔ m = 1−

[
φ

A(1− α)

]1/α
πrlr
πnln

,

provided that m is interior. Then,

m = max

{
1−

[
φ

A(1− α)

]1/α
Nr

Nn

, 0

}
.

Furthermore, the first-order conditions with respect to cr, cn, lr, ln, and G are

ωruc(cr, lr) = µ,

ωnuc(cn, ln) = µ,

ωrul(cr, lr) ≥
µ

πrlr
(1− α)(1−m)Y,

ωnul(cn, ln) = µ
αY

πnln
,

g′(G) = µ.
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The first-order condition with respect to Nr is presented with inequality, because the

constraint Nr ≥ 0 may bind when automation costs are low. The combination of the

first two equations implies that

ωruc(cr, lr) = ωnuc(cn, ln).

The optimal marginal rates of substitution are given by the combination of the marginal

utility of consumption and leisure for each individual

ul(cr, lr)

uc(cr, lr)
≥ (1− α)(1−m)

Y

πrlr
,

ul(cn, ln)

uc(cn, ln)
= α

Y

πnln
.

Finally, from the first-order conditions for G and cr it follows that

g′(G) = ωru
′(cr). (43)

A.2 Proof of Lemma 1

In an equilibrium, robot producers set the price of robots equal to their marginal cost

pi = φ. (44)

Optimality for final goods producers implies that

xi =

{
πrlr
1−m , i ∈ [0,m],

0, otherwise
(45)

ni =

{
πrlr
1−m , i ∈ (m, 1],

0, otherwise
(46)

m = max

{
1−

[
(1 + τx)φ

(1− α)A

]1/α
πrlr
πnln

, 0

}
, (47)

Y = A

[ˆ m

0

xρi di+

ˆ 1

m

nρi di

] 1−α
ρ

(πnln)α , (48)
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wr = (1− α)(1−m)
Y

πrlr
, (49)

wn = α
Y

πnln
. (50)

The resource constraint is

πrcr + πncn +G ≤ Y −
ˆ m

0

φxi, (51)

We can let equation (44) define the price of robots, equation (45) define xi, equations

(46), (47) and (48) determine ni, m, and Y , respectively. Assuming that m is interior,

the wage equations (49) and (50) can be written as (11) and (12). These equations can

be used to solve for the equilibrium wage rates. Combining the results above, we can

write the resource constraint as

πrcr + πncn +G ≤ α
A1/α(1− α)

1−α
α

[(1 + τx)φ]
1−α
α

τx + α

α(1 + τx)
πnln + φπrlr.

Replacing the wage rates we can write

πrcr + πncn +G ≤ πnwnln
τx + α

α(1 + τx)
+
πrwrlr
1 + τx

. (52)

This derivation makes it clear that the resource constraint (52) summarize the equilib-

rium conditions of the production side of the economy.

Household optimality requires that

u (cj, lj) ≥ u (c, l) , ∀(c, l) : c ≤ wjl − T (wjl).

The following incentive constraint are necessary constraints

u (cn, ln) ≥ u

(
cr,

wr
wn
lr

)
u (cr, lr) ≥ u

(
cn,

wn
wr
ln

)
.

These are also sufficient conditions, because the planner can set the tax schedule T (·)
such that for all Y 6∈ {Yn, Yr} the allocation is worse for both agents than their respective

allocation. This is done by setting

T (y) = y −max

{
c|u(ci, li) ≥ u

(
c,
y

wi

)
, for i = r, n

}
.
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A.3 Proof of Proposition 1

The allocations solve the original optimization problem, or equivalently they solve

W (τx) = max πrωru(cr, lr) + πnωnu(cn, ln) + v(G)

subject to

[ηrπr] u(cr, lr) ≥ u

(
cn,

wn
wr
ln

)
,

[ηnπn] u(cn, ln) ≥ u

(
cr,

wr
wn
lr

)
,

[µ] πrcr + πncn +G ≤ πnwnln
τx + α

α(1 + τx)
+ πr

wrlr
1 + τx

.

