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We calculate the debt-overhang costs to dealer-bank shareholders associated with financing

new balance-sheet positions. For debt-financed swap positions, we show that these share-

holder costs are equal to the funding value adjustments (FVAs) that dealers have been

making to the reported market values of their swap books. Contrary to this dealer prac-

tice, however, FVAs are not actually components of the market values of the positions being

financed. Instead, they are debt-overhang transfers from shareholders to creditors.

We show that dealer bid and ask quotes, if aligned with shareholder interests, must

incorporate the debt-overhang costs represented by FVAs. That is, in order to maximize

their equity value, dealers must quote so as to extract enough trading profit from their

counterparties to overcome the FVA-associated costs to their shareholders. This wedge

represents a significant friction in over-the-counter markets.

The following simple example illustrates the meaning of an FVA. A dealer purchases $100

face value of one-year T-Bills, and commits to hold them to maturity. Risk-free interest rates

are assumed to be zero. The dealer purchases the T-bills at their mid-market value, $100.

The purchase is funded by issuing unsecured debt, which could be motivated by a desire to

increase the dealer’s regulatory measure of High Quality Liquid Assets (HQLA). The dealer

has an unsecured one-year credit spread of 50 basis points. At the end of the year, the T-bills

will pay $100 and the dealer will repay $100.50 on its financing. The dealer’s shareholders

will therefore suffer a net loss in one year, after financing costs, of $0.50. This loss will be

borne by the dealer’s shareholders only if the dealer survives. Assuming the dealer’s one-year

risk-neutral survival probability p∗ is 0.99, the shareholder equity value is thus reduced by

p∗×0.50 = 0.495. This cost to shareholders is the FVA for this trade. The FVA is a transfer

in value to legacy creditors, who now have access to an additional safe asset in the event of

default.

If the dealer were to apply FVA-based valuation practice to the T-bills following the same

method currently used for swaps,1 the dealer would assign the T-bills a market value equal

to the mid-market value of $100 less a funding value adjustment of $0.495, for a net market

value of only $99.505. By assumption, however, the T-bills have an actual market value of

$100, implying an inconsistency.

Were it not for the HQLA requirement in this example, the dealer would not conduct

this trade at the given pricing terms. The dealer’s shareholders benefit from this trade only

if the T-bills can be purchased at a price below $99.505. More generally, in order to align its

market-making function with shareholder interests, a dealer’s price quotation practice must

reflect funding value adjustments. Thus, even though the current FVA practice of dealers

is not correct from the perspective of market valuation, it does achieve this alignment of

1In current practice, dealers do not typically apply FVAs to their bond positions.

2



Table I Funding value adjustments of major dealers (millions). Source: supplementary notes of quarterly
or annual financial disclosures. The $1.5 billion 2013 FVA of JP Morgan includes an FVA of about $1.1
billion for derivatives and about $400 million for structured notes.

Amount Date Disclosed
Bank of America Merrill Lynch $497 Q4 2014
Morgan Stanley $468 Q4 2014
Citi $474 Q4 2014
HSBC $263 Q4 2014
Royal Bank of Canada C$105 Q4 2014
UBS Fr267 Q3 2014
Crédit Suisse Fr279 Q3 2014
BNP Paribas e166 Q2 2014
Crédit Agricole e167 Q2 2014
J.P. Morgan Chase $1,500 Q4 2013
Nomura $98 Q1 2014
ANZ AUD61 Q4 2013
Bank of Ireland e36 Q4 2013
Deutsche Bank e364 Q4 2012
Royal Bank of Scotland $475 Q4 2012
Barclays £101 Q4 2012
Lloyds Banking Group e143 Q4 2012
Goldman Sachs Unknown Q4 2011

incentives. Being forced to mark down the value of the T-Bills by the FVA implies that

traders will not be credited with a trading profit unless they can purchase the T-Bills at a

price that is below the true market value by at least the FVA. As we will discuss, there are

other ways to obtain this shareholder alignment that do not involve valuation inconsistencies.

Funding costs have long been informally considered an input to dealer trading decisions.

Beginning in 2011, major dealer banks started to formally show FVAs on their balance sheets,

as described by Cameron (2014b) and Becker (2015), and as shown in Table I. Details on

how these adjustments have been made are discussed by Albanese, Andersen, and Iabichino

(2015).

The move by dealers to formally introduce funding value adjustments probably has sev-

eral causes. First, beginning in 2008, severe deviations of dealers’ borrowing rates from

risk-free rates resulted in funding costs that were so large that excluding them from financial

statements might have been considered imprudent. (Indeed, we provide assumptions under

which large FVAs should be made, although not to the asset side of the balance sheet.)

Second, the finance departments of many dealers now feel confident that funding cost ad-

justments are observable in market transaction terms. (Our model explains why this should

be the case.) Third, despite the absence of published financial accounting standards that

support FVA practice, large accounting firms have signaled a willingness to accept FVA

disclosures in dealers’ financial statements. See, for example, Ernst and Young (2012) and
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KPMG (2013).

Current practice also implies that FVAs generate tax savings for dealers, because their

taxable incomes are lowered whenever swap values are lowered by FVAs. As we show how-

ever, in economic terms, FVAs do not actually involve a reduction in income.

Missing from the controversy over FVA, to this point, has been a model that is consistent

with underpinning theories of asset pricing and corporate finance and that accounts for the

impact of funding strategies on the market valuation of claims on a dealer’s assets, most

importantly equity and debt. We provide such a model, along with a number of implications

for dealer quotations, trading desk incentives, and preferred financing strategies.

We show, by theory and calibrated numerical examples, that FVAs are also an important

determinant of dealer bid-ask spreads. Because the financing of collateral or cash upfront

payments can cause a change in capital structure that is costly to dealer shareholders, dealers

maximize shareholder value by using quoting strategies that overcome this cost to their

shareholders with a sufficient widening of bid-ask spreads.

As an empirical example, Wang, Wu, Yan, and Zhong (2016) estimate the impact of the

2009 “big-bang” introduction of upfront payments for credit default swaps on CDS bid-ask

spreads. They write: “Intuitively, the upfront payment is an impediment to trading, and

so reduces the market liquidity, leading to higher bid-ask spreads.” Our model justifies this

intuition. Wang et al. (2016) indeed find that big-bang upfronts widened bid-ask spreads

significantly.2

As another example, we consider the post-crisis violations of covered interest parity (CIP)

documented by Du, Tepper, and Verdelhan (2018) and Rime, Schrimpf, and Syrstad (2017).

For a dealer to benefit its shareholders by arbitraging a CIP violation, our FVA calculations

imply that the magnitude of the CIP basis must roughly exceed the dealer’s credit spread.

More generally, our results are part of a growing body of work, including for example

Adrian, Etula, and Muir (2014) and Brunnermeier and Pedersen (2009), that examines

the impact of dealer capital structure on asset price behavior. Because over-the-counter

(OTC) markets rely heavily on intermediation by dealers, FVAs can play a significant role in

the liquidity of OTC products whose intermediation requires substantial amounts of dealer

funding.

The rest of this paper is organized as follows. Section I outlines prior research on FVAs.

Section II introduces a basic two-period model of the marginal effects of investments and

investment financing decisions on the market valuation of the firm’s debt and equity. Section

2 They find that “for a CDS contract with a spread level of 300 basis points, at the average level of the
Libor-OIS spread in our sample, 32 basis points, the upfront payment introduced by the CDS Big Bang
increases the bid-ask spread by 1.5 basis points. This is a sizeable effect as the bid-ask spread in our sample
has a mean of 9.6 basis points and median of 5.3 basis points.”
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III applies and extends these basic results to swap valuation, the impact of swap valuation

on a dealer’s equity and debt, and swap rate quotation. Here, we provide a new theoretical

foundation for funding value adjustment, showing how it applies to a dealer’s equity with

a compensating partial adjustment to debt valuation, but with no impact on fair swap

valuation. We treat swaps with and without upfront payments, as well as the impact of initial

and variation margin. Section IV illustrates how FVA significantly reduces the incentive of

most banks to exploit violations of covered interest parity. In Section V, we illustrate the

magnitudes and directional responses of FVAs and DVAs that may be anticipated in practical

settings of plain-vanilla interest-rate swaps, based on a reduced-form analogue of a structural

multi-period version of the model. Section VI summarizes our key results and discusses some

of its broader implications. Proofs and other extensions are found in appendices.

I. Prior Research

While including an FVA as a component of the market value of swaps has seemed natural

to many practitioners, the practice has been controversial. Concerns about the validity of

FVA methodology have been raised, for instance by Hull and White (2012, 2016), Cameron

(2013, 2014a), Becker and Sherif (2015), and Sherif (2016b). Some have pointed to question-

able asset-liability valuation asymmetries induced by FVAs, a seeming absence of accounting

for the DVA effects of the associated debt issuance, and an incongruity in the way that FVA

for derivatives liabilities overlap with already-reported DVA for derivatives. These issues

have been discussed by Hull and White (2012, 2014, 2016), Albanese and Andersen (2014),

and Albanese et al. (2015), among others. In addition, there appears to be significant varia-

tion across dealers in the manner in which dealers compute their FVA metrics, particularly

with respect to measurement of the relevant unsecured borrowing rates. Recently, the Office

of the Comptroller of the Currency, a U.S. banking regulator, announced the formation of a

working group to examine industry practices for FVA determination. (See Sherif (2015b).)

To our knowledge, of prior related work on FVA,3 only Burgard and Kjaer (2011) and

Castagna (2013, 2014) specifically incorporate the incremental cash flows of a swap into

a model of the balance sheet of a dealer. Using a reduced-form model of the event of

the dealer’s default, but explicitly capturing the impact of swaps on the dealer’s default

recovery, Burgard and Kjaer (2011) show that adding an appropriately hedged derivative

has no impact on the dealer’s funding costs.4 They do not use their balance-sheet model to

3There is a large body of applied derivatives valuation research that addresses FVA and related con-
cepts. Key examples include Pallavicini, Perini, and Brigo (2012), Pallavicini, Perini, and Brigo (2011) and
Elouerkhaoui (2016).

4See, for example, their equations (20)-(25).
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isolate the nature of FVA as a cost to shareholders. Indeed, contrary to our results, their

approach allows swap market values to be affected by dealer funding costs.5 In a narrower

setting, Castagna (2013, 2014) calculates a marginal funding-cost impact on shareholders

that is similar in spirit to our own. In the end, however, Castagna (2014) concludes that the

market valuation of derivatives should include the FVA component, which is opposite to our

result. The similar approach but different conclusion of Castagna arises from his implicit

assumption that the valuation of a financial instrument is the value of only that component

of its cash flows that is ultimately assigned to equity shareholders.6

II. Shareholder Financing Costs

This section characterizes the effect on a firm’s shareholders and creditors of financing an

investment, or a package of financial transactions. We focus here on debt financing, which is

the basis for FVA. Appendix A provides the analogous explicit calculations for the impact

on shareholder value of equity financing and of financing with existing balance sheet cash, as

well as a pecking order of preferred financing methods. These results recapitulate relatively

standard concepts of asset pricing and corporate finance in a novel form that is useful for

explaining the role of FVA and for solving valuation and dealer price-quotation problems.

A. Representation of Market Valuations

Our most basic setting is a market at time 0 for claims to uncertain cash flows at time 1.

For simplicity, we assume that the set of possible states of the world at time 1 is finite. All

of our results apply in the general case of infinitely many states of the world under standard

technical continuity conditions.7 The proofs of our results, given in Appendix B, cover both

5Burgard and Kjaer (2011) also construct dealer strategies that can “shield the balance sheet” from
funding costs, thus eliminating or reducing inconsistencies that arise in current practice when the same swap
cash flows are not valued symmetrically by their two counterparties due to funding value adjustments.

6For example, Castagna (2014) states, at page 14, that “The results just shown confirm also that the
practice of including the funding valuation adjustment (FVA) in the valuation (i.e.: internal pricing) process
of a contract is fully justified: this thesis was supported in Castagna [7] (arguing against the opposite view
in Hull&White [12] and [14]) but not proved analytically.”

7For general one-period models with the potential for infinitely many states or infinitely many traded
instruments, we can fix an arbitrary probability space (Ω,F , P ). In addition to the given assumptions,
sufficient additional regularity is obtained by assuming that the set L of payoffs to which a valuation is
assigned is a linear subspace of the set L1(P ) of random variables with finite expectation having the property
that L−L1(P )+ is closed in L1(P ). The existence of a bounded stochastic discount factor ν then follows from
Yan’s Separation Theorem. See, for example, Schachermayer (1992). Dalang, Morton, and Willinger (1990)
extends this representation result in the obvious way, without need for finite-state or continuity assumptions,
to settings with a finite number of intermediate trading periods and with a finite number of primitive traded
financial instruments.
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finite-state and infinite-state cases. Without loss of generality, each state has some given

strictly positive probability. All investors in our model have the same information.

In order to characterize the market valuation8 of financial instruments that may appear

on the balance sheet of a dealer, we fix the set L of payoffs at time 1 to which a fair value at

time zero is assigned by some given “fair-market-value” function V : L → R. We impose only

minimal coherency assumptions on market-value assignments, namely that V ( · ) is linear9

and increasing in payoffs. That is, (i) the value of a portfolio of different cash flows is the

sum of the values of the elements of the portfolio, and (ii) if payoff X is greater than or

equal to payoff Y in every state of the world, and if X > Y in some states of the world, then

V (X) > V (Y ).

Under these two coherency assumptions, Stiemke’s Lemma implies that there is stochastic

discount factor, that is, a strictly positive random variable ν with the property that the value

of any payoff Y is V (Y ) = E(νY ). We take one of the payoffs to be that of a risk-free bond.

The associated risk-free discount is δ = E(ν), implying a risk-free gross rate of return of

R = δ−1. It follows that fair valuations, henceforth called “valuations” or simply “values,”

can be assigned according to “risk-neutral” expectation. That is, we can define risk-neutral

expectation E∗ by letting E∗(Y ) = E(νY )R, so that the value of any payoff Y can be

represented as V (Y ) = E(νY ) = δE∗(Y ). The associated risk-neutral probability measure

P ∗ is defined by P ∗(B) = E∗(1B) for any event B, with indicator 1B. Because ν is not

necessarily uniquely determined, the risk-neutral probability measure P ∗ is not necessarily

unique.

Although this seems familiar from the standard setup of an arbitrage-free asset pricing

model, we do not actually assume the absence of arbitrage in the usual sense. We have

merely given a representation of how market valuations are assigned by V ( · ). In an over-the-

counter market, market valuations need not coincide with the prices at which instruments

are actually traded by specific dealers. At or about the same point in time, the same

asset can be traded at different prices, reflecting the distinct bids and offers of different

8Some of the controversy about FVA arises in part from tension over how to measure market values. For
example, international accounting standard IFRS 13 refers to the use of “exit prices,” meaning roughly the
price that the firm would receive when selling (if a net asset) or transferring (if a net liability) a derivatives
portfolio to a new counterparty in an orderly transaction. This approach to fair market valuation raises
some additional consistency issues that we do not address. Both U.S. accounting standards (in particular
FASB 157 and 159) and international accounting standards (IFRS 13) require that traded OTC derivatives
be disclosed at their fair value, rather than by ordinary accrual (or cost) accounting. We merely take fair
market valuation as a given concept subject only to the two coherency axioms stated above (linearity in
payoffs and increasing in payoffs), which are rather compelling for any approach to measuring fair market
value.

9That is, L is a linear space and for any two payoffs X and Y and any scalars a and b, the value of the
portfolio payoff aX + bY is V (aX + bY ) = aV (X) + bV (Y ).
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dealers. The associated price dispersion,10 which would not occur in a competitive all-to-all

market, reflects search costs, differences in dealer-client relationships, difference in netting

opportunities, and differences in dealer capital structures. As we will show, a dealer should

refuse to trade some types of financial instruments unless it can buy them at prices strictly

below their market values, or sell them at prices strictly above market values, to extents that

vary across dealers based on differences in the structures of their balance sheets. The ability

of dealers to execute trades at prices that reflect non-zero bid-ask spreads arises from the

imperfect nature of financial markets, particularly over-the-counter markets, in which search

costs and other frictions frequently give dealers a trading advantage over non-dealers. As we

shall explain, bid-ask spreads are needed to cover more than a dealer’s overhead and trading

expenses (which we ignore here). We will show the amounts by which a dealer, based on

its own balance sheet, may need to widen its a bid-ask spread so as to overcome a variant

of debt overhang, representing the cost to the dealer’s shareholders of financing the cash

needed to enter new positions.

