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ABSTRACT

Recent studies have reported a reversal of an earlier trend in income segregation in metropolitan regions,
from a decline in the 1990s to an increase in the 2000-2010 decade.  This finding reinforces concerns
about the growing overall income inequality in the U.S. since the 1970s.  We re-evaluate the trend.
 Because the effective sample for the ACS is much smaller than it was for Census 2000, to which it
is being compared, there is a possibility that the apparent changes in disparities across census tracts
result partly from a higher level of sampling variation and bias due to the smaller sample.  This study
uses 100% microdata from the 1940 census to simulate the effect of different sampling rates on the
observed measure of inequality, drawing from a population at a single point in time so that there is
no change in actual income segregation.  We find considerable variation in estimates across samples
taken from the same population, particularly for smaller samples.  The difference between the median
estimate using sampling rates comparable to Census 2000 and the ACS is as large as the observed
changes since 2000.  We propose alternative approaches to calculate unbiased estimates of class segregation.
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The Uptick in Income Segregation: Real Trend or Random Sampling Variation? 

 

Because neighborhoods are so consequential in people’s lives and futures (Sampson 

2012), urban social scientists have long been interested in neighborhood-level segregation.  

Although most of this literature focuses on separation by race and ethnicity, attention has also 

been given to segregation by social class or income.  An early version of this research was 

devoted specifically to “underclass” neighborhoods,” areas with high levels of poverty, 

unemployment, or other signs of distress (Rickets and Sawhill 1988).  Subsequent studies 

analyzed trends in income segregation across all income levels, with particular attention to 

income segregation within racial/ethnic groups.   

The most recent research has been conducted in a period when social scientists, 

policymakers, and the public have become more acutely aware of issues associated with rising 

income inequality (Picketty 2013).  Several recent reports have found that income segregation, 

too, is on the rise, increasing the estrangement of rich from poor and possibly leading to a 

decline in support for meeting the needs of less affluent Americans (Florida and Mellander 2015, 

Fry and Taylor 2012, Bischoff and Reardon 2014).  Two patterns stand out in recent studies.  

First, past changes in overall income segregation have been unsteady, declining in one decade 

and rising in another, but segregation has been found to rise substantially after 2000.  Second, 

income segregation is described as higher and rising more quickly within minority populations. 

These findings are widely enough accepted that they are referenced in public statements by 

political leaders: “What used to be racial segregation now mirrors itself in class segregation. This 

great sorting (has) taken place. It creates its own politics. There are some communities where … 

I don't even know people who have trouble paying the bills at the end of the month. I just don't 
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know those people. And so there's less sense of investment in those children.” (President Barack 

Obama at a 2015 Poverty Summit, quoted by Liptak 2015). 

We cast doubt on these findings.  Our main insight is that all of these studies rely on 

sample data collected by the Census Bureau.  Yet it is well known that the effective samples to 

estimate income distributions within census tracts were substantially downsized with the 

introduction of the American Community Survey (ACS) after 2000, while sample sizes within 

census tracts for minority populations have always been smaller than for the non-Hispanic white 

or total population.  This recognition raises the general problem of small area estimation (Rao 

2003).  Estimates from random samples are known to be unbiased, but the variance of estimates 

can be quite large when samples are small. Social scientists in the past have treated the census’s 

income tabulation in census tracts as though it were not based on a sample, presuming that the 

one-in-six long form data were sufficiently reliable for their analyses.  But as Voss (2012) 

observes, in the ACS “standard errors of most estimates are so large that even substantial 

differences in numbers lack statistical significance” (see also U.S. Census Bureau 2009).  For 

example, the most recent estimate of the median household income in relatively affluent tract 

107.01 in Boston’ Back Bay neighborhood in the 2013 ACS (with a typical population size of 

1562 households) is $99,234.  The Census Bureau calculates a standard error of plus or minus 

$13,552.  So, staying within that confidence interval, the tract’s median income may well have 

been as low as $86,000, or it may have been as high as $112,000.  We suspect that the less 

reliable the income estimate is for every census tract, the larger will be the estimated variation 

across tracts – a value that is at the heart of income segregation. 

The actual measures used in income segregation studies are varied and complex.  For 

several different measures we assess how the observed estimates could have been affected by 
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sample size by analyzing data from a historical census for which 100% microdata are available – 

the 1940 Census of Population.  This is the first census in which wage data were collected, 

allowing us to calculate tract-level segregation in income for major cities.  We draw many 

samples of varying sizes from these data.  Because of course the “real” income variation across 

tracts is constant (all drawn from data for the city in the same year), any variations in results can 

be attributed to differences in sample sizes.  We show that there is systematic bias.  The smaller 

the sampling proportion, the greater the estimated income segregation across tracts.  We then 

compare the size of these effects with the actually observed changes between Census 2000 and 

the 2007-2011 ACS for several metropolitan regions. 

Where the observed changes show increases, these increases are in the same range as the 

changes that could be expected from the reduction in sample size in the ACS.  We cannot 

demonstrate that the shift in sampling between the 2000 Census and the ACS is responsible for 

the observed results, but this research provides evidence that it may well have been.  More work 

will be needed before social scientists can be sure of what really happened between 2000 and 

2009. In the final section of the paper we propose alternative approaches to this task.  Two of 

these are based not on the aggregated tract-level data routinely provided by the Census Bureau 

but rather on the underlying individual-level sample data.  We also provide a method to estimate 

the bias associated with one type of measure (measures using rank-ordered income data).  This 

correction partly compensates for the distortion caused by the smaller sample size in the ACS, 

and it can be applied to calculations from the published tract-level income distributions. 

Patterns and trends in income segregation 

Past studies of trends in income segregation have dealt with two main substantive 

questions: has income segregation been on the rise, and is it rising the same for whites and 
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minorities?  Because the current study is about methodology, we highlight how strongly the 

technical choices made by researchers affect what they find.  These studies all use the same 

underlying data – the income distribution within census tracts from the one-in-six sample count 

data of decennial censuses through 2000 and more recently from the pooled 2007-2011 samples 

from the American Community Survey.  Researchers have applied a variety of measures of 

income-based sorting to these data and relied on varying samples of metropolitan regions.  These 

choices lead to differing conclusions about what happened in each decade since 1970. For 

example, one research team has reported contradictory findings for a single decade, showing 

declining isolation of high and low income families in the 1990s (Bischoff and Reardon 2014) 

but (using a different measure) increasing segregation by income in that decade (Reardon and 

Bischoff (2011).   

Regarding the whole population, what these studies have in common is the finding that 

the 1980s was the decade in which income segregation increased the most, while there were 

smaller increases and possibly actual declines, in other decades.  

One early study (Abramson et al 1995) reported increasing segregation of poor from non-

poor Americans from 1970 through 1990, and he found that poor people were also living on 

average in high-poverty census tracts by 1990 (referred to as isolation; see also Massey and 

Eggers 1993, Massey 1996).  Two studies (Mayer 2001, Watson 2009) distinguished between the 

1970s and 1980s, finding that income segregation declined slightly or stayed the same in the 

1970s but then rose substantially in the 1980s.  Using different measures, Reardon and Bischoff 

(2011) reported steadily increasing segregation in both of these decades.  Watson (2009) 

extended her analysis through the 1990s, reporting little change in that decade.  However, 

Jargowsky (1996), who agreed that segregation rose in the 1980s, described an actual “dramatic 
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decline” in concentrated poverty in the 1990s (Jargowsky 2003).  And Reardon and Bischoff 

(2011) reported a small increase in that decade.  Most recently two studies (Bischoff and 

Reardon 2014, Reardon, Fox and Townsend 2015) have brought the analysis up to date with data 

from the American Community Survey centered on 2009.  These two studies used different 

measures of income segregation and different samples of metropolitan regions.  Bischoff and 

Reardon (2014) find that high-income and low-income families experienced declining isolation 

through the 1990s, but income segregation then rose rapidly from 2000 to 2009.  Yet Reardon, 

Fox and Townsend (2015, p. 89) report that households at the 10th and 50th percentiles of income 

on average lived in neighborhoods with about the same median income in 1990, 2000, and 2009; 

increasing segregation was found only for households at the 90th percentile, who significantly 

improved the income level of their neighborhoods between 2000 and 2009. 

Several studies have distinguished trends by race.  Such analyses are substantively 

interesting because U.S. urban neighborhoods are more highly segregated by race than by social 

class, and there are questions about how recent middle-class residential mobility has affected 

class segregation among blacks.  Race-specific analyses raise special methodological questions 

because whites are well represented in all metropolitan regions, but blacks have relatively small 

populations in many of them, precluding analysis of sorting by income.  Typically researchers 

study only metros meeting a specified criterion of subgroup size. 

Reported results again differ in decade-to-decade detail depending on the methods used.  

Three studies provide results for 1970-2000 (Reardon and Bischoff 2011, Massey and Fischer 

2003, and Watson 2009).  Combining results from Jargowsky (1996) and Yang and Jargowsky 

(2006) also covers these three decades.  All four studies agree on one point, mirroring results for 

the whole population: income segregation jumped strongly for both whites and blacks in the 
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1980s.  Otherwise they differ.  First, how did segregation compare between whites and blacks at 

the beginning of the time series? Jargowsky and Massey/Fischer agree that blacks had higher 

income segregation, but Watson and Reardon/Bischoff report modestly higher segregation for 

whites.  Second, what happened in the 1990s, following the large increases in the 1980s?  

Watson finds little change for either group.  Yang/Jargowsky and Massey/Fischer find declines 

for both whites and blacks.  Reardon/Bischoff report a small decline for blacks but a continuing 

increase for whites. Third, how did the groups compare by 2000?  Yang/Jargowsky, 

Reardon/Bischoff, and Watson report higher income segregation in 2000 for blacks, while 

Massey/Fischer finds slightly higher segregation for whites.   

Two reports update these mixed findings beyond 2000.  Bischoff and Reardon (2014), 

using the ACS from 2007-2011, find that there was a small increase in income segregation for 

whites that continued the upward trend since 1980.  For blacks there was a very sharp increase, 

even greater than experienced in the 1980s. Reardon, Fox and Townsend (2015, p. 89), again 

using different samples and measures, report little change in the neighborhood income level of 

blacks at the 10th or 50th percentile of income.  But blacks at the 90th percentile experienced a 

substantial upward shift, from living in neighborhoods at the 50.5 percentile in 2000 to ones at 

the 53.0 percentile in 2009.  It appears to be high-income blacks, not whites, for whom the trend 

of pulling away from less affluent households was accentuated after 2000. 

