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ABSTRACT

We propose a method for using instrumental variables (IV) to draw inference about causal effects 
for individuals other than those affected by the instrument at hand. Policy relevance and external 
validity turns on the ability to do this reliably. Our method exploits the insight that both the IV 
estimand and many treatment parameters can be expressed as weighted averages of the same 
underlying marginal treatment effects. Since the weights are known or identified, knowledge of 
the IV estimand generally places some restrictions on the unknown marginal treatment effects, 
and hence on the values of the treatment parameters of interest. We show how to extract 
information about the average effect of interest from the IV estimand, and, more generally, from 
a class of IV-like estimands that includes the two stage least squares and ordinary least squares 
estimands, among many others. Our method has several applications. First, it can be used to 
construct nonparametric bounds on the average causal effect of a hypothetical policy change. 
Second, our method allows the researcher to flexibly incorporate shape restrictions and 
parametric assumptions, thereby enabling extrapolation of the average effects for compliers to the 
average effects for different or larger populations. Third, our method can be used to test model 
specification and hypotheses about behavior, such as no selection bias and/or no selection on 
gain. To accommodate these diverse applications, we devise a novel inference procedure that is 
designed to exploit the convexity of our setting.   We develop uniformly valid tests that allow for 
an infinite number of IV--like estimands and a general convex parameter space. We apply our 
method to analyze the effects of price subsidies on the adoption and usage of an antimalarial bed 
net in Kenya.
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1 Introduction

In an influential paper, Imbens and Angrist (1994) provided conditions under which an

instrumental variables (IV) estimand can be interpreted as the average causal effect for

the subpopulation of compliers, i.e. for those whose treatment status would be affected

by an exogenous manipulation of the instrument. In some cases, this local average

treatment effect (LATE) is of intrinsic interest, for example if the instrument itself

represents an intervention or policy change of interest. On the other hand, in many

situations, the causal effect for individuals induced to treatment by the instrument at

hand might not be representative of the causal effect for those who would be induced

to treatment by a given policy change of interest to the researcher. In these cases, the

LATE is not the relevant parameter for evaluating the policy change.

In this paper, we show how to use instrumental variables to draw inference about

treatment parameters other than the LATE, thereby learning about causal effects for

individuals other than those affected by the instrument at hand. Policy relevance and

external validity turn on the ability to do this reliably. Our setting is the canonical pro-

gram evaluation problem with a binary treatment D ∈ {0, 1} and a scalar, real-valued

outcome, Y .1 Corresponding to the two treatment arms are unobservable potential

outcomes, Y0 and Y1. These represent the realization of Y that would have been ex-

perienced by an individual had their treatment status been exogenously set to 0 or 1.

The relationship between observed and potential outcomes is given by

Y = DY1 + (1−D)Y0. (1)

Following Heckman and Vytlacil (1999, 2005), we assume that treatment is deter-

mined by the weakly separable selection or choice equation

D = 1[ν(Z)− U ≥ 0], (2)

where ν is an unknown function, U is a continuously distributed random variable, and

Z is a vector of observable regressors. Suppose that Z is independent of (Y0, Y1, U),

perhaps conditional on some subvector X of Z. Under this assumption, the IV model

given by (1)–(2) is equivalent to the IV model used by Imbens and Angrist (1994) and

1 For discussions of heterogeneous effects IV models with multiple discrete treatments, we refer to
Angrist and Imbens (1995), Heckman, Urzua, and Vytlacil (2006), Heckman and Vytlacil (2007b), Heckman
and Urzua (2010), Kirkeboen, Leuven, and Mogstad (2016), and Lee and Salanié (2016), among others.
Heterogeneous effects IV models with continuous treatments have been considered by Angrist, Graddy, and
Imbens (2000), Chesher (2003), Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009),
Torgovitsky (2015), Masten (2015), and Masten and Torgovitsky (2016), among others.
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many subsequent authors (Vytlacil, 2002). In particular, the instrument monotonicity

condition of Imbens and Angrist (1994) is embedded in the separability of U and Z in

the latent index ν(Z)−U . An important feature of the model is that treatment effects

Y1 − Y0 can vary across individuals with the same observable characteristics, X, in a

way that depends on the unobservable component of treatment choice, U .

Our goal is to develop a method that uses a random sample of (Y,D,Z) together

with the structure of the model to draw inference about a parameter of interest, β?,

that a researcher has decided is relevant for evaluating a hypothetical policy change or

intervention. Our method builds on the work of Heckman and Vytlacil (1999, 2001a,b,c,

2005, 2007a,b). Those authors showed that many different treatment parameters can

be expressed in terms of the marginal treatment effect (MTE) function

MTE(u, x) ≡ E [Y1 − Y0|U = u,X = x] . (3)

The MTE can be interpreted as the average treatment effect indexed as a function

of an individual’s latent propensity to receive treatment, U , and conditional on other

covariates, X. Heckman and Vytlacil (2005) showed that common parameters of inter-

est can be expressed as weighted averages of the MTE function, with weights that are

either known or identified. They showed that the same is also true of the IV estimand.

These insights suggest that even if the IV estimand is not of direct interest, it

still carries information about the underlying MTE function, and hence about the

parameter of interest, β?. In particular, since the weights for both the IV estimand

and the parameter of interest are identified, knowledge of the IV estimand generally

places some restrictions on the unknown MTE function, and hence on the range of

values for β? that are consistent with the data. This can be seen by writing:

βIV︸︷︷︸
identified IV estimand

≡
∫

MTE(u)︸ ︷︷ ︸
unknown

× ωIV(u)︸ ︷︷ ︸
identified IV weights

du

β?︸︷︷︸
unknown target parameter

≡
∫

MTE(u)︸ ︷︷ ︸
unknown

× ω?(u)︸ ︷︷ ︸
identified target weights

du, (4)

where we are assuming for the moment that there are no covariates X, just for sim-

plicity. Equation (4) suggests that we can extract information about the parameter

of interest, β?, from the IV estimand, βIV, by solving an optimization problem. In

particular, β? must be smaller than

max
MTE

∫
MTE(u)ω?(u) du subject to

∫
MTE(u)ωIV(u) du = βIV, (5)
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where the maximum is taken over a set of potential MTE functions that also incor-

porates any additional a priori assumptions that the researcher chooses to maintain.

Similarly, β? must be larger than the solution to the analogous minimization problem.

The optimization problem (5) has only the single constraint involving βIV. Using

the same logic, one can also include similar constraints for other IV estimands that

correspond to different functions of Z. Upon doing so, the bounds on β? will necessarily

tighten, because each new IV estimand reduces the feasible set in (5). We show that,

more generally, any cross moment between Y and a known function of D and Z can

also be written as a weighted average of the two marginal treatment response (MTR)

functions that constitute an MTE function. We refer to this class of cross moments as

“IV–like” estimands.

The class of IV–like estimands is general enough to contain the estimands corre-

sponding to any weighted linear IV estimator. This includes, as special cases, the

two stage least squares (TSLS), optimal generalized method of moments, and ordi-

nary least squares (OLS) estimands. Each moment in this class provides a different

weighted average of the same underlying MTR functions, and therefore carries some

distinct information about the possible values of the parameter of interest, β?. We

show how these IV–like estimands can be chosen systematically so as to provide the

tightest possible bounds on β?.

Our method has several applications. First, it can be used to construct nonpara-

metric bounds on the average causal effect of a hypothetical policy change. Second, our

method enables extrapolation of the average effects for compliers to the average effects

for different or larger populations. Third, our method can be used to perform tests of

model specification and of individual behavior, such as testing the null hypotheses of

no selection bias and/or no selection on gains. In all of these applications, our method

provides a researcher the option to impose parametric and/or shape restrictions, if

desired.

To accommodate these diverse applications, we develop a novel inference framework

that allows for (but does not require) nonparametric and/or shape constrained spec-

ifications for the MTR functions, as well as an infinite number of IV–like estimands.

Our approach is specifically designed to take advantage of the convexity of our setting.

We show that it satisfies two key requirements. First, it provides uniform size control

over a wide class of distributions, a feature which is critically important in partially

identified settings (Imbens and Manski, 2004). Second, implementing our procedure

involves solving optimization problems for which there exist algorithms that provably

converge to the global optimum. The generality of our inference results make them of

independent interest, and we state them in a manner that facilitates their portability.
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We apply our method using data from Dupas (2014). This data comes from a

randomized pricing experiment for a preventative health product, conducted in Kenya.

The goal of our empirical analysis is to assess how a class of potential subsidy regimes

can promote the use of the health product, and to compare increases in usage to the

costs of subsidization. For example, we measure the effect of a policy that offers free

provision to each household as compared to a policy under which all households can

purchase the product at a given price. This comparison does not correspond to the

variation in prices induced by the experiment. As a result, it is not point identified

under standard instrumental variables assumptions. However, our method can be used

to estimate bounds on the average causal effect of this comparison. Our results show

that these bounds can be very informative.

Our paper contributes to several literatures. A large body of work is concerned

with using instrumental variables to draw nonparametric inference about treatment

parameters other than the LATE. Heckman and Vytlacil (2005) observe that if Z is

continuously distributed and has a sufficiently large impact on treatment choices D,

so that the propensity score P (D = 1|Z = z) varies over the entire [0, 1] interval, then

the MTE function is nonparametrically point identified. As a consequence, any target

parameter β? is also nonparametrically point identified. In practice, however, instru-

ments have limited support and are often discrete or even binary. For these situations,

many common target parameters of interest, such as the average treatment effect, are

not nonparametrically point identified. Analytic expressions for sharp bounds on the

average treatment effect have been derived by Manski (1989, 1990, 1994, 1997, 2003),

Balke and Pearl (1997), Heckman and Vytlacil (2001b) and Kitagawa (2009), among

others.2

Analytic expressions for bounds are useful because they provide intuition on the

source and strength of identification. However, it can be difficult to derive analytic

bounds for more complicated parameters, such as the policy relevant treatment effects

(PRTEs) studied by Heckman and Vytlacil (2001a, 2005) and Carneiro, Heckman, and

Vytlacil (2010, 2011). Our methodology is particularly useful in such settings. In ad-

dition, our method provides a unified framework for imposing shape restrictions such

as monotonicity, concavity, monotone treatment selection (Manski, 1997; Manski and

Pepper, 2000, 2009) and separability between observed and unobserved factors in the

MTE function (Brinch, Mogstad, and Wiswall, 2015). It can be especially difficult to

2 Note that Manski’s analyses did not impose the separable first stage equation (2), see Heckman and
Vytlacil (2001b) and Kitagawa (2009) for further discussion. Also related is work by Shaikh and Vytlacil
(2011), Bhattacharya, Shaikh, and Vytlacil (2012), and Mourifié (2015), who augment (2) with a similar
assumption for the potential outcomes, (Y0, Y1).
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derive analytic bounds for treatment parameters that incorporate these types of as-

sumptions in flexible combinations. In contrast, our general computational approach

allows one to flexibly adjust the parameter of interest, as well as the maintained as-

sumptions, without requiring additional identification analysis.

In addition, our paper is related to recent work that considers extrapolation in in-

strumental variables model under additional assumptions. While our method delivers

bound on the target parameter in general, these bounds nest important point identifi-

cation results as special cases. For example, our method nests existing approaches that

extrapolate by assuming no unobserved heterogeneity in the treatment effect (Heckman

and Robb, 1985; Angrist and Fernandez-Val, 2013), and those that parameterize this

unobserved heterogeneity (Heckman, Tobias, and Vytlacil, 2003; Brinch et al., 2015).3

One attractive feature of our method is that the constraints in (5) require an MTE

function to also yield the usual, nonparametrically point identified LATE. Hence, our

method allows for extrapolation to other parameters of interest without sacrificing the

internal validity of the LATE.

Our paper also relates to a literature on specification tests in settings with instru-

mental variables. To see this, suppose that (5) is infeasible, so that there does not

exist an MTE function that can both satisfy the researcher’s assumptions and lead

to the observed IV estimand. Then the model is misspecified: Either the researcher’s

assumptions are invalid, Z is not exogenous, the selection equation (2) is rejected by

the data, or some combination of the three. Balke and Pearl (1997) and Imbens and

Rubin (1997) noted that (2) has testable implications, while Machado, Shaikh, and

Vytlacil (2013), Huber and Mellace (2014), Kitagawa (2015), and Mourifié and Wan

(2016) have developed this observation into formal statistical tests. Our method builds

on the work of these authors by allowing the researcher to maintain additional assump-

tions, such as parametric and/or shape restrictions. In addition to testing whether the

model is misspecified, our method can also be used to test null hypotheses such as no

selection bias and/or no selection on gains.

Lastly, our paper contributes to a growing literature on inference for functionals of

partially identified parameters. Our inference procedure is based on a profile statistic.

Romano and Shaikh (2008) and Bugni, Canay, and Shi (2015) proposed using pro-

file statistics for moment inequality models, while Chernozhukov, Newey, and Santos

(2015) considered models with conditional moment inequalities. Our model contains

additional structure not present in moment inequality models.4 We utilize this spe-

3 For a completely different Bayesian approach to extrapolation in instrumental variables models, see
Chamberlain (2011).

4 Loosely speaking, in a moment inequality model, the inequalities are random, whereas in our context
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cial structure to develop distributional approximations that are uniformly valid under

low level conditions, and which only require the parameter space to be convex. An

important alternative to profiling test statistics has been recently proposed by Kaido,

Molinari, and Stoye (2016), who instead construct confidence regions through an ad-

justed projection algorithm. Their work, in common with many other papers in the

moment inequalities literature, focuses on finite dimensional parameters and a finite

number of moment restrictions. Both of these conditions are restrictive for our ap-

plications of interest. Our analysis is also related to Beresteanu and Molinari (2008),

Bontemps, Magnac, and Maurin (2012), and Kaido and Santos (2014), who also exploit

convexity for statistical inference.

The remainder of the paper is organized as follows. In Section 2, we present the

model and develop our method for bounding a target parameter of interest while po-

tentially maintaining additional shape constraints. In Section 3, we discuss key appli-

cations of our method, which we illustrate in Section 4 through a numerical example.

We develop our statistical inference procedure in Section 5. In Section 6, we apply our

method to study the effects of price subsidies on the adoption of preventative health

products. We provide some concluding remarks in Section 7. Proofs for all results

presented in the main text are contained in Appendices A and C.

2 Identification

Throughout this section, we assume that the researcher knows the joint distribution of

the observed data (Y,D,Z). We address issues of statistical inference in Section 5.

2.1 Model

Our analysis uses the IV model consisting of (1)–(2), which is also often referred to as

the two-sector generalized Roy model. The observable variables in the model are the

outcome Y ∈ R, the binary treatment D ∈ {0, 1}, and a vector of observables Z ∈ Rdz .

We decompose Z into Z = (X,Z0), where Z0 ∈ Rdz0 are exogenous instruments and

X ∈ Rdx are control variables. The unobservables are the potential outcomes (Y0, Y1),

and the variable U in the selection equation, which represents unobservable factors

that affect treatment choice.

We maintain the following assumptions throughout the paper.

Assumptions I

I.1 U ⊥⊥Z0|X, where ⊥⊥ denotes (conditional) statistical independence.

the inequalities are deterministic, because they arise from the specification of the parameter space.
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I.2 E[Yd|Z,U ] = E[Yd|X,U ] and E[Y 2
d ] <∞ for d ∈ {0, 1}.

I.3 U is continuously distributed, conditional on X.

Assumptions I.1 and I.2 require Z0 to be exogenous with respect to both the selection

and outcome processes. Vytlacil (2002) showed that, given I.1, the assumption that

the index of the selection equation is additively separable as in (2) is equivalent to

the assumption that Z0 affects D monotonically in the sense introduced by Imbens

and Angrist (1994). Hence, I.1 combined with (2) imposes substantive restrictions on

choice behavior. Assumption I.2 imposes an exclusion restriction that the conditional

means of Y0 and Y1 depend on Z = (Z0, X) only through the covariates X.

Assumption I.3 is a weak regularity condition that enables us to impose a standard

normalization. As is well known, equation (2) may be rewritten as

D = 1
[
FU |X(U |X) ≤ FU |X(ν(Z)|X)

]
≡ 1[Ũ ≤ ν̃(Z)], (6)

where we are using the notation FU |X(u|x) ≡ P (U ≤ u|X = x) and we have defined

Ũ ≡ FU |X(U |X) and ν̃(Z) ≡ FU |X(ν(Z)|X). Under Assumptions I.1 and I.3, Ũ is

uniformly distributed on [0, 1], conditional on Z = (Z0, X). Working with this normal-

ized model simplifies the analysis and does not affect its empirical content. Hence, we

drop the tilde and maintain throughout the paper the normalization that U itself is

distributed uniformly over [0, 1] conditional on Z. A consequence of this normalization

is that

p(z) ≡ P (D = 1|Z = z) = FU |Z(ν(z)|z) = ν(z), (7)

where p(z) is the propensity score.

It is important to observe what is not being assumed under Assumptions I. First, we

do not impose any conditions on the support of Z: Both the control (X) and exogenous

(Z0) components of Z may be either continuous, discrete and ordered, categorical, or

binary. Second, the IV model as specified here allows for rich forms of observed and

unobserved heterogeneity. In particular, it allows Y1 − Y0 to vary not only across

individuals with different values of X, but also among individuals with the same X.

The treatment D may be statistically dependent with Y0 (indicating selection bias),

or Y1 − Y0 (indicating selection on the gain), or both, even conditional on X. Third,

the model does not specify why individuals make the treatment choice that they do,

in contrast to a stylized Roy model in which D = 1[Y1 > Y0]. However, the model also

does not preclude the possibility that individuals choose treatment with full or partial

knowledge of the potential outcomes (Y0, Y1). Any such knowledge will be reflected

8



through dependence between the potential outcomes, (Y0, Y1), and the unobserved

component treatment choice, U . Assumption I does not restrict this dependence.

2.2 What We Want to Know: The Target Parameter

As observed by Heckman and Vytlacil (1999, 2005), a wide range of treatment param-

eters can be written as weighted averages of the underlying MTE function. We use a

slight generalization of their observation. Instead of working with the MTE function

(3) directly, we consider treatment parameters that can be expressed as functions of

the two marginal treatment response (MTR) functions, defined as

m0(u, x) ≡ E [Y0 | U = u,X = x] and m1(u, x) ≡ E [Y1 | U = u,X = x] . (8)

Of course, each pair m ≡ (m0,m1) of MTR functions generates an associated MTE

function MTE(u, x) ≡ m1(u, x)−m0(u, x). One benefit of working with MTR functions

instead of MTE functions is that it allows us to consider parameters that weight m0

and m1 asymmetrically. Another benefit is that it allows the researcher to impose

assumptions on m0 and m1 separately.

We assume that the researcher is interested in a target parameter β? that can be

written for any candidate pair of MTR functions m ≡ (m0,m1) as

β? ≡ E
[∫ 1

0
m0(u,X)ω?0(u, Z) dµ?(u)

]
+ E

[∫ 1

0
m1(u,X)ω?1(u, Z) dµ?(u)

]
, (9)

where ω?0 and ω?1 are identified weighting functions, and µ? is an integrating measure

that is chosen by the researcher and usually taken to be the Lebesgue measure on [0, 1].

For example, to set β? to be the average treatment effect (ATE), observe that

E[Y1 − Y0] = E[m1(U,X)−m0(U,X)] = E

[∫ 1

0
m1(u,X)du

]
− E

[∫ 1

0
m0(u,X)du

]
,

take ω?1(u, z) = 1, ω?0(u, z) = −1, and let µ? be the Lebesgue measure on [0, 1]. Simi-

larly, to set β? to be the ATE conditional on X lying in some known set X ?, take

ω?1(u, z) ≡ ω?1(u, x, z0) =
1[x ∈ X ?]
P (X ∈ X ?)

,

ω?0(u, z) = −ω?1(u, z), and let µ? be as before. The resulting target parameter is then

the population average effect of assigning treatment randomly to every individual with

covariates x ∈ X ?, assuming full compliance.

9



Table 1: Weights for a Variety of Target Parameters

Weights

Target Parameter Expression ω0(u, z) ≡ ω0(u,x, z0) ω1(u, z) ≡ ω1(u,x, z0) Measure µ?

Average Untreated Outcome E[Y0] 1 0 Leb.[0, 1]

Average Treated Outcome E[Y1] 0 1 Leb.[0, 1]

Average Treatment Effect

(ATE)
E[Y1 − Y0] −1 1 Leb.[0, 1]

Average Treatment Effect

(ATE) given X ∈ X? E[Y1 − Y0|X ∈ X?] −ω?
1 (u, z)

1[x ∈ X?]

P (X ∈ X?)
Leb.[0, 1]

Average Treatment on the

Treated (ATT)
E[Y1 − Y0|D = 1] −ω?

1 (u, z)
1[u ≤ p(z)]
P (D = 1)

Leb.[0, 1]

Average Treatment on the

Untreated (ATU)
E[Y1 − Y0|D = 0] −ω?

1 (u, z)
1[u > p(z)]

P (D = 0)
Leb.[0, 1]

Marginal Treatment Effect at u E[Y1 − Y0|U = u] -1 1 Dirac(u)

Local Average Treatment Effect

for U ∈ [u, u] (LATE(u, u))
E[Y1 − Y0|U ∈ [u, u]] −ω?

