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1 Introduction 

Explaining individuals’ insurance decisions is a cornerstone of economic theory. Insurance 

choices helped motivate the concept of expected utility (Bernoulli, 1738) and remain among 

households’ most consequential decisions today. Insurance choices are also fertile ground for 

understanding risk preferences in the field as contract options mirror the well-defined financial 

lotteries used in experimental settings.  

This paper analyzes risk preferences implied by the small and large stakes flood insurance 

decisions of over 100,000 households in flood-prone areas of the United States. The insurance 

contract protects the residence against flood damage. Households make two choices along a 

continuum of potential losses: the deductible represents a small stakes decision and the coverage 

limit (i.e., the maximum an insurance claim would pay) a large stakes decision. While empirical 

research has focused on deductible choices, our data enable us to examine households’ 

preferences in choosing both a deductible and coverage limit. We consider two research 

questions.  

First, we examine whether households’ small and large stakes insurance decisions are 

characterized by similar risk preferences in a context that encourages making deductible and 

coverage choices in concert. Recent research shows that households’ deductible decisions can be 

difficult to reconcile with expected utility theory. For example, Sydnor (2010) finds that 

homeowners insurance deductibles indicate triple digit relative risk aversion. Rabin and Thaler 

(2001) attribute small stakes preferences to decision isolation, the tendency to evaluate outcomes 

narrowly rather than, as most applications of utility theory posit, in terms of the individual’s total 

wealth.2 For example, households’ risk preferences differ across insurance domains such as auto 

liability, auto comprehensive, and homeowners (Barseghyan, Prince, and Teitelbaum, 2011). In 

our setting, households’ choices are made in the context of a single premium payment to insure a 

single asset, their property, against a single hazard, flood damage. Do households’ risk 

preferences differ across their deductible and coverage limit choices in the same insurance 

contract?  

Second, we examine whether households’ large stakes insurance preferences align with 

expected utility theory. Even its critics often concede that while explaining small stakes 
                                                
2 They also identify loss aversion as an explanation. 
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decisions can be difficult for it, “expected utility theory certainly captures some of the intuition 

for risk aversion over very large stakes” (Rabin and Thaler, 2001, p. 224). Economists may 

justifiably embrace expected utility theory if it describes households’ most economically 

important choices. 

We model households as constant relative risk aversion (CRRA) expected utility maximizers 

and, using maximum likelihood estimation (MLE), identify the coefficient of relative risk 

aversion that best characterizes households’ deductible choices and the coefficient that best 

characterizes their coverage limit choices.3 We also allow relative risk aversion to differ across 

households, modeling it as a function of variables that have been shown to influence individuals’ 

risky decisions (e.g., recent severe events and proxies for wealth). 

We find that households’ small and large stakes flood insurance choices are difficult to 

explain with standard models of expected utility theory. These models predict that households 

would choose high deductibles and low coverage limits, but households tend to do neither. 

Instead, households’ low and high stakes decisions are characterized by different preferences. 

Households’ deductible decisions reflect a much higher coefficient of relative risk aversion than 

their coverage limit decisions. Modeling households as constant absolute risk aversion (CARA) 

expected utility maximizers yields a similar result. We also consider two theories intended to 

unify households’ preferences across small and large stakes; neither Chetty and Szeidl’s (2007) 

consumption commitments nor Holt and Laury’s (2002) explanation of expo-power utility seem 

to explain households’ preferences in our data. 

Like Sydnor (2010) and in the spirit of Rabin (2000), we find that households strongly 

prefer low deductibles, over 94 percent choose one of the two lowest deductible options. 

Explaining these small stakes preferences requires triple digit relative risk aversion, ! = 139 in 

our case where ! is the coefficient of relative risk aversion. 

Regarding high stakes insurance preferences, assuming that households are CRRA expected 

utility maximizers results in relative risk aversion estimates that align with other domains, but do 

not explain the coverage limit decisions well. Like Gourinchas and Parker (2002), Chetty (2006), 

Barro and Jin (2011) and others, we find single digit risk aversion when the stakes are high; 

households’ coverage limit preferences are best explained by ! = 2.7 . While this value of 
                                                
3 Wakker (2008) reports that CRRA utility is “the most widely used parametric family for fitting utility functions to 
data” (p.1329). 
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relative risk aversion is the MLE estimate, this model dramatically under-predicts households’ 

coverage limits: it under-predicts the average household coverage limit ratio (coverage relative to 

the home’s replacement cost) by 34 percentage points. These results hold even when allowing 

for heterogeneity in risk aversion across households: the heterogeneous model results in a 

distribution of relative risk aversion around the homogeneous model estimate (e.g., for the 

coverage limit, a median ! = 2.78 and a mean of 2.81). 

The problem with explaining households’ high stakes insurance preferences arises from a 

well-known theoretical result (Mossin, 1968): except under extreme risk aversion, individuals 

offered an insurance premium that is priced above the actuarially fair rate will partially insure 

(select a coverage limit that is smaller than their replacement cost in our context). Almost all (97 

percent) of the households in our data pay premiums that are above the actuarially fair rate, 

which is nearly always the case in insurance markets (e.g., because of administrative loads). 

Thus, theory predicts that none of these households would fully insure, but 77 percent do. 

We also assess whether households distort probabilities following rank dependent utility 

(Quiggin, 1982). Substantial evidence indicates that individuals’ decisions under risk are marked 

by misweighting and/or misperceiving the probability of an event (e.g., Preston and Baratta, 

1948; Prelec, 1998; Barseghyan et al., 2013). When allowing for probability distortions, we find 

small and large stakes preferences that are consistent with two of the tenants of prospect theory: 

households 1) overweight small probabilities, and 2) demonstrate diminishing sensitivity to 

losses (Kahneman and Tversky, 1979).4  

In the CRRA rank dependent utility model, households’ demand for insurance is explained 

by their overweighting of small probabilities. This model fits our data best among all the models 

that we assess (e.g., according to Vuong tests). On average CRRA rank dependent utility over-

predicts households’ coverage limit ratios by 2 percentage points. Despite its improvements in 

explaining households’ decisions, the CRRA rank dependent utility model continues to indicate 

that households’ choices are characterized by different preferences across small and large stakes. 

Low stakes preferences show much greater diminishing sensitivity to losses than high stakes 

                                                
4 Diminishing sensitivity to losses indicates that households perceive the difference between a $1,000 loss and 
$2,000 loss as greater than that between a $2,000 and $3,000 loss. Diminishing sensitivity to losses is contrary to the 
predictions of the standard expected utility of wealth model for a risk averse household. 
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preferences, and households overweight flood loss probabilities when choosing a deductible at 

almost twice the level they do when selecting a coverage limit.  

Our setting overcomes several constraints that typically challenge examining large stakes 

preferences with insurance data. First, a household’s maximum flood exposure is clearly defined. 

The potential maximum loss is limited by the value of the home structure, and the flood 

insurance program provides a specific estimate of that value to households during the application 

process. In many other cases, households may have difficulty assessing their maximum 

exposure, such as the healthcare costs associated with unanticipated illnesses. Second, 

households have greater flexibility in selecting a coverage limit than is typical of property 

insurance as the flood insurance program does not maintain a coinsurance clause. Third, the 

insurance covers a single hazard, flood. Other insurance products often cover several hazards, 

and households’ exposures may differ between these hazards, especially constraining the 

researcher’s ability to model rare, consequential outcomes. Finally, almost all (96 percent) of 

residential flood insurance policies in the U.S. are purchased through this program (Dixon et al., 

2006, p.19). All households that we study have the same deductible and contract limit choices 

and their premiums are priced using the same rules. This structure reduces the endogenous 

selection problems that can arise from studying the policies of private insurers whose pricing and 

contracts may differ from their competitors.5 

The rest of the paper proceeds as follows. Section 2 describes relevant research. Section 3 

describes the setting and data, households’ contract choices, and our structural approach to 

estimating households’ risk preferences. Section 4 provides our main results. Section 5 explores 

robustness and considers alternative explanations for these results. Section 6 concludes and 

discusses implications of our research. 

2 Relevant Research 

Recent risk preference estimates are typically derived from three broadly defined lines of 

research: 1) experiments and surveys, 2) major life decisions such as financial investing and 

                                                
5  Private property insurance, such as a homeowners’ policy normally includes a “coinsurance clause,” which 
requires that policyholders select a coverage limit of at least 80 percent of their property value to be fully reimbursed 
for damage above the deductible. A large amount of information on flood risk is publicly available, and our data 
provides detailed information on each insured property (e.g., the approximate likelihood of a claim, the presence of 
flood obstructing barriers, etc.). 
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labor supply, and 3) insurance decisions.6 Experiments are often characterized by strong internal 

validity and clearly defined choice sets, e.g., asking individuals to select a lottery among several 

alternatives. Harrison and Rutström (2008) discuss estimating risk aversion in laboratory settings 

and report many findings with single digit relative risk aversion (or smaller).7 Experiments also 

demonstrate that the participants’ preferences can be highly influenced by the choice 

environment as the same individual can demonstrate risk aversion or risk seeking depending on 

the task (Berg, Dickhaut, and McCabe, 2005; Hey, Morone, and Schmidt, 2009). 

A second literature has inferred risk aversion based on expected utility theory from 

individuals’ major decisions, for example, through consideration of the equity premium puzzle 

(e.g., Barro and Jin, 2011), consumption over the life cycle (Gourinchas and Parket, 2002), and 

labor supply (Chetty, 2006). These studies often assume a utility function such as CRRA then 

identify the risk aversion coefficient that best explains their data, typically finding relative risk 

aversion around 1 or a little higher (e.g., 3 for Barro and Jin, 2011). These choices are 

undoubtedly consequential, but involve more complex decisions than the clearly defined lotteries 

posed in experimental settings. For example, a households’ labor supply decision might include 

working more at the same job, taking a second job, working less to seek education, etc., and the 

choice set differs across households. Without the ability to identify a household’s choice set, it is 

difficult to assess how well derived risk aversion explains a household’s decision among its 

alternatives. 

Insurance contract choices represent a third alternative, which Cohen and Einav (2007) call 

“(almost) an ideal setting for estimating risk aversion” (p. 745). For example, Sydnor (2010) 

assesses homeowners’ insurance deductible choices using CRRA and CARA expected utility 

models. Over 80 percent of households select a low deductible, and he finds that their deductible 

decisions imply extremely high risk aversion (e.g., coefficients of relative risk aversion in the 

hundreds or thousands). He shows that cumulative prospect theory can more plausibly explain 

households’ choices.  
                                                
6 Barseghyan et al. (2015) provide an excellent overview of field research on risk preferences and discuss research 
on betting decisions as another important area. Several features of betting markets and preferences in this context 
(e.g., longshot bias) make them less relevant to our research and so we defer to their discussion on this topic. 

7 While a commonly expressed concern about laboratory settings is that they often examine small stakes decisions, 
several studies address this concern by increasing the stakes and showing similar preferences for more consequential 
decisions (e.g., Holt and Laury, 2002; see Harrison and List, 2004 for a discussion). 
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Our paper is closest methodologically to Barseghyan et al. (2013) who use McFadden’s 

(1974) random utility framework to analyze households’ home and auto deductible decisions. 

They find evidence of risk aversion and probability distortions in households’ choices. Our work 

complements theirs by analyzing both deductible and coverage limit decisions and examining 

model predictions in more detail. 

Baresghyan, Prince, and Teitelbaum (2011) and Einav et al. (2012) examine the extent to 

which households’ risky decisions are consistent across domains. Using households’ deductible 

choices for homeowners, auto liability, and auto comprehensive insurance, Barseghyan, Prince, 

and Teitelbaum (2011) reject the null hypothesis that households demonstrate consistent risk 

preferences. Households demonstrate greater risk aversion in home than in auto deductible 

choices. Einav et al. (2012) examine the insurance coverage (health, prescription drug, dental, 

and short-term and long-term disability) and 401(k) investment decisions of the employees of a 

large U.S.-based corporation. These decisions represent both smaller stakes (e.g., health 

insurance deductible) and larger stakes (e.g., long-term disability coverage) choices. They order 

individuals by the implied risk of each choice and find that individuals making relatively riskier 

decisions in one domain are more likely to do so in another (resulting in an average Spearman 

rank correlation of 0.19 across insurance coverages). We complement their research by 

examining two decisions along the continuum of a single loss distribution for each household. 

Risk preferences research has increasingly focused on heterogeneity in preferences. This 

research considers systematic differences across individuals (e.g., based on age, gender, 

nationality) and the distribution of risk aversion in a population. For example, Cohen and Einav 

(2007) examine individual’s auto deductibles selections and find a right-skewed distribution of 

risk preferences, estimating an average coefficient of absolute risk aversion of 0.0031 (median of 

0.000035). In another notable example, Harrison, Humphrey, and Verschoor (2010) estimate risk 

preferences from lab experiments in Ethiopia, India, and Uganda. Imposing CRRA expected 

utility, they find that a model assuming homogeneous preferences results in estimated relative 

risk aversion of around 0.5. Including covariates (e.g., nationality, age, gender) creates a right-

skewed distribution of risk preferences, though not to the degree of Cohen and Einav (2007), 

with both the mean and median between 0.5 and 0.6. We examine heterogeneity in preferences, 

evaluating how allowing risk aversion to vary across households affects our estimates of risk 

aversion and model predictions. 
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3 Methods 
3.1 Setting and Data 

Homeowners insurance in the U.S. typically does not cover flood risk; protection from flood can 

be purchased as a standalone contract from the federally-run National Flood Insurance Program 

(NFIP). We examine contracts that insure the house against flood.8 The U.S. federal government 

operates the NFIP through the Federal Emergency Management Agency (FEMA) and 

underwrites all insured risk. Households buy flood insurance from an authorized insurer or 

insurance agent who receives a commission intended to cover its origination and administrative 

costs. In 2013, the NFIP issued 5.6 million policies for a total insured value about $1.3 trillion. 

Our data include all policies for single-family dwellings from 2001 to 2009 insured by the 

NFIP and all its claims from 1982 to 2009, resulting in 16,349,345 policy observations and 

635,220 claims observations for these households.  We use these data to model flood risk for 

each policyholder, estimating the probability of a claim and the distribution of losses given a 

claim.  

3.1.1 Baseline Sample 

The dataset contains specific contract choices of households’ policies with claims between 2003 

and 2008.9 These data include the contract selected by the policyholder and the characteristics of 

the insured home needed to calculate premiums for any potential policy available to a household.  