This summary of past findings has three implications for our planned analysis.  First, it is 

essential to maintain a fixed sample of study sites.  Second, the analysis should be based on at 

least two different measures of income segregation, since findings may vary across measures.  

Third, we should be especially attentive to differences between the whole population and 

subgroup populations such as black families.   
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How observed trends could be affected by sampling variation and sample size  

Despite very large national samples, the decennial census (for what researchers refer to as 

sample-count variables) and the ACS have relatively small samples for individual census tracts.  

This is a problem shared with large-scale health surveys, which despite impressive national 

sample size have insufficient samples for reliable estimates of characteristics of smaller 

geographical areas.  Statisticians define a “small area” as one where “the domain-specific sample 

is not large enough to support direct estimates of adequate precision” (Rao 2003, p. 1).  Hence, 

depending on the data source a county or even a state may be “small.”   

Demographers and public officials have become more aware of concerns about the nature 

of estimates of small area characteristics as a result of the substitution of the decennial long-form 

census (a one in six sample) by the annual American Community Survey (ACS).  At the level of 

census tracts (for which the ACS pools data from five consecutive years) and even counties 

(which, depending on their size, are reported annually or with pooled three-year counts), ACS 

data are “noisier” than comparable data from 2000 and before (Navarro 2010). This is largely 

because the ACS samples are smaller.  Tract estimates in the ACS are also affected by the use of 

population controls from estimates made at the state and county level rather than at the tract 

level.   Starsinic (2005) estimated that the standard errors from the five-year pooled ACS at the 

tract level will be about 50% higher than in Census 2000 long form data (see also National 

Research Council 2015, p. 24-40). The Census Bureau has attempted to deal with ACS’s large 

confidence intervals through changes in the sampling design and through weighting techniques 

to account for probability of selection, nonresponse, and coverage adjustments (Asiala 2012). 

The National Research Council (2015) report on these efforts concludes that changes in sampling 

rates have tended to equalize the precision of estimates across tracts of different population sizes, 
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but at the cost of decreasing the reliability of estimates for larger areas, resulting in minimal net 

improvement.  Complex weighting has another cost: while reducing bias, it increases the 

variance in sample weights, which in turn increase the margin of error of the final estimates.  

Hence the weighting procedures can be seen as “an implicit policy statement that unbiased 

(accurate) estimates are more important than precise (low-variance) estimates” (Spielman, Folch 

and Nagle 2014, p. 151).   

The potential impact on the estimate of variance across tracts of increasing the error in 

tract estimates is intuitively straightforward.  Let us use yi to represent the estimate of the mean 

income in a tract, which is a combination of the real mean income xi and an error εi due to 

sampling variation (yi = xi + εi).  Then the formula for the sample estimate of the variance 

(disregarding n, the number of census tracts) is  

s2 = ∑[(xi + εi) – ӯ]2 

We take xi to be unbiased, so εi on average will be 0.  However in calculating the 

variance, two kinds of cases will count more in the calculation of s2: those cases where xi is 

greater than the mean and εi is positive (i.e., xi is an overestimate) and those cases where xi is 

lower than the mean and εi is negative (i.e., xi is an underestimate).  These over- and under-

estimates are squared, so both kinds of cases will tend to increase disproportionately the estimate 

of s2.  When applied to variance in income, this general problem is exacerbated by the fact that – 

aside from sample size – some kinds of places have less precise sample data than others.  

Specifically, Spielman, Folch and Nagle (2014, p. 151-154) show that in the 2007-2011 ACS the 

tracts with the lowest and highest median incomes have larger margins of error than tracts closer 

to the average income.   
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We suspect that other measures of income segregation will be similarly affected.  If so, 

we infer two hypotheses that we wish to evaluate here: 

H1.  Observed increases in income segregation may result from comparing measures in 

2000 with measures in 2007-2011 based on smaller sample sizes, which exaggerate 

variation across tracts (upward bias) and result in less reliable estimates. 

H2.  Measures for subgroup populations such as blacks or immigrants are particularly 

prone to both upward bias and variable estimates across samples, because the group-

specific income data at the tract level are based on much smaller samples than income 

data for the full population.   

Research design 

Our procedure is to draw samples from the 1940 Census with varying sample proportions 

and examine how the sampling rate is associated with the measure of class segregation.  Results 

will be compared with national and city-specific trends in measures of income segregation of 

families between 2000 and 2007-2011 using the rank-order H measures (as reported by Reardon 

and Bischoff 2014) and the Neighborhood Sorting Index (NSI).  We have selected six large 

metropolitan areas in the contemporary period with substantial minority populations and large 

numbers of census tracts from which to compute segregation indices for the total population and 

for the black population separately.  These metropolitan regions are Chicago, Cleveland, Detroit, 

Los Angeles, Philadelphia, and Pittsburgh.  For 1940 we draw data from their central cities, 

which were fully tracted at that time.  For various sampling rates in 1940 we calculate indices for 

the whole population as well as for foreign-born whites whom we use to represent a subgroup 

comparable in size to the contemporary black population.    
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Sampling proportions in the decennial census and ACS 

The 2000 Census long-form data were from a one-in-six sample of the population.  The 

NRC (2015, p. 9) calculates a generalized design effect for the 2000 Census of 1.12, representing 

the degree to which the effective sample size from the Census’s design differs from a simple 

random sample. This reflects, for example, how the Census dealt with overall non-response and 

the use of population controls in developing weights.  Hence we treat Census 2000 as 

approximately a 15% sample.  The actual sampling rate for income may be lower than this, 

because income is among the variables for which non-response is especially high.   

What sample proportion does the ACS represent for this purpose?  The ACS is not 

conducted as part of a full census enumeration as the long form surveys in decennial censuses 

used to be.  It utilizes a complex system of sampling and weighting, and it has changed in 

important ways over time.  The sample size increased in 2011.  At that time also the Census 

Bureau increased the differential in sampling proportions between smaller and larger census 

tracts in order to improve estimates for smaller tracts.  One estimate for the 2007-2011 sample 

(National Research Council 2015, p. 24) is that the median tract sample size was 296 households 

(compared to 605 households in Census 2000).  After taking into account the generalized design 

effect of 1.41, the effective sample size for the median tract was only 209 households (compared 

to 533 in Census 2000).  These calculations convey the order of magnitude in the ACS’s 

reduction of sample size compared to Census 2000. 

A more precise calculation can be made from the 2007-2011 ACS summary files for 

census tracts, which report the sample size in every tract.  Across all tracts in the United States, 

the average final sample proportion was 8.2%.  This is reduced to an effective sampling rate of 

5.8% after taking into account the design effect but again not considering special concerns of 
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non-response on income data. In the following analyses, we will treat sample proportions of 

around 5% as representative of the ACS.  Spielman, Folch and Nagle (2014, p. 152) cite Census 

Bureau estimates that imputation rates for income variables approach 20%, suggesting that the 

actual ACS sampling rate for income data may be less than 5%.   

Measures of income segregation 

As already noted, researchers have employed several different measures of income 

segregation.  Even in the simpler case of black-white segregation, where there is a simple 

dichotomy, there are multiple ways to conceptualize and measure segregation.  With income, 

which the census reports in multiple categories of income, there are more alternatives.  The 

simplest is to divide the income distribution into a small number of categories, perhaps three, and 

to compute a standard segregation index (the Index of Dissimilarity) between the bottom and top 

categories, the rich and poor.  This is the approach taken by Massey and Eggers (1993) and 

Massey and Fischer (2003).  The simplicity is also a weakness, because such measures do not 

make use of the full income distribution provided by the census.   

We focus on two types of measures that do exploit the multiple and ordered category 

nature of the data.  The first is the rank-order information theory index (H) used by Bischoff and 

Reardon (2014).1  It “compares the variation in family incomes within census tracts to the 

variation in family incomes in the metropolitan area” (2014, p. 212), having first recoded 

incomes into percentile ranks.  Variants of this index are H10 and H90, the extent to which the 

lowest-earning families (bottom 10%) or highest earning families (top 10%) live separately from 

the remaining families.  Hence these two measures, like the Index of Dissimilarity, divide the 

population into just two categories.  In principle the rank-order H is similar to the Centile Gap 

measure used by Watson (2009), which converts income levels into percentiles within a 
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metropolitan area.  In this measure, the percentile ranks of families in a census tract are 

compared to the percentile rank of the median income family in the tract.  If there is little spread 

within a tract, that is an indication of high segregation across tracts.  Both of these measures have 

the property of being unaffected by any rank-preserving change in the income distribution.  In 

other words, they are not sensitive to the extent of income inequality in the region. 

The second measure is the correlation ratio, which Jargowsky (1996) refers to as the 

Neighborhood Sorting Index (NSI).  The NSI is the square root of the between-tract variance in 

income divided by the total variance of income.  Like H, it “implicitly controls for the overall 

income level because it is based on deviations from mean household income and also controls 

for income inequality because it is expressed as a percentage of total income variance” (1996, p. 

998).   It differs from the rank-order version of H because it gives greater weight to tracts that 

differ greatly from the mean.  A difficulty in computing this index from income data grouped 

into categories, such as tract-level or metropolitan-level census data, is that there is no 

information about the distribution of incomes within the top income category.  Extremely high 

incomes in the top category have disproportionate influence on the total variance in income.  We 

used census microdata from Census 2000, ACS 2010, and the Current Population Survey in 2000 

and 2010 to provide estimates of the maximum and mean values in the top income category for 

the metropolitan areas in the study.  Then, following other researchers, we assumed a Pareto 

distribution of incomes in the lower and upper income categories in order to calculate the total 

variance in income.2  We calculate measures for all families and for black-headed families. 

Data from the 1940 census 

The 1940 census was the first to collect data on income.  For each employed household 

member the enumerator listed the person’s wage and salary income.  Our analysis is for total 
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household wage and salary income, combining the figures for the household head and all other 

household members.  Household income (or alternatively, family income) is substantively 

preferable to individual income for research on income inequality.  Note, though, that it reduces 

the number of cases on which statistics are computed.  All of the income segregation measures 

can be calculated directly from these microdata.  In addition we compute segregation indices for 

a subgroup whose population share in 1940 was comparable to the share of black residents in the 

contemporary data: foreign-born whites.  Households were categorized by the country of birth of 

the household head.  Results for foreign-born white households reveal how observed trends in 

segregation for specific subgroups may be affected by their smaller numbers. 