Assume that the routine IC constraint does not bind, then ηr = 0. The envelope

condition is

W ′(τx) = −ηnπnul
(
cr,

wr
wr
lr

)
d log (wr/wn)

d log(1 + τx)

1

1 + τx

wrlr
wn

+µ

 πnwnln
τx+α

α(1+τx)2

[
d logwn

d log(1+τx)
+ 1−α

τx+α

]
+πr

wrlr
(1+τx)2

[
d logwr

d log(1+τx)
− 1
]  .

Using the wages we have that

wr = φ(1 + τx)⇒
d logwr

d log (1 + τx)
= 1,

wn = α
A1/α (1− α)

1−α
α

[(1 + τx)φ]
1−α
α

⇒ d logwn
d log (1 + τx)

= −1− α
α

,

wr
wn

=
[(1 + τx)φ]

1
α

αA1/α (1− α)
1−α
α

⇒ d logwr/wn
d log (1 + τx)

=
1

α
.

Plugging these into the envelope condition we obtain

W ′(τx) = −ηnπnul
(
cr,

wr
wn
lr

)
1

α (1 + τx)

wrlr
wn

+ µπnwnln
τx + α

α(1 + τx)2

[
−1− α

α
+

1− α
τx + α

]
=

1

α (1 + τx)

[
−ηnul

(
cr,

wr
wn
lr

)
wrlr
wn
− µπnwnln

τx
1 + τx

1− α
α

]
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Because µ > 0 then if τx ≤ 0 we obtain that

W ′(τx) > 0,

so that the planner always improves by marginally increasing τx. Furthermore, since

optimality implies that W ′(τx) = 0 then the optimal tax on robots verifies that

τx
1 + τx

=
α

1− α

ηn

(
−ul

(
cr,

wr
wn
lr

)
wrlr
wn

)
µwnln

The first order condition with respect to lr implies that

−ηn
µ
ul

(
cr,

wr
wr
lr

)
wrlr
wn

=
ω̃rπrul (cr, lr) lr + πrwrlr

1+τx

πn
=
πrφlr
πn

[
1− ω̃r (−ul (cr, lr))

φ

]
where ω̃r = ωr/µ. Replacing this in the optimal condition for τx we obtain

τx
1 + τx

=
α

1− α
πrφlr
πnwnln

[
1− ω̃r (−ul (cr, lr))

φ

]
.

A.3.1 The full automation case (m = 1, lr = 0)

If the optimal plan features lr = 0 then it must be that ln > 0. This result implies that

ψ = 0. From the envelope condition we can see that

W ′(τx) = − µ

α (1 + τx)
πnwnln

τx
1 + τx

1− α
α

= 0⇔ τx = 0. (53)

A.4 Model with simple taxes

The competitive equilibrium for this economy is characterized by the following set of

equations

cn = λ (wnln)1−γ = λ

(
αY

πr

)1−γ

, (54)

−ul(cn, ln)ln
uc(cn, ln)

= λ (1− γ) (wnln)1−γ , (55)
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cr = λ (wrlr)
1−γ = λ

(
(1− α)(1−m)Y

πr

)1−γ

, (56)

−ul(cr, lr)lr
uc(cr, lr)

= λ (1− γ) (wrlr)
1−γ , (57)

m = max

{
1−

(
φ(1 + τx)

(1− α)A

)1/α
πrlr
πnln

, 0

}
, (58)

Y =

{
A (πrlr)

1−α (πnln)α , if m = 0
wn
α
πnln, if m > 0

}
(59)

πncn + πrcr +G ≤
{

A (πrlr)
1−α (πnln)α , if m = 0

wnπnln
τx+α
α(1+τx)

+ wrπrlr
1+τx

, if m > 0

}
, (60)

where wr and wn are given by (12) and (11), respectively.

