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1 Introduction

Resource allocations are jointly determined by many actors, including households, �rms,

and governments. In this paper, we study the interaction between households and a well-

intentioned government, which we will refer to as the social planner.1 We analyze the case in

which (i) the social planner is a (benevolent) rational utilitarian, (ii) households are hetero-

geneous in their degree of rationality, and (iii) the social planner has some scope to intervene

� e.g., default savings and mandatory savings, which mirror institutions like 401(k) auto-

enrollment and Social Security.2 We show that in equilibrium, planner optimization is a

(close) substitute for household optimization. This is true even when there are information

asymmetries, so that households know more about their preferences than planners.

Our analysis illustrates a novel identi�cation problem. Are seemingly optimal allocations

caused by optimizing households, or are such allocations caused by planners who paternal-

istically in�uence household behavior? We �nd that some widely studied classical tests for

household optimization, which rely on the Euler equation and its variants, do not identify the

causal source of the (average) allocative optimality. Equilibrium properties that are implied

by household optimization are also implied by planner optimization. The actions of ratio-

nal planners may result in pseudo-rational allocations by endogenously causing the Euler

equation to hold on average in a population of non-optimizing households, including myopic

and passive households, even though the Euler equation does not hold for each individual

household.

To demonstrate these mechanisms, we study a classic life-cycle model in which agents

earn labor income during working life and can save a fraction of their earnings for retirement

consumption. The planner has two policy levers: mandatory retirement savings (similar to

Social Security or de�ned bene�t pensions), and voluntary retirement savings with a default

1Naturally, many governments are not (even approximately) well-intentioned. They are not trying to
maximize the well-being of their citizens. These cases can also be studied using the framework in this paper,
but we leave those cases for future work.

2De�ned bene�t (DB) pensions are another example of a mandatory savings scheme. DB pensions have
fallen in popularity in the U.S., though they remain commonplace in other developed economies.
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savings rate (similar to 401(k) accounts).3 We consider an economy with three types of

households: optimizing households, who behave optimally throughout their life-cycle, myopic

households, who opt out of the default and consume their entire disposable income in each

period, and passive households, who accept the planner�s default and consume their residual

income. We include myopes � an extreme type � to emphasize that our results hold even

when the deck is stacked against social e¢ciency. Additionally, we allow for agents to have

privately observed preference parameters of arbitrary structure. Our planner jointly chooses

a default level of savings within the system of voluntary savings accounts and designs a Social

Security system in order to maximize total social welfare, taking into account the behavior

of optimizing households and the suboptimal behavior of myopic and passive households.

We show that, in equilibrium, average marginal utility before retirement is equal to aver-

age marginal utility after retirement for any distribution of optimizing, myopic, and passive

households. Such marginal utility smoothing applies to all concave utility functions with a

general class of taste shocks. Accordingly, Euler equations, which characterize an economy

with only optimizing households, also arise in an economy with institutions that are optimally

designed by a planner for non-optimizing households. As such, aggregate Euler equations do

not di¤erentiate between household optimization and planner optimization.

Marginal utility smoothing is closely related to consumption smoothing, which is among

the most common tests for household optimization. The precise form of consumption smooth-

ing depends on the curvature of the utility function and the structure of taste shocks. We

show that when exact aggregate consumption smoothing arises in a world comprised only

of optimizing households, it also arises in our economy with an optimizing planner and any

distribution of optimizing, myopic, and passive households. Moreover, in some leading cases,

exact consumption smoothing does not arise with optimizing households, but does arise with

an optimizing planner and non-optimizing households. These results imply that exact ag-

gregate consumption smoothing is a more robust property of the model without optimizing

households, in contrast to the common view.

3Later in the paper we show that this restriction to only two policy levers is without loss of generality.
This generalization occurs in Section 6.
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Although we show that the average Euler equation and average consumption smoothing

are not generally diagnostic of household optimization, we demonstrate that other types of

economic information � both from the cross section and from time series � identify the extent

of household optimization. For example, bunching (i.e., a mass point) at the default savings

level identi�es passive households. In the time series, only passive households change their

consumption when the default savings rate changes. Such tests are not confounded by the

equilibrium link between household and planner optimization. As such, they provide ways

to overcome the mis-attribution problems that we highlight. We provide a range of methods

for identifying the mass of optimizing, myopic, and passive households.

Our choice of the particular framework for illustrating our arguments � namely, savings

over the life-cycle � is motivated by the seemingly contradictory �ndings of the recent research

on household savings. Some papers �nd evidence that is consistent with optimal savings

while others highlight savings anomalies. See Skinner (2007) and Poterba (2014) for reviews

of this literature and Section 7 of our paper for a speci�c discussion of how our model

reconciles the di¤erent sets of �ndings. For example, our model implies that household-level

sub-optimization, arising from passivity and myopia, will be partially o¤set by paternalistic

policies, like defaults and Social Security. Hence, the economy that our model describes will

simultaneously feature both household-level mistakes and many characteristics of �aggregate�

optimality. In equilibrium, the Euler equation is satis�ed on average across all households,

though it is not satis�ed for some, or potentially even all, individual households.

Our paper is also related to the behavioral economics literature on optimal paternalism. In

our setting the planner chooses policies that dramatically improve the welfare of myopic and

passive agents, while relatively weakly distorting the choices and welfare of rational agents

(whose behavior would be optimal under laissez faire policies). The social desirability of poli-

cies that disproportionately a¤ect non-rational consumers was �rst highlighted by Camerer,

Issacharo¤, Loewenstein, O�Donoghue, and Rabin (2003) in their paper on asymmetric pa-

ternalism. Our analysis incorporates defaults, which preserve freedom of choice while still

in�uencing behavior. Sunstein and Thaler (2003) and Thaler and Sunstein (2003, 2008) re-
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fer to such choice-preserving nudges as libertarian paternalism. Our analytic framework also

includes mandates (like Social Security), which fall outside the domain of libertarian paternal-

ism. Our paper derives socially optimal paternalistic policies for households with behavioral

biases, which follows a line of related papers: Diamond (1977), Kotliko¤, Spivak, and Sum-

mers (1982), Feldstein (1985), Gruber and Köszegi (2001), Choi et al. (2003), O�Donoghue

and Rabin (2003, 2006), Carroll et al. (2009), Fang and Silverman (2009), Loginova and

Persson (2012), Bubb and Pildes (2014), Alcott and Taubinsky (2015), Bubb, Corrigan and

Warren (2015), Chetty (2015), Moser and de Souza e Silva (2015), Farhi and Gabaix (2015),

Bubb and Warren (2016), and Lockwood (2017). Another closely related literature stud-

ies self -binding policies, in other words, self-directed paternalism: e.g., Ashraf, Karlan and

Yin (2006), Gine, Karlan, and Zinman (2010), Bryan, Karlan, and Nelson (2010), Amador,

Werning, and Angeletos (2006), Augenblick, Niederle, and Sprenger (2015), Kaur, Kremer

and Mullainathan (2015), and Schilbach (2015).