We use data for all households enumerated in the 1940 census in each of the sample cities 

(we did not attempt to measure family income because family relationships are not clearly 

defined in the 1940 data).  We draw samples from the full population at varying sampling 

proportions from 1% to 20%.  We pay special attention to results in the vicinity of 15% and 5%, 

which we understand to be the approximate sampling rates for the Census 2000 long form and 

ACS 2007-2011, respectively.  We repeat the procedure 100 times for every level of the 

sampling proportion and calculate every segregation measure for every draw.  Non-residential 

tracts (10 households or less) are omitted; a minimum of one household was sampled in every 

tract.  This yields a sampling distribution of estimated income segregation.  Because all of these 

values are from the same population in a single year, any differences between sampling 

distributions for lower or higher sampling proportions are due solely to varying sample size. 
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Results 

Observed change in income segregation 

We begin with the observed changes in segregation between 2000 and 2007-2011, 

including the six metropolitan areas that we will use as examples and the average and standard 

deviation of values for the largest metropolitan regions in the country.  Table 1 presents results 

for the total population and, to represent a population subgroup, the non-Hispanic black 

population.3  Blacks comprised between 8.9% and 22.7% of the metropolitan populations in 5 of 

the regions, but 41.4% in Detroit.   

Table 1 about here 

The observed patterns of change vary depending on the measure and population that are 

used.  For the total population H and H90 increased in all 6 example metros and rose on average 

in large metros by 0.013 and .015, respectively.  H10 increased in 4 of the 6 example metros and 

rose by 0.017 in the average large metro (these increases are all equivalent to about .5 standard 

deviations).  These results support reports of increasing income segregation.  However NSI 

declined in 5 of the 6 example metros, and in the 6th case (Detroit) it increased by only .005.  The 

average NSI in the largest metros declined slightly from .218 to .202.  By this measure income 

segregation was moving in the opposite direction from what is indicated by the H measures. 

Results for the black population show a different pattern, a more uniform increase 

regardless of the measure.  The rank-order H measures increased more for blacks than for the 

total population.  H, H10 and H90 increased for all 6 example metros and the average value 

across metros with large black populations rose by .082, .099, and .110, respectively (more than 

one standard deviation).  Similarly NSI rose in four of six metros, and the average value in 

metros with large black populations increased slightly from .252 to .260. 
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These results raise two kinds of questions about what actually happened to income 

segregation.  The first, accepting the sample results as valid, is why the rank-order H measures 

and the NSI show different trends based on exactly the same data.  We can answer this question 

only in general terms based on their formulae; because they measure different aspects of income 

distribution, they need not necessarily move in the same direction.  The NSI is calculated from 

the variance in mean incomes across census tracts.  It is especially sensitive to changes at the top 

and bottom of the distribution, and it will tend to decline if the mean incomes in very high and 

very low income tracts move toward the overall mean.  If there is some increasing spread 

between tracts with values closer to the overall mean, changes in that part of the distribution will 

not be weighted as heavily.  The rank-order H, on the other hand, treats changes in the center of 

the distribution (where very small absolute changes can appear as larger changes in rank order) 

the same as changes at the extremes (where values are more widely spread and it takes a larger 

absolute change in income to alter the rank order).  Possibly, then, in the post-2000 decade there 

were different kinds of changes in different parts of the income distribution across tracts – some 

convergence toward the overall mean at the high and low end, but at the same time some 

increasing spread in the center. 

We will not pursue this question further; our only point is that researchers need to be 

aware of differences in what aspect of income is being measured by each alternative index.  Our 

main purpose is to examine a different question, which is how results with either measure may 

have been affected by the sharp reduction in sample size between the 2000 Census and the 2007-

2011 ACS.  Based on the reasoning presented above, we wish to consider the possibility that in 

the full population – not in the samples enumerated by the Census Bureau – there actually was 

no change or even a decline in both types of income segregation measures.  Further, because the 
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calculations for the black population were based on samples that were typically less than half as 

large as those for the total population, and often only 10-20% as large, the apparently more 

consistent pattern of increases in black income segregation may also be illusory.   

Simulations with full-count historical census data 

Using full-count historical microdata from 1940 we can carry out an exercise that is 

impossible with contemporary data: to draw samples of varying proportions, then to calculate 

measures of income segregation across census tracts from those samples. Because the “real” 

level of segregation is known from the 100% data, we can determine how the “observed” level is 

affected by sampling proportion.4  We carry out this exercise for the total population in six cities.  

In addition we repeat the analysis for white foreign-born households in order to illustrate the 

greater difficulty of estimating income segregation for subpopulations.  Foreign-born whites 

ranged from 12.5% to 19.8% of all households in our six cities, comparable to the black share in 

most of the example metro areas that we studied with contemporary data. 

In each of six cities, we plotted the estimates based on all 100 subsamples drawn at each 

sampling rate between 1% and 20%.  For parsimony we present here only the plots for Chicago.  

We found greater sampling variation for H10 and H90 than for H.  This could be expected from 

the fact that H uses data from every decile in the income distribution, whereas H10 and H90 

compare the tails (the bottom and top deciles) to the rest of the population.  Because samples 

from a single decile are smaller, measures based on them can be expected to be less reliable.  We 

rely on results for H90 in comparison to H to reveal this pattern. 

We begin with the plots for Chicago that show estimates for varying sampling 

proportions for H, H90, and NSI for the whole population and the smaller foreign-born white 

population (Figure 1).  These plots show the distribution of estimates from different sample 
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draws: the median, the values at the 25th (Q_1) and 75th (Q_3) percentiles, and the minimum and 

maximum estimate.  The vertical axis represents the value of segregation (from 0 to 1.0).  The 

horizontal axis represents the sampling rate as a percentage of the population, ranging from 1% 

to 20%.  At each sampling rate the graph displays the distribution of values from the 100 samples 

that were drawn: the maximum and minimum values and (within the limits of the resolution of 

the figure) the median value, the value at the 25th percentile (Q_1) and the value at the 75th 

percentile (Q_3).   This figure is useful as a visualization of the differences across measures, and 

these plots are most helpful in illustrating the bias in median estimates.  The detailed statistics on 

distributions are presented below in tabular form for all six cities.  The plot for H, total 

population, shows that in Chicago there is considerable upward bias for sampling rates as low as 

1% or 2%, but estimates level out at the actual 100% population value of .060 and vary little 

across samples when the sampling proportion is higher than 3%.  Estimates of H for the foreign-

born population are more biased at low sampling rates and do not converge as quickly with 

increasing sampling rate.  The true value is .043, but at a 5% sampling rate the median estimate 

is more than twice that. H90 behaves somewhat less consistently than H for the total population.  

Its true value is .063, but the median estimate at 5% is .092 and even with a 20% sample the 

estimate is upwardly biased at .070.  Again the results are more biased for the foreign-born, not 

reaching a plateau until the sampling rate is over 10%.  Finally the figure shows much greater 

variability across samples (at the same sampling rate) for NSI, as well as a slower convergence 

to the true value.  We reach two tentative conclusions: 1) the upward bias that we suspected is a 

greater problem for subgroups than for the total population, presumably because data for 

subgroups come from numerically smaller samples, and 2) bias is smallest for H, larger for H90, 

and largest for NSI. 
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Figure 1 about here 

We now turn to tables that summarize the results for all six cities for each measure.  Our 

purpose is to quantify the patterns shown in Figure 1 and to confirm whether similar patterns are 

found in different cities. 

1.  Sample draw 1: H for the total population  

Table 2 reports estimated values of H (total population) for sampling rates of 5%, 10%, 

15%, and 20%, and in addition the table lists the actual full-population values of H for all six 

cities.  In Chicago, as already displayed in Figure 1, the median estimate with a 5% sample is 

.078, which is nearly a third higher than the true value of .060.  The median estimate from a 15% 

sample is considerably better, .066, although it also is biased upward.  We find a similar pattern 

for all the cities.  The median estimate at 5% is higher than the estimate at 15% by a margin of 

between .009 and .015.  And even with a 15% sample, all median estimates are higher than the 

true value. 

Table 2 about here 

When social scientists rely on census data, of course, they do not work with a “median” 

sample.  There is only one sample, drawn with methodologies that are designed to be unbiased 

but that are of course subject to sampling variation.  Fortunately it appears that this variation has 

less impact on the results than do differences in the sampling rate.  Although the maximum and 

minimum values are quite different, most values fall within a narrower range.  Consider again 

the Chicago example.  At a 15% sampling rate, the interquartile range of estimated H (between 

the 25th and 75th percentile) is from .065 to .066, just a little above or below the median estimate.  

This interquartile range is consistently higher when the sampling rate is lower (from .076 to .079 

at 5%).   
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2.  Sample draw 2: H for the white foreign-born population 

Table 3 summarizes results for estimates of H for the foreign-born.  As displayed above, 

Chicago’s median estimate at 5% is much higher (.095) than the median estimate at 15% (.060), 

and both are higher than the true value (.043).  In Chicago as well as in other cities the absolute 

size of this variation is greater than for the total population, ranging from .031 in the case of 

Cleveland (.085 vs. .054, with a true value of .039) to .065 in the case of Pittsburgh (.075 vs. 

.140, with a true value of .043).  Not only is the upward bias greater for the foreign-born 

estimates, but the variability across samples is also larger.  For 5% samples this variability is 

most pronounced for Los Angeles, where the interquartile range is from .109 to .133. 

Table 3 about here 

3.  Sample draw 3: H90 for the total population  

Table 4 switches to measures of H90.  We again begin with the example of Chicago, 

where the actual value of H90 is .063.  The median estimate from a 15% sample (comparable to 

Census 2000) is .073, and estimates range from .069 to .076.  The median estimate from a 5% 

sample (comparable to the ACS) is .092, and estimates range from .086 to .098.  Due solely to 

the difference in sampling rates, one median estimate is 26% higher than the other.   

Table 4 about here 

How large is the difference between the median estimate for a 15% sample and a 5% 

sample in other cities?  The Chicago case turns out to be average in this respect, as differences 

range between .014 (Los Angeles) and .026 (Pittsburgh).  We can compare this to the observed 

increase in income segregation (H90) from 2000 to 2007-2011.  Here the average change (as 

shown in Table 1) was from .185 to .200, a difference of .015.  In other words, it appears that the 
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apparent increase in the last decade was no larger – and in most cases smaller – than could be 

expected on the basis of the reduction in sample size between Census 2000 and the ACS. 