Taking the ratio between equations (54) and (56), we can see that a necessary

condition is

cr
cn

=

[
(1− α)(1−m)

α

πn
πr

]1−γ

⇔ cr = cn

[
(1− α)

α

πn
πr

(
φ(1 + τx)

(1− α)A

)1/α
πrlr
πnln

]1−γ

. (61)

The conditions (21), (22), (23a) and (16) are necessary and sufficient for an interior

automation equilibrium in terms the allocations {cr, lr, cn, ln, G} and the tax parameters

{τx, γ}. They are necessary because they follow from the equilibrium conditions. They

are sufficient because, given a solution for {cr, lr, cn, ln, G} and {τx, γ} which satisfies

the constraints, the other remaining conditions can be satisfied by the choice of the

remaining variables. In particular, equations (12) and (11) can be satisfied by the

choice of wn and wr, respectively. We can set λ such that

λ =
1

(1− γ) (wnln)1−γ
−ul(cn, ln)ln
uc(cn, ln)

,

which satisfies (55). This choice of λ combined with (23a) also satisfies (54). Choosing

λ in this way and combined with (21) implies that (57) is satisfied. Satisfying (57) with

this choice of λ also implies that (56) is satisfied. The conditions (58) and (59) are used

to solve for m and Y . The condition (60) is the same as (16).
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We now derive equation (24). The Ramsey planner solves the following problem

maxωrπru(cr, lr) + ωnπnu(cn, ln) + v(G),

subject to [
η

cr

]
cr = cn

(1− α)
(
φ(1+τx)
(1−α)A

)1/α
lr
ln

α


1−γ

[λr] uc(cr, lr)cr +
ul(cr, lr)lr

1− γ
= 0,

[λn] uc(cn, ln)cn +
ul(cn, ln)ln

1− γ
= 0,

[µ] πrcr + πncn +G ≤ wnπnln
τx + α

α(1 + τx)
+ φπrlr.

The first-order condition with respect to τx is given by

0 =
η

cr
cn

(1− α)
(
φ(1+τx)
(1−α)A

)1/α
lr
ln

α


1−γ

1− γ
α(1 + τx)

+ µ

[
dwn
dτx

πnln
τx + α

α(1 + τx)
+ wnπnln

1− α
α(1 + τx)2

]

0 =
η

cr
cr

1− γ
α(1 + τx)

+ µ
wnπnln

α(1 + τx)2

[
d logwn

d log (1 + τx)
(τx + α) + 1− α

]
0 =

η

cr
cr (1− γ) + µ

wnπnln (1− α)

(1 + τx)

[
−τx + α

α
+ 1

]
η (1− γ) = µwnπnln

1− α
α

τx
1 + τx

⇔ τx
1 + τx

=
α

1− α
η (1− γ)

µwnπnln
.

A.5 Simple taxes with a lump-sum transfer

The conditions are necessary as they follow from manipulations of the necessary condi-

tions for an equilibrium. Sufficiency is established as follows. Let {cr, lr, cn, ln, G} and

{τx, γ, ω} denote some allocation that satisfies the conditions

uc(cr, lr) (cr − Ω) +
ul(cr, lr)lr

1− γ
= 0,
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uc(cn, ln) (cn − Ω) +
ul(cn, ln)ln

1− γ
= 0,

cr − Ω = (cn − Ω)

[
(1− α)

α

πn
πr

(
φ(1 + τx)

(1− α)A

)1/α
πrlr
πnln

]1−γ

,

πrcr + πncn +G ≤ wnπnln
τx + α

α(1 + τx)
+
wrπrlr
1 + τx

.

First, let us set wn and wr according to their definitions (11) and (12), respectively.

Now set Y , λ, Ω and m such that

Y =
πnwnln
α

,

λ =
−ul(cn, ln)ln

uc(cn, ln)(1− γ)(wnln)1−γ ,

m = max

{
1−

[
φ(1 + τx)

A(1− α)

]1/α
πrlr
πnln

, 0

}
.

and note that

Y =
πnwnln
α

=
πrwrlr
α

πnwnln
πrwrlr

= πrwrlr

 1

(1− α)
[
φ(1+τx)
A(1−α)

]1/α
πrlr
πnln

 =
πrwrlr

(1− α) (1−m)
.