The remainder of the paper is organized as follows. In Section 2, we describe our baseline

model in which the population is comprised of three types of households: optimizers, myopes,

and passives. We describe the general (privately observed) taste shocks that these households

experience. We also describe the policy levers available to the government. Finally, we char-

acterize the equilibrium behavior of the households (holding �xed the behavior of the social

planner). Section 3 derives the equilibrium behavior of the social planner. In this section we

show that the classical aggregate Euler equation holds, regardless of the proportions of opti-

mizers, myopes, and passives (as long as the social planner is a rational utilitarian). In Section

4, we study several special cases � multiplicative taste shocks, quadratic utility, and constant

relative risk aversion. Using these special cases and our earlier Euler equation results, we de-

rive equilibrium consumption dynamics, which are related to but distinct from the dynamics

of marginal utility. We show that consumption smoothing is a robust feature of our model.

Indeed, the forces that produce consumption smoothing only grow stronger as the fraction

of the population that is myopic and passive increases. In Section 5, we discuss the issue of

identi�cation � how can the distribution of optimizing, myopic, and passive households be
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identi�ed? In Section 6, we derive an isomorphism between our analysis and the associated

mechanism design problem. Speci�cally, we show that the equilibrium of our model, with a

restricted policy space using only default savings and mandatory savings, exactly matches

the equilibrium that arises when the government�s policy tools are maximally generalized and

the problem is treated as a mechanism design problem. Section 7 explains why our model

reconciles several tensions in the empirical consumption literature. Our framework explains

why a population that is comprised of a mix of optimizing, myopic, and passive households

will have relatively smooth average consumption dynamics, although signi�cant deviations

from optimality will arise at the level of individual households, including sensitivity to default

savings. Section 8 concludes.

2 Baseline Model

Setup. We consider a two-period model, where period t = 1 is working life and period t = 2

is retirement. Real output during working life is y1 = y and real output during retirement is

0. Real consumption is denoted c1 and c2: We assume that the real interest rate, r, is �xed

and let R � 1 + r: The life-time budget constraint household i faces is

c1 +
c2
R
� y:

Preferences. Consider a household with consumption fc1; c2g and a general taste shifter,

vector �: Total life-time utility is given by

U(c1; c2; �) = u1(c1; �) + �u2(c2; �);

where � is a discount factor.4 The taste parameter � 2 � varies across households and is

independently drawn from a common cumulative distribution function F (�) over a compact

4The case in which � is heterogeneous across households is embedded in our model. To illustrate this point,
a special case of our model is

U(c1; c2; �) = u(c1) + b�u(c2);
where b� = ��:
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space �.5 We assume that � is known to the households at time 0, but not known to the

government. Finally, we assume that u0t(� ; �) > 0 and u
00
t (� ; �) < 0 for all � and for t = f1; 2g:

To simplify notation, we suppress the i index, and simply refer to households by their

taste shock �.

Institutions. There are two kinds of institutions: a voluntary savings account and a forced

retirement savings account. We assume that the planner sets a default level of savings in the

voluntary savings account, sD. The households are able to opt-out of this default at zero

cost. In addition, the planner sets forced retirement savings (a minimum level of savings

from labor income) of sF , which is deposited into the forced savings account during working

life.6 Because sF is de�ned as the minimum level of savings, passively following the default

must engender a level of savings at least as great as sF : In notation, sF + sD � sF : Hence,

an operational default requires

sD � 0: (1)

In section 6, we show that the institutional restrictions described in the previous paragraph

are made without loss of generality. In other words, even if the planner solves a completely

general mechanism design problem (for this economy), the solution is the same as the solution

that we characterize for the institutionally restricted model.

Household types. There are three types of households (indexed on a continuum from 0 to

1): Optimizers, Myopes, and Passives. We explain each of these in turn.

Optimizers (notated O) choose the optimal level of consumption in all time periods,

taking into account their private information about � and the institutional constraints that

they face. Optimizing households may not be able to achieve their �rst best allocation if

their optimal level of savings is lower than the forced level of savings. Formally, optimizing

5This common distribution assumption for � can be relaxed. As long as we maintain the assumption
that the government holds rational expectations, we can allow households to have preference parameters that
are drawn from (ex-ante) heterogeneous distributions. To simplify notation, we adopt the assumption of a
common iid CDF, F (�):

6This is essentially what has been adopted by Australia, Israel, and Singapore, and has similarities to
Social Security in the US.
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households choose the life-time consumption path fc1; c2g that solves

max
fc1;c2g

u1(c1; �) + �u2(c2; �)

subject to two constraints

c1 +
c2
R
� y;

c1 � y � sF � �c1:

The �rst constraint is the budget constraint. The second constraint is the period-one liquidity

constraint because sF is the level of mandatory savings � i.e., the minimum level of savings.

To characterize the equilibrium behavior of optimizers, fc1(�); c2(�)g, we �rst consider the

unconstrained problem � that it, we focus on optimizing households that are unconstrained

during their working life. In this case, the standard Euler equation holds for each household:

u01(c1(�); �) = �Ru
0
2(c2(�); �):

By contrast, for the constrained optimizing households c1(�) = y�sF = �c1 and c2(�) = R�sF :

This completes our discussion of optimizers. We now turn to the second and third types

of households.

Myopes (notated M) opt out of the default and consume as much as possible in every

period. Hence, myopes are constrained only by the forced savings, so that they consume

cM1 = y � sF = �c1 and c
M
2 = R� sF , which is the same as the constrained optimizers.

Passives (notated P ) accept the default and consume the residual income �ow. That is,

for them cP1 = y � sF � sD � c
D
1 and c

P
2 = R� (sF + sD).