1 (u, z)
1[u ∈ [u, u]]

(u− u)
Leb.[0, 1]

Policy Relevant Treatment

Effect (PRTE) for new policy

(p?, Z?)

E[Y ?]− E[Y ]

E[D?]− E[D]
−ω?

1 (u, z)
1[u ≤ p?(z?)]− 1[u ≤ p(z)]

E[p?(Z?)]− E[p(Z)]
Leb.[0, 1]

Additive PRTE with magnitude

α

PRTE with Z? = Z and

p?(z) = p(z) + α
−ω?

1 (u, z)
1[u ≤ p(z) + α]− 1[u ≤ p(z)]

α
Leb.[0, 1]

Proportional PRTE with

magnitude α

PRTE with Z? = Z and

p?(z) = (1 + α)p(z)
−ω?

1 (u, z)
1[u ≤ (1 + α)p(z)]− 1[u ≤ p(z)]

αE[p(Z)]
Leb.[0, 1]

PRTE for an additive α shift of

the jth component of Z

PRTE with Z? = Z + αej and

p?(z) = p(z)
−ω?

1 (u, z)
1[u ≤ p(z + αej)]− 1[u ≤ p(z)]

E[p(Z + αej)]− E[p(Z)]
Leb.[0, 1]

Sum of two quantities β?
A, β?

B

with common measure µ? β?
A + β?

B
ω?
A,0(u, z) + ω?

B,0(u, z) ω?
A,1(u, z) + ω?

B,1(u, z) Common µ?

Average Selection Bias E[Y0|D = 1]− E[Y0|D = 0]
1[u ≤ p(z)]
P (D = 1)

−
1[u > p(z)]

P (D = 0)
0 Leb.[0, 1]

Average Selection on the Gain E[Y1−Y0|D = 1]−E[Y1−Y0|D = 0] −ω?
1 (u, z)

1[u ≤ p(z)]
P (D = 1)

−
1[u > p(z)]

P (D = 0)
Leb.[0, 1]
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In Table 1, we provide formulas for the weights ω?0 and ω?1 that correspond to a

variety of different treatment parameters. Any of these can be taken to be the target

parameter β?. Examples include (i) the average treatment effect for the treated (ATT),

i.e. the average impact of treatment for individuals who actually take the treatment;

(ii) the average treatment effect for the untreated (ATU), i.e. the average impact of

treatment for individuals who do not take treatment; (iii) LATE[u, u], i.e. the average

treatment effect for individuals who would take the treatment if their realization of

the instrument yielded p(z) = u, but not if it yielded p(z) = u; and (iv) the policy

relevant treatment effect (PRTE), i.e. the average impact on Y (either gross or per

net individual affected) due to a change from the baseline policy to some alternative

policy.

For most of the parameters in Table 1, the integrating measure µ? is taken to

be Lebesgue measure on [0, 1]. However, researchers are sometimes interested in the

MTE function itself. For example, Carneiro et al. (2011) and Maestas, Mullen, and

Strand (2013) both report estimates of the MTE function for various values of u. Our

specification of β? accommodates this by replacing µ? with the Dirac measure (i.e.,

a point mass) at some specified point u and taking ω?0(u, z) = −ω?1(u, z) = −1. The

resulting target parameter is the MTE function averaged over X, i.e. E[m(u,X)].

2.3 What We Know: IV–Like Estimands

A key point for our method is that a set of identified quantities can also be written

in a form similar to (9). Consider, for example, the IV estimand that results from

using Z as an instrument for D in a linear instrumental variables regression that

includes a constant term, but which does not include any other covariates X. Assuming

Cov(D,Z) 6= 0, this estimand is given by

βIV ≡
Cov(Y,Z)

Cov(D,Z)
. (10)

For example, if Z ∈ {0, 1} is binary, then βIV reduces to the standard Wald estimand

βIV =
E [Y | Z = 1]− E [Y | Z = 0]

E [D | Z = 1]− E [D | Z = 0]
. (11)

Heckman and Vytlacil (2005) show that βIV can also be written in the form (9) as a

weighted average of the MTE function. This observation forms the foundation for our

intuition that useful information about β? can be extracted from knowledge of βIV.

The next proposition shows that, more generally, any cross moment of Y with a known

or identified function of (D,Z) ≡ (D,X,Z0) can also be expressed as the weighted sum
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of the two MTR functions, m0 and m1. We refer to such cross moments as IV–like

estimands.

Proposition 1. Suppose that s : {0, 1}×Rdz 7→ R is a known or identified function of

(D,Z) that is measurable and has a finite second moment. We refer to such a function

s as an IV–like specification and to βs ≡ E[s(D,Z)Y ] as an IV–like estimand. If

(Y,D) are generated according to (1) and (2) under Assumptions I, then

βs = E

[∫ 1

0
m0(u,X)ω0s(u, Z) du

]
+ E

[∫ 1

0
m1(u,X)ω1s(u, Z) du

]
, (12)

where ω0s(u, Z) ≡ s(0, Z)1[u > p(Z)]

and ω1s(u, Z) ≡ s(1, Z)1[u ≤ p(Z)].

The weights in Proposition 1 can be shown to reduce to the weights for βIV derived

by Heckman and Vytlacil (2005) by taking

s(d, z) ≡ s(d, x, z0) =
z0 − E[Z0]

Cov(D,Z0)
, (13)

which is an identified function of D (trivially) and Z. As we elaborate further in

Appendix B, Proposition 1 applies more broadly to include any well-defined weighted

linear IV estimand that uses some function of D and Z as included and excluded

instruments for a set of endogenous variables also constructed from D and Z.5 For

example, the ordinary least squares (OLS) estimand corresponds to taking s to be

s(d, z) =
d− E[D]

Var(D)
.

More generally, any subvector of the TSLS or optimal GMM estimands can also be

written as an IV–like estimand. Table 2 contains expressions for some notable IV–like

estimands.

2.4 From What We Know to What We Want to Know

We now show how to extract information about the target parameter β? from the gen-

eral class of IV-like estimands introduced in Section 2.3. Let S denote some collection

of IV–like specifications (i.e. functions s : {0, 1}×Rdz 7→ R) chosen by the researcher,

that each satisfy the conditions set out in Proposition 1. Corresponding to each s ∈ S
is an IV–like estimand βs ≡ E[s(D,Z)Y ]. We assume that the researcher has restricted

5 The phrases “included” and “excluded” instrument are meant in the sense typically introduced in
textbook treatments of the linear IV model without heterogeneity.
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the pair of MTR functions m ≡ (m0,m1) to lie in some admissible set M, which incor-

porates any a priori assumptions that the researcher wishes to maintain about m, such

as parametric or shape restrictions. Our goal is to characterize bounds on the values

of the target parameter β? that could have been generated by MTR functions m ∈M
that also could have delivered the collection of identified IV–estimands through (12).

To this end, we denote the weighting expression in Proposition 1 as a linear map

Γs :M 7→ R, defined for any IV–like specification s ∈ S as

Γs(m) ≡ E
[∫ 1

0
m0(u,X)ω0s(u, Z) du

]
+ E

[∫ 1

0
m1(u,X)ω1s(u, Z) du

]
, (14)

where we recall that ω0s(u, z) ≡ s(0, z)1[u > p(z)] and ω1s(u, z) ≡ s(1, z)1[u ≤ p(z)].

By Proposition 1, if (Y,D) are generated according to (1) and (2) under Assumptions

I, then the MTR functions m ≡ (m0,m1) must satisfy Γs(m) = βs for every IV–like

specification s ∈ S. As a result, m must lie in the set

MS ≡ {m ∈M : Γs(m) = βs for all s ∈ S} .

The target parameter, β?, can also be expressed as an identified linear map of the

MTR functions. From (9), we define this map as Γ? :M 7→ R, with

Γ?(m) ≡ E
[∫ 1

0
m0(u,X)ω?0(u, Z)dµ?(u)

]
+ E

[∫ 1

0
m1(u,X)ω?1(u, Z)dµ?(u)

]
. (15)

It follows that if (Y,D) is generated according to (1) and (2) under Assumptions I,

then the target parameter must belong to the identified set

B?S ≡ {b ∈ R : b = Γ?(m) for some m ∈MS}.

Intuitively, B?S is the set of values for the target parameter that could have been

generated by MTR functions that are consistent with the IV–like estimands. The next

result shows that if M is convex, then B?S is an interval that can be characterized by

solving two convex optimization problems.

Proposition 2. Suppose that M is convex. Then either MS is empty, and hence B?S
is empty, or else the closure of B?S (in R) is equal to the interval [β?, β

?
], where

β? ≡ inf
m∈MS

Γ?(m) and β
? ≡ sup

m∈MS
Γ?(m). (16)
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Table 2: Notable IV–Like Estimands

Estimand βs s(D,Z) Notes

IV slope
Cov(Y, Z0)

Cov(D,Z0)

Z0 − E[Z0]

Cov(D,Z0)
Z0 scalar

IV (jth component) e′jE[Z̃X̃′]−1E[Z̃Y ] e′jE[Z̃X̃′]−1Z̃

X̃ ≡ [1, D,X′]′

Z̃ ≡ [1, Z0, X′]′

Z0 scalar

OLS slope
Cov(Y,D)

Var(D)

D − E[D]

Var(D)
—

OLS (jth component) e′jE[X̃X̃′]−1E[X̃Y ] e′jE[X̃X̃′]−1X̃ X̃ ≡ [1, D,X′]′

TSLS (jth component) e′j

(
ΠE[Z̃X̃′]

)−1 (
ΠE[Z̃Y ]

)
e′j(ΠE[Z̃X̃′])−1ΠZ̃

Π ≡ E[X̃Z̃′]E[Z̃Z̃′]−1

Included variables X̃

Instruments Z̃

2.5 Sharpness and Point Identification

The set MS consists of all MTR functions in M that are consistent with the IV–like

estimands chosen by the researcher. However, MS does not necessarily exhaust all of

the information available in the data. In particular, MS may contain MTR functions

that would be ruled out if S were expanded to include additional IV–like specifications.

If this is the case, then incorporating these further specifications could shrink B?S .

We examine this issue by considering the conditional means of Y that would be

generated through (1) and (2) under Assumptions I by a given MTR pairm = (m0,m1).

Whenever 0 < p(Z) < 1, these conditional means can be written as

E[Y |D = 0, Z] = E[Y0|U > p(Z), Z] =
1

(1− p(Z))

∫ 1

p(Z)
m0(u,X) du, (17)

and E[Y |D = 1, Z] = E[Y1|U ≤ p(Z), Z] =
1

p(Z)

∫ p(Z)

0
m1(u,X) du. (18)

MTR pairs that (almost surely) satisfy (17)–(18) are compatible with the observed

conditional means of Y . Our next result shows that any such MTR pair will be inMS
for any choice of S. Moreover, we show that if S is chosen correctly, then MS will

contain only MTR pairs that are compatible with the observed conditional means of

Y .
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Proposition 3. Suppose that every m ∈ M satisfies E[
∫ 1

0 md(u,X)2du] < ∞ for

d ∈ {0, 1}. If S contains functions that satisfy the conditions of Proposition 1, then

{m ∈M : m satisfies (17) and (18) almost surely} ⊆ MS . (19)

Moreover, suppose that S ≡ {s(d, z) = 1[d = d′]f(z) for (d′, f) ∈ {0, 1} × F}, where

F is a collection of functions. If the linear span of F is norm dense in L2(Z) ≡ {f :

Rdz 7→ R s.t. E[f(Z)2] <∞}, then

{m ∈M : m satisfies (17) and (18) almost surely} =MS . (20)

Proposition 3 shows that if S is a sufficiently rich class of functions, then MS
is sharp in the sense of being the smallest subset of M that is compatible with the

observed conditional means of Y . It follows that B?S is also the smallest set of values

for the target parameter that are consistent with both the conditional means of Y and

the assumptions of the model. For example, if D ∈ {0, 1} and Z ∈ {0, 1}, then (20)

holds if we take F = {1[z = 0], 1[z = 1]}, so that

S = {1[d = 0, z = 0], 1[d = 0, z = 1], 1[d = 1, z = 0], 1[d = 1, z = 1]} .

The information contained in the corresponding IV–like estimands is the same as that

contained in the coefficients of a saturated regression of Y on D and Z. More generally,

if Z is continuous, then (20) can be satisfied by taking F to be certain parametric

families of functions of Z. For example, if Z ∈ Rdz , then one such family is the set of

half spaces, F = {1[z ≤ z′] : z′ ∈ Rdz}. Other examples can be found in e.g. Bierens

(1990) and Stinchcombe and White (1998).

While we view partial identification as the standard case, we emphasize that our

analysis does not preclude point identification. Letting |S| denote the cardinality of S,

notice that the restrictions

Γs(m) = βs for all s ∈ S (21)

constitute a linear system of |S| equations in terms of m. Thus, if M is finite dimen-

sional, then point identification of the MTR functions is determined by the rank of this

linear system. Note that if the MTR functions are point identified, then any target

parameter β? is also point identified.

These observations about point identification are implicit in the work of Brinch et al.

(2015). Those authors show that ifM is restricted to be a set of polynomials, then point
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identification of the MTR functions can be established by considering regressions of Y

on p(Z) and D. Their results allow for Z to be discrete, but require the specification of

M to be no richer than the support of p(Z). For example, if Z is binary, their results

require M to only contain MTR pairs that are linear in u.6 In contrast, our results

allow the researcher to specify M independently of the data.

In some situations, point identification of the target parameter, β?, can also be

established when both |S| andM are infinite dimensional. Indeed, relationships similar

to (17) and (18) have been used previously to establish point identification of the

MTE function. For example, Heckman and Vytlacil (1999, 2001c, 2005) and Carneiro

et al. (2010, 2011) show that if Z0 is continuously distributed, then the MTE is point

identified over the support of the propensity score. As a consequence, any target

parameter β? whose weights have support contained within the interior of the support

of the propensity score will also be point identified. Proposition 3 implies that the same

is true in our framework if S is chosen to be a sufficiently rich collection of functions.

2.6 Nonparametric Shape Restrictions

Our method allows researchers to easily incorporate nonparametric shape restrictions

into their specification of the MTR functions. These restrictions can be imposed either

on the MTR functions m = (m0,m1) or directly on the MTE function m1 − m0.

For example, to impose the monotone treatment response assumption considered by

Manski (1997), i.e. that Y1 ≥ Y0 with probability 1, the set M should be specified

to only contain MTR pairs for which m1 −m0 is non-negative. Similarly, one could

assume that m(·, x) is weakly decreasing for every x. This restriction would reflect the

assumption that those more likely to select into treatment (those with small realizations

of U) are also more likely to have larger gains from treatment. This is similar to the

monotone treatment selection assumption of Manski and Pepper (2000). Maintaining

combinations of assumptions simultaneously (e.g. both monotone treatment response

and monotone treatment selection) is simply a matter of imposing both restrictions on

M at the same time.

Another type of nonparametric shape restriction that can be used to tighten the

bounds is separability between the observed (X) and unobserved (U) components.

Although restrictive, separability of this sort is standard (often implicit) in applied

work using instrumental variables. In our framework, separability between X and U

can be imposed by restricting M to only contain MTR pairs (m0,m1) that can be

6 Recently, Kowalski (2016) has applied the linear case, studied in depth by Brinch et al. (2015), to
analyze the Oregon Health Insurance Experiment.
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decomposed as

md(u, x) = mU
d (u) +mX

d (x) for d = 0, 1, (22)

where mU
d and mX

d are some other functions that can themselves satisfy some shape

restrictions. This type of separability implies that the slopes of the MTR functions

with respect to u do not vary with x. Alternatively, it is straightforward to interact u

and x fully or partially if complete separability is viewed as too strong of a restriction.

Specifications like (22) can also be used to mitigate the curse of dimensionality, for

example by specifying mX
d (x) to be a linear function of x.

2.7 Computing the Bounds

Proposition 2 provides convenient numerical methods for computing bounds on the

target parameter. In this section, we focus on a particularly tractable computational

approach in which we replace the possibly infinite dimensional admissible set of func-

tions M by a finite dimensional subset Mfd ⊆ M. The upper bound for the target

parameter with this finite dimensional subset is given by

β
?
fd ≡ sup

m∈Mfd

{Γ?(m) s.t. Γs(m) = βs for all s ∈ S}, (23)

while β?
fd

is defined as the analogous infimum.

Suppose that we specify Mfd as the finite linear basis

Mfd ≡

{
(m0,m1) ∈M : md(u, x) =

Kd∑
k=1

θdkbdk(u, x) for d ∈ {0, 1}

}
, (24)

where {bdk}Kdk=1 are known basis functions and θ ≡ (θ′0, θ
′
1)′ parameterizes functions in

Mfd with θd ≡ (θd1, . . . , θdKd)
′. The admissible set M generates an admissible set

Θ ≡

{
(θ0, θ1) ∈ RK0 ×RK1 :

(
K0∑
k=1

θ0kb0k,

K1∑
k=1

θk1b1k

)
∈M

}
,

for the finite dimensional parameter θ. Using the linearity of the mappings Γ? and Γs
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defined in (14) and (15), we write (23) as

β
?
fd ≡ sup

(θ0,θ1)∈Θ

K0∑
k=1

θ0kΓ
?
0(b0k) +

K1∑
k=1

θ1kΓ
?
1(b1k)

s.t.

K0∑
k=1

θ0kΓ0s(b0k) +

K1∑
k=1

θ1kΓ1s(b1k) = βs for all s ∈ S, (25)

where we have decomposed Γ?(m) ≡ Γ?0(m0) + Γ?1(m1) with

Γ?d(md) ≡ E
[∫ 1

0
md(u,X)ω?d(u, Z)dµ?(u)

]
,

and similarly for the map Γs. If Θ is a polyhedral set, then (25) is a linear program.

Linear programs are used routinely in empirical work involving quantile regressions, e.g.

Abadie, Angrist, and Imbens (2002), in part because they can be solved quickly and

reliably. Whether a given shape restriction on M translates into Θ being polyhedral

depends on the basis functions. In Appendix F, we discuss the Bernstein polynomial

basis, which is particularly attractive in this regard.

In some situations, M can be replaced by a finite dimensional set Mfd without

affecting the bounds on the target parameter, i.e. while ensuring β
?
fd = β

?
. This

can be interpreted as an exact computational approach for determining nonparametric

bounds on the target parameter. For example, suppose that Z has discrete support

and that the weight functions ω?d(u, z) for the target parameter are piecewise constant

in u. Then define a partition {Aj}Jj=1 of [0, 1] such that ω?d(u, z) and 1[u ≤ p(z)] are

constant (as functions of u) on each Aj .7 Let {x1, . . . xL} denote the support of X and

then use

bjl(u, x) ≡ 1[u ∈ Aj , x = xl] for 1 ≤ j ≤ J and 1 ≤ l ≤ L (26)

as the basis functions employed in the construction of Mfd in (24), with Kd = JL.

The basis formed by the functions defined in (26) is known as a constant spline, or a

Haar basis.

The element of the Haar basis that provides the best mean squared error approxi-

mation to a given function md(u, x) can be shown to be

Πmd(u, x) ≡
J∑
j=1

L∑
l=1

E[md(U,X)|U ∈ Aj , X = xl]bjl(u, x). (27)

7 For example, take A1 ≡ [u0, u1] and Aj ≡ (uj−1, uj ] for 2 ≤ j ≤ J , where {uj}Jj=0 are the ordered
unique elements of the union of {0, 1}, supp{p(Z)}, and the discontinuity points of {ω?

d(·, z) : d ∈ {0, 1}, z ∈
supp{Z}}.

18



This corresponds to taking θd(j,l) = E[md(U,X)|U ∈ Aj , X = xl] for an element of

(24), with the slight abuse of notation that k = (j, l). The next proposition uses (27)

to show that the Haar basis, despite being a finite basis, reproduces nonparametric

bounds on the target parameter.

Proposition 4. Suppose that Z has discrete support and that ω?d(u, z) are piecewise

constant in u. Let {Aj}Jj=1 be a partition of [0, 1] such that ω?d(u, z) and 1[u ≤ p(z)]

are constant on u ∈ Aj for any z. Suppose that Mfd ⊆M and that (Πm0,Πm1) ∈M
for every (m0,m1) = m ∈M. Then β

?
fd = β

?
and β?

fd
= β?.

Proposition 4 shows that one can solve the infinite dimensional problems defining

β? and β
?

exactly by solving (23) with a Haar basis for Mfd. Besides requiring Z to

have discrete support, the result also requires (Πm0,Πm1) ∈ M for every m ∈ M,

as well as Mfd ⊆ M. Intuitively, this requires an MTR pair formed from the Haar

basis to itself be admissible, as well as to maintain the restrictions encoded inM. For

certain restrictions, such as boundedness or monotonicity, this is immediately implied

by (27). We demonstrate the use of the Haar basis in both the numerical illustration

in Section 4 and the empirical application in Section 6.

3 Applications of the Method

3.1 Partial Identification of Policy Relevant Treatment Effects

The policy relevant treatment effect (PRTE) is the mean effect of changing from a

baseline policy to an alternative policy that provides different incentives to participate

in treatment (Heckman and Vytlacil, 1999, 2005). In many situations, this policy

comparison does not directly correspond to the variation in treatment induced by the

instrument, so the PRTE is not point identified. In such cases, researchers can use our

method to construct bounds on the PRTE.