B. The Marginal Valuation of Corporate Assets, Liabilities, and other Claims

We consider a firm whose assets and liabilities have payoffs at time 1 (before additional

trades are considered) given by random variables A and L, respectively. The firm defaults

in the event D = {A < L}. At default, liquidation or reorganization may lead to distress

costs. The asset value remaining after default, net of distress costs, is κA, for some recovery

parameter κ ∈ (0, 1]. The market values of the firm’s equity and debt are therefore δE∗[(A−
L)+] and δE∗(κA1D + L1Dc), respectively, where Dc = {A ≥ L} is the event of no default.

We now consider a potential new investment by the firm, such as a swap, whose payoff

Y may be positive in some states and negative in other states. The positive part Y + =

max(Y, 0) is an asset of the firm. The negative part Y − = max(−Y, 0) is a contingent

liability. The positive part Y + is measured net of any losses due to counterparty default.

Our convention is that the liability component Y − is the contractual amount due, before

considering the firm’s potential for default. If the contingent liability Y − is fully secured,11

then it has a value to the firm of −δE∗(Y −), so that the total value of the financial instrument

is δE∗(Y ).

If the contingent liability Y − is not fully secured, we must specify how the associated

counterparty recovers on its claim in case the firm defaults. We assume throughout that

10For example evidence of price dispersion in OTC markets, see Jankowitscha, Nashikkara, and Marti
(2011) and Green, Hollifield, and Schürhoff (2007).

11The liability is secured, for example, if A > Y − and the liability is collateralized or otherwise takes
priority over other liabilities.
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the firm’s unsecured liabilities are pari passu with each other, so that the various claimants’

default recoveries are pro rata with their claim sizes. In practice, the unsecured portions of

a firm’s swap contingent liabilities are normally pari passu with its unsecured senior debt

claims. If the firm acquires the candidate new claim to Y , the liability component Y − is

the firm’s only other unsecured default claim, so that the value to the firm of this claim is

δE∗(C), where C is net actual cash flow to the firm, given by

C = 1{A+Y ≥L} Y + 1{A+Y <L}Y
+ − 1{A+Y <L} ρκA, (1)

where

ρ =
Y −

L+ Y −

is the pro-rata share of this contingent liability.

In order to later treat collateralized swap positions, we will also need to consider cases

in which the contingent liabilities include both secured and unsecured components. For this

purpose, we allow for the case of a financial position whose cash flows to be paid to the

firm at time 1, before considering the effect of the firm’s own default, have a decomposition

of the form Y = Y1 + Y2, where the first contingent liability Y −1 is secured and the second

contingent liability Y −2 is unsecured and pari passu in default with other unsecured creditor

claims. In this case, the firm’s valuation of the associated net time-1 cash flow is δE∗(C),
where C is the net actual cash flow at time 1, given by

C = Y1 + 1{A+Y ≥L}Y2 + 1{A+Y <L}Y
+
2 − 1{A+Y <L}κ(A+ Y1)ρ, (2)

where

ρ =
Y −2

L+ Y −2

is the pro-rata share of the unsecured liability Y −2 . (Here, we have assumed for simplicity

that adding the given position has no impact on the proportional default recovery coefficient

κ.) A necessary condition for the contingent liability Y −1 to be secured is that A + Y1 ≥ 0,

which we assume.

For a position that has net actual cash flows at time 0 of c0 and at time 1 of c1, the total

valuation is of course c0 + δE∗(c1). In the next subsection, we examine the preferences of

the firm’s shareholders for how the initial cash flow c0 is financed, meaning transformed into

time-1 cash flows by issuing new debt or new equity.
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C. The Marginal Value to Shareholders of a Debt-Financed Investment

The firm contemplates entering some quantity q of an investment, such as a package of

financial instruments with one or more counterparties. In this subsection, we are mainly

concerned with the impact of entering this investment on the firm’s shareholders. Before

considering the effect of the firm’s default, the per-unit payoff of the package at time 1 is given

by some random variable Y , which may have a negative outcome with positive probability.

The net cash-flow to the firm at time 1 for a position of size q is therefore qY . We allow

that Y may be of the form Y = Y1 + Y2, where Y −1 is secured and Y −2 is unsecured.

As shown in Appendix B, the following calculations also apply without change to an

infinite-state setting provided that, with respect to P ∗, the random variables A, L, Y1, and

Y2 have finite expectations, and provided that A and L have a continuous joint probability

density, or if A has a continuous density and L is a constant.

The investment cost for q units of the new position is some given amount U(q), which

is not necessarily equal to the market value of the position’s cash flows, allowing for the

possibility of a trading profit. The marginal investment cost, u ≡ limq↓0 U(q)/q is assumed to

be well-defined. We allow U(q) to have either sign. If U(q) is positive, the initial investment

cost must be financed at time 0. If U(q) is negative, the firm may invest the cash received,

−U(q), or use it to retire debt or equity.

We assume for simplicity that the firm faces a competitive capital market for new debt

and equity issuances. That is, those competing to offer equity or debt financing to the

firm break even by paying the market value of any claim issued to them by the firm. This

implies in particular that the yield spread paid on debt issuances is entirely driven by credit

considerations. Any part of the spread originating with, say, imperfect liquidity is not treated

here. At a cost in complexity, one could extend our model to incorporate a liquidity spread

on debt.

We now calculate the marginal value of the investment for the firm’s shareholders, as-

suming debt financing. Appendix A provides the analogous explicit calculations for equity

and cash financing. In order to avoid singularities when calculating derivatives, we maintain

throughout the assumption that P (A = L) = 0. In the finite-state case, this assumption

holds generically in the space of all model parameters.12

Throughout the remainder, “marginal value” means the first derivative of the market

value of the claim under consideration, per unit of the claim. Except for cases in which the

12With some finite number n of states, we can treat (A,L) as a vector in R2n
+ . The property that

P (A = L) = 0 holds generically, that is, for all such pairs of vectors except for a closed subset of R2n
+ of

Lebesgue measure zero. For the infinite state case, P (A = L) = 0 holds if A and L have a joint density, or
if A has a density and L is a constant, among other mild technical conditions.
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size of the investment is large relative to the firm’s entire balance sheet, this first-order valua-

tion approach accurately characterizes the benefit of the investment, and provides intuitively

natural and simple analytical results. Appendix B shows how the second-order valuation ef-

fect (in the sense of the Taylor series) explicitly reflects additional asset-substitution benefits

to shareholders associated with increasing the riskiness of the firm’s assets.13

For an investment of q units, let s(q) be the credit spread on the new debt that must be

issued to finance the cost U(q) of the new position. If U(q) is negative, the associated cash

proceeds to the firm are used to retire debt by purchasing it on the capital market.

Because we assume that the new creditors who finance the cost U(q) are pari passu with

all of the other unsecured senior creditors of the firm (including the unsecured counterparty

of the new position), the credit spread s(q) is determined by both the legacy balance sheet

and the new position. A detailed calculation of s(q) is provided in Appendix B.

Although s(q) depends in general on the decomposition of Y into the sum Y1 + Y2 of its

secured and unsecured components, we also show in Appendix B that the limiting spread

limq↓0 s(q) is invariant, and given by

S =
E∗(φ)R

1− E∗(φ)
,

reflecting the proportional default loss to creditors of

φ =
L− κA
L

1D. (3)

In the case that L is deterministic, S is identical to the credit spread of the firm’s legacy

debt.

The contractual new debt payback at time 1 is (R+ s(q))U(q). Shareholders receive the

residual A + qY − L − U(q)(R + s(q)), unless this amount is negative, in which case the

firm defaults and shareholders get nothing. The marginal increase in the value of the firm’s

equity, per unit investment, is therefore

G =
∂E∗[δ(A+ qY − L− U(q)(R + s(q)))+]

∂q

∣∣∣∣
q=0

, (4)

provided of course that this derivative is well defined, which we will show to be the case.

The appendix includes a proof of the next result, and of all results to follow.

13The potential for a strictly positive gain to shareholders from the purchase of risky assets, even at an
investment cost that is equal to or somewhat above the fair market value δE∗(Y ), is commonly known as
“asset substitution,” as characterized by Jensen and Meckling (1976) and Myers (1977).
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PROPOSITION 1: THE MARGINAL VALUE TO SHAREHOLDERS OF DEBT FINANC-

ING. The marginal gain G in equity value is well defined and given by

G = p∗π − δ cov∗(1D, Y )− Φ, (5)

where

p∗ = P ∗(Dc) is the risk-neutral survival probability of the bank.

π = δE∗(Y )− u is the marginal profit on the trade for a hypothetical risk-free dealer.

Φ = p∗δuS is defined to be the funding value adjustment (FVA).

The term cov∗(1D, Y ) in equation (5) is the marginal asset-substitution cost to sharehold-

ers of investing in an asset whose payoff is positively correlated with the firm’s default, given

that shareholders give up all payoffs to creditors in the event of default. The second-order

asset-substitution benefit, associated with increasing the total variance of the firm’s assets,

is calculated in Appendix B.C. The last term, the funding value adjustment Φ, is the present

value to shareholders of their share of the net financing costs, uS. Shareholders pay these

financing costs if and only if the firm survives.

In typical practice, dealers differ from our FVA formula Φ = p∗δuS by replacing the

marginal purchase price u of the asset with the corresponding value δE∗(Y ), a practice that

we later motivate with equation (11). Our formula Φ for FVA is numerically similar to that

used in practice, and represents a more consistent measure of actual funding costs. There

are other small variations within industry practice with respect to the exact calculation of

FVAs.14

Proposition 1 reflects a well known principle of corporate finance known as “debt over-

hang,” by which even an investment whose upfront cost u is strictly below the market value

of an asset may sometimes be declined by a firm because the payoffs accrue excessively to

creditors rather than shareholders.15

Appendix A provides the explicit marginal valuations to equity shareholders associated

with equity financing and with cash financing. Under a non-degeneracy condition, we show

a strict pecking order. For an investment requiring funding, the case of u > 0, cash financing

(if feasible) is strictly preferred by shareholders over debt financing, which is in turn strictly

preferred over equity financing. Other financing strategies could be considered. For instance,

the firm could sell non-cash assets or could arrange a combination of equity, cash, and debt

14 Some dealers ignore counterparty default risk when computing FVA. Some dealers replace their own
credit spread S in the formula for FVA with an estimated average of major-dealer credit spreads.

15See Myers (1977).
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funding. Song (2016) extends to the case of repo financing. Dealer industry metrics are

rarely based on these alternative strategies, and we shall not consider them further here.

Under a linear combination of different financing methods, our technical assumptions

imply that valuation is continuously differentiable in the quantity of each of the types of

financing. This implies that a linear combination of financing strategies generates the cor-

responding linear combination of the respective marginal shareholder values.

III. How Funding Costs Affect Swap Valuation

We now apply the basic theory of the previous section to a dealer’s swap transactions.

Interest rate swaps, a primary example in practice and the focus of our numerical examples

in Section V, make up the majority of a typical dealer’s derivatives inventory, representing

tens of trillions of dollars of total notional positions for each of the largest dealers.

Our main objective here is to calculate the impact of FVA on the swap prices that a

dealer would quote in order for its shareholders to break even, after considering FVA. This

section also provides a novel implication of debit value adjustments (DVAs) for shareholder

break-even swap rate quotation.

In this section, we consider an unsecured swap transaction. Appendix C extends to the

cases of (i) an unsecured swap transaction packaged with an inter-dealer hedge, and (ii) a

swap secured by initial margin. The funding value adjustment associated with initial margin

is known in industry practice as a “margin value adjustment” (MVA), rather than an FVA.

Appendix D generalizes the basic one-period model of this section to a two-period (three-

date) model that allows for the financing of intermediate-date coupons and variation margin

payments, and also allows for default at the intermediate date.

In the one-period setting considered here, a swap is a contract promising some underlying

floating payment X > 0 in exchange for some fixed payment K. We take K as given for now,

and assume that the dealer pays fixed and receives floating, for a net contractual receivable

at time 1 of X − K, before considering the effect of counterparty default. Results for the

reverse case, in which the dealer receives fixed and pays floating, are obvious by analogy.

We assume that the dealer’s survival probability is not zero. In the infinite-state case,

the following calculations apply if A, L, and X have finite risk-neutral expectations and a

continuous joint risk-neutral density function, or if (A,X) has a continuous joint density and

L is a constant.
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A. Valuing Unsecured Swaps with Upfront Payments

In this subsection, the swap is assumed to be fully unsecured, that is, not covered by

collateral. For simplicity, we suppose that there are no pre-existing positions between the

swap client and the dealer. Otherwise, the results would be complicated by the effect of

netting the new swap cash flows against those of the dealer’s legacy positions with the same

client. This more general case is analyzed in Appendix F.

We let B denote the event of the client’s default, at which the dealer recovers a fraction

β, possibly random, of any remaining contractual amount due to the dealer, (X −K)+. In

the event that X < K and the dealer defaults, the unsecured swap client recovers a pro-rata

share of the dealer’s estate, pari passu with the dealer’s unsecured creditors.

A swap position of size q requires the dealer to make an upfront payment of U(q). Given

our pecking order for dealer financing preferences, a positive payment is preferably funded

by excess balance-sheet cash, and a negative payment is preferably used to retire equity. In

practice, however, dealers’ swap trading units are typically cash-constrained and are not in

a position to freely retire equity. Consistent with industry practice, we therefore assume

that a positive financing requirement amount is funded by issuing debt. Likewise, any net

positive cash flow to the dealer is used to retire debt.

Our resulting definition of FVA is therefore “symmetric,” in the sense that cash inflows

and outflows are assumed to be financed or to reduce financings, respectively, at a spread

of S. For the case of cash inflows, this implicitly assumes that there is always some short-

term unsecured debt to roll over whose total amount can be reduced by swap cash inflows.

This is a simplifying abstraction of a practical setting in which much of the surplus funds

created temporarily by derivatives trading would more likely be “parked” in short-term low-

risk assets. A corresponding definition of “asymmetric funding value adjustment” (AFVA)

is provided by Albanese and Andersen (2014). Asymmetric funding strategies of this and

other types are captured in a straightforward, albeit more complicated, way within our

modeling framework by assuming that cash inflows are financed with unsecured debt and

cash outflows are financed at the risk-free rate. The basic thrust of our conclusions, however,

is not changed when substituting FVA with AFVA. In the simple one-period model of this

section, the AFVA is merely the positive part of the FVA.

In the absence of a dealer default, the payment flowing to the dealer at time 1, per unit

notional position, is

Y = y(K) ≡ X −K − γ(X −K)+, (6)

where γ = (1− β)1B is the fractional counterparty default loss.

In order to calculate the market value of the swap, we must consider the potential default
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of the dealer. With q units of the swap traded, we can use (1) to express the effective time-1

payoff of the swap to the dealer as

C(q) = q(X −K)− qγ(X −K)+ + (1− κρ(q)) q (X −K)− 1D(q),

where, given debt financing, the asset-to-debt payoff ratio is

ρ(q) =
A

L+ U(q) (R + s(q)) + q (X −K)−
,

and where

D(q) = {A− L+ qY − U(q)(R + s(q)) < 0}

is the dealer’s default event after considering the new position. Our basic valuation frame-

work of the previous section implies that the fair value of the swap payoff is V(q) =

δE∗ (C(q)).
The proof of the following proposition, provided in Appendix B, shows that the marginal

value v = ∂V(q)/∂q|q=0 of the swap payoff at time 1, after financing the upfront, does not

depend on the financing strategy. This invariance of the marginal value to the financing

method can be thought of as a consequence of the Modigliani-Miller Theorem.16 Neverthe-

less, the value V(q) of a non-trivial position of size q > 0 in general depends non-trivially

on the financing method, because the incremental distress costs depend on the financing

method.

PROPOSITION 2: FAIR MARKET VALUE OF AN UNSECURED SWAP. Consider a

swap position with cash flow Y defined by (6). Whether the dealer finances the swap by

issuing debt, issuing equity, or using existing cash on its balance sheet, the marginal value of

the swap is well defined and given by

v = δE∗(X −K)− CVA + DVA, (7)

where CVA = δE∗ (γ(X −K)+) is known as the credit value adjustment and DVA =

δE∗
(
φ (X −K)−

)
is known as the debit value adjustment.

The CVA and DVA adjustments have been characterized in the literature, and are now

accepted in practice.17

If there are no default distress costs (κ = 1), we may view v as the choice of upfront

16See Modigliani and Miller (1958).
17For DVA and CVA analysis, see, for example, Sorensen and Bollier (1994), Duffie and Huang (1996),

and Gregory (2015). Spears (2017) discusses the history of DVA and CVA adjustments.
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payment u that would make a total claimant on the dealer’s balance sheet (debt plus equity)

indifferent to entering the swap transaction. Whenever trading decisions are made, however,

we assume that the dealer’s preferences are determined by shareholder value maximization.

We therefore focus on the upfront payment v∗ for the swap that would leave shareholders

indifferent to the swap transaction.

PROPOSITION 3: SHAREHOLDER BREAKEVEN VALUE OF UNSECURED SWAPS.