The data also include the value and replacement cost of the insured property. A home’s 

property value is assessed onsite at the time of a claim and is used in measuring total flood 

damage to the home. Homeowners are provided an estimate of their replacement cost when they 

select an insurance policy. Replacement costs provide the amount needed to rebuild the current 

structure using similar materials and are assessed using insurance industry standards that account 

for a home’s characteristics including its building materials, size, and sales value (NFIP, 2006b, 

p. 4_175). Policyholders most commonly select a coverage limit that equals the home’s 

                                                
8 Additionally, households can purchase flood coverage for the contents of their homes, which we do not examine. 
Contents coverage has its own premium, deductible, and coverage limit. 
9 The policy and claim databases each contain some distinct variables that are important to estimating preferences, 
primarily related to modeling the flood risk, which we discuss in Section 3.1.2. We focus on these years because we 
can replicate households’ premiums using the program’s pricing formulas well during this time.  
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replacement cost. The replacement cost and property value are often similar; the average ratio of 

replacement cost to property value is 1.06, the median is 0.94. 

From 2003 to 2008, households experienced a consistent choice of deductible options 

ranging from $500, $1,000 up to $5,000, in $1,000 increments, and could purchase property 

coverage limits up to $250,000 in $100 increments. Because of this maximum coverage limit, we 

examine only homes with values up to $250,000 so that all households in the analyses could 

select a coverage limit to protect the full replacement cost of their home.10 We include only a 

policyholders’ first claim so that each insured household is represented once in the analysis. This 

restriction intends to reduce potential effects on contract selections of learning, which is not 

incorporated in standard utility models. The resulting baseline sample includes 103,080 

observations. 

FEMA manages flood maps that classify the risk of each home in broad terms. Households 

in the baseline sample reside in areas that FEMA estimates have at least a one percent annual 

flood risk probability but are not prone to coastal storm surge (FEMA designates this “Zone A”). 

This is by far the largest risk category in the program, accounting for 47 percent (or 2.1 million) 

of all policies for single-dwelling homes in 2012. In Section 5, we exploit distinct features of two 

other zones to examine the robustness of our baseline results: (1) homes with at least a one 

percent annual flood probability that are also vulnerable to storm surge, and (2) homes with less 

than a one percent annual flood probability. The flood insurance program also treats homes 

differently depending on whether they were built before or after flood maps were developed. We 

discuss specific differences below. The idea behind this distinction is that building standards may 

not have accounted for the vulnerability of at-risk homes before maps were developed, 

increasing the home’s expected flood losses. The baseline sample includes both homes that were 

built before and after flood maps were developed.  

3.1.2 Flood Risk 

We estimate households’ claim rates and loss distributions based on the characteristics of the 

home that the flood insurance program uses to set premium rates. Here, we provide an overview 

                                                
10 Ninety-five percent of all insuring households have home replacement costs of $250,000 or less during the studied 
time period, 2003 to 2008. 
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of our methodology for modeling flood risk and summary statistics on claim rates and loss 

distributions. Online Appendix A.1 offers a detailed explanation and additional modeling.  

The probability * of flood loss + comprises two elements, the probability of incurring a flood 

loss *(+ > 0) and given a flood loss, the probability of a specific loss * + + > 0  such that 

* + = * + > 0 * + + > 0 . 
We model the claim rate as an approximation of the probability that a policyholder incurs any 

flood loss. Unlike many other insurance products, flood insurance premiums in this program are 

not influenced by previous claims experience. Thus, while other forms of insurance create a 

disincentive to report small flood losses due to the potential that it will increase future premiums 

(Braun et al., 2006), this flood insurance motivates those who suffer flood losses to report even 

minor damage so that a professional adjuster can determine if damages exceed the deductible. 

For example, 2.5 percent of all flood insurance claims in our dataset are for losses less than the 

minimum deductible of $500. 

We estimate the likelihood of having a flood claim using a random effects panel logit model 

with policies and claims data from 2001 to 2009. We estimate separate models for homes built 

before and after federal flood maps were developed. We use detailed information regarding the 

insured home and its vulnerability as explanatory variables. Examples include the number of 

floors in the home, the presence of obstructions, and an assessment of actions taken by the 

community to reduce flood risk, and the elevation of the home.11  

Table 1 provides summary statistics; the estimated average annual flood claim probability is 

1.33 percent. We also estimate loss distributions for each household in the program. Using all 

flood claims from 1982 to 2009, we model losses as a percent of the property value and estimate 

their probability at each percentile.12 We find that losses are distributed log-normally and model 

the two parameters of this distribution, 0  and 1 , based on a households’ observable 

characteristics using an iterative MLE approach following Aitkin (1987) and Western and 

Bloome (2009). Table 1 also provides summary statistics for the loss distribution. The expected 

damage is 20.3 percent of the home’s value; however, the median damage is 9 percent.  

                                                
11 Home-level elevation information is available for approximately 40 percent of homes in the baseline sample. Our 
flood models include home-level elevation when it is available. 

12 As described in Section 3.1.1, damages are assessed by the flood insurance program in terms of property value. 
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Table 1. Policy Summary Statistics 

   Percentiles 

 Mean St. Dev. 1% 10% 50% 90% 99% 
Claim Rate 1.33% 0.56% 0.29% 0.70% 1.33% 1.56% 3.24% 
Loss Given a Claim 20.3% 26.0% 0.4% 1.5% 9% 59% 100% 
Premium ($) 540 326 147 219 490 932 1675 
Load 3.22 2.84 0.76 1.37 2.69 5.25 12.17 
Property Value ($) 112,387 51,138 16,399 51,325 105,325 186,335 242,196 
Replacement Cost ($) 107,177 57,779 13,300 41,000 96,300 195,000 250,000 

Note: “Loss given a claim” reports the median loss as a percent of a home’s property value for each percentile 
across policyholders. Load describes a contract’s ratio of premiums to expected payouts. Replacement cost provides 
the amount needed to rebuild the current structure using similar materials. We derive these claim rate and loss 
estimates from our flood models described in Section 3.1.2. Baseline sample of 103,080 policies. 

 

We compare this parametric approach, which allows for estimating the loss distribution of 

each household, to several nonparametric strategies in Online Appendix A.1.2. The distribution 

of potential property losses is influenced by the type of event that occurs; events that affect many 

households (e.g., a severe storm) result in larger expected losses for each household. We account 

for this process in our parametric models with fixed effects that group events by the number of 

claims associated with an event and, in our nonparametric models, by weighing observations 

using the number of claims for the event. Figure 1 illustrates, showing a parametric, weighted 

nonparametric, and unweighted nonparametric loss distribution for households in the baseline 

sample whose homes were built before flood maps were developed. The parametric distribution 

uses the median parameter values of 0 and 1 for these households, and tends to fall between the 

weighted and unweighted nonparametric distributions. We use the probability estimates from the 

parametric approach in our risk preferences models. Our estimates of risk are quite similar to 

those of Kousky and Michel-Kerjan (2015) who report on the flood insurance program using a 

longer time series, policies from 1980 to 2012.13  

                                                
13 They find an average annual claim rate of 1.45 percent whereas we estimate 1.33. Regarding loss distribution 
estimates, we include our corresponding estimate in brackets in the following excerpt from their paper: “half of 
claims [55 percent] are for less than 10 percent of the value of the building, roughly 15 percent [10 percent] of 
claims exceed 50 percent of the building’s value, and approximately 7 percent [6 percent] exceed 75 percent of 
building value” (p.13). 
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Figure 1 Distribution of Losses Given a Claim 

Note: Loss distribution estimates for households in the baseline sample whose homes were built before flood maps 
were developed. The squares and triangles show flood loss distributions at the aggregate level in our data. The 
squares weight all observations equally. The triangles weight observations by the severity of the event. Events that 
affect many households (e.g., a severe storm) result in larger expected losses for each household. We estimate the 
parameters of the log-normal distribution for each household using the households’ characteristics and fixed effects 
that account for event severity. The circles in the figure show the log-normal distribution using the median 
parameter estimates, 0 = −2.49 and 1 = 1.40, for these households.  

3.1.3 Insurance Premiums 

The formula used by the flood insurance program that determines premiums 4 for home 5 in 

community 6 is 

47 = min ;7, 50,000 >?,7 + max ;7 − 50,000, 0 >C,7	 	E7 + F?,7 GHIJ + FC,7.				(1) 

Households’ choices affect premiums through the household’s selected coverage limit ;7 and a 

multiplier E7 ∈ [0.75, 1.10] that depends on the selected deductible, with smaller multipliers for 

larger deductibles (e.g., a household choosing between a $1,000 and $5,000 deductible may have 

E  = 1.0 versus E  = 0.785, respectively). The characteristics of the home (e.g., its elevation 

relative to the 100-year flood plain) determine the coverage rate:  >?,7 is the rate per dollar of 

coverage limit on the first $50,000 of coverage limit (mean = 0.0072, s.d. = 0.00355); >C,7 is the 

rate for coverage limits in excess of $50,000 (mean = 0.0030, s.d. = 0.00249). These parameters 
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differ, among other reasons, depending on whether a home was built before federal flood maps 

were developed for its location. For example, premiums for homes built before the flood maps 

do not penalize low-lying properties to the extent that they do for homes built afterward. 

Parameter F?,7 addresses the cost of bringing a flood-damaged home up to current building codes 

(mean = 44.75, s.d. = 29.59). Actions taken by the community to reduce flood vulnerability can 

reduce households’ premiums through a FEMA program called the “Community Rating 

System,” GHIJ ∈ [0.65, 1].14 Finally,  FC,7 ∈ {30, 35} is a policy administration fee. The flood 

insurance program provides tables to calculate a policyholder’s parameters (e.g., >? and >C) for 

the premium calculation (Equation 1; NFIP, 2006a). We calculated premiums manually from 

these formulas to confirm that all the policies in our data were priced using this structure. 

Table 2 provides an illustrative pricing menu. For convenience, we have shown a subset of 

coverage limits. Each cell shows the median premium that a household would pay if it chose that 

deductible and coverage limit combination. For example, the median annual premium is $593 for 

a contract with a $1,000 deductible and $100,000 coverage limit.  

Table 1 includes statistics on contract loads, the ratio of a contract’s premium (determined 

by the NFIP) relative to its expected payout (determined by our flood models). Ninety-seven 

percent of policyholders in our baseline sample have a load greater than 1 (i.e., above the 

“actuarially fair” rate), suggesting that if they are expected utility maximizers, these households 

are risk averse. The median contract load in our baseline sample is 2.7.15 Loads in our baseline 

sample tend to be higher than that for the program. We only examine a household’s contract 

choices at the time of its first claim, excluding the policy afterward and so reducing the influence 

                                                
14 Community actions include maintaining and disseminating flood maps of the community, preventing building in 
floodplains, developing flood warning systems, improving community drainage systems, etc. (see FEMA, 2015). 

15  Several common misperceptions about the program (e.g., that the average participating household pays 
actuarially advantageous rates) motivate a brief discussion of its pricing. Like private insurance markets, the flood 
insurance program includes expense loads to cover program and insurance agent costs; however, the program differs 
from private insurance pricing in two significant ways. First, flood premiums do not include capital costs (e.g., 
reinsurance and reserving due to uncertainty about the underlying risk). Instead, the NFIP sets premiums so that, net 
of expense loads, collected premiums will cover losses in the “average historical loss year.” In years when losses 
exceed the program’s accrued earnings, the NFIP borrows from the U.S. Treasury. Second, premium ratings are less 
sensitive to risk than those a private insurer would likely charge, e.g., due to grandfathering for homes built before 
flood maps were developed. The program’s rules have resulted in substantial cross-subsidization (discussed below 
and in Kousky and Shabman, 2014). 
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of properties with frequent losses on our load statistics.16 Also, loads in our baseline sample are 

within the range that previous research identifies for sub-populations in the program. For 

example, Michel-Kerjan (2010) examines the ratio of NFIP premiums collected to claims paid by 

state over the period 1978 to 2008 (in 2008 dollars). The ratio varies substantially by state with a 

maximum of 15.1 in Colorado and minimum of 0.2 in Mississippi. Finally, loads in our baseline 

sample are within the range of some private catastrophe insurance markets. For example, 

Kunreuther et al. (1995) survey insurance underwriters regarding loads for a hypothetical 

catastrophe insurance contract. The geometric mean of their loads ranges from 1.6 to 3.4 

depending on the level of uncertainty about the risk (the geometric mean for our baseline sample 

is 2.7). For uncertain liability risks, they find a geometric mean load over 5.5. 

Table 2 Illustrative Pricing Menu 

  Coverage Limit ($) 
  25,000 50,000 75,000 100,000 150,000 200,000 250,000 

D
ed

uc
tib

le
 ($

) 

500 286 474 558 642 810 979 1,139 
1,000 269 440 516 593 746 899 1,045 
2,000 257 417 489 560 703 846 984 
3,000 249 400 468 536 671 806 937 
4,000 240 383 447 511 639 766 890 
5,000 232 366 426 486 606 726 843 

 
Note: Menu provides median premium values for the households in the baseline sample for different 
deductible and coverage limit combinations. The table shows the six deductible options. Households may 
select a coverage limit of up to $250,000 with choices in $100 increments. 
 

3.2 Households’ Contract Choices 

Households overwhelmingly select low deductibles for their flood insurance, as shown in Table 

3. Ninety-four percent of households selected one of the two lowest deductible choices available. 

The flood insurance program has two default deductible options, depending on whether the 

insured home was built before federal flood maps were developed for its location. Those built 

before the maps typically have a default deductible of $1,000 while those built afterward have a 

                                                
16 The U.S. Government Accountability Office (GAO, 2006) estimates that one percent of the properties insured 
“account for 25 to 30 percent of all claims losses.” Our baseline sample also differs in that it is limited to homes in 
Zone A and valued at $250,000 or less (the maximum allowable coverage limit in the program, Section 3.1.1). Both 
criteria may lead to different contract loads in the baseline sample than those for the entire program. 
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$500 default deductible. All households in our data are free to choose any of the six available 

options in the deductible menu, regardless of their default.17  

Seventy-two percent of households with a $1,000 default keep this deductible, 19 percent 

select the $500, and about 9 percent choose a higher deductible. Eighty-two percent of 

households with a $500 default keep this deductible, 15 percent select the $1,000 deductible, and 

3 percent choose a higher deductible. Previous research identifies that menu defaults influence 

consumers’ choices (Thaler and Benartzi, 2004); however, the flood insurance program might 

judiciously select its menu defaults as part of a differentiated marketing strategy. We explore the 

effects of deductible defaults in two ways. First, in Section 4.1.3, we estimate households’ risk 

aversion and include their menu default as an explanatory variable to assess its effect on our 

estimates. Second, discussed in Section 5, we re-estimate our main results using only households 

who selected a deductible that differed from their menu defaults. 