To see how one can use our method to draw inference about PRTEs, consider a

policy a that operate by changing factors that affect an agent’s treatment decision.

We follow Heckman and Vytlacil (1999, 2005) in assuming that a has no direct effect

on the potential outcomes (Y0, Y1), and in particular that it does not affect the set M
of admissible MTR functions. This assumption is similar to the exclusion restriction.

The policy can then be summarized by a propensity score and instrument pair (pa, Za).

Treatment choice under policy a is given by

Da ≡ 1[U ≤ pa(Za)],
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where U is the same unobservable term as in the selection equation for the status quo

policy, D. The outcome of Y that would be observed under the new policy is therefore

Y a = DaY1 + (1−Da)Y0.

The PRTE of policy a1 relative to another policy a0 is defined as

PRTE ≡ E[Y a1 ]− E[Y a0 ]

E[Da1 ]− E[Da0 ]
(28)

where we assume that E[Da1 ] 6= E[Da0 ].8

In Table 1, we provide weights ω?0 and ω?1 that can be used to express the PRTE as

a target parameter β? with the form given in (9) for different policies a0 and a1. The

choice of weights depends on the policies being compared. The way in which different

policy comparisons translate into different weights is illustrated in Table 1 through the

three specific examples considered by Carneiro et al. (2011). Each of these comparisons

is between a hypothetical policy a1 and the status quo policy a0, the latter of which

is characterized by the pair (pa0 , Za0) = (p, Z) observed in the data. The comparisons

are: (i) an additive α change in the propensity score, i.e. pa1 = p+α; (ii) a proportional

(1 +α) change in the propensity score, i.e. pa1 = (1 +α)p; and (iii) an additive α shift

in the distribution the jth component of Z, i.e. Za1 = Z + αej , where ej is the jth

unit vector. The first and second of these represent policies that increase (or decrease)

participation in the treatment by a given amount α or a proportional amount (1 +α).

The third policy represents the effect of shifting the distribution of a variable that

impacts treatment choice. In all of these definitions, α is a quantity that could either

be hypothesized by the researcher, estimated from some auxiliary choice model, or

predicted from the estimated p(Z) under parametric assumptions.

After choosing the weights that correspond to the policy comparison of interest, the

procedure in Section 2.7 can be used to estimate bounds for the PRTE. These bounds

can be fully nonparametric, but they can also incorporate a priori parametric or shape

restrictions if desired. Our statistical inference results in Section 5 allow us to build

confidence intervals for the target parameter. In Section 6, we apply these insights to

evaluate the PRTEs of alternative subsidy regimes for malaria bed nets.

8 If this assumption is concerning, one can also define the PRTE as E[Y a1 ]−E[Y a0 ], see Heckman and
Vytlacil (2001a) or pp. 380–381 of Carneiro et al. (2010). Our approach directly applies to this definition
as well.
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3.2 Extrapolation of Local Average Treatment Effects

Imbens and Angrist (1994) showed that the LATE is point identified under the assump-

tions considered in this paper. As argued by Imbens (2010, pp. 414–415), it is desirable

to report both the LATE, with its high degree of internal validity, but possibly limited

external validity, and extrapolations of the LATE to larger or different populations.

We now show how to use our method to perform this type of extrapolation, thereby

allowing researchers to assess the sensitivity of a given LATE estimate to an expansion

(or contraction) of the complier subpopulation.

To extrapolate the LATE, it is useful to connect the LATE parameter to the PRTE.

To see the relationship, suppose that there are no covariates X, i.e. Z = Z0, and

suppose that Z0 is binary. Consider the PRTE that results from comparing a policy

a1 under which every agent receives Z = 1 against a policy a0 under which every agent

receives Z = 0. Choices under these policies are

Da0 ≡ 1[U ≤ p(0)] and Da1 ≡ 1[U ≤ p(1)],

where p(1) > p(0) are the propensity score values in the observed data. The PRTE for

this policy comparison is

E[Y a1 ]− E[Y a0 ]

E[Da1 ]− E[Da0 ]
=
E [(Da1 −Da0)(Y1 − Y0)]

p(1)− p(0)
= E [Y1 − Y0 | U ∈ (p(0), p(1)]] , (29)

where we used Da1−Da0 = 1[U ∈ (p(0), p(1)]]. The right-hand side of (29) is precisely

the LATE as defined by Imbens and Angrist (1994).

Extrapolation of the LATE amounts to changing p(0), p(1), or both. For example,

suppose that the researcher wants to examine the sensitivity of the LATE to an ex-

pansion of the complier subpopulation that includes individuals with lower willingness

to pay for treatment. This sensitivity check corresponds to shifting p(1) to p(1) + α

for α > 0. Arguing as in (29), the extrapolated LATE can be shown to be

PRTE(α) = E [Y1 − Y0 | U ∈ (p(0), p(1) + α]] . (30)

This PRTE is still a LATE as defined by Heckman and Vytlacil (2005), but one that

is not point identified by the IV estimand unless α = 0.

While PRTE(α) is not point identified, we show in Table 1 that it can be expressed

as a target parameter β? in the form (9). As a result, we can use our approach to

21



bound PRTE(α). To gain some intuition into such approach, we write PRTE(α) as

PRTE(α)

=

(
p(1)− p(0)

α+ p(1)− p(0)

)
LATE +

(
α

α+ p(1)− p(0)

)∫ p(1)+α

p(1)
{m1(u)−m0(u)} du,

where LATE is the usual point identified LATE in (29). This decomposition shows

that the conclusions that can be drawn about PRTE(α) depend on what can be said

about m1(u) − m0(u) for u ∈ [p(1), p(1) + α]. Therefore, restrictions on the set M
of admissible MTR pairs translate directly into restrictions on the possible values of

PRTE(α). For example, if we possess an a priori bound on the support of Y , e.g. Y is

binary, then even nonparametric bounds can be informative about PRTE(α).

Our method allows a researcher to formally and transparently balance their de-

sire for robust assumptions against their desire for broader extrapolation. Stronger

assumptions are reflected through a more restrictive set of admissible MTR pairs, M.

Less ambitious extrapolations are reflected through smaller values of α. For a given α,

more restrictive specifications ofM yield smaller bounds, while for a given specification

of M, smaller values of α also yield smaller bounds. Both margins can be smoothly

adjusted, with point identification obtained as a limiting case as α→ 0. We illustrate

this tradeoff in our numerical example in Section 4.

3.3 Testable Implications

If the set MS is empty, then the model is misspecified: There does not exist a pair of

MTR functions m that is both admissible (m ∈ M), and which could have generated

the observed data. If M is an unrestricted class of functions, then this is attributable

to a falsification of selection equation (2) together with Assumptions I. The testable

implications of these assumptions for the IV model are well-known, see e.g. Balke and

Pearl (1997), Imbens and Rubin (1997) or Kitagawa (2015). On the other hand, if

other restrictions have been placed onM, then misspecification could be due either to

the failure of Assumptions I, or the specification of M, or both. Our inference results

in Section 5 provide a formal test of the null hypothesis that MS is nonempty.

This test can also be used to test a variety of null hypotheses about the underlying

MTR functions. For example, Table 1 reports the weights that correspond to the

quantity E[Y0|X,D = 1] − E[Y0|X,D = 0]. This quantity is often described as a

measure of selection bias, since it captures the extent to which average untreated

outcomes differ solely on the basis of treatment status, conditional on observables.

The weights provide a linear mapping β?sel(m) for the amount of selection bias under
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an MTR pair m. Suppose that we restrict M to contain only MTR pairs m for

which β?sel(m) = 0. Then rejecting the null hypothesis that MS is nonempty could be

interpreted as rejecting the hypothesis that there is no selection bias, at least as long

as Assumptions I and any other restrictions on M are not deemed suspect.

Alternatively, one might be interested in testing the joint hypothesis that there is

no selection on unobservables; that is, no selection bias and no selection on the gain.

Weights for a typical measure of selection on the gain are provided in Table 1. These

too provide a linear mapping β?gain on the set of MTR pairs M. The hypothesis that

there is no selection on unobservables would be rejected if we were to reject the null

hypothesis that MS is nonempty when M is restricted to contain only MTR pairs m

for which β?sel(m) = β?gain(m) = 0.

4 Numerical Illustration

In this section, we illustrate how to use our method to construct nonparametric bounds

on treatment parameters of interest, and how shape restrictions and parametric as-

sumptions can be used to tighten these bounds.

4.1 The Data Generating Process

We consider a simple example with a trinary instrument, Z ∈ {0, 1, 2}, with P (Z =

0) = .5, P (Z = 1) = .4, and P (Z = 2) = .1. The propensity score is specified as

p(0) = .35, p(1) = .6, and p(2) = .7. We take the outcome Y ∈ {0, 1} to be binary and

restrict M to contain only MTR pairs that are each bounded between 0 and 1. The

data is generated using the MTR functions

m0(u) = .6b20(u) + .4b21(u) + .3b22(u)

and m1(u) = .75b20(u) + .5b21(u) + .25b22(u), (31)

where b2k is the kth Bernstein basis polynomial of degree 2.9

4.2 IV Estimand, Weights, and Parameter of Interest

Figure 1 contains two plots with two vertical axes. The left plot is for d = 0, while

the right plot is for d = 1, and both vertical axes apply to both plots. The left axis

measures weight functions, which are indicated with colored curves and, for the sake of

clarity, are not drawn over regions where they are zero. The blue weights correspond

9 Appendix F contains the definition of the Bernstein polynomials, along with a discussion of some useful
properties of the Bernstein polynomial basis.
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Figure 1: MTRs Used in the Data Generating Process (DGP)
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to ωds when s(D,Z) is taken to be (13) so that βs is the IV slope coefficient estimand

(10) from using Z as an instrument for D. These weights are positive between the

smallest and largest values of the propensity score, i.e. from p(0) = .35 to p(2) = .7,

and they change value at p(1) = .6.

As shown by Imbens and Angrist (1994), three LATEs are nonparametrically point

identified in this setting: LATE(.35, .6),LATE(.35, .7) and LATE(.6, .7). Suppose that

the researcher wants to examine the sensitivity of these average causal effects to an

expansion of the complier subpopulation. Then they might be interested in the target

parameter

LATE(.35, .9) ≡ E [Y1 − Y0|U ∈ [.35, .9]] .

The weights for this parameter are drawn in red in Figure 1. As shown in Table 1, the

weights are constant over [.35, .9] with magnitude (.9− .35)−1 ≈ 1.81.

The right vertical axis in Figure 1 measures MTR functions for both the d = 0 and

d = 1 plots. The MTR functions that were used to generate the data, i.e. (31), are

plotted in black. These MTR functions imply a value of approximately .074 for the IV

slope coefficient. By Proposition 1, this value is equal to the integral of the product

of the black and blue curves, summed over the d = 0 and d = 1 plots. Similarly,

these MTR function imply a value of approximately .046 for LATE(.35, .9) through an

analogous sum of integrals using the red curves.
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Figure 2: Maximizing MTRs When Using Only the IV Slope Coefficient

Nonparametric bounds: [-0.421,0.500]
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4.3 Bounds on the Target Parameter

We now illustrate how the researcher can extract information about the target param-

eter LATE(.35, .9) from the class of IV-like estimands introduced in Section 2.3.

Figure 2 is like Figure 1, except the MTR functions that are plotted yield the

nonparametric upper bound on LATE(.35, .9). The nonparametric upper bounds are

computed using the Haar basis discussed in Section 2.7.10 The pair m ≡ (m0,m1) in

this plot is generated by trying to make m1 as large as possible, and m0 as a small

as possible, on the support of the red weights, while still yielding a value of .074 for

the IV slope coefficient determined by the blue weights. These MTR functions imply

a value of .5 for the target parameter LATE(.35, .9), which is the largest value that is

consistent with the IV slope estimand. There are multiple pairs of MTR functions with

this property. In particular, notice that neither weights are positive over the region

[0, .35], so that MTR pairs may be freely adjusted on this region without changing the

implied values of the IV slope estimand or LATE(.35, .9). The lower bound of −.421

indicated in Figure 2 is obtained through an analogous minimization problem that

follows the same logic as the upper bound.

Figure 3 repeats this exercise while including a second IV–like estimand. The second

10 As discussed in Section 2.7, this amounts to solving two linear programs. We used Gurobi (Gurobi Op-
timization, 2015) to solve all linear programs reported in the paper.
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Figure 3: Maximizing MTRs When Using Both the IV and OLS Slope Coefficients

Nonparametric bounds: [-0.411,0.500]
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Figure 4: Maximizing MTRs When Breaking the IV Slope into Two Components

Nonparametric bounds: [-0.320,0.407]
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Figure 5: Maximizing MTRs When Using All IV–like Estimands (Sharp Bounds)

Nonparametric bounds: [-0.138,0.407]
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estimand is the OLS slope coefficient, whose weights are drawn in light blue. Notice

that, whereas the blue and red weights are symmetric between d = 0 and d = 1 in the

sense of having different signs, but the same magnitude, the light blue weights for the

OLS slope coefficient are asymmetric. A maximizing or minimizing MTR pair must

yield the implied values for both the IV slope coefficient and the OLS slope coefficient,

which is approximately .253 in the simulation. In this DGP, the additional constraint

from the OLS slope coefficient has no effect on the upper bound of LATE(.35, .9), but

does tighten the lower bound slightly from −.421 to −.411. In Figure 4, instead of

using Z as a single instrument, we split Z into two binary indicators, 1[Z = 2] and

1[Z = 3], to create two IV slope estimands. This tightens both bounds on LATE(.35, .9)

considerably. The tightest possible nonparametric bounds are obtained in Figure 5,

which includes a collection of six IV–like specifications that is rich enough to satisfy

the conditions of Proposition 3. The resulting bounds of [−.138, .407] are the sharp

nonparametric bounds for LATE(.35, .9).

The bounds in Figure 5 can be tightened considerably by imposing nonparametric

shape restrictions. For example, in Figure 6, the MTR functions are restricted to be

decreasing like the DGP MTR functions shown in Figure 1. This tightens the sharp

identified set for LATE(.35, .9) by ruling out non-decreasing MTR pairs like the one

shown in Figure 5.
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Figure 6: Maximizing MTRs When Restricted to be Decreasing

Nonparametric bounds, MTRs decreasing: [-0.095,0.077]
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Even tighter bounds can be obtained by also requiring the MTR functions to be

smooth. This may be a desirable a priori assumption if one believes that the jump-

discontinuous MTR pairs in Figure 6 are sufficiently poorly behaved as to be an unlikely

description of the relationship between selection unobservables, U , and potential out-

comes, Y0 and Y1. For example, in Figure 7, the MTR functions are restricted to be

decreasing and characterizable by a polynomial of order 10 or lower. This eliminates

the possibility of non-smooth MTR functions like those in Figure 6, and in this example

reduces the bounds to [0, 0.067].

4.4 Tradeoffs between Tightness and the Target Parameter

Figure 8 illustrates how the bounds change as the parameter of interest changes. In

particular, instead of LATE(.35, .9), we construct bounds on

LATE(.35, u) ≡ E [Y1 − Y0|U ∈ [.35, u]] ,

for different values of u, using the same specification as in Figure 7. Sharp lower and

upper bounds on this parameter are given by the blue and red curves, respectively.

As evident from Figure 8, the bounds collapse to a point for u = .6 and .7, i.e the

two other points of support for the propensity score. For these values of u, LATE(.35, u)
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Figure 7: Maximizing MTRs When Further Restricted to be a 10th Order Polynomial

Order 9 polynomial bounds, MTRs decreasing: [0.000,0.067]
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is a usual point identified LATE as in Imbens and Angrist (1994). For other values of

u this parameter is not point identified, such as for u = .9, which is indicated by the

dotted vertical line. For u between .6 and .7 the bounds are very tight, as shown in

the magnified region. As u decreases from .6 or increases above .7, the bounds widen.

This reflects the increasing difficulty of drawing inference about a parameter the more

dissimilar it is from what was observed in the data.

5 Statistical Inference

In this section, we develop a general testing procedure that enables us to conduct

statistical inference for the methods and applications described in Sections 2 and 3.

5.1 Notation and Null Hypothesis

Our results will be sufficiently flexible to allow for possible nonparametric specifications

of M, potentially with additional shape restrictions, as well as a finite or infinite

collection of IV–like specifications, S. To accommodate these possibilities formally,

we abstract from finite dimensional Euclidean spaces and work with general complete

normed vector spaces, i.e. Banach spaces. For the MTR functions, we assume thatM
is a subset of a Banach space M with norm ‖ · ‖M.
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Figure 8: Bounds on a Family of PRTEs
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For the IV–like estimands, we identify the relationship between βs and its specifi-

cation s ∈ S with a function s 7→ βs that maps each s ∈ S into βs ≡ E[s(D,Z)Y ]. As

a notational device, it will sometimes be convenient to extend the domain of the map

s 7→ βs. For example, when testing whether a target parameter β? ∈ R is equal to

zero, we let β ≡ {βs : s ∈ S} ∪ {0} so that β then represents the collection of IV–like

estimands together with the hypothesized value for the target parameter. On the other

hand, when conducting a specification test, we only need to set β = {βs : s ∈ S}. As

another example, if we were testing the joint hypothesis of no unobserved heterogene-

ity, we might augment β with two additional elements—one for selection bias and the

other for selection on the gain—as per our discussion in Section 3.3. In order to ac-

commodate these different applications, as well as a finite or infinite number of IV–like

specifications S, we will view β as an element of a Banach space B with norm ‖ · ‖B.

A primary concern in our development of a statistical procedure is uniform validity

in the underlying distribution of the data. As argued by Imbens and Manski (2004),

uniformity considerations are of particular concern when conducting inference in the

presence of partial identification. In order to discuss uniformity formally, we now

explicitly denote the dependence of various quantities on the distribution of the data,

P . So, for example, we now write the IV–like estimand βs ≡ E[s(D,Z)Y ] as βP,s to

emphasize its dependence on the distribution of (Y,D,Z). Similarly, we now write β
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with a subscript as βP . We assume that P lies in a set P of possible distributions

which satisfy regularity conditions that are introduced subsequently.

As discussed in Section 2, both the IV–like estimands and the target parameter are

linear functions of the admissible MTR pair m = (m0,m1) ∈ M ⊆ M. We denote

these linear functions by a single map ΓP : M 7→ B. For example, if S = {s1, . . . , s|S|}
is finite and βP = (βP,s1 , . . . , βP,s|S|)

′, then B = R|S| and

ΓP (m) ≡ (ΓP,s1(m), . . . ,ΓP,s|S|(m))′,

where ΓP,s is as defined in (14), but now carries a P subscript to emphasize its depen-

dence on the distribution of the data. To test whether a target parameter is equal to

a given hypothesized value β?0 , we let βP = (βP,s1 , . . . , βP,s|S| , β
?
0)′ and

ΓP (m) ≡ (ΓP,s1(m), . . . ,ΓP,s|S|(m),Γ?P (m))′, (32)

where Γ?P is as defined in (15), but now carries a P subscript as well.

Given the flexibility of the parameter βP ∈ B and the map ΓP : M 7→ B, we can

encompass the applications discussed in Section 3 as special cases of the null hypothesis

H0 : P ∈ P0 H1 : P ∈ P \P0, (33)

where the set P0 is defined as

P0 ≡ {P ∈ P : ΓP (m) = βP for some m ∈M}. (34)

The set P0 consists of distributions of the observed data for which there exists an

admissible MTR pair that generates βP . In the following, we propose a test of (33)

that provides uniform size control over the set of distributions P.

By specifying βP appropriately, we can use our test of (33) for a variety of purposes.

For example, a confidence region for a target parameter can be obtained by setting ΓP

as in (32) and conducting test inversion of (33) for βP = ((βP,s1 , . . . , βP,s|S| , β
?
0)′ over

different hypothesized values β?0 of the target parameter. Alternatively, to conduct a

specification test that employs an infinite collection of moments, we would let βP =

{βP,s : s ∈ S} and ΓP (m) = {ΓP,s(m) : s ∈ S}.11

11We discuss this application more formally in Example 5.2.
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5.2 The Test Statistic

The applications in Section 3 highlight both the wide array of empirically relevant

hypotheses encompassed by (33) and the importance of being flexible in the definitions

of βP ∈ B and M ⊆ M. To ensure that our general results apply to such examples,

we will simply assume that we posses estimators β̂ ∈ B for the parameter βP and

Γ̂ : M 7→ B for the map ΓP : M 7→ B. Given such estimators, we then construct a

minimum distance test statistic for the null hypothesis in (33) as

Tn ≡ inf
m∈Mn

√
n‖β̂ − Γ̂(m)‖B, (35)

where Mn is a subset of M that grows dense in M. When M is finite dimensional,

we can set Mn = M. We note that, provided Γ̂ is linear and Mn is convex, as they

are in our applications of interest, Tn is the solution to a convex optimization problem.

In Appendix G.2, we describe situations in which (35) can be reformulated as a linear

program.

Our analysis uses some properties of convex sets. In order to introduce these prop-

erties, we need some additional notation. Let B∗ denote the dual space of B, i.e.

