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1 Introduction

Prescription pharmaceuticals constitute a large and growing share of medical expenditures.

Generic products have chemically equivalent active ingredients (i.e., the exact same molecule) and

typically yield the same clinical benefits (e.g., Kesselheim et al. (2008), Davit et al. (2009)) at lower

prices. Generic entry generally results in lower medical expenditures, increased access, and higher

short-run consumer surplus. Consumers usually face strong financial incentives to utilize generics

(Duggan et al. (2008), Duggan and Morton (2010), Goedken et al. (2010), Scott Morton and Kyle

(2011)). Despite these inducements, generics only constitute about 85% of the prescriptions even

a year after the loss of patent exclusivity (Berndt and Aitken, 2011). Researchers and policy

makers have argued that increased generic utilization would result in significant cost savings for

government programs like Medicare and Medicaid ([Haas et al. (2005), Shrank et al. (2010), Frank

(2007) Fischer and Avorn (2004), Rizzo and Zeckhauser (2009)).

Pharmaceutical markets are characterized by uncertainty and heterogeneity (e.g., Bailey (1997),

Crawford and Shum (2005), and Ching (2010)). Treatment efficacy and side effects differ across

patients and each individual’s match with a given drug is initially unknown. Furthermore, initial

perceptions may be systematically biased, particularly for generic pharmaceuticals. Patients gen-

erally believe that generics are lower quality despite the scientific evidence (Colgan et al. (2015),

Greene and Kesselheim (2011)). This may be especially important for patients who initially con-

sumed the branded product.

Pharmaceutical firm strategies may further influence patient perceptions of generic value. Firms

may promote their product through direct-to-consumer advertising or physician detailing, thus af-

fecting perceived quality (e.g., Berndt (2005), Iizuka and Jin (2005), Kravitz et al. (2005), Bradford

et al. (2006), Sinkinson and Starc (2015)). Pharmaceutical firms may develop follow-on products,

often referred to as line extensions. These products may constitute real clinical innovation includ-

ing formulations that can increase patient compliance or reduce side effects. Line extensions may,

however, reduce or delay consumers’ adoption of competing generic products (Hemphill and Sam-

pat, 2012). Given the difficulty consumers face in learning about product value, line extensions

may effectively differentiate products in excess of any efficacy or side effect differences. This is
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particularly important as the line extensions often face later generic entry dates (Shapiro, 2016).1

These products are employed to effectively extend patent life.

In this article, we address these issues by analyzing the roles of consumer learning and pharma-

ceutical firm strategies in generic utilization. We estimate a structural model of drug demand that

allows for heterogeneity in match quality between consumers and drugs. Furthermore, we allow

for marketing activities to influence consumers’ prior beliefs about brand quality. In doing so we

build on and extend a rich literature on discrete choice demand model [McFadden et al. (1973),

Rosen and Small (1979), Trajtenberg (1985), Berry (1994), Petrin (2001)]. Our framework utilizes

Bayesian learning models similar to those of Crawford and Shum (2005) and Shin et al. (2012).

We focus on the U.S. oral osteoporosis (OP) drugs from 2007 through 2008. This market includes

several branded pharmaceutical products as well as a line extension and a single generic entrant

beginning in 2008. The OP market is significant in terms of disease prevalence and pharmaceutical

revenues.2 This sample is also notable as it minimizes two important, and typically unobserved,

features in pharmaceutical financing. Pharmaceutical manufacturers sometimes provide coupons

to consumers and rebates to both pharmacists and physicians that may undermine incentives from

payers (Dafny et al. (2016), Busetzina et al. (2017)). These issues were less prevalent during our

study period, are less common for the relatively low cost small-molecule drugs in our sample, and

the use of such rebates for Medicare beneficiaries violates federal anti-kickback regulations.

We find wide variation in individual preferences across treatments. These treatment match

values encompass both perceived efficacy and side effects. Patients and physicians have little initial

knowledge, but most learning occurs within six months of treatment initiation. Models that fail to

allow for both heterogeneous match values and learning yield biased parameter estimates and price

elasticities. Our estimates suggest that advertising has almost no net effect on generic substitution

- this is unsurprising as the branded products almost always cease advertising prior to entry by a

generic competitor (Morton (2000)). Line extension products increase demand for branded drugs,

but counterfactual experiments suggest that their impact on osteoporosis drug spending is modest

1Later generic dates often occur when line extensions are delayed beyond patent expiration when in-
troduced late in a patent period followed by a lengthy FDA approval process. In relatively small product
markets line extensions may never face generic competition.

2Blume and Curtis (2011) report that roughly 30% of Medicare beneficiaries were treated for either
fractures or OP without fractures with an estimated health care cost of $16 billion in the U.S. in 2002.
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and they do little to forestall generic substitution. Consumers’ individual experiences with branded

products has a large influence on demand. Consumers initially perceive generic products to be

inferior and only discover their equivalence through experience. These perception biases have a

larger and longer-lasting impact on generic substitution and medical expenditure.

The article is organized as follows: In Section 2, we lay out the Bayesian learning model. Section

3 describes our patient-level Medicare claims data set, summary statistics and background on

osteoporosis drug market. Section 4 discusses some identification issues. We present the estimation

strategy in Section 5 and results are presented in Section 6. Section 7 describes the model fit

through in- and out-of-sample predictions. We discuss threats to identification and inference in

Section 8. Section 9 presents counterfactual policy simulations and Section 10 provides concluding

remarks.

2 Model

Overview

We estimate a structural model of pharmaceutical demand where patients are uncertain about

drug match quality, are risk neutral, and myopic. Patients are all newly diagnosed with osteo-

porosis and have no initial experience with osteoporosis treatments, although they may have initial

perceptions regarding product’s efficacy or side effects. Perceptions and decisions are formed jointly

with physicians, although we simply refer to the patient or consumer for ease of exposition. Ini-

tial expectations may be influenced by direct-to-consumer pharmaceutical advertising, physician

detailing, as well as unobserved differences in initial (t = 0) brand reputations. These initial priors

may be particularly imprecise due to the complex nature of medical knowledge and treatment ef-

fect heterogeneity. Thus patients and physicians must learn about the match value between each

patient and drug. Patients receive match quality signals beginning with the first treatment period

(t = 1) and update their match quality expectations in a Bayesian manner. In the rest of the

section, we lay out the model specification and the assumptions underlying the Bayesian learning

model of drug demand.
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Utility Function

Consumer i’s utility from purchasing pharmaceutical brand j at time t is given by:

Uij,t = βij,t−1 + αPij,t + γXij,t + εij,t, (1)

where βij,t denotes patient i’s beliefs about the stochastic match quality of drug j at time t. Pij,t is

the out-of-pocket price paid by patients for each drug, Xij,t is a vector of other variables related to

benefit-design. Finally εij,t is a patient-, drug-, and time-specific shock that could include transient

changes in wealth or health. Notice that the utility is stochastic because the belief about the match

quality is stochastic. The error term εij,t is unobserved by the econometrician, but is observable

to the patient. We assume that εij,t follows iid Type I extreme value distribution. The patient is

assumed to maximize expected utility given by:

UEij,t = E[Uij,t] = E[βij,t−1] + αPij,t + γXij,t + εij,t. (2)

Learning Process

Following the Bayesian learning literature (e.g., Crawford and Shum (2005), Erdem and Keane

(1996), Ackerberg (2003), Shin et al. (2012)) we assume that match quality is not revealed in a

single instance of drug use. Patients learn about the match quality by updating their beliefs over

successive medication utilization experience. More specifically, they receive a noisy signal of match

quality after each experience of a particular drug and combine the information contained in the

signal with their prior beliefs to obtain posterior beliefs about the drug in accordance with Bayes’

rule.