Figure 2 shows the coverage limits selected as a proportion of the home’s replacement cost 

separately for households selecting the $500, $1,000, and $5,000 deductibles. Ninety-eight 

percent of our sample chooses one of these deductible options. Three aspects of this figure are 

noteworthy. First, households most commonly select a coverage limit equal to their replacement 

cost; 42 percent of all policyholders do this.  

Second, households who select a higher deductible are more likely to select lower coverage 

limits, with a Spearman rank correlation ! = −0.14, 4 < 0.01.18 This pattern could be explained 

by risk aversion: when premiums are above actuarially fair rates, less risk averse households 

purchase higher deductibles and lower coverage limits than more risk averse households. 

Third, about a third of households select a coverage limit that is more than the replacement 

cost, which is surprising as they cannot receive a payment greater than this amount. Mossin 

(1968) predicts this behavior: “there may be some uncertainty as to what will be the actual 

evaluation of the property in case of damage. We have not taken this kind of randomness into 

account in our theory, but it seems a perfectly reasonable hypothesis that it will lead to a number 

                                                
17 In practice, E = 1 for the default deductible ($1,000 for homes built before flood maps, and $500 for homes built 
afterward) in the premium calculation (Equation 1) and so serves as the reference for the pricing tables. 

18 This correlation across choices is similar in magnitude to that found by Einav et al. (2012) who examine 
individuals’ decisions for several types of insurance coverage and 401(k) investments. 
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of observed cases of full (or over-) insurance” (p. 558). 19  Consequently, we conclude that 

households who insure at or above the replacement cost of their home intend to fully insure. In 

Online Appendix A.3.7, we exclude households that over-insure and retest our models, finding 

that their exclusion does not qualitatively change our main findings. 

Table 3. Policyholder Deductible Selection 
 

Deductible $500 $1,000 $2,000 $3,000 $4,000 $5,000 
Policyholders (%) 46.6 47.4 1.4 0.5 0.2 3.8 

 
Note: Baseline sample of 103,080 policies. 

 

                                                
19 In our data, households whose property values are higher than their replacement cost are almost twice as likely to 
over-insure. Forty three percent of households who did not over-insure have a property value that is greater than the 
replacement cost while 72 percent of over-insurers do. These households may approach the insurance decision with 
an estimate of their property value, receive from their insurance agent a lower replacement cost, and buy a coverage 
limit above the replacement cost to make certain that their coverage is sufficient. 
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Figure 2 Household Coverage Limit Selections 

Note: The figure provides household coverage limit selections as a proportion of the replacement costs of their 
homes separately for households selecting the $500, $1,000, and $5,000 deductibles. Ninety-eight percent of our 
sample chooses one of these deductible options. Households cannot receive an insurance payout that exceeds their 
replacement cost. Baseline sample of 103,080 policies. 

Table 4 compares several characteristics of insured homes across the most common 

deductible choices and divides coverage limits into households that select coverage limits less 

than their replacement cost (“Partial”), at the replacement cost (“Full”), and above the 

replacement cost (“Over”). For example, it shows that households choosing the $5,000 

deductible tend to have higher claim rates, higher premiums, higher contract loads, homes at 

lower elevation, older homes, and homes that were built before flood maps were developed. 

Regarding coverage limits, the table shows that partially insuring households tend to have homes 

at lower elevation, with lower property values, and that were built before flood maps were 

developed.  
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Table 4 Contract Choices and Descriptive Statistics 

  Deductible  Coverage Limit 

  $500 $1,000 $5,000  Partial Full Over 

Claim rate Median 0.011 0.013 0.014  0.014 0.012 0.013 

 Mean 0.012 0.014 0.015  0.015 0.013 0.013 

 S.D. 0.006 0.005 0.005  0.0052 0.0057 0.0056 
Premium ($) Median 372 558 611  470 492 503 

 Mean 431 625 696  504 543 560 

 S.D. 262 334 391  286 329 344 
Load Median 2.43 2.87 2.96  2.46 2.64 2.97 

 Mean 3.03 3.35 3.64  2.78 3.07 3.67 

 S.D. 2.93 2.55 3.67  1.84 2.25 3.79 
Property Value ($) Median 111,600 99,170 109,400  91,730 106,700 113,700 

 Mean 118,000 106,100 115,800  98,280 113,300 120,300 

 S.D. 51,559 49,976 50,091  45,593 52,509 50,961 

Property value / 
Replacement cost 

Median 1.09 1.06 0.89  0.95 1.03 1.25 
Mean 1.25 1.31 1.02  1.07 1.20 1.48 

 S.D. 0.82 1.01 0.69  0.62 0.85 1.10 
Age of home (years) Median 29 40 48  41 34 34 

 Mean 30 44 50  45 36 36 

 S.D. 18.7 19.5 24.2  22.6 19.8 19.4 
Elevation (feet) Median 1 1 0  1 1 1 

 Mean 1.4 1.1 0.6  0.9 1.3 1.5 

 S.D. 5.5 3.0 3.1  5.4 3.2 6.5 
Default deductible         
$500  82% 15% 1%   13% 44% 43% 
$1000  19% 72% 6%   29% 41% 30% 

Note: Characteristics of the insured home and households’ deductible and coverage limit selections. For the 
deductible, we show the three most commonly selected deductibles. For coverage limits, we divide households into 
those that select coverage limits less than their replacement cost (“Partial”), at the replacement cost (“Full”), and 
above the replacement cost (“Over”). Load describes a contract’s ratio of premiums to expected payouts. Elevation 
is relative to the 100-year flood plain. Baseline sample of 103,080 policies. 

3.3 Modeling Households’ Preferences 

Our analyses of risk preferences begin with expected utility models but expand to include rank 

dependent probability distortions. Here, we present the more general approach with a probability 

weighting function, which nests the case in which probabilities are treated objectively (i.e., they 

are not distorted). We assume that households’ deductible and coverage limit decisions are 

characterized by the weighted utility function 
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R ;, S, +, 4, T; ! V(* + ; W) 		S+					(2) 

where R represents the household utility function; ; an insurance coverage limit; S deductible; 4 

premiums; T wealth; + flood losses, which occur with probability * and are weighted following 

function V. The focus of our analysis is estimating risk aversion coefficient ! and, for rank 

dependent utility models (discussed further in Section 4.2), probability distortion parameters W 

using households’ deductible and coverage limit decisions. 

As we describe in Section 3.1.1, our data include households’ deductible and coverage limits 

choices and the pricing schedule that allows us to determine the premium for any combination of 

deductible and coverage limit. We estimate flood loss probabilities from the program’s claims 

database. In Equation 2, we apply these probability distributions to a households’ replacement 

cost (i.e., + describes flood losses in terms of a household’s cost to address them).20 Finally, we 

do not directly observe a household’s wealth, but assume that it equals the home’s replacement 

cost. We test our results with other wealth assumptions including using the property value as 

wealth (Section 5). 

3.3.1 Insurance Decisions 

We allow for households to treat their deductible and coverage limit choices as separate 

decisions, but assume that households observe their coverage limit decision when selecting a 

deductible, and vice versa. This approach is a type of marginal analysis and allows for risk 

attitudes to differ across deductible and coverage limit decisions; however, if households’ 

preferences are similar for these decisions, it will lead to similar parameter values for each 

choice. The household deductible selection problem is thus 

maxS∈ S1,S2,..,SX
R T − 4 S − + V +

Y

Z
+ R T − 4 S − S V + + R T − 4 S − S − + + ;∗ V +

\

\∗
			S+

\∗

Y
			(3) 

where S is the deductible, ;∗ the coverage limit the household selects, ; is the total replacement 

cost, 4 the premium, +  losses with + ∈ [0, ;], and V(+) the household’s transformation of loss 

probabilities. The first integrand accounts for flood losses less than the deductible, the second 

                                                
20 The implicit assumption we make is that if a home is damaged by flood, the household will replace what was 
damaged. An alternative would be to measure losses in terms of the property value instead of the replacement cost. 
This modeling choice regarding losses seems to align with households’ decisions as households most commonly 
select a coverage limit that equals their replacement cost (Section 3.2). 
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accounts for losses above the deductible but less than the coverage limit, and the third accounts 

for losses greater than the coverage limit selected by the household. Similarly, the households’ 

coverage limit decision is 

max
;∈[;,;]

R T − 4 ; − + V +
Y∗

Z

+ R T − 4 ; − S∗ V + + R T − 4 ; − S∗ − + + ; V +
\

\
			S+

\

Y∗
		(4) 

where S∗is the deductible that the household selects. In Section 4.1.2, we also examine the joint 

optimization problem in which households select among all possible combinations of the 

deductible and coverage limit. 

max
Y∈ Y],Y^,…,Y` ,;∈[;,;]

R T − 4 ; − + V +
Y

Z

+ R T − 4 ; − S V + + R T − 4 ; − S − + + ; V +
\

\
			S+

\

Y
					(5)		 

In the random utility model (Section 3.3.2), which estimates the model parameters that explain 

households’ decisions, this problem results in a single risk aversion coefficient, accounting for 

both contract choices.  

3.3.2 Estimation 

Our estimation approach builds on those pioneered by Camerer and Ho (1994) and Hey and 

Orme (1994) who adopt a random utility framework (McFadden, 1974) and fit value function 

parameters using maximum likelihood estimation.21 For household 5, let 

a7 6; b 	≡ 	R7 6; b + d7J 

where R represents the household probability-weighted value function, 6 ∈ e a specific contract 

among a set of insurance contracts, f vector of value function parameters such as relative risk 

aversion and probability weights for rank dependent utility models, and d7J  an i.i.d. error 

                                                
21 Barseghyan et al. (2013) provide a set of proofs showing that this framework allows for disentangling risk 
preferences and probability distortions from insurance purchase decisions (p. 2,510). The intuition behind this 
identification strategy is that households’ selections across a menu of insurance contract options (e.g., more than two 
deductible options) allows for differentiation between curvature in the value function and probability distortions if 
the data include both exogenous variation in the risk of loss and premiums. Our data include this variation (Section 
3.1). 
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component, which is assumed to be distributed type 1 extreme value with scale parameter 1. The 

probability that a household chooses contract	6 is thus 

47J =
exp	(a7(6; b)/1)
exp(a7 6j; b /1)Jk∈l

.										(6) 

Our estimation strategy solves the problem 

argmax	
b,o

ℒ = q7J ln 47J
l

Js?

t

7s?
 

where ℒ  is the log-likelihood function and q7J = 1  if household 5  chooses contract 6  and 0 

otherwise (Cameron and Trivedi, 2005). We model households’ deductible choices using the six 

available options: $500, $1,000, $2,000…$5,000. We model households’ coverage limits from 

$10,000 to $250,000 in $10,000 increments, rounding households’ choices and assumed wealth 

to the nearest $10,000.22 

4 Results 

We examine households’ small and large stakes decisions in the context of expected utility and 

rank dependent utility models. We use CRRA utility because of its prevalence (Wakker, 2008) 

and previous research indicating that risk preferences are approximately proportional in wealth 

(e.g., Friend and Blume, 1975; Szpiro, 1986), but we also examine CARA and expo-power 

utility functions (discussed in Section 5). Our primary analyses consider what coefficient of 

relative risk aversion best characterizes a decision in our data using MLE in the random utility 

model described in Section 3.3.2 and how well each model explains households’ choices.  

We report several measures to compare models, the log likelihood, the Akaike information 

criterion (AIC), and Bayesian information criterion (BIC). The latter measures penalize models 

with more parameters.23 We also use Vuong (1989) tests for comparing non-nested models and 

hypothesis testing. 

                                                
22 We alternatively examined households’ coverage limits in increments of $1,000 in our baseline sample and 
derived similar risk preferences to those estimated using the $10,000 increments. We implement the maximum 
likelihood estimation in R using differential evolution algorithms for the optimization (Ardia et al., 2016; Price, 
Storn, and Lampinen, 2006). 

23 Comparisons of model predictions and actual choices (e.g., the percent correctly predicted) are not a suitable 
goodness-of-fit statistic in this context as random utility models are probabalistic (see Train, 2009, p. 69). As 
an example, suppose that Model 2 is nested in Model 1 and fit the data better (e.g., it has a lower BIC). These 
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4.1 Expected Utility Theory 
4.1.1 CRRA, Canonical Model 

We model households as expected utility maximizers with CRRA utility 

R u =
1

1 − ! u
?vw							! ≠ 1

ln u 																	! = 1
																	(7)	

y. z. , u > 0 

where ! is the Arrow-Pratt coefficient of relative risk aversion. We assume that households’ 

initial wealth is their home’s replacement cost, and impose a minimum such that final wealth 

never falls below $1. We consider alternative wealth assumptions in Section 5. We begin with a 

coefficient of relative risk aversion ! = 1 as a canonical value from previous research (Arrow, 

1971; Chetty, 2006; Gourinchas and Parker, 2002) and examine different values in the following 

subsections. 

The canonical model, CRRA expected utility with ! = 1, predicts that households would 

insure much less of their risk than they do. Figure 3 provides households’ deductible and 

coverage limit selections and those predicted by our models. “Actual” is the distribution of 

households’ choices and “EUT CRRA, ! = 1” describes the predictions of the standard model. 

For the deductible, the model predicts that 92 percent of households would select the highest 

deductible ($5,000) while more than 90 percent select one of the lowest two deductible options 

($500 and $1,000). In total, the model correctly predicts the deductibles selected by 8 percent of 

households. For the coverage limit, the model predicts that 85 percent of households would 

select a coverage limit of less than half of their replacement cost while only about 5 percent do.24  

                                                                                                                                                       
models may predict the same choices. For example, suppose that household 5 selects the $500 deductible, which the 
Model 1 estimates has a 5 percent probability and Model 2 estimates has a 10 percent probability. Model 2 would 
explain this observation better despite the conclusion of both models that the household is unlikely to select this 
deductible. 

24 The low predicted coverage limits result from the contract loads. Premiums are greater than the expected loss for 
almost all households (Section 3.1.3). A risk averse household will tend to prefer increasingly larger deductibles as 
contract loads increase, reducing coverage for moderate stakes but maintaining it for large stakes. However, given 
the available contract options, the only way that households can reduce their insurance after selecting the $5,000 
deductible is by selecting a lower coverage limit, leading to the coverage limit predictions of the canonical model. 