The rational planner�s problem. The shares of optimizing, myopic, and passive households

are �O, �M , and �P , respectively, where 0 � �O; �M ; �P � 1 and �O + �M + �P = 1: We

denote the distribution of these �decision� types by � � (�O; �M ; �P ). The utilitarian social

planner�s objective is to choose the policy tools fsD; sF g that maximize total utility. Note
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that any pair of values fsD; sF g generates equilibrium values for period-one consumption by

optimizers, c1(�), myopes, c
M
1 ; and passives, c

P
1 : Because of the household budget constraint,

these consumption levels imply c2(�) = R � (y � c1(�)), c
M
2 = R � (y � cM1 ), and c

P
2 =

R� (y � cP1 ). Accordingly, the planner chooses fsD; sF g to maximize

W � �O

Z

�

[u1(c1(�); �) + �u2(c2(�); �)]dF (�)

+ �M

Z

�

[u1(c
M
1 ; �) + �u2(c

M
2 ; �)]dF (�)

+ �P

Z

�

[u1(c
P
1 ; �) + �u2(c

P
2 ; �)]dF (�): (2)

Recall that this expression is maximized subject to the constraint sD � 0 (equation (1)).

We will make frequent use of the expectation operator, E [�] ; which is the expectation

taken over the entire population. Speci�cally, for any random variable x(�), this expectation

operator integrates jointly over decision types (optimizers, myopes, and passives) and over

taste shocks (�):

E [x(�)] � �O

Z

�

xO(�)dF (�) + �P

Z

�

xM (�)dF (�) + �M

Z

�

xP (�)dF (�):

3 Equilibrium with Optimal Institutions

We begin by analyzing the basic Euler equation. First, consider the benchmark of an econ-

omy in which all households are optimizers, so that u01(c1(�); �) = �Ru02(c2(�); �) for each

household. In principle, if an econometrician knew each household�s value of �, then it would

be possible to test this equation at the household level. However, �; which is a taste shock, is

not observable. Moreover, in practice most variables are measured with noise, which prevents

equations from holding exactly. Accordingly, empirical analysis tends to focus on whether the

Euler equation is satis�ed on average, that is, whether:

E
�
u01(c1(�); �)

�
=�RE

�
u02(c2(�); �)

�
:
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Naturally, this holds in the benchmark economy of optimizing households. Our �rst proposi-

tion proves that this last equation also holds in our economy, in which optimizing households

can represent any fraction of the economy (i.e., �O 2 [0; 1]).

We now characterize the equilibrium allocation in our economy with a rational social

planner. We prove that some basic equilibrium features that are commonly attributed to

household optimization also appear in our partially passive and partially myopic economy as

a result of the planner�s intervention.

Proposition 1 Assume a rational planner. Then for any distribution of optimizing, myopic,

and passive households, a classical Euler equation will hold on average in the population:

E
�
u01(c1; �)

�
=�RE

�
u02(c2; �)

�
: (3)

Proposition 1 establishes that the aggregate Euler equation (3) holds for any mass vector

� characterizing the fraction of optimizing, myopic, and passive households. The results in

the rest of the paper all have the property that a classical optimality condition holds on

average in the population regardless of the fraction of optimizing households.

The proof of this �rst proposition uses three steps that correspond to the following three

lemmas.

Lemma 1 (cD1 < �c1) At the planner�s optimum, the default consumption in period 1 is strictly

less than maximal consumption in period 1:

cD1 � y � sF � sD < y � sF � �c1:

Equivalently, sD > 0:

The social planner uses the sum sF +sD to pin down total savings for passives. The social

planner recognizes that mandatory savings, sF ; has a negative externality on optimizers, some

of whom are constrained by sF : Note that sD has no negative externality because it only

a¤ects the choices of passives. Accordingly, the social planner sets the default savings rate,
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sD, strictly greater than zero, which implies that myopes save less than passives: sF < sF+sD:

This �rst lemma (sD > 0) is proved in the appendix.

Our second lemma describes a change of variables for the planner�s optimization problem.

Lemma 2 (Change of Variables) With the institutions we have assumed, the planner�s

problem is isomorphic to jointly choosing the optimal level of two variables:

(i) cD1 � y � sF � sD (default consumption in period 1),

(ii) �c1 � y � sF (maximal consumption in period 1, given the level of mandatory savings),

subject to the constraint that cD1 � �c1 (implied by the original constraint sD � 0):

To see this, let �(�c1) � � denote the set of � values that would induce an optimizer to

be strictly constrained if period-one consumption were bounded above by �c1. Then, we can

re-write the planner�s optimization problem (2) as choosing cD1 and �c1 to maximize

W � �O

Z

�

[u1(c1(�); �) + �u2(R(y � c1(�)); �)]dF (�) (4)

+ �M

Z

�

[u1(�c1; �) + �u2(R(y � �c1); �)]dF (�)

+ �P

Z

�

[u1(c
D
1 ; �) + �u2(R(y � c

D
2 ); �)]dF (�);

subject to the constraint

cD1 � �c1; (5)

where c1(�) solves u
0
1(c1(�); �) = �Ru02(R(y � c1(�)); �) for � =2 �(�c1) and c1(�) = �c1 for

� 2 �(�c1).

Lemma 3 (Euler Equation) If social welfare is maximized with respect to cD1 and �c1, then

the associated �rst order conditions imply

E
�
u01(c1; �)

�
=�RE

�
u02(c2; �)

�
:

Proof. Lemma 1 establishes that at an optimum �c1 > cD1 . In other words, myopes
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consume in period 1 strictly more than passives at an optimum. Because �c1 > cD1 , (local)

perturbations of cD1 do not a¤ect the socially optimal value of �c1; and vice versa. Accordingly,

the constraint in Lemma 2 (equation (5)) can be ignored when taking �rst order conditions.

Exploiting the change of variables in Lemma 2 and the irrelevance of the constraint, we know

that at the optimum

@W

@cD1
=
@W

@�c1
= 0:

Note that perturbations of cD1 will only a¤ect passives, a property we will exploit in the

next paragraph. Likewise, perturbations of �c1 will only a¤ect myopes and (some) optimizers,

which we will also exploit in the next paragraph.