B∗ ≡ {b∗ : B 7→ R s.t. b∗ is linear and continuous},

endowed with the norm ‖b∗‖B∗ ≡ sup‖b‖B≤1 |b∗(b)|. By definition, every b∗ ∈ B∗ is a

linear map on B. Note too, that every b ∈ B also induces a linear map on B∗ given by

b∗ 7→ b∗(b). We emphasize this bilinear relationship with the notation 〈b∗, b〉 ≡ b∗(b).

The weak topology on B is then the weakest topology under which all of the linear

maps b∗ ∈ B∗ (i.e. all 〈b∗, ·〉) are continuous. The weak topology is important for our

purposes because it arises naturally in the study of both linear maps and convex sets.

Let M∗ denote the dual space of M. The adjoint of a linear map ΓP : M 7→ B is

defined as the unique linear map Γ∗P : B∗ 7→M∗ that satisfies

〈b∗,ΓP (m)〉 = 〈Γ∗P (b∗),m〉 (36)

for every b∗ ∈ B∗ and m ∈M. For example, if M = Rdm and B = Rdβ , then ΓP can

be identified with a dβ×dm matrix, and its adjoint Γ∗P is simply its dm×dβ transpose.

Similarly, we denote the adjoint of Γ̂ as Γ̂∗. If ΓP : M 7→ B is continuous, then the

bilinear maps (b∗,m) 7→ 〈b∗,ΓP (m)〉 and (b∗,m) 7→ 〈Γ∗P (b∗),m〉 are bounded on any
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bounded subsets D ×M ⊂ B∗ ×M. Hence, these maps are elements of

`∞(D ×M) ≡

{
f : D ×M 7→ R s.t. sup

(b,m)∈D×M
|f(b,m)| <∞

}
. (37)

For our purposes, it will be useful to let D be the unit ball in B∗, so we define

D ≡ {b∗ ∈ B∗ : ‖b∗‖B∗ ≤ 1}.

Intuitively, one can interpret b∗ ∈ D as a “direction” in the original space B.

For any convex set C ⊆ B, we define its support function ν(·, C) : D 7→ R as

ν(b∗, C) ≡ sup
b∈C
〈b∗, b〉. (38)

Intuitively, ν(b∗, C) indicates how far one can move in the direction b∗ while staying

within the set C. Letting Γ̂(Mn) ≡ {b ∈ B : b = Γ̂(m) for some m ∈ Mn}, we obtain

by duality (see, e.g., Theorem 5.13.1 of Luenberger (1969))

Tn = sup
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(Mn))

}
= sup

b∗∈D
inf

m∈Mn

√
n
{
〈b∗, β̂ − Γ̂(m)〉

}
. (39)

In other words, the minimum distance test statistic Tn can also be computed by finding

the direction b∗ ∈ D for which β̂ is the farthest away from its projection onto Γ̂(Mn).

We will heavily rely on the dual characterization in (39) in our analysis.

We illustrate our results with two examples that we will return to throughout our

discussion. The first example is extremely simple and intended to exposit the nature

of our statistical approximations, while the second example uses infinite dimensional

spaces, and is used to clarify the more abstract aspects of our analysis.

Example 5.1. Suppose that there are no covariates (Z = Z0), Y ∈ {0, 1} is binary, we

have chosen a single IV–like specification (S = {s}), and we have modeled the MTR

functions as md(u) = θdu for θd ∈ R and d = 0, 1. A given MTR function (m0,m1) is

then fully characterized by a pair (θ0, θ1). Therefore, we set M = R2 and define

M≡ {(θ0, θ1) ∈ R2 : θd ∈ [0, 1] for d ∈ {0, 1}}, (40)

where the restriction θd ∈ [0, 1] reflects Y ∈ {0, 1}. Suppose that our goal is to test

whether the specified model is compatible with the single chosen IV–like restriction

(recall S = {s}). To do this, we set B = R, so that βP = E[s(D,Z)Y ], and use some
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calculus to write the map ΓP : R2 7→ R as

ΓP (m) =
∑

d∈{0,1}

E

[∫ 1

0
θdu ωds(u, Z) du

]

=

[
1
2E[s(0, Z)(1− p2(Z))]

1
2E[s(1, Z)p2(Z)]

]′ [
θ0

θ1

]
≡

[
ΓP,0

ΓP,1

]′ [
θ0

θ1

]
≡ ΓP θ. (41)

Hence, the linear map ΓP is just the two dimensional row vector ΓP ≡ (ΓP,0,ΓP,1)

defined in (41). Given a parametric or nonparametric estimator p̂(Z) for p(Z), we

then set β̂ ∈ R to be the sample analog of E[s(D,Z)Y ] and take Γ̂ ≡ (Γ̂0, Γ̂1) ∈ R2 to

be the sample analog of ΓP . For this example, the duality result in (39) states that

Tn = inf
m=(θ0,θ1)′

{√
n|β̂ − Γ̂(m)| s.t. θd ∈ [0, 1]

}
= sup
−1≤b∗≤1

inf
θ0,θ1

{√
nb∗(β̂ − θ0Γ̂0 − θ1Γ̂1) s.t. θd ∈ [0, 1]

}
, (42)

where we used that B∗ = B = R, and D = {b∗ ∈ R : |b∗| ≤ 1}. �

Example 5.2. As in Example 5.1, we assume that there are no covariates (Z = Z0)

and that Y ∈ {0, 1} is binary. However, now we consider testing the null hypothesis

that agents more likely to select into treatment also have a higher expected benefit

from treatment. To this end, we takeM to be the infinite dimensional set of functions

M = {(m0,m1) s.t. md : [0, 1] 7→ [0, 1], m1 −m0 monotonically increasing} , (43)

and Mn ⊂ M a finite dimensional subset, such as pairs of Bernstein polynomials

of finite order K < ∞; see Appendix F. For any m = (m0,m1), we let ‖m‖2M ≡∫
(m0(u)2 + m1(u)2)du and note that M ⊂ M for M ≡ L2([0, 1]) × L2([0, 1]) where

L2([0, 1]) ≡ {f : [0, 1] 7→ R s.t.
∫ 1

0 f(u)2 du <∞}.
We also consider an infinite set of IV–like specifications S that satisfies the condi-

tions of Proposition 3. By Stinchcombe and White (1998), such a set S can be of the

form

S = {s(·;λ) : λ ∈ Λ ⊂ Rdλ}, (44)

where s(·;λ) : {0, 1} ×Rdz 7→ R is known and λ ∈ Λ for Λ ⊂ Rdλ a finite dimensional

compact parameter space.12 We can then identify βP with a function on Λ via

βP (λ) ≡ E[s((D,Z);λ)Y ]. (45)

12 E.g., take s((d, z);λ) = (1− d) exp{λ0 + z′λ1}+ d exp{λ2 + z′λ3} with λ = (λ0, λ1, λ2, λ3).
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Provided λ 7→ E[s((D,Z);λ)] is continuous, we can set B = C(Λ) with C(Λ) ≡ {f :

Λ 7→ R s.t. f is continuous} and ‖ · ‖B = ‖ · ‖∞ with ‖f‖∞ ≡ supλ∈Λ |f(λ)|. The map

ΓP : M 7→ C(Λ) assigns to each MTR pair (m0,m1) the continuous function on Λ

defined by

ΓP (m)(λ) ≡ E

[∫ 1

p(Z)
m0(u)s0((0, Z);λ)du

]
+ E

[∫ p(Z)

0
m1(u)s1((0, Z);λ)du

]
. (46)

As in Example 5.1, given an estimator p̂(Z) for the propensity score p(Z), we may

obtain estimators β̂ and Γ̂ through the sample analogs of (45) and (46). The dual

space of B = C(Λ) is the set of signed Borel measures with bounded variation, i.e.

T(Λ) ≡ {τ :
∫

Λ d|τ |(λ) ≤ 1}.13 For this example, the duality result in (39) states that

Tn = inf
m∈Mn

√
n‖β̂ − Γ̂(m)‖∞

= sup
τ∈T(Λ)

inf
m∈Mn

√
n

∫
(β̂(λ)− Γ̂(m)(λ))dτ(λ)

= sup
λ∈Λ

inf
m∈Mn

√
n|β̂(λ)− Γ̂(m)(λ)|, (47)

where the final equality follows after noting that, for any m ∈Mn, the optimal τ puts

measure plus or minus one on the λ ∈ Λ that maximizes |β̂(λ)− Γ̂(m)(λ)|. �

5.3 Distributional Approximation

In this section, we obtain an approximation for the distribution of the test statistic,

Tn. To do this, we maintain the following assumptions.

Assumptions S

S.1 M⊆M is convex and compact in the weak topology.

S.2 The maps ΓP : M 7→ B and Γ̂ : M 7→ B are linear and continuous.

S.3 There are tight and centered jointly Gaussian processes (GP,β,GP,Γ) ∈ B×`∞(D×
M) such that

√
n{Γ̂ − ΓP } = GP,Γ + Op(δ

c
n) and

√
n{β̂ − βP } = GP,β + Op(δ

c
n)

uniformly in P ∈ P for some sequence δcn ↓ 0.

S.4 The Gaussian processes (GP,β,GP,Γ) satisfy

sup
P∈P

E[‖GP,β‖B] <∞ and sup
P∈P

E

[
sup
m∈M

‖GP,Γ(m)‖B
]
<∞.

13See, e.g., Corollary 14.15 in Aliprantis and Border (2006).
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S.5 For every m ∈M there is a Πnm ∈Mn ⊆M and a sequence δsn ↓ 0 such that

sup
P∈P

√
n‖ΓP (m−Πnm)‖B ≤ δsn

and sup
P∈P

E

[
sup
m∈M

‖GP,Γ(m)−GP,Γ(Πnm)‖B
]
≤ δsn.

Assumption S.1 is our main requirement for M, which is that it is convex and

compact with respect to the weak topology. If M is reflexive (i.e. M = (M∗)∗), as in

Example 5.2, then S.1 is satisfied if M is convex, closed, and bounded under ‖ · ‖M.

Assumption S.2 formalizes our requirement that the maps ΓP and Γ̂ are linear and

continuous. Our main statistical assumption is S.3, which can be interpreted as requir-

ing that a central limit theorem applies to the estimators β̂ and Γ̂ uniformly in P ∈ P

at a rate δcn ↓ 0. In our applications,
√
n{β̂− βP } and

√
n{Γ̂−ΓP } are asymptotically

equivalent to empirical processes and Assumption S.3 can hold with rates as fast as

δcn = log(n)/
√
n (Koltchinskii, 1994; Rio, 1994); see also Chernozhukov et al. (2015).

Assumption S.4 imposes moment conditions on the processes (GP,β,GP,Γ). Assump-

tion S.5 requires the approximation error δsn introduced from employing Mn in place

of M to vanish sufficiently fast. We note that, due to Assumption S.3, there are no

constraints on the rate of growth of the sieve Mn.

Under the null hypothesis, there exists an m ∈ M such that ΓP (m) = βP . By the

definition of the support function, it follows that

〈b∗, βP 〉 − ν(b∗,ΓP (M)) ≤ 0 for all b∗ ∈ D. (48)

Since 0 ∈ D, there is always a b∗ ∈ D for which (48) holds with equality. This suggests

that the supremum in the dual representation of Tn (see (39)) is attained at a b∗ in

DP (κun) ≡ {b∗ ∈ D : 〈b∗, βP 〉 − ν(b∗,ΓP (M)) ≥ −κun}, (49)

for any positive sequence κun that converges to zero, but not too quickly. The set

DP (κun) shares a similarity with the moment inequalities literature, in which the set of

moment inequalities that are “close” to binding plays a crucial role in inference; see

Canay and Shaikh (2016) and the references cited therein. Analogously, we use DP (κun)

to define the distributional approximation

UP,n(κun) ≡ sup
b∗∈DP (κun)

inf
m∈M

{
〈b∗,GP,β −GP,Γ(m)〉 s.t.

√
n〈b∗, βP − ΓP (m)〉 ≤ δsn

}
.

Our next result provides some properties of UP,n(κun) as an approximation to Tn.
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Theorem 1. Suppose that Assumptions S.1–S.5 hold. Let κun be any sequence for

which
√
nκun ↑ ∞, and define DP (κun) as in (49). Then, uniformly over P ∈ P,

Tn = sup
b∗∈DP (κun)

inf
m∈M

{〈b∗,GP,β −GP,Γ(m)〉+
√
n〈b∗, βP − ΓP (m)〉}+ op(1). (50)

Moreover, there exists a sequence ξn = Op(δ
c
n + δsn) such that for any P ∈ P0,

Tn ≤ UP,n(κun) + ξn, (51)

uniformly over P ∈ P.

The first result in Theorem 1 provides an asymptotic expansion for our test statis-

tic, Tn. We will use this expansion to assess the quality of our subsequent bounds. In

particular, (50) can be used to conclude that the quantiles of the pointwise asymptotic

distribution of Tn can fail to deliver uniform size control without additional assump-

tions; see Example 5.1 below. As a result, we will instead construct a test with a critical

value based on the quantiles of UP,n(κun). By showing that UP,n(κun) is an asymptotic

upper bound for Tn, Theorem 1 lays the foundations for establishing that such a test

can deliver uniform size control. It is worth noting that the results of Theorem 1 hold

for any sequence κun that satisfies the stated conditions. Thus, Theorem 1 actually

establishes a family (indexed by sequences κun) of uniformly valid upper bounds for Tn.

We now revisit Example 5.1, which is useful for clarifying the nature of our approx-

imations, and then Example 5.2, which helps illustrate the content of our assumptions.

Example 5.1 (continued). Consider a sequence of distributions Pn,γ , such that βPn,γ =

(1 +γ/
√
n) and ΓPn,γ = (1, γ/

√
n) for some γ ≥ 0. Suppose for simplicity that Zβ and

ZΓ are independent standard normal random variables, and that

√
n{β̂ − βPn,γ} = Zβ + op(1)

√
n{Γ̂− ΓPn,γ} = (0,ZΓ) + op(1). (52)

Direct calculation shows that for any κun ↓ 0 that satisfies
√
nκun ↑ ∞, (50) simplifies to

Tn = max {min {Zβ + γ,Zβ −ZΓ} , 0}+ op(1). (53)

It is important to notice that the quantiles of the distributional approximation in (53)

are increasing in γ. As a result, any critical value cn that satisfies

lim
n→∞

Pn,0(Tn > cn) = α (54)

will deliver an asymptotic rejection probability larger than α along any contiguous
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sequence Pn,γ with γ > 0. This result contrasts with, e.g., Andrews and Soares (2010),

in which the pointwise limit is also the “least favorable.” Employing the upper bound

UP,n(κun) addresses this difficulty. In particular,

UPn,γ ,n(κun) = max{Zβ −ZΓ, 0}+ op(1) (55)

for any sequence κun ↓ 0. In this example, (55) corresponds to the “least favorable”

value of the local parameter γ in (53), i.e. γ = +∞. �

Example 5.2 (continued). Since M is reflexive, Assumption S.1 is satisfied whenever

M is closed and bounded, which is the case forM in (43). Assumption S.2 is satisfied

for ΓP : M 7→ B as in (46) (and its plug-in analog) by Jensen’s inequality, provided

that S has a square integrable envelope. Sufficient conditions for Assumption S.3 can

be found by establishing a (uniform over P ∈ P) asymptotic expansion

√
n{Γ̂− ΓP }(m)(λ) =

1√
n

n∑
i=1

ψ(Di, Zi,m, λ) + op(1) (56)

and ensuring that {f(y, d, z) = ys(d, z) : s ∈ S} and {f(d, z) = ψ(d, z,m, λ) : (m,λ) ∈
M × Λ} are suitably Donsker classes.14 Assumption S.4 reduces to a uniform (in

P ∈ P) moment bound on the supremum of the approximating Gaussian processes.

To verify Assumption S.5, one can apply results on sieve approximation errors, such

as those available in Chen (2007) and the references cited therein. �

5.4 Bootstrap Approximation

The important implication of Theorem 1 is that the quantiles of UP,n(κun) are valid

critical values for the test statistic Tn. We now address the problem of estimating these

quantiles. For clarity of exposition, we divide our analysis into two steps, each of which

addresses a distinct challenge.

14 Such requirement may necessitate further restricting M by, e.g., imposing a bound on derivatives.
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5.4.1 An Infeasible Approximation

We first derive an infeasible bootstrap approximation for the distribution of UP,n(κun).

To this end, we first rewrite UP,n(κun) as the saddle point problem

UP,n(κun) = sup
b∗∈D

inf
m∈M

〈b∗,GP,β −GP,Γ(m)〉

s.t. (i) 〈b∗, βP 〉 − ν(b∗,ΓP (M)) ≥ −κun,

(ii)
√
n〈b∗, βP − ΓP (m)〉 ≤ δsn, (57)

where constraint (i) corresponds to b∗ ∈ DP (κun), as defined in (49). Characterizing

UP,n(κun) as (57) emphasizes that its distribution is determined by only three essential

unknowns: The objective function and the two constraints of optimization.

The objective function in (57) depends on the unknown distribution P of the data

only through the asymptotic distribution of the chosen estimators, i.e. (GP,β,GP,Γ).

While the bootstrap is not valid for estimating the distribution of Tn, it can nonetheless

often consistently estimate the distribution of these estimators (Fang and Santos, 2014).

We therefore assume the existence of suitable estimators (Ĝβ, ĜΓ) of the distribution

of (GP,β,GP,Γ) as follows.

Assumptions S (continued)

S.6 (Ĝβ, ĜΓ) = (Gbs
P,β,G

bs
P,Γ) + Op(δ

c
n) in B× `∞(D ×M) uniformly in P ∈ P, with

(Gbs
P,β,G

bs
P,Γ) independent of {(Yi, Di, Zi)}∞i=1 and equal in law to (GP,β,GP,Γ).

S.7 Mn ⊆M is convex and closed.

Assumption S.6 is our main bootstrap requirement. It requires the existence of

a consistent bootstrap procedure that estimates the law of (GP,β,GP,Γ) uniformly in

P ∈ P at the rate δcn, i.e. the same rate as in Assumption S.3. Typically, for standard

bootstrap analogs β̂bs and Γ̂bs of β̂ and Γ̂ respectively, the estimators Ĝβ and ĜΓ would

correspond to setting Ĝβ =
√
n{β̂bs − β̂} and ĜΓ =

√
n{Γ̂bs − Γ̂}. However, note that

Assumption S.6 also allows for estimation of the law of (GP,β,GP,Γ) through alternative

resampling procedures, such as a score or weighted bootstrap, subsampling, or the m

out of n bootstrap. Assumption S.7 imposes the regularity condition thatMn is closed

and convex.

Having estimators (Ĝβ, ĜΓ) enables us to mimic the stochastic behavior of the ob-

jective function in (57) by simply employing a plug-in sample analog, i.e. by replacing

〈b∗,GP,β−GP,Γ(m)〉 with 〈b∗, Ĝβ−ĜΓ(m)〉. A similar approach is also effective for han-

dling constraint (i) in (57), which corresponds to imposing b∗ ∈ DP (κun). Specifically,
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we replace constraint (i) in (57) with the constraint that b∗ ∈ D̂n, where

D̂n ≡ {b∗ ∈ D : 〈b∗, β̂〉 − ν(b∗, Γ̂(Mn)) ≥ −κ̂un} (58)

and κ̂un is a bandwidth selected by the researcher. We discuss data-driven choices of

κ̂un in Section 5.5.2. However, we note here that setting D̂n = D (κ̂un =∞) is always a

valid choice.

Turning to (ii) in (57), we note that using a simple plug-in analog of this constraint

can lead to a lack of size control. Instead, we construct a possibly random set M̂n

that, heuristically, should satisfy the following condition asymptotically:

{m ∈M : ΓP (m) = βP } ⊆ M̂n. (59)

Under the null hypothesis, there exists an mP ∈ M such that ΓP (mP ) = βP , and

therefore any m ∈ M̂n that satisfies 〈b∗,ΓP (mP −m)〉 ≤ 0 must also satisfy constraint

(ii) in (57). These observations imply that under the null hypothesis

{m ∈ M̂n : 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))} ⊆ {m ∈M : 〈b∗, βP − ΓP (m)〉 ≤ 0} (60)

whenever (59) holds. While setting M̂n = M guarantees condition (59), for power

considerations it may be advisable to instead set

M̂n ≡ {m ∈Mn : ‖β̂ − Γ̂(m)‖B ≤ κ̂mn } (61)

for some bandwidth κ̂mn that is chosen by the researcher.15 Note that taking κ̂mn =∞
corresponds to choosing M̂n = M. While we allow κ̂un and κ̂mn to differ from each

other, these bandwidths are in fact closely related and can often be selected through a

common procedure. See Section 5.5.2 for additional details.

At this point, our discussion suggests that the distribution of

In(ΓP ) ≡ sup
b∗∈D̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))

}
, (62)

conditional on the data, should approximate the distribution of UP,n(κun). Intuitively,

In(ΓP ) imitates (57) but replaces constraint (i) with b∗ ∈ D̂n, and replaces constraint

(ii) with m ∈ {m̃ ∈ M̂n : 〈b∗,ΓP (m̃)〉 = ν(b∗,ΓP (M̂n))}. The bootstrap statistic

15 Loosely speaking, we should expect the minimizer of Tn = infm∈Mn
‖β̂ − Γ̂(m)‖B to “converge” to

{m ∈ M : βP = ΓP (m)}. We emphasize, however, that the set of distributions P that we consider allows
for the possibility that the set {m ∈M : βP = ΓP (m)} is not consistently estimable uniformly in P ∈ P.
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In(ΓP ) is infeasible due to its dependence on the unknown map ΓP : M 7→ B. We

address this challenge in the next section. Nevertheless, establishing the properties of

In(ΓP ) provides us with a useful intermediate result before analyzing the bootstrap

statistic itself. For this purpose, we impose the following requirements on κ̂un and κ̂mn :

Assumptions S (continued)

S.8 κ̂un satisfies

lim inf
n→∞

inf
P∈P

P

(
κ̂un
κun

> (1 + δ)

)
= 1

for some δ > 0 and some non-random sequence κun such that
√
nκun ↑ ∞.