To show that the conditions for optimality of non-routine households are satisfied, we

note that

uc(cn, ln) (cn − Ω) +
ul(cn, ln)ln

1− γ
= 0

cn = − ul(cn, ln)ln
uc(cn, ln) (1− γ)

+ Ω

and by definition of λ we obtain

cn = λ(wnln)1−γ + Ω.
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Now to show that the conditions for optimality of the routine household are satisfied,

we note that the no-discrimination constraint implies that

cr − Ω = (cn − Ω)

(
(1−α)
πr

(
φ(1+τx)
(1−α)A

)1/α
πrlr
πnln

)1−γ

(
α
πn

)1−γ = (cn − Ω)

(
(1−α)(1−m)Y

πr

)1−γ

(
αY
πn

)1−γ

cr − Ω = λ(wnln)1−γ

(
(1−α)(1−m)Y

πr

)1−γ

(
αY
πn

)1−γ = λ(wrlr)
1−γ

which shows that the budget constraint is satisfied. Furthermore, from the imple-

mentability constraint

uc(cr, lr) (cr − Ω) +
ul(cr, lr)lr

1− γ
= 0

⇔ cr − Ω = − ul(cr, lr)lr
uc(cr, lr) (1− γ)

and using what we have found above

− ul(cr, lr)lr
uc(cr, lr) (1− γ)

= λ(wrlr)
1−γ.

which shows that the budget marginal condition is also satisfied.

The problem of the government is

maxωrπru(cr, lr) + ωnπnu(cn, ln) + v(G),

subject to

[λj] uc(cj, lj) (cr − Ω) +
ul(cj, lj)lj

1− γ
= 0,

[
η

cr

]
cr − Ω = (cn − Ω)

(
(1−α)
πr

(
φ(1+τx)
(1−α)A

)1/α
πrlr
πnln

)1−γ

(
α
πn

)1−γ ,

[φ] u (cj, lj) ≥ u (Ω, 0)
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[µ] πrcr + πncn +G ≤ wnπnln
τx + α

α(1 + τx)
+ φπrlr.

The first order condition with respect to τx is given by

0 =
η

cr
(cn − Ω)

(
(1−α)
πr

(
φ(1+τx)
(1−α)A

)1/α
πrlr
πnln

)1−γ

(
α
πn

)1−γ
1− γ
α

1

1 + τx

+µ

[
dwn
dτx

πnln
τx + α

α(1 + τx)
+ wnπnln

1− α
α(1 + τx)2

]

η
1− γ
α

(
cr − Ω

cr

)
= µ

wnπnln (1− α)

(1 + τx)
τx

τx
1 + τx

=
α

1− α
η (1− γ)

µwnπnln

(
cr − Ω

cr

)
.

A.6 Proof of Lemma 2

With the definition Uθ we can write the incentive constraint for the extensive margin

choice as

Uθ −Oθθ ≥ Uθ′ −Oθ′θ.

Now, we use the fact that if θ, θ′ ∈ Θi then Oθ = Oθ′ and the two incentive con-

straints {
Uθ −Oθθ ≥ Uθ′ −Oθ′θ
Uθ′ −Oθ′θ′ ≥ Uθ −Oθθ′

⇔

{
Uθ ≥ Uθ′

Uθ′ ≥ Uθ,

which necessarily implies that Uθ = Uθ′ , and we define this as Ui for i = r, n.

For the next part, of the proposition we note that if we define

θ∗ = Un − Ur

we have, by construction, that for all θ ≤ θ∗

Un − θ ≥ Ur,

and for all θ > θ∗

Un − θ < Ur.
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A.7 Proof of Proposition 2

The optimal plan, for a fixed τx, solves the following optimization problem

W (τx) = maxUn

ˆ θ∗

−∞
ω(θ)dF (θ) + Ur

ˆ ∞
θ∗

ω(θ)dF (θ)−
ˆ θ∗

−∞
ω(θ)θdF (θ) + v(G),

subject to

[ηr(θ)] Un ≥ u

(
cθ,

yθ
wn

)
, ∀θ ∈ Θr

[ηn(θ)] Ur ≥ u

(
cθ′ ,

yθ′

wr

)
, ∀θ′ ∈ Θn

[η] θ∗ = Un − Ur,

[f(θ′)ψ(θ′)] Un = u

(
cθ′ ,

yθ′

wn

)
, ∀θ′ ∈ Θn

[f(θ)ψ(θ)] Ur = u

(
cθ,

yθ
wr

)
, ∀θ ∈ Θr

[µ]

ˆ
Θ

cθdF (θ) +G(θ) ≤
ˆ

Θn

YθdF (θ)
τx + α

α(1 + τx)
+

´
Θr
YθdF (θ)

1 + τx
.