Recall that cP1 = cD1 and cP2 = R � (y � cD1 ): The planner�s choice of c
D
1 establishes an

average Euler equation for passives. Speci�cally, @W
@cD1

= 0 implies that

Z

�

u01(c
P
1 ; �)dF (�)=�R

Z

�

u02(c
P
2 ; �)dF (�) (6)

where cP2 = R� (y � c
P
1 ):

The �rst order condition for �c1 is

Z

�

�
�Ou

0
1(c1 (�) ; �)

dc1 (�)

d�c1
+�Mu

0
1(c

M
1 ;�)

dcM1 (�)

d�c1

�
dF (�)

+ �

Z

�

�
�Ou

0
2(c2 (�) ; �)

dc2 (�)

d�c1
+�Mu

0
2(c

M
2 ;�)

dcM2
d�c1

�
dF (�) = 0: (7)

For myopes,
dcM1
d�c1
R+

dcM2
d�c1

= 0: This is a direct consequence of the household budget constraint.

Moreover,
dcM1
d�c1

= 1 so that
dcM2
d�c1

= �R:
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For optimizers dc1(�)d�c1
2 f0; 1g, where dc1(�)

d�c1
= 1 i¤ � 2 �(�c1).

7 This implies that

Z

�2�

u01(c1 (�) ; �)
dc1 (�)

d�c1
dF (�) =

Z

�=2�(�c1)

�
u01(c1 (�) ; �)� 0

�
dF (�) +

Z

�2�(�c1)

�
u01(�c1; �)� 1

�
dF (�)

=

Z

�2�(�c1)

u01(c1 (�) ; �)dF (�):

Likewise, dc2(�)d�c1
2 f0;�Rg, where dc2(�)

d�c1
= �R i¤ � 2 �(�c1). This implies that

Z

�2�

u02(c2 (�) ; �)
dc2 (�)

d�c1
dF (�) =

Z

�=2�(�c1)

�
u02(c2 (�) ; �)� 0

�
dF (�) +

Z

�2�(�c1)

�
u02(�c2; �)� (�R)

�
dF (�)

= �R

Z

�2�(�c1)

u02(c2 (�) ; �)dF (�):

Equation (7) therefore reduces to:

Z

�2�(�c1)

�Ou
0
1(c1 (�) ; �)dF (�) +

Z

�2�

�Mu
0
1(c

M
1 ; �)dF (�)

= �R

Z

�2�(�c1)

�Ou
0
2(c2 (�) ; �)dF (�) + �R

Z

�2�

�Mu
0
2(c

M
2 ; �)dF (�): (8)

We also have for all � =2 �(�c1):

u01(c1 (�) ; �) = �Ru
0
2(c2 (�) ; �): (9)

Combining equations (6), (8), and (9), we have

E
�
u01(c1; �)

�
= �RE

�
u02(c2; �)

�
:�

Proposition 1 follows immediately by combining Lemmas 1, 2, and 3.

7This follows from the following argument. For unconstrained households whose choice of c1 (�) is strictly

interior to their choice set, we have dc1(�)
d�c1

= 0: For households who are strictly constrained, we have dc1(�)
d�c1

= 1:

Lastly, for households who are weakly constrained, we have dc1(�)
d�c1

= 0:
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In summary, Proposition 1 implies that a standard classical Euler equation characterizes

equilibrium allocations in the economy, regardless of the proportions of optimizers, myopes,

and passives. Note that the Euler equation holds in expectation across all households, but it

does not hold at the level of each individual household. Some households consume too little

in period 1 (optimizers and myopes who have a taste shifter, �, that would imply an optimal

level of c1 > �c1; and passives who have a taste shifter, �, that would imply an optimal level

of c1 > c
D
1 ). Some households consume too much (myopes who have a taste shifter, �, that

would imply an optimal level of c1 < �c1; and passives who have a taste shifter, �, that would

imply an optimal level of c1 < cD1 ). The Euler equation is only satis�ed on average across

the population of households.

3.1 When could an econometrician reject the Euler equation?

Proposition 1 establishes that an Euler equation is satis�ed on average in the economy that

we study despite the existence of non-optimizing households. However, as we have explained,

an analogous Euler equation will not be satis�ed household-by-household (though it will be

satis�ed for all unconstrained optimizers). An econometrician with full information � i.e., an

econometrician who knows household preferences, including each household�s taste shifter, �

� would be able to test the Euler equation household-by-household,

u01(c1; �) = �Ru
0
2(c2; �) for c1 < �c1

u01(c1; �) � �Ru
0
2(c2; �) for c1 = �c1;

and would �nd that it is not universally satis�ed. More generally, the econometrician will �nd

that the Euler equation holds when she uses the same coarse information that the planner

has, and the econometrician will �nd that the Euler equation does not hold when she uses

private, household-level information about the value of � (which is not directly available to

the planner).
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4 Special Cases

We now study the special case in which household life-time utility is given by

u1(c1; �) + �u2(c2; �) = u(c1) + ��u(c2):

This is a commonly studied case of multiplicative taste shocks (c.f., Atkeson and Lucas 1992;

Amador, Werning, and Angeletos 2006; and Beshears et al. 2015). Without loss of generality

and to simplify notation, we assume that �R = 1:We maintain these assumptions throughout

this section.

We �rst study the mean of the ratio of marginal utilities before and after retirement,

E
h
u0(c1)
u0(c2)

i
. Note that in a fully optimizing economy, for any given value of � we have

u0(c1(�))

u0(c2(�))
= �:

Accordingly, averaging across all households yields

E

�
u0(c1)

u0(c2)

�
= E [�] :

When E [�] = 1 (a natural benchmark), marginal utility is smoothed such that the mean

ratio of marginal utilities equals one, i.e., E
h
u0(c1)
u0(c2)

i
= 1.

In the next proposition we prove that these relationships hold in our economy as well.