In the next subsections, we examine households’ decisions using MLE and several utility model specifications. 
Here, we consider the potential welfare implications of households’ deviations from the canonical model. Chetty 
(2015) contrasts an individual’s “decision utility” (factors guiding households’ choices) and “experienced utility” 
(the hedonic realization of its choices), concepts originally introduced by Kahneman, Wakker and Sarin (1997). He 
posits that households’ experienced utility may follow the canonical model even when their decision utility does not. 
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Table 5 Model Results, Maximum Likelihood Estimation 

 
 ! {Z {? 1 

Log 
Likelihood AIC BIC 

EUT CRRA Deductible 139 
  

0.377 -168,942 168,946 337,907 

  (0.85) 
  

(0.0031) 
    Coverage Limit 2.72 

  
0.191 -299,923 299,927 599,869 

 (0.0068) 
  

(0.0012) 
   EUT CRRA,  

heterogeneous  

Deductible  
Mean 113   0.310 -164,935 164,973 330,090 

Median 108   (0.002)    

 Coverage Limit 
Mean 2.81   0.184 -297.756 297,794 595,730 

 Median 2.78    (0.001)    
RDU Yaari Deductible 

 
0.175 5.80 0.023 -104,378 104,384 208,791 

  
 

(0.0007) (0.041) (0.00032) 
    Coverage Limit  

0.120 1.49 0.00711 -245,684 245,690 491,403 

  
(0.00048) (0.024) (0.000031) 

   RDU CRRA Deductible -3.05 0.0378 4.77 0.181 -103,880 103,888 207,806 

  (0.04) (0.00031) (0.022) (0.00072) 
    Coverage Limit -0.767 0.00774 3.64 0.125 -244,469 244,477 488,984 

 (0.0088) (0.000034) (0.027) (0.00049) 
   Note: Standard errors are in parentheses. Table compares utility models describing households’ deductible and 

coverage limit decisions, comparing outcomes using the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC). For the AIC and BIC, lower values indicate better fit. The models use maximum 
likelihood estimation to fit model parameters. The parameter 1  describes the scale of model errors, following 
Equation 6. Parameters W  show probability distortions Ω = {Z + {?Π  where Π  is the cumulative objective 
probability. The EUT CRRA heterogeneous model estimates risk aversion as a function of the household’s 
characteristics. Yaari (1987) proposes a model in which individuals are risk neutral but distort probabilities. We 
allow for probability distortions using rank dependent utility (RDU, Quiggin, 1982). Expected utility theory (EUT) 
assumes that households weight outcomes based on their objective probabilities and so these models fix {Z = 0 and 
{? = 1. Positive values for {Z and {? > 1 indicate overweighting of the small probabilities in our data. Negative 
values for the coefficient of relative risk aversion ! indicate diminishing sensitivity to losses. In the table, if a 
parameter is missing it is assumed to take the following value, ! = 0, {Z = 0, {? = 1. Baseline sample of 103,080 
policies. 

                                                                                                                                                       
If so, then households’ deviations from the canonical model have welfare implications. Let households’ experienced 
utility be CRRA expected utility with ! = 1, 67 represent the contract choice of household i, and 67∗ the optimum in 
the canonical model. We identify the compensation F7 required to equate the experienced utility of the household’s 
choice with that of the optimal choice,	~R(67 + F7) = ~R(67∗). This calculation provides a dollar value for the 
expected utility loss of deviating from the canonical model. Average compensation F for the deductible model is 
$62, which is 13 percent on average of a household’s optimal premium. Average compensation F	is $189 for the 
coverage limit, which is 95 percent on average of the optimal. The reported percent calculation is mean F7/47∗  = 
0.95 where 4∗  is the optimal premium. The expected utility cost of households’ deviations from the optimal 
coverage limit is almost as large as the total premium for that contract. Also, the expected utility losses from 
households’ coverage limit choices are three times larger than those of the deductible. 
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Panel A. Deductible Predictions 

 

Panel B. Coverage Limit Predictions 

Figure 3 Model Predictions 

Note: The graphs compare households’ contract decisions (“Actual”) with the predictions of several utility models. Panel A shows deductible predictions. For 
ease of illustration, it only shows the three most frequently chosen deductibles ($500, $1,000, $5,000), which are selected by 98 percent of households. Panel B 
shows coverage limit ratios, the proportion of the coverage limit to the home’s replacement cost, imposing a maximum ratio value of 1. “EUT CRRA, !	= 1” 
uses a relative risk aversion coefficient commonly derived in previous research. The remaining models use maximum likelihood estimation to fit model 
parameters. The parameter values are shown in Table 5. “EUT CRRA” models households as CRRA expected utility maximizers. “EUT CRRA, heterogeneous” 
models estimates a household risk aversion as a function of the household’s characteristics.  “RDU Yaari” models households as risk neutral, rank dependent 
utility maximizers; and “RDU CRRA” as CRRA rank dependent utility maximizers. Baseline sample of 103,080 policies. 
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4.1.2 CRRA, Maximum Likelihood Estimation 

Next, we use MLE to identify the risk aversion coefficients that characterize households’ 

preferences for deductibles and coverage limits, labeled “EUT CRRA” in the figures and Table 

5. The EUT CRRA deductible model correctly describes 47 percent of households’ deductible 

selections. It correctly describes the selections of 60 percent of households choosing the $500 

deductible, 38 percent of those choosing the $1,000 deductible, but only 0.3 percent of those 

choosing the $5,000 deductible. 

The coefficient of relative risk aversion for the EUT CRRA deductible model is ! = 139. 

Like Sydnor (2010), we find three-digit relative risk aversion from households’ insurance 

deductible choice. Our risk aversion estimate from the EUT CRRA coverage limit model is 

much lower, ! = 2.7, and more consistent with estimates found in other domains. For example, 

Barro and Jin (2011) estimate ! = 3 in their analyses of equity premiums. Unfortunately, the 

descriptive power of the EUT CRRA coverage limit model is quite poor. For example, the model 

indicates that only 10 percent of households would insure at least 90 percent of their replacement 

cost, but 83 percent do. On average, this model under-predicts households’ coverage limit ratios 

by 34 percentage points (mean((./ − .1)/4./)	= 0.34 where ./  and .1  are the selected and 

predicted coverage limits and 4./ is the replacement cost for household i).  

We also estimate risk aversion using a model in which households select a deductible and 

coverage limit jointly, following Equation 5. While in the above we conduct a marginal analysis 

on which we hold the coverage limit decision constant and model the households’ deductible 

choice and vice versa, the joint optimization allows for all possible combinations of the 

deductible and coverage limit and considers what single relative risk aversion coefficient best 

explains the combined decision. We find a relative risk aversion estimate of 2.9. This suggests 

that the coverage limit decision largely determines the risk aversion estimates from the joint 

problem. 

In sum, while MLE improves the model fit and descriptive ability of our EUT CRRA model 

relative to the canonical model, the approach highlights two limitations of the model. First, the 

deductible and coverage limit decisions are characterized by dramatically different preferences 

for the population of households in our data. Not only is the high risk aversion of the deductible 

choice difficult to reconcile with other domains, but also with the coverage limit decision, which 

occurs in the same domain and in the same insurance contract. Second, even allowing for 
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different risk aversion parameters for low and high stakes decisions, the descriptive ability of 

these MLE models remains quite low, especially for the coverage limit, suggesting that these 

models of CRRA expected utility preferences do not characterize households’ decisions well in 

our data. 

4.1.3 CRRA with Heterogeneous Risk Aversion 

Aggregate estimates of relative risk aversion might mask important heterogeneity in households 

that explains their contract selections. Our EUT CRRA coverage limit risk aversion estimate of 

! = 2.7, discussed in Section 4.1.2, must balance the decisions of both full and partial insurers: 

larger coefficients of relative risk aversion would better explain the behavior of full insurers, but 

also lead to greater losses of utility for partial insurers.  

To examine this possibility, we estimate risk aversion using characteristics of the household 

and the home that have been shown to influence individuals’ decisions under risk, such as recent 

severe events (Gallagher, 2014), culture or region (Harrison, Humphrey, and Verschoor, 2010), 

proxies for income and wealth (Cohen and Einav, 2007), and menu default options (Johnson et 

al., 1993). We model risk aversion as a function of the home’s age and property value (as a 

proxy for income), whether households have a $500 or $1,000 deductible default, and region 

(using the nine U.S. Census Bureau divisions) and year fixed effects.  

The EUT CRRA heterogeneous preferences models fit the data better than the EUT CRRA 

model with homogeneous preferences according to the AIC and BIC (Table 5). Table 6 reports 

summary statistics for the estimated distribution of relative risk aversion for the deductible and 

coverage limit. Online Appendix A.2 provides additional details about the model results. 

The average relative risk aversion is 113 for the deductible model and 2.81 for the coverage 

limit model. In each case, the mean risk aversion of these models assuming heterogeneous 

preferences is within one standard deviation of the estimates from the models assuming 

homogeneous preferences. We find that risk aversion is slightly right-skewed for both the 

deductible and coverage limit estimates. 

The deductible model with heterogeneous preferences does not improve the accuracy on 

households’ actual choices compared to the model assuming homogeneous preferences. The 

heterogeneous preference model predicts 47 percent of households’ deductible decisions, and 

underestimates their coverage limit ratios by 34 percentage points. 
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While additional explanatory variables might further improve model fit, standard expected 

utility of wealth models face a fundamental problem in explaining households’ coverage limit 

choices. Except under extreme risk aversion, expected utility maximizing households should 

partially insure when insurance is priced above the actuarially fair rate (Mossin, 1968). Yet, in 

our data, most households fully insure. CRRA expected utility requires that households have at 

least a relative risk aversion of 221 to reach the rate of fully insuring that we observe. A model 

with ! = 221  does not correctly sort households into full and partial insurers: it correctly 

predicts whether households fully or partially insure about 66 percent of the time overall.25 

In sum, standard expected utility theory models with reasonable (i.e., single digit) relative 

risk aversion predict that households would choose high deductibles and partially insure, but 

households tend to do neither. Even with triple-digit values of relative risk aversion, our CRRA 

expected utility models predict a little under half of households’ deductible decisions and 

identify whether households fully versus partially insure about two-thirds of the time. 

Table 6 Distributions of Relative Risk Aversion for CRRA Expected Utility Models Assuming 
Heterogeneous Preferences 

   Percentiles 
 Mean St. Dev. 1% 10% 50% 90% 99% 

Deductible 113 44.5 27.5 61.3 108 176 230 
Coverage Limit 2.81 0.42 1.99 2.28 2.78 3.38 3.86 

Note: Table provides the distribution of relative risk aversion for households’ deductible and coverage limit 
decisions from a model in which households are assumed to be CRRA expected utility maximizers and relative risk 
aversion is a function of the household’s and home’s characteristics. 

4.2 Rank Dependent Utility 

Households’ low and high stakes insurance decisions may be characterized by probability 

distortions. We allow for distortions on the cumulative distribution following Quiggin (1982) by 

(1) ordering outcomes and their associated probabilities from lowest to highest utility, (2) 
                                                
25  We could instead consider households that insure at least 90 percent of their home’s replacement cost as 
“effectively fully insuring.” This benchmark might allow our expected utility models to explain households’ 
coverage limit choices without requiring 100 percent coverage of the replacement cost. Eighty-three percent of 
households insure at least 90 percent of their replacement cost. CRRA expected utility requires that households have 
at least a relative risk aversion of 21 to reach this rate. Also, 39 percent of households choose a “corner solution,” 
selecting the lowest deductible and a coverage limit to cover their full replacement cost. For these households, we 
can only identify a lower bound of relative risk aversion: CRRA expected utility requires a relative risk aversion of 
at least 136 to explain the rate at which households select the $500 deductible and fully insure. A CRRA expected 
utility model with ! = 136 correctly predicts these corner-solution households 25 percent of the time. 
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cumulatively adding these probabilities to form the empirical cumulative function, (3) applying 

distortions on this cumulative with the constraints that the transformed probabilities are restricted 

to be between zero and one and sum to one. Thus, a net overweighting of flood probabilities 

results in an underweighting of the outcome in which no flood occurs and vice versa.  

While a variety of probability distortion models have been proposed (e.g., Tversky and 

Kahneman, 1992; Prelec, 1998), the probabilities in our data are small relative to the values 

typically tested in previous studies. Following Barseghyan et al. (2013), we take a more flexible 

approach, assessing for probability distortions of households’ flood loss probabilities with a 

polynomial expansion. The models that we discuss below suggest that distortions are 

approximately linear in the range of probabilities that we examine. The rank-ordered cumulative 

flood loss probabilities 7/  of household 8 follow distortion Ω: = ;< + ;>Π: .
26 If households in 

these models did not distort probabilities, we would find ;< = 0	and	;> = 1, providing support 

for expected utility theory rather than rank dependent utility.  

4.2.1 Risk-Neutral, Rank Dependent Utility (Yaari Model) 

We begin with a model that assumes a risk neutral, rank dependent utility maximizer who 

distorts probabilities (based on Yaari, 1987). A Vuong (1989) test indicates that the Yaari models 

provide a better fit for both the deductible and coverage limit decisions at the 1 percent 

significance level than the CRRA expected utility models discussed in Section 4.1.2. The Yaari 

model correctly predicts 61 percent of households’ deductible choices. The Yaari model 

modestly over-predicts coverage limits, estimating that 90 percent of households would choose a 

coverage limit of at least 90 percent of their replacement cost while 83 percent do. Households 

tend to overweight small probabilities, as values for ;< > 0 and ;> > 1 in Table 5. We delay a 

discussion of the specific probability distortion parameters until the CRRA rank dependent utility 

model (Section 4.2.2). 

                                                

26 We examined up to a cubic polynomial expansion of probability distortions using Chebyshev polynomials and 
selected the linear distortion model based on the models’ AIC and BIC values. 
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4.2.2 CRRA value function, Rank Dependent Utility 

We now fit a rank dependent utility model with a CRRA value function (“RDU CRRA”). This 

model estimates both probability distortions and the coefficient of relative risk aversion. The 

CRRA rank dependent utility models provide modest improvements over the Yaari models in 

terms of AIC and BIC, and models the coverage limit and deductible decisions better at the 1 

percent level using Vuong tests.  