Consider a swap position with cash flow Y defined by (6). Under debt financing, the upfront

payment for the swap that is breakeven for dealer shareholders, in the sense that G = 0, is

v∗ =
E∗(Y )

R + S
− cov∗(1D, Y )

p∗(R + S)
. (8)

If the dealer’s default indicator 1D and the swap cash flow Y are uncorrelated under P ∗, then

v∗ = (v −DVA)
R

R + S
. (9)

In the simple case covered by (9), the shareholder breakeven upfront price v∗ for entering

the swap is an adjustment of the fair market value v that:

(i) Removes the DVA from v.

(ii) Substitutes the dealer’s unsecured discount rate R + S for the risk-free rate R.

The first of these adjustments does not depend on the funding strategy and reflects the

lack of any shareholder benefit from paying the swap counterparty less than the contractually

promised amount when the dealer defaults (because the equity holder receives nothing at

default). The second adjustment is for the funding cost to shareholders, who must pay the

credit spread S to the new creditors without gaining any marginal benefit from the right to

default on the new debt.

If the upfront payment u is negative, then dealer shareholders benefit from a negative

FVA, which is known in industry practice as a “funding benefit adjustment” (FBA).

When ignoring distress costs (by taking κ = 1), the difference between the shareholder

break-even value v∗ and the total value v to all dealer claimants (debt plus equity) amounts

to a wealth transfer by the dealer’s equity shareholders to the dealer’s creditors. This wealth

transfer is triggered both by the swap cash flow itself (through the DVA) and also by the

financing strategy used by the dealer to fund the upfront. If the dealer has distress costs at

default then the net shareholder cost v∗ − v of entering the swap is not entirely transferred

to other stakeholders. For the general case, the net gain to the dealer’s legacy creditors is

calculated in Appendix B.
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B. Dealer Quotation and FVA for Unsecured Swaps

Assuming that the dealer maximizes shareholder value, it would rationally not trade the

swap unless the upfront payment to the dealer is at least v∗. If the dealer manages to execute

the trade at this level, the firm as a whole would make a trading profit of v− v∗. This profit

can have either sign. Although the DVA effect always lowers18 v∗ relative to v, the funding-

cost component can either increase v∗ relative to v (which occurs if v < DVA), or decrease it

(whenever v > DVA). Loosely speaking, the funding component increases shareholder value

for swaps that are predominantly liabilities (have a high fixed rate K relative to E∗(X)) and

decreases shareholder value for swaps that are predominantly assets (have a low K relative

to E∗(X)).

Before the introduction of FVAs, bank quotation practices adjusted appropriately for

the DVA effect, but did not correctly account for the funding-cost effect. That is, before

the introduction of FVA, rather than quoting v∗ as suggested by the shareholder breakeven

upfront payment (8), banks quoted

v −DVA = δE∗(X −K)− CVA, (10)

which is the fair-market value of a default-free swap less the CVA, but removing the DVA

adjustment that is now an accepted element of fair value accounting for swaps reflected in

(7).

If the swap is executed at this conventional level v − DVA, then (5) implies that share-

holders experience a marginal loss in value of δ cov(1D, Y )+FVA, where, under these pricing

terms, we have

FVA = p∗δ(δE∗(Y ))S. (11)

As we mentioned earlier, dealers now incorporate into their quotes this variation (11) of

the formula Φ for FVA given in Proposition 1. Although we show that an FVA is actually a

transfer of wealth away from dealer’s shareholders due to the adverse impact of funding costs,

this conceptual basis for FVA is not commonly recognized within the dealer community.

Whether viewed correctly as a equity value transfer or incorrectly as a reduction in the

market value of the swaps, one would expect dealers to incorporate FVAs into their quotes.

In order to make this point more transparent, we Taylor-expand the expression (9) for the

shareholder valuation v∗ of the swap position, for a small credit spread S and for a survival

18This is true unless the swap is a pure asset with no DVA at all, that is, unless K is so low that X−K > 0.
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probability p∗ close to 1. We see that

v∗ = (v −DVA)
1

1 + S/R
≈ (v −DVA)

(
1− S

R

)
≈ v −DVA− FVA, (12)

taking FVA as defined by (11). Thus, the current practice by dealers of making a downward

FVA adjustment to their mark-to-market swap valuations, although not consistent from a

valuation viewpoint, causes a valuation bias that leads to quotations that align the interests

of the dealer’s traders with those of the dealer’s shareholders.

In order to trade with a dealer that quotes swaps in a manner reflecting these shareholder

incentives, the client swap counterparties must be willing to “donate” the sum of the DVA and

the FVA. In practice, this “donation” would be implemented through an effective widening

of the dealer’s bid-ask spread, manifested either in the upfront u or in the swap rate K, or

both. Section V provides a numerical example illustrating the magnitudes of compensating

bid-ask spreads. We argue that these magnitudes are economically significant.

It follows from our results that the most creditworthy dealers, those with the lowest credit

spread S and therefore the lowest FVAs and DVAs, usually have a head start over less well

capitalized dealers in finding swap clients willing to enter trades at terms that are beneficial

to the dealer’s shareholders. Even the best capitalized dealer, however, must attract clients

that are sufficiently anxious to trade (given their own hedging or speculative motives) that

they are willing to give up some value to the dealer. This concession can be buried into the

bid-ask spread quoted by the dealer.

Appendix C extends the results of this section to treat hedged swaps and swaps that are

secured with variation margin and, potentially, initial margin. In industry terminology, the

additional funding value adjustment associated with the financing of initial margin is called

a “margin value adjustment” (MVA) rather than a “funding value adjustment.”

A dealer sometimes finds itself in a position to enter a swap that lowers its aggregate

margin requirement, because the new swap hedges or offsets a legacy position with the same

counterparty. In this case, the margin that is released by the trade is a source of profit

to the dealer’s shareholders in the form of a reduction in FVA, as shown in Appendix F.

This funding benefit adjustment (FBA) gives the dealer an advantage over other dealers

(even some dealers with lower credit spreads) in “winning” the trade. We do not model the

associated strategic implications.
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IV. FVA and Arbitrage of Covered Interest Parity

Violations

Although FVAs are most prominently associated with swaps, the same trading friction

can play a significant role in the attractiveness of other potential dealer trades that call for

significant unsecured debt financing. In this section, we consider the opportunity for trades

that exploit significant recent violations of covered interest parity.

Du, Tepper, and Verdelhan (2018) and Rime, Schrimpf, and Syrstad (2017) have shown

that the interest rates at which some big banks borrow US dollars outright in wholesale

funding markets have been significantly below the rates for synthetic US dollar borrowing

that could be obtained via foreign exchange (FX) markets. The synthetic method is to

borrow a foreign currency, euros for example, and to exchange the euros for dollars (at

spot, and back again at maturity) using FX forwards or cross-currency swaps. If the credit

qualities of the two dollar positions, direct and synthetic, are the same, then the associated

interest rates “should” be the same absent trade frictions, a point first noted by Keynes

(1923) and now known as covered interest parity (CIP). Any difference in these two rates,

actual minus synthetic, is called the CIP basis.

Between 2010 and 2016, on average over major currencies, Du et al. (2018) estimate a CIP

basis of about minus 24 basis points at 3 months and about minus 27 basis points at 5 years.

In some currencies, especially the Yen, they show that the basis has been much wider. Rime

et al. (2017) show that, once accounting for actual available transactions prices, profitable

arbitrage of the CIP basis is possible for only a subset of highly capitalized banks. Neither

of these studies, however, consider whether CIP arbitrage is beneficial to bank shareholders,

that is, after considering the adverse impact of FVAs, among other potential frictions.

Suppose, for a simple numerical example, that a bank has a one-year risk-neutral default

probability of 70 basis points and that its creditors suffer a fractional loss given default

of 50%. The bank’s one-year credit spread is thus S = 35 basis points. For illustrative

simplicity, the risk-free US dollar interest rate is assumed to be zero, so that R = δ = 1.

The bank will fund a CIP basis trade by borrowing $100 in the one-year USD commercial

paper (CP), thus promising a repayment of $100.35. The bank invests the $100 proceeds in

one-year Euro CP, swapped to USD with an FX forward, such that the synthetic US dollar

asset has same all-in credit quality (same risk-neutral default probability and same fractional

loss given default) as that of the bank’s own CP. For simplicity, the default risk of this asset

is assumed to be uncorrelated with the bank’s default event.

The synthetic asset, however, has an all-in US-dollar interest rate of 60 basis points. That

is, absent default, the asset payoff is $100.60, implying a CIP basis of −25 basis points. The
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bank has a new liability with a market value of $100 and a new asset with a market value

of approximately $100.25, for a mark-to-market trade profit of approximately $0.25.

However, the marginal impact of the trade on the market value of the bank’s equity is

negative, because the $0.25 profit is more than offset by the FVA cost to equity of δp∗uS '
0.35, for a net loss of about $0.10. In order for a trade like this to benefit shareholders, the

CIP basis would need to exceed the proportional FVA of approximately 35 basis points.19

Most or all of the effective CIP violations documented by Rime et al. (2017) are below

the associated proportional FVAs of global banks, based on current credit spreads.

As noted by Du et al. (2018), CIP violations were extremely small before the financial

crisis of 2007-2009. Consistent with this, major dealer-bank credit spreads (thus FVAs) were

also extremely small before the financial crisis.

Regulatory capital requirements pose an additional friction on CIP arbitrage that can

be analyzed within our modeling framework. Under the leverage-ratio rule, a bank may

be required to finance a fraction α of an investment with new equity, and only 1 − α with

debt. In that case, based on the marginal value to shareholders of equity financing that is

computed in Equation (24) of Appendix A, the marginal funding cost of an asset purchase

to bank shareholders, above that for all-debt financing, is

αu[1− p∗(1 + δS)]. (13)

For the largest U.S. bank dealers, the supplementary leverage ratio rule implies that α = 6%.

From (13), the additional cost to the shareholders for the CIP basis trade described in the

above example is 2.1 basis points, for a total proportional funding cost to shareholders of

approximately 35 + 2 = 37 basis points.

In practice, a bank would not obtain equity funding on a trade-by-trade basis. The bank

would instead arrange in advance for enough excess regulatory equity capital to accommodate

its likely potential trades. We do not model the more complicated role of anticipatory

funding.

19The value of this trade to dealer shareholders can also be computed directly in this simple example. The
risk-neutral expected payoff B of the bank’s euros-swapped-to-dollars CP asset is the contractual payoff of
$100.60 multiplied by the sum of (a) the risk-neutral probability 0.993 of the survival and (b) the risk-neutral
probability 0.007 of default multiplied by the fraction 0.5 lost given default. The net profit to the bank’s
shareholders is the product of the risk-neutral survival probability of the bank and the expected trade net
profit allocated to shareholders, after financing costs, conditional on the event of survival. This shareholder
profit is 0.993×

(
B − $100.35

)
' −$0.10.
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V. Valuation Adjustments for Long-Term Swaps

We now illustrate the numerical implications of our model for valuation adjustments of

swaps. After setting up a general reduced-form swap valuation framework that parallels the

structural model of the previous sections and Appendix D, we provide a numerical illustration

of the magnitude of valuation adjustments for plain-vanilla interest rate swaps, showing that

funding valuation adjustments are economically important in practice, and also indicating

relative responses to the term structure of interest rates and to the fixed coupon rate of

swaps.

For this purpose, we begin with a typical continuous-time setting that allows us to appeal

to standard reduced-form models of the term structure of interest rates, default timing, and

default recovery. Our reduced-form model is otherwise conceptually faithful to the solution

for funding value adjustments in our structural model. In order to capture the effects of

interim coupon and variation margin payments in a manner consistent with the spirit of

the structural model, Appendix D generalizes the basic one-period model of Section III to

a two-period model that allows for the financing of coupon and intermediate-date margin

payments, and also allows for default at the intermediate date.

A. Reduced-Form Valuation Framework

Our continuous-time framework is based on standard technical assumptions given in

Appendix E. The model begins with a default-risk-free short-rate process r = {rt : t ≥ 0},
implying that the risk-free discount at time t for risk-free cash flows at time T is E∗t (δt,T ),

where δt,T = e−
∫ T
t r(s) ds.

Before considering the effect of incremental cash flows associated with a new position,

the derivatives dealer defaults at a stopping time τD whose conditional mean arrival rate

at time t is λD(t). The fractional loss to the creditor claim associated with default at

time t is `D(t). That is, an unsecured claim of size C on the dealer’s estate at default is

paid (1 − `D(τD))C, for some proportional loss process `D taking outcomes in [0, 1]. (This

incorporates the impact of fractional default recovery, captured in the one-period model by

the parameter κ.) This dealer’s short-term credit spread at time t is St = λD(t)`D(t). That

is, each unit of the dealer’s short-term unsecured debt can be continually renewed, or “rolled

over,” by making continual floating-rate interest payments at the adjusting rate rt + St, as

justified in Appendix E.

Similarly, a given client swap counterparty has default risk characterized by a default

time τC whose conditional mean arrival rate at time t is λC(t), and by a proportional loss

given default at time t of `C(t).
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We will characterize various valuation adjustments for an unsecured swap between the

dealer and the client. Johannes and Sundaresan (2007) and Piterbarg (2010) have mod-

eled the important valuation distinction between unsecured and collateralized swaps. Our

objective here, instead, is to calculate the swap FVA, MVA,20 CVA, and DVA.

The swap that we will evaluate has maturity date T and contractually promises the

dealer, before considering the effect of counterparty default, net payments C1, . . . , CN at some

respective increasing sequence {t1, . . . , tN = T} of coupon exchange times. For notational

simplicity, for any time t ≤ T , we let η(t) ∈ {0, 1, ..., N} denote the index of the associated

coupon period. That is, t ∈
(
tη(t)−1, tη(t)

]
, taking t−1 = −∞.

The market value at time t < T of a default-free version of the swap is, by definition,

Vt = E∗t

 N∑
j= η(t)+1

δt,tjCj

 .

By direct analogy with the structural multi-period model of Appendix D, the CVA and

DVA are, respectively,

CVA = E∗
(
1{T>τC , τD>τC}δ0,τC`CV (τC)+

)
=

∫ T

0

E∗
(
δ0,tξtλC(t)`CV

+
t

)
dt, (14)

where ξt = e
∫ t
0 −[λD(s)+λC(s)] ds, and

DVA = E∗
(
1{T>τD, τC>τD}δ0,τD`DV (τD)−

)
=

∫ T

0

E∗
(
δ0,tξtλD(t)`DV

−
t

)
dt. (15)

Again by analogy with the marginal valuation of the swap that we provided for our

discrete-time structural model, the market value of the swap is

v ≡ V0 − CVA + DVA. (16)

To repeat, this is the total value of the swap cash flows to both equity and debt claimants.

By implication of the structural model, there is no funding value adjustment assignable to

this (total) swap market value.

In order to compute funding value adjustments to shareholder value, we suppose that

the dealer can enter small notional positions of the swap at a per unit upfront payment of u.

Just as for our structural model, we do not require that this upfront payment u is the equal

to the initial value v of the swap. Because this is merely a reduced-form model as opposed

20As we discuss in Appendix C.C, MVA applies if the dealer hedges the unsecured client swap with an
inter-dealer swap that requires the dealer to post initial margin.
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to a structural model, there is no point in making a distinction here between the marginal

value and the per-unit value of a position of a given non-zero size.

As for computing the FVA, we suppose that the dealer issues short-term unsecured debt

to finance any pre-default swap-related payments, including the upfront payment and any

interim coupon payments. Any swap-related receivables to the dealer are likewise used to

retire outstanding short-term unsecured debt. The FVA of swap position can in this case be

defined by direct analogy with that of the multi-period model of Appendix D by

Φ(u) = E∗

u∫ τ

0

St dt−
η(τ)−1∑
i=0

δ0,ti Ci

∫ τ

ti

St dt

 ,

where τ = min(τC , τD, T ). Given our default-time assumptions, this reduces to

Φ(u) = E∗

(
u

∫ T

0

ξt St dt−
N−1∑
i=0

δ0,tiCi

∫ T

ti

ξtSt dt

)
. (17)

For the special case in which the unsecured swap is executed at an upfront payment equal

to the default-free market value V0, direct algebraic calculations, as in Appendix D, yield

the FVA

Φ(V0) = E∗
(∫ T

0

ξtVtδtSt dt

)
. (18)

If the dealer hedges the unsecured swap with a fully collateralized inter-dealer swap that

requires the dealer to post variation margin and intial margin, as now required under Dodd-

Frank and MiFID regulations, there is also a margin value adjustment (MVA), which can be

computed by analogy with the multi-period structural model of Appendix D as

Ψ = E∗
(∫ T

0

ξtItδtSt dt

)
, (19)

where It is the initial margin at time t. By analogy with (12), the upfront payment v∗ that

would leave shareholders indifferent to the swap transactions is approximated as

v∗ ≈ V0 − CVA− Φ(V0)−Ψ = v −DVA− Φ(V0)−Ψ. (20)

B. Illustrative Numerical Example of XVAs

We now give illustrative magnitudes of FVAs, MVAs, DVAs, and CVAs based on a

simple parametric term-structure model. While the term-structure models used by major

dealers are generally more sophisticated than our illustrative model, we believe that the
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magnitudes of these “XVAs” that we calculate give realistic indications of their relative

economic importance in practice, and help us understand how they vary with swap rates,

credit risk, and the slope of the term structure.