There also seems to be little likelihood of avoiding an upward bias by chance.  In none of 

the six cities does the interquartile range at a 5% sampling rate overlap with the interquartile 

range at a 15% sampling rate.  Further, in only one instance is the minimum estimate as low as 

the actual value of H90 (this is found at the 20% sampling rate in Pittsburgh).  These 

observations reinforce our concern with the implications of measuring change with data sets that 

have markedly different sample sizes and sampling rates.  

4.  Sample draw 4: H90 for the white foreign-born population 

The estimates of H90 for the white foreign-born population are summarized in Table 5.  

Using Chicago as an example, the median estimate of H90 is .073 at a 15% sampling rate but 

much higher (.127) at a 5% sampling rate.  Both values are well above the true foreign-born 

white value of .046.  Even at a 15% rate this difference is .027.  In our parallel analysis of H90 

for the total population (Table 4 above) Note that at this same sampling rate the difference 

between the true and median sample estimates was only .010.  Why is the upward bias so much 

larger for the foreign-born white subgroup?  Apparently (as we have confirmed with separate 

analyses based on average tract sample sizes, not shown here) both the sampling rate and the 

absolute size of the samples affect these estimates.  For samples drawn from the total population, 

Chicago had valid income data for over a million households in 900 tracts.  The average tract had 

1123 households, so that a 5% sample would yield 56 households and a 15% sample would yield 

169.  For samples drawn from the foreign-born white population, Chicago had valid income data 

for only about 340,000 households in 852 tracts, a reduction of approximately two-thirds.  The 

average tract had 399 households, so that a 5% sample would yield 19 households and a 15% 
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sample would yield 60.  Further, since the foreign-born white population was still highly 

residentially segregated in 1940 (though not as segregated as the black population is today), one 

could expect more variation across tracts in actual sample sizes for foreign-born whites than for 

total population. 

Table 5 about here 

Chicago is not an anomaly.  Among all six sampled cities, the actual value of H90 for 

foreign-born white households was below the value for the total population.  Yet the median 

estimate was higher at every sampling rate, and the disparity was substantially greater at lower 

sampling rates.  It appears that sample estimates of income segregation for subgroups of the 

population are subject to greater upward bias than estimates for the total population, especially at 

sampling rates as low as 5%. 

5.  Sample draws 5-6: NSI for the total population and white foreign-born population 

We now repeat these analyses for another measure of income segregation, the NSI.  The 

pattern is similar to what we observed with H and H90: estimates trend downward as the 

sampling rate increases, and the downward slope is more pronounced for foreign-born whites 

than for the total population.  There is one noticeable difference in the NSI results: greater 

variation in estimates across samples than found even for H90 at the same sampling rate.  In this 

respect estimates for NSI are less stable than estimates for H90, and much less stable than 

estimates for H.   

Tables 6-7 summarize these results.  Turning first to the Chicago case in Table 6 (total 

population) where the true value is .241, note the very large difference in the median estimates at 

a 15% sampling rate (.256) and at 5% (.286).  The latter is 12% higher than the former, and both 

are higher than the true value.  There are large differences in every city between the median 
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estimates at 5% and 15%.  Notice also the interquartile range in the estimates.  At a 5% sampling 

rate, it is .038 in Chicago and it ranges up to .071 in the other five cities.  Finally the upward bias 

is pronounced.  In every case even the Q1 estimate with a 5% sample is considerably higher than 

the true value.  

Tables 6-7 about here 

As we saw with the rank-order measures H and H90, the results for the foreign-born 

white population show greater bias and more sampling variability than those for the total 

population.  In the Chicago case, for example, with a true value of .227, the median estimate of 

NSI with a 5% sample (.326) is about 23% higher than with a 15% sample (.265).  The 

interquartile range at a 5% sampling rate is .013 in Chicago and it ranges up to .027 in the other 

five cities.  The upward bias in these estimates is greater than in the estimates of NSI for the total 

population – for four of the six cities, even at a 20% sample, the minimum estimate is higher 

than the true value. 

Correcting the upward bias and unreliability in sample data 

The standard approach to measuring income segregation is to begin with estimates of the 

income distribution within individual census tracts.  These estimates are then manipulated in 

various ways to produce a measure of the disparities across tracts.  We have shown that such 

measures are biased upward when based on sample data, and they are more strongly biased 

upward when calculated from samples in the range of sizes that are now available from the 

American Community Survey than in the range previously provided by the decennial census.  

They are also less reliable. 

We now present two alternative approaches that make use of the original census or ACS 

sample data but avoid estimating mean values for individual tracts.5 Each method requires access 
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to data at the level of families or households, which has been facilitated by the expansion in the 

Census Bureau’s system of Federal Statistical Research Data Centers (RDCs).  One method uses 

these unit data to estimate the variance between tracts, a value that can be used to calculate the 

Coefficient of Variation which is a plausible measure of class segregation.  The other estimates 

the variances within tracts, which can summed to the city or metro level and converted directly 

into the NSI. Application of this approach to ranked-data yields the rank-order relative diversity 

index (R).   Finally, we propose a method to estimate (and therefore to correct for) the upward 

bias in H (or H90, etc.) that is due to smaller sample sizes.   

None of these approaches solves the problem of variation in segregation estimates across 

samples, which is inherently greater when samples are smaller (e.g., in 2007-2011 compared to 

2000 or for minority subgroups compared to the whole population).  However knowledge about 

this sampling variation gleaned from the 1940 simulations offers a possibility of establishing 

confidence intervals around the estimates. 

Restricted Maximum Likelihood estimation (REML) 

Direct estimation of variance components through Restricted Maximum Likelihood 

estimation (REML) produces superior estimates of the variance across local areas, which is a 

potential measure of class segregation.  This estimate of variance is indirectly related to the NSI.  

Recall that the NSI is simply the square root of the ratio of the variance between areas to total 

variance in the population.  However the variance used for the numerator of the NSI (based on 

the squared difference between each tract mean and the overall mean) is weighted by the number 

of observations in the tract.  Large tracts can contribute more to the variance than small tracts.  In 

the REML estimate of variance, every tract is weighted equally.  Nevertheless it can potentially 
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serve as an indicator of income segregation, perhaps in its standardized form as the Coefficient 

of Variation (the standard deviation divided by the overall mean).6  

REML is a variant of older Maximum Likelihood (ML) techniques that have been 

applied to estimating the variance components in a standard linear model (Harville 1977). A 

problem with ML estimators is that they do not take into account the loss in degrees of freedom 

resulting from the estimation of the model’s fixed effects.  The “restricted” ML approach deals 

with this problem by transforming the original data set into a set of contrasts calculated from the 

data.  The likelihood function is then calculated from the probability distribution of these 

contrasts.  Although REML does not in principle produce unbiased estimates of variance 

components, it is less biased than ML. We use REML procedures available in R (Schnabel, 

Koontz, and Weiss 1985) to calculate estimates from the 1940 data.   

Figure 2 reports a comparison between the performance of direct estimates and REML 

estimates of the variance across tracts in median family incomes in Chicago in 1940.  It shows 

the distribution of estimates from 100 sample draws at each sampling rate.  The solid horizontal 

black line indicates the actual variance.  There is a familiar pattern for direct estimates: at low 

sampling rates (up to about 7%) the estimates are much higher than the actual value.  Also there 

is a very wide variation in results even at a 20% sampling rate.  In contrast the REML estimates 

are close to the actual value even at the lowest sampling rates, although they tend to be 

underestimates.  The main advantage of the REML approach is that most estimates are within a 

narrow range.  Table 8 reports results for all six cities in 1940 for selected sampling rates.  This 

table reports the average bias in these estimates, defined as the difference between the true value 

and the median estimate from 100 samples at a given sampling rate.  Results vary across cities.  

In general the bias from either approach is lowest in Los Angeles and Pittsburgh but much higher 
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in Philadelphia.  REML results understate the variance (though often by smaller amounts) while 

direct estimates overstate it.  But although REML results are more reliable, the average bias in 

REML estimates is larger than the average bias of direct estimates for Chicago and Philadelphia.  

Figure 2 and Table 8 about here 

Sparse-Sampling Variance Decomposition (SSVD)  

Another approach to estimating class segregation is to begin with the within-tract 

variances in household income and then make use of the fact that the within and across variation 

must sum to the total variation.  We presume that the total variance in income can be reliably 

estimated from the sample data in large cities and metropolitan areas.  If we can estimate the 

total within variance, the between variance follows directly.  For convenience we refer to this 

approach as Sparse-Sampling Variance Decomposition (SSVD). Although to our knowledge this 

has not been done before, the source of its efficacy is parallel to the use of “small t, large n” 

panel data methods (Mundlak 1978) where one takes advantage of the fact that a large number of 

census tracts can be leveraged to average-out errors in the estimation of the distribution within 

each tract.  Not only can this approach be used to obtain unbiased estimates of the NSI in sparse 

samples but, as illustrated below, it also can be used for other variance-based estimates of 

segregation such as the rank-order variance ratio index R (Reardon 2011).7  

The expected total variation of income within tracts for the city is the average of the 

track-specific variances weighted by the number of households in the tract.  Tract populations 

are of course known and the variance based on the sample in each tract (using the standard N-1 

bias correction) is an unbiased but noisy estimate of the underlying population variance, even 

with samples as small as two.   But the population weights are uncorrelated with the noise (which 

just arises from sampling).  Hence the populated-weighted average of the variance estimates for 



 
 

26 
 

each tract from the sample converges to the within variation for the population as the number of 

tracts gets large. In addition, because the total variance for the population only involves the 

calculation of a single mean for the city (rather than a mean for each tract), the per-household 

population-weighted total variance estimated from the sample is consistent for the corresponding 

population measure as the number of tracts gets large.8 The population across-tract variation is 

just the total minus the within-tract variation in the population. Thus NSI can be estimated as the 

square root of 1 minus the ratio of the within to the total variation calculated from the sample 

using population weights. This logic is expressed more formally in Appendix I.  