S.9 κ̂mn satisfies lim infC↑∞ lim infn→∞ infP∈P P (
√
nκ̂mn ≥ C) = 1 for every C > 0.

Assumption S.8 allows κ̂un to be random, but requires it to be (asymptotically) larger

than the nonrandom sequence κun, which determines the random variable UP,n(κun)

whose distribution we aim to approximate. Assumption S.9 requires
√
nκ̂mn to diverge

to infinity asymptotically as well. By allowing κ̂un and κ̂mn to be random, Assumptions

S.8 and S.9 enable us to employ data-driven choices of bandwidths. We discuss possible

choices in Section 5.5.2.

Let Ubs
P,n(κun) be the random variable defined by

Ubs
P,n(κun) ≡ sup

b∗∈DP (κun)
inf
m∈M

{
〈b∗,Gbs

P,β −Gbs
P,Γ(m)〉 s.t.

√
n〈b∗, βP − ΓP (m)〉 ≤ δsn

}
.

Notice that, given Assumption S.6, the random variables Ubs
P,n(κun) and UP,n(κun) share

the same distribution, and hence the same quantiles. However, in contrast to UP,n(κun),

the random variable Ubs
P,n(κun) is independent of the data, and hence its quantiles

conditional on the data are equal to the unconditional quantiles of UP,n(κun) that we

desire for inference. These observations motivate our next intermediate result.

Lemma 5.1. Suppose that Assumptions S.1–S.7 and S.9 hold. Then, for any sequence

κun that satisfies Assumption S.8, and for which
√
nκun ↑ ∞, there exists a sequence

ξbsn ∈ R such that ξbsn = Op(δ
c
n) uniformly over P ∈ P0, and such that

Ubs
P,n(κun) ≤ In(ΓP ) + ξbsn (63)

for any P ∈ P0.

Together with Theorem 1, Lemma 5.1 suggests that the quantiles of the bootstrap

statistic In(ΓP ), conditional on the data, can be used as critical values for the test
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statistic, Tn. In the next section, we use Lemma 5.1 to establish an analogous result

for a feasible bootstrap statistic. Before proceeding, we revisit Example 5.1 to illustrate

the approximations in Lemma 5.1, and Example 5.2 to clarify our assumptions.

Example 5.1 (continued). We continue to consider the sequence Pγ,n, which satisfies

(52) with βPγ ,n = (1 + γ/
√
n) and ΓPγ ,n = (1, γ/

√
n) for some γ > 0. Let

Ĝβ = Zbs
β + op(1) ĜΓ = (0,Zbs

Γ ) + op(1) (64)

where Zbs
β and Zbs

Γ are independent standard normal random variables. Provided that

κ̂un satisfies Assumption S.8 and converges in probability to zero, it is straightforward

to verify that D̂n converges in probability to [0, 1], which is the set of “directions” b∗ ∈
[−1, 1] satisfying 〈b∗, βPγ,n〉 = ν(b∗,ΓPγ,n(M)). Similarly, provided that κ̂mn converges

in probability to zero, it follows that with probability tending to one along Pγ,n

{(θ0, θ1) = m ∈M : m = (1, θ1) for θ1 ∈ [0, 1]} ⊂ M̂n. (65)

However, (65) implies {m ∈ M̂n : 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))} = {(1, 1)}, and hence

In(ΓPγ,n) = sup
b∗∈[0,1]

〈b∗,Zbs
β −Zbs

Γ 〉+ op(1) = Ubs
Pγn,n

(κun) + op(1), (66)

where the final equality follows from (55). Therefore, in this simple example, In(ΓP )

and Ubs
P,n(κun) are asymptotically equivalent. �

Example 5.2 (continued). As in the verification of Assumption S.3, sufficient condi-

tions for establishing Assumption S.6 can be found by guaranteeing that an asymp-

totically linear expansion such as (56) also holds for the bootstrap estimators. For

verifying Assumption S.7, note that convex sets are closed in the weak topology of M

if and only if they are closed under ‖ · ‖M. �

5.4.2 The Bootstrap Statistic

The main obstacle to using the statistic In(ΓP ) for inference is that it depends on the

unknown linear map ΓP : M 7→ B. We now address this challenge and construct a

feasible bootstrap statistic. Before proceeding, we present a lemma that makes the

dependence of In(ΓP ) on the unknown map ΓP more transparent. Recall from (36)

that Γ∗P : B∗ 7→M∗ denotes the adjoint of ΓP .
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Lemma 5.2. Suppose that Assumptions S.1–S.5, S.7, and S.9 are satisfied. Then

In(ΓP ) = sup
b∗∈D̂n

sup
m̃∈M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈Γ∗P (b∗),m− m̃〉 ≥ 0

}
(67)

with probability tending to one, uniformly over P ∈ P0.

Lemma 5.2 shows that ΓP enters the optimization problem that defines In(ΓP )

solely through the bilinear constraint involving b∗, m, and m̃. Given an estimator, Γ̂, it

would be natural to approximate In(ΓP ) by simply employing the plug-in analog In(Γ̂).

However, the feasible set in (67) changes discontinuously in ΓP . As a result of this,

using the quantiles of In(Γ̂) as critical values can fail to control size. For this reason,

we instead consider the least favorable critical value obtained from a “neighborhood”

of our estimator Γ̂.

Defining an appropriate neighborhood of Γ̂ can be challenging when M and/or

B are infinite dimensional. In particular, Assumption S.3 is too weak to guarantee

that Γ̂ is consistent for ΓP with respect to the operator norm.16 Instead, we build

neighborhoods using the weak (operator) topology. Let Mn be the closed linear span

of Mn (in M), and let M∗n denote its dual space. For any b∗ ∈ B∗, define

Ĝn(b∗) ≡ {g ∈M∗n : |〈g − Γ̂∗(b∗), v〉| ≤ κ̂gn for all v ∈ Vn} (68)

= {g ∈M∗n : |〈g, v〉 − 〈b∗, Γ̂(v)〉| ≤ κ̂gn for all v ∈ Vn}, (69)

where κ̂gn ↓ 0 and Vn ⊆M are chosen by the researcher. Typically, we take Vn ⊆ Mn

and use specification (69) in place of (68) so as to avoid having to compute the adjoint

Γ̂∗. We provide guidance for choosing κ̂gn in Section 5.5.2.

We can now define our feasible bootstrap statistic as

T bs
n ≡ sup

b∗∈D̂n
sup

(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0

}
. (70)

While (70) looks like an unwieldy optimization problem, we show in Appendix G.3

that it can be reformulated as a bilinear program. While bilinear programs are not

convex, they can be provably solved to global optimality by algorithms that combine

McCormick relaxations (McCormick, 1976) with spatial branch-and-bound strategies.17

16 More precisely, sup‖m‖M≤1 ‖{Γ̂− ΓP }(m)‖B need not converge to zero in probability.
17 A good software implementation of these types of algorithms is the BARON solver developed by

Tawarmalani and Sahinidis (2005). Although not provably convergent to global optimality, we have found
that more common locally optimal solvers, such as KNITRO (Byrd, Nocedal, and Waltz, 2006), almost
always find the global optimum for our problem, and much more quickly than BARON. We use KNITRO
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For our purposes, an attractive property of these algorithms is that termination after a

set amount of time always provides an upper bound on the actual optimal value, T bs
n .

Critical values constructed from these upper bounds may be conservative, however they

will still provide size control.

We use the following two assumptions to establish the properties of T bs
n .

Assumptions S (continued)

S.10 κ̂gn satisfies lim infC↑∞ lim infn→∞ infP∈P P (
√
nκ̂gn ≥ C) = 1 for every C > 0.

S.11 There exists a λ ∈ R and an mc ∈Mn such that Vn ⊆ λ(Mn −mc) for every n.

Assumption S.10 requires the bandwidth κ̂gn (which can be data-dependent) to not

converge to zero at a rate faster than
√
n. Assumption S.11 relates the set of functions

Vn used to construct Ĝn(b∗) to the sieveMn. This requirement is imposed as a simple

sufficient condition to ensure that the process 〈b∗,
√
n{Γ̂ − ΓP }(v)〉 is asymptotically

tight on `∞(D × V) for V =
⋃∞
n=1 Vn. For applications in which B and M are finite

dimensional, the sets Vn may chosen so that Ĝn(b∗) = {g : ‖g − Γ̂(v)‖ ≤ κ̂gn}, where

‖ · ‖ is the standard Euclidean norm. Notice that Assumption S.11 does not place any

requirements on the “rate of growth” of Vn.

The next theorem describes the properties of our proposed bootstrap statistic.

Theorem 2. Suppose that Assumptions S.1–S.7 and S.9–S.11 are satisfied. Then, for

any sequence κun that satisfies Assumption S.8, as well as
√
nκun ↑ ∞, there exists a

sequence ξbsn ∈ R, with ξbsn = Op(δ
c
n) uniformly in P ∈ P0, and such that

Ubs
P,n(κun) ≤ T bs

n + ξbsn (71)

for any P ∈ P0.

Theorems 1 and 2 build the foundation for testing the null hypothesis in (33) by

comparing the test statistic Tn to critical values obtained from the quantiles of the

bootstrap statistic T bs
n , conditional on the data. We establish the properties of such a

test in the next section.

Our choice of T bs
n is informed by considerations of computational reliability in real-

istically sized problems. For simple problems, a less conservative, but computationally

more challenging critical value may also be available. To see this, start by defining the

1− α quantile of In(Γ) (conditional on the data) as

q1−α(Γ) ≡ inf
c∈R
{c s.t. P (In(Γ)|{Yi, Di, Zi}ni=1) ≥ 1− α} . (72)

for our empirical application in Section 6, but we have checked a subset of the results using BARON and
found them to be nearly identical.
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In principle, it is possible to use the least favorable critical value given by

sup
Γ:M7→B

{
q1−α(Γ) s.t. |〈Γ∗(b∗)− Γ̂∗(b∗), v〉| ≤ κ̂gn for all (b∗, v) ∈ D̂n × Vn

}
. (73)

Intuitively, by using T bs
n , we are computing the quantile of the maximum over a neigh-

borhood of Γ̂, instead of the maximum of the quantile over such a neighborhood.

Whenever (73) is solvable, it will yield a critical value that provides better power than

T bs
n . We illustrate this in Example 5.1 below. Our recommendation is to use (73) when

feasible, but we focus on T bs
n due to its wider (computational) applicability.

We conclude this section by revisiting Examples 5.1 and 5.2.

Example 5.1 (continued). We return again to the sequences Pγ,n, which satisfied

(52) and (65) with βPγ ,n = (1 +γ/
√
n) and ΓPγ ,n = (1, γ/

√
n). In this simple example,

M = R2 and B = R, so that Γ̂∗ : R 7→ R2 and Γ∗P : R 7→ R2 are given by

Γ∗P (b∗) = b∗
(

1,
γ√
n

)′
and Γ̂∗(b∗) = b∗

(
1,

ZΓ + γ√
n

)′
+ op(1) (74)

for any b∗ ∈ R. Setting Vn = {(1, 0), (0, 1)} implies that for any b∗ ≥ 0,{
(g1, g2)′ = g ∈ R2 : g = (1, c)′ and |c| ≤ 1√

n

}
⊆ Ĝn(b∗) (75)

with probability tending to one along Pγ,n. For notational clarity, we also define

L(g) ≡ sup
(b∗,m̃)∈[0,1]×M̂n

inf
m∈M̂n

{〈b∗,Gbs
P,β −Gbs

P,Γ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0}, (76)

and note that the set inclusion in (65) implies that

L(g) =


max{0,Zbs

β −Zbs
Γ } if g2 > 0

max{0,Zbs
β − (Zbs

Γ )+} if g2 = 0

max{0,Zbs
β } if g2 < 0

(77)

for any (1, g2)′ = g ∈ R2, where (Zbs
Γ )+ = max{Zbs

Γ , 0}. We conclude that

T bs
n = max{0,Zbs

β ,Z
bs
β −Zbs

Γ }+ op(1).

Note that, at least for this example, the less conservative critical values given in (73)

can actually be solved for analytically. These critical values correspond to the quantiles

of max{0,Zbs
β −Zbs

Γ }, which are also equal to the quantiles of UP,n(κun). �
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Example 5.2 (continued). We use this example to illustrate the computation of T bs
n

in a more abstract setting. Recall that B = C(Λ) and M = L2([0, 1]) × L2([0, 1])

so that B∗ = T(Λ) is the set of signed Borel measures of bounded variation, while

M∗ = L2([0, 1])× L2([0, 1]). Hence, for this example we obtain

D̂n =

{
b∗ :

∫
Λ
d|b∗|(λ) ≤ 1 and

∫
Λ
β̂(λ)db∗(λ) ≥ sup

m∈Mn

∫
Λ

Γ̂(m)db∗(λ)− κ̂un
}
,

M̂n =
{
m ∈Mn : |β̂(λ)− Γ̂(m)(λ)| ≤ κ̂mn for all λ ∈ Λ

}
,

Ĝn(b∗) =

{
g ∈Mn :

∣∣∣∣∣
∫ 1

0

[
1∑
d=0

gd(u)vd(u)

]
du−

∫
Λ

Γ̂(v)(λ)db∗(λ)

∣∣∣∣∣ ≤ κ̂gn ∀v ∈ Vn
}
,

where we used the fact that Mn = M∗n. Therefore, the bootstrap statistic reduces to

T bs
n = sup

b∗∈D̂n
sup

(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

∫
Λ
{Ĝβ(λ)− ĜΓ(m)(λ)}db∗(λ)

s.t.

∫ 1

0

1∑
d=0

[gd(u)(md(u)− m̃d(u))] du ≥ 0. (78)

We note that, even though b∗ is infinite dimensional, it is possible to instead optimize

T bs
n over a sieve for D. We provide a formal development of this sieve approach for D in

Appendix E. A natural choice of a sieve for D would be Dn ≡ {b∗(A) =
∑J

j=1wj1{λj ∈
A} :

∑J
j=1 |wj | ≤ 1} for {λj}Jj=1 ⊆ Λ. Similarly, using Mn in place of M renders

all parameters finite dimensional and all constraints bilinear. See Appendix G for

additional discussion of computation. �

5.5 The Test

In this section, we apply the results obtained in Sections 5.3 and 5.4 to construct a

consistent test. We then discuss choosing bandwidths for this test.

5.5.1 Basic Properties

Theorem 1 implies that the unconditional quantiles of UP,n(κun) could be used as critical

values for the test statistic Tn. While UP,n(κun) is infeasible, Theorem 2 suggests that

the quantiles of T bs
n conditional on the data can be used instead. We therefore define

the critical value ĉ1−α for our test to be given by

ĉ1−α ≡ inf
{
c : P

(
T bs
n ≤ c|{Yi, Di, Zi}ni=1

)
≥ 1− α

}
. (79)
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In the following, it will also be useful to define the quantiles of UP,n(κun) itself, which

we denote by

c1−α(UP,n(κun)) ≡ inf{c : P (UP,n(κun) ≤ c) ≥ 1− α}. (80)

As usual, a final regularity condition is required to establish that a distributional

approximation also delivers consistent estimators of the desired quantiles; see, e.g.,

Romano and Shaikh (2012) and Chernozhukov, Lee, and Rosen (2013). In the present

context, this regularity condition is the following.

Assumptions S (continued)

S.12 There is a δ > 0 and sequence ζn with ζn(δcn + δsn) = o(1) and

sup
η∈[0,δ]

sup
0<ε<1

sup
P∈P0

1

ε
P
(
|UP,n (κun)− c1−α−η (UP,n (κun))| ≤ ε

)
≤ ζn.

Notice that if ζn is bounded, then Assumption S.12 corresponds to the requirement that

the cumulative distribution functions of UP,n(κun) are uniformly (in n) continuous in a

neighborhood of their 1−α quantiles. However, by allowing ζn to diverge, Assumption

S.12 also allows the distribution of UP,n(κun) to become increasingly discontinuous.

The “rate” of this loss of continuity (ζn) must be slower than the rate of convergence

of our stochastic approximation (δcn + δsn).

We now state our final and main result on statistical inference.

Theorem 3. Suppose that Assumptions S.1–S.7 and S.9–S.11 are satisfied. Then, for

any sequence κun that satisfies Assumption S.8 and S.12,

lim sup
n→∞

sup
P∈P0

P (Tn > ĉ1−α) ≤ α.

Moreover, under the same assumptions,

lim
n→∞

P (Tn > ĉ1−α) = 1.

for any P ∈ P \P0.

Theorem 3 says that our proposed test is consistent and controls size uniformly in

P ∈ P0. We note that the class P0 over which size control is ensured is fairly broad. In

particular, the class P0 is such that the set of solutions {m ∈M : ‖βP −ΓP (m)‖B = 0}
cannot even be consistently estimated uniformly in P0. We believe that this quality

is particularly important when M is defined by linear inequality constraints and the
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target parameter is partially identified. Moreover, we emphasize that we have not

placed any conditions that prohibit shape restrictions on M, other than requiring M
to be a convex set. As such, we believe Theorem 3 may be of independent interest

for applications other than the one studied in this paper. Finally, we note that in

establishing Theorem 3, we have not assumed that the data is i.i.d. Instead, we have

assumed that there is a bootstrap (Ĝβ, ĜΓ) that is capable of handling the dependence

structure in the data. This allows for clustering and other types of dependence.

5.5.2 Bandwidth Guidance

Constructing the bootstrap statistic T bs
n requires specifying the bandwidths κ̂un, κ̂mn , and

κ̂gn. While Assumptions S.8, S.9, and S.10 do not provide much direction in choosing

these bandwidths, it is clear that their values should be related to the distribution of the

data. In the following, we provide some guidance on the selection of these quantities.

In future work, we hope to formalize a data-driven procedure for determining these

bandwidths by applying the insights of Romano, Shaikh, and Wolf (2014). However,

at present we keep the discussion informal.

The sequence κun and its feasible counterpart κ̂un were introduced in the derivation

of the distributional approximation in Theorem 1. The role of κun is related to

b̂∗ ∈ arg max
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(Mn))

}
, (81)

which represents the direction in which β̂ is farthest away from the set Γ̂(Mn). In

particular, while κun is allowed to converge to zero, it must do so slowly enough for

lim inf
n→∞

inf
P∈P0

P
(
b̂∗ ∈ DP (κun)

)
= 1, (82)

where DP (κun) is the set defined in (49). A bound for the probability in (82) is

lim inf
n→∞

inf
P∈P0

P
(
b̂∗ ∈ DP (κun)

)
≥ lim inf

n→∞
inf
P∈P0

P

(
sup

m∈Mn

‖GP,β −GP,Γ(m)‖B ≤
√
nκun

)
,

(83)

where we are assuming that δsn = 0 for simplicity. This suggests taking κ̂un to be

κ̂un =
1√
n
× inf

{
c : P

(
sup

m∈Mn

‖Ĝβ − ĜΓ(m)‖B ≤ c|{Yi, Di, Zi}ni=1

)
≥ 1− αn

}
(84)

for some sequence αn ↓ 0.

The bandwidth κ̂mn was introduced in Assumption S.9 with the purpose of ensuring
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that M̂n contained the set {m ∈ M : ‖βP − ΓP (m)‖B = 0} with probability tending

to one. In analogy to (83), it is possible to show that

lim inf
n→∞

inf
P∈P0

P
(

Πnm ∈ M̂n for all m ∈M s.t. ΓP (m) = βP

)
≥ lim inf

n→∞
inf
P∈P0

P

(
sup

m∈Mn

‖GP,β −GP,Γ(m)‖B ≤
√
nκ̂mn

)
. (85)

From (83) and (85), we see that the choices of κ̂un and κ̂mn are closely related. For

instance, given that κ̂un is selected according to (84), a simple rule is to let κ̂mn =

κ̂un + Tn/
√
n. Here, the addition of Tn/

√
n to κ̂un ensures that M̂n 6= ∅.

Lastly, recall that κ̂gn was introduced in the construction of neighborhoods for the

adjoint Γ∗P : B∗ 7→M∗ in the weak (operator) topology. A natural choice for κ̂gn is

κ̂gn =
1√
n
× inf

{
c : P

(
sup
b∗∈D̂n

sup
v∈Vn

|〈b∗, ĜΓ(v)〉| ≤ c|{Yi, Di, Zi}ni=1

)
≥ 1− αn

}
, (86)

where again αn ↓ 0. Together, (84), κ̂mn = κ̂un + Tn/
√
n, and (86) provide a simple

heuristic way to relate bandwidth selection to features of the distribution of the data.

In Appendix G.4, we show that implementing these bandwidth choices amounts to

solving a large number of small mixed integer linear programs. We leave a more

detailed analysis of bandwidth selection to future work.