The variables inside squared parenthesis define the Lagrange multipliers. Suppose, to-

wards a contradiction, that we have found a solution {{cθ, yθ}, Ur, Un, θ∗} where either:

• y(θ) 6= y(θ′) for some θ, θ′ ∈ Θr,

• y(θ) 6= y(θ′) for some θ, θ′ ∈ Θn.

Take wi ≥ wj, and let’s analyze first the case where y(θ) 6= y(θ′) for some θ, θ′ ∈ Θi.

Define

yi = inf
θ∈Θi

y(θ),

and note that by single-crossing for all y(θ) > yi the incentive constraint condition does

not bind. For that reason, the first-order conditions for such θ are given by

uc

(
cθ,

yθ
wi

)
ψ(θ) = µ,

ul

(
cθ,

yθ
wi

)
1

wi
ψ(θ) = µΓi.
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The combination of this two conditions plus the constraint that all θ ∈ Θi must share

the same utility level yields a unique solution for cθ and yθ:

ul

(
cθ,

yθ
wi

)
1
wi

uc

(
cθ,

yθ
wi

) = Γi,

u

(
cθ,

yθ
wi

)
= Un.

If there is no θ̂ such that y(θ̂) = yi we have reached a contradiction. If there exists θ̂

such that this is true then the first-order conditions are

uc

(
cθ̂,

yθ̂
wi

)ψ(θ̂)− ηi
uc

(
cθ̂,

y
θ̂

wj

)
uc

(
cθi ,

yθ
wi

)
 = µ

−ul
(
cθ̂,

yθ̂
wi

)
1

wi

ψ(θ̂)− ηi
ul

(
cθ̂,

y
θ̂

wj

)
1
wj

ul

(
cθ̂,

y
θ̂

wi

)
1
wi

 = µΓi

Note that this implies that

−ul
(
cθ̂,

y
θ̂

wi

)
1
wi

uc

(
cθ̂,

y
θ̂

wi

) =

ψ(θ̂)− ηi
uc

(
c
θ̂
,
y
θ̂
wj

)
uc
(
cθi ,

yθ
wi

)

ψ(θ̂)− ηi
ul

(
c
θ̂
,
y
θ̂
wj

)
1
wj

ul

(
c
θ̂
,
y
θ̂
wi

)
1
wi

Γi.

The single-crossing property implies that

−ul
(
cθ̂,

y
θ̂

wi

)
1
wi

uc

(
cθ̂,

y
θ̂

wi

) ≥ Γi =
−ul

(
cθ,

yθ
wi

)
1
wi

uc

(
cθ,

yθ
wi

) ,

Note that given our assumptions on the utility function

∂

(
−ul

(
c, y
wi

)
1
wi

uc
(
c, y
wi

)
)

∂y
≥ 0, and

∂

(
−ul

(
c, y
wi

)
1
wi

uc
(
c, y
wi

)
)

∂c
≥ 0.
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Therefore, if yθ̂ < yθ then to have a higher marginal rate of substitution it requires that

cθ̂ < cθ. This is impossible since utilities must be equal, thus reaching a contradiction.

The argument for agents of occupation j such that wj ≤ wi follows the same lines,

with the change of taking

yj = sup
θ∈Θj

y(θ).

A.8 Simple Taxes with Lump-Sum Transfers - The household’s
problem with regressivity

In this section of the appendix we discuss the problem of the household when the income

tax function is regressive. Under the proposed tax function with a lump-sum transfer,

a household which has a wage rate w solves the following problem

maxu(c, l) subject to c ≤ λ (wl)1−γ + Ω.

For simplicity assume that preferences are given by

u(c, l) = log c− ζ l
1+ν

1 + ν
,

for ζ, ν > 0. The solution to this problem satisfies the following conditions:

cζlν = (1− γ)λw1−γl−γ, (63)

c = λ (wl)1−γ + Ω. (64)

Note that if the tax system is regressive, γ < 0, and lump-sum transfers are positive,

Ω > 0, then as l→ 0 both the right- and left-hand sides of (63) converge to zero. As a

result, a corner solution may be the optimal choice.