Let qij,t be the quality signal patient i receives after consuming treatment j at time t. We

assume that quality signals follow a normal distribution:

qij,t ∼ N(βij , σ2
qij ), (3)

where βij is patient i’s true match quality for drug j and σ2
qij is the variance of the quality signal.
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This implies that learning happens over multiple drug experience occasions and the quality signal

is a noisy measure of the true match quality. We further assume that the true match quality is

normally distributed in the population:

βij ∼MVN(β̄,Ωβ̄), (4)

For identification purposes, we implement a change in variables and formulate this alternate

expression for the Bayesian learning process (Shin et al., 2012):

ηij,t = qij,t − βij (5)

whereas ηij,t is the “signal noise” which represents the noise component of the quality signal.

Prior Beliefs

Patients are newly diagnosed with osteoporosis at time t = 0 and have no experience with osteo-

porosis treatment. Patients may, however, form expectations through consultation with physicians,

other patients, or pharmaceutical advertising. Patient i′s belief about the match quality of drug j

at a given time t has the following normal distribution:

βij,t ∼ N(µβij,t , σ2
βij,t), (6)

where µβij,t and σ2
βij,t

are patient i′s beliefs regarding the mean and variance of drug j′s match

quality at time t. For identification purposes, we define the deviation of patients i’s prior belief

about the mean quality (µβij,0) from the true mean quality of the match in the following way:

νij,0 = µβij,0 − βij (7)

Where we refer to νij,0 as the initial “perception bias” of individuals prior to the initiation of

treatment (Shin et al., 2012). We allow the initial perception about true match quality of drug to

be influenced by pharmaceutical firms’ promotional activities. More precisely we allow for consumer
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heterogeneity in initial perception bias in the following way:

νij0 = ν̄j + φi(Adij −
1
N

∑
i

Adij) + δi(Detailij −
1
N

∑
i

Detailij) (8)

Where Adij and Detailij are aggregate advertising and detailing expenditures respectively by firms

for drug j in the month prior to individual i’s initiation of treatment. Advertising and detailing

are demeaned following the treatment of perception shifters in Shin et al. (2012).

Posterior Beliefs

A patient consuming drug j at time t = 1 receives a quality signal and updates beliefs about

match quality in a Bayesian manner. Posterior beliefs are normally distributed as the prior at time

t = 0 and all subsequent signals are normally distributed. Hence the evolution of posterior beliefs

can be fully characterized by the laws of motion for posterior mean and variance.

The posterior mean and variance are updated recursively using Bayes’ rule:

µβij,t =
σ2
βij,t

σ2
βij,t−1

µβij,t−1 + dij,t
σ2
βij,t

σ2
qij

qij,t (9)

σ2
βij,t = 1

1
σ2
βij,t−1

+ dij,t
1

σ2
qij

(10)

where dij,t is an indicator variable such that:

dij,t =


1 if drug j taken in period t,

0 otherwise

Iterating forward Equations 9 and 10 yields the following expressions for the match quality mean

and variance at time t:

µβij,t =
σ2
βij,t

σ2
βij,0

µβij,0 +
t∑

τ=1
dij,τqij,τ

σ2
βij,t

σ2
qij

(11)

σ2
βij,t = 1

1
σ2
βij,0

+
∑t

τ=1 dij,τ
σ2
qij

(12)
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Using this expression for the evolution of posterior beliefs about the mean match quality of the

drug and following the change of variables in Equations 5 and 7 , the expected utility in Equation

2 can be re-written as3:

UEij,t =βij + νijt−1 + αPij,t + γXij,t + εij,t (13)

=βij +

σ2
qij

σ2
βij,0

νij,0 +
∑t−1
τ=1 dij,τηij,τ

σ2
qij

σ2
βij,0

+
∑t−1
τ=1 dij,τ

+ αPij,t + γXij,t + εij,t (14)

Notice that the distributional assumptions on εij,t result in a random coefficient multinomial logit

model where product-specific intercepts are composed of true mean match quality (βij) and per-

ception bias (νij,t−1).

3 Data

We employ a 5% random sample of Medicare claims data from the Center of Medicare and

Medicaid services. The data are constructed using several files, including the 2007-2008 Medicare

Part D Prescription Drug Event (PDE) files, Plan Characteristics files, Denominator files, CCW

Chronic Conditions Summary files, Medicare Provider Analysis and Review (MedPAR) files, and

the Medispan Drug Data Base (MDDB). The PDE files include prescription claims documented by

CMS. Denominator files include beneficiaries’ demographic information and insurance plan types.

MedPAR files provide hospitalization records and disease information through the ICD-9 codes.

The CCW Chronic Conditions Summary files contains chronic disease flags and MDDB is a com-

mercial database that provides drug description with National Drug Codes (NDC). These files were

merged to create a sample of beneficiaries who were newly diagnosed with osteoporosis and initiated

treatment in either 2007 or 2008. Henceforth, we will refer to these two groups as the 2007 cohort

and 2008 cohort respectively. We observe prescription drug fills for the 2007 cohort for two years

(2007 and 2008). Whereas for the the 2008 cohort, the prescription drug fills are only observed for

a single year. Unless otherwise stated the year 2007 and 2008 by themselves will refer only to the

3Please refer to Appendix A.3 for further details on these calculations.
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calendar periods.

We select a sample of individuals who initiated osteoporosis treatment through first-line oral

therapy drugs. An individual is selected if she was observed to have at least one prescription for a

drug containing the active ingredients alendronate, ibandronate, risedronate, or raloxifene during

the cohort year. We only include those individuals enrolled in traditional fee-for-service Medicare

who have stand-alone prescription drug plans. While prescription data is available for Medicare

Advantage beneficiaries, we do not observe their outpatient and inpatient claims which are essential

for identifying osteoporosis diagnosis and related comorbidities. We also excluded beneficiaries re-

ceiving the low-income subsidy as they had no across-drug out-of-pocket price variation, those with

chronic conditions that prohibited osteoporosis drug utilization, and those with chronic conditions

that are often treated with osteoporosis drugs (see Lin et al. (2014) for a complete list of inclusion

restrictions). The resulting sample consisted of 37,435 beneficiary-year observations representing

4,865 unique beneficiaries (2,209 in 2007 cohort and 2,656 in 2008 cohort).