6 The Efficacy of Price Subsidies for Bed Nets

In this section, we apply our method to analyze how price subsidies affect the adoption

and usage of a preventative health product.

6.1 Background, Data, and Experiment

According to the World Health Organization (WTO), approximately 5.9 million chil-

dren under the age of 5 died in 2015. WTO estimates that a majority of these early

childhood deaths could be prevented or treated if households were regularly using ex-

isting health products, such as deworming medication, mosquito nets, water treatment

solution, or latrines.18 An important, and largely unanswered, question for developing

countries is how to design cost effective policies that promote access to (and usage of)

preventive health products.

While highly subsidizing health products has been shown to markedly increase

access in developing countries, researchers and policymakers alike have expressed con-

18See http://www.who.int/mediacentre/factsheets/fs178/en/.
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cerns about the cost effectiveness of such policies (see e.g. Cohen and Dupas (2010)

and Dupas and Zwane (2016)). One concern is the financial cost of subsidizing in-

framarginal consumers who would have still purchased the product under a smaller

subsidy. Another concern is that households that are unwilling to pay a monetary

price for a product might also be unwilling to pay the non-monetary costs associated

with using the product on a regular basis.19 On the other hand, charging a higher

price to screen out non-users may exclude poor or credit-constrained individuals who

would benefit from using the product.20

The goal of our empirical analysis is to assess these tradeoffs by evaluating the

effects of potential subsidy regimes on usage of a preventative health product, taking

into account differences in subsidization costs across the regimes. Building on Dupas

(2014), we use data from a randomized controlled experiment in Kenya that randomly

assigned prices for a new and improved antimalarial bed net called the Olyset net.21

The experimenters randomized prices across a total of 1,200 households in six villages.

Households had a three month opportunity to purchase the Olyset net at their assigned

subsidized price. Prices for the net varied from 0 to 250 Kenyan schillings (250 Ksh,

or approximately $3.80), which is roughly twice the average daily wage for agricultural

work in the area. Seventeen different prices were offered in total, but each area was

assigned only four or five of these prices. For example, if an area was assigned the

price set (Ksh 50, 100, 150, 200, 250), then all of the study households in the area were

randomly assigned to one of these five prices. Price sets for every area included low,

medium, and high prices. Only two areas had a price set that included free provision

for some households.

Two months after the experiment, Dupas (2014) collected data on household pur-

chase and usage of the Olyset net.22 Usage was assessed by whether a household stated

having started using the net, and whether the net was observed hanging above their

bedding at the time of the visit. Table 1 in Dupas (2014) presents summary statistics of

household characteristics and their correlation with the randomized price assignment.

This table suggests that randomization was successful in making the price assignment

19 See, for example, Ashraf, Berry, and Shapiro (2010), who study the provision of chlorine solution for
water treatment. They find that higher prices tend to screen out those who use the product less.

20 For example, Dupas and Zwane (2016) study alternative screening mechanisms for the provision of
chlorine solution. They find that higher prices may prevent many households that would use the product
from obtaining it.

21 Dupas (2014) uses this data to examine how short-run subsidies affect long-run adoption through
learning. We refer to Dupas (2014) for a detailed discussion of the background, data, and experimental
design.

22 To study effects on long-run adoption, Dupas also conducted a one year follow-up. However, the
follow-up survey only included a subset of the villages. We therefore focus on the short-run effects.
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Figure 9: Impact of Price on the Household’s Purchase of Bed Net
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Notes: This figure plots purchase rates against prices. The size of the circles reflect the relative size of
the sample at each price point. The lines show predicted values from logit regressions of the households’
decision to purchase the bed net on the randomly assigned prices. The dashed lines indicate 90% confidence
intervals.

independent of observable baseline characteristics.

Figure 9 replicates Dupas’ experimental estimates of the impact of price on the

household’s purchase decision. This figure plots purchase rates for the Olyset net

against the price assignment. The sizes of the circles reflect the relative sample sizes

at each price point. The lines indicate predicted values (and confidence intervals) from

logistic regressions of the households’ purchase decisions on their randomly assigned

prices. The demand function is quite steep. The likelihood of purchasing the bed net

increases from .04 to over .23 as the price decreases from Ksh 250 to 150, reaching

nearly .70 at Ksh 50.

6.2 Evaluating a Class of Subsidy Regimes

We use the randomly assigned prices as instruments, and use their exogenous variation,

together with our method, to study the effectiveness of different subsidy regimes.23 As

discussed in Section 3.1, we can use our method to compute bounds on PTREs that

measure the causal effect on usage of one subsidy regime, a0, relative to another subsidy

23 A possible threat to the exclusion restriction (Assumption I.2) is the psychological “sunk cost” effect,
whereby individuals who have paid more for a product feel more compelled to use it. However, recent
experiments conducted in developing countries find no evidence of a sunk cost effect in settings with health
products (Cohen and Dupas (2010) and Ashraf et al. (2010)).
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regime, a1. For example, consider the effect of a policy that offers free provision

of the Olyset net to all households, compared to a policy under which households

have the option to buy the net at a given price. This comparison does not directly

correspond to the variation in prices induced by Dupas’ experiment, and is therefore not

point identified under standard instrumental variables assumptions. Nevertheless, our

method can be used to establish bounds, which we now show can be quite informative.

In the notation of Section 2.1, Z is the randomly assigned price, D is an indicator

for whether the household purchases the Olyset net, and Y is an indicator for whether

the household uses the net. We consider PRTEs that contrast a regime a0 under which

the propensity score is constant at pa0 , to a regime a1 with a constant propensity score

of pa1 . In Table 3, we focus on two particular choices of pa0 and pa1 . The first choice is

pa0 = 0 and pa1 = 1, which can be thought of as the contrast between a regime a1 with

free provision of the Olyset set, and another regime a0 under which there is no access

to the Olyset net. In this case, the PRTE we consider is just the average treatment

effect (ATE). For the second choice, the a0 regime is still free provision, but in the a1

regime the Olyset net is offered at a price of Ksh 150, which is roughly the observed

market price a year after the experiment (Dupas, 2014). To implement this PRTE, we

use the estimated propensity score to predict pa0 and pa1 . As discussed in Section 3.2,

the PRTE in this case can be interpreted as the LATE from a hypothetical experiment

in which households are either freely provided an Olyset net or able to purchase one

at 150 Ksh.

Table 3 demonstrates the way in which our method allows the researcher to trans-

parently substitute the strength of their assumptions with the strength of their con-

clusions. Comparing the bounds across columns clarifies how the strength of the con-

clusions (the width of the bounds) depends on two aspects. First, for a fixed set of

assumptions (indexed here by the Bernstein polynomial order, K), bounds based on a

broader class of IV-like estimates are substantially more informative. In the first five

columns, we restrict attention to the information contained in the IV estimand that

uses the propensity score p(Z) as an instrument for D. By comparison, the next five

columns demonstrate that both the OLS and IV estimands carry independent informa-

tion. The last five columns demonstrate that the bounds can be tightened considerably

by using richer specifications of the multi-valued price instrument.

The other aspect that affects the strength of the conclusions is the set of maintained

assumptions on the MTR functions, m = (m0,m1). In columns (1)-(4), (6)-(9) and

(11)-(14), we model m0 and m1 with Bernstein polynomials of order K for various
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Table 3: The Effects of Purchase on Net Usage

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Information Specification
Intercept 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Linear in p(Z) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

OLS 3 3 3 3 3 3 3 3 3 3

1(Z ≤ 50) 3 3 3 3 3

1(Z ≤ 150) 3 3 3 3 3

Panel A. Population Average Treatment Effect
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower .6521 .4646 .3857 .3275 .2533 .6521 .4956 .4700 .4537 .3954 ∅ .6365 .5602 .5269 .4487
Upper .6772 .7269 .7362 .7445 .7515 .6521 .7269 .7362 .7445 .7515 ∅ .7104 .7178 .7229 .7253
90% Confidence Interval
Lower .5486 .3761 .2995 .2421 .4282 .4032 .3511 .3204 .5206 .4130 .3652 .3260
Upper .7462 .8019 .8102 .8139 .7516 .8093 .8179 .8209 .7491 .7910 .7941 .7978

Panel B. PRTE at Free Provision versus a Price of 150 Ksh
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower .6600 .5881 .5626 .5444 .4817 .6600 .5881 .5626 .5444 .4856 ∅ .6758 .6506 .6214 .5573
Upper .7049 .8140 .8469 .8817 .9732 .6600 .7085 .7172 .7275 .7941 ∅ .6895 .6988 .7140 .7492
90% Confidence Interval
Lower .5417 .5005 .4695 .4479 .3890 .3472 .3414 .3320 .5079 .4755 .4584 .4281
Upper .7686 .9161 .9519 .9746 .7732 .9263 .9616 .9838 .7713 .9093 .9291 .9511

Specifications of the IV-like Estimands
Intercept s(d, z) = 1 s(d, z) = 1 s(d, z) = 1
Linear in p(Z) s(d, z) = p(z) s(d, z) = p(z) s(d, z) = p(z)
OLS s(d, z) = d s(d, z) = d
1(Z ≤ 50) s(d, z) = 1(z ≤ 50)
1(Z ≤ 150) s(d, z) = 1(z ≤ 150)

Notes: This table reports bounds and 90% confidence intervals for the effects of purchase on usage of the
Olyset net. We estimate the propensity score, p, using the fitted logistic regression from Figure 9. K
denotes the order of the Bernstein polynomial specification for the MTR functions. The confidence intervals
are based on 200 bootstrap replicates, and the tuning parameters are specified as 0.05.
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choices of K.24 In columns (5), (10), and (15), we use the Haar basis (constant spline)

specification discussed in Section 2.7, which was shown in Proposition 4 to provide

exact nonparametric bounds in the sample. As evident from Table 3, the stronger the

restrictions, the tighter the bounds.

At one extreme, it is possible to specify K to achieve point identification. As shown

in Brinch et al. (2015), the information used in column (6)-(15) are sufficient to point

identify the MTE (and hence any PRTE), provided that K = 2, so that the MTR

functions are quadratic. For example, the results in column (6) imply a 65% usage

rate among individuals induced to purchase by a change to free provision from a price

of Ksh 150. However, the bounds for this specification are empty in column (11),

suggesting that K = 2 might be too restrictive in our setting.

At the other extreme, one can impose few or no restrictions on m0 and m1, which

yields wider, but more robust bounds. However, even with a very flexible specifica-

tion, the bounds remain quite informative. For example, with a 10th order Bernstein

polynomial (K = 10), the results in column (13) show that the ATE can be bounded

between .56 and .72, whereas the PRTE of free provision compared to a price of Ksh

150 is bounded between .65 and .70. These results imply that the usage rate in the

overall population is relatively similar to that among individuals induced to purchase

by a change to free provision from a price of Ksh 150.

Figure 10 reports bounds on a range of PRTEs. Each PRTE takes pa0 to be

the propensity score associated with a regime in which all households can purchase

the bed net at a uniform price of Ksh 150.25 The alternative policy is specified by

pa1 = pa0 + α. Panel A plots bounds on this PRTE as a function of α. The predicted

price levels associated with a given α (predicted using the logistic regression in Figure

9) are indicated in parentheses. To be conservative, we set K = 10 as in column (13)

of Table 3, which allows a very flexible functional form for m0 and m1.

If households that are unwilling to pay larger monetary prices for the Olyset net

are less likely to use the net after purchasing it, then we would expect to see the

PRTEs declining in α. In contrast, Panel A of Figure 10 suggests that the PRTEs are

increasing in α. This finding is consistent with higher prices excluding poor or credit

constrained individuals who would use an Olyset net if they were able to purchase one.

For example, among those induced to purchase the net by lowering prices from Ksh

150 to Ksh 80, the usage rate is bounded between .57 and .62. By comparison, among

the larger set of individuals induced to purchase by a change from Ksh 150 to free

provision, the usage rate is bounded between .65 and .70.

24 See Appendix F for a definition and discussion of the Bernstein polynomials.
25 That is, pa0 = p̂(150), where p̂ is the estimated logistic model plotted in Figure 9.
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Figure 10: Bounds on Policy Relevant Treatment Effects
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(b) PRTE: Effects Relative to Costs

Notes: Panel A displays bounds on usage for a range of PRTEs. Each PRTE takes pa0 = p̂(150), where p̂ is
the fitted logistic regression from Figure 9. This corresponds to a policy regime under which all households
can purchase the Olyset bed net at a uniform price of Ksh 150. The alternative policy regime is pa1 = pa0 +α.
The x-axis shows how the PRTE varies with changes in α or prices in Ksh (z), where α and z are related
through α = p̂(z)−pa0 . Panel B divides the PRTE on usage by the PRTE on subsidy costs. The specification
of the IV-like estimands and Bernstein polynomial order correspond to column (13) in Panel B of Table 3.
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Even if a subsidy regime with low prices leads to relatively high usage among those

who purchase the Olyset net, it still comes at the cost of subsidizing inframarginal

consumers who would have also purchased the net at a higher price. To compare the

effects on usage to the costs of lowering prices, we divide the PRTE on usage by the

PRTE on subsidy costs. Panel B of Figure 10 plots the results, which show that subsidy

regimes with low prices or free provision induce relatively few individuals to use the

Olyset net per Ksh spent. For example, if prices are lowered from Ksh 150 to 80, then

each 1,000 Ksh in subsidy costs induces at least 4.70 households (lower bound) to use

the bed net. By comparison, moving from a regime with a price of Ksh 150 to one

with free provision induces at most 3.39 households (upper bound) to use the bed net

for every 1,000 Ksh in subsidy costs.26

7 Conclusion

We proposed a method for using instrumental variables (IVs) to draw inference about

treatment parameters other than the LATE. Our method uses the observation that

both the IV estimand and many treatment parameters can be expressed as weighted

averages of the same underlying marginal treatment effects. Since the weights are

known or identified, this observation implies that knowledge of the IV estimand places

some restrictions on the unknown marginal treatment response functions, and hence

on the possible values of other treatment parameters of interest. We showed how

to extract this information from a class of objects described as IV-like estimands,

which includes the TSLS and OLS estimands, among others. An important aspect of

our method is that it allows the researcher a large degree of flexibility in choosing a

parameter of interest, and in choosing auxiliary identifying assumptions that can be

used to help tighten their empirical conclusions. Another important feature is that it

is computationally straightforward.

We considered three main applications of our method. We showed that it can be

used for counterfactual policy analysis, including extrapolation away from the variation

in treatment induced by the instrument at hand. In addition, we showed that the

general framework facilitates tests of both model specification and economic behavior.

To implement our method, we developed a novel inference procedure that exploits the

convexity of our setting, while remaining uniformly valid and computationally reliable

under weak conditions. We applied our method to analyze how price subsidies affect

26 Of course, high subsidization or free provision of the Olyset net may still be optimal depending on its
effects on health outcomes. Unfortunately, we do not have the data needed to assess the effects on health
outcomes.
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the adoption and usage of antimalarial bed nets in Kenya. Our results suggest that

generous subsidy regimes encourage usage among individuals who would otherwise

not use a bed net, albeit at a potentially high cost of subsidizing other inframarginal

individuals.

The overall message from our analysis is that it is possible, both in theory and

in practice, to use IVs to draw informative inference about a wide range of treatment

parameters other than the LATE. This enables researchers to learn about causal effects

for a broad range of individuals, not just those who are affected by the instrument

observed in the data. The ability to do this is critical to ensuring that estimates

obtained through IV strategies are both externally valid and relevant to policy.
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A Proofs for Section 2

Proof of Proposition 1. Using equation (1), we first note that

βs = E[s(D,Z)DY1] + E[s(D,Z)(1−D)Y0]. (87)

Using equation (2) with Assumptions I.1 and I.2, observe that the first term of (87)

can be written as

E[s(D,Z)DY1] = E[s(D,Z)1[U ≤ p(Z)]E[Y1|U,Z]]

≡ E[s(1, Z)1[U ≤ p(Z)]m1(U,X)], (88)

where the first equality follows because s(D,Z)D is a deterministic function of (U,Z),

and the second equality uses the definition of m1 and I.2, together with the identity

that

s(D,Z)1[U ≤ p(Z)] ≡ s (1[U ≤ p(Z)], Z) 1[U ≤ p(Z)] = s(1, Z)1[U ≤ p(Z)].

Using the normalization that U |Z is uniformly distributed on [0, 1] for any realization

of Z, it follows from (88) that

E[s(D,Z)DY1] = E [E [s(1, Z)1[U ≤ p(Z)]m1(U,Z)|Z]]

= E

[∫ 1

0
s(1, Z)1[u ≤ p(Z)]m1(u, Z) du

]
≡ E

[∫ 1

0
ω1s(u, Z)m1(u, Z) du

]
.

The claimed result follows after applying a symmetric argument to the second term on

the right hand side of equation (87). Q.E.D.

Proof of Proposition 2. Since Γs : M 7→ R is linear for every s ∈ S, it follows

from convexity of M that MS is convex as well. (Note that the empty set is trivially

convex.) If MS is empty, then by definition we also have B?S = ∅. On the other hand,

if MS 6= ∅, then the linearity of Γ? : M 7→ R implies that B?S ≡ Γ?(MS) ⊆ R is a

convex set, and so its closure is [infm∈MS Γ?(m), supm∈MS Γ?(m)] ≡ [β?, β
?
]. Q.E.D.

Proof of Proposition 3. For notational simplicity, we define the set

Mid ≡ {m ∈M : m satisfies (17) and (18) almost surely}.
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For any m ≡ (m0,m1) ∈Mid and s ∈ S we obtain from the definition of βs that

βs = E[s(D,Z)E[Y |D,Z]] =
∑

d∈{0,1}

E[1[D = d]s(d, Z)E[Y |D = d, Z]]. (89)

Examining the d = 0 term in the summation, we obtain

E[1[D = 0]s(0, Z)E[Y |D = 0, Z]] = E

[
1[D = 0]s(0, Z)

1

1− p(Z)

∫ 1

p(Z)
m0(u,X)du

]

= E

[
1[D = 0]

1

1− p(Z)

∫ 1

0
m0(u,X)ω0s(u, Z)du

]
= E

[∫ 1

0
m0(u,X)ω0s(u, Z)du

]
, (90)

where the first equality follows from m ∈ Mid satisfying (17), the second equality

uses the definition ω0s(u, z) = s(0, z)1{u > p(z)}, and the final equality is implied by

P (D = 0|Z) = 1− p(Z). By analogous arguments, we also obtain

E[1[D = 1]s(1, Z)E[Y |D = 1, Z]] = E

[∫ 1

0
m1(u,X)ω1s(u, Z)du

]
. (91)

Together, (89), (90), and (91) imply that Γs(m) = βs. In particular, since s ∈ S and

m ∈Mid were arbitrary, we conclude Mid ⊆MS as claimed.

Next, suppose S = {s(d, z) = 1[d = d′]f(z) : (d′, f) ∈ {0, 1} × F} and that the

closed linear span of F is equal to L2(Z). Then note that for any m ∈MS and s ∈ S
with the structure s(d, z) = 1[d = 0]f(z) we obtain by definition of βs and Γs that

E[Y 1[D = 0]f(Z)] ≡ βs = Γs(m) = E

[∫ 1

p(Z)
m0(u,X)duf(Z)

]
(92)

where the second equality follows from m ∈ MS and the final equality is due to

ω0s(u, z) ≡ 1{u > p(z)}s(0, z) and s(0, z) = 1[0 = 0]f(z). Furthermore, define

∆(Z) ≡ E[Y 1[D = 0]|Z]−
∫ 1

p(Z)
m0(u,X)du (93)

and note that (92) implies that E[∆(Z)f(Z)] = 0 for all f ∈ F . Since E[Y 2
0 ] <∞ by

Assumption I.2 and E[
∫
m2
d(u,X)du] <∞, Jensen’s inequality implies that ∆ ∈ L2(Z).

Thus, since E[∆(Z)f(Z)] = 0 for all f ∈ F and the closed linear span of F equals

L2(Z), we conclude that ∆(Z) = 0 almost surely. Equivalently, since P (D = 0|Z) =
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1− p(Z) by definition of p(Z), we obtain whenever 1− p(Z) > 0 that

E[Y |D = 0, Z] =
1

1− p(Z)

∫ 1

p(Z)
m0(u,X)du (94)

almost surely, i.e. m0 satisfies (17). Analogous arguments imply that m1 satisfies (18).

Since (m0,m1) = m ∈MS was arbitrary, we conclude thatMS ⊆Mid, which together

with (19) establishes (20). Q.E.D.

Proof of Proposition 4. We prove the proposition for the upper bound of the target

parameter. The proof for the lower bound follows by identical arguments.

Observe that since Mfd ⊆M, we can immediately conclude that β
?
fd ≤ β

?
. As for

the opposite inequality, let {z1, . . . , zK} denote the discrete support of Z. Then notice

that for any (m0,m1) = m ∈M we have that

Γds(md) = E

 J∑
j=1

K∑
k=1

1[U ∈ Aj , Z = zk]md(U,X)ωds(U,Z)


= E

 J∑
j=1

K∑
k=1

E[md(U,X)|U ∈ Aj , Z = zk]ωds(U,Z)1[U ∈ Aj , Z = zk]


= E

 J∑
j=1

L∑
l=1

E[md(U,X)|U ∈ Aj , X = xl]ωds(U,Z)1[U ∈ Aj , X = xl]

 .
(95)

The first equality here follows from {Aj}Jj=1 being a partition of [0, 1]. The second

equality follows because ωds(u, z) is constant on each set {u ∈ Aj , z = zk} given the

assumption that 1[u ≤ p(z)] is constant Aj—recall Proposition 1. The third equality

in (95) follows from X being a subvector of Z = (Z0, X).