This case actually happens in our solutions to the simple income taxes with lump-

sum transfers problem. Indeed, when the routine worker drops out of the labor force, it

is optimal to set the lump-sum transfer up to a level in which the non-routine worker is

exactly indifferent between the corner solution, with c = Ω and l = 0, and the interior
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solution, with c > Ω and l > 0. This is easiest seen in the following figure. In this

figure we plot both the budget constraint for this case, and the indifference curve for

the non-routine worker with the highest associated level of utility.

A.9 Endogenous occupational choice - The first-best alloca-
tion

The first-best planner in this environment solves

max

ˆ
Θ

[u (cθ, lθ)−Oθθ] dF (θ) + v(G), subject to

[λ]

ˆ
Θ

cθf(θ)dθ +G = A

[ˆ m

0

xρi di+

ˆ 1

m

nρi di

] 1−α
ρ

Nα
n − φ

ˆ m

0

xidi

[λn] Nn =

ˆ
Θn

lθf(θ)dθ, and [λr]

ˆ 1

m

nidi =

ˆ
Θr

lθf(θ)dθ ≡ Nr.

The first-best allocation in this economy features production efficiency. This means

that if m is interior

xi =

{
Nr

1−m , i ∈ [0,m]

0, otherwise

ni =

{
0, i ∈ [0,m]
Nr

1−m , otherwise

m = 1−
[

φ

(1− α)A

]1/α
Nr

Nn

.
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If two agents choose the same occupation, they have the same productivity. So,

the first best chooses the same allocation in terms of hours of work and consumption.

Then, define Ci and Ni the bundle given to the agents that are in occupation i = r, n.

Using these optimality conditions we can rewrite the optimization problem as follows

max

ˆ
Θn

[u (cn, ln)− θ] dF (θ) +

ˆ
Θr

u (cr, lr) dF (θ) + v(G), subject to

[λ]

ˆ
Θn

cndF (θ) +

ˆ
Θr

crdF (θ) +G = wn

ˆ
Θn

lndF (θ) + wr

ˆ
Θr

lrdF (θ)

How does the decision of whether an agent becomes routine or non routine looks

like? If the planner allocates household θ to a non-routine occupation, the contribution

to social welfare is

u (cn, ln)− θ + λ (wnln − cn) .

If the planner allocates the household to a routine occupation the contribution is instead

u (cr, lr) + λ (wrlr − cr) .

Clearly, the planner should allocate household θ to a non-routine occupation if the first

is greater than the second,

θ ≤ λ [(wnln − cn)− (wrlr − cr)] + u (cn, ln)− u (cr, lr) ≡ θ∗.

This equation defines a threshold rule, θ∗. All households with θ ≤ θ∗ should become

non-routine workers and those with θ > θ∗ should become routine workers. This thresh-

old rule balances the private costs of choosing a non-routine occupation for household

θ,

u (cr, lr)− u (cn, ln)− θ,

with the social benefit of generating more consumption goods

λ [(wnNn − Cn)− (wrNr − Cr)] .
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We can rewrite the optimization problem for the social planner as follows

max
{Cn,Nn,Cr,Nr,θ∗}

F (θ∗)u (cn, ln) + [1− F (θ∗)]u (cr, lr) + g(G)−
ˆ θ∗

−∞
θf(θ)dθ, subject to.

[λ] F (θ∗)cn + [1− F (θ∗)] cr +G = wnF (θ∗)ln + wr [1− F (θ∗)] lr.

The solution to this optimization problem satisfies the following optimality conditions

−ul (cn, ln)

uc (cn, ln)
= wn,

−ul (cr, lr)
uc (cr, lr)

≥ wr,

uc (cn, ln) = uc (cr, lr) ,

θ∗ = λ [(wnln − cn)− (wrlr − cr)] + u (cn, ln)− u (cr, lr) .