Proposition 2 (Multiplicative Taste Shocks) Assume a rational planner. Then for any

distribution of optimizing, myopic, and passive households, a classical Euler equation ratio

will hold on average in the population:

E

�
u0(c1)

u0(c2)

�
= E [�] :

Proof. Equation (6) implies that

Z

�

�
�
u0(cP1 )

u0(cP2 )
+ �
�
dF (�) = 0. Since c2 (�) = R(y��c1) for
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� 2 �(�c1) and c
M
2 =R(y��c1), we can also re-write equation (8) as

Z

�2�(�c1)

�O

�
�u0(c1(�))
u0(c2(�))

+ �
�
dF (�)+

Z

�

�M

�
�
u0(cM1 )

u0(cM2 )
+ �
�
dF (�) = 0. Lastly, for � =2 �(�c1), u

0
1(c1(�); �) = �Ru02(c2(�); �) implies

that �u0(c1(�))
u0(c2(�))

+� = 0 and hence

Z

�=2�(�c1)

�O

�
�u0(c1(�))
u0(c2(�))

+ �
�
dF (�) = 0. Put together, we have

that

E

�
u0(c1)

u0(c2)

�
= �O

2
64

Z

�2�(�c1)

u0(c1 (�))

u0(c2 (�))
dF (�) +

Z

�=2�(�c1)

u0(c1 (�))

u0(c2 (�))
dF (�)

3
75

+ �P

Z

�

u0(cP1 )

u0(cP2 )
dF (�) + �M

Z

�

u0(cM1 )

u0(cM2 )
dF (�) = E [�] :

This completes the proof. �

4.1 Consumption Smoothing

The degree of consumption smoothing is widely used as an indicator of household optimiza-

tion. The mapping from marginal-utility smoothing to consumption smoothing depends

on the curvature of the utility function. In this subsection, we work out this mapping for

quadratic utility and constant relative risk aversion.

For quadratic utility we get exact results. When there are no taste shocks (� = 1 for all

households), we show that E [c2 � c1] = 0 regardless of the distribution of optimizing, myopic,

and passive households. On the other hand, when there are household-level taste shocks but

no taste shocks on average (E [�] = 1), we show that E [c2 � c1] = 0 only if there are no

optimizing households. Surprisingly, the presence of optimizing households causes average

consumption to fall at retirement: E [c2 � c1] < 0:

For the case of constant relative risk aversion, we get analogous results studying the rate

of change of consumption at retirement (using a �rst-order approximation).

Together, these results imply that consumption smoothing is a more robust property of

the model without optimizing households. In other words, there are leading preference and

taste-shock cases in which consumption smoothing arises without optimizing households but
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does not arise with optimizing households (and not vice versa).

We now introduce our notation. We study the cases of: (i) quadratic utility, i.e., u(c) =

c� b
2c
2, where b > 0, and (ii) constant relative risk aversion, i.e., u(c) = c1��1

1� , where  > 0.8

For each case, we analyze consumption moments under two assumptions: �rst, when � = 1

for every household as implicitly assumed in most papers, and, second, when there are no

taste shocks on average at retirement, i.e., when E [�] = 1. The results are summarized in

the following lemma.

Lemma 4 (Parametric Utility Functions) Assume any distribution of optimizing, my-

opic, and passive households.

(A) Quadratic utility implies:

1. With no taste shocks at retirement (� = 1 for all households),

E [c2 � c1] = 0;

2. With no taste shocks on average at retirement (E [�] = 1),

E [c2 � c1] = �cov (�; c2) � 0:

(B) Constant relative risk aversion utility implies (to a �rst-order approximation):

1. With no taste shocks at retirement (� = 1 for all households),

E

�
c2 � c1
c1

�
�= 0;

2. With no taste shocks on average at retirement (E [�] = 1),

E

�
c2 � c1
c1

�
�= �cov

�
�;
c2
c1

�
� 0:

Proof. (A) Plugging u(c) = c � b
2c
2 into Proposition 1 implies that E [c1 � �c2] =

E [1� �] =b. Assuming that � = 1 for every household yields E [c2 � c1] = 0, and assuming

8As  ! 1; this function converges to ln(c):
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that E [�] = 1 yields E [c2 � c1] = �cov (�; c2).

(B) Similar to the proof of Proposition 2, one can show that E
h
�u0(c2)
u0(c1)

i
= 1. This is

because equation (6) implies that

Z

�

�
�1 +

�u0(cP2 )

u0(cP1 )

�
dF (�i) = 0, equation (8) combined

with c1 (�) = �c1 for � 2 �(�c1) and c
M
1 = �c1 implies that

Z

�2�(�c1)

�O

�
�1 + �u0(c2(�))

u0(c1(�))

�
dF (�) +

Z

�

�M

�
�1 +

�u0(cM2 )

u0(cM1 )

�
dF (�) = 0, and u01(c1(�); �) = �Ru02(c2(�); �) for � =2 �(�c1) implies

that �u0(c2(�))
u0(c1(�))

= 1 and hence

Z

�=2�(�c1)

�O

�
�1 + �u0(c2(�))

u0(c1(�))

�
dF (�) = 0, which together yield

E
h
�u0(c2)
u0(c1)

i
= 1. Linearizing u0(c) around c = c1 results in E

h
�� c2�c1c1

i
�= 1�E [�]. Assum-

ing that � = 1 for every household yields E
h
c2�c1
c1

i
�= 0, and assuming that E [�] = 1 yields

E
h
c2�c1
c1

i
�= �cov

�
�; c2c1

�
. �

Lemma 4 demonstrates that when there are no taste shocks, our economy is characterized

by mean consumption smoothing for any distribution of optimizing, myopic, and passive

households. Therefore, in this commonly studied case, consumption smoothing is not a

diagnostic test for household optimization. In addition, with no average taste shocks, the

covariance expressions in Lemma 4 are weakly positive and proportional to the mass of

optimizing households. This introduces some counter-intuitive properties. First, the average

change in consumption (entering retirement) will be exactly zero only when the fraction of

optimizing households is zero (since cov (�; c2) = cov
�
�; c2c1

�
= 0 if and only if �O = 0).

Second, with a positive share of optimizing households, the consumption drop at retirement

increases (since �O > 0 implies that cov (�; c2) > 0 and cov
�
�; c2c1

�
> 0). That is, not only

are consumption smoothing tests not conclusive for analyzing household optimization, but in

the commonly studied case of E [�] = 1; exact aggregate consumption smoothing is actually

inconsistent with the null hypothesis of household optimization.