Given the definition of bjl(u, x) in (26), we can conclude from (95) that Γds(md) =

Γds(Πmd) for Πmd as defined in (27). An identical argument also yields Γ?d(md) =

Γ?d(Πmd). Hence, given the assumption that Πm ≡ (Πm0,Πm1) ∈Mfd, we have

β
? ≡ sup

m∈M
{Γ?(m) s.t. Γs(m) = βs for all s ∈ S}

= sup
m∈M

{Γ?(Πm) s.t. Γs(Πm) = βs for all s ∈ S}

≤ sup
m∈Mfd

{Γ?(m) s.t. Γs(m) = βs for all s ∈ S} ≡ β?fd. (96)

We conclude that β
?
fd = β

?
. Q.E.D.
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B MTR Weights for Linear IV Estimands

In this appendix, we show that linear IV estimands are a special case of our notion of

an IV–like estimand. For the purpose of this discussion, we adopt some of the standard

textbook terminology regarding “endogenous variables” and “included” and “excluded”

instruments in the context of linear IV models without heterogeneity. Consider a linear

IV specification with endogenous variables X̃1, included instruments Z̃1, and excluded

instruments Z̃2. We let X̃ ≡ [X̃1, Z̃1]′ and Z̃ ≡ [Z̃2, Z̃1]′. We assume that both E[Z̃Z̃ ′]

and E[Z̃X̃ ′] have full rank.

As long as these two conditions hold, all of the variables in X̃ and Z̃ can be functions

of (D,Z). Usually, one would expect that X̃1 would include D and possibly some

interactions between D and other covariates X. The instruments, Z̃, would usually

consist of functions of the vector Z, which contains X, by notational convention. The

included portion of Z̃, i.e. Z̃1, would typically also include a constant term as one

of its components. However, whether Z̃ is actually “exogenous” in the usual sense of

the linear instrumental variables model is not relevant to our definition of an IV–like

estimand or the derivation of the weighting expression (12). In particular, OLS is

nested as a linear IV specification through the case in which Z̃1 = [1, D]′ and both X̃1

and Z̃2 are empty vectors.

It may be the case that Z̃ has dimension larger than X̃, as in “overidentified” lin-

ear models. In such cases, a positive definite weighting matrix Π is used to generate

instruments ΠZ̃ that have the same dimension as X̃. A common choice of Π is the

two-stage least squares weighting ΠTSLS ≡ E[X̃Z̃ ′]E[Z̃Z̃ ′]−1 which has as its rows the

first stage coefficients corresponding to linear regressions of each component of X̃ on

the entire vector Z̃. We assume that Π is a known or identified non-stochastic matrix

with full rank. This covers ΠTSLS and the optimal weighting under heteroskedasticity

(optimal GMM) as particular cases given standard regularity conditions. The instru-

mental variables estimator that uses ΠZ̃ as an instrument for X̃ in a regression of Y

on X̃ has corresponding estimand

βIV,Π ≡
(

ΠE[Z̃X̃ ′]
)−1 (

ΠE[Z̃Y ]
)

= E

[(
ΠE[Z̃X̃ ′]

)−1
ΠZ̃Y

]
,

which is an IV–like estimand with s(D,Z) ≡ (ΠE[Z̃X̃ ′])−1ΠZ̃.
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C Proofs for Section 5

Proof of Theorem 1. First, we show in Lemma D.1 that

Tn = sup
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}
+Op(δ

s
n + δcn), (97)

uniformly over P ∈ P. Next, recalling that D is the unit sphere in B∗ and DP (κun) is

defined as in (49), we define the event

Ωn(P ) ≡

[
sup

b∗∈D\DP (κun)

{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}
≤ sup

b∗∈DP (κun)

{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}]
.

(98)

For any b∗ ∈ B∗, let

∆n(b∗) ≡
√
n
∣∣∣〈b∗, β̂ − βP 〉 − {ν(b∗, Γ̂(M))− ν(b∗,ΓP (M))

}∣∣∣ .
Observe that, since 〈b∗, βP 〉 − ν(b∗,ΓP (M)) ≤ −κun for all b∗ ∈ D \ DP (κun), we have

P (Ωn(P )c) ≤ P

(
sup
b∗∈D

2∆n(b∗)−
√
nκun > sup

b∗∈DP (κun)

√
n {〈b∗, βP 〉 − ν(b∗,ΓP (M))}

)

≤ P
(

sup
b∗∈D

2∆n(b∗) >
√
nκun

)
(99)

where Ωn(P )c denotes the complement of Ωn(P ) and in the final inequality we used

0 ∈ DP (κun). Hence, since
√
nκun ↑ ∞, (99) and Lemma D.2 yield

lim sup
n→∞

sup
P∈P

P (Ωn(P )c) = 0. (100)

In addition, note that the definition of ν(b∗, Γ̂(M)) and Assumption S.3 imply

sup
b∗∈DP (κun)

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}
= sup
b∗∈DP (κun)

inf
m∈M

{
〈b∗,
√
n{β̂ − βP } −

√
n{Γ̂(m)− ΓP (m)}〉+

√
n〈b∗, βP − ΓP (m)〉

}
= sup
b∗∈DP (κun)

inf
m∈M

{
〈b∗,GP,β −GP,Γ(m)〉+

√
n〈b∗, βP − ΓP (m)〉

}
+Op(δ

c
n) (101)

uniformly in P ∈ P. The first claim of Theorem 1 now follows from (97), (100), and

(101) together with δcn ↓ 0 and δsn ↓ 0 from Assumptions S.3 and S.5.

To establish the second claim, we note that if P ∈ P0, then the set {m ∈ M :
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√
n〈b∗, βP −ΓP (m)〉 ≤ δsn} cannot be empty for any b∗ ∈ B∗, because for such P there

exists an mP ∈M such that βP = ΓP (mP ). Hence, we conclude from (97), (100), and

(101) that

Tn = sup
b∗∈DP (κun)

inf
m∈M

{
〈b∗,GP,β −GP,Γ(m)〉+

√
n〈b∗, βP − ΓP (m)〉

}
+Op(δ

c
n + δcn)

≤ UP,n(κun) +Op(δ
c
n + δsn) + δsn (102)

uniformly in P ∈ P0, where the inequality follows by set inclusion and the definition

of UP,n(κun). This implies the second claim of Theorem 1. Q.E.D.

Proof of Lemma 5.1. Note that D̂n ⊆ D, M̂n ⊆ M, and |〈b∗, b〉| ≤ ‖b∗‖B∗‖b‖B ≤
‖b‖B for any b∗ ∈ D. These observations with Assumption S.6 imply

sup
b∗∈D̂n

sup
m∈M̂n

∣∣∣〈b∗, Ĝβ − ĜΓ(m)〉 − 〈b∗,Gbs
P,β −Gbs

P,Γ(m)〉
∣∣∣

≤ ‖Ĝβ −Gbs
P,β‖B + sup

b∗∈D
sup
m∈M

∣∣∣〈b∗, ĜΓ(m)−Gbs
P,Γ(m)〉

∣∣∣ = Op(δ
c
n) (103)

uniformly in P ∈ P. Next, define the event Ωn(P ) ≡ Ω1n(P ) ∩ Ω2n(P ) where

Ω1n(P ) ≡
[
DP (κn) ⊆ D̂n

]
and Ω2n(P ) ≡

[
ΠnmP ∈ M̂n for all mP ∈M s.t. ΓP (mP ) = βP

]
.

Observe that Lemmas D.4 and D.5 imply

lim sup
n→∞

sup
P∈P0

P (Ωn(P )c) ≤ lim sup
n→∞

{
sup
P∈P

P (Ω1n(P )c) + sup
P∈P0

P (Ω2n(P )c)

}
= 0. (104)

Moreover, {m ∈ M : ΓP (m) = βP } 6= ∅ for every P ∈ P0. It follows that, for any

P ∈ P0, if Ωn(P ) occurs, then it is also true that M̂n 6= ∅. In this event, Lemma

D.3 implies that for any b∗ ∈ B∗ there exists an m ∈ M̂n such that 〈b∗,ΓP (m)〉 =

ν(b∗,ΓP (M̂n)), so that In(ΓP ) is indeed well defined. Thus, (103) and (104) yield

In(ΓP ) = sup
b∗∈D̂n

inf
m∈M̂n

{
〈b∗,Gbs

P,β −Gbs
P,Γ(m)〉

s.t. 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))
}

+Op(δ
c
n) (105)

uniformly in P ∈ P0.

Next, note that, for any b∗ ∈ D, if m̂ ∈ M̂n satisfies 〈b∗,ΓP (m̂)〉 = ν(b∗,ΓP (M̂n)),

then it also satisfies 〈b∗,ΓP (m̂−m)〉 ≥ 0 for all m ∈ M̂n. Hence, when Ω2n(P ) is true,

63



we obtain

√
n〈b∗, βP − ΓP (m̂)〉 ≤

√
n〈b∗,ΓP (mP )− ΓP (ΠnmP )〉

≤
√
n‖ΓP (mP −ΠnmP )‖B ≤ δsn (106)

for any b∗ ∈ D, any m̂ ∈ Mn satisfying 〈b∗,ΓP (m̂)〉 = ν(b∗,ΓP (M̂n)), and every

mP ∈ M such that ΓP (mP ) = βP . The second equality in (106) used 〈b∗, b〉 ≤ ‖b‖B
for all b∗ ∈ D, while the third inequality followed from Assumption S.5. Since under

Ω1n(P ) we have DP (κn) ⊆ D̂n, (106) and Ωn(P ) ≡ Ω1n(P ) ∩ Ω2n(P ) imply that

whenever Ωn(P ) occurs

Ubs
P,n(κun) ≤ sup

b∗∈D̂n
inf

m∈M̂n

{
〈b∗,Gbs

P,β −Gbs
P,Γ(m)〉 s.t. 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))

}
.

(107)

The result now follows from (107) together with (104) and (105). Q.E.D.

Proof of Lemma 5.2. Since {m ∈ M : βP = ΓP (m)} 6= ∅ for all P ∈ P0, Lemma

D.5 implies that

lim inf
n→∞

inf
P∈P0

P (M̂n 6= ∅) = 1. (108)

Given (108), we establish the claim by showing that (67) holds whenever M̂n 6= ∅.
To this end, note that if M̂n 6= ∅, then by definition of the support function, an m ∈

M̂n satisfies 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n)) if and only if it satisfies 〈b∗,ΓP (m−m̃)〉 ≥ 0

for all m̃ ∈ M̂n. Equivalently, since 〈b∗,ΓP (m)〉 = 〈Γ∗P (b∗),m〉 for all (b∗,m) ∈ B∗×M,

we obtain by set inclusion that

In(ΓP ) = sup
b∗∈D̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈Γ∗(b∗),m− m̃〉 ≥ 0 for all m̃ ∈ M̂n

}
≥ sup

b∗∈D̂n
sup

m̃∈M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈Γ∗(b∗),m− m̃〉 ≥ 0

}
. (109)

For any (b∗, m̃) ∈ D̂n × M̂n, define

C(b∗, m̃) ≡ {m ∈ M̂n : 〈Γ∗P (b∗),m− m̃〉 ≥ 0}.

Recall that Γ∗P (b∗) ∈M∗ and that M̂n is compact in the weak topology by Lemma D.3.

It follows that, provided M̂n 6= ∅, there exists an mo
b∗ ∈ M̂n such that 〈Γ∗P (b∗),mo

b∗〉 =

supm∈M̂n
〈Γ∗(b∗),m〉. Such an mo

b∗ satisfies C(b∗,mo
b∗) ⊆ C(b∗, m̃) for all m̃ ∈ M̂n.
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Using set inclusion and 〈Γ∗P (b∗),mo
b∗ − m̃〉 ≥ 0 for all m̃ ∈ M̂n, we obtain

sup
b∗∈D̂n

sup
m̃∈M̂n

inf
m∈M̂n

{〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈Γ∗(b∗),m− m̃〉 ≥ 0}

= sup
b∗∈D̂n

inf
m∈C(b∗,mo

b∗ )
〈b∗, Ĝβ − ĜΓ(m)〉 (110)

= sup
b∗∈D̂n

inf
m∈M̂n

{〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈Γ∗P (b∗),m− m̃〉 ≥ 0 for all m̃ ∈ M̂n}.

The claim now follows from (109) and (110). Q.E.D.

Proof of Theorem 2. For any b∗ ∈ B∗, define the set

G̃n(b∗) ≡ {g ∈M∗ : |〈g − Γ̂∗(b∗), v〉| ≤ κ̂qn for all v ∈ Vn}.

and define

T̃ bs
n ≡ sup

b∗∈D̂n
sup

(g̃,m̃)∈G̃n(b∗)×M̂n

inf
m∈M̂n

{〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g̃,m− m̃〉 ≥ 0}. (111)

Define the event Ωn(P ) ≡ Ω1n(P ) ∩ Ω2n(P ), where

Ω1n(P ) ≡
[
Γ∗P (b∗) ∈ G̃n(b∗) for all b∗ ∈ D̂n

]
(112)

Ω2n(P ) ≡
[
T bs
n = T̃ bs

n

]
. (113)

We show that Ωn(P ) occurs with probability approaching 1, uniformly over P ∈ P0.

Using the definition of G̃n(b∗) and Assumption S.10 we have

lim inf
n→∞

inf
P∈P

P (Ω1n(P ))

≥ lim inf
n→∞

inf
P∈P

P

(
sup
b∗∈D̂n

sup
v∈Vn

|〈
√
n{Γ∗P (b∗)− Γ̂∗(b∗)}, v〉| ≤

√
nκ̂gn

)

≥ lim inf
C↑∞

lim inf
n→∞

inf
P∈P

P

(
sup
b∗∈D̂n

sup
v∈Vn

|〈
√
n{Γ∗P (b∗)− Γ̂∗(b∗)}, v〉| ≤ C

)
. (114)

Recall that under Assumption S.11, Vn ⊆ λ(Mn − mc) for some mc ∈ Mn, while

Mn ⊆ M by Assumption S.5, and D̂n ⊆ D by construction. Using these inclusions,
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we have

sup
b∗∈D̂n

sup
v∈Vn

∣∣∣〈√n{Γ∗P (b∗)− Γ̂∗(b∗)}, v〉
∣∣∣

≤ sup
b∗∈D

sup
m1,m2∈M

∣∣∣〈√n{Γ∗P (b∗)− Γ̂∗(b∗)}, λ(m1 −m2)〉
∣∣∣

≤ sup
b∗∈D

sup
m∈M

2|λ|
∣∣∣〈b∗,√n{Γ̂− ΓP }(m)〉

∣∣∣
= sup

b∗∈D
sup
m∈M

2|λ| |〈b∗,GP,Γ(m)〉|+Op(δ
c
n) (115)

where the second inequality follows from Γ̂∗ and Γ∗P being the adjoints of Γ̂ and ΓP

respectively, while the equality follows from Assumption S.3, and holds uniformly over

P ∈ P. Since |〈b∗, b〉| ≤ ‖b‖B for all b∗ ∈ D and b ∈ B, (115) implies that

lim inf
C↑∞

lim inf
n→∞

inf
P∈P

P

(
sup
b∗∈D̂n

sup
v∈Vn

|〈
√
n{Γ∗P (b∗)− Γ̂∗(b∗)}, v〉| ≤ C

)

≥ lim inf
C↑∞

inf
P∈P

P

(
sup
m∈M

2|λ|‖GP,Γ(m)‖B ≤
C

2

)
= 1 (116)

where we have applied Markov’s inequality with Assumption S.4. From (114), (116),

and Lemma D.6 we conclude that

lim sup
n→∞

sup
P∈P0

P (Ωn(P )c) ≤ lim sup
n→∞

{
sup
P∈P

P (Ω1n(P )c) + sup
P∈P0

P (Ω2n(P )c)

}
= 0. (117)

Next, we recall that Lemma 5.1 establishes that for any κun satisfying Assumption

S.8 and
√
nκun ↑ ∞, there exists a ξ̃bs

n ∈ R satisfying ξ̃bs
n = Op(δ

c
n) uniformly in P ∈ P0

such that

Ubs
P,n(κun) ≤ In(ΓP ) + ξ̃bs

n (118)

for all P ∈ P0. From Lemma 5.2 we can conclude that In(ΓP ) ≤ T̃ bs
n whenever the

event Ω1n(P ) occurs, whereas by definition T bs
n = T̃ bs

n whenever the event Ω2n(P )

occurs. Therefore, the claim of the result follow from (117), (118), and setting ξbs
n =

ξ̃bs
n + 1{{Yi, Zi}ni=1 ∈ Ωn(P )c}(In(ΓP )− T bs

n ). Q.E.D.

Proof of Theorem 3. The proof of the first claim closely follows the arguments in

Lemma D.6 of Chernozhukov et al. (2015).

First, note that Theorems 1 and 2 imply that

Tn ≤ UP,n(κun) +Op(δ
c
n + δsn) and Ubs

P,n(κun) ≤ T bs
n +Op(δ

c
n), (119)
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both uniformly over P ∈ P. Together with Markov’s inequality, this implies that for

any ε > 0 and Cn ↑ ∞ we have

lim sup
n→∞

sup
P∈P0

P
(
P
(

Ubs
P,n(κun) > T bs

n + Cnδ
c
n|{Yi, Di, Zi}ni=1

)
> ε
)

≤ lim sup
n→∞

sup
P∈P0

1

ε
P
(

Ubs
P,n(κun) > T bs

n + Cnδ
c
n

)
= 0. (120)

In particular, this implies that there is a sequence ηn ↓ 0 (which depends on Cn ↑ ∞)

such that the event

Ωn(P ) ≡
[
{Yi, Di, Zi}ni=1 : P

(
Ubs
P,n(κun) > T bs

n + Cnδ
c
n|{Yi, Di, Zi}ni=1

)
≤ ηn

]
(121)

satisfies supP∈P0
P (Ωn(P )c) = o(1). Furthermore, for any t ∈ R,

P
(
T bs
n ≤ t|{Yi, Di, Zi}ni=1

)
1 [{Yi, Di, Zi}ni=1 ∈ Ωn(P )]

≤ P
(
T bs
n ≤ t and Ubs

P,n(κun) ≤ T bs
n + Cnδ

c
n|{Yi, Di, Zi}ni=1

)
+ ηn

≤ P
(

Ubs
P,n(κun) ≤ t+ Cnδ

c
n

)
+ ηn, (122)

where the final inequality used the independence of Ubs
P,n(κun) and {Yi, Di, Zi}ni=1 under

Assumption S.6.

By evaluating (122) at t = ĉ1−α, we obtain

P
(
ĉ1−α + Cnδ

c
n ≥ c1−α−ηn(UP,n(κun))

)
≥ P

(
{Yi, Di, Zi}ni=1 ∈ Ωn(P )

)
(123)

where used the equality in distribution of UP,n(κun) and Ubs
P,n(κun) under Assumption

S.6. Theorem 1, (123), and supP∈P0
P (Ωn(P )c) = o(1) then yield

lim sup
n→∞

sup
P∈P0

P (Tn > ĉ1−α)

≤ lim sup
n→∞

sup
P∈P0

P
(
UP,n(κun) + Cn(δsn + δcn) > ĉ1−α

)
≤ lim sup

n→∞
sup
P∈P0

P
(
UP,n(κun) > c1−α−ηn(UP,n(κun))− 2Cn(δcn + δsn)

)
. (124)

Notice, however, that because ζn (defined in Assumption S.12) satisfies ζn(δsn + δcn) =

o(1), we can select Cn ↑ ∞ slowly enough so that ζnCn(δsn + δcn) = o(1). Since ηn ↓ 0,
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we conclude that for such a choice of Cn,

lim sup
n→∞

sup
P∈P0

P
(
c1−α−ηn(UP,n(κun)) ≥ UP,n(κun) > c1−α−ηn(UP,n(κun))− 2Cn(δcn + δsn)

)
≤ lim sup

n→∞
ζn × 2Cn(δcn + δsn) = 0. (125)

Combining (124) and (125) establishes the first claim, since

lim sup
n→∞

sup
P∈P0

P (Tn > ĉ1−α) ≤ lim sup
n→∞

sup
P∈P0

P
(

UP,n(κun) > c1−α−ηn(UP,n(κun))
)
≤ α.

(126)

To establish the second claim, we first note that for any b∗ ∈ B∗, and any sequence

mn that converges (in the weak topology) to an m ∈M, we have

lim
n→∞

〈b∗,ΓP (mn)− ΓP (m)〉 = lim
n→∞

〈Γ∗P (b∗),mn −m〉 = 0, (127)

which implies ΓP : M 7→ B is continuous when both M and B are equipped with their

respective weak topologies. Also, note that m 7→ ‖βP − ΓP (m)‖B is lower semicon-

tinuous (with respect to the weak topologies), which follows because ΓP : M 7→ B is

continuous, and because the norm functional ‖·‖B is lower semicontinuous with respect

to the weak topology in B (see Lemma 6.22 in Aliprantis and Border (2006)). Since

M is compact in the weak topology by Assumption S.1, we conclude that

∆0 ≡ inf
m∈M

‖βP − ΓP (m)‖B = min
m∈M

‖βP − ΓP (m)‖B > 0 (128)

for any P ∈ P \P0.