Using the fact that at the optimum cn = cr and that λwi = −ul (ci, li), we can solve for

the threshold rule as a function of (cn, ln) and (cr, lr)

θ∗ = [u (cn, ln)− ul (cn, ln) ln]− [u (cr, lr)− ul (cr, lr) lr] .

A.10 Proof of proposition 3

Let us define βtµt the multiplier for period t resource constraint, and ηn the multiplier

for the incentive constraint of non-routine households. The first-order conditions with

respect to cn,t and cr,t are given by

βtµtωnu
′(cn,t)

(
1 +

ηn
πn

)
= µt,

βtµtωru
′(cr,t)

(
1− ηn

πr

)
= µt.

These conditions imply that

u′(cn,t)

βu′(cn,t+1)
=

u′(cr,t)

βu′(cr,t+1)
=

µt
βµt+1

.
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Since the first order condition with respect to Xt+1 is

µtφt = βµt+1[Fx(t+ 1) + φt+1(1− δx)]

+ β
ηn
Xt+1

h′
(
Fr(t+ 1)

Fn(t+ 1)
lr,t+1

)
Fr(t+ 1)

Fn(t+ 1)
lr,t+1εFr/Fn,x(t+ 1),

then

u′(cn,t)

βu′(cn,t+1)
=

u′(cr,t)

βu′(cr,t+1)
=
Fx(t+ 1) + φt+1(1− δx)

φt

+
πnηn

µt+1φtXt+1

h′
(
Fr(t+ 1)

Fn(t+ 1)
lr,t+1

)
Fr(t+ 1)

Fn(t+ 1)
lr,t+1εFr/Fn,x(t+ 1).

Note that µt > 0, ηn > 0, and εwr/wn,x(t+ 1) < 0. Then, as long as lr,t+1 > 0,

u′(cr,t)

βu′(cr,t+1)
=

u′(cn,t)

βu′(cn,t+1)
<
Fx(t+ 1) + φt+1(1− δx)

φt
.

If, instead, routine workers supply zero hours, lr,t+1 = 0, the optimal intertemporal

wedge is zero, τ kj,t+1 = 0.

A.11 Solving the dynamic model

The dynamic Mirrlees plan in section 3 solves the following problem:

max
∞∑
t=0

βt

[
ωrπr

[
log (cr,t)− ζ

l1+ν
r,t

1 + ν

]
+ ωnπn

[
log (cn,t)− ζ

l1+ν
n,t

1 + ν

]
+ χ logGt

]
, subject to.

∞∑
t=0

βt

[
log (cn,t)− ζ

l1+ν
n,t

1 + ν

]
≥

∞∑
t=0

βt

log (cr,t)− ζ

(
Fr(t)
Fn(t)

lr,t

)1+ν

1 + ν


πrcr,t + πncn,t +Gt + φtXt+1 ≤ z [Xt + πrlr,t]

1−α (πnln,t)
α + φt (1− δX)Xt,

X0 ≥ 0 given

where Fr(t)
Fn(t)

= 1−α
α

(
πnln,t

Xt+πrlr,t

)
. First, let us define the level of automation as

mt ≡
Xt

Xt + πrlr,t
.
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It is useful to define the following scaled variables that are constant in the steady state:

ci,t ≡ ci,t/e
1−α
α
gφ(t−1), Gt ≡ Gt/e

1−α
α
gφ(t−1), and X t+1 ≡ φtXt+1/e

1−α
α
gφ(t−1). Using these

variables, we can rewrite the Mirrleesian planning problem as:

max
∑

βt

[
ωrπr

[
log (cr,t)− ζ

l1+ν
r,t

1 + ν

]
+ ωnπn

[
log (cn,t)− ζ

l1+ν
n,t

1 + ν

]
+ χ logGt

]
, subject to.

∑
βt

[
log (cn,t)− ζ

l1+ν
r,t

1 + ν

]
≥
∑

βt

log (cr,t)− ζ

(
1−α
α
φt

(
πnln,t

Xt+φ(t)πrlr,t

)
lr,t

)1+ν

1 + ν

 ,
πrcr,t + πncn,t +Gt +X t+1 ≤ zφ

(
X t + φtπrlr,t

)1−α
(πnln,t)

α + (1− δX)X t,

X0 ≥ 0 given.

where zφ = ze
− (1−α)2

α gφ

φ1−α
, (1− δX) = (1− δX) e−

gφ
α , and φt ≡ φe−

gφ
α

(t−1−(1−α)) .