For this purpose, we consider an unsecured 10-year, semi-annual-coupon, plain-vanilla

interest rate swap with a notional size of $100 million. The underlying floating rate is six-

month LIBOR. For our example, this floating rate is the simple six-month (money-market)

interest rate associated with a hypothetical borrower whose six-month credit spread over the

risk-free six-month simple interest rate is taken to be some constant ε. At base case, we take

ε to be 30 basis points. For the initial term structure of risk-free interest rates, we calibrate

to the risk-free discount term structure given by

p(0, t) = E∗(δ0,t) = e−(0.005+0.001t)t, (21)

roughly corresponding to market conditions in January 2016. That is, the continuously

compounding yield curve starts at 50 basis points and slopes upward at a rate of 10 basis

points per year.

Until default, the net coupon Ci paid to the dealer at the i-th coupon date ti is the

current six-month LIBOR floating rate less some fixed coupon rate K. (We will consider

various fixed coupon rates.) In addition to this payer swap, we will also provide results for

the corresponding receiver swap, by which the dealer receives the fixed rate K net of the six-

month LIBOR floating rate. A default-free swap whose market value V0 is zero corresponds

to a fixed coupon rate of K = 1.783%.

The risk-free short-rate process r, which we treat as the short rate underlying the

overnight index swap (OIS) swap term structure, is determined by a one-factor Hull-White

term-structure model21 calibrated consistently with (21). That is, the short-rate process

r satisfies rt = −d log(p(0, t))/dt + zt, where p(0, t) is given by (21) and zt satisfies the

stochastic differential equation

dzt = (θt − αzt) dt+ σ dWt, z0 = 0, (22)

where α and σ are constants, W is a standard Brownian motion under the valuation measure

P ∗, and

θt =

∫ t

0

σ2e2α(u−t) du. (23)

We set α = 0.05% and σ = 0.70%, which approximate the implied volatility levels of long-

dated Bermudan LIBOR swaptions as of January 2016.

21See Hull and White (1993).
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Table II This table shows XVAs, in thousands of dollars, for a 10-year plain-vanilla interest-
rate swap of notional size $100 million. Each cell of the table uses the format xP |xR to show
the XVA xP of the dealer’s payer version of the swap on the left and the corresponding XVA
xR of the dealer’s receiver version of the same swap on the right. Shown in parentheses
are the running-spread equivalents of the associated XVAs, in basis points, meaning the
adjustments to the fixed swap rate K that substitute that compensate for eliminating the
upfront payments. The columns of the table correspond to the fixed coupon rate of the swap.
The rows correspond, respectively, to the funding value adjustment (FVA) given by Φ(V0)
of (18), the margin value adjustment (MVA) given by Ψ of (19), the credit value adjustment
(CVA) given by (14), and the debit value adjustment (DVA) given by (15).

K = 1.0% K = 1.783% K = 2.5%

FVA
428 | − 428 116 | − 116 −171 | 171

(4.6 | − 4.6) (1.2 | − 1.2) (−1.8 | 1.8)

MVA
116 | 116 116 | 116 116 | 116

(1.2 | 1.2) (1.2 | 1.2) (1.2 | 1.2)

CVA
942 | 85 479 | 247 236 | 577

(10.0 | 0.9) (5.1 | 2.6) (2.5 | 6.1)

DVA
42 | 471 124 | 240 289 | 118

(0.5 | 5.0) (1.3 | 2.5) (3.1 | 1.3)

The dealer has a constant default intensity of λD of 2% and a constant fractional loss

given default `D of 50%. We assume that the swap counterparty has a constant default

intensity λC of 4% and a constant fractional loss given default `C of 50%. This implies a

constant short credit spread S for the dealer of 1%, and for the counterparty of 2%.

We assume that the dealer hedges the unsecured swap with a fully collateralized inter-

dealer swap that requires initial margin. When calculating the MVA, the initial margin It

is set at the level required by BCBS/IOSCO (BCBS (2013)), that is, at the 99th percentile

of the 2-week change in market value Vt of the default-free version of the swap, excluding

any jumps associated with coupon payments. A detailed analysis of the computation of the

CVA, DVA, FVA, and MVA, based on the formulae provided in the previous section, is found

in Appendix E.

Table II shows these “XVAs.” For the FVA, we report Φ(V0), meaning the FVA associated

with an upfront equal to the default-free market value V0.
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C. The Magnitudes of the XVAs and Their Impacts on Dealer Quotation

To interpret the results in Table II, we focus at first on the payer swap at a fixed coupon

rate of 1.783%, and consider how the shareholder value v∗ of (20) differs from the market

value v of (16).

The market value of the swap is obtained by subtracting the CVA net of the DVA from

the value V0 of a default-risk-free swap (which in this example is zero), for a total reduction

of $479, 000−$124, 000 = $355, 000, which is economically equivalent to 5.1−1.3 = 3.8 basis

points in running-coupon terms. Relative to this market value, the funding value adjustment

Φ(V0) for the swap represents a cost to shareholders of approximately $116,000, which is

economically equivalent in terms of its cost to shareholders to an increase of approximately

1.2 basis points in the fixed coupon rate paid by the dealer. The margin value adjustment

Ψ (assuming that the dealer is actually subject to initial margin) represents an additional

$116, 000 cost to shareholders. (The approximate numerical equivalence of FVA and MVA

in this example is merely coincidental.) Finally, the DVA benefit of approximately $124, 000

is of no value to shareholders, so the impact of the swap trade on the value of the dealer’s

equity is less than the market value v of the swap by approximately $116, 000 + $116, 000 +

$124, 000 = $356, 000 (which is economically equivalent to an impact on shareholders of

1.2 + 1.2 + 1.3 = 3.7 basis points running).

From a quotation perspective, the “par” coupon rate K, that making the swap have a

zero market value, is approximately 178.3 − 3.8 = 174.5 basis points. However, as we just

noted, entering the swap at these “fair-market” terms represents a swap-rate disadvantage

to the dealer’s shareholders of 3.7 basis points. That is, the dealer’s swap desk, if acting on

behalf of shareholders, should be willing to enter the swap only if the fixed rate paid by the

dealer is no greater than 170.8 basis points.

As for the receiver version of this swap, the dealer’s shareholders benefit only if they

receive an upfront that is increased above the initia market value of the swap by the sum of the

FVA, MVA, and DVA, which is $240,000, or a running-spread equivalent of 2.5 basis points

of notional. (In this case, the FVA is negative, but this funding benefit to shareholders is

more than offset by the total of the MVA and DVA.) Equivalently, the shareholder breakeven

receiver swap rate is 2.5 basis points above the fair-market rate of 178.3 + 2.6− 2.5 ' 178.4

basis points. That is, the swap desk should not enter as a receiver at a zero upfront payment

unless it can receive a swap rate of at least 178.4 + 2.5 = 180.9 basis points. If quoting

both sides of the swap so as to ensure that shareholders break even, this represents a bid-

ask spread of approximately 180.9 − 170.8 = 11.1 basis points, an enormous widening of

the spread relative to current unsecured dealer-to-client bid-ask spreads of under 0.2 basis

points.
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This example, however, is extreme relative to typical XVA impacts on dealer sharehold-

ers and on bid-ask spreads. Until recently, dealers have not been providing initial margin.

Removing the MVA impacts would reduce the bid-ask spread by 2.4 basis points, leaving a

bid-ask spread widening effect of 8.7 basis points, corresponding to the impact on sharehold-

ers of FVA and DVA.

Furthermore, the MVA impacts of new swaps are frequently beneficial to the dealer’s

shareholders, through netting effects relative to legacy swap positions. This netting benefit

is shown in a structural version of our model found in Appendix F. In practice, according

to OCC (2015), on average across the largest U.S. swaps dealers as of the end of the third

quarter of 2015, netting reduced the gross positive market value of swaps by 87%. There is

no available breakdown, however, of the impact of netting on dealer-to-client swaps versus

inter-dealer swaps, and no breakdown of the effects of netting cash flows across counterparties

and netting within counterparty positions.

If, for example, the dealer has 25% more payers than receivers, implying a reduction

from gross to net notional positions of 8/9, then the average MVA effect on the total book

of all swaps is a loss to shareholders of only about 1/9 of the impact of a stand-alone payer,

per unit of total gross notional. In our example, the MVA effects for standalone payers and

receivers are the same at all of the coupon rates that we considered. This 1.2 basis point

spread compensation to dealer shareholders is then reduced by netting to about 0.13 basis

points running of the gross notional, or, equivalently, a market value impact on shareholders

of about $12,900 per $100 million notional.

For the case of credit default swaps, the degree to which initial dealer margin to CCPs

and other dealers is reduced by netting is examined empirically by Duffie, Scheicher, and

Vuillemey (2015).

As opposed to the case of FVA, the impact of netting on DVA does not net across

counterparties. However, DVA impacts do net across offsetting positions with the same

counterparty. For example, if the dealer has a DVA that is reduced through counterparty-

level netting by an average factor of two, then the adverse DVA effect (relative to market

value) is also reduced by a factor of two. In our example of interest-rate swaps entered at

a fixed rate of 178.3 basis points, the DVA effects per $100 million notional, of $124,000 for

payers and $240,000 for receivers, would then each be cut in half.

These illustrative netting effects would imply an average net bid-ask running spread

effect of FVA and DVA of 2× 0.13 = 0.26 basis points and (1.3 + 2.5)/2 = 1.9 basis points

respectively, for a total average widening of the bid-ask spread necessary to compensate

shareholders of about 2.2 basis points. Again, these numerical effects of netting are purely

illustrative. Nevertheless, they portray the importance of netting on impacts of FVA and
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DVA, and they illustrate the still large residual adverse impacts on shareholders, relative

to typical inter-dealer bid-ask spreads. As we have emphasized, if the dealer aligns the

incentives of its swap trading desk appropriately, shareholder costs are passed through to

clients in the form of wider bid-ask spreads.

Moving back to the base case of payer swaps, as shown in Table II, FVA decreases as the

fixed coupon rate K is increased. At a coupon rate K of 1.0%, this FVA impact is nearly

four times bigger than for a coupon rate of 1.783%. That is, the higher is the fixed rate, the

lower is the value to the dealer, resulting in lower upfront financing costs to shareholders.

For a sufficiently high coupon rate, the FVA becomes negative, corresponding to a net

funding benefit to the dealer. Even though the swap has almost no upfront at a fixed rate of

K = 1.783%, its has a positive FVA because of the upward-sloping yield curve. That is, the

swap is projected to increase in market value over time, as the net coupons flowing to the

dealer are expected (under the valuation measure P ∗) to increase over time. In our setting

based on Gaussian interest rates, the MVA is invariant to the fixed coupon rate K.

As of January 2016, the bid-offer spread on a 10-year par-coupon plain-vanilla LIBOR

swap has been around 0.1 bps to 0.2 bps, or about $10,000 to $20,000 in dollar terms. As

one can see, the impacts of FVA, DVA, and MVA on equity breakeven swap rates are much

larger than these typical bid-offer spreads. The fact that dealers now pay close attention to

“XVA optimization,” as reported by Sherif (2016a), is therefore not surprising.

VI. Concluding Discussion

We now conclude by briefly recapitulating our main results and then discussing additional

implications and new research directions.

A. Summary of Main Results

Based on a neoclassical structural model of the balance sheet of a dealer, we show that the

quantity known in practice as the “funding value adjustment” is essentially the cost to the

dealer’s shareholders for financing up-front counterparty cash payments, variation margin

payments, and collateral requirements. This cost to shareholders (which can be negative for

swaps that generate positive cash flows to the dealer) is at least partially offset by a change

in the value of dealer creditor claims. The total of these value effects on shareholders and

creditors is a change in the value of the dealer’s frictional financial distress costs.

Our modeling approach is to (i) provide a marginal valuation theory for debt and equity

benefits associated with financing new investments, (ii) derive a pecking order for shareholder
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financing preferences, (iii) apply our framework to the impact on equity and debt values of

the unsecured debt financing of swap and CIP basis trades (iv) analyze the impact of share-

holder preferences on dealer quotations, (v) explain the impact of funding value adjustments

on the incentive to arbitrage violations of covered interest parity, (vi) extend by analogy

our simple discrete-time structural model to a reduced-form continuous-time term-structure

setting, and (vii) for a parametric example of the continuous-time model calibrated to recent

interest-rate derivatives, obtain illustrative magnitudes of XVAs and their running-spread

equivalents in various examples of interest-rate swaps.

We show that the FVA and its close cousin the margin value adjustment (MVA) can

be viewed as debt-overhang costs to shareholders that can easily discourage dealers from

offering intermediation, even on terms that may add a positive market value to the dealer’s

balance sheet. On average across its book of intermediated positions, a dealer’s shareholders

must be compensated for FVAs, MVAs, and debit value adjustments (DVAs) by counterparty

“donations” in the form of pricing terms that imply trading losses to clients. In particular,

for a dealer’s shareholders to avoid a loss when their firm enters a new position, the pricing

terms must imply a gain in the market value of the dealer’s positions that is at least as large

as the sum of the incremental FVA, MVA, and DVA. In some cases, however, this sum can

be negative, implying a gain to shareholders above and beyond the profit-and-loss (P&L) on

the trade.

For example, consider the stand-alone $100 million notional interest-rate payer swap of

our illustrative numerical example, at a fixed coupon rate of 1.78%. For a term structure of

interest rates and swap-rate volatility like those for the US dollar swap market in January

2016, entering this unsecured swap is beneficial to the dealer’s shareholders only if the swap

terms imply a trading gain to the dealer’s balance sheet of $356,000, in roughly equal parts

for FVA, MVA (if initial margin is applicable), and DVA. In practice, as we have discussed

in the previous section and modeled formally in Appendix F, netting the swap cash flows

against those of legacy swaps would typically reduce this required threshold gain significantly,

and in proportion to the degree of netting, case by case.

Although the implications of DVA for swap market values are widely treated in the

research literature and in practice, as far as we are aware they are for the first time shown in

this paper to have a significant incremental impact on shareholder breakeven valuation and

breakeven swap quotation.

Others22 have already noted (although without a supporting structural model) that treat-

22 We have already cited Hull and White (2012), Cameron (2013), Cameron (2014a), Becker and Sherif
(2015), Hull and White (2014), Albanese and Andersen (2014), and Albanese, Andersen, and Iabichino
(2015).
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ing FVA as an adjustment to the market value of a dealer’s swaps causes various logical

contradictions. A common informal argument has been that adjusting the market value of

a swap for funding costs is a violation of the Modigliani-Miller (MM) Theorem. We confirm

that this is the case in the absence of frictional distress costs and provided that valuation im-

pacts are measured in a marginal sense. (Otherwise, MM theory does not precisely apply.23)

Another inconsistency, emphasized by Burgard and Kjaer (2011), is that an FVA adjustment

to swap values violates the simple symmetry condition by which (in the absence of frictional

default distress costs) the value to a dealer for entering a swap must be equal and opposite

to the value of the swap to the counterparty. These same inconsistencies apply to margin

value adjustments (MVAs). In particular, unless there are frictional financial distress costs,

it would be impossible for two dealers entering a swap with each other to both suffer a loss

in the market value of their swap books for the associated margin financing costs, given that

the total of the cash flows on the new swap to the two dealers is clearly zero. Further, Hull

and White (2012) and Burgard and Kjaer (2011) point out that funding cost adjustments

to swap values can imply windfall profits to counterparties or creditors.

B. Market-Making Incentives and Other Strategic Implications of FVAs

Although the common practice of FVA and MVA adjustments to swap market values is

inappropriate, it may have arisen from the understandable incentive of large bank holding

companies to discourage their swap desks from entering positions that require significant

cash financing, given that these are (as we show) a drag on shareholder returns. These

funding costs became obvious only after the financial crisis caused significant increases in

dealer credit spreads. If dealer valuation practices eventually change so as to reflect the true

nature of FVA, some other form of incentives for traders should presumably be substituted.

For example, the variable component of swap traders’ compensation could be based on their

trading P&L, less an estimate of the incremental impact of their trading on the firm’s FVA,

MVA, and DVA.