Oral Osteoporosis Drug Market

We focus on FDA approved first-line osteoporosis treatments. These treatments are recom-

mended for newly diagnosed osteoporosis patients. During our study period (2007 - 2008) this

market comprises drugs with four active ingredients: alendronate, ibandronate, raloxifene, and

risedronate.4 Alendronate is especially interesting. It was first approved as Fosamax in 1995. In

2005 alendronate was approved in combination with vitaminD3 as Fosamax Plus D, a line extension

of Fosamax. In January of 2008 generic alendronate entered the market. Treatment alternatives

such as teriparatide (PTH) injections and non-oral bisphononates exist, but these are not approved

for first line therapy and constitute a very small share of the total market during 2007 and 2008.

Choice Set

Our data capture every osteoporosis prescription filled along with the product name, date filled,

and the amount supplied. A prescription fill can be of varying lengths, typically 30, 60, or 90 days.

4A line extension of Actonel, risedronate sodium plus calcium, was also present during this period but
we drop this from our analysis due to it’s extremely small market share.

9



To address this issue, we construct a monthly panel using a 30 days equivalent fill for each of the

six drug choices.5 Table 1 provides the drug choices in our model and their market shares in both

2007 and 2008.6 Notice that Fosamax had the largest market share in 2007 followed by Actonel.

The entry of generic Fosamax in 2008 resulted in a sharp decline in branded Fosamax’s market

share and only a modest decline in the market share of Actonel.

[Table 1 about here.]

The exclusion of second-line treatments presents a challenge for our choice set. Since injectable

treatments such as teriparatide are not observed in our data, we cannot distinguish between pa-

tients that forgo treatment altogether from those that transition to second-line. Consequently we

normalize choices to Actonel and model demand across second-line treatments. We then consider

attrition and censoring in our robustness analyses.

Out-of-Pocket Prices

Prescription drug plans usually include multi-tier formularies that can vary with respect to

coinsurance or copayments, coverage in different benefit phases (especially the donut-hole), purchase

points etc. Medicare Part-D beneficiaries face complex non-linear cost sharing schedules as they

pass through different benefit phases – deductible, pre-initial coverage limit (pre-ICL), gap, and

catastrophic coverage. This makes the construction of true out-of-pocket (OOP) prices a challenging

task. We follow prior research [Joyce et al. (2002), Karaca-Mandic et al. (2012), Karaca-Mandic

et al. (2013)] in constructing out-of-pocket prices for each beneficiary in 2007 and 2008. We use

copay/coinsurance information for each plan, it’s cost-sharing tier provision, and benefit phase

information. Please refer to Appendix A.2 for further detail regarding variable construction. The

Medicare Part D pricing structure provides a significant source of out-of-pocket price variation

across brands, individuals, and time. We further normalize the out-of-pocket prices by the quantity

dispensed and construct a monthly panel using out-of-pocket prices for a 30-days fill. Table 1

5A person who has a 60/90 day fill in the data for instance appears as two or three sequential observations
in our panel.

6Throughout this article, we will present actual/predicted market shares split by calendar years 2007
and 2008 to highlight generic substitution.
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provides average out-of-pocket prices for each of the six osteoporosis drugs in the sample for a 30

days fill.

Drug Switches

We observe individuals switch between different drugs over the course of their treatment pe-

riod. This behavior is informative from an estimation stand point as it helps to understand how

idiosyncratic match values are correlated across different drugs. We observe a treatment period of

over 12 months for more than 32% of our sample. The evolution of individual market shares over a

long treatment period provides a good source of variation to disentangle preference heterogeneity

from systematic learning about the match quality of different drugs.

Table 2 provides the switching pattern across various brands. The first column provides the

total number of unique switches from a given drug and the second column gives the total number

of switches to a given drug. Most of drug switches in our sample are switches to the generic drug

when it becomes available; although, a small fraction of of changes switch from the generic to a

branded product (≈ 5%).

[Table 2 about here.]

Advertising and Detailing

We use aggregate pharmaceutical detailing and advertising data from IMS and Kantar Me-

dia respectively. These data document monthly promotional activities for oral osteoporosis drugs

during the years 2007 and 2008. Figure 1 shows the monthly aggregate advertising and detailing

expenditures for the branded drugs in our sample. We observe no advertising or detailing expendi-

tures for the generic Fosamax. While detailing expenditures remained relatively stable for Actonel,

Boniva, and Evista, they began to plummet for Fosamax and Fosamax Plus D in 2008 with the en-

try of generic Fosamax. The opposite is true for Evista advertising expenditures which experienced

a sharp rise in early 2008.

[Figure 1 about here.]
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4 Identification

Intuition for identification

Endogeneity is, of course, a particular concern for demand estimation. Consumers may differ

in their unobserved preferences across products and select plans based on out-of-pocket prices;

consequently, we focus on newly diagnosed patients. Patients are unlikely to know their preferences

prior to treatment initiation and it is unlikely that these factors influenced initial plan selection.

These issues could, however, be especially problematic for plan selections made after consumers

have begun treatment and learned about their own product-specific preferences. This issue arises

during the second year of data for our first cohort. In Section 8 below we test whether informed

consumers - those who have experienced treatment prior to play choice - choose plans with lower

out-of-pocket prices for purchased products.

We also take advantage of the 2008 generic entry as a quasi-natural experiment. Generic en-

try provides an exogenous shock to out-of-pocket prices and our estimates include a control for

the post-entry period (2008) and a post-entry cohort indicator (Cohort). These variables control

for unobserved differences across time and cohorts, forming a difference-in-differences identifica-

tion strategy. Furthermore, we employ data on each individual’s out-of-pocket price schedule,

constructed using plan and drug-tier information across all of a plan’s consumers, rather than out-

of-pocket prices of an individual’s purchased products. These detailed out-of-pocket price schedule

data eliminate a common source of endogeneity in demand estimation.

Under Medicare Part D benefit design, future out-of-pocket prices depend upon current con-

sumption; in particular, prices near the end of the calendar year depend upon consumption in

earlier months. Our theoretical model imposes a myopic utility function and ignores these incen-

tives. In our base model, we allow out-of-pocket price elasticity to vary over time by interacting

Price with the number of months remaining in the benefits period, Month. Although we could

not easily estimate more flexible models with Bayesian learning parameters, we explored a variety

of simpler (logit demand) models that allowed for parameter heterogeneity as a function of time

remaining in the benefit period. These models are discussed in the Robustness Section below and

representative results are reported in Appendix B, Tables B.1 and B.2.
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Consumer preferences could change with experience. Consumers may, in effect, tire of searching

for new products. State-dependent preferences could bias our learning parameters which also change

with experience. We re-estimated our Learning models while controlling for state-dependence (e.g.,

the number of previously tried products).

Identification of Bayesian Learning Parameters

The parameters of the Bayesian learning process {βij , σ2
qij , νij,0, σ

2
βij,0
} ∀i, j are not identifiable in

the current form. Identifying assumptions follow Shin et al. (2012). We normalize the quality signal

variance σ2
qij to 1 as the initial match quality belief variance σ2

βij,0
cannot be separately identified

from quality signal variance. Their ratio (
σ2
qij

σ2
βij,0

) can, however, be identified. As mentioned earlier,

we allow consumer heterogeneity in initial perception bias but we restrict the ratio of the quality

signal variance to the initial match quality belief variance to be homogeneous across consumers

such that 1
σ2
βij,0

= exp(κ).

The true mean quality of the drug, βij , is identified by a patient’s steady state drug choices.