Figure 3 compares estimates of the NSI using the SSVD and direct approaches in the case 

of Chicago.  Again the figure is based on 100 simulations for each sampling rate.  For 

comparability we have used the same vertical scale as the other NSI figures.  The direct 

estimates are biased upward, close to the true value only at around 15% and above.  The direct 

estimates are also quite variable even at the higher sampling rates.  In contrast the SSVD 

estimates are very close to the true value, with a slight positive bias for the lowest sampling 

probabilities. However, the variability of sample estimates for the SSVD is similar to variability 

for direct estimates (except at the smallest sampling rates).   

Figure 3 about here 

Table 9 summarizes results for all six cities in terms of bias, using the same measure of 

bias as in Table 8. Both measures have some upward bias, much larger for the direct measure.  

At the 5% sampling rate, the bias for the SSVD estimate is about one third or half as large as for 

the direct estimate for Cleveland, Detroit, Los Angeles, Philadelphia, and Pittsburgh, and it is 

almost nil for Chicago.  Bias is generally smaller for both estimates at a higher sampling rate.  At 

15% the bias of the SSVE estimate is close to zero for Chicago, Detroit, and Pittsburgh but still 
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appreciable for the direct estimate.  In Cleveland, Los Angeles, and Philadelphia the bias in the 

SSVD estimate is about two-thirds as large as for the direct estimate.9  

Table 9 about here 

Compared to the direct estimates of NSI, the SSVD approach has the advantage of much 

less bias, although variability across samples could affect the accuracy of estimates for particular 

cities.  Fortunately, the average NSI for a set of cities and its trajectory over time are likely to be 

much more reliably estimated by this approach in spite of the sampling variability for estimates 

for each individual city. 

A critique of the NSI is that it is affected by changes in the distribution of income even 

when the ranking is preserved. While we do not believe that the SSVD, or a related procedure, 

can be applied to entropy based estimates of segregation such as H, the approach can be used for 

other rank-based measures.  Of particular note is RR , the rank-order variance ratio index, “which 

can be interpreted as a measure of the average variance of the neighborhood cumulative 

percentile density function” (Reardon 2011 p26). The idea is simply to transform the income 

data for the sample into cumulative percentiles and then do a variance decomposition of the 

resulting percentiles. In particular, for each percentile p one can calculate the fraction of 

households in each tract below that p and compute the tract-population weighted variance of this 

measure across tracts relative to the total variance in the sample. This measure for p=90, say 90
RR  

then, like H90 indicates the extent to which the top 10 percent of the population is segregated 

from other 90 percent. To compute RR we average the across and total variation across all 

percentiles and then divide. Because both RR  and 90
RR  are based on across-variance estimates the 

SSVD decomposition follows exactly.  Moreover, the approach is computationally efficient 
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because the integration over p needed for RR has an analytic solution and thus no numerical 

integration is needed.10  

Figures 4-5 about here 

Figures 4 and 5 show the SSVD and Direct estimates for RR  and 90
RR  for different 

sampling weights as in Figure 1 (we plot the square-root of each for comparability with the NSI) 

in Chicago.  The picture is a familiar one. The mean direct estimates of RR are about 45% too 

big for a 1 percent sample and about 10% too big for a 5% sample.  On the other hand the mean 

SSVD estimate is very close to the population value throughout the whole range of the sample 

and is quite precisely estimated. The standard deviation at 1% is just 0.008, falling to 0.001 for a 

20% sample.  The fact that these estimates are more precise than NSI is not surprising; the 

process of scaling the incomes by the cumulative distribution substantially reduces the relative 

influence of very high incomes.   The results for 90
RR  in Figure 5 show the same pattern. The 

SSVD estimate follows the population estimate extremely closely while the direct estimate is 

substantially biased at low sampling rates.  In addition to showing the generalizability of the 

SSVD concept, these estimates illustrate the particular value of variance-based measures, given 

that these measures share some desirable properties of rank-order entropy-based measures 

(Reardon 2011).  

Correcting the bias in H 

Above we provide a new method to construct an unbiased estimate of the NSI as well as 

several other variance-based measures of segregation, but this method cannot be applied to 

entropy based measures such as H and H90. We have, however, derived a convenient and 

feasible approximation of the bias in such measures related to sample size. The idea is to 

construct a quadratic Taylor expansion of the entropy function and apply this function to the 
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sample income distributions and actual population counts by tract. This procedure yields an 

estimate of the bias that can be then subtracted from the sample estimate to get an approximate 

true estimate. The procedure is most useful when sample sizes are not so large that the bias is 

trivial and not so small that the quadratic function is a poor fit to the entropy distribution over the 

relevant range. These conditions appear to be met in the 5-15% range of tract sampling rates 

given average U.S. tract sizes. 

We first note that with independent sampling without replacement the proportion of 

sampled households, sj, in a tract with income above some percentile of the population has a 

hypergeometric distribution with mean pj and variance 
(1 )
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j j j j
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 where pj is the 

proportion in the tract population above this percentile, Mj is the tract population, and Nj is the 

number in the sample.  The population entropy of this tract (using the natural log form for 

notational convenience) is 
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A second order approximation to the sample entropy is  
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Taking expectations with respect to is  yields 
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where Oj is the integral over the order statistic.  Interestingly the population variable pj does not 

appear in this expression except through Oj and thus the approximate bias can be calculated 

without knowing the true tract population income distribution.  The formal expression for the 

expected approximate bias for 90H  adds up the tract-specific terms: 
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In order to assess the accuracy of the approximation we need to provide bounds on Oj.  

We have derived a complex formula for Oj, available on request, that can be applied for any tract 

population, size, and income distribution. As there are only Mj+1 possible values of pj for any 

tract it is possible to check every possible value to assess the maximum approximation bias. For 

Mj = 1000 and Nj = 50, for example, the maximum of the absolute value of Oj is .0065, which 

applies when there is only one household in the tract population above (or below) the percentile 

cutoff. This is a rare scenario, and the average bias across tracts (which is relevant for the 

calculation of entropy statistics) is likely to be much smaller.  Thus, it seems our approximation 

provides a useful basis for estimating bias. It is also worth noting that the adjustment for 

sampling without replacement will be small if the sample is small relative to the population. For 

example, for M j= 1000 and Nj = 50 the term .95
1

j j

j

M N

M





. If we drop this term (thus 

assuming sampling with replacement) our approximate bias expression depends only on tract 

sample size:  
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The procedure provides a good fit to Table 4. Based on the 1940 census data, a 5% 

sample for all tracts in Chicago leads to an approximate expected bias of .026. The difference 

between the actual and the median estimate for 90H  for Chicago in Table 4 is in fact .029.  For 

15% sampling the average expected bias is .008. In Table 4, the actual bias is .010. Figure 6 

shows the relationship for all sampling rates and cities in Table 4 as well as a 45 degree line. 
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While the predicted bias is a bit higher overall than that in Table 4, the relationship between the 

two measures is extremely close.  

Figure 6 about here 

Computation of bias for H is a straightforward extension of the above because the bias 

term does not depend on the percentile under consideration. In particular, 

( )
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which takes the value 0.017 for a 5% sample in Chicago. The difference between the true and the 

median 5% sample in Table 2 is .018.  For a 15% sample the estimated bias is .006. For Chicago 

at 15% sampling, the true and median differences are both .006.  Figure 7 shows the relationship 

for all sampling rates and cities in Table 2 along with a 45-degree line. Again, the fit is extremely 

close. 

Figure 7 about here 

Conclusion 

It is plausible that income segregation has increased since 2000 along with the rising 

level of overall income inequality in the United States.  Income segregation may also be higher 

and increasing faster for minorities than for the general population.  Analyses based on the 2000 

Census and 2007-2011 ACS offer mixed results on these points, depending on the measure of 

income segregation.  Based on the rank-order measures used by Bischoff and Reardon there was 

a tendency for segregation to increase modestly for the total population and greatly for African 

American families.  Based on the NSI used by Jargowsky (which we have updated here) there 

was a modest decline for the total population and a modest increase for black families.  These 

findings suggest that more attention needs to be given to the characteristics of alternative 
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measures that reflect different aspects of income segregation, and they attenuate the strong 

conclusions in recently published research. 

We draw attention to a different concern.  It is well known that the reliability of local area 

estimates is conditional on sampling rates and sample sizes.  This fact matters here because the 

Bureau of the Census has shifted from the one-in-six sampling of “long form” data used in recent 

decennial censuses through 2000 to smaller annual samples in the American Community Survey.  

The net result is that tract estimates that were previously based on approximately 15% sampling 

rates are now based on samples of around 5%, even when data are pooled over five years.  We 

have asked how these smaller samples affect estimates of income segregation that are aggregated 

from sample data for many tracts in every metropolitan region. 

Our approach has been to exploit the available 100% samples that have been made 

available recently by the Minnesota Population Center for 1940, the first year when the census 

collected data on wage and salary income.  For six major cities we drew random samples for the 

whole population and for the foreign-born population (a minority category that is roughly 

comparable in population share to today’s black population in these cities).  In this way we have 

been able to calculate the same measures of income segregation used by contemporary 

researchers and compare results for samples of varying sizes.  We believe this is a reasonable 

simulation with real data of how measures based on a 15% sample in 2000 would compare to a 

5% sample in 2007-2011 in an urban area where there had been no change in income 

segregation.  The answer is clear and consistent. The change in samples would result in 

measured increases in segregation for the whole population that are as large as or larger than 

those that have been observed in the last decade.  Further, the effect of sampling rate on the 

foreign-born population is considerably stronger, and it may be sufficient in itself to account for 
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the higher and more rapidly rising values of minority income segregation that have been 

reported, even prior to implementation of the ACS. 

We do not conclude that the reported increase in income segregation is necessarily 

illusory.  The single sample that is available for 2000 and the single sample for 2007-2011 may 

faithfully represent the population, and we have no direct method to calculate confidence 

intervals around their results.  However a neutral observer will suspect that the confidence 

intervals for segregation estimates are likely to be large, especially for the ACS data, and may 

conclude that a null hypothesis of no change over time – and no difference between the total 

population and the minority population – cannot be rejected. 