The CRRA rank dependent utility model correctly identifies 63 percent of households’ 

deductible choices (versus 61 percent for Yaari), and over-predicts households’ coverage limits 

by 2 percentage points (versus 3 for Yaari); CRRA expected utility under-predicts these choices 

by 34 percentage points).  

For both deductible and coverage limit models, we find overweighting of small probabilities 

and negative values of !. These preferences exhibit diminishing sensitivity to losses, typically 

described as “risk seeking” in utility theory: households perceive the difference between a 

$1,000 loss and $2,000 loss as greater than that between a $2,000 and $3,000 loss.27 Based on 

Yaari (1987) and Dyer and Sarin (1982), “risk seeking” is perhaps misleading here as the 

households that we analyze purchased an insurance product that reduces their risk of financial 

loss. In this context, households’ demand for insurance is explained by their overweighting of 

small probabilities. Thus, our findings are consistent with two of the tenants of prospect theory: 

households 1) overweight small probabilities, and 2) demonstrate diminishing sensitivity to 

losses (Kahneman and Tversky, 1979). 

The CRRA rank dependent utility results continue to suggest that households’ small and 

large stakes decisions are characterized by different preferences. Regarding the utility function, ! 

from their deductible selection is 4 times larger than that from their coverage limit selection. 

Across the spectrum of small to large stakes, these preferences cannot be universally convex in 

losses as any line connecting the two must be at some point concave. Figure 4 illustrates this 

                                                
27 Decreasing marginal utility of wealth is equivalent to increasing sensitivity to losses for typical expected utility 
models. Let the value C in the CRRA model in Equation 7 represent some initial wealth D< minus losses, C = D< −
E. For ! ≠ 1, the first and second derivative with respect to E are 

GH
GE

= −(D< − E)IJ	

GKH
GEK

= 	−! D< − E	 I >LJ . 
The first derivative is negative: utility decreases in losses. The second derivative is positive if ! < 0 and negative if 
! > 0. 
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point. The solid green line provides the shape of the value function derived from the deductible 

decision in the range of potential losses related to the deductible (losses up to $5,000). Similarly, 

the solid blue line provides the shape of the value function derived from the coverage limit 

decision in the range of potential losses related to selecting a low coverage limit (set at losses 

greater than 20 percent of the property value for this example). The dotted lines help illustrate 

the magnitude of this difference. They show how these preferences would extend toward more 

severe losses for the deductible and less severe ones for the coverage limit. A similar result 

applies to each of the expected utility models that we test as our low stakes risk aversion 

estimates are always larger in magnitude than those for larger stakes.  

Regarding probability distortions, households overweight probabilities more when choosing 

a deductible than they do when selecting a coverage limit. For example, their estimates of the 

likelihood of a flood are 80 percent larger for the deductible decision as they are for the coverage 

limit decision. When making coverage limit decisions, households overweight the median annual 

claim rate of 1.33 percent by a factor of 4.2, acting as if it occurs with a 5.6 percent annual 

probability. When making deductible decisions, they overweight by a factor of 7.6, acting as if 

the median annual claim rate occurs with a 10 percent annual probability.28  

                                                
28 For example, for the deductible model and the median claim rate, N = ;< + ;>7 = 0.0378 + 4.77	× 0.0133 = 
0.101. The ratio of the transformed probability to the objective probability is N/7 = 0.101/0.0133 = 7.59. 
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Figure 4 Risk Preferences from Deductible and Coverage Limit Selections 

Note: Figure shows the CRRA rank dependent utility model with the MLE of model parameters fitted to deductible 
and coverage limit selections. The solid green line provides the shape of the value function derived from the 
deductible selection in the range of potential losses related to the deductible (losses up to $5,000). Similarly, the 
solid blue line provides the shape of the value function derived from the coverage limit selection in the range of 
potential losses related to selecting a low coverage limit (set at losses greater than 20 percent of the property value 
for this example). The dotted lines show how these preferences would extend toward more severe losses for the 
deductible and less severe ones for the coverage limit. 

5 Robustness Tests and Alternative Explanations 

In this section, we consider aspects of the setting and our modeling approach that might interfere 

with estimating households’ preferences from their observed deductible and coverage limits. We 

discuss each here and provide additional details in the online appendix. 

Other utility functions. Households’ small and large stakes decisions may be characterized 

by expected utility but rely on some utility function other than CRRA. We consider CARA and 

expo-power preferences. The expo-power utility function (Saha, 1993) can accommodate a 

variety of combinations of relative and absolute risk preferences (e.g., decreasing absolute risk 

aversion, decreasing relative risk aversion, etc.). Holt and Laury (2002) posit that expo-power 

utility might reconcile households’ small and large stakes preferences and find supporting 

evidence in their lab experiments. While CARA is nested in expo-power utility, we include a 

specific examination of it because of its prevalence. 

The limitations of CRRA expected utility also apply to these models. CARA and expo-

power predict that households would choose much smaller coverage limits than what they do. 
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For example, CARA and expo-power each underestimate households’ coverage limit ratios 

choices by an average of 27 percentage points (versus 34 for CRRA). They also result in 

different model parameters for households’ deductible and coverage limit decisions. For CARA, 

absolute risk aversion is 17 times larger for the deductible decision than the coverage limit. 

While these tests of expo-power and CARA do not exhaust the many possible utility functions 

that might be employed in expected utility models, they further illustrate the difficulty of 

explaining households’ small and large stakes insurance preferences with common applications 

of expected utility theory (Online Appendix A.3.1). 

Consumption commitments. Households’ decisions may reflect budget or liquidity 

constraints.  For example, Chetty and Szeidl’s (2007) theory of consumption commitments posits 

that large shocks lead to adjustments in fixed liabilities (e.g., housing costs); however, such 

adjustments can be costly so small shocks are fully born by discretionary consumption. These 

conditions lead to a kinked value function in which households demonstrate higher levels of risk 

aversion when the stakes are small than when they are large, which might explain the differences 

in low and high stakes preferences that we observe. 

Chetty and Szeidl (2007) find that fixed liabilities account for over 50 percent of the average 

household’s budget. As a household’s income grows, the utility loss of paying an insurance 

deductible (of say $500) would be expected to decrease because it represents a smaller 

proportion of the household’s discretionary consumption. This argument predicts that (risk 

averse) households with higher incomes would select higher deductibles in this program. Instead, 

we find that households with higher property values (a proxy for income) are slightly more likely 

to select a low deductible. We estimate an ordered logit, regressing the deductible choice on 

property values (in $10,000) for household 8 

STUH.V8WET/ = XYZ + ;	[4\]T4V^_`EHT/ + a/ 

where XYZ  are b\HcV^	×	dT`4  fixed effects. We find a statistically significant, negative 

relationship between property values and deductible choices, an odds ratio of ; = 0.986	(e. T. =

0.0013, ] < 0.01). We conclude that such commitments may influence the decisions of some 

households in our data, but our results do not seem to be explained by consumption 

commitments (Online Appendix A.3.2).  

Mortgages and strategic non-repayment. The differences in households’ preferences 

across low and high stakes might be explained by their use of mortgages: homeowners may be 
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unconcerned about losses beyond their equity. By modeling households’ potential loss as the 

total value of the home, we would overestimate their exposure and conclude that households 

selecting low coverage limits are less risk aversion than they actually are. If households are 

insuring based on their limited liability for damage to the home, we would expect them to select 

lower coverage limits relative to their replacement costs in “non-recourse” states, where lenders’ 

ability to collect on defaulted mortgages is limited.29 We find a small difference in recourse and 

non-recourse states. For example, 75 percent of households in non-recourse states fully insure 

compared to 78 percent of households in recourse states. The magnitude of this difference on our 

preference estimates is negligible and cannot explain the large disparity between low and high 

stakes (Online Appendix A.3.3). 

Program requirements. Households in our baseline sample are required to insure against 

flood if they have a mortgage from a federally regulated lender. This mortgage requirement does 

not seem to be consistently enforced (Dixon et al., 2006); however, contracts may not reflect 

household preferences if, say, lenders determined coverage limits (e.g., required that households 

fully insure their homes). We compare coverage limit selections for our baseline sample with 

households that participate in the program but live in a zone not subject to the federal 

requirement. Their coverage limit selections are remarkably similar, and so would seem to 

support the assumption that contract coverage limits reflect household preferences. For example, 

78 percent of households fully insure in the baseline sample versus 80 percent fully insure in the 

zone where flood insurance is not required (Online Appendix A.3.4). 

Household wealth. Perhaps households are considering a much lower or higher level of 

wealth than what we assume in Section 4, affecting our risk preference estimates. We set wealth 

equal to varying proportions of the replacement cost ranging from 5 percent to 10 times its value. 

We also set wealth equal to the home’s property value instead of the replacement cost. Across 

wealth assumptions, our findings are qualitatively consistent with the main results (Section 

4.1.2): households’ insurance decisions are difficult to explain with CRRA expected utility. For 

example, assuming that household wealth is 10 times its replacement cost (on average about $1 

                                                
29 Non-recourse laws prevent lenders from seeking a deficiency judgment when the sale from a foreclosure is 
insufficient to cover the homeowner’s liability on a defaulted mortgage. Orlando (2011) identifies Alaska, Arizona, 
California, Hawaii, Minnesota, Montana, North Dakota, Oklahoma, Oregon, and Washington as non-recourse states 
during the same time period as our data. 
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million in absolute terms) leads to risk aversion estimates of !ghijkZ/lmh = 1,378  and 

!nophqrsht/u/Z = 56 (Online Appendix A.3.5). 

Policy tenure. Previous research identifies that households often maintain the same 

financial contract terms despite changes over time that would be expected to lead them to update 

their contracts. For example, Sydnor (2010) finds that while new customers frequently select one 

of the lowest deductible options for their homeowners insurance in his data, households with 

longstanding policies (e.g., 15 years) are even more likely to have a low deductible. In this 

context, households’ insurance contract decisions may result from inertia rather than current risk 

preferences. Like Michel-Kerjan, de Forges, and Kunreuther (2012), we find that the mean flood 

insurance policy tenure during this time is four years (the median is two years), reducing 

concerns that the households’ contract choices reflect severely outdated preferences. We find a 

small effect of contract duration on households’ choices. For example, 44 percent of households 

with policy tenures in the first quartile (1 year or less) selected the lowest deductible while 46 

percent of households with policy tenures in the fourth quartile (5 years or greater) did so. 

Households with first quartile policy durations fully insured their homes 73 percent of the time 

while those with fourth quartile policy durations did so 78 percent of the time. 

Deductible menu defaults. Households are influenced by program default options in many 

contexts (e.g., Madrian and Shea, 2001). Most households (77 percent) select the default 

deductible option in our data, which might indicate inattention or that the defaults are judiciously 

chosen to match households’ risk preferences. Our baseline sample includes two deductible 

defaults: one group has a $500 default and another a $1,000 default. Households with the $1,000 

default deductible have riskier homes with higher premiums and so this default may result from 

this group’s tendency to select higher deductibles. For example, about 6 percent of these 

households select the highest deductible available $5,000 while only 1 percent of households 

with the $500 deductible do so. We find a modest effect of deductible menu defaults on our 

estimates. We re-estimate our CRRA expected utility models excluding households who adopted 

the default option and find risk aversion estimates of !ghijkZ/lmh = 108 and !nophqrsht/u/Z = 2.6 

(Online Appendix A.3.6). We also include a household’s assigned default deductible in the 

model of heterogeneous preferences (Online Appendix A.2). While standard models predict that 

a household’s assigned default deductible would not influence the preferences inferred from its 

contract choices, we find that being assigned a default of $1,000 (rather than the $500 default) 
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reduces a households’ relative risk aversion by 3.6 after controlling for other factors such as the 

age and property value of the home. 

Misunderstandings about the insurance coverage limit. A large group of households (35 

percent) purchased coverage limits that were higher than their replacement costs. We tend to 

agree with Mossin’s (1968) explanation that households may buy too much insurance to address 

the risk that their replacement cost is higher than anticipated; however, perhaps instead these 

households did not understand the contract that they were purchasing, thinking that they could 

receive larger payments than the replacement cost. Our models, which account for the contract 

structure, may not correctly estimate the risk preferences of households that misunderstood it. 

Given this possibility, we re-estimate our CRRA expected utility models excluding these 

households and find qualitatively similar results to our estimates with the baseline sample (e.g., 

!ghijkZ/lmh = 147 and !nophqrsht/u/Z = 2.5, Online Appendix A.3.7). 

Events with small probabilities. A great deal of research on risk preferences, especially lab 

research, considers events with likelihoods greater than the average annual claim rate of 1.3 

percent in our data. Perhaps our preference estimates are an anomalous byproduct of examining 

relatively rare events. We also examine a population that is vulnerable to inundation as well as 

wave damage and their average annual claim rate is 4.1 percent. This claim rate is similar to 

Sydnor (2010) and Barseghyan, Prince, and Teitelbaum (2011) who examine homeowners 

insurance deductibles. Premiums are much higher in this zone, with a mean of $1,497 (and 

median of $1,201), almost 3 times the average in the baseline sample. Households in this zone 

choose higher deductibles: 78 percent choose one of the lowest two deductibles (versus 94 

percent in the baseline sample) and 12 percent choose the highest deductible of $5,000 (versus 

3.8 percent in the baseline sample). Eighty percent of these households fully insure. Our risk 

preference results are qualitatively similar for this higher risk sample to our baseline. For 

example, CRRA expected utility models result in relative risk aversion of 139 for the deductible 

and 3.6 for the coverage limit (Online Appendix A.3.8). 

6 Conclusion 

We assess whether households’ risk preferences for small and large stakes losses are well 

characterized by commonly applied expected utility models. Previous research on insurance 

decisions evaluates deductible choices to examine risk preferences. We build on this research 
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using a unique dataset that also contains information about large stakes exposures. We examine 

the deductible and coverage limit decisions from the flood insurance contract choices of over 

100,000 households. 

We find that both households’ small and large stakes choices are difficult to explain with 

standard expected utility of wealth models. Our results confirm previous research that 

households’ tendency to select a low deductible suggests extremely high relative risk aversion 

(e.g., Sydnor, 2010). Regarding coverage limits, standard models predict that households would 

partially insure (i.e., select low coverage limits relative to their home’s replacement cost, Mossin, 

1968). For example, our CRRA expected utility with ! = 1 predicts that households should, on 

average, select a coverage limit of 29 percent of their replacement cost. Instead, over three-

quarters of households fully insure. The coverage limits of the quarter of our households that 

partially insure generally suggest single digit risk aversion; however, only relative risk aversion 

of at least ! = 221 would motivate CRRA expected utility maximizers to fully insure at the rates 

that we observe.  