As the patient receives quality signals over successive drug experiences, learning occurs and the

beliefs about match quality evolves to the true match quality. We observe drug choices of patients

for up to 24 months following an initial diagnosis. This provides a sufficiently long time series to

identify the true mean quality. We normalize one mean quality measure to zero (βiJ = 0) as not

all drug-specific βij ’s are identified. We also normalize the initial perception bias for one product

to zero (ν̄J = 0).

5 Estimation

We estimate parameters of the learning model using the Bayesian method of inference. The set

of parameters is given by Θ = {Φi}Ni ×Ψ where Φi = {βi1, . . . , βiJ−1, φi, δi, {ηij,t}Ti−1
τ=1 } represents a

set of individual-specific parameters and Ψ = {ν̄1, . . . , ν̄J−1, κ, α, γ} are aggregate level parameters.

The likelihood function is defined as:

Li(di|Φi,Ψ) =
Ti∏
t=1

J∏
j=1

( exp(ŪEij,t)∑
j′ exp(ŪEij′,t)

)dij,t
.
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Where:

ŪEij,t = βij + exp(κ)νij,0 +
∑t−1
τ=1 dij,τηij,τ

exp(κ) +
∑t−1
τ=1 dij,τ

+ αPij,t + γXij,t

We use a Markov Chain Monte Carlo (MCMC) scheme to draw from the stationary joint posterior

density of the parameters. We burn in 1,000,000 iterations to address potential serial correlation

based on initial priors. We then use the next 40,000 draws from the joint posterior distribution of

the parameter vector for computing the mean values of parameter estimates. Details of the MCMC

sampler are provided in Appendix A.1. The MCMC trace and density plots for the posterior means

of match qualities are also provided in Appendix B, Figures B.1 and B.2. Finally, we observe that

the posterior match quality distributions conform to the assumed multivariate normal distribution

(See Appendix B, Figure B.2).

Two additional models are estimated for comparison purposes. We estimate a mixed logit that

allows for heterogeneous match values but implicitly assumes these are known to patients and their

physicians ab initio. We also estimate a conditional logit that effectively assumes match values are

known ex ante and identical across patients.

6 Results

We estimate parameters from three alternative demand models. The Logit model assumes that

match values are homogeneous across patients and known ex ante. These models are useful for

comparison to much of the pharmaceutical demand literature. We then estimate a Mixed Logit

model which allows for heterogeneous matches between individual patients and treatments. Finally

we estimate a Bayesian learning model that incorporates heterogeneous match values and further

allows for patients and physicians to learn about match values over time. Parameter estimates

for all three models are reported in Table 3.7 We label these models as Logit, Mixed Logit, and

Learning in Table 3 and in the following text.

The first five rows of Table 3 provide estimates of the out-of-pocket price parameter (α) and

7We report the mean of the posterior distribution and 95% credible sets for each parameter of the
Learning model.
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other variables (Xij,t) that are common across the three base models. Price elasticities abate slightly

over the benefit period (γ2 > 0) in all three models. Neither theMixed Logit nor the Learning model

parameters suggest significant differences before and after generic entry (γ3) or across cohorts (γ4).

We observe an out-of-pocket price parameter (α) ranging from -0.010 for the Logit model to -0.15

for the Mixed Logit estimates. These parameters are interpreted in Table 4 and further discussed

below.

The second section of Table 3 describes patients’ true mean quality. This is the average match

value, β̄j , for each product relative to Actonel. Patient match value heterogeneities are also reported

for the Mixed Logit and Learning models. The various forms of alendronate sodium (e.g., Fosamax

and its generic) have the highest average valuations followed by Actonel (reference good), Boniva,

Fosamax Plus D, and Evista respectively. These match values capture a variety of factors including

side effects, clinical effectiveness, and institutional features such as automatic generic substitution.

We allow the 2007 and 2008 cohorts to have different preferences (β1 and β2) over the generic

product as these cohorts would likely have different initial experiences with the generic. The

Mixed Logit model finds large differences in mean match values across the 2007 and 2008 cohorts

(0.30 and 9.22 respectively). The Logit model generic match values are closer to each other, but

the 2008 cohort generic preference parameter (1.99) is still more than double the 2007 cohort

preference parameter (0.88). The Learning model, however, provides a notably different insight

into consumers’ valuation of generic pharmaceuticals. Consumers’ initially perceptions of generic

products (υ1 and υ2) are negative, suggesting that they perceive generics to be inferior treatments.

This result is particularly large for the 2007 cohort (υ1 = −6.58), although the 2008 cohort’s

initial perceptions are also biased (υ2 = −1.93). Consumers can, however, learn about their true

valuations through experience. We find that the 2007 and 2008 cohorts’ true match values (β) -

ex post learning - are quite similar, 6.09 and 5.85 respectively. For each product we can reject

the hypothesis that initial perceptions are unbiased (νj = 0 for all j). The Logit and Mixed Logit

estimates are biased as they cannot distinguish the difference between true match values (β) and

consumers’ initial perception biases (υ).

The heterogeneity terms in the Mixed Logit and Learning models measure the dispersion of
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match values across patients for each product.8 For each product we can reject the hypothesis

that match values are homogeneous and heterogeneity is large relative to the average match value.

We further observe that the Mixed Logit model generates larger heterogeneity estimates than the

Learning model.

[Table 3 about here.]

Patients and physicians have little initial knowledge regarding idiosyncratic match values for

osteoporosis drugs. Suggesting that these values may only be learned through experience. The third

section of Table 3 demonstrates that the initial perception bias, νj,0, is, quite large on average and

initial precision (κ = 0.01) is quite low. Based on these parameters, we calculate that most consumer

learning (and switching) occurs within the six months of treatment experience. Unsurprisingly, both

advertising (φ) and detailing (δ) improve consumer’s initial perceptions of advertised products.

Figure 2 shows the evolution of perception bias across time for each product. This figure reports

how biases would evolve over time if the patient consumed a particular drug in every period. More

specifically, it plots the term

σ2
qij

σ2
βij,0

νij,0+
∑t−1

τ=1 dij,τηij,τ

σ2
qij

σ2
βij,0

+
∑t−1

τ=1 dij,τ

assuming that dijt = 1 every period. There are

few things worth mentioning. First, most learning happens fairly quickly, in the first six months.

Second, patients from the 2008 cohort learn about generic Fosamax faster than those in the 2007

cohort as they have a smaller initial perception bias. Third, there is no initial heterogeneity in

branded drug perception bias (νj,0) for the generic. This is a consequence of Equation 7 where

initial perceptions are constant by drug except for variation due to advertising and detailing and

there is no generic advertising or detailing in our data.

[Figure 2 about here.]

Table 4 reports the calculated price elasticities for each product and model. Elasticity estimates

differ widely across models. The Logit model assumption of homogeneous match values produces

downward biased elasticity estimates. Conversely, the Mixed Logit model overestimates both con-

sumer heterogeneity (see Table 3) and demand elasticities. Ultimately the Learning model suggests

that demand is relatively elastic.
8Heterogeneity is the posterior mean of the square root of the diagonal element of βi’s variance-covariance

matrix Ωβ̄ .
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[Table 4 about here.]