However, the latter qualitative observation turns out to be quantitatively small in the

sense that (calibrated) variance in the taste shock (�) produces relatively little aggregate

decline in consumption. To see an example of the magnitude of this e¤ect, assume that all

agents are optimizers, have constant relative risk aversion, and that � = exp("��2=2); where
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" is distributed with a mean of zero and a variance of �2. Then we have

u0(c1) = �u
0(c2);

for all households, which implies that average consumption growth between working life (c1)

and retirement (c2) will be

E ln
c2
c1
= �

�2

2
:

If we assume that � = 0:25 and  = 2; then the average decline in consumption between

working life and retirement is 1.6%. To gain intuition for this calibration, a one-standard-

deviation realization causes a household to prefer a

ln
c2
c1
=
�� � �2=2



growth rate in consumption between working life and retirement. With � = 0:25; a one-

standard-deviation realization implies either an 11% desired growth rate in consumption or

a -14% desired growth rate in consumption, depending on the sign of the preference shock.

5 Identi�cation of Optimizers, Myopes, and Passives

While the average Euler equation and average consumption smoothing cannot generally reveal

the distribution of household types, tests that rely on other moments of households� economic

behavior do reveal the mass of optimizing and non-optimizing households.

Consider the cross-sectional distribution of savings. We characterize the distribution of

overall savings assuming that the distribution of taste shocks, F (�), is continuous.

The �rst type of test for household optimization relies on the cross section. One indicator

is bunching (excess mass) around the combined levels of forced and default savings, sF + sD.

A discrete jump in the savings� cumulative distribution function at this point identi�es the

mass of passive households.

Another type of test employs quasi-experiments and relies on behavioral responses to
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policy variations,9 which can be measured by changes in the distribution of savings (or by

household-level elasticities). First, if there are passive households, a change in the default

level of savings from sD to s0D will engender (new) bunching around sF + s
0
D. A di¤erent

measure for testing the same hypothesis is the change in average (or overall) savings. If all

households are optimizers, then a change in defaults will keep the distribution of savings,

and hence average savings, unchanged. Any change in average savings would reject the

hypothesis of perfect household optimization, and in our world, would reveal the share of

passive households.

Second, changes to the level of forced savings can shed light on the presence and fraction

of myopic households and of optimizing households. To see this, consider a change in the

level of mandatory savings and evaluate the change in the mass of households that continue

to save no more than the mandatory savings level, sF :

dPr(s = sF )

dsF
=

d

dsF
[�O � Pr(� 2 �(�c1)) + �M ] = �O �

dPr(� 2 �(�c1))

dsF
:

This change in the mass of households at the forced savings level is positive if and only if

there are optimizing households on the boundary. Indeed, if the observer knows the utility

function and the distribution of �; F (�); then the derivative dPr(�2�(�c1))
dsF

can be calculated.

Hence, in such a case, observing dPr(s=sF )
dsF

enables the econometrician to calculate the mass

of optimizing agents, �0: Once �0 is known, the econometrician can also calculate the mass

of myopes:

�M = Pr(s = sF )� �O � Pr(� 2 �(�c1)):

A related global test can be developed by studying average savings. Consider a decrease

in the forced savings level. If this engenders a one-for-one decline in average economy-wide

savings, then all households are either myopic or passive. However, if the decline is less than

one-for-one, then there is a strictly positive measure of optimizing households: parametric

assumptions on the utility function (and the distribution of taste shifters �) would be needed

9For instance, policy changes might arise as the government learns about the e¢cacy of new policies (e.g.,
the research that led to passage of the Pension Protection Act of 2006).
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to impute the population mass of optimizers.

The tests that we highlight here are derived from our positive model. However, the

broader point is that an analysis of cross-sectional distributions of economic outcomes and

how they change in response to variation in the economic environment can provide tests for

household optimization that are not confounded by the presence of a rational social planner.

6 Generalization as a Mechanism Design Problem

In this section, we show that the equilibrium of our model above (which has a restricted policy

space) exactly matches the equilibrium that arises when the government�s policy tools are

maximally generalized and the problem is treated as a mechanism design problem. To recap,

the problem posed in Sections 2 and 3 is to choose the two policy variables sF (mandatory

savings) and sD (additional default savings) to maximize the social planner�s objective

W
�
c1(�); c2(�); c

M
1 ; c

M
2 ; c

P

1 ; c
P
2

�
� �O

Z

�

[u1(c1(�); �) + �u2(c2(�); �)]dF (�)

+ �M

Z

�

[u1(c
M
1 ; �) + �u2(c

M
2 ; �)]dF (�)

+ �P

Z

�

[u1(c
P
1 ; �) + �u2(c

P
2 ; �)]dF (�); (10)

subject to the household behavioral models summarized in Section 2.

We can also study the generalized version of this problem using a mechanism design frame-

work. Now the planner chooses fc1(�)g�2�; fc2(�)g�2�; c
P
1 ; and c

P
2 to maximize equation

(10) subject to the within-household budget constraints,

c1(�) +
c2(�)

R
� y for all �; (11)

cM1 +
cM2
R
� y; (12)

cP1 +
cP2
R
� y; (13)
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incentive compatibility constraints for optimizers,

u1(c1(�); �) + �u2(c2(�); �) � u1(c1(�
0); �) + �u2(c2(�

0); �); 8 �; �0 (14)

u1(c1(�); �) + �u2(c2(�); �) � u1(c
P
1 ; �) + �u2(c

P
2 ; �); 8 � (15)

and a maximally impatient reporting rule for myopes,

cM1 = max

�
sup
�2�

c1(�); c
P
1

�
: (16)

We now summarize the mechanism design problem: the planner chooses fc1(�)g�2�;

fc2(�)g�2�; c
P
1 ; and c

P
2 to maximize the objective in equation (10), subject to the budget

constraints and incentive compatibility constraints in equations (11)-(16). In this mechanism

design problem, optimizers report their type (truthfully in equilibrium), myopes always report

the type that has the highest immediate consumption in the mechanism, and passives follow

the defaults cP1 and c
P
2 : With this set-up, we can now present our third proposition.

Proposition 3 (Characterization as a Mechanism Design Problem) The mechanism

design problem and the constrained problem (i.e., maximizing equation (10) by choosing ar-

guments sF and sD) generate the same equilibrium allocation.

This implies an immediate corollary.

Corollary 1 The mechanism design problem and the constrained problem (maximizing equa-

tion (10) by choosing arguments sF and sD) generate the same aggregate Euler equation:

E
�
u01(c1; �)

�
=�RE

�
u02(c2; �)

�
:

Accordingly, the institutional assumptions that are made in Section 2 are made without

loss of generality.