We compute the solution to this problem using a modified version of the algorithm

proposed by Slavik and Yazici (2014). This algorithm involves truncating the problem

at time T and assuming that a steady state is reached at this terminal time. We set
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T = 300. The problem then becomes

max
T−1∑
t=0

βt

[
ωrπr

(
log (cr,t)− ζ

l1+ν
r,t

1 + ν

)
+ ωnπn

(
log (cn,t)− ζ

l1+ν
n,t

1 + ν

)
+ χ logGt

]

+
βT

1− β

[
ωrπr

(
log (cr,T )− ζ

l1+ν
r,T

1 + ν

)
+ ωnπn

(
log (cn,T )− ζ

l1+ν
n,T

1 + ν

)
+ χ logGT

]
, subject to.

[η]
T−1∑
t=0

βt

(
log (cn,t)− ζ

l1+ν
r,t

1 + ν

)
+

βT

1− β

(
log (cn,T )− ζ

l1+ν
r,T

1 + ν

)

≥
T−1∑
t=0

βt

log (cr,t)− ζ

[
1−α
α
φt

(
πnln,t

Xt+φ(t)πrlr,t

)
lr,t

]1+ν

1 + ν


+

βT

1− β

log (cr,T )− ζ

[
1−α
α
φT

(
πnln,T

XT+φT πrlr,T

)
lr,t

]1+ν

1 + ν

 ,

[
βtµt

]
πrcr,t + πncn,t +Gt +X t+1 ≤ zφ

(
X t + φtπrlr,t

)1−α
(πnln,t)

α + (1− δX)X t, for t = 0, ..., T − 1(
βT

1− β
µT

)
πrcr,T + πncn,T +GT ≤ zφ

(
XT + φTπrlr,T

)1−α
(πnln,T )α − δXXT ,

X0 ≥ 0 given,

where η , βtµt, and βT

1−βµT denote the Lagrange multipliers of each constraint.

We initialize the algorithm by computing a stationary solution for a fixed value of φ

which is equal to its terminal value (φ300). We have eight unknowns:
{
cr, cn, lr, ln, G,X

}
,

and the multipliers η and µ. We solve for these unknowns using the following eight equa-

tions: the incentive constraint of the non-routine workers, the resource constraint and

the six first-order necessary conditions.

In the second step, we maintain the same fixed cost of robots φ∗t = φ300, but gradu-

ally adjust the initial condition X
∗
0. In the first iteration, we set X

∗
0 to the solution of

the previous procedure, and then in each iteration we gradually reduce that level until

we reach the target initial condition X0 (which in our case is zero). We look for the

dynamic paths of
{
c∗r,t, c

∗
n,t, l

∗
r,t, l

∗
n,t, G

∗
t , X

∗
t , µ

∗
t

}300

t=0
and η∗ which solve the first order-
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conditions and the constraints that hold with equality, including the initial condition.

The last solution of this process is used as the starting point for the third step.

Finally, we let the cost of robots vary over time. For each iteration j ∈ {0, ..., T} we

set φ∗t = φT−j for t = 0, ..., T − j− 1, and {φ∗t}
T
t=T−j = {φt}Tt=T−j at their actual values,

and once again look for a solution that satisfies the first-order necessary conditions and

the constraints, including the initial condition. The final iteration of this procedure

produces the paths which solve the first-order condition of our original model. However,

a final adjustment needs to be made to account for the possibility that the quantity of

robots is at the corner with X t = 0. To implement this step, we take the final solution

of this procedure and whenever X1 < 0, it sets X1 = 0 and recomputes the optimal

path. In the second iteration, if there are negative values in the previous solution we

set X1, X2 = 0 and recompute the solution. We proceed in this way until there are no

negative values of X t in the solution. In practice, corner solutions are generally found

only in the earlier periods, when the costs of automation are still high.
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