Generic elasticities are significantly lower than the elasticities of other products. This may

appear counterintuitive, but there are several reasons for this result. All elasticities are normalized

to Actonel. Although Actonel’s out-of-pocket price is similar to that of other brands, it is more

than 300% higher than the generic out-of-pocket price. Consequently a one percent change in any

branded price should have a larger effect on demand than a one percent change in the generic

price as consumers care about absolute, rather than relative, out-of-pocket prices. Furthermore,

competition among generic manufacturers, perception bias, and automatic substitution processes

all serve to keep generic prices from rising despite the lower generic demand elasticity.

7 Validation

We estimated the models in Table 3 using data from 70% of the patients in our sample and

used data from the remaining 30% to evaluate out-of-sample predictive accuracy. We compare the

predicted and actual market shares for each product over time using results from the Learning

model in Table 3. In Figures 3a and 3b we demonstrate a close match in market shares for the

estimation and validation samples with mean squared errors of 0.0026 and 0.05 respectively. Our

specification does, however, slightly understate the speed with which generic substitution occurs

in 2008. In Figure 3a the actual generic market share exceeds the predicted market share both in-

and out-of-sample.

The model does a good job of predicting individual treatment choices within-sample, where we

observe the estimated match values. It is, however, much less accurate when predicting out-of-

sample individual treatment choices. Accuracy rates for the estimation and validation samples are

92.3% and 55% respectively. This result is unsurprising as even prescribing physicians have little

ex ante information regarding patient-level match values.

[Figure 3 about here.]
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8 Robustness

We consider several major threats to the validity and robustness of our empirical models. We

begin by exploring potential endogeneity and then discuss more flexible frameworks in terms of time

controls and state-dependent preferences. In each case, results from our robustness test support

our overall conclusions.9 Finally, we consider issues of attrition and censoring in our data.

Endogeneity is, of course, a particular concern. While product characteristics are fixed through

regulation, out-of-pocket prices could be correlated with unobserved variation in preferences. In

particular, informed consumers could select insurance plans where out-of-pocket prices are lower

for osteoporosis products generally, or for the products that a consumer prefers. In this case the

structure of our sample and Medicare policy work to our advantage. All of our consumers are

newly diagnosed with osteoporosis and consumers only have the option of switching plans at the

beginning of a calendar year. Thus, patients newly diagnosed in early 2007 cannot act on that

information until the beginning of 2008 and those newly diagnosed in 2008 cannot switch plans

until 2009 which is after the end of our sample. Although this structure does not eliminate the

potential for endogeneity, it does provide a natural test. We compare the out-of-pocket prices of

drugs consumed in 2008 for the 2007 and 2008 cohorts. If informed consumers - the 2007 cohort

during 2008 - are selecting their plans based on their out-of-pocket prices then they should have

lower average out-of-pocket prices in 2008. Table 5 shows that 2008 drug prices are nearly identical

for both the informed and uninformed patients. Average out-of-pocket prices are, in fact, slightly

higher for informed patients suggesting that plan selection is not a threat to identification.

[Table 5 about here.]

The construction of our price measures also helps mitigate endogeneity. Rather than using

simple transaction prices, we calculate the price schedule for each consumer, reflecting their plan’s

formulary as well as the patient’s benefit phase (e.g., deductible, pre-ICL, gap, and catastrophic).

This reduces the common influence of consumption choice on price measurement.

9Unfortunately, we had difficulty estimating models with more parameters than those reported in Table
3. In some cases specific parameters were not identified and in others the trace plots revealed serial corre-
lation even after 2,000,000 burn-in iterations. This was usually near the maximum allowed run time in our
computing environment.
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We explored two additional sets of robustness tests to explore issues of myopia and state depen-

dence. First, we explored additional interactions between out-of-pocket prices and benefit duration

(Month) to further relax the myopia assumption. A wide range of alternative specifications esti-

mated via logistic regression yielded extremely similar parameter estimates and price elasticities.

A few representative models are presented in Appendix B. Bayesian versions did not fully converge

and are not reported but the results appeared to be consistent with estimates reported in Table

3. Finally, we allowed choices to depend on the number of previously chosen products to allow for

state-dependent preferences.

Finally, patients with low match values may be more likely to cease oral osteoporosis treatment

and those with high match values might continue treatment following the end of our data in De-

cember, 2008. We consider the potential for differential attrition and censoring rates across choices.

In the data we observe that attrition rates are similar for most drugs, but they are considerably

lower for those consuming generic alendronate. This difference is explained by the relatively late

entry of generic alendronate - consumers that ceased oral osteoporosis in 2007 couldn’t have chosen

the generic. We also estimated hazard models of attrition, but the results were extremely sensitive

to specification.

We can say something about the potential direction of bias due to censoring for our Bayesian

learning parameters. While attrition is concentrated among individuals with low match values,

censoring - treatment through December, 2008 - would occur for those with high match values.

Most learning occurs within the first three-to-six months of treatment and relatively few patients

try more than two different drugs. Very few individuals experience censoring that substantively

influence our match value estimates.

9 Counterfactual Policy Simulations

We conduct several counterfactual simulations to illustrate the roles of advertising, line exten-

sions, and consumer perception biases in the generic substitution process. The following sections

discuss them in detail.
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No Advertising and Detailing

In the first counterfactual, we consider the consequences of eliminating pharmaceutical firms’

advertising and detailing activities. We do this by eliminating the effect of advertising and detailing

on the initial perception bias. More formally, we set νij0 in Equation 8 to ν̄. This effectively lowers

consumer’s initial perceptions of advertised products.

In Figure 4 we observe predicted market shares based on actual promotional expenditures (solid

lines) and counterfactual market shares with no advertising expenditures (dashed lines). Fosamax

and Fosamax+D expenditures ceased prior to patent expiration and we see that their effects were

both modest and short-lived. The elimination of advertising and detailing has the seemingly coun-

terintuitive effect of slightly reducing the generic market share, by 0.7% (see Appendix Table B.3).

This is explained by differences in both substitutability across produces and in the advertising

levels. The generic’s closest substitute, Fosamax, was heavily promoted in early 2007, but pro-

motional activities ceased prior to generic entry. Consequently, restrictions on advertising and

detailing would lower Fosamax’s pre-generic market share and shift consumption to competing

products such as Fosamax+D and Actonel. This loss in pre-generic entry Fosamax market share

outweighs the reduction in branded competitor’s advertising post-generic entry. This is consistent

with the broader research on advertising and patent expiration (Ellison and Ellison, 2011).

[Figure 4 about here.]

An important caveat to this experiment is that our data include only those who initiate oral

osteoporosis treatment. We do not consider the impact of advertising on treatment initiation rates;

rather, we focus on switching behavior across products. While this focus is especially relevant for

studying generic substitution it does not generalize to the general consequences of advertising and

detailing.