As we have noted, the clients of dealers must, on average, pay extra, above and beyond

the market values of their swap positions, in order to give dealers sufficient incentives to

enter swaps with them. Swap clients are often willing to do so because they have motives

to enter swaps, such as hedging, that dominate these XVA-related trading losses. To the

extent that these XVA “donation effects” are positive, which is the case on average, there

is a significant business advantage to relatively highly capitalized dealers. The losses that

23The MM principle is that in the absence of distress costs the dealer’s total balance-sheet cash flows and
thus total market value are invariant to its capital structure. This is not enough on its own to treat the
valuation effects of swap financing, given that adding a swap changes the dealer’s total cash flows.
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clients must incur in order to compensate dealer shareholders for FVA, MVA, and DVA

are all roughly proportional to the dealer’s credit spread. (Appendix E provides numerical

support for the near linearity of these XVAs over a wide range of dealer credit spreads.) For

example, if Bank A has a credit spread that is half of that of Bank B, then the shareholders

of Bank A can break even with a widening of bid-ask spreads for FVA, MVA, and DVA that

is only about half of the corresponding widening of bid-ask spreads that Bank B must quote

to its customers. For the average case in which FVA, MVA, and DVA sum to a negative

impact on dealer shareholders, this would obviously cause buy-side firms to prefer to trade

with Bank A over Bank B, other things equal.24 Our illustrative numerical examples showed

this advantage to Bank A to be quite significant in economic terms. This XVA advantage to

Bank A in attracting more clients is further magnified by the increased degree of netting that

would be expected with a larger number of swap positions, thus further reducing the XVA-

related component of bid-ask spreads quoted by Bank A, with a positive feedback effect. For

special cases in which there is a significant funding benefit associated with an incremental

position, the dealer with the higher credit spread would be expected to benefit most from

the position, and to bid more aggressively for the trade. This explains recent aggressive

bidding by dealers for cross-currency swaps, because of their typically high funding benefits

to dealers, as explained by Wood (2016).

The effect of legacy swap positions for the matching of a buyside firm to a dealer on a

new swap trade, however, can swamp any credit spread advantage of one dealer over another.

The dealer whose netting (and credit spread) result in the lowest incremental sum of FVA,

MVA, and DVA is the dealer that is most efficiently positioned to get the trade. Search

costs and OTC market opaqueness, however, can prevent this most advantaged dealer from

actually winning the trade. Even when there are no legacy swap positions with a given client,

the dealer may quote for the effect of XVA costs to shareholders on the basis of expected

future netting effects with that client.

The accounting disclosures of dealers such as J.P. Morgan (2014) state that FVA adjust-

ments originate primarily from unsecured derivatives positions with non-financial corporate

clients. Dealer-to-dealer transactions normally have had little FVA, as they typically exploit

a variation-margin mechanism that, as suggested by Piterbarg (2010), provides the effect

of “built-in” financing. Starting in late 2016, however, inter-dealer derivatives positions

have been required by U.S. regulators to incorporate initial margin, in order to mitigate the

risk of missing payments during the closeout period that would follow a dealer’s default, as

24This assumes that bank’s quotes are based on its own funding costs, as in our model. In practice, as
noted, some banks quote based on average dealer funding costs (even though this is not optimal from the
viewpoint of a given bank’s shareholders).
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explained by BCBS (2013). European regulators implementated this rule in 2017. Initial

margin need not be re-pledgable by either party. The “trapped” portion of initial margin

must be financed by dealers.25 According to ISDA (2013), these new regulations will lock

up trillions of additional dollars worth of posted margin. For example, Duffie, Scheicher,

and Vuillemey (2015) estimate that new inter-dealer margin requirements will increase the

aggregate amount of collateral needed in the CDS market by about 70%, before considering

other effects such as central clearing and compression trading.

It is no surprise that some major dealers have initiated “XVA optimization” programs.26

Some dealers may find it necessary to significantly reduce their swap intermediation busi-

nesses. One major dealer, Deutsche Bank, has already eliminated the bulk of its single-name

CDS intermediation business, although the precise motive for this decision was not reported.

In 2016, another major dealer, Barclays, sold its substantial “non-core” swap portfolio to

J.P. Morgan.27 Our model shows that this novation trade can be motivated by the fact that

the associated funding costs to J.P. Morgan’s shareholders are lower than those to Barclay’s

shareholders, given that J.P. Morgan’s credit spreads are significantly lower.28 If FVA were

to be treated instead, as suggested by current dealer accounting, as an adjustment to the

value of the derivatives themselves, the novation of this swap portfolio to JP Morgan cannot

be motivated by any such gain to Barclays’ shareholders, who cannot avoid a mark down in

the value of their swaps merely by selling the swaps at a reduced market value. Alternatively,

and also consistent with our model, there may be cases in which the novation generates bet-

ter netting for one dealer’s shareholders than the other’s, and thus beneficial FVA and DVA,

when summed across the two dealers.29

Our structural model of dealer funding costs also has implications for other areas of asset

pricing. We briefly covered the implications for violations of covered interest parity. In

another application, based on an extension of our model that allows for the alternative of

repo financing of derivatives hedging positions, Song (2016) shows that some supposed “no-

arbitrage” pricing relationships frequently break down to an economically important degree

25An international accord reported by Financial Stability Board (2013) mandates the central clearing of
standardized swaps, subject to rules and exemptions that vary by jurisdiction, will also have an impact on
collateral demand. The advent of regulations governing initial margin will soon further reduce systemic risk,
as explained by BCBS (2013).

26See Sherif (2016a) and Sherif (2017).
27See Morris (2016) and Parsons (2016).
28As explained by Sherif (2016a), and consistent with our model, “For banks trying to estimate other

banks’ FVA costs, SG CIB’s Lascar describes a rule-of-thumb method that involves using their five-year
credit default swap (CDS) spread. The bank would take its own FVA, divide it by its own CDS spread, and
then multiply the result by the other bank’s CDS spread.”

29In this case, however, the novation can also be motivated in part by the associated reduction through
netting in deadweight expected financial distress costs.
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in the presence funding costs to derivatives dealers’ shareholders for carrying and hedging

dealing inventory. In particular, Song (2016) shows that put-call parity must be adjusted

significantly for longer-dated options in order to obtain reasonable synthetic pricing for equity

dividend strips. He shows that a failure to do so may have lead to a potentially important

bias in prior research on the term structure of S&P 500 equity risk premia.

C. Adjustments for Use of Regulatory Capital

In addition to their FVA and MVA adjustments, some banks have recently begun to make

further valuation adjustments, so as to factor the effects of regulatory capital requirements

into their accounting valuations. As discussed by Sherif (2015a) and Sherif (2016a), a “capital

value adjustment” known as “KVA” is purportedly a markdown of the market value of the

dealer’s swaps associated with the amount of capital needed to support derivatives trading,

whether to meet economic risk management requirements or regulatory capital rules. In

practice, KVAs are not based on any sort of coherent valuation model. Our basic theory in

Section II does indeed imply that when swap or other positions calls for additional equity

capital, there is an associated cost to shareholders, which we calculate. In Section IV, we

provided a simple example for a trade designed to take advantage of a violation of covered

interest parity. This “KVA effect” is not, however, an adjustment to the value of the positions

themselves, but rather to the value of equity and debt claims on the dealer. We have also

ignored the incremental costs to shareholders for swap or other new positions associated

with meeting the Liquidity Coverage Ratio rule (which may trigger the need to finance

additional High Quality Liquid Assets), the Net Stable Funding Ratio, and stress tests (such

as CCARs). These rules imply incremental costs to legacy shareholders, and thus have

implications for dealer quotation and trader compensation analogous to, but structurally

different from, those that we have analyzed in this paper. We leave these KVA and other

related implications to future work.

D. Final Remarks

Also left for future research are models determining optimal intermediation strategies,

from the viewpoint of dealer shareholder value maximization, given the implications that

we have shown for a divergence between market values of new positions (in the form of

“P&L”) and the associated changes in the equity value of the dealer’s firm. For example, it

is interesting to note that two banks are able to execute trades with each other at prices that

can improve the shareholder values of both firms, especially in the context of MVA. Margin

lending strategies, as explained by Albanese, Andersen, and Iabichino (2015), can give dealers
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access to comparatively cheap funding, and provide efficient collateralized funding for lower-

rated banks. We believe this is also a topic that will increase in recognized importance.

In general, the management of various “XVA costs” to bank shareholders will test the

ability of financial market participants to adapt to a new reality in which a variety of pre-

viously under-appreciated financing and regulatory costs to dealer shareholders must be

managed in order for robust over-the-counter market intermediation by regulated dealers to

remain viable. A potential market adaptation for those OTC financial instruments that are

broadly and frequently traded is the introduction of all-to-all trading, for example on an

exchange operator’s central limit order book.
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Appendix A A Pecking Order of Financing Choices

Section II considers the primary case of debt financing. Here, we consider the alternatives

of equity financing and of financing with cash from the firm’s balance sheet.

First, in the context of the model setup of Section II, we consider the funding of an

investment paying Y by issuing equity. Because investors in a competitive market for newly

issued equity break even on their purchase of shares, the incremental effect on the valuation

of the legacy shareholders’ equity is δE∗[(A+qY −L)+]−δE∗[(A−L)+]−U(q). A calculation

shown in Appendix B implies that the marginal value to the legacy shareholders of entering

the position is in this case

G0 = δE∗(1DcY )− u. (24)

The calculation (24) of G0 reflects the fact that legacy shareholders must give up the entire

valuation of the incremental cash flows that arise from the investment when the firm defaults.

As another alternative financing choice, if the firm is able to, and does, finance the

position by using cash from its balance sheet, the initial equity valuation is δE∗[(A−U(q)R+

qY − L)+]. The marginal value of entering the position to the shareholders is shown in

Appendix B to be

G0 = δE∗(1DcY )− uP ∗(Dc). (25)

Details underlying the calculations shown for G0 and G0 are omitted for brevity because

they are similar to that shown in Appendix B for the calculation of G (the debt financing

case) in the proof of Proposition 1.

PROPOSITION 4: A PECKING ORDER OF FINANCING PREFERENCES. Suppose that

the firm’s probability of default is not zero and that the marginal investment cost u is strictly

positive. The marginal value G0 to the firm’s existing shareholders of financing the invest-

ment with existing cash is strictly higher than the marginal value G under debt financing,

which in turn is strictly higher than the marginal value G0 under equity financing. That is,

G0 < G < G0.

To prove this result, we will show that G0 ≤ G ≤ G0, and that the inequalities are strict

if the dealer’s default probability is positive. By the fact that

G = δE∗[1Dc(Y − u(R + S))] = δE∗(1DcY )− δu(R + S)E∗(1Dc),

we have G0 ≥ G. Moreover, G0 > G if the credit spread S is strictly positive.
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By the fact that G0 = δE∗(1DcY )− u, it suffices to show that u ≥ δu(R+ S)E∗(1Dc) in

order to see that G ≥ G0. We recall that S = RE∗(φ)/(1−E∗(φ)) and φ = 1D(L− κA)/L.

Thus,

1− E∗(φ) ≥ P ∗(Dc),

which is equivalent to 1 ≥ δ(R + S)P ∗(Dc). Again, the inequality is strict if S is positive.

For the case in which the investment cost u is strictly negative, the strict pecking order

shown in Proposition 4 is reversed. If u = 0, meaning there is no up-front cash flow to

finance, then G0 = G = G0.

Appendix B Proofs and Calculations for Sections II

and III

This appendix supplies proofs of Propositions 1, 4, and 2, and a supplementary calculation

of the marginal valuation of the swap transaction package to legacy creditors in Appendix

C.C. For generality, we consider two cases: (i) there are finite states of the world and

P (A = L) = 0, and (ii) (A,L) have continuous joint density function or A has a continuous

density and L is a constant. In either case, we assume that A, L, and some given random

payoff Y have finite expectations with respect to P ∗.

A Proof of Proposition 1

Because we have assumed a competitive capital market with complete information, cred-

itors offering the new debt break even. That is, the market credit spread s(q) on the new

debt, which is issued to finance the cost U(q) of the new position, solves

U(q) = δE∗
[
1Dc(q)U(q)(R + s(q)) + 1D(q)

κ(A+ qY1 + qY +
2 )

L+ U(q)(R + s(q)) + qY −2
U(q)(R + s(q))

]
,

where we recall Dc(q) is the dealer’s survival event {A+ qY −L−U(q)(R+ s(q)) ≥ 0}. By

letting q go to zero, one can easily see from the equation that limq→0 s(q) exists, and that

limq→0 s(q) = S = RE∗(φ)/(1− E∗(φ)), where φ = 1D(L− κA)/L.

If the dealer finances the position by issuing new debt, the marginal value of the asset

purchase to shareholders is defined by

G =
∂E∗[δ(A+ qY − L− U(q)(R + s(q)))+]

∂q

∣∣∣∣
q=0

.

42



We intend to show that the derivative exists and is given by

G = δE∗[1Dc(Y − u(R + S))].

By definition,

G = lim
q→0

δ
E∗[1Dc(q)(A+ qY − L− U(q)(R + s(q)))]− E∗[1Dc(A− L)]

q

= lim
q→0

δ
E∗[1Dc(q)(qY − U(q)(R + s(q)))] + E∗[(1Dc(q) − 1Dc)(A− L)]

q
.

We know

lim
q→0

δ
E∗[1Dc(q)(qY − U(q)(R + s(q)))]

q
= lim

q→0
δE∗[1Dc(q)(Y − U(q)/q(R + s(q)))]

= δE∗[1Dc(Y − u(R + S))],

where the last equality is due to that limq→0 U(q)/q and limq→0(R+ s(q)) exist, and that A,

L, and Y have finite expectations, allowing interchangeability of the limit and expectation.

We only need to show

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
= 0. (26)

There are two cases to be considered:

(i) If the set of possible states of the world is finite, then there exists a q0 such that for

any q < |q0|, 1Dc(q) − 1Dc = 0. Thus, (26) is immediate.

(ii) If there are infinitely many states of the world, under which A and L have a joint

continuous density function, then we know

lim
q→0

P ∗(Dc(q)) = P ∗(Dc).

It is easy to see that

1Dc(q) − 1Dc = 1Dc(q)∩D − 1D(q)∩Dc ,

and that |A− L| ≤ q|Y − (r + s(q))U(q)/q| on the events Dc(q) ∩D and D(q) ∩Dc. Thus,

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
≤ lim

q→0
δ
E∗[|1Dc(q)∩D(A− L)|] + E∗[|1D(q)∩Dc(A− L)|]

q

= lim
q→0

δE∗[|(1Dc(q)∩D + 1D(q)∩Dc)(Y − U(q)/q(R + s(q)))|].

43



By the Lebesgue Dominated Converge Theorem,

lim
q→0

E∗[|(1Dc(q)∩D + 1D(q)∩Dc)Y |] = E

[
lim
q→0
|(1Dc(q)∩D + 1D(q)∩Dc)Y |

]
= 0.

Since limq→0 U(q)/q and limq→0(r + s(q)) exist, we have

lim
q→0

E∗
[
(1Dc(q)∩D + 1D(q)∩Dc)

U(q)

q
(R + s(q))

]
= lim

q→0
E∗[(1Dc(q)∩D+1D(q)∩Dc)]

U(q)

q
(R+s(q)) = 0.

Thus,

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
= 0,

and we have shown that

G = δE∗[1Dc(Y − u(R + S))].

B Marginal Valuation for Legacy Creditors

We also characterize the marginal valuation of the new position to the dealer’s legacy

creditors. Recall that Y = Y1 + Y2, where Y −1 is secured and Y −2 is unsecured. For an

investment of q units, the dealer’s assets at time 1 are

A(q) = A+ qY +
2 + qY1,

and the dealer’s total liabilities due at time 1 are

L(q) = L+ qY −2 + U(q)(R + s(q)).

Thus, the marginal value of the transaction package to the existing creditors is defined

by

H =
∂δE∗

[
(1− 1D(q))L+ 1D(q)

κA(q)
L(q) L

]
∂q

∣∣∣∣∣∣
q=0

,

where we recall D(q) is the dealer’s default event with the new position. Thus,

H = lim
q→0

δ
E∗
[
(1− 1D(q))L+ 1D(q)

κA(q)
L(q) L

]
− E∗[(1− 1D)L+ 1DκA]

q

= lim
q→0

δ
E∗[1D(q)(A(q)− A)]− (1− κ)E∗[1D(q)A(q)− 1DA]− E∗

[
1D(q)

L(q)−L
L(q) κA(q)

]
q

,
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where the last equality is due to that limq→0E
∗[(1Dc(q) − 1Dc)(A − L)]/q = 0, as we have

shown. For simplicity, we write

ψ ≡ lim
q→0

E∗
(
A(q)1D(q)

)
− E∗ (A1D)

q
= E∗[1D(Y +

2 + Y1)] + lim
q→0

E∗[A(1D(q) − 1D)]

q
,

where we write γ = (1− β)1B. There are two cases to be discussed:

(i) In the finite-space case, 1D(q)−1D = 0 for sufficiently small q. Thus, limq→0E
∗[A(1D(q)−

1D)]/q = 0, and

ψ = E∗[1D(Y +
2 + Y1)].