Allowing for probability distortions greatly improves model descriptions of households' low 

and high stakes decisions. Using CRRA rank dependent utility, we find that households’ 

behavior follows two of the tenants of prospect theory: households demonstrate diminishing 

sensitivity to losses and overweight small probabilities. However, in rank dependent utility 

models, households' low and high stakes decisions continue to be characterized by different 

preferences, as indicated by different model parameters. We conclude that while our context 

stands out as one that facilitates making low and high stakes choices in concert as they are part of 

a single contract covering a continuum of losses, households seem to treat them as separable 

decisions toward which they have differing attitudes.  

We find Mossin’s (1968) discussion of his theoretical result on partially insuring remarkably 

prescient, though he may not have anticipated the degree to which expected utility theory 

misrepresents households’ insurance choices in this setting: “Casual empirical evidence seems to 

contradict the conclusion, however; some of our best friends take full coverage. Several 

explanations for such behavior can of course be offered, among them: (a) they simply behave 

irrationally, for example, by not bothering to determine optimal coverage; (b) there may be some 

uncertainty as to what will be the actual evaluation of the property in case of damage. We have 

not taken this kind of randomness into account in our theory, but it seems a perfectly reasonable 
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hypothesis that it will lead to a number of observed cases of full (or over-) insurance; (c) they 

may uniformly overestimate the probability distribution for damage…” (p. 558). We find that 

households overestimate flood probabilities and over-insure (buying coverage limits greater than 

their replacement costs) in the way Mossin describes. 

 A substantial literature has emerged since Mossin’s paper that examines the systematic 

biases and heuristics utilized by individuals for making choices under risk and uncertainty 

(Kahneman, 2011) and their relationship to insurance purchase and coverage decisions 

(Kunreuther, Pauly, and McMorrow, 2012). These behavioral features may also explain the 

differences in low and high stakes insurance preferences that we observe in the rank dependent 

utility model. 

Our findings present an interesting public policy dilemma. A stated objective of the NFIP is 

increasing take-up of flood insurance as a means to reduce federal spending on flood events 

(National Research Council, 2015). Recent policy interventions emphasize choice architecture 

that induces households to make choices that better align with normative models such as 

expected utility (e.g., Thaler and Sunstein, 2008); however, convincing households in our data to 

act as expected utility maximizers would run counter to this program’s objective. At least under 

the program’s current pricing, such interventions would lower coverage limits, leaving 

households more exposed to severe events. 

Finally, we highlight two limitations of our analyses. First, we cannot rule out the possibility 

that households may maximize some unconsidered utility function or that myriad value functions 

may be represented in our data (e.g., List, 2004, and Harrison and Rutström, 2009, find a mixture 

of expected utility and prospect theory preferences in their data). We have instead examined the 

most frequently used utility functions and considered whether these individually characterize 

households’ decisions well. Second, how our results regarding large stakes flood insurance 

preferences generalize to other domains is unclear. While our findings of single-digit relative risk 

aversion for households’ large stakes decisions are consistent with estimates from other domains 

(e.g., life cycle models, Gourinchas and Parker, 2002, and equity premiums, Barro and Jin, 

2011), individuals’ decisions may more closely align with expected utility theory in those 

settings than ours. These points motivate additional research. 
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FOR ONLINE PUBLICATION 

A Online Appendix 
A.1 Estimating Policyholder Risk 

This appendix describes our claim rate and loss distribution models. 

A.1.1 Claim Rates 

We assume that policyholders rely on the same information as the flood insurance program in 

estimating their flood risk. The included observables are those used in determining flood 

insurance premiums, which Table 7 lists and defines. 

The flood insurance program considers whether a home was built before its flood insurance 

rate maps (FIRM) were developed. Zoning regulations and building codes intend to reduce 

vulnerability in designated flood hazard areas and so flood claims and losses may substantially 

differ depending on whether a home was built pre- or post-FIRM. We model flood risk 

separately for pre- and post-FIRM dwellings. We estimate the likelihood of having a claim using 

a random effects panel logit for household 8 in community v 

]/ = ;< + ;>bwx.E`eeY + ;Ky z`eT{TcV/ + ;|S }WeV4H.V8\c/ + ;~S �E\\4e/

+ ;Äy Å\W8ET/ + ;ÇS ÉETÑ`V8\c/ 	×	S x\H4.T/ + a/				(Ö1) 

where y is an indicator variable and S describes a dummy set. For example, S(�E\\4e) indicates 

whether the home has one, two, or three or more floors. Only a policyholder’s first claim in each 

year is included in the analysis.30 Table 8 provides the results of the panel logit model of 

household claim rates with coefficients reported as log odds ratios. These results are consistent 

with previous research. For example, Kousky and Michel-Kerjan (2015) find in their assessment 

of NFIP claims that a community’s Community Rating System score, the number of floors in a 

home, its elevation, and whether it has a basement all significantly influence flood claims and in 

qualitatively similar ways to our findings. 

                                                
30 Focusing on the first claim in a year great facilitates modeling the household’s decision in Section 3.3.1 Allowing 
for more than one claim is computationally prohibitive as it requires accounting for all possible combinations of 
losses from each flood event. Two percent of policies with claims have a second claim in the same year. If the 
likelihood of having more than one claim in a year is equal across households, the probability of having at least two 
claims in a year for the household with the median claim rate is 0.00027 (0.0133	×	0.02 = 	0.00027). 
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. 
 

 
Figure 5 Claim Rate Estimates 

Note: Claim rates using random effects panel logit. Baseline sample of 103,080 policies. 
 

Figure 5 shows the histogram of claim rates for our baseline sample. The claim rates bunch 

around elevation relative to the 100-year flood plain, which FEMA rounds to the nearest foot, 

taking values from 2 or more feet below the flood plain to 5 or more feet above the flood plain. 

For example, while the median home in our data has an elevation of 1 foot above the flood plain, 

none of the homes with estimated claims rates above 3 percent are elevated above the flood 

plain. 
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Table 7. Explanatory Variables Used in Regressions 

Explanatory 
variables Description 

CRS class The community’s score on the Community Rating System (CRS). The CRS is a 
voluntary program that rewards communities for taking actions to mitigate flood 
risk beyond minimum NFIP requirements. Community actions reduce 
policyholder premiums by up to 45%. CRS class is the associated premium 
reduction, ranging from 0 to 45. 

Basement Indicates that the property has a basement 
Obstruction Indicates that an elevated building has an enclosed area and/or machinery 

attached to the building below the lowest floor. This variable is not applicable to 
un-elevated buildings. Thus, it takes three values: 0, 1, not applicable. 

Source Indicates that elevation estimates were collected by a contracted engineer. 
Otherwise, the elevation data are provided by the NFIP and may not have been 
assessed at the level of the individual home. The source of elevation data is not 
always reported in the policy database, and in those cases, we record the 
observation’s source as “Not Indicated.” 

Elevation An estimate of the elevation in feet of a policyholder’s home relative to the 100-
year floodplain. Values are rounded to the nearest foot and bound with the lowest 
and highest elevation at -2 and 4 feet, respectively. 

Mobile Indicates that the structure is a manufactured or mobile home. 
Floors Number of floors in the home, taking three possible values: 1, 2, or 3 or more 
Note: More information can be found on these variables from NFIP (2006). 
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Table 8. Claim Rate Regressions 

  Pre-FIRM  Post-FIRM 
  Coefficient Std. Error  Coefficient Std. Error 
Intercept  -2.81 1.158  -3.74 0.43 
CRS Class  -0.03 0.0004  -0.06 0.001 
Basement 0.00 0.009  -0.42 0.019 
Obstruction 0.19 0.010  0.05 0.015 
Obstruction, Not Applicable -0.30 0.005  -0.48 0.009 
Mobile  0.02 0.021  -0.02 0.027 
Floors (Reference Group: Floors = 1)     

2  0.06 0.007  -0.04 0.009 
3 or more  0.14 0.011  -0.29 0.018 

Elevation x Source (Reference Group: Elevation = -2 x Source = NFIP) 
Elevation Source      

-2 Contractor -0.52 1.158  0.42 0.433 
-2 Not Indicated -0.50 1.158  0.75 0.432 
-1 NFIP - -  -0.32 0.866 
-1 Contractor -1.04 1.158  0.07 0.434 
-1 Not Indicated -0.43 1.158  0.29 0.433 
0 NFIP -1.16 1.316  0.35 0.528 
0 Contractor -1.29 1.158  -0.33 0.433 
0 Not Indicated -0.61 1.158  0.39 0.432 
1 NFIP -0.88 1.255  -0.75 0.633 
1 Contractor -1.65 1.158  -0.66 0.433 
1 Not Indicated -1.12 1.158  -0.12 0.432 
2 NFIP -1.75 1.307  -0.94 0.603 
2 Contractor -2.08 1.158  -0.96 0.433 
2 Not Indicated -1.47 1.158  -0.50 0.433 
3 NFIP -1.59 1.377  -1.12 0.733 
3 Contractor -2.16 1.158  -1.09 0.433 
3 Not Indicated -1.61 1.158  -0.66 0.433 
4 NFIP -2.19 1.549  -0.44 0.506 
4 Contractor -2.05 1.158  -0.85 0.433 
4 Not Indicated -1.62 1.158  -0.35 0.432 

Not Indicated NFIP -0.94 1.158  -0.97 0.434 
Not Indicated Contractor -1.23 1.159  -2.03 0.470 
Not Indicated Not Indicated -1.19 1.158  -1.11 0.434 
Log Likelihood -894,641   -381,598  
Observations 9,108,126   6,171,368  

Note: Random effects panel logit panel regression.  Coefficients are reported as log odds ratios. 

A.1.2 Loss Distributions 

We model household losses beginning with an examination of the loss distribution, considering 

losses for all households in the same flood risk category concurrently. From this approach, we 

find that our flood loss distributions are approximately log-normal. Finally, we fit the parameters 

of the log-normal distribution for each household based on its observables. 
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A.1.2.1  Parametric distributions 

This section compares parametric specifications for modeling flood losses. Throughout, we use 

A zone, pre-FIRM as an example. Given a claim event, the distribution of potential property 

losses is influenced by the type of event that occurs: events that affect many policyholders result 

in larger expected losses for each policyholder. We model observations as a mixture of two loss 

generating processes: (1) isolated loss events, floods affecting an individual or small group of 

policyholders (e.g., due to unusually heavy, localized rain), or (2) correlated loss events, losses 

due to a storm, hurricane, etc., affecting many policyholders. We define a correlated loss event as 

an observation of at least 30 claims with a date of loss on the same day in the same state. That 

event continues for each consecutive day with at least 30 claims in the same state. The 30 claims 

threshold is located at the 95th percentile of the distribution of claims by date of loss by state. 

These criteria create 1,319 correlated loss events out of a total of 635,220 flood insurance claims 

occurring between 1982 and 2009. All observations that are not associated with a correlated loss 

event are considered an isolated loss event. 

Observations from isolated loss events are weighted by 

Üá = 		
àá
cá

 

where àá describes the average across years of the percent of claims generated by isolated loss 

events and cá  indicates the total number of claims generated by isolated loss events (cá = 

85,075). On average, 22 percent of claims are generated by correlated loss events. Observations 

for correlated loss events are weighted by 

Üu,Y =
1 − àá	 	
cu ∗ 	cu,Y	

 

where cu indicates the total number of correlated loss events and cu,Y indicates the total number 

of claims generated by correlated loss event j. 

These weights provide empirical loss distributions for the isolated and correlated loss events. 

No time trends are present in the means and variances of the empirical loss distributions across 

years: regressing respectively the mean and variance of losses as a percent of the property value 

by year on time results in non-significant F-statistics of 0.89 and 0.60. 

Using the weighted empirical loss distribution, we fit parametric distributions using 

maximum likelihood estimation (MLE) and compare models using the Anderson-Darling test, 
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Kolmogorov-Smirnov test, and the Akaike Information Criterion (AIC). Comparisons 

consistently indicate that the log-normal is the best fitting parametric model; this result is 

consistent across flood zones. Table 9 provides the results for the A zone, Pre-FIRM, correlated 

loss events distribution for a subset of the tested parametric distributions.  

As a sensitivity test, we generate several alternative distributions: (1) defining correlated 

loss events using a minimum of 10 claims (rather than 30) with the same date of loss in a state, 

(2) using a minimum of 100 claims, (3) treating all claims as independent and equally weighted. 

Table 10 shows deciles from the cumulative distributions using these alternative assumptions in 

Columns 1 through 5; we explain Column 6 in the next section. Excluding the case in which all 

losses are equally weighted, the distributions are quite similar across approaches. The log-normal 

results in a slightly thicker right tail than the non-parametric. The equally weighted approach 

results in the greatest probability of large losses due to severe events. 

Table 9. Fit Comparisons Across Parametric Distributions 

 

A-D K-S AIC 
Log-normal 53.41 0.060 -14949.5 
Pareto III 65.61 0.064 -14286.2 
Pareto IV 68.79 0.066 -14364.4 
Pareto II 72.06 0.071 -14322.7 
Generalized Extreme Value 85.10 0.063 -14175.4 
Gamma 143.86 0.100 -13966.1 

Note: The results are for the A zone, Pre-FIRM, correlated loss event data. The Anderson-Darling (A-D) and 
Kolmogorov-Smirnov (K-S) tests and the Akaike Information Criterion suggest that the log-normal is the parametric 
distribution that best fits the loss data.  

Table 10. Cumulative Distributions for A Zone, pre-FIRM 

	 Homogeneous	 Heterogeneous	
	 (1)	 (2)	 (3)	 (4)	 (5)	 (6)	

Loss	 Log-normal	 Nonparametric	
(30	claims)	

Nonparametric	
(10	claims)	

Nonparametric		
(100	claims)	

Nonparametric,		
equally	weighted	 Log-normal		

10.0	 53.1	 55.3	 58.0	 51.9	 40.6	 50.6	
20.0	 73.8	 71.7	 73.9	 68.5	 55.4	 69.0	
30.0	 83.3	 80.3	 82.1	 77.6	 64.5	 78.0	
40.0	 88.4	 86.5	 87.9	 84.3	 71.8	 83.5	
50.0	 91.6	 90.8	 91.6	 89.0	 77.6	 87.1	
60.0	 93.6	 93.5	 94.0	 92.2	 81.9	 89.6	
70.0	 95.0	 95.4	 95.7	 94.3	 85.3	 91.5	
80.0	 96.0	 96.7	 97.0	 96.0	 88.2	 92.8	
90.0	 96.8	 97.9	 98.0	 97.4	 91.2	 93.9	

Note: Alternative specifications of the cumulative distribution for losses. Losses are measured as a percent of the 
structure’s value. The parametric distributions use the correlated loss event definition of 30 claims. Columns 1 
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through 5 report deciles assuming a homogeneous loss distribution across all policyholders in the A zone, pre-
FIRM. Column 1 reports deciles for the log-normal distribution. Columns 2 through 4 report for nonparametric 
distributions for which weights are based on definitions of the correlated loss events. Columns 2, 3, and 4 
respectively use definitions of a correlated loss event as a minimum of 30, 10, and 100 claims in the same state on 
the same day. Column 5 reports deciles for the nonparametric distribution using equal weights for all observations. 
Column 6 reports deciles using the median log-normal parameter ä and ã estimates fit for each household based on 
observables. 