Eliminating Line-Extensions

Our next counterfactual eliminates the line extension product Fosamax Plus D from the choice-

set. We do this by setting an arbitrarily high out-of-pocket price for this drug. Figure 5 illustrates

the consequences of removing Fosamax Plus D from the choice set. Eliminating this product
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increased the market shares of all incumbent products. Counterfactual generic market shares were

5.07% higher in 2008 (Appendix Table B.3) than it would have been in the absence of Fosamax Plus

D. The generic market share also grew over time as the incremental consumers of non-Fosamax

products switched to generics. The net effects of eliminating line extensions on total and out-of-

pocket expenditures were a 1% and 1.2% reduction respectively.

[Figure 5 about here.]

Change in Generic Perception Bias

We found that the 2007 cohort’s perceptions were significantly more biased against generic

than the 2008 cohort. Our final simulation applies the 2008 generic perception bias to the 2007

cohort. More precisely, we change the ν̄j of individuals in the 2007 cohort and give them the generic

perception bias estimated for the 2008 cohort. Changing this bias increases generic market shares by

roughly 26.4% during 2008. This bias, based on initial experience with the branded product, dwarfs

the consequences of both advertising and line extensions. Figure 6 shows that these differences are

particularly striking during the first few months following generic entry. Generic market shares

increased by 27% in 2008. Most of these counterfactual differences occurred during the first half

of 2008, a significant difference persisted through the year’s end. This change reduced consumers’

total out-of-pocket osteoporosis treatment expenditures by 11% and total expenditures (by payers

and patients) by 7.8%.

[Figure 6 about here.]

It is important to note that although we have relatively good data on patients’ out-of-pocket costs,

our measures of the gross drug cost - Paid by Medicare Part D - are upward biased. This is because

we do not observe negotiated rebates paid by pharmaceutical manufacturers to payers. These

rebates are almost certainly larger for branded products than for generics; thus, the total cost

reduction should be viewed as an upper bound. We report these numbers in the conclusion despite

the potential bias as we believe they still provide useful context for interpreting the magnitude of

our effects.
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10 Conclusion

We study demand for generic pharmaceuticals in the presence of consumer uncertainty and

heterogeneity. We estimate a structural model of drug demand allowing for heterogeneity in match

quality between patients and treatments. This heterogeneity may include both side effects and

clinical effectiveness; although, side effect variation should dominate in our analytic sample. Initial

perceptions about product quality may be biased and learning about match values occurs through

experience.

We find that patients and their prescribing physicians have little initial information regard-

ing match values. Their initial perceptions are biased, especially against generic products. This

bias is particularly striking for consumers first exposed to branded products before generic entry.

This suggests that experiencing differences in product names, labels, and appearance may play an

important role of shaping consumer perceptions of pharmaceutical products. We also find that

promotional activities, both advertising and detailing, increase initial perception of product values.

Despite initially biased perceptions, consumers learn rapidly through experience. We find that

initial perceptions are imprecise and most learning occurs within the first three-to-six months of

utilization. This suggests that consumers and their physicians recognize the problems with initial

information and respond quickly to patient experiences.

Heterogeneity and learning have important implications for measuring the effect of out-of-

pocket prices. Our Bayesian learning model suggests that demand is relatively elastic, about -1.6

on average. We compare our results to logistic and hierarchical logistic models. Both of these

models assume match values are known ab initio and the logistic model further assumes that

match values are homogeneous across patients. We reject these assumptions and find that they

have sizable implications for price elasticity estimates. Logistic models suggested relatively inelastic

demand, with an average elasticity of about -0.07. Although it is difficult to generalize across

different types of drugs and conditions, the logistic restuls are consistent with the larger literature

on pharmaceutical demand (Goldman et al., 2007). These findings are also consistent with the

broader demand estimation literature, where naïve models often underestimate price elasticities

(e.g., Nevo (2000)).

22



We use our estimates to explore the impact of generic perception bias on pharmaceutical de-

mand. Consumers first exposed to the branded products are particularly biased against generics.

Eliminating this bias would greatly accelerate generic substitution, increasing generic market share

by an estimated 27% in 2008. This change would reduce total oral osteoporosis expenditures by up

to 7.8% and lower consumers’ out-of-pocket expenditures by 11%.10 By comparison we find rela-

tively modest effects from eliminating advertising and line extensions. Eliminating line extensions

would increase generic markets shares by 5.1% and had an almost negligible impact on both out-of-

pocket and total costs. Unsurprisingly an advertising ban had almost no effect on generic market

share. This is because Fosamax ceased advertising prior to generic entry - a common strategy for

products with expiring patents.

These results have a number of policy implications. These findings provide further evidence

that generics suffer from perception bias and are, ultimately, viewed as high-quality products by

informed consumers. There could be a number of mechanisms for increasing generic substitution.

State governments and pharmacy board can facilitate, or even mandate, substitution in the absence

of a physician order (e.g., Shrank et al. (2010)). Changes in naming and trademark policies could

also be used to reduce perception bias (Greene and Kesselheim (2011), Sarpatwari and Kesselheim

(2016)). Finally, our results suggest that some studies may understate pharmaceutical demand

elasticities, suggesting that patients are more responsive to cost sharing than may often be assumed.

10As noted in section 9, the total expenditure reduction is an upper bound and is provided for context.
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Figure 1: Advertising and Detailing Expenditures
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Figure 2: Evolution of Perception Bias Over Time

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2
G

en
er

ic
 2

00
7

Mean
95% CI

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2

G
en

er
ic

 2
00

8

Mean
95% CI

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2

F
os

am
ax

Mean
95% CI

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2

F
os

am
ax

 P
lu

s 
D

Mean
95% CI

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2

B
on

iv
a

Mean
95% CI

0 5 10 15 20 25
Treatment Period

-8

-6

-4

-2

0

2

E
vi

st
a

Mean
95% CI

Note: These have been normalized with respect to Actonel

26



Figure 3: Predicted and Actual Market Shares
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Note: Solid lines indicate actual market shares in the data and dashed lines are predicted market shares
based on parameter estimates from the Learning model in Table 3. Panel (a) uses data from the estimation
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Figure 4: Predicted Market Shares by Month:
No Detailing and Advertising in Initial Perception Bias
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Note: The dased lines indicate predicted market share after the counterfactual and the solid lines indicate
predicted market share before the counterfactual.
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Figure 5: Predicted Market Shares by Month
Removing Line-Extension from Choice Set
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Note: The dased lines indicate predicted market share after the counterfactual and the solid lines indicate
predicted market share before the counterfactual.
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Figure 6: Predicted Market Shares by Month
Change in Generic Perception Bias for 2007 Cohort
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Note: The dased lines indicate predicted market share after the counterfactual and the solid lines indicate
predicted market share before the counterfactual.
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Table 1: Osteoporosis Drugs, Market Shares and Out-of-Pocket Prices

Product Active Ingredient Brand/Generic Market Share Price1

2007 2008 2007 2008

Alendronate Alendronate Generic - 0.47 - 17.51
(15.33)

Fosamax Alendronate Brand 0.40 0.05 48.67
(27.80)

60.07
(25.77)

Fosamax+D Alendronate+D Brand 0.09 0.06 47.68
(26.31)

48.38
(24.90)

Boniva Ibandronate Brand 0.18 0.15 57.65
(24.98)

62.46
(32.13)

Evista Raloxifene Brand 0.06 0.05 51.78
(31.50)

56.48
(34.23)