(ii) In the infinite-state space case,

ψ = E∗[1D(Y +
2 + Y1)] + J,

with J ≡ limq→0E
∗[A(1D(q) − 1D)]/q. The existence of J is guaranteed by the fact that A

and L have a continuous joint density.

Thus, the marginal value of the package to the existing creditors is

H = δE∗[1D(Y +
2 + Y1)]− δE∗

[
1D

κA

L
(Y −2 + u(R + S))

]
− δ(1− κ)ψ

= δE∗[1D(Y − uR)] + δE∗(φY −2 ) + δE∗(1DcuS)− δ(1− κ)ψ,

where the last equality is due to that E∗(1DuR) − E∗[1Du(R + S)κA/L] = E∗(1DcuS). In

the special case that the deadweight frictional loss is zero (that is, if κ = 1), then

H = δE∗[1D(Y − uR)] + δE∗(φY −2 ) + δE∗(1DcuS).

C The Asset-Substitution Effect

Proposition 1 captures only the first-order component δ cov(1D, Y ) of the asset-substitution

impact on the firm’s valuation, based on the covariance of the incremental cash flow Y with

the firm’s default event. Here, we calculate the second-order impact on shareholder value.

By the usual Taylor-series argument, the second-order asset-substitution effect is always

dominated by the first-order effect for sufficiently small incremental positions.

In order to get simple explicit expressions, we treat only settings in which (A,L, Y ) has

a continuous joint density function, and where Y has a finite variance. The existence of the

derivative s′(q) of the credit spread with respect to the new position size q is guaranteed by

the joint continuous density function for (A,L, Y ). All other assumptions are maintained.
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We first calculate the marginal shareholder value

G(q) ≡ δ
∂E∗[(A+ hY − L− U(h)(R + s(h)))+]

∂h

∣∣∣∣
h=q

.

By definition,

G(q) = lim
h→q

δ
E∗
[
(A− L+ hY − U(h)(R + s(h))1Dc(h)

]
− E∗

[
(A− L+ qY − U(q)(R + s(q)))1Dc(q)

]
h− q

= lim
h→q

δ
E∗
[
((h− q)Y − (U(h)− U(q))R)1Dc(h)

]
h− q

− lim
h→q

δ
E∗
[
(U(h)s(h)− U(q)s(q))1Dc(h)

]
h− q

+ lim
h→q

δ
E∗
[
(A− L+ qY − U(q)(R + s(q)))

(
1Dc(h) − 1Dc(q)

)]
h− q

= δE∗[(Y − U ′(q)R)1Dc(q)]− δE∗[1Dc(q)(U(q)s′(q) + s(q)U ′(q))] + Π(q),

where

Π(q) = lim
h→q

δ
E∗[(A− L+ qY − U(q)(R + s(q)))(1Dc(h) − 1Dc(q))]

h− q
.

By arguments similar to those above, Π(q) ≡ 0. Thus,

G(q) = δE∗[(Y − U ′(q)R)1Dc(q)]− δE∗[1Dc(q)(U(q)s′(q) + s(q)U ′(q))].

We have shown that

G(0) = δE∗[1Dc(Y − uR)]− δE∗(u1DcS).

The second derivative of shareholder value with respect to position size q is

g = lim
q→0

G(q)−G(0)

q

= lim
q→0

δ
E∗[1Dc(q)(Y − u(R + s(q)))]− E∗[1Dc(Y − u(R + S))]

q
− δE∗[1Dcus′(0)]

= lim
q→0

δ
E∗
[(

1Dc(q) − 1Dc
)

(Y − u(R + S))
]

q
− 2δE∗[1Dcus

′(0)]

= δE∗[(Y − u(R + S))2f(L |L, Y )]− 2δus′(0)p∗, (27)

where p∗ = P ∗(Dc) is the risk-neutral survival probability and f(x |L, Y ) denotes the risk-

neutral probability density at x of A conditional on (L, Y ), and

s′(0) =
Rκ

(1− E∗(φ))2
E∗
[
1D

(
Au(R + S)− Y L

L2

)
− L− κE∗(A)

κL
(Y − u(R + S))f(L |L, Y )

]
.

46



For the rest of this section, we restrict attention for sake of simplicity to the case in which

L is a constant and Y is independent (under P ∗) of A. We then have

g = δf(L)E∗[(Y − u(R + S))2]− 2p∗δus′(0), (28)

and we can write

s′(0) =
Rκ(a− b)

(1− E∗(φ))2
,

where

a =
u(R + S)E∗(1DA)− E∗(Y )LP ∗(D)

L2

and

b =
L− κE∗(A)

κL
f(L) (E∗(Y )− u(R + S)) .

In general, s′(0) can be positive, negative, or zero. However, for the case of a trade that

is “breakeven” after debt servicing costs, in the sense that δE∗(Y )− δu(R+S) = 0, we have

s′(0) =
RκE∗(Y )E∗[1D(A− L)]

(1− E∗(φ))2L2
< 0.

For a non-zero investment position q, the second-order Taylor series approximation of

the incremental gain to equity value associated with the investment can now be computed

explicitly as

qG+
q2

2
g, (29)

where G is given by (5).

We can use the result of Breeden and Litzenberger (1978) that δf(L) is equal to the

“gamma” (second derivative) E ′′(L) of the equity value function E( · ), treated as the function

mapping the strike price L to the equity value δE∗[(A− L)+]. Thus,

g = E ′′(L)m2 − 2p∗δus′(0), (30)

where m2 = E∗[(Y − u(R + S))2] is the second moment of the payoff of the investment net

of the total financing payback.

The first term of g in (30) now appears clearly as the volatility impact of asset substitu-

tion, namely the product of the “equity gamma” E ′′(L) and the second moment m2 of the

net marginal payoff to shareholders.

To further interpret the “asset-substitution” effect g, we can consider the case in which
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A is log-normally distributed, in that

A = A0 exp

(
logR− σ2

2
+ σW

)
,

where A0 is a positive constant, W is standard normal under P ∗, and σ is the volatility of

the firm’s existing assets. Applying the Black-Scholes formula, we have the explicit equity

gamma

E ′′(L) =
δN ′(d2)
Lσ

,

where N is the probability density of the standard normal distribution and

d2 =
logA0 − logL+ logR− 1

2
σ2

σ
.

One can calculate that

s′(0) =
Rκ(a− b)

(1− E∗(φ))2
,

where

a =
u(R + S)RA0N (−d2 − σ)− E∗(Y )LN (−d2)

L2

and

b =
L− κR
κL

f(L) (E∗(Y )− u(R + S)) .

In the shareholder-breakeven case δE∗(Y ) = δu(R + S), we can further simplify to

s′(0) =
RκE∗(Y )(RA0N (−d2 − σ)− LN (−d2))

(1− E∗(φ))2L2
.

For our examples of a dealer financing an uncollateralized client swap hedged with a

collateralized inter-dealer swap, or financing a CIP basis arbitrage, the asset-substitution

effect is extremely small because the incremental asset payoff Y is risk-free or nearly risk-

free. Even for relatively risky asset purchases, the asset-substitution effect is small relative

to the FVA impact, at typical major-dealer credit spreads. This point is illustrated by the

following numerical example.

Consider a dealer with a constant liability of L of $1 trillion. The risk-free one-year gross

return is R = 1.02. We take an initial dealer asset value A0 of $1.14 trillion, the fractional

default recovery κ = 0.5, and the asset volatility σ = 7.01%. These parameters imply that

the dealer’s one-year credit spread S is 50 basis points and that the dealer’s initial equity
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volatility is 30%, based on the Black-Scholes delta method.30

Under P ∗, the added asset payoff Y , uncorrelated with A, has a mean of m = $100

million, and a standard deviation that we vary parametrically from 0 to $50 million. The

asset is purchased at a price u that equates the expected payoff m with the net financing

payback u(R + S). The discrete amount q of the asset purchase is 1 unit. The first-order

FVA for this purchase is qp∗δuS = $469, 000.

Even at a standard deviation of $50 million, the asset-substitution impact of the purchase,

q2E ′′(L)m2/2, is only about $800. The second-order FVA impact −2q2p∗δus′(0)/2 for this

example is about $20. If the purchased quantity q is scaled up by a factor of 10, so that the

mean asset payoff is $1 billion, the asset-substitution effect scales by a factor of q2 = 100

to about $80,000, still only a small fraction of the first-order FVA impact of $4.69 million.

Although the second moment m2 factor of the asset-substitution term is large in this example,

the gamma factor E ′′(L) is tiny because, at a credit spread of 50 basis points, the equity option

to default is far out of the money. The first-order asset-substitution effect depends on the

risk-neutral correlation between Y and the default indicator 1D. Assuming this correlation is

−0.5, which is of the sign beneficial to shareholders, the first-order asset substitution benefit

to shareholders is −δ cov(1D, Y ) = δ×0.5×0.136×$50 million, which is $3.34 million dollars.

This first-order asset-substitution benefit, while much larger than the second-order benefit,

is still dominated by the FVA cost to shareholders.

D Proof of Proposition 2

The proof has the following three parts.

(i) We have characterized the net cash flow of the package of transactions if the dealer

finances the upfront payment U(q) by issuing new debt. The net cash flow at time 1, from

the viewpoint of the dealer, is

C(q) = q(X −K)− q(1− β)(X −K)+1B + (1− κρ(q))q(X −K)−1D(q),

where D(q) = {A− L + qY − U(q)(R + s(q)) < 0} is the event of the dealer’s default with

Y = X −K − (1− β)(X −K)+1B, and ρ(q) is the asset-to-debt payoff ratio

ρ(q) =
A

L+ U(q)(R + s(q)) + q(X −K)−
.

30That is the volatility is σA0∆/W, where ∆ is the Black-Scholes delta and W is the Black-Scholes value
of equity, treated as an option on the final asset value A, struck at L.
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Thus, the market value of the package of transactions is

V(q) = δE∗[C(q)].

(ii) Suppose the dealer finances the initial investment by issuing new equity. The dealer’s

default event in this case is D0(q) = {A − L + qY < 0}. The cash flow q(X − K) of the

unsecured client-to-dealer is not paid in full at time 1 in either of the two events: (a) the

event that the client defaults and q(X−K) > 0, in which case the dealer receives βq(X−K)

from the client, and (b) the event that the dealer defaults and q(X −K) < 0, in which case

the client is pari passu with other creditors of the dealer, and the proportional recovery rate

is

κρ0(q) =
κA

L+ q(X −K)−
.

Thus, the net cash flow at time 1, from the viewpoint of the dealer, is

C0(q) = q(X −K)− q(1− β)(X −K)+1B + (1− κρ0(q))q(X −K)−1D0(q).

The market value of the package of transactions is

V0(q) = δE∗[C0(q)].

(iii) If the dealer finances the initial investment by using cash from its balance sheet, the

dealer’s default event is D0(q) = {A + qY − L − U(q)R < 0}. Thus, the net cash flows at

time 1, from the dealer’s perspective, is

C0(q) = q(X −K)− q(1− β)(X −K)+1B + q(1− κρ0(q))(X −K)−1D0(q),

where ρ0(q) = (A − U(q)R)/(L + q(X − K)−). Thus, the market value of the package of

transactions is

V0(q) = δE∗[C0(q)].

It is easy to see that whether the dealer finances the initial investment by issuing debt,

by issuing equity, or by using existing cash, the marginal value of the package to the dealer

is

V = lim
q→0

V(q)

q
= lim

q→0

V0(q)

q
= lim

q→0

V0(q)
q

= δ(X −K) + δE∗[φ(X −K)−]− δE∗[γ(X −K)+],
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where the last equality is due to the fact that A, L, and Y have finite expectations, allowing

interchangeability of the limit and expectation.

E Marginal Swap Valuation to Legacy Creditors

We first calculate the marginal value H of the package of transactions to the legacy

creditors by assuming the dealer finances the initial investment by issuing new debt. For an

investment of q units, the dealer’s assets at time 1 are

A(q) = A+ q(X −K)+ − q1B(1− β)(X −K)+ + q(K̃ −X) + qIR.

The dealer’s total liabilities due at time 1 are

L(q) = L+ q(X −K)− + qI(R + s(q)).

As in the proof of Proposition 1, we can show that the marginal value of the package to the

existing creditors is

H = δP ∗(D)(K̃ −K) + Λ + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ,

where

(i) in the finite-state case,

ψ = E∗[1D((X −K)+ + (K̃ −X) + IR)]− E∗[γ1D(X −K)+].

(ii) in the infinite-state case,

ψ = E∗[1D((X −K)+ + (K̃ −X) + IR)]− E∗[γ1D(X −K)+] + J,

where J = limq→0E
∗[A(1D(q) − 1D)]/q. The existence of J is guaranteed by the fact

that A and L have a continuous joint density.

If the dealer instead finances the initial investment by issuing new equity, it can be

shown similarly that the marginal value of the package of transactions to the dealer’s legacy

creditors H0 is

H0 = δP ∗(D)(K̃ −K) + E∗(1D)I + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ0,

where
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(i) in the finite-state case

ψ0 = E∗[1D(K̃ −X + IR + (X −K)+)]− E∗[γ1D(X −K)+].

(ii) in the infinite-state case,

ψ0 = E∗[1D(K̃ −X + IR + (X −K)+)]− E∗[γ1D(X −K)+] + Ĵ ,

where Ĵ = limq→0E
∗[A(1D0(q) − 1D)]/q.

Finally, if the dealer finances the initial investment by using cash on the balance sheet,

the marginal value of the package of transactions to the dealer’s legacy creditors H0 is

H0 = δP ∗(D)(K̃ −K) + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ0,

where

(i) in the finite-state case,

ψ0 = E∗[1D(K̃ −X + (X −K)+)]− E∗[γ1D(X −K)+].

(ii) in the infinite-state case,

ψ0 = E∗[1D(K̃ −X + (X −K)+)]− E∗[γ1D(X −K)+] + J̃ ,

where J̃ = limq→0E
∗[A(1D0(q) − 1D)]/q.

F Modigliani-Miller Invariance in the Absence of Distress Costs

If there are no deadweight frictional losses at the dealer’s default (that is, if κ = 1), we

have the following result.

PROPOSITION 5: MODIGLIANI-MILLER INVARIANCE. If the fractional default recov-

ery rate κ is 1, then the total marginal value of the forward portfolio to the dealer is invariant

to how the collateral is financed, and identical to the market value of the forward portfolio.

That is,

G+H = G0 +H0 = G0 +H0 = v.
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Appendix C Secured or Hedged Swaps

This appendix extends the results of Section III.A to treat cases involving variation

margin, hedged swap positions, and margin value adjustments.

A Variation Margin and Inter-Dealer Hedging

When a dealer trades an unsecured swap with a client, the dealer is likely to combine

the position with a suitable hedge. In practice, two separate hedges would typically be used.

One hedge would mitigate the risk of default of the swap counterparty, for instance using a

credit default swap (CDS) referencing the counterparty. Another position would be taken

as a hedge against the market risk exposure of the floating-side payment X.

Using the setup in Section III.A, we can incorporate the effect of hedging a swap by as-

suming that the hedge simply takes the form of an offsetting position paying −Y , where Y is

the net payout given by (6). As an abstract simplification, this covers both the counterparty

risk and the underlying market risk X. The hedge is executed with another dealer, called

the “hedge dealer.” As is standard practice in inter-dealer transactions, the hedge requires

the posting of variation margin, a running exchange of collateral that is sufficient to cover

the entire present value of the transaction. In addition to providing default protection for

both dealers, the variation margin mechanism provides an automatic source of cash funding

of the hedge position, as we mentioned earlier.

In our one-period model, we can capture the effect of a running posting of variation

margin in the following simplified way.

• At time 0, the dealer receives a cash payment from the hedge dealer equal to the market

value δE∗(Y ). The dealer immediately posts this cash amount back to the hedge-dealer

as a variation margin payment, earning the risk-free rate on the associated posting of

collateral. As the two initial cash payments cancel, neither the dealer nor the hedge-

dealer needs any financing to instantiate the hedge transaction.

• At time 1, but before other cash flows at time 1 are paid, the collateral is refreshed.

That is, the dealer receives E∗(Y ) back from the hedge dealer. (This is margin posted

at time zero, plus the risk-free interest.) The dealer pays Y to the hedge-dealer. The

hedge-dealer is assumed to be paid with priority over all other creditors.31 As the

31This effective priority over standard debt claims follows from exemptions for swaps from automatic stays
in bankruptcy or other insolvency proceedings. Even under proposed methods for resolving the failure of a
systemically important dealer that would apply the effect of an automatic stay on swap terminations, the
dealer’s swaps would likely retain priority over ordinary creditors, who would be “bailed in.” This would
fully prioritize swap counterparties except in the most extreme scenarios, in which even the cancellation of
all debt subject to bail-in is insufficient to re-capitalize the dealer.
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swap itself pays Y, given this assumed priority, the dealer will always be able to make

this payment. This abstracts from some potential loss of priority that might apply

in extreme practical cases, for example in an administrative failure resolution process

that could override contractual termination rights.