A.1.2.2  Household-level loss distributions 

We develop loss distribution estimates for each policyholder using the log-normal distribution 

and our assumption that the loss generating process is a mixture of isolated and correlated loss 

events. Our approach is similar to that of Aitkin (1987) and Western and Bloome (2009). Aitkin 

proposes modeling variance heterogeneity to address heteroscedasticity. Western and Bloome 

note that the estimations of these variance models may themselves be of interest for research 

related to within-group differences and so adapt Aitkin’s approach to study income inequality. 

They propose an iterative MLE. We use this approach to fit parameters ä  and ã of the log-

normal distribution. Consider the two-equation model 

E[log E/] = 	íì
îï 

log ã/
K = íì

îñ 

where E/ ∈ 0,1  is the flood loss as a proportion of the home value for policyholder 8, íì is a 

vector of policyholder observables, and ã/K  is the estimated variance in losses for each 

policyholder. We fit the model using an iterative MLE approach: 

1) Estimate ï using a Tobit model, which is right censored at 0, as log E/ ∈ (−�, 0]. Save the 

residuals, T/ = log E/ − íì
îï. 

2) Estimate ñ with a gamma regression of the squared residuals TK, using a log link function. 

Save the fitted values, ãK = exp(íì
îñ). 

3) Estimate ï using a Tobit model with weights 1/ãK and update the residuals. 

4) Repeat steps 2 and 3 until the log likelihood converges. 

This iterative approach (1) addresses heteroscedasticity in the mean model by weighting 

observations based on the fitted variance, and (2) corrects the standard errors in the variance 

model by increasing the precision of the coefficient estimates from the mean model (Western and 

Bloome, 2009). 
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Fixed effects in these regressions account for correlated loss events. We order correlated 

loss events by the number of claims for each event and bin the events every 5 percentiles, 

creating twenty fixed effects across the distribution of correlated loss events (i.e., vigintiles). For 

example, a fixed effect is included for all correlated loss events for which the number of claims 

is below the fifth percentile, another one for events with claims from the fifth and to tenth 

percentiles, etc. 

We follow the estimation equation A1 that we use in our claim rate regressions, though 

some minor differences exist in our claims and policy data. For example, these regressions do 

not include a households Community Rating System score. Table 11 shows the output of the 

mean and variance models for our baseline sample (Zone A). Its results are also qualitatively 

consistent with the findings of Kousky and Michel-Kerjan (2015) with respect to explanatory 

variables such as elevation, whether the home has a basement, and whether the home is 

permanent or a mobile home.  

Loss observations are associated with a specific event; however, we are attempting to 

estimate each policyholder’s loss distribution across all possible events. That is, for each 

household, we would like the expected loss given the explanatory variables and the occurrence 

of a loss event E[E/ E/ > 0	 ∩ íì  but the fixed effects model provides an observation given 

specific event {Y , E[E/ E/ > 0	 ∩ íì ∩ {Y . To address this in our probability estimates, we 

weight each event by its probability in these data. For example, the model of log losses can be 

written as  

log E/ = X + íì
îï + õúîù + ûì			 

where ù is the vector of coefficients on the fixed effects õú. The probability from this equation 

can then be written as  

E[log E/ E/ > 0	 ∩ íì = àáX + 1 − àá X + ù îüõú + íì
îï		 

where àá is the probability that an observed loss is generated from an isolated loss event (rather 

than a correlated loss event), and üõú are the probabilities for each fixed effect event. In this 

case, each quantile has a 5 percent probability, given that a correlated loss event occurs. The 

term àáX + 1 − àá X + ù îüõú  is a constant and provides the intercept for the predictive 

model and so can be used to estimate fitted values for each household. The same approach is 

taken for the variance model. The mean and variance estimates for each household are then used 

to fit parameters of the log-normal distribution.  
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Table 10 provides the cumulative loss distribution for the median policyholder at each decile 

following this approach in Column 6. The median of these loss distributions results in a slightly 

higher probability of a total loss than the group-level log-normal (Column 1) and the weighted 

nonparametric distributions (Columns 2–4) but a lower probability than the distribution in which 

all observations are equally weighted (Column 5). Figure 1 illustrates a similar result using the 

entire baseline sample (the results in Table 10 are only for pre-FIRM homes in the baseline 

sample). The triangles in Figure 1 correspond with Column 2, the squares with Column 5, and 

the circles with Column 6. 

A.2 Modeling Heterogeneous Preferences 

We estimate a household’s coefficient of risk aversion in our structural model using the 

regression equation 

!/ = †Y + °Z + ;>[4\]T4V^_`EHT/ + ;KÖ¢T + ;|y ST£`HEVSTUH.V8WET/ = $1,000 + a/			(Ö2) 

where †Y and °Z are respectively region, using the nine U.S. Census Bureau divisions, and year 

fixed effects. Ö¢T	is the age of the home. The property value serves as a proxy for wealth as well 

as other aspects of the household such as educational attainment may affect its risk preferences 

but are not included in the utility function. Property value and age are standardized (i.e., values 

are subtracted from the mean and divided by the standard deviation). Their coefficients show 

how a one standard deviation change in these variables affects risk aversion. Table 12 provides 

the regression results. 
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Table 11. Models of Flood Loss as a Percent of Home Value  

  Zone A, pre-FIRM   Zone A, post-FIRM 
  Mean Model 

(Tobit) 
 Variance Model 

(Gamma, log link) 
  Mean Model 

(Tobit) 
 Variance Model 

(Gamma, log link) 
  Coefficient Std. Error  Coefficient Std. 

Error 
  Coefficient Std. Error  Coefficient Std. 

Error 
Intercept  -2.621 0.024  0.730 0.049   -3.032 0.037  1.036 0.050 
Basement -0.111 0.009  -0.037 0.016   -0.221 0.025  0.002 0.035 
Mobile  0.492 0.023  0.077 0.039   0.901 0.042  -0.097 0.059 
Floors (Reference group: Floors = 1)            

2  -0.297 0.007  -0.086 0.013   -0.289 0.013  -0.026 0.019 
3 or more  -0.443 0.010  -0.143 0.019   -0.574 0.025  0.037 0.035 

Elevation × Source (Reference group: Elevation = 0 × Source = Contractor) 
Elevation Source             

-2 NFIP 0.147 0.038  0.387 0.069   0.710 0.045  -0.311 0.068 
-2 Contractor 0.220 0.046  0.235 0.089   0.061 0.038  0.029 0.055 
-1 NFIP 0.036 0.044  0.379 0.080   0.431 0.049  -0.052 0.069 
-1 Contractor 0.241 0.070  0.152 0.137   0.076 0.064  -0.010 0.093 
0 NFIP -0.179 0.024  0.239 0.051   0.169 0.031  -0.088 0.045 
1 NFIP -0.400 0.026  0.563 0.052   0.111 0.031  -0.014 0.045 
1 Contractor -0.152 0.032  0.171 0.065   -0.178 0.036  0.032 0.052 
2 NFIP -0.284 0.029  0.329 0.058   0.149 0.033  -0.028 0.049 
2 Contractor -0.284 0.036  0.372 0.070   -0.300 0.037  0.022 0.055 
3 NFIP -0.375 0.038  0.457 0.070   -0.117 0.040  0.033 0.057 
3 Contractor -0.528 0.045  0.481 0.083   -0.365 0.041  0.059 0.058 
4 NFIP -0.386 0.049  0.385 0.087   -0.181 0.049  0.165 0.066 
4 Contractor -0.567 0.058  0.337 0.106   -0.457 0.043  0.126 0.062 
5 NFIP -0.315 0.037  0.271 0.071   -0.301 0.043  0.188 0.059 
5 Contractor -0.479 0.046  0.445 0.080   -0.650 0.033  0.066 0.048 

Not Indicated NFIP 0.145 0.022  0.022 0.047   0.672 0.049  -0.155 0.068 
Not Indicated Contractor 0.312 0.023  0.039 0.049   0.738 0.093  -0.173 0.129 
Log(scale)  0.257 0.001      0.360 0.003    
Quantile Fixed Effects Yes   Yes    Yes   Yes  
Log Likelihood -431,805   -484,037    -117,922   -164,652  
Deviance 495,371   1,262,186    156,414   411,915  
Num. obs. 409,179   409,179    126,014   126,014  
Right-censored 17,712       8,954     

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, Standard errors in parentheses. Models predict the mean and variance of 
flood loss for A zone, pre-FIRM and A zone, post-FIRM. We model flood losses between 1982 and 2009. The mean 
and variance models are fit using an iterative maximum likelihood approach proposed by Aitkin (1987). The mean 
model is a Tobit with a dependent variable of log(loss) where loss is measured as a proportion of the structure’s 
value. The variance model uses the squared residuals of the mean model as a dependent variable. In turn, the inverse 
of the predicted value of the variance model is used to weight observations in the mean model. Quantile fixed effects 
describe a set of dummies we include to account for major storms. 
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Table 12 Coefficient Estimates for CRRA Expected Utility Models Assuming Heterogeneous 
Preferences 
 

Dependent Variable: Coefficient of Relative Risk Aversion    
 Deductible  Coverage Limit 

 Coefficient Standard errors  Coefficient Standard Errors 
Intercept 112.84 0.037  3.42 0.029 
Property Value 39.23 0.022  0.25 0.015 
Age of Home -3.41 0.044  -0.14 0.013 
I(Default Deductible = $1,000) -4.38 0.019  -0.32 0.029 
Region (Reference Group: East North Central)    
     I(East South Central) -21.88 0.254  -0.38 0.021 
     I(Middle Atlantic) 36.92 1.572  0.10 0.020 
     I(Mountain) 19.16 9.301  -0.08 0.099 
     I(New England) 24.72 0.783  0.68 0.070 
     I(Other) -30.51 0.022  -0.39 0.052 
     I(Pacific) 60.49 3.342  0.17 0.040 
     I(South Atlantic) 31.75 0.950  -0.04 0.016 
     I(West North Central) -20.94 0.734  -0.31 0.032 
     I(West South Central) -1.17 0.500  -0.44 0.012 
Year (Reference Group: 2008)     
     I(2003) -17.47 0.226  -0.44 0.019 
     I(2004) -0.34 0.057  -0.37 0.036 
     I(2005) -7.90 0.696  -0.19 0.011 
     I(2006) 2.86 0.494  -0.20 0.027 
     I(2007) 8.96 1.608  0.10 0.023 
Scale 0.31 0.002  0.18 0.001 
Log Likelihood -164,935   -297,756  
AIC 164,973   297,794  
BIC 330,090   595,730  
Observations 183,080   183,080  

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Table shows the effects of a household’s characteristics on its relative 
risk aversion based on its deductible and coverage limit decisions. Regressions follow Equation (A2). Property value 
and the age of the home are standardized variables (i.e., values are subtracted from the mean and divided by the 
standard deviation). Default deductible indicates whether households have a $500 or $1,000 default deductible. 
Region uses U.S. Census Bureau Divisions where “other” applies to U.S. territories such as Puerto Rico. 

A.3 Robustness Tests and Alternative Explanations 

This section provides technical details for the discussion in Section 5 and follows its structure. 

We discuss some of the most relevant alternative explanations for our results. Our analysis also 

builds on previous research regarding insurance decisions and risk preferences from Cohen and 

Einav (2007), Sydnor (2010), Barseghyan, Prince, and Teitelbaum (2011), Barseghyan et al. 

(2013), and others, and each of those papers provides a thoughtful discussion of alternative 

explanations that often also apply to our setting.  
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A.3.1 Other Utility Functions 

Households’ low and high stakes decisions may be characterized by some utility function other 

than CRRA. We consider constant absolute risk aversion (CARA) and expo-power preferences. 

CARA is perhaps the second most commonly employed utility function and assumes that risk 

aversion is independent of households’ wealth. It takes the form 

H C = −exp	(−4C)	 

where 4 is the coefficient of absolute risk aversion, which we fit using MLE. The expo-power 

utility function (Saha, 1993) can accommodate a variety of combinations of relative and absolute 

risk preferences (e.g., DARA, DRRA, etc.). It takes the form 

H C = −exp(−•C¶) 

with restrictions • ≠ 0, ß ≠ 0, and •ß > 0. Holt and Laury (2002) suggest that households’ low 

and high stakes preferences might be reconciled by such a combination and use expo-power 

utility in their research. While CARA is nested in expo-power utility (when ß = 1), we include a 

specific examination of it because of its prevalence. 

Table 13 provides the results. Both CARA and expo-power preferences provide an 

improvement over CRRA in explaining both households’ deductible and coverage limit 

preferences according to the AIC and BIC. A Vuong test leads to a similar conclusion, resulting 

in a fit that is significantly better at the 1 percent level in each case. The expo-power model 

parameters indicate a combination of increasing absolute risk aversion (IARA) and increasing 

relative risk aversion (IRRA) for the deductible model. For the expo-power coverage limit 

model, we find a combination of IRRA and constant absolute risk aversion. That is, expo-power 

cannot improve on the CARA model in explaining households’ coverage limit decisions. 

CARA and expo-power preferences correctly predict households’ deductible choices at rates 

similar to CRRA. CRRA utility correctly predicts 47 percent of households’ deductible, slightly 

more than CARA and expo-power utility, respectively 45 and 46 percent. CARA and expo-

power predict that households would choose much smaller coverage limits than what they do: 

expo-power underestimates households’ coverage limit ratios choices by an average of 27 

percentage points (versus 34 for CRRA). 