Actonel Risedronate Brand 0.26 0.19 51.73
(28.35)

56.14
(30.65)

1 Mean out-of-pocket prices are reported for a 30 day fill. Standard deviations
are reported in parenthesis.
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Table 2: Drug Switches

Drug Switched (from) Switched (to)
Generic 68 934
Fosamax 773 74
Fosamax+D 106 38
Boniva 152 118
Evista 36 57
Actonel 176 90
Total 1311 1311

Notes: Column 2 in the above table shows the
total number of individual switches from a given
drug in our sample. Column 3 shows the total
number of individual switches to a given drug.
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Table 4: Price Elasticities

Product Logit Mixed Logit Learning
Generic −0.01

(−0.01,−0.00)
−0.39

(−0.46,−0.33)
−0.31

(−0.41,−0.20)
Fosamax −0.08

(−0.11,−0.06)
−2.76

(−3.08,−2.43)
−1.83

(−2.34,−1.32)
Fosamax Plus D −0.08

(−0.10,−0.06)
−2.56

(−2.86,−2.26)
−1.71

(−2.18,−1.23)
Boniva −0.09

(−0.12,−0.07)
−2.80

(−3.14,−2.47)
−1.87

(−2.40,−1.34)
Evista −0.10

(−0.12,−0.07)
−2.98

(−3.33,−2.63)
−1.98

(−2.54,−1.43)
Actonel −0.08

(−0.10,−0.06)
−2.52

(−2.81,−2.22)
−1.66

(−2.12,−1.19)

These out-of-pocket price elasticities are based on parameter estimates from Ta-
ble 3.
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Table 5: Mean Out-of-Pocket Drug Prices in 2008 by Cohort

Product 2007 Cohort 2008 Cohort p-value
Generic 17.95 17.04 0.00
Fosamax 60.47 59.63 0.01
Fosamax+D 48.50 48.24 0.39
Boniva 62.49 62.41 0.83
Evista 56.69 56.25 0.30
Actonel 55.87 56.42 0.14

Notes: Column 2 shows the average out-of-pocket prices paid by the
2007 during 2008. Similarly, column 3 shows the average out-of-pocket
prices paid by the 2008 cohort in 2008. Column 4 shows the p-value
for the t-test for the difference in the two mean prices.
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A Technical Appendix
A.1 MCMC Sampler

We employ a Bayesian approach to estimate the parameters
{βi1, ..., βiJ−1, φi, δi, {ηij,t}Ti−1

τ=1 , ν̄1, ..., ν̄J−1, κ, α, γ}. This requires an unconditional prior dis-
tribution of the parameter vector along with the likelihood function.

Prior Distribution

We specify the prior distribution of our parameters as:

[βi|β̄,Ωβ̄] ∼MVN(β̄,Ωβ̄)
[β̄|β̄0, S0] ∼MVN(β̄0, S0) and [Ωβ̄|K, I] ∼ IW (K, I)

[φi|φ̄,Ωφ̄] ∼MVN(φ̄,Ωφ̄)
[φ̄|φ̄0, Sφ0 ] ∼MVN(φ̄0, Sφ0) and [Ωφ̄|m,M ] ∼ IW (m,M)

[δi|δ̄,Ωδ̄] ∼MVN(δ̄,Ωδ̄)
[δ̄|δ̄0, Sδ0 ] ∼MVN(δ̄0, Sδ0) and [Ωδ̄|n,N ] ∼ IW (n,N)

[α|αm0 , αv0] ∼ N(αm0 , αv0)
[γ|γm0 , γv0 ] ∼ N(γm0 , γv0 )
[ν̄|νm0 , νv0 ] ∼MVN(νm0 , νv0 )
[κ|σm0 , σv0 ] ∼ N(σm0 , σv0)

[ηij,t|µη, ση] ∼ N(µη, ση)

The joint prior distribution of our parameter vector Θ = {Φi}Ni ×Ψ is thus given by:

k(Θ) =
N∏
i=1

(
[βi|β̄,Ωβ̄][φi|φ̄,Ωφ̄][δi|δ̄,Ωδ̄]

Ti∏
τ=1

[ηijτ |µη, ση]
)
× [β̄|β̄0, S0]× [Ωβ̄|K, I]× [α|αm0 , αv0]

×[γ|γm0 , γv0 ]× [ν̄|νm0 , νv0 ]× [κ|σm0 , σv0 ]

Joint Posterior Distribution

Given the prior distribution of the parameter vector and the likelihood function, the joint
posterior distribution of the parameter vector conditional on the data is given by:

K(Θ|{di}Ni=) ∝
N∏
i=1

Li(di|Φi,Ψ)k(Θ)

Bayesian inference requires drawing from the joint posterior distribution of the parameter vector. It
is possible to directly draw from this distribution using the Metropolis Hastings algorithm, but this
is computationally slow. Consequently, draws from this distribution are obtained through Gibbs
sampling. This is an iterative process that requires drawing each parameter conditional on other
parameters. Following (Train, 2009), we specify the Gibbs sampling procedure for drawing from
the joint posterior distribution.

1. Update βi = {βi1, ..., βiJ−1} using a Metropolis-Hastings sampler.
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2. Update β̄ and Ωβ̄ using a Gibbs sampler.

3. Update φi using a Metropolis-Hastings sampler.

4. Update φ̄ and Ωφ̄ using a Gibbs sampler.

5. Update δi using a Metropolis-Hastings sampler.

6. Update δ̄ and Ωδ̄ using a Gibbs sampler.

7. Update α and γ by a Metropolis-Hastings sampler.

8. Update {ν̄1, ..., ν̄J−1, σ̄
2
β0
} using a Metropolis-Hastings sampler

9. Update {ηij,τ}t−1
τ=1 by a Metropolis-Hastings sampler.

A.2 Out-of-Pocket Prices
To construct true out-of-pocket costs for each drug we employed copayment and coinsurance

information from the plans for each tier and benefit phase. Encrypted plan and contract identifiers
in the Part D denominator files were linked to the PDE files. This identified the plan under
which each beneficiary was enrolled in a given time period. Plan Characteristic files provided plan
cost sharing and type of tier information: Brand/Preferred Brand (BPB), Non-Preferred Brand
(NPB), Generic/Preferred Generic (GPG), Non-Preferred Generic (GPG), and d99 (plans that use
a standard 25% coinsurance rate). These were available for both the pre-initial coverage limit
(pre-ICL), the benefit phase preceding the donut hole, and Gap phases during the donut hole.

We first constructed the average gross drug costs for each drug covered by the tiers BPB,
NPB, GPG, NPG, and d99 under each benefit phase and for each year. For the Deductible and
Catastrophic phases, we only constructed the average drug cost by year. In order to construct drug
costs by tiers, we merged the plan characteristics data with the PDE files for each year separately.
We then coded gap and pre-ICL tiers using information in the plan characteristics files. We then
generated mean average gross drug cost for each drug in each of the five tiers as well as the Gap
and Pre-ICL phases for the two years.