Given the substantive importance of trends in class segregation, we have put forward 

three alternative approaches that are less susceptible to the Census Bureau’s changes in data 

collection.  We have shown that a measure based on the unweighted variance across tracts can be 

more reliably measured by Restricted Maximum Likelihood estimation than by direct calculation 

from sample data.  Another approach based on estimating variance within tracts results in 

estimates of the NSI and variants of H and H90 that are less biased and more reliable than direct 

estimates from aggregated tract data.  Researchers with access to confidential census data centers 

can take advantage of the original individual-level data to assess trends in these alternative 

measures of income segregation.  A third approach corrects H and H90 (calculated from 

published tract-level income distributions) for small-sample bias using a second order 

approximation.  If results based on these methods and measures consistently showed increasing 

segregation, we would have more confidence in previously reported conclusions.  If not, we 

should turn our attention to the question of what factors other than income inequality itself have 

been holding segregation steady or even reducing it.  
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Footnotes 

1.  Bischoff and Reardon (2014, pp. 227-228) describe HR as follows (citations omitted). “For 

any given value of ݌, we can dichotomize the income distribution at ݌ and compute the 

residential (pairwise) segregation between those with income ranks less than ݌ and those with 

income ranks greater than or equal to ݌.  Let ܪሺ݌ሻ denote the value of the traditional information 

theory index  of segregation computed between the two groups so defined.  Likewise, let ܧሺ݌ሻ 

denote the entropy of the population when divided into these two groups.  That is,  

ሻ݌ሺܧ ൌ logଶ݌
1
݌
൅ ሺ1 െ ሻ݌ logଶ

1
ሺ1 െ ሻ݌

 

and  

ሻ݌ሺܪ ൌ 1 െ෍
ሻ݌௝ሺܧ௝ݐ

ሻ݌ሺܧܶ
௝

, 

where ܶ is the population of the metropolitan area and ݐ௝	is the population of neighborhood ݆.  

Then the rank-order information theory index (ܪோ) can be written as 

ோܪ ൌ 2 lnሺ2ሻන Eሺ݌ሻܪሺ݌ሻ݀݌
ଵ

଴
 

Thus, if we computed the segregation between those families above and below each point in the 

income distribution and averaged these segregation values, weighting the segregation between 

families with above-median income and below-median income the most, we get the rank-order 

information theory index.” 

2.  The Pareto Distribution { YYF  1)( } describes the distribution of a population with 

incomes of Y or greater.  One way to estimate  and   is by using Quantile Method proposed 

by Quandt (1964).  Choose two probability levels P1 and P2 and determine the corresponding 

quantiles Y1 and Y2 from the income category: 
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 11 1 YP  ,  22 1 YP  , 

11 loglog)1log( YP   , 

22 loglog)1log( YP   , 

Then: 

21

21

loglog
loglog

YY

NN




 , 


1

1

1

1 /1
Y

NN

Y

P



 . 

Where N1 and N2 are the number of household whose income is at least greater than 1Y , 2Y , 

respectively. N is the total number of households among all the tracts.  Following Jargowsky 

(1996) we use the Pareto Distribution to estimate the variance in each category: 

 


2

1

)()( 2

1

2 y

y

n

i

dyyfyy
b

  

3.  The 2000 measures are calculated from tract data from SF3 (the sample count data) of Census 

2000, and 2007-2011 measures are calculated from the 2007-2011 five-year pooled American 

Community Survey tract data.  Reardon and Bischoff (2014) included metropolitan areas with 

population greater than 500,000 in 2007 (n=117); for black income segregation they included a 

subset of these area where the number of black families was greater than 10,000 in every census 

year since 1970 and in 2009 (n=65).  Measures of H, H10, and H90 in Table 1 are based on data 

provided by them.  We calculated the NSI for a comparable sample: all metros with 500,000 or 

more residents in 2007-2011 (n=117), and black NSI for those metros with more than 30,000 

black families in 2007-2011 (n=66).  The means and standard deviations in Table 1 are 

unweighted.  
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4.  As reviewers pointed out, the reliability of samples depends directly not on the sampling 

proportion but on the number of sampled cases, particularly the number of cases in each census 

tract from which the tract’s income distribution is estimated.  We repeated our analyses in each 

city for average sample sizes per tract of 50, 100, 150, 200, and 250.  In these cities tracts 

averaged about 1300 households, so a sample of 50 would be just under 4%, while a sample of 

200 be around 15%.  Results of these analyses showed the same patterns as did the analyses 

where we varied sampling rate.  Here we present statistics on the sampling distributions of 

estimates for 5% and 15% samples in order to focus on the approximate difference between what 

might be expected between the 2000 Census and 2007-2011 ACS. 

5.  We also evaluated another alternative that was devised by Sean Reardon and Kendra Bischoff 

and described to us in personal communications.  They applied this method in comparisons 

involving ACS data beginning with Bischoff and Reardon (2015), though it is not documented in 

published work.  They describe the procedure as follows: “We took the published (sample-based) 

tabulations of the income distribution in each tract and created a simulated data set containing 

one observation for each family in the tabulation …  Then we drew a sample, without 

replacement, of size 50*T (where T is the number of tracts in the metro) from this simulated 

metro population.  This results in a data set with an average of 50 families per tract (though 

larger tracts will tend to have more, and smaller tracts fewer, in proportion to their population 

size).  We then compute income segregation based on this sampled data set.  We repeat this 

process 100 times … then compute the average income segregation across the resulting 

estimates.  The idea is that income segregation measures are biased upward when within-tract 

samples are small, so we wanted to keep the within-tract samples the same size, on average, 

across metros/year/groups.  Because we base our estimates on samples of size 50, they will be 
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biased upwards, but our reasoning was they would be biased upwards the same amount 

everywhere (so trends and comparisons would be valid).“ 

We examined the consequences of this sampling procedure using 1940 income data and 

found that measures from subsamples based originally on a 5% sample are more biased upwards 

than measures from subsamples based originally on a 15% sample.  Results are reported in 

Appendix II. 

6.  Firebaugh (1999) describes the use of the squared Coefficient of Variation (V2) as a measure 

of income inequality across nations.  Especially relevant here is his discussion of the differences 

between measures that are weighted by national population size and those that are unweighted. 

7. As a referee has correctly pointed out, the SSVD is related to de-biasing procedures developed 

to look at the extent to which relatively productive workers are sorted into high productivity 

firms. In particular, it is recognized that due to limited mobility over time of workers across 

firms, worker and firm effects yields biased estimates of the population variance in worker and 

firm productivity as well as the correlation between worker and firm productivity (Andrews and 

Gill 2008; Card, Heining and Kline 2012, Peterson,  Penner and Hogsnes 2014). Andrews and 

Gill develop a feasible procedure to correct the bias. However, their formula is solving a 

somewhat different problem in that it uses worker mobility over time to separately identify 

worker and firm productivity, whereas we are focused on sorting of households across neighbors 

using cross-sectional data. The key difference is that the theoretical bias in the estimate of NSI 

from a sparse sample depends on the population variance of income in each neighborhood and 

thus a feasible procedure must account for the fact that this within variance is noisily estimated 

when sampling is sparse.  This is precisely the problem solved by the SSVD. 

8.  It can also be shown that the estimated NSI is asymptotically normal with root n convergence 
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in the number of tracts. This provides a guide to the relative precision of the estimates. For 

example, Chicago has almost 1000 tracts. Standard errors would be approximately 41 percent 

larger in a city with half as many tracts. Simulations using a random sample of Chicago’s tracts 

(not shown) confirm this conclusion. 

9.  An unusual result for Philadelphia is that the bias in both estimates does not decline much 

with a higher sampling rate.  Table 6 similarly showed surprisingly high bias for both estimates 

of the variance in this case.  This pattern raises an additional methodological concern.  On closer 

inspection of the Philadelphia income data, we noticed several outliers with extremely high 

incomes.  When these households happened to be drawn in a sample, which was more common 

at higher sampling rates, their inclusion greatly affected the estimates of class segregation.  To 

gauge this effect, we reran the direct and REML estimates of between-variance and the direct 

and SSVD estimates of NSI after top-coding data at the 99.9th percentile for every city (about 

$350,000 in 2016 dollars).  In all cases the direct estimates are more precise but still quite biased; 

REML and SSVD estimates are much improved, and they remain superior to the direct estimates.  

Decisions about how to deal with very high reported incomes have to be made by individual 

researchers.  Note that when dealing with grouped data published by the Census Bureau the 

problem presents itself differently – the top value and the average value for the top category are 

not given but have to be imputed from the distribution.   

10. The percentile-p specific variance-ratio index may be defined as 

21( ( ) ) / ( (1 ))
j

jR
p ij

j i Pk j
k

M
R f p p p p

M M 

    
  

where ()  is the indicator function,  ijf  is the cumulative percentile of income of household i in 

tract j relative to the city, jP  indexes the population of households in tract j, | |j jM P  is the 
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number of households in tract j and J is the number of tracts. Note that the total variation, and 

thus the denominator in this expression is (1 )p p  because the fraction of households with 

income less than p in the population is exactly p.  

Similarly, the rank-order variance ratio index is defined as  

1
2

0

16 ( ( ) )
j

jR
ij

j i Pj jp
j

M
R f p p dp

M M 

    
 . 

The integration in SSVD estimate of the rank order estimate, conveniently has a closed form 

solution: 

1
2

0

1 11 6 ( ( ) ( ))
1

11 2 1
1

6
j

j j

jR s
ij ik

j i S k Sj j jp
j

j s
i

j

i Sj j
j

j j
j

M
R f p f p dp

M N

N

M
f

N

N

N

M

i

 



 
       


 
    



 

  

 


  

 

where , and s
ijf  is the cumulative percentile of a household in the sampled city population, 

accounting for any differential sampling weights by tract, jS  indexes the sample from tract j 

ordered such that if *i i  then
*

*, ,
ij i j

s s
jf f i i S ∀  and | |j jN S  is the number of sampled 

households in that sample. The number 6 comes from the fact that 
1

0

(1 ) 1/ 6
s

p p dp


    The 

second expression, which is obtained by bringing the integral inside of the summations, indicates 

that the SSVD estimate of the rank order variance ratio is simply a weighted average of the 

cumulative percentiles. Note that since the sample households are ordered within a tract, the 

track-specific weights are antisymmetric ( ) ( 1)w i w N i     around the median ranked 

household in the tract.  
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Appendix I: Stability of estimates from SSVD 

The bias in the SSVD estimate of the NSI can be shown to approach 0 as the number of 

tracts increases.  Assume there are J tracts and that the income ijy  of household i  in tract j  is a 

random variable drawn from a distribution jF  with mean j  and variance 2
j .  Further let the 

means be drawn from a distribution with mean  and let the variance V  be drawn from a 

distribution with mean 2  and variance V .  Let /M j j j
j j

M M    , jP  denote the set of 

households in tract j  , jS  the set of households in tract j  that are in the sample, || ||j jN S  and 

|| ||j jM P . 