Proof (Characterization as a Mechanism Design Problem). We �rst show that

the (second-best) optimal allocation is characterized by a maximum consumption rule for
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optimizers, which we will de�ne after describing an unconstrained allocation. For every type

�; there exists a (full-information) unconstrained allocation, (c�1(�); c
�
2(�)), which satis�es

budget balance

c�2(�) = R(y � c
�
1(�));

and the �rst order condition

u0(c�1(�); �) = �Ru
0(c�2(�); �):

Next, consider a di¤erent allocation that assigns consumption (c1(�); c2(�)); for all � 2 �:

We now de�ne a maximum consumption rule.

De�nition: Consider an unconstrained allocation (c�1(�); c
�
2(�)); for all � 2 �. Now consider

an alternative allocation (c1(�); c2(�)); for all � 2 �: This alternative allocation is a �maximum

consumption rule� if and only if two conditions are both satis�ed:

(i) every type with c�1(�) � sup�2� c1(�) obtains c1(�) = c�1(�) and c2(�) = c�2(�) in the

allocation; and

(ii) every type with c�1(�) > sup�2� c1(�) obtains c1(�) = sup�2� c1(�) and c2(�) = R(y �

sup�2� c1(�)) in the allocation.

To prove that an optimal mechanism generates an allocation that is a maximum consump-

tion rule for optimizers, consider a candidate allocation given by fbc1(�)g�2�; fbc2(�)g�2�; bcM1 ;

bcM2 ; bcP1 ; and bcP2 that is incentive compatible (i.e., satisfying equations (11)-(16)), and is not a

maximum consumption rule for the optimizers. Because the candidate allocation is incentive

compatible, it follows that sup�2� bc1(�) � bcM1 and bcP1 � bcM1 :

Now perturb fbc1(�)g�2�; fbc2(�)g�2�; bcM1 ; bcM2 ; bcP1 ; and bcP2 in the following way. Let

�c1 = sup�2� bc1(�) and construct a new allocation such that (i) every optimizer with c�1(�) � �c1
obtains c1(�) = c

�
1(�) and c2(�) = c

�
2(�) in the mechanism; (ii) every optimizer with c

�
1(�) > �c1

achieves c1(�) = �c1 and c2(�) = R(y � �c1(�)) in the mechanism; and (iii) bcM1 ; bcM2 ; bcP1 ; and bcP2
stay the same.

Note that this new allocation is a maximum consumption rule for the optimizers. This
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new allocation is incentive compatible for optimizers and myopes: households either achieve

their �rst-best allocation or they obtain (�c1; R(y � �c1)), which is their most preferred con-

sumption pair in the set of all o¤ered consumption pairs (because of the concavity of u). The

new allocation improves welfare weakly for every agent compared to their welfare in the can-

didate allocation: agents that achieve their �rst-best allocation in the new allocation obtain

a weak improvement in welfare (because they are now at their unconstrained optimum), and

agents that obtain the maximum level of consumption obtain a weak improvement in welfare

(because they previously had bc1(�) � �c1 and they now also have an allocation that uses their

entire endowment). Because the original allocation was not a maximum consumption rule

for optimizers, the new allocation generates a strict improvement in welfare for at least one

type of optimizer.10

Hence, only allocations that are maximum consumption rules for optimizers can be solu-

tions to the mechanism design problem. It follows that the planner�s problem can be reduced

to the choice of a maximum consumption rule for optimizers � i.e., the choice of �c1 � and the

choice of cP1 (note that c
P
1 = cD1 ). By Lemma 2, the mechanism design problem (choosing

fc1(�)g�2�; fc2(�)g�2�; c
P
1 ; and c

P
2 to maximize the objective in equation (10) subject to

the budget constraints and incentive compatibility constraints in equations (11)-(16)) and

the constrained problem (maximizing equation (10) by choosing sF and sD) are isomorphic

optimization problems. Accordingly, they have the same equilibrium allocation. �

7 Related Empirical Literature

Our choice of the particular framework for illustrating our ideas � namely, consumption

dynamics over the life-cycle � is motivated by the tension between research that �nds relatively

smooth average life-cycle consumption dynamics (consistent with rational consumer behavior)

and research that �nds that individual households are highly sensitive to savings defaults

10There are two ways for an allocation to fail to be a maximum consumption rule. Either (i) there is a type
with c�1(�) � �c1; and that type fails to obtain c1(�) = c

�

1(�) and c2(�) = c
�

2(�) in the mechanism; or (ii) there
is a type with c�1(�) > �c1; and that type fails to obtain c1(�) = �c1 and c2(�) = R(y� �c1(�)) in the mechanism.
If case (i) applies, the type is made strictly better o¤ by construction. If case (ii) applies, the type is made
strictly better o¤ because u is strictly concave.
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(which is inconsistent with rational consumer behavior).

Analyzing life-cycle consumption dynamics, many papers �nd evidence that is consistent

with optimal retirement savings. For example, using a structural life-cycle analysis and

accounting for government transfers and Social Security bene�ts, Scholz et al. (2006) estimate

that less than twenty percent of households in the Health and Retirement Study under-save

for retirement. Moreover, Scholz et al. (2006) �nd that the wealth de�cits are generally

a small fraction of life-time wealth. Bernheim, Skinner, and Weinberg (2001) report that

expenditure on food drops at retirement, but Aguiar and Hurst (2005) report that the drop

in food expenditure at retirement is illusory, in the sense that caloric consumption and other

measures of meal quality do not change when households enter retirement.11 Studying overall

nondurable expenditure, Aguila et al. (2011) do not �nd a statistically signi�cant drop in

consumption at retirement.

Another body of research studies employer retirement savings plans, and shows that

automatic enrollment and other institutional nudges have a large e¤ect on household savings.

Many households do not deviate from the default contribution rate as well as the default asset

allocation, and are largely unresponsive to government- or employer-subsidies for retirement

savings contributions (Madrian and Shea 2001, Choi et al. 2004, Beshears et al. 2009, and

Chetty et al. 2014). A related body of research �nds that consumers have a high marginal

propensity to consume out of both anticipated and unanticipated windfalls (e.g., Soulelos

1999, Parker 1999, 2017, Stephens 2003, Stephens and Unayama 2011, Parker et al. 2013),

which is consistent with the existence of subpopulations of myopic (e.g., highly impatient)

and passive households.