The primary challenge we faced in constructing out-of-pocket costs for each drug under each
plan was that in the 5% Part D sample we do not observe transactions for all relevant osteoporosis
drugs in every plan. We employed the following rules to calculate out-of-pocket prices:

• Rule 1 If a drug is purchased for a given PDE plan then the actual formulary tiers (i.e.,
copayment and coinsurance rates) are applied to calculate the out-of-pocket cost.

• Rule 2 If no transactions are occurred for a given drug-plan combination we examined
data from other plans with the same contract ID as plans within contract IDs have highly
correlated formulary and pricing structures. Using this broader set of data we inferred the
formulary tier and applied the appropriate plan-specific coinsurance and copayment rates to
calculate out-of-pocket costs.

• Rule 3 If no transactions are observed for a given drug and contract ID we applied the
formulary tier most frequently observed for that drug using data from other contract IDs.
We then used the plan’s own copayment and coinsurance rate for that formulary tier when
calculating out-of-pocket costs.
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• Rule 4 If we see that some drug is covered as NPG/NPB in the population but a particular
plan does not have copay/coinsurance information on the NPG/NPB tier, we then use the
copay/coinsurance information on GPG/BPB respectively, if available in computing out-of-
pocket costs.

A.3 Mathematical Appendix
This section provides the derivation of equation 14. From equations 11 and 12, we have:

µβij,t =
σ2
βij,t

σ2
βij,0

µβij,0 +
t∑

τ=1
dij,τqij,τ

σ2
βij,t

σ2
qij

(15)

σ2
βij,t = 1

1
σ2
βij,0

+
∑t

τ=1 dij,τ
σ2
qij

(16)

Substituting for the value of σ2
βij,t

in equation 15 we get:

µβij,t =
µβij,0

1 +
σ2
βij,0
σ2
qij

∑t
τ=1 dij,τ

+
∑t
τ=1 dij,τqij,τ

σ2
qij

σ2
βij,0

+
∑t
τ=1 dij,τ

(17)

Subtracting βij from both sides of equation 17 and simplifying gives:

µβij,t − βij =
µβij,0σ

2
qij + σ2

βij,0

∑t
τ=1 dij,τqij,τ − βijσ2

qij − βijσ
2
βij,0

∑t
τ=1 dij,τ

σ2
qij + σ2

βij,0

∑t
τ=1 dij,τ

(18)

Substituting from equations 7 and 5 and simplifying we get:

νijt−1 =

σ2
qij

σ2
βij,0

νij,0 +
∑t−1
τ=1 dij,τηij,τ

σ2
qij

σ2
βij,0

+
∑t−1
τ=1 dij,τ

(19)

Substituting for νijt−1 from 19 in equation 13 we get:

UEij,t = βij +

σ2
qij

σ2
βij,0

νij,0 +
∑t−1
τ=1 dij,τηij,τ

σ2
qij

σ2
βij,0

+
∑t−1
τ=1 dij,τ

+ αPij,t + γXij,t + εij,t

B Additional Figures and Tables
!

!
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Table B.1: Alternate Logit Specifications:
Price Elasticities

Benchmark Model 1 Model 2

Generic -0.009 -0.006 -0.007
(-0.013,-0.004) (-0.010,-0.001) (-0.012,-0.003)

Fosamax -0.085 -0.090 -0.089
(-0.107,-0.062) (-0.113,-0.068) (-0.111,-0.067)

Fosamax Plus D -0.082 -0.085 -0.085
(-0.103,-0.062) (-0.106,-0.065) (-0.105,-0.064)

Boniva -0.092 -0.098 -0.096
(-0.115,-0.068) (-0.122,-0.074) (-0.120,-0.073)

Evista -0.099 -0.102 -0.102
(-0.122,-0.075) (-0.126,-0.078) (-0.126,-0.078)

Actonel -0.084 -0.089 -0.088
(-0.104,-0.064) (-0.109,-0.069) (-0.108,-0.068)

“Benchmark” refers to the Logit model in Table 3
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Figure B.1: MCMC Trace Plots

(a) Mean True Match Value and Out-of-Pocket Price
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Note: The figure shows that after a burn-in of 1 million iterations, the MCMC sampler mixes well which
indicates convergence to the true posterior distribution.
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Figure B.2: Estimated Posterior Means of True Match Quality
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Note: The figure indicates that the estimated posterior density of the match values follows a normal
distribution as expected.
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Table B.2: Alternate Logit Specifications:
Parameter Estimates

Benchmark Model 1 Model 2

Price -0.010 -0.009 -0.009
(-0.010,-0.009) (-0.011,-0.007) (-0.010,-0.007)

P × X 0.001 0.004 0.002
(0.001,0.002) (0.003,0.005) (0.001,0.002)

P × X2 -0.001
(-0.001,-0.001)

P × X3 0.000
(0.000,0.000)

Qt1 × P -0.002
(-0.006,0.002)

Qt2 × P -0.009
(-0.012,-0.006)

Qt3 × P -0.005
(-0.006,-0.003)

X -0.065 -0.201 -0.089
(-0.071,-0.058) (-0.276,-0.126) (-0.115,-0.062)

X2 0.046
(0.032,0.060)

X3 -0.003
(-0.004,-0.002)

Qt1 0.109
(-0.133,0.352)

Qt2 0.401
(0.234,0.568)

Qt3 0.215
(0.118,0.311)

2008 Cohort Dummy -0.398 -0.388 -0.390
(-0.435,-0.361) (-0.425,-0.351) (-0.427,-0.354)

2008 Year Dummy -0.608 -0.615 -0.614
(-0.641,-0.575) (-0.649,-0.582) (-0.647,-0.581)

Generic 2007 0.875 0.889 0.884
(0.826,0.925) (0.839,0.939) (0.834,0.934)

Generic 2008 1.991 1.975 1.981
(1.939,2.043) (1.923,2.027) (1.929,2.033)

Fosamax -0.408 -0.408 -0.408
(-0.446,-0.370) (-0.446,-0.370) (-0.446,-0.370)

Fosamax Plus D -1.269 -1.271 -1.270
(-1.316,-1.223) (-1.318,-1.224) (-1.317,-1.224)

Boniva -0.312 -0.313 -0.312
(-0.349,-0.274) (-0.350,-0.275) (-0.350,-0.275)

Evista -1.482 -1.487 -1.485
(-1.532,-1.432) (-1.537,-1.437) (-1.535,-1.435)

Constant -0.325 -0.318 -0.358
(-0.378,-0.272) (-0.435,-0.202) (-0.430,-0.287)

“Benchmark” refers to the Logit model in Table 3
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Table B.3: Changes in Costs and Generic Market Shares: 2008

Total Cost1,2 (Mil. $) OOP Cost1 (Mil. $)
%∆m.s.1,3

Model Exp. %∆ Model Exp. %∆
Exp. 1 1895 1899 0.2 904 907 0.3 -0.7
Exp. 2 1895 1875 -1.0 904 893 -1.2 5.1
Exp. 3 1895 1747 -7.8 904 804 -11.1 26.5

1The total costs and scripts reported in our sample are scaled by year-
specific weights to represent the entire Medicare Part D population
undergoing first-line pharmacologic treatment for osteoporosis during
2008.
2We use average total drug cost reported in the claims data for the
given year in computing the total cost.
3Percent change in generic’s market share.
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