The NSI for the full population is / ( ) / 1 /NSI A T T W T W T       

where A is the across, W the within and T the total variation.  Then 
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Denote the sample analogs of W  and T  as  
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The expected values for the mean in tract j, the overall mean, and the overall variance are 

provided from sample values corrected for degrees of freedom: 

  1
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Appendix II: Resampling procedure as a possible solution to bias 

We use 1940 census data here to test a resampling procedure developed by Bischoff and 

Reardon to correct for differences in sampling rates of H in the 2000 and 2010 census using 

aggregate tract level data.  The idea of the resampling approach is that if similarly sized small 

samples are drawn based on observed distributions for the two censuses then small-sample 

biases, while present, will be comparable across time and thus trends will be correctly estimated.  

The procedure, as explained in a private communication from its authors, is that a simulated 

micro data set is created with the number of households in each category of income by tract 

equal to the number implied by the published distributions.  Then 100 samples of 50*N, where N 

is the number of tracts, are drawn from the simulated micro data for each year. H is calculated 

for each sample using grouped data procedure for which Bischoff and Reardon provided stata 

code. The procedure involves fitting 4-th order polynomials to the cumulative distributions and 

then integrating over this distribution to H. The 100 sample Hs are then averaged to get a final H 

estimate for each year.  

We carried out a two stage procedure to mimic the data generating process underlying 

this procedure, and we applied it to H, H90, and NSI with similar results for each measure.  Here 

we display the results for H. In the first stage we constructed 100 5% and 15% samples and one 

100% sample of the 1940 micro data and then categorized the data by tract to create the 

equivalent of the published tables for each sample.  In a second stage we carried out the proposed 

resampling procedure for each first-stage sample. We then plotted the difference between the 

estimate and a “true” estimate based on the 100% sample without any second stage sampling. A 

box plot of the resulting differences by original sampling rate is presented in Appendix Figure 1 

and labeled “N*50 Cen”.   We also carried out a variant in which the microdata consisted of the 
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number of households implied by the census tract sample sizes rather than the census tract 

population counts (“N*50 Samp”).  A third variant (All) was constructed in which there was no 

second-stage sampling.  

It is evident from Appendix Figure 1 that despite the fact that the second stage sample is 

of the same size, the 5 and 15 percent samples for the Bischoff and Reardon procedure (“N*50 

Cen”) do not yield similar biases.  The average difference is .009 or 16% of the true value of 

.056. This difference is roughly equal to the difference of .01 when no second stage is sampled at 

all (“All”). In short, the “N*50 Cen” approach increase the bias by roughly the same amount for 

the 5 and 15 percent samples and thus does not undo the difference in bias that is created from 

the different sampling rates used in the first stage. 

The bias estimates for “N*50 Samp” are more comparable across samples. This suggests 

that the Bischoff and Reardon procedure would work better if it were based on the counts of the 

sample rather than the counts of the population that are estimated from the sample. In effect this 

works because it approximates what you would get by randomly discarding 2/3 of the 15% 

sample so that sampling rates are in fact the same. There are two drawbacks with this approach. 

First, in contrast to the “N*50 Cen” procedure, the “N*50 Samp” procedure will not work to 

compute segregation among subgroup populations for which 5% of the population per tract on 

average is less than 50. Second, bias depends on the within tract distributions (and thus 

segregation) as well as on sampling size, so there is no guarantee that bias will be the same in 

different cities with different levels of segregation. Simulations available from the authors on 

request suggest that this latter source of bias (due to differing within tract variation) is not large 

for H, but it can be important for other measures such as H10 and H90. 
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Appendix Figure 1: Bias from Resampling Procedures  

based on 1940 Chicago Census Data 
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2000

2007‐

2011 2000

2007‐

2011

H

Chicago 0.164 0.168 0.147 0.186

Cleveland 0.158 0.172 0.160 0.202

Detroit 0.162 0.194 0.094 0.141

Los Angeles 0.174 0.179 0.177 0.268

Philadelphia 0.189 0.207 0.127 0.175

Pittsburgh 0.114 0.130 0.184 0.254

Mean large metros
1 0.134 0.147 0.169 0.251

SD 0.027 0.027 0.055 0.082

H(10)

Chicago 0.200 0.186 0.153 0.197

Cleveland 0.221 0.219 0.156 0.221

Detroit 0.178 0.195 0.087 0.166

Los Angeles 0.132 0.149 0.155 0.269

Philadelphia 0.217 0.230 0.128 0.174

Pittsburgh 0.130 0.154 0.175 0.303

Mean large metros
1 0.146 0.163 0.171 0.270

Standard deviation 0.031 0.029 0.054 0.093

H(90)

Chicago 0.211 0.233 0.168 0.253

Cleveland 0.203 0.224 0.194 0.272

Detroit 0.203 0.261 0.135 0.212

Los Angeles 0.257 0.274 0.253 0.358

Philadelphia 0.240 0.245 0.188 0.284

Pittsburgh 0.189 0.203 0.253 0.361

Mean large metros
1 0.185 0.200 0.231 0.341

SD 0.036 0.036 0.079 0.096

NSI

Chicago 0.241 0.228 0.257 0.319

Cleveland 0.275 0.270 0.314 0.347

Detroit 0.254 0.259 0.256 0.370

Los Angeles 0.340 0.286 0.379 0.349

Philadelphia 0.266 0.247 0.268 0.343

Pittsburgh 0.282 0.243 0.432 0.428

Mean large metros
1 0.218 0.202 0.252 0.260

Standard deviation 0.045 0.040 0.075 0.058

Black

Table 1.  Observed income segregation in  

metropolitan regions, 2000 and 2007‐2011

1
 See footnote 1 for selection of large metros  and metros  with large 

black populations .

Total
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Minimum Q_1 Median Q_3 Maximum

Chicago H=.060

5% Sample 0.074 0.076 0.078 0.079 0.082

10% Sample 0.066 0.068 0.069 0.069 0.071

15% Sample 0.064 0.065 0.066 0.066 0.069

20% Sample 0.062 0.064 0.064 0.065 0.066

Cleveland H=.059

5% Sample 0.068 0.073 0.075 0.077 0.083

10% Sample 0.061 0.065 0.067 0.068 0.070

15% Sample 0.061 0.063 0.064 0.065 0.068

20% Sample 0.060 0.062 0.063 0.064 0.065

Detroit H=.058

5% Sample 0.067 0.072 0.073 0.075 0.078

10% Sample 0.061 0.064 0.065 0.066 0.069

15% Sample 0.060 0.062 0.063 0.064 0.066

20% Sample 0.059 0.061 0.062 0.062 0.064

Los Angeles H=.042

5% Sample 0.047 0.053 0.055 0.057 0.063

10% Sample 0.043 0.047 0.049 0.050 0.055

15% Sample 0.041 0.045 0.046 0.047 0.051

20% Sample 0.041 0.044 0.045 0.046 0.048

Philadelphia H=.056

5% Sample 0.066 0.069 0.070 0.072 0.076

10% Sample 0.059 0.062 0.063 0.064 0.068

15% Sample 0.058 0.060 0.061 0.061 0.064

20% Sample 0.057 0.059 0.060 0.060 0.062

Pittsburgh H=.054

5% Sample 0.068 0.074 0.076 0.077 0.087

10% Sample 0.054 0.063 0.064 0.066 0.070

15% Sample 0.055 0.059 0.061 0.063 0.067

20% Sample 0.053 0.057 0.059 0.060 0.066

Table 2.  Distribution of H (total population): true value and estimates at 

varying sampling rates
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Minimum Q_1 Median Q_3 Maximum

Chicago H=.043

5% Sample 0.089 0.093 0.095 0.097 0.104

10% Sample 0.066 0.068 0.069 0.070 0.073

15% Sample 0.057 0.059 0.060 0.061 0.064

20% Sample 0.052 0.055 0.056 0.057 0.058

Cleveland H=.039

5% Sample 0.071 0.081 0.085 0.087 0.094

10% Sample 0.053 0.060 0.061 0.063 0.071

15% Sample 0.047 0.052 0.054 0.055 0.061

20% Sample 0.046 0.049 0.050 0.051 0.057

Detroit H=.040

5% Sample 0.084 0.087 0.090 0.092 0.099

10% Sample 0.058 0.063 0.064 0.066 0.070

15% Sample 0.051 0.055 0.056 0.057 0.060

20% Sample 0.048 0.051 0.052 0.053 0.055

Los Angeles H=.041

5% Sample 0.068 0.109 0.123 0.133 0.176

10% Sample 0.054 0.075 0.084 0.094 0.108

15% Sample 0.048 0.065 0.071 0.077 0.092

20% Sample 0.051 0.060 0.065 0.069 0.089

Philadelphia H=.035

5% Sample 0.076 0.082 0.085 0.088 0.097

10% Sample 0.053 0.057 0.059 0.061 0.067

15% Sample 0.045 0.050 0.051 0.052 0.057

20% Sample 0.043 0.046 0.047 0.048 0.052

Pittsburgh H=.043

5% Sample 0.115 0.133 0.140 0.147 0.169

10% Sample 0.074 0.085 0.089 0.095 0.108

15% Sample 0.063 0.071 0.075 0.079 0.089

20% Sample 0.052 0.062 0.066 0.069 0.076

Table 3.  Distribution of H (white foreign population): true value and 

estimates at varying sampling rates
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Minimum Q_1 Median Q_3 Maximum