Netting the cash flows, the total package consisting of an unsecured asset and the hedge

will pay the dealer E∗(Y ) at time 1, an amount that is known at time zero. As desired, the

hedge removes the variability of the payment Y , replacing it with its fair-market forward

value.

Assuming that the dealer finances the purchase of the client asset by issuing debt, we can

now repeat the funding cost analysis shown in Section III.A. The results, found in Appendix

B, are obvious. Because the hedge removes net payout variance, the covariance term in (5)

disappears, and the FVA for the package consisting of the asset and its hedge is simply

g(v − d) = −Φ.

As we have explained, the assumption of a perfectly offsetting hedge payout of −Y is an

idealization. In practice, the risk associated with the client swap payoff is not completely

extinguished. This allows small default covariance terms to creep back into the breakeven

price v∗. Further, inter-dealer hedge swaps are virtually always executed at par, that is, at

a fixed rate of K̃ = E∗(X), rather than at an arbitrary rate of K. We deal with this minor

complication in the next section.

B Par Swaps and Forward Swap Rates Without Margin

In practice, the fixed swap rate K is typically negotiated so that there is no upfront

payment. In this case, the swap is known as a “par-valued swap.” The resulting fixed rate

K is often known as the “forward swap rate.” In our setting, three different forward swap

rates are of interest:

• The forward swap rate K̃ for a fully collateralized dealer-to-dealer swap. The swap

has a market value of δE∗(X − K̃), so the fair forward swap rate K̃ = E∗(X) reflects

no credit risk component. This is the benchmark forward swap rate typically shown

on standardized trading screens. In practice, the risk-neutral probability measure P ∗

used by dealers for market valuation would typically be calibrated so as to match the

risk-neutral expected payment E∗(X) to the “screen rate” K̃, and likewise for other

liquidly traded financial instruments.

• The forward swap rate K̂ for an unsecured client swap that is executed at fair-market

pricing. If we express v in (7) as v = η(K), then K̂ is the solution in K of the equation

η(K) = 0.
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• The forward swap rate K ′ for an unsecured client swap that leaves shareholders indiffer-

ent to the trade. From (6) and (8), K ′ is determined by the equation E∗(1Dcy(K ′)) = 0.

Neither K̂ nor K ′ depend on the financing strategy used by the dealer. Without an

upfront, no financing is required, putting aside for now the issue of initial margin, which we

will get to later in this section. Here, K̂ and K ′ differ only because the DVA benefit on the

swap is excluded from K ′.

LEMMA 1: ORDERING OF FORWARD SWAP RATES. Suppose that either (a) the dealer’s

default indicator 1D is uncorrelated (under P ∗) with the swap payment Y , or (b) the swap

position is fully hedged by an inter-dealer swap. Then K ′ ≤ K̂ and K ′ ≤ K̃.

In a model with several time periods, even a position with no upfront cash payment

may involve a funding value adjustment. For example, consider a position entered a time

zero with no upfront payment, requiring a significant positive expected cash payment by the

dealer at some intermediate date or dates, before compensating payments are later received

by the dealer. A common example of this is a long-dated swap issued in an environment

with a steeply sloped yield curve. As we will explain in more detail in Section V, such a

position can be associated with a substantial funding value adjustment.

C Par Swaps with Initial Margin, and Margin Value Adjustment (MVA)

Par-valued swaps require no upfront funding and therefore have no FVA in our one-period

setting. This situation changes with the introduction of initial margin, whether on the client

swap itself or on the hedge swaps. In fact, it is becoming increasingly common to encounter

swap agreements that require one or both counterparties to post risk-based initial margin,

providing an additional layer of credit risk protection beyond variation margin. For instance,

such agreements are routinely required by CCPs and are now mandatory under the Dodd-

Frank Act and European MiFID regulations (see BCBS (2013)). Because initial margin

always implies a positive initial cash outlay, even for par-valued swaps, funding valuation

adjustments for margin will inevitably result in costs to dealer shareholders.

To be concrete, we consider the funding cost impact on the shareholders of a swap dealer

that hedges an unsecured par-valued swap with a par-valued hedge transaction that requires

the dealer to post initial margin. In summary, the swaps dealer in question is contemplating

a pair of transactions consisting of:

(i) An uncollateralized swap with a client, by which the dealer pays a fixed rate K in

exchange for a floating payment X, for a net contractual receivable at time 1 of X−K.
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We take K as given for now, and assume that the client swap terms involve no initial

exchange of cash. The terms of trade for the swap are thereby captured entirely by

the fixed-side payment K.

(ii) A hedge-motivated fully collateralized swap with another dealer or a central counter-

party, by which the dealer has a net receivable at time 1 of K̃ −X, at the fair forward

swap rate K̃ = E∗(X). As before, we suppose that the hedge swap involves varia-

tion margin and no net initial payment. In this case, however, the swap additionally

requires the dealer to post a specified cash initial margin of I > 0. The recipient of

the margin, typically either a CCP or a third-party custodian, invests the margin in

risk-free assets, paying the dealer RI back at time 1 (unless the dealer defaults). As a

simplification, we assume that the margin agreement is sufficient to ensure that both

of the counterparties to the hedge swap are fully secured against loss.

The hedge swap payout K̃ −X is not an exact match for the client swap, except in the

unlikely case that K = K̃. We do not consider a CDS hedge against default, but our results

can be trivially extended to this case.32 Our results are unaffected if the initial margin Iq for

a position of size q is not necessarily proportional to q, provided that the per-unit margin

has some limit I ≡ limq↓0 Iq/q. Likewise, our results remain as stated if the swap fixed-side

terms K and K̃ depend on q, provided only that they converge with q to limits denoted K

and K̃, respectively. These generalizations are avoided merely for notational simplicity.

We carry over all notation from Section III.A. Once again, the effect of any pre-existing

positions between the swap counterparties is considered only in the appendix. We model

variation margin in the same manner as in Section C.A, so that the net payment at time

1 on the hedge swap is E∗(X − K̃) − (X − K̃) = K̃ − X. Before considering the impact

of dealer default, the package of swap transactions therefore has a per-unit cash flow to the

dealer at time 1, including the return of the margin with interest, of

Y = RI + K̃ −K − γ(X −K)+.

The initial required per-unit cash investment u is merely the initial margin I, because the

swaps themselves are all executed without upfront payments.

Assuming that the initial margin is funded by debt issuance, Proposition 1 implies that

the marginal value of the transaction to the dealer’s shareholders is

G = δP ∗(Dc)(K̃ −K)− δE∗[1Dcγ(X −K)+]− Λ, (31)

32As we have already seen in Section C.A, adding a CDS hedge essentially removes the covariance effects
in the CVA term. For instance, the term δE∗[1Dcγ(X−K)+] in (31) would become δP ∗(Dc)E∗[γ(X−K)+].
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where Λ = δP ∗(Dc)SI is the funding cost adjustment for the payment of initial margin,

known in industry practice as the margin value adjustment (MVA). In this simplest of

settings, the value adjustment Λ for initial margin is the initial market value of the component

of net margin-funding interest expense SI that is borne by shareholders at time 1. The

shareholders bear the entire expense SI if the dealer does not default, and bear none of the

expense if the dealer defaults.

We also calculate the total market value of the package of swap transactions. For a

position of q units, the initial margin payment generates cash flow of −qI to the dealer at

time 0. At time 1, the payment of the hedging swap, including the return of margin with

interest, is q(K̃ − X) + qIR. The payment of the client-to-dealer swap to the dealer is

q(X −K) before considering default. The cash flow q(X −K) is not paid in full at time 1

in either of two events: (i) the client defaults and q(X −K) > 0, in which case the dealer

receives βq(X − K)+ from the client; and (ii) the dealer defaults and q(X − K) < 0, in

which case the client is pari passu with the other creditors of the dealer, and the swap client

receives R(q)q(X −K)−, where, based on (2),

R(q) =
κ(A+ q(K̃ −X) + qIR)

L+ q(X −K)− + qI(R + s(q))

is the fractional recovery of the dealer’s assets in default on the event that X − K < 0.

The numerator of R(q) is the amount of the dealer’s assets that are recovered if the dealer

defaults and X −K < 0. The denominator is the aggregate liabilities of the dealer, which

include the legacy liabilities L, the liabilities due to financing the initial margin, which is

qI(R + s(q)), and the liabilities to the swap client, which is q(X − K)−. By assumption,

A+ qIR+ q (X −K)+ is always sufficient to pay the amount q(K̃−X)− due on the secured

hedge.

Following the definitions of Section II.B, the net actual cash flow at time 1 of the package

of swap transactions is

Ĉ(q) = q(K̃ −X) + qIR + q(X −K)− qγ(X −K)+ + q1D̂(q)(1−R(q))(X −K)−,

where

D̂(q) = {A+ q(K̃ −K)− qγ(X −K)+ − L− qIs(q) < 0}

is the event of the dealer’s default.

The total market value of the package of transactions is

V(q) = −qI + δE∗(Ĉ(q)).
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One can see that the initial payment I of margin at time 0 and the return payment of RI

at time 1 have offsetting impacts on the total market value of the swap. When considering

the marginal value of the transaction to shareholders, however, the computation (eq:G3)

shows the crucial impact on shareholder value of of financing the initial margin.

Similar to the case of Proposition 2, the marginal value of the swap,

v =
∂V(q)

∂q

∣∣∣∣
q=0

= δ(K̃ −K)− δE∗[γ(X −K)+] + δE∗[φ(X −K)−], (32)

is decomposed into the present value of the gross swap spread K̃−K, less the CVA, plus the

DVA. As anticipated, the per-unit market value v of the combined swap position does not

depend on the amount I of required initial margin, nor does v depend on how the margin

was financed. As we have noted, however, this invariance of valuation to the financing of

initial margin is contrary to current dealer valuation practice.

Appendix B calculates the impact of the value H of the package on the legacy creditors.

If there are no default distress costs, we have usual value-conservation identity H + G = v.

The fair-market level of the spread K̃ − K between the two swap rates, obtained from

(32) by setting v equal to zero, is

S = E∗[γ(X −K)+]− E∗[φ(X −K)−], (33)

which is merely the net risk-neutral expected default loss on the client swap (loss from client

default net of loss from dealer default). The swap spread S ′ = K̃−K that makes the dealer’s

shareholders indifferent to the trade is instead obtained from (31) by setting G = 0, leaving

S ′ = SI +
E∗[1Dcγ(X −K)+]

P ∗(Dc)
.

In order to generate positive shareholder returns in this setting, the dealer must be able

to identify hedged swap positions at fixed swap rates that improve on fair-market rates by

S ′−S. In gauging how difficult this may be for the dealer’s swap desk, we suppose that the

dealer’s default event is uncorrelated under P ∗ with the client default loss γ(X −K)+. The

dealer must then be able to improve on fair-market swap rates by at least

S ′ − S = SI + E∗(φ)E[(X −K)−].

For the typical (small) credit spreads of major dealers, and for small risk-free interest rates
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(that is, R near 1), we have the Taylor approximation S ' E∗(φ), and thus

S ′ − S ' S
(
I + E∗[(X −K)−]

)
, (34)

where the first term originated from the margin funding costs and the second from the DVA.

This is the adjustment to the swap quote necessary to overcome effect of value impact on

shareholders shown by Equation (12).

Because initial margins set by CCPs or in the inter-dealer swap market are standardized,

the right hand side of (34) is the dealer’s credit spread S multiplied by some positive swap-

specific amount that does not depend on the identity of the dealer.

Appendix D Multi-Period Model

We generalize the basic model of Section III to 2 periods with 3 dates t = 0, 1, 2. New

information is revealed at the interim date 1 through observation of a collect Z of random

variables. All uncertainty is resolved at date 2. We let E∗1 denote expectation under P ∗

conditional on Z. We assume that the one-period gross risk-free returns are R0 and R1 at

time 0 and 1, respectively. We don’t require R1 to be constant. Thus, the market value of

the cash flows {Ct}2t=1 is defined as
∑2

t=1E
∗(δtCt), where δ1 = 1/R0 and δ2 = 1/(R0R1).

We consider a dealer whose pre-existing assets have payoffs at time 2 are given by some

random variable A. The firm has short-term liabilities L1 that expire at time 1 and long-

term liabilities L2 that expire at time 2. We assume that the dealer liquidates a portion

of its legacy assets to pay back the maturing liabilities L1 at time 1 and pay out dividend

π1, which is also a random variable. If the liquidation value of asset is not enough to cover

L1, the dealer defaults, which we denote the event as D1. We let W denote the payoff

at time 2 of the liquidated assets. As a result, the firm defaults at time 2 in the event

D2 = {A −W < L2}. In the dealer’s default events D1 and D2, we assume all liabilities

are pari passu with each other, and the recovery rates of assets are some constant κ1 and

κ2, respectively. We let τD denote the dealer’s default time. If the dealer survives at time

2, that is, τD = ∞, the firm is liquidiated and the remaining cash flows are attributed

to shareholders after paying back creditors. Thus, the total value of the firm’s equity is

E∗[δ11{τD>1}π1] + E∗[δ21{τD>2}(A−W − L2)]. The total value of the dealer’s liabilities is

E∗[δ11{τD>1}L1 + δ11{τD=1}κ1E
∗
1(A)/R1] + E∗[δ21{τD>2}L2 + δ21{τD=2}κ2(A−W )].

We assume either (i) finite states of the world, or (ii) infinitely many states of the world

with standard continuity conditions of (A,W,L1, L2) as in Section II. As in Section II, the
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dealer’s marginal credit spread at time 0 for short-term (one-period) debt is

S0 =
E∗(φ1)R0

1− E∗(φ1)
,

where φ1 = 1D1(L1 +E∗1(L2)/R1 − κ1E∗1(A))/(L1 +E∗1(L2)/R1). If the dealer survives at 1,

the dealer’s marginal credit spread at time 1 for one-period debt is

S1 =
E∗1(φ2)R1

1− E∗1(φ2)
,

where φ2 = 1D2(L2 − κ2(A−W ))/L2.

In this two-period setting, a swap is a contract promising (i) floating payment X1 in

exchange for fixed payment K1 at time 1, and (ii) floating payment X2 in exchange for

fixed payment K2 at time 2, before considering the effect of counterparty default. We let

C1 ≡ X1−K1 and let C2 ≡ X2−K2. We focus on the payer swap, that is, the positive cash

flow of this contract is an asset to the dealer, whereas the negative cash flow is a contingent

liability. A swap position of size q requires the dealer to make an upfront payment of U(q).

We assume u = limq↓0 U(q)/q exists. Results for the reverse case are obvious by analogy.

The supporting calculations for the following results are similar to Appendix B and are

omitted for brevity.

A Valuing Unsecured Swaps with Upfront

In this section, we extend the results in Section III.A. That is, the client swap is assumed

to be fully unsecured. For simplicity, we assume that at the interim period, swap counter-

parties default after the coupon payment.33 We let τC denote the swap client’s default time.

At the client’s default, the dealer recovers a fraction β1 and β2 of any remaining contractual

amount due to the dealer at time 1 and time 2, respectively. We also suppose that there

are no pre-existing positions between the swap client and the dealer. The effect of netting

the new swap flows against those of the legacy positions with the same client is analyzed in

Appendix F.

We have the following natural extension of the basic one-period swap valuation model in

Section III.A.

PROPOSITION 6: Whether the dealer finances any net payments by issuing debt, issuing

equity, or using existing cash on its balance sheet, the marginal market value of the swap is

33This assumption is valid for the purpose of marginal analysis.
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well-defined by

v = E∗

(
2∑
t=1

δtCt − u

)
+E∗

(
2∑
t=1

δt1{τD=t,τC>t−1}φtV
−
t

)
−E∗

(
2∑
t=1

δt1{τC=t,τD>t−1}(1− βt)V +
t

)
,

(35)

where V1 = E∗1(C2)/R1 and V2 = C2.

As in the single-period model, the swap value (35) includes two credit-related adjustments

for the default free value, V0 = E∗(δ1C1) + E∗(δ2C2), for default. The CVA is

E∗

[
2∑
t=1

δt1{τC=t,τD>t−1}(1− βt)V +
t

]

and the DVA is E∗
[∑2

t=1 δt1{τD=t,τC>t−1}φtV
−
t

]
. The market value of the same swap from

the viewpoint of the swap client is of course −v.

Now, we analyze the marginal value of the new swap to shareholders of the dealer, we

assume that the positive financing requirement is financed by issuing short-term (one-period)

debt. Likewise, any net positive cash flow to the dealer is used to retire short-term debt.