Like CRRA preferences, CARA and expo-power preferences result in substantially different 

model parameters for households’ deductible and coverage limit decisions. For example for 

CARA, absolute risk aversion is 17 times larger for the deductible decision. 
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Thus, despite its flexibility, expo-power preferences do not overcome the problems 

identified in Section 4.1.2 for CRRA preferences: 1) even using maximum likelihood estimate in 

our data, these models do not explain the average households’ decision well, and 2) that 

households’ preferences do not seem to be similar across low and high stakes.  

Table 13 CARA and Expo-Power Model Results 

  Parameters   Log Likelihood AIC BIC 
CARA  r  ã    
Deductible  0.00093  0.204 -153,529  153,533   307,081  
  (2.4e-06)  (0.0014) 

 
      

Coverage Limit  0.000055  0.208 -294,245  294,249   588,513  
  (2.8e-07)  (0.0012) 

 
      

Expo-power  • ß     
Deductible  0.00018 1.14 0.202 -152,867  152,873   305,769  
  (3.3e-06) (0.0015) (0.0014) 

 
      

Coverage Limit  0.000055 1.00 0.208 -294,245  294,251   588,525  
  (7.3e-07) (0.00079) (0.0012) 

   
Note: Standard errors are in parentheses. Table compares utility models describing households’ deductible and 
coverage limit decisions, comparing outcomes using the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC). For the AIC and BIC, lower values indicate better fit. The remaining models use 
maximum likelihood estimation to fit model parameters. Baseline sample of 103,080 policies. 

A.3.2 Consumption Commitments 

We exploit variation in property values in our data to assess for empirical evidence that 

households’ preferences for low deductibles are explained by consumption commitments. While 

Chetty and Szeidl’s (2007) describe consumption commitments as a percent of income, all 

households in our data face the same deductible menu. As a household’s income grows, the 

utility loss of paying an insurance deductible (of say $500) would be expected to decrease 

because it represents a smaller proportion of the household’s discretionary consumption. This 

argument predicts that (risk averse) households with higher incomes would select higher 

deductibles in this program.  

Figure 6 shows households’ property values (as a proxy for income) and their deductible 

choices. We do not observe a consistent relationship; households with high and low property 

values prefer low deductibles. We also estimate an ordered logit model using the deductible 

choice and property value (in $10,000) for household 8 

STUH.V8WET/ = XYZ + ;	[4\]T4V^_`EHT/ + a/ 
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where XYZ  are b\HcV^	×	dT`4  fixed effects. We find a statistically significant, negative (but 

perhaps not economically meaningful) relationship between property values and deductible 

choices, an odds ratio of ; = 0.986	(e. T. = 0.0013, ® = −10.22, ] < 0.01).  

 

Figure 6 Boxplot and Jitter Plot of Households' Deductible Choices and Property Values 

Note: The left figure provides a boxplot of household deductible choices and property values. The solid line in the 
center of each box shows the median property value, the upper and lower edges of the box provide 25th and 75th 
percentiles, and the solid lines extend to 1.5 times the interquartile range, the distance between the 25th and 75th 
percentiles. Dots outside of these lines identify individual outliers. The right figure shows individual observations of 
deductible choices and property values. Baseline sample of 103,080 policies. 
 

A.3.3 Mortgages and Strategic Non-repayment 

The differences in households’ preferences across low and high stakes might be explained by 

their use of mortgages: homeowners may be unconcerned about losses beyond their equity. We 

explore this possibility by exploiting differences in lenders’ recourse rights for defaulted 

mortgages across states. If households are insuring strategically based on their limited liability 

for damage to the home, we would expect them to select lower coverage limits relative to their 

replacement costs in “non-recourse” states. 31 We find a small difference in recourse and non-

recourse states, as shown in Figure 7. For example, 75 percent of households in non-recourse 

states fully insure compared to 78 percent of households in recourse states.  

                                                
31 Non-recourse laws prevent lenders from seeking a deficiency judgment when the sale from a foreclosure is 
insufficient to cover the homeowner’s liability on a defaulted mortgage. Orlando (2011) identifies Alaska, Arizona, 
California, Hawaii, Minnesota, Montana, North Dakota, Oklahoma, Oregon, and Washington as non-recourse states 
during the same time period as our data. 
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Figure 7 Coverage Limits Selected in Recourse and Non-Recourse States 

Note: The figure compares coverage limit selections for households that live “non-recourse” states versus other 
states. Orlando (2011) identifies Alaska, Arizona, California, Hawaii, Minnesota, Montana, North Dakota, 
Oklahoma, Oregon, and Washington as non-recourse states during the same time period as our data. 

A.3.4 Program Requirements 

Households are required to insure against flood if they have a federally backed mortgage and live 

in a zone in which FEMA estimates of annual flood risk probabilities exceed one percent. While 

this mortgage requirement is not consistently enforced (Dixon et al., 2006), contracts would not 

reflect household preferences if, say, lenders determined coverage limits (e.g., required that 

households fully insure their homes). 

We compare coverage limit selections for our baseline sample, which are subject to the 

federal requirement to insure, with households that participate in the program but live in a zone 

not subject to the federal requirement. Figure 8 compares the distribution of coverage limits for 

our core sample (labeled “Federal Requirement”) and the less vulnerable group (labeled “No 

Requirement”). The similar coverage limit distribution for these two groups suggests that the 

federal requirement has little effect on the coverage limit choices that insured households select.  
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Figure 8 Coverage Limits Selected in Zones Where Insurance is Sometimes Required vs. 

Voluntary 

Note: The figure compares coverage limit selections for households that live in a zone in which the federal 
government requires that households with federally backed mortgages insure with a zone in which households are 
not required to insure. 

A.3.5 Household Wealth 

We analyze the sensitivity of our findings to our wealth assumptions using a random sample of 

10,000 policies from the baseline sample. Our results in Table 5 assume that households’ wealth 

equals their replacement cost. Perhaps households are considering a much lower or higher level 

of wealth than what we assume, which explains the divergence in risk preferences across low and 

high stakes decisions that we observe. Also, while not typical of classical utility theory, the 

reference that households use for wealth might change across contexts, and so this analysis 

shows how reference wealth would need to differ to reconcile households’ deductible and 

coverage limit preferences.  

We set wealth equal to varying proportions of the replacement cost wb, ranging from 5 

percent to 10 times its value, using scalar X. To illustrate, we rewrite the coverage limit problem 

(Equation 4), replacing wealth D with Xwb 
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where U∗ is the deductible that the household selects, ] the premium, E losses with E ∈ 	 [0, wb], 

and ©(E) the household’s transformation of loss probabilities. As before, we set a lower bound 

so that wealth never falls below $1. The average replacement cost is $107,177 in our data, and so 

similar to Sydnor (2010), these wealth assumptions range from an average of about $5,000 to $1 

million across values of X. Rather than the replacement cost, the final column uses the home’s 

property as reference wealth (average value: $112,387). Property value and replacement cost 

have a Pearson correlation of 0.58. 

Table 14 shows the results. For the deductible, relative risk aversion follows the expected 

pattern: for a given insurance contract, estimates of risk aversion increase in household wealth. 

For the coverage limit, we observe that risk aversion decreases in wealth until around 50 percent 

of the replacement cost, then increases. The increase in risk aversion for low values of X results 

from households selecting large coverage limits relative to their assumed wealth. 

For each wealth assumption, we continue to find different risk attitudes for the deductible 

and coverage limit decisions. The deductible and coverage limit risk aversion estimates diverge 

as reference wealth grows. The table also shows that deductible and coverage limit preferences 

could be reconciled by allowing households to select different reference wealth for each 

decision. For example, a reference wealth of about 5 percent of the replacement cost in the 

deductible decision and around 200 percent of the replacement cost in the coverage limit 

decision would seem to result in similar relative risk aversion coefficients. While different 

reference wealth values could help overcome the differences in small and large stakes 

preferences that we observe, the expected utility models for coverage limits continue to under-

predict households’ coverage limit selections. For example, the CRRA expected utility model 

with ! = 9.33, ã = 0.149, and wealth as 200 percent of the home’s replacement cost predict an 

average coverage limit ratio of 70 percent while the actual average is 93 percent. 

Finally, using property value as reference wealth results in similar relative risk aversion 

estimates as using replacement cost (with X = 1 in both cases), though the relative risk aversion 

from the coverage limit is slightly higher (3.7 versus 2.6). 
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Table 14. Relative Risk Aversion Estimates Across Wealth Assumptions 

  Deductible  Coverage Limit 

 X ! 
Std. 

Error ã 
Std.  

Error 
Log 

Likelihood  ! 
Std. 

Error ã 
Std.  

Error 
Log 

Likelihood 
Replacement Cost 0.05 7.56 0.229 0.399 0.007 -15,199  1.42 0.002 0.121 0.002 -26,578 
 0.10 15.4 0.303 0.355 0.008 -15,719  1.29 0.002 0.11 0.001 -25,358 
 0.25 38.1 0.564 0.334 0.008 -15,951  1.16 0.002 0.145 0.002 -25,654 
 0.50 62.5 0.206 0.372 0.009 -16,242  1.12 0.003 0.206 0.003 -27,546 
 1 145 2.193 0.368 0.010 -16,368  2.62 0.035 0.230 0.007 -29,095 
 2 278 4.134 0.355 0.009 -16,280  9.33 0.057 0.149 0.003 -28,276 
 5 689 10.347 0.346 0.009 -16,222  26.8 0.163 0.147 0.003 -28,103 
 10 1,378 19.835 0.343 0.009 -16,204  55.7 0.322 0.146 0.003 -28,057 
Property Value 1 141 0.77 0.31- 0.008 -16,120  3.71 0.057 0.312 0.006 -30,194 

Note: Table shows estimated relative risk aversion for households’ deductible and coverage limit decisions using 
CRRA expected utility models. In the rows labeled “Replacement Cost” (the first eight rows), X is multiplied by the 
replacement cost so that, for example, the first row shows a risk aversion of ! = 7.56 from the deductible decision 
when household wealth is assumed to be 5 percent of the replacement cost (around $5,000 in these data). The final 
row assumes that household wealth is the home’s property value rather than the replacement cost. Random sample 
of 10,000 policies from the baseline sample. 

A.3.6 Deductible Menu Defaults 

Households are influenced by program default options in many contexts (e.g., Madrian and Shea, 

2001). We re-estimate our models excluding households who adopted the default option. Table 

15 provides the results, labeled “Active Choosers.” As we are omitting households based on their 

deductible choices, we observe larger differences in the parameter estimates from households’ 

deductible decisions. For example, we estimate relative risk aversion of 108 for these households 

versus 139 for our baseline sample. 

A.3.7 Misunderstandings About the Insurance Coverage Limit 

A large group of households (35 percent) purchased coverage limits that were higher than their 

replacement costs. Perhaps these households did not understand the contract that they were 

purchasing, thinking that they could receive larger payments than the replacement cost. Given 

this possibility, we re-estimate our model excluding these households. Table 15 provides the 

results, labeled “No Over-Insurers.”  
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Table 15 Estimates for Households That Did Not Select Their Default Deductible and 
Households That Did Not Over-Insure 

  ! ã Log Likelihood AIC BIC 
Active Choosers      
EUT CRRA Deductible 108 2.78 -43,169 43,173 86,360 

 
 (3.46)  (0.153)  

 
  

 
Coverage Limit 

 
2.56 0.188 -69,907 69,911 139,836 

 
(0.0115)  (0.00231)  

 
  

No Over-Insurers      
EUT CRRA Deductible 147 0.44 -110,901 110,905 221,824 

 
 (0.807)  (0.00461)  

 
  

 
Coverage Limit 

 
2.48 0.159 -184,929 184,933 369,880 

 
(0.00638)  ( 0.0011)  

 
  

 
Note: See Section A.3.6 and Section A.3.7 for details. Number of observations: 24,193 (“Active Choosers”) and 
66,732 (“No Over-Insurers”). 

A.3.8 Events with Small Probabilities 

We also test our main results in an area with a higher probability of flooding. Our data also 

include a population that is vulnerable to inundation as well as wave damage (dwellings located 

directly on the coast, in FEMA-defined V zones) and their average annual claim rate is 4.1 

percent, over three times higher than that of our core sample. We analyze the coverage limit 

selections for 7,113 households in this higher risk zone. Premiums are much larger for these 

households than those in our baseline sample, with a mean of $1,497 (and median of $1,201) 

compared to $540 for the baseline (Table 1). Households in this zone choose higher deductibles: 

78 percent choose one of the lowest two deductibles (versus 94 percent in the baseline sample) 

and 12 percent choose the highest deductible of $5,000 (versus 3.8 percent in the baseline 

sample). Eighty percent of these households fully insure, selecting coverage limit of at least their 

replacement cost. Table 16 provides the results. We find qualitatively similar risk aversion 

estimates in the CRRA expected utility models to those in our baseline sample. Rank dependent 

utility models continue to show overweighting of small probabilities and diminishing sensitivity 

to losses.  
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Table 16 Parameter Estimates Across Models for High Risk Zone 

 
 ! ;< ;> ã 

Log 
Likelihood AIC BIC 

EUT CRRA Deductible 139 
  

1.24 -12,525 12,529 25,068 

 
 (3.3) 

  
(0.064) 

   
 

Coverage Limit 
 

3.58 
  

0.135 -21,084 21,088 42,186 

 
(0.035) 

  
(0.0047) 

   RDU CRRA Deductible -10.2 0.087 4.2 0.401 -10,318 10,326 20,671 

 
 (0.24) (0.0015) (0.042) (0.0065) 

   
 

Coverage Limit 
 

-0.681 0.0382 0.778 0.127 -15,486 15,494 31,007 

 
(0.026) (0.0004) (0.12) (0.0017) 

   
Note: Standard errors are in parentheses. Table compares utility models describing households’ deductible and 
coverage limit decisions, comparing outcomes using the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC). For the AIC and BIC, lower values indicate better fit. The models use maximum 
likelihood estimation to fit model parameters. The parameter ã  describes the scale of model errors, following 
Equation 6. Parameters ´  show probability distortions Ω = ;< + ;>Π  where Π  is the cumulative objective 
probability. Expected utility theory (EUT) assumes that households weight outcomes based on their objective 
probabilities and so these models fix ;< = 0 and ;> = 1. We allow for probability distortions using rank dependent 
utility (RDU, Quiggin, 1982). Positive values for ;< and ;> > 1 indicate overweighting of the small probabilities in 
our data. Negative values for the coefficient of relative risk aversion ! indicate diminishing sensitivity to losses. 
Number of observations: 7,113. 

 