Chicago H90=.063

5% sample 0.086 0.090 0.092 0.093 0.098

10% sample 0.073 0.076 0.077 0.079 0.082

15% sample 0.069 0.072 0.073 0.074 0.076

20% sample 0.067 0.069 0.070 0.071 0.074

Cleveland H90=.061

5% sample 0.078 0.087 0.089 0.092 0.104

10% sample 0.063 0.072 0.075 0.077 0.082

15% sample 0.064 0.068 0.070 0.072 0.076

20% sample 0.062 0.066 0.067 0.068 0.072

Detroit H90=.053

5% sample 0.069 0.076 0.079 0.081 0.088

10% sample 0.059 0.064 0.066 0.067 0.072

15% sample 0.056 0.060 0.061 0.063 0.066

20% sample 0.055 0.058 0.060 0.061 0.063

Los Angeles H90=.062

5% sample 0.075 0.080 0.083 0.084 0.092

10% sample 0.066 0.071 0.073 0.074 0.077

15% sample 0.065 0.068 0.069 0.071 0.074

20% sample 0.063 0.066 0.067 0.068 0.071

Philadelphia H90=.056

5% sample 0.071 0.076 0.079 0.081 0.087

10% sample 0.060 0.066 0.067 0.069 0.074

15% sample 0.059 0.062 0.064 0.064 0.067

20% sample 0.057 0.060 0.062 0.063 0.066

Pittsburgh H90=.084

5% sample 0.102 0.114 0.121 0.126 0.140

10% sample 0.091 0.098 0.101 0.106 0.116

15% sample 0.085 0.092 0.095 0.099 0.104

20% sample 0.083 0.090 0.093 0.095 0.101

Table 4.  Distribution of H90 (total population): true value and 

estimates at varying sampling rates
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Minimum Q_1 Median Q_3 Maximum

Chicago H90=.046

5% sample 0.118 0.124 0.127 0.130 0.139

10% sample 0.077 0.085 0.086 0.089 0.093

15% sample 0.067 0.072 0.073 0.074 0.079

20% sample 0.062 0.065 0.066 0.067 0.071

Cleveland H90=.034

5% sample 0.091 0.104 0.110 0.114 0.133

10% sample 0.062 0.068 0.071 0.076 0.092

15% sample 0.051 0.055 0.059 0.062 0.070

20% sample 0.044 0.051 0.052 0.055 0.062

Detroit H90=.033

5% sample 0.106 0.112 0.116 0.120 0.138

10% sample 0.061 0.070 0.074 0.076 0.087

15% sample 0.051 0.058 0.059 0.061 0.068

20% sample 0.044 0.051 0.053 0.055 0.062

Los Angeles H90=.055

5% sample 0.133 0.146 0.152 0.159 0.169

10% sample 0.089 0.101 0.105 0.108 0.119

15% sample 0.079 0.085 0.088 0.091 0.097

20% sample 0.069 0.077 0.079 0.081 0.087

Philadelphi H90=.034

5% sample 0.097 0.108 0.113 0.119 0.130

10% sample 0.064 0.070 0.073 0.076 0.082

15% sample 0.053 0.058 0.060 0.063 0.069

20% sample 0.045 0.051 0.053 0.055 0.061

Pittsburgh H90=.064

5% sample 0.179 0.202 0.210 0.219 0.247

10% sample 0.116 0.132 0.138 0.144 0.169

15% sample 0.095 0.110 0.114 0.119 0.138

20% sample 0.084 0.097 0.100 0.104 0.119

Table 5.  Distribution of H90 (white foreign population): true value 

and estimates at varying sampling rates
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Minimum Q_1 Median Q_3 Maximum

Chicago NSI=.241

5% sa 0.211 0.267 0.286 0.305 0.349

10% s 0.207 0.249 0.263 0.274 0.311

15% s 0.213 0.241 0.256 0.269 0.306

20% s 0.221 0.240 0.251 0.262 0.281

Cleveland NSI=.234

5% sa 0.183 0.265 0.292 0.308 0.333

10% s 0.178 0.228 0.271 0.285 0.307

15% s 0.172 0.238 0.260 0.278 0.297

20% s 0.183 0.234 0.263 0.276 0.296

Detroit NSI=.183

5% sa 0.160 0.206 0.245 0.276 0.301

10% s 0.150 0.189 0.208 0.229 0.264

15% s 0.147 0.184 0.204 0.225 0.271

20% s 0.156 0.186 0.203 0.219 0.250

Los Angeles NSI=.168

5% sa 0.135 0.213 0.228 0.242 0.270

10% s 0.117 0.189 0.207 0.219 0.241

15% s 0.118 0.191 0.205 0.213 0.232

20% s 0.120 0.187 0.199 0.210 0.229

Philadelphia NSI=.191

5% sa 0.225 0.280 0.293 0.311 0.448

10% s 0.214 0.261 0.274 0.287 0.411

15% s 0.210 0.254 0.267 0.275 0.307

20% s 0.190 0.245 0.255 0.267 0.296

Pittsburgh NSI=.261

5% sa 0.233 0.285 0.313 0.325 0.356

10% s 0.212 0.276 0.294 0.304 0.324

15% s 0.228 0.263 0.278 0.292 0.311

20% s 0.222 0.254 0.273 0.287 0.310

Table 6.  Distribution of NSI (total population): true value and 

estimates at varying sampling rates
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Minimum Q_1 Median Q_3 Maximum

Chicago NSI=.227

5% sample 0.288 0.317 0.326 0.330 0.365

10% sample 0.250 0.274 0.282 0.287 0.298

15% sample 0.225 0.257 0.265 0.271 0.282

20% sample 0.228 0.246 0.254 0.260 0.271

Cleveland NSI=.216

5% sample 0.235 0.293 0.304 0.312 0.345

10% sample 0.221 0.256 0.264 0.271 0.288

15% sample 0.209 0.244 0.251 0.258 0.277

20% sample 0.211 0.236 0.243 0.249 0.264

Detroit NSI=.188

5% sample 0.272 0.300 0.309 0.323 0.589

10% sample 0.238 0.260 0.265 0.275 0.422

15% sample 0.215 0.237 0.247 0.256 0.430

20% sample 0.203 0.223 0.237 0.246 0.363

Los Angeles NSI=.120

5% sample 0.236 0.298 0.314 0.325 0.353

10% sample 0.208 0.242 0.255 0.264 0.285

15% sample 0.192 0.214 0.235 0.248 0.275

20% sample 0.168 0.201 0.227 0.235 0.252

Philadelphia NSI=.197

5% sample 0.215 0.291 0.308 0.318 0.361

10% sample 0.209 0.239 0.256 0.267 0.284

15% sample 0.197 0.226 0.234 0.245 0.262

20% sample 0.202 0.218 0.226 0.233 0.256

Pittsburgh NSI=.228

5% sample 0.308 0.384 0.402 0.411 0.515

10% sample 0.257 0.319 0.332 0.340 0.391

15% sample 0.238 0.284 0.304 0.317 0.344

20% sample 0.222 0.266 0.287 0.299 0.356

Table 7.  Distribution of NSI (white foreign population): true value and 

estimates at varying sampling rates
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Sampling 

Rate Chicago Cleveland Detroit

Los 

Angeles Philadelphia Pittsburgh

0.01 Direct  356,170 209,694 210,471 132,665 301,523 311,511

REML  ‐97,496 ‐36,349 ‐26,183 ‐3,772 ‐212,950 ‐2,379

0.03 Direct  106,030 87,089 88,107 49,870 130,133 135,362

REML  ‐96,455 ‐24,173 ‐26,049 ‐3,458 ‐223,121 ‐2,132

0.05 Direct  51,079 48,703 103,174 30,999 107,445 82,785

REML  ‐91,008 ‐20,298 ‐16,964 ‐1,161 ‐209,805 ‐1,362

0.07 Direct  44,653 39,351 59,549 21,506 129,583 64,281

REML  ‐86,656 ‐15,574 ‐16,420 ‐1,980 ‐194,067 ‐752

0.09 Direct  28,312 38,049 49,060 16,999 106,003 56,647

REML  ‐82,584 ‐14,166 ‐15,074 ‐2,432 ‐199,860 5,201

0.15 Direct  1,929 16,606 35,448 11,970 93,047 33,799

REML  ‐73,107 ‐14,819 ‐9,557 ‐1,158 ‐157,321 821

0.19 Direct  ‐11,423 16,083 23,618 10,036 64,555 28,167

REML  ‐72,429 ‐11,615 ‐13,017 ‐845 ‐147,350 1,083

Table 8. Bias of estimated variance from direct and REML methods 

(difference between the true value and the median estimate from 100 samples)
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Sampling 

Rate Chicago Cleveland Detroit

Los 

Angeles Philadelphia Pittsburgh

0.01 Direct 0.161 0.153 0.197 0.150 0.207 0.170

SSVD 0.027 0.035 0.067 0.049 0.077 0.017

0.03 Direct 0.071 0.083 0.105 0.079 0.122 0.072

SSVD 0.009 0.042 0.042 0.039 0.066 0.016

0.05 Direct 0.046 0.062 0.067 0.057 0.101 0.051

SSVD 0.006 0.033 0.022 0.033 0.063 0.015

0.07 Direct 0.030 0.048 0.052 0.050 0.091 0.040

SSVD 0.005 0.026 0.017 0.032 0.062 0.012

0.09 Direct 0.025 0.038 0.037 0.042 0.078 0.028

SSVD 0.005 0.022 0.011 0.027 0.051 0.008

0.15 Direct 0.016 0.031 0.017 0.033 0.070 0.023

SSVD 0.003 0.021 0.001 0.024 0.054 0.009

0.19 Direct 0.010 0.023 0.011 0.029 0.067 0.016

SSVD ‐0.001 0.015 ‐0.004 0.022 0.054 0.005

Table 9. Bias of NSI from direct and SSVD methods 

(difference between the true value and the median estimate from 100 samples)

 
 
  



 
 

 

Figure 1. Relation between sampling rate and estimated values of H10, H90, and NSI (total households and white 

foreign-born households) based on draws from the 1940 population data for Chicago. 
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Figure 2.  Relation between sampling rate and estimated values of variance in family income 
across areas based on draws from the 1940 population data for Chicago: direct and REML 
estimates. 
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Figure 3.  Relation between sampling rate and estimated values of NSI for family income across 
areas based on draws from the 1940 population data for Chicago: direct and SSVD estimates. 
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Figure 4.  Relation between sampling rate and estimated values of rank-income variance ratio 
index RR  for family income across areas based on draws from the 1940 population data for 
Chicago: direct and SSVD estimates. 
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Figure 5.  Relation between sampling rate and estimated values of 90 percentile variance ratio 
index 90

RR  for family income across areas based on draws from the 1940 population data for 
Chicago: direct and SSVD estimates. 
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Figure 6.  Relation between predicted bias in estimated H90 and actual bias from simulations 
using cities and sampling rates considered in Table 4; includes 45 degree line that would obtain 
if predicted and actual were equal 
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Figure 7.  Relation between predicted bias in estimated H and actual bias from simulations using 
the cities and sampling rates considered in Table 2; includes 45 degree line that would obtain if 
predicted and actual were equal 