PROPOSITION 7: If the dealer issues debt to finance net payments and uses received cash

to retire outstanding debt, then the marginal value of the swap to the dealer’s shareholders

is well defined by

G = E∗

[
1{τD>2}

(
2∑
t=1

δtCt − u

)]
−E∗

[
1{τD>2}

(
2∑
t=1

δt1{τC=t}(1− βt)V +
t

)]
−Φ(u), (36)

where

Φ(u) = E∗
[
δ11{τD>1}uS0 + δ21{τD>2,τC>1}uR0S1

]
− E∗

[
δ21{τD>2,τC>1}C1S1)

]
,

is the debt funding valuation adjustment.

As in Section III.B, if the swap is executed at the “conventional” upfront,

u∗ = V0 − c∗ = V0 − E∗
(

2∑
t=1

1{τC=t}δt(1− βt)V +
t

)
,

then the marginal value of the swap portfolio to the dealer’s shareholders is

G = cov

(
1{τD>2},

2∑
t=1

δtCt −
2∑
t=1

1{τC=t}δt(1− βt)V +
t

)
− Φ(u∗). (37)
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In practice, c∗ is often known as Unilateral Credit Valuation Adjustments (UCVA),34 and it

is different from the CVA in (35) as it does not take into account the dealer’s default. In the

case that the dealer’s default is independent of the swap cash flows, the shareholder value is

G = −Φ(u∗).

By analogy with (12), for a small spread S, the dealer’s indifference quote is approximately

u∗ − Φ(u∗).

B Inter-Dealer Hedges, Initial Margin, and MVA

In this subsection, we consider a swap dealer hedges the unsecured swap with a fully

collateralized inter-dealer swap that requires the dealer to post both initial margin and

variation margin. We assume that the hedge-motivated collateralized swap with another

dealer or a central counterparty has a net receivable of −C1 = K1 − X1 at time 1 and

a net receivable of −C2 = K2 − X2 at time 2. The hedging swap requires the dealer to

post both cash initial margin of I0 and I1, and variation margin M0 and M1 at time 0 and

time 1, respectively. We follow the same variation margin mechanism as in Section C.A,and

we assume that M0 = V0 = E∗
(∑2

t=1 δt(Xt −Kt)
)

and M1 = V1 = E∗1(X2 − K2)/R1, the

standardized margin payment that equal to the market value of the hedging swap. We

assume this hedging swap is transacted at the fullly collateralized value V0.

We have the following natural extension of the basic one-period swap valuation model

with inter-dealer hedge.

PROPOSITION 8: If the dealer issues debt to finance margin payments and uses received

margin to retire outstanding short-term debt obligations, then the marginal value of the swap

portfolio to the dealer’s shareholders is well defined by

G = E∗
[
1{τD>2} (V0 − u)

]
− E∗

[
1{τD>2}

(
2∑
t=1

δt1{τC=t}(1− βt)V +
t

)]
− Φ(u)−Ψ,

where

Φ(u) = E∗
[
δ11{τD>1}uS0 + δ21{τD>2,τC>1}V1S1

]
+ E∗

[
δ21{τD>2,τC>1}(u− V0)

]
,

34See Albanese and Andersen (2014) for details on UCVA.
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is the funding value adjustment, and

Ψ = E∗
(
δ11{τD>1}I0S0

)
+ E∗

(
δ21{τD>2,τC>1}I1S1

)
is the margin value adjustment.

In the special case that the unsecured swap is executed at the default-free market value,

that is, u = V0, the FVA is

Φ(V0) = E∗
[
δ11{τD>1}V0S0 + δ21{τD>2,τC>1}V1S1

]
.

C Imperfect Variation Margin and FVA

So far, we have assumed that the client swap is fully unsecured. It is also of interest to

consider the case that the client swap requires both counterparties to post some variation

margin. To be concrete, we assume the client swap requires some “imperfect” variation

margin, so that m0 and m1 are the amount of variation margin in the dealer’s possenssion

at time 0 and time 1, respectively. We assume this client swap is hedged with the same fully

collateralized inter-dealer swap in Section D.B.

By direct algebra, the FVA in this case is

Φ(u) =E∗
[
δ11{τD>1}(V0 −m0)S0 + δ21{τD>2,τC>1}(V1 −m1)S1

]
+ E∗ [δ11τD>1(u− V0)] + E∗

[
δ21{τD>2,τC>1}(u− V0)

]
.

In the case that the client swap is execuated at the default-free market value V0, then the

FVA is

Φ(V0) = E∗
[
δ11{τD>1}(V0 −m0)S0 + δ21{τD>2,τC>1}(V1 −m1)S1

]
.

If the “imperfect” margin becomes “perfect”, that is, if m0 = V0 and m1 = V1, then the FVA

Φ(V0) = 0.

D Cash Management Strategy and Asymmetric FVA

Our denition of FVA is symmetric, in the sense that cash inflows and outflows are assumed

to be financed or to reduce financings, respectively, at a spread of S. For the case of cash

inflow, this implicitly assumes that there is always some short-term unsecured debt to roll

over whose total amount can be reduced by swap cash inflows.

Now, we consider the case that the cash outflows are financed with unsecured debt

and cash inflows are invested at the risk-free rate. All else are equal as in Section D.B.
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Correspondingly, we can calcuate the “asymmetric funding value adjustment” (AFVA) as

Φ̃(u) = E∗
[
δ11{τD>1}u

+S0

]
+ E∗

[
δ21{τD>2,τC>1}(V1 + u− V0)+S1

]
.

If the unsecured swap is executed at u = V0, then the AFVA is

Φ̃(V0) = E∗
[
δ11{τD>1}V

+
0 S0

]
+ E∗

[
δ21{τD>2,τC>1}V

+
1 S1

]
.

Appendix E The Continuous-Time Reduced-Form

Model

This appendix provides additional details underlying the continuous-time reduced-form

model of Section IV.

A Technical Assumptions

We fix our probability space, (Ω,F , P ∗) and a filtration {Ft : t ≥ 0} of sub-σ-algebras

of F satisfying the usual conditions, as defined by Protter (2005). We take the short-rate

process r = {rt : t ≥ 0} to be progressively measurable and adapted, and such that
∫ t
0
|rs| ds

is finite almost surely for all t. As usual, we let E∗t denote conditional expectation with

respect to Ft.
All probabilistic statements to follow are with respect to our valuation probability mea-

sure P ∗. This means, by definition, that the market value at time t of a fully collateralized

claim to some payment C at some bounded stopping time T ≥ t is by definition E∗t (δt,T C),

where δt,u = e−
∫ u
t r(s) ds for any times t and u ≥ t. Here, C is measurable with respect to FT

and such that e−
∫ T
0 rs dsC has a finite expectation with respect to P ∗.

Before considering the effect of incremental cash flows associated with a new position, the

derivatives dealer defaults at a stopping time τD with intensity process35 λD. An unsecured

claim of size C on the dealer’s estate at default is paid (1− `D(τD))C, for some proportional

loss process36 `D taking outcomes in [0, 1]. This implies that the dealer’s short-term credit

35 The default time τD of the dealer is doubly stochastic driven by a sub-filtration {Gt : t ≥ 0} of
{Ft : t ≥ 0} to which the short-rate process and all payment processes that we consider are adapted. See
Duffie (2001), Chapter 11, for details.

36We assume that `D is a predictable process. One can generalize so as to get essentially the same result,
under mild regularity, by replacing `D with the dual predictable projection of a loss-given-default random
variable.
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spread at time t is St = λD(t)`D(t). That is,37 each unit of the dealer’s short-term unsecured

debt can be continually renewed, or “rolled over,” until any fixed time U , or until default,

whichever comes earlier, by making continual floating-rate interest payments at the adjusting

rate rt + St, and by making a final payment of 1 at time U in the event that default occurs

after time U . In the event that the default time τD is before U , each unit of this debt recovers

1− `D(τD) at default.

Similarly, a given client swap counterparty has default risk characterized by a default

time τC with intensity process38 λC , and by a proportional loss-given-default process `C .

The CVA and DVA definitions and calculations shown in Section IV.A, from Duffie

and Huang (1996), differ from the so-called “unilateral” CVA and DVA, which are given,

respectively, by

E∗
(
1{T>τC}δ0,τC`CV

+
t

)
and

E∗
(
1{T>τD}δ0,τD`DV

−
t

)
.

See Albanese and Andersen (2014) for details. The unilateral definitions abstract from the

fact that the dealer’s default is irrelevant if the customer has already defaulted, and vice

versa.

B Computational Analysis

We provide the computational analysis underlying the numerical examples in Section

V.B of XVAs for an unsecured semi-annual plain-vanilla interest rate swap. We assume

the swap has a maturity of 10 years and that the coupon payment dates are {ti}Ni=0, where

ti = i∆ with ∆ = 0.5. At time ti, a payer swap to the dealer has a contractual payment

of Ci = ∆(Xi−1 −K), where Xi−1 is the LIBOR rate fixed at time ti−1 and K is the fixed

coupon rate. The first LIBOR fixing is assumed to take place at t0 = 0, and the last coupon

time is tN = 10.

We use the overnight index swap (OIS) rate as a benchmark for the instantaneous risk-free

37This follows from the fact that a martingale M is defined by

Mt = E∗t

(∫ U

0

δt,u(ru + Su)1{τD>u} du+ 1τD>Uδ0,U + 1τD≤U δt,τD`D(τD)

)
.

The same result applies if U is any given bounded stopping time relative to the driving sub-filtration {Gt :
t ≥ 0}.

38The counterparty default time τC is jointly doubly stochastic with τD, and driven by the same sub-
filtration {Gt : t ≥ 0}.
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rate rt, corresponding to a risk-free discount of

p(t, u) = E∗t (δt,u) = E∗t

(
e−

∫ u
t rs ds

)
,

where E∗t denotes conditional expectation at time t under P ∗. As a result, the default-free

market value of the payer swap is

Vt = 1t<tη(t)∆
(
Xη(t)−1)−K

)
p
(
t, tη(t)

)
+ E∗t

 N−1∑
i=η(t)

e−
∫ ti+1
t ru du∆(Xi −K)

 .

C Term Structure Model

We use a one-factor Hull-White term structure model for the short rate rt, as given in

Section V.B, implying that rt is normally distributed with conditional distribution given rs

of N (m(s, t), v(s, t)) , where, with ft = −d log(p(0, t))/dt,

m(s, t) = ft + e−α(t−s)(rs − fs) + e−αt
σ2

2α2

(
eαt − eαs + e−αt − e−αs

)
,

and v(s, t) = σ2/(2α)
(
1− e−2α(t−s)

)
. The associated discount factor at time t for cash flows

at T > t is

p(t, T ) =
p(0, T )

p(0, t)
e−

1
2
G(t,T )2θt−(rt−ft)G(t,T ), (38)

where θt was defined in (23) and G(t, T ) = (1− e−α(T−t))/α.
For simplicity, we assume that the spread ε between the LIBOR rate and the OIS rate is

constant over time. Thus, the LIBOR rate is

Xi = ∆−1
(
p(ti, ti+1)

−1 (1 + ε∆)− 1
)
.

For notational simplicity, we define an annuity factor by

a(t; j) =
N−1∑
i=j

p(t, ti+1)∆,

an OIS forward yield by

y(t; j) =
p(t, tj)− p(t, TN)

a(t; j)
,

as well as a LIBOR forward yield by yL(t; j) = ε + (1 + ε∆)y(t; j). By direct algebra, the

66



default-risk-free version of the swap has market value

Vt = 1t<tη(t)
[
∆
(
Xη(t)−1)−K

)
p(t, tη(t))

]
+ a(t, η(t)) (yL(t, η(t))−K) . (39)

D CVA, DVA, FVA, and MVA Calculations

For the numerical examples in Section V.B, we assume that the swap client has a constant

default intensity of λC = 4%. We also assume that the dealer has a constant default intensity

of λD = 2%. We assume that the proportional loss process `C and `D are also constant, and

`C = `D = 50%. This implies a credit spread SD = 1% for the dealer. We further assume

that dealer default and client default are independent of each other and of the state of interest

rates. Thus, the CVA, DVA and FVA are, respectively,

CVA = `CλC

∫ T=10

0

E∗(δ0,tV
+
t )e−(λC+λD)t dt,

DVA = `DλD

∫ T=10

0

E∗(δ0,tV
−
t )e−(λC+λD)t dt,

Φ = SD

∫ T=10

0

E∗(δtVt)e
−(λC+λD)t dt.

As Vt is driven by a single-factor Gaussian model, the expected values in these integrals are

easy to compute from equations (38) and (39); they are shown in Figure 1 below for the

payer swaps in our numerical example, using three different fixed coupon levels.

We write

Ft ≡ E∗t

 N−1∑
i=η(t)

e−
∫ ti+1
t ru du∆(Xi −K)

 ,

and Dt,t+l ≡ Ft+l−E∗t (Ft+l), where l is assumed to be two weeks. When calculating the MVA,

we assume that the margin It is set as the 99th percentile of Dt,t+l. As Dt,t+l is here very

closely approximated by Gaussian random variable, the computation of It is straightforward.

The resulting MVA is

Ψ = SD

∫ T=10

0

E∗(δtIt)e
−(λC+λD)t dt.

In Figure 2 we show E∗(δtIt) for our numerical example. Notice how the initial margin

decreases over time as the duration of the swap shrinks as it approaches the final maturity.
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Figure 1: Exposure profiles for 10-year payer swap.
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Figure 2: Margin exposure profile E∗(δ0,tIt) for 10-year payer swap.
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Appendix F The Effect of Netting with Legacy

Positions

In this section, we extend the results in Section III.A to the case in which the dealer has

a pre-existing swap position with the swap client.

The dealer purchases a new unsecured swap from a client, which is identical to that in

Section III.A. This same client already has a legacy swap position with the dealer, whose

contractually promised payment is c0 and requires the dealer to make an upfront payment

of u0. As has been our convention, the positive cash flow of this contract is an asset to the

dealer, whereas the negative cash flow is a contingent liability.

As in the main context, we characterize the marginal value of the new swap investment for

the dealer’s legacy shareholders and legacy creditors (excluding the swap counterparty). We

also characterize the marginal market value of the new swap investment. As we have noted,

this first-order valuation approach is sufficiently accurate to analyze the investment, except

for the cases in which the size of the the investment is large relative to the dealer’s entire

balance sheet. To this end, we compute the first-order valuation effects of the aggregate

positions and the legacy swap with the client. The difference between the two is the first-

order valuation of the new swap investment.

A Market Value

As explained by Mengle (2010), standard ISDA agreements specify close-out netting at

default of either counterparty. We let B denote the client’s default event, which is assumed

to be independent under P ∗ of the floating-side swap payment X. By direct analogy with

calculations in Appendix B, the marginal market value of the new swap is well defined by

V = −u+ δ
(
E∗(X −K) + E∗

[
φ
(
(X −K + c0)

− − c−0
)]
− E∗

[
γ
(
(X −K + c0)

+ − c+0
)])

,

(40)

and V is invariant to whether the dealer finances the swap by issuing debt, issuing equity,

or using existing cash on its balance sheet. That is, δE∗[γ((X − K + c0)
+ − c+0 )] and

δE∗[φ((X−K+c0)
−−c−0 )] are the incremental CVA and DVA due of the new swap position,

respectively.
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B Shareholder Value

We focus on the case in which the dealer finances swap positions by issuing new debt.

From Proposition 1, the first-order valuation effect to shareholders of the swap portfolio is

Ga = δE∗[1Dc(X −K + c0)]− δE∗[1Dc(u0 + u)(R + S)]− δE∗[1Dcγ(X −K + c0)
+].

Similarly, the first-order valuation effect of the legacy swap to shareholders is

G0 = δE∗(1Dcc0)− δE∗[1Dcu0(R + S)]− δE∗(1Dcγc+0 ).

Thus, the marginal value of the new swap to the shareholders is

G = Ga −G0 = δE∗[1Dc(X −K)]− δE∗[1Dcu(R + S)]− δE∗[1Dcγ((X −K + c0)
+ − c+0 )].

C Legacy Creditor Value

We also consider the marginal value of the new swap to the dealer’s existing creditors

(excluding the swap client). To this end, we characterize the first-order effect of the legacy

swap, and we characterize the first-order effect of the swap portfolio. Thus, the marginal

value of the new swap to the dealer’s legacy creditors is

H = δE∗[1D(X −K)]− δE∗(1DuR) + δE∗(1DcuS) + δE∗[φ((X −K + c0)
− − c−0 )]

− δE∗[γ1D((X −K + c0)
+ − c+0 )]− δ(1− κ)J,

where

J = lim
q→0

E∗
(
A(q)1D(q) −A0(q)1D0(q)

q

)
,

and J is well defined by the same argument used in Appendix B.

In the special case of no distress costs (κ = 1), we have V = G+H.
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