Our model is consistent with these seemingly contradictory sets of �ndings. Our frame-

work explains why a population that is comprised of a mix of optimizing, passive, and myopic

households will have relatively smooth average consumption dynamics around retirement and

will satisfy an aggregate Euler equation. We show that a benevolent government will set pol-

11However, in a recent working paper, Stephens and Toohey (2018) revisit the analysis in Aguiar and Hurst
with a broader set of data sources and methodologies and report that caloric consumption does decline on
average around the time of retirement.

25



icy that elicits this aggregate (second-best) e¢ciency property, although signi�cant deviations

from optimality will arise at the level of individual households, including sensitivity to default

savings.

8 Conclusion

We study a simple setting that illustrates the interactions between optimizing social planners

and heterogeneous households, some of whom are optimizers, some of whom are myopic, and

some of whom are passive. In this setting, planner optimization is a partial substitute for

household optimization. This substitution arises because the social planner has the ability to

design institutions � e.g., default savings and Social Security � that in�uence the consumption

pro�les of households. In equilibrium, classical Euler equations hold on average in the cross-

section of households (but not for each household). These Euler equation properties arise

generally, whether or not households are optimizers.

These results imply that Euler equation tests and related consumption-smoothing tests �

e.g., the lack of an average drop in consumption at retirement � do not di¤erentiate between

an optimizing social planner and optimizing households. However, even in the economy that

we have studied, planner optimization is distinguishable, in principle, from household opti-

mization. Under the assumption of household optimization, the Euler equation will hold for

each household, but, with planner optimization (and without universal household optimiza-

tion), it will only hold on average in the cross section. Although household-by-household

tests are theoretically determinative, such �ne-grained analysis is practically problematic if

data are measured with noise or if some variables are unobservable (e.g., household-level

taste shocks). Still, other tests do distinguish between planner optimization and household

optimization. Exogenous changes in policy (e.g., a default change at the level of a �rm, or a

natural experiment in the Social Security system), reveal more about household rationality

than averages of observational data in the cross section.

Our conclusions depend upon the assumption that the government is a fully rational util-

itarian. It is likely that �esh-and-blood governments fall short of this benevolent benchmark,
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despite (or because of) the pressures that they face to get re-elected. This leads to a natural

follow-up question: how would our results change if the government is not utilitarian, but

is instead a self-interested political party? The answer depends on two key considerations:

what is the voting frequency of di¤erent types of households and to what degree do altruistic

motives in�uence voting? These are important extensions, which we leave for future research.
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9 Appendix

9.1 Proof of Lemma 1 (cD1 < �c1; i.e., sD > 0):

First, we break the planner�s problem down into two separable sub-problems. In the �rst

sub-problem, we solve for sF = y��c1 and ignore the passives. In the second sub-problem, we

solve for sF + sD (holding sF �xed from the �rst sub-problem) and ignore both the myopes

and the optimizers. This separation of the two problems is only admissible if the resulting

optima, sF and sD; satisfy an incentive compatibility (IC) constraint,

cD1 � �c1; (IC)

which can also be expressed as

y � sF � sD � y � sF :

This constraint follows from the constraint sD � 0 (equation (1)). At the end of this proof

we con�rm that an even stronger condition applies: sD > 0; which is the claim in the lemma.

To summarize our strategy, we characterize optimal policy for the myopes and optimizers

� the minimum savings level sF � without taking account of optimal policy for the passives.

Then we characterize optimal policy for the passives � the sum sF + sD � holding �xed the

policy parameter that in�uences the myopes and optimizers, sF . At the end of the analysis

we verify that the constraint sD � 0 is satis�ed at the solution.

In the separated problem, the optimal level of �c1 is given by the following Euler equation:

Z

�

�
�Ou

0
1(c1 (�) ; �)

dc1 (�)

d�c1
+ �Mu

0
1(c

M
1 ; �)

dcM1 (�)

d�c1

�
dF (�)

+ �

Z

�

�
�Ou

0
2(c2 (�) ; �)

dc2 (�)

d�c1
+�Mu

0
2(c

M
2 ;�)

dcM2
d�c1

�
dF (�) = 0:
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We can rearrange this by grouping together the optimizer terms and the myope terms:

�O

Z

�

�
u01(c1 (�) ; �)

dc1 (�)

d�c1
+ �u02(c2 (�) ; �)

dc2 (�)

d�c1

�
dF (�)

+ �M

Z

�

�
u01(c

M
1 ; �)

dcM1 (�)

d�c1
+ �u02(c

M
2 ; �)

dcM2
d�c1

�
dF (�) = 0:

Further simplifying, note that u01(c1 (�) ; �)
dc1(�)
d�c1

+ �u02(c2 (�) ; �)
dc2(�)
d�c1

= 0 for all � =2 �(�c1).

Consequently, we have

�O

Z

�2�(�c1)

�
u01(c1 (�) ;�)��Ru

0
2(c2 (�) ;�)

�
dF (�)

+ �M

Z

�

�
u01(c

M
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0
2(c

M
2 ;�)

�
dF (�) = 0:

Note that u01(c1 (�) ; �) � �Ru
0
2(c2 (�) ; �) > 0 for all � 2 �(�c1); where �(�c1) � � denotes

the set of � values that would induce an optimizer to be strictly constrained if period-one

consumption were bounded above by �c1. Therefore, for the leading case in which the mass

of optimizers is non-zero and the mass of myopes is non-zero, then

Z

�2�(�c1)

�
u01(c1 (�) ;�)��Ru

0
2(c2 (�) ;�)

�
dF (�) > 0;

and accordingly Z
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u01(c

M
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0
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M
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�
dF (�) < 0:
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At sD = 0;

dW

dsD
= �
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�
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u01(c

P
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0
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�
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> 0:

This shows that dW
dsD

> 0 at sD = 0. Because the optimization with respect to sD is globally

concave,12 it follows that sD > 0. This proves the lemma and con�rms that the IC constraint

is satis�ed by the solutions of the separated problems. �

12The second derivative of the objective is
Z

�

�
u
00

1 (y � sF � sD;�) + �R
2
u
00

2 (R(sF + sD);�)
�
dF (�) < 0;

implying that the objective is concave.
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