Next, observe that Lemmas D.1 and D.2 imply that for any P ∈ P \P0

Tn = sup
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}
+ op(1)

= sup
b∗∈D

√
n {〈b∗, βP 〉 − ν(b∗,ΓP (M))}+Op(1)

= inf
m∈M

√
n‖βP − ΓP (m)‖B +Op(1) =

√
n∆0 +Op(1), (129)

where the third equality holds by Theorem 5.13.1 in Luenberger (1969), and the final

equality in (129) follows from (128). On the other hand, for any C > 0 we have

P (ĉ1−α > C) ≤ P
(
P
(
T bs
n > C|{Yi, Di, Zi}ni=1

)
> α

)
≤ 1

α
P (T bs

n > C), (130)

where the first inequality follows by definition of ĉ1−α and the second by Markov’s
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inequality. From D̂ ⊆ D, M̂n ⊆ M, and supb∗∈D〈b∗, b〉 = ‖b‖B for any b ∈ B (see

Lemma 6.10 in Aliprantis and Border (2006)), and Assumption S.6, we obtain

T bs
n ≤ ‖Ĝβ‖B + sup

b∗∈D
sup
m∈M

〈b∗,−ĜΓ(m)〉

= ‖Gbs
P,β‖B + sup

b∗∈D
sup
m∈M

〈b∗,−Gbs
P,Γ(m)〉+ op(1)

= ‖Gbs
P,β‖B + sup

m∈M
‖Gbs

P,Γ(m)‖B + op(1). (131)

Assumptions S.4 and S.6 together with (131) then imply that T bs
n = Op(1) under any

P ∈ P. We conclude from (130) that

lim sup
C↑∞

lim sup
n→∞

P (ĉ1−α > C) = 0. (132)

The second claim now follows from (129) and (132). Q.E.D.

D Proofs of Auxiliary Results

Lemma D.1. If Assumptions S.1, S.2, S.3, and S.5 hold, then

lim sup
C↑∞

lim sup
n→∞

sup
P∈P

P

(∣∣∣∣Tn − sup
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}∣∣∣∣ > C(δcn + δsn)

)
= 0.

Proof of Lemma D.1. Assumption S.5 implies that

inf
m∈Mn

√
n‖β̂ − Γ̂(m)‖B ≤ inf

m∈M

√
n‖β̂ − Γ̂(Πnm)‖B (133)

≤ inf
m∈M

√
n‖β̂ − Γ̂(m)‖B + sup

m∈M

√
n‖Γ̂(m)− Γ̂(Πnm)‖B,

where the first inequality follows from Πnm ∈ Mn for all m ∈ M, and the second

inequality applies the triangle inequality. Note that

‖b‖B = sup
b∗∈D
〈b∗, b〉 (134)

for any b ∈ B; see, e.g., Lemma 6.10 in Aliprantis and Border (2006). Assumption S.3
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with (134) imply

sup
m∈M

√
n‖Γ̂(m−Πnm)− ΓP (m−Πnm)‖B

= sup
m∈M

sup
b∗∈D
〈b∗,
√
n{Γ̂− ΓP }(m−Πnm)〉

= sup
m∈M

sup
b∗∈D
〈b∗,GP,Γ(m)−GP,Γ(Πnm)〉+Op(δ

c
n) (135)

uniformly in P ∈ P. Similarly, Assumption S.5 with (134) imply

sup
P∈P

E

[
sup
m∈M

sup
b∗∈D
〈b∗,GP,Γ(m)−GP,Γ(Πnm)〉

]
= sup

P∈P
E

[
sup
m∈M

‖GP,Γ(m)−GP,Γ(Πn(m))‖B
]

= O(δsn). (136)

Combining (133), (135), and (136) with Assumption S.5 and applying Markov’s in-

equality, we obtain

inf
m∈Mn

√
n‖β̂ − Γ̂(m)‖B ≤ inf

m∈M

√
n‖β̂ − Γ̂(m)‖B +Op(δ

s
n + δcn)

≤ inf
m∈Mn

√
n‖β̂ − Γ̂(m)‖B +Op(δ

s
n + δcn) (137)

uniformly in P ∈ P, where the second inequality in (137) used Mn ⊆M.

Since Γ̂ : M 7→ B is continuous under Assumption S.2, we can define its adjoint

Γ̂∗ : B∗ 7→M∗, so that 〈b∗, Γ̂(m)〉 = 〈Γ̂∗(b∗),m〉. Note that Γ̂∗(b∗) ∈M∗, and therefore

〈b∗, Γ̂(m)〉 = 〈Γ̂∗(b∗),m〉 implies m 7→ 〈b∗, Γ̂(m)〉 is continuous in the weak topology.

Then, since M is compact in the weak topology under Assumption S.1, we obtain

Tn = inf
m∈M

sup
b∗∈D

√
n〈b∗, β̂ − Γ̂(m)〉+Op(δ

c
n + δsn)

= sup
b∗∈D

inf
m∈M

√
n〈b∗, β̂ − Γ̂(m)〉+Op(δ

c
n + δsn)

= sup
b∗∈D

√
n
{
〈b∗, β̂〉 − ν(b∗, Γ̂(M))

}
+Op(δ

c
n + δsn), (138)

uniformly in P ∈ P, where the first equality follows from results (134) and (137),

the second equality results from Theorem 4.2 in Sion (1958), and the final equality is

implied by the definition of ν(b∗, Γ̂(M)). The claim now follows from (138). Q.E.D.
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Lemma D.2. If Assumptions S.3 and S.4 hold, then

lim
C↑∞

lim sup
n→∞

sup
P∈P

P

(
sup
b∗∈D

sup
C⊆M

∣∣∣〈b∗, β̂ − βP 〉 − {ν(b∗, Γ̂(C))− ν(b∗,ΓP (C))
}∣∣∣ > C√

n

)
= 0.

Proof of Lemma D.2. Throughout the proof, we use (134) from Lemma D.1, see

e.g. Lemma 6.10 in Aliprantis and Border (2006). Together with Assumption S.3, this

implies that

sup
b∗∈D

√
n|〈b∗, β̂ − βP 〉| = ‖

√
n{β̂ − βP }‖B = ‖GP,β‖B + op(1) (139)

uniformly in P ∈ P. Similarly,

sup
b∗∈D

sup
C⊆M

√
n|ν(b∗, Γ̂(C))− ν(b∗,ΓP (C))|

= sup
b∗∈D

sup
C⊆M

√
n

∣∣∣∣sup
m∈C
〈b∗, Γ̂(m)〉 − sup

m∈C
〈b∗,ΓP (m)〉

∣∣∣∣
≤ sup

b∗∈D
sup
m∈M

|〈b∗,
√
n{Γ̂− ΓP }(m)〉| = sup

m∈M
‖GP,Γ(m)‖B + op(1), (140)

uniformly in P ∈ P, where the inequality follows from C ⊆ M, and the final equality

follows from Assumption S.3. From (139) and (140), we conclude that for any C > 0,

lim sup
n→∞

sup
P∈P

P

(
sup
b∗∈D

sup
C⊆M

∣∣∣〈b∗, β̂ − βP 〉 − {ν(b∗, Γ̂(C))− ν(b∗,ΓP (C))}
∣∣∣ > C√

n

)

≤ sup
P∈P

P

(
‖GP,β‖B + sup

m∈M
‖GP,Γ(m)‖B >

C

2

)
so that the result follows from Markov’s inequality with Assumption S.4. Q.E.D.

Lemma D.3. If Assumptions S.1, S.2, and S.7 hold, then M̂n is compact in the weak

topology. Moreover, if M̂n 6= ∅, then for all b∗ ∈ B∗{
m ∈ M̂n : 〈b∗,ΓP (m)〉 = ν(b∗,ΓP (M̂n))

}
6= ∅.

Proof of Lemma D.3. We note that {m ∈M : ‖β̂− Γ̂(m)‖B ≤ κ̂mn } is closed in the

weak topology of M. This follows by Lemma 6.22 in Aliprantis and Border (2006),

which implies that {b ∈ B : ‖β̂ − b‖B ≤ κ̂mn } is closed in the weak topology of B,

and because Γ̂ : M 7→ B is continuous and linear under Assumption S.2. Hence,
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{m ∈M : ‖β̂ − Γ̂(m)‖B ≤ κ̂mn } being closed, together with Assumption S.7 and

M̂n =Mn ∩ {m ∈M : ‖β̂ − Γ̂(m)‖B ≤ κ̂mn }, (141)

shows that M̂n is closed in the weak topology, and therefore compact in the weak

topology, since M̂n ⊆ M and M is compact under Assumption S.1. Provided that

M̂n 6= ∅, it follows that for any b∗ ∈ B∗

ν(b∗,ΓP (M̂n)) ≡ sup
m∈M̂n

〈b∗,ΓP (m)〉 = max
m∈M̂n

〈Γ∗P (b∗),m〉, (142)

where attainment in the final equality is guaranteed by the compactness of M̂n in the

weak topology and the continuity of m 7→ 〈Γ∗P (b∗),m〉 in the weak topology. Q.E.D.

Lemma D.4. Suppose that Assumptions S.3 and S.4 hold. Then

lim inf
n→∞

inf
P∈P

P (DP (κun) ⊆ D̂n) = 1

for any non-random sequence κun that satisfies Assumption S.8 and
√
nκun ↑ ∞.

Proof of Lemma D.4. For any b∗ ∈ B∗ and Mn ⊆M, define

∆n(b∗) ≡
√
n
∣∣∣〈b∗, β̂ − βP 〉 − {ν(b∗, Γ̂(Mn))− ν(b∗,ΓP (Mn))

}∣∣∣ . (143)

Using the definition of DP (κun), and noting that Mn ⊆ M implies ν(b∗,ΓP (Mn)) ≤
ν(b∗,ΓP (M)) for all b∗ ∈ B∗, we have

inf
b∗∈DP (κun)

{
〈b∗, β̂〉 − ν(b∗, Γ̂(Mn))

}
≥ inf

b∗∈DP (κun)

{
〈b∗, βP 〉 − ν(b∗,ΓP (Mn))− ∆n(b∗)√

n

}
≥ − sup

b∗∈DP (κun)

{
∆n(b∗)√

n
+ κun

}
. (144)

The definition of D̂n, together with (144) and Lemma D.2, then implies that

lim inf
n→∞

inf
P∈P0

P (DP (κun) ⊆ D̂n) ≥ lim inf
n→∞

inf
P∈P0

P

(
sup

b∗∈DP (κun)

{
∆n(b∗)√

n
+ κun

}
≤ κ̂un

)
≥ lim inf

n→∞
inf
P∈P0

P ((1 + δ)κun ≤ κ̂un) = 1, (145)

where the final equality follows by Assumption S.8 for some δ > 0. Q.E.D.
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Lemma D.5. Suppose that Assumptions S.3–S.5 and S.9 hold. Then

lim inf
n→∞

inf
P∈P0

P (ΠnmP ∈ M̂n for all mP ∈M s.t. ΓP (mP ) = βP ) = 1.

Proof of Lemma D.5. Note that if βP = ΓP (mP ), then by the triangle inequality

‖β̂ − Γ̂(ΠnmP )‖B
≤ ‖β̂ − βP ‖B + ‖ΓP (mP )− ΓP (ΠnmP )‖B + ‖ΓP (ΠnmP )− Γ̂(ΠnmP )‖B. (146)

Using (134) from Lemma D.1 together with Assumption S.3, we have

sup
m∈M

‖
√
n{Γ̂− ΓP }(m)−GP,Γ(m)‖B = op(1), (147)

uniformly over P ∈ P. Assumptions S.3 and S.5, together with (146) and (147), imply

sup
mP∈M:ΓP (mP )=βP

√
n‖β̂ − Γ̂(ΠnmP )‖B

≤ sup
mP∈M:ΓP (mP )=βP

{‖GP,β‖B + ‖GP,Γ(ΠnmP )‖B}+ op(1), (148)

uniformly over P ∈ P. Then by Assumption S.9, (148), and the definition of M̂n,

lim inf
n→∞

inf
P∈P0

P (ΠnmP ∈ M̂n for all mP ∈M s.t. ΓP (mP ) = βP ) (149)

≥ lim inf
n→∞

inf
P∈P0

P

(
sup

mP∈M:ΓP (mP )=βP

{‖GP,β‖B + ‖GP,Γ(ΠnmP )‖B} ≤
√
nκ̂mn
2

)
.

Moreover, by Assumptions S.4, S.9, and Markov’s inequality,

lim inf
n→∞

inf
P∈P0

P

(
sup
m∈M

{‖GP,β‖B + ‖GP,Γ(m)‖B} ≤
√
nκ̂mn
2

)
≥ lim inf

C↑∞
inf
P∈P0

P

(
sup
m∈M

{‖GP,β‖B + ‖GP,Γ(m)‖B} ≤ C
)

= 1. (150)

The result follows from (149) and (150). Q.E.D.

Lemma D.6. Suppose that Assumptions S.2–S.5, S.9, and S.11 hold. Define the set

G̃n(b∗) ≡ {g ∈M∗ : |〈g − Γ̂∗(b∗), v〉| ≤ κ̂qn for all v ∈ Vn}
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and the statistic

T̃ bs
n ≡ sup

b∗∈D̂n
sup

(g̃,m̃)∈G̃n(b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g̃,m− m̃〉 ≥ 0

}
.

Then T bs
n = T̃ bs

n with probability tending to one, uniformly in P ∈ P0.

Proof of Lemma D.6. Since {m ∈ M : βP = ΓP (m)} 6= ∅ for all P ∈ P0, Lemma

D.5 implies that

lim inf
n→∞

inf
P∈P0

P (M̂n 6= ∅) = 1. (151)

Hence, the claim follows provided that T bs
n = T̃ bs

n whenever M̂n 6= ∅.
To show this, note that because Mn ⊆M, the restriction of any g ∈M∗ to Mn is

a continuous linear functional on Mn. That is, for any g ∈M∗ there exists a gn ∈M∗n

such that 〈g − gn,m〉 = 0 for all m ∈ Mn. Since Vn ⊆ Mn by Assumption S.11,

and because ∅ 6= M̂n ⊆ Mn ⊆ Mn, it follows that for any g̃ ∈ G̃n(b∗) there exists a

g ∈ Ĝn(b∗) such that 〈g − g̃,m〉 = 0 for all m ∈ M̂n. As a consequence,

T̃ bs
n ≤ sup

b∗∈D̂n
sup

(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0

}
. (152)

Conversely, note that any gn ∈ M∗n is a continuous linear functional defined on

Mn, which is a subspace of M. By the Hahn-Banach Theorem (see e.g. Theorem 5.4.1

of Luenberger (1969)), there exists an extension g ∈ M∗ such that 〈gn − g,m〉 = 0

for all m ∈ Mn. As before, since Vn ⊆ Mn under Assumption S.11, and because

∅ 6= M̂n ⊆Mn, we can conclude that for any g ∈ Ĝn(b∗) there exists a g̃ ∈ G̃n(b∗) such

that 〈g − g̃,m〉 = 0 for all m ∈ M̂n. Hence, we conclude that

T̃ bs
n ≥ sup

b∗∈D̂n
sup

(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0

}
. (153)

The result now follows from (152), (153), and the definition of T bs
n . Q.E.D.

E Computation for Infinite B

Whenever B is infinite dimensional, i.e. we are employing an infinite number of IV-

like specifications S, the dual space B∗ is infinite dimensional as well. Computing

the bootstrap statistic T bs
n may be challenging in this situation. In this appendix, we

provide a supplemental result that establishes appropriate conditions under which T bs
n

can be approximated by a finite dimensional optimization problem when B∗ is infinite

dimensional.
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Let Dn ⊆ D be a finite dimensional subset of D and, in analogy to D̂n, define

D̃n ≡ {b∗ ∈ Dn : 〈b∗, β̂〉 − ν(b∗, Γ̂(Mn)) ≥ −κ̂un}. (154)

Heuristically, D̃n consists of the set of “directions” b∗ in the sieve Dn that are “close”

to binding. Notice the contrast to D̂n, which contains all such directions in D and

hence is potentially infinite dimensional. Define the bootstrap statistic

Cbs
n ≡ sup

b∗∈D̃n
sup

(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

{〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0}, (155)

where M̂n and Ĝn(b∗) remain as defined in (61) and (68), respectively. That is, Cbs
n is

identical to T bs
n , with the exception that D̂n has been replaced by D̃n.

In the following, we show that a version of Theorem 2 continues to hold with Cbs
n

in place of T bs
n . This implies that Cbs

n is also a valid bootstrap statistic. To do this,

we impose the following conditions on the sieve Dn for D:

Assumption U

For every b∗ ∈ D there exists a Πnb
∗ ∈ Dn ⊆ D such that

sup
P∈P

sup
b∗∈D

√
n|〈b∗ −Πnb

∗, βP 〉| ≤ δbn,

sup
P∈P

E

[
sup

(b∗,m)∈D×M
|〈b∗ −Πnb

∗,GP,β −GP,Γ(m)〉|

]
≤ δbn,

and sup
P∈P

sup
(b∗,m)∈D×M

√
n|〈b∗ −Πnb

∗,ΓP (m)〉| ≤ δbn,

for some δbn ↓ 0.

Assumption U places conditions on the sieveDn that are analogous to those required

ofMn by Assumption S.5. We note that Assumption U imposes no constraints on the

rate of growth of Dn. Instead, Assumption U demands that the rate of growth of Dn be

sufficiently fast so that the approximation error introduced from optimizing over Dn in

place of D is asymptotically negligible. This is likely to be the case when computation

is the primary reason for using Dn over D. Our next result provides an analog to

Theorem 2 for situations when a sieve Dn is used in place of D.

Lemma E.1. Suppose that Assumptions S.1–S.7, S.9–S.11, and U hold. Then, for

any sequence κun that satisfies Assumption S.8, as well as
√
nκun ↑ ∞, there exists a
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sequence ξbsn ∈ R, with ξbsn = Op(δ
c
n + δbn) uniformly in P ∈ P0, and such that

Ubs
P,n(κun) ≤ Cbs

n + ξbsn (156)

for any P ∈ P0.

Proof of Lemma E.1. We begin by defining an auxiliary lower bound CLn . Note

that since κ̂un satisfies Assumption S.8, there exists an η ∈ (0, 1) such that

lim inf
n→∞

inf
P∈P

P

(
ηκ̂un
κun

> (1 + δL)

)
= 1 (157)

for some δL > 0. Define

D̂Ln ≡ {b∗ ∈ D : 〈b∗, β̂〉 − ν(b∗, Γ̂(Mn)) ≥ −ηκ̂un}

and ĜLn (b∗) ≡ {g ∈M∗n : |〈g, v〉 − 〈b∗, Γ̂(v)〉| ≤ ηκ̂gn for all v ∈ Vn},

then let

CLn ≡ sup
b∗∈D̂Ln

sup
(g,m̃)∈ĜLn (b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0

}
. (158)

Note that Assumption S.10 is satisfied with ηκ̂gn replacing κ̂gn, and that (157) implies

that Assumption S.8 is also satisfied with ηκ̂un in place of κ̂un. Hence, from Theorem 2,

we can conclude that

Ubs
P,n(κun) ≤ CLn + ξLn , (159)

uniformly over P ∈ P0, with ξLn = Op(δ
c
n).

Next, note that because Dn ⊆ D by Assumption U, and since |〈b∗, b〉| ≤ ‖b‖B for

any b∗ ∈ D, we have

sup
b∗∈D

sup
m∈M

|〈b∗ −Πnb
∗, Ĝβ − ĜΓ(m)〉 − 〈b∗ −Πnb

∗,Gbs
P,β −Gbs

P,Γ(m)〉|

≤ 2‖Ĝβ −Gbs
P,β‖B + sup

b∗∈D
sup
m∈M

2|〈b∗, ĜΓ(m)−Gbs
P,Γ(m)〉| = Op(δ

c
n), (160)

uniformly over P ∈ P, where the final equality is due to Assumption S.6. Moreover,

sup
b∗∈D

sup
m∈M

|〈b∗ −Πnb
∗,Gbs

P,β −Gbs
P,Γ(m)〉| = Op(δ

b
n) (161)

uniformly in P ∈ P by Assumptions S.6, U, and Markov’s inequality. Together, (160),
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(161) imply that

CLn = sup
b∗∈D̂Ln

sup
(g,m̃)∈ĜLn (b∗)×M̂n

inf
m∈M̂n

{
〈Πnb

∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0
}

+Op(δ
c
n + δbn) (162)

uniformly in P ∈ P.

Define the event Ωn(P ) ≡ Ω1n(P ) ∩ Ω2n(P ), where

Ω1n(P ) ≡
[
Πnb

∗ ∈ D̃n for all b∗ ∈ D̂Ln
]

(163)

Ω2n(P ) ≡
[
ĜLn (b∗) ⊆ Ĝn(Πnb

∗) for all b∗ ∈ D
]
. (164)

Then note that by definition of D̃n and D̂Ln , with η ∈ (0, 1), we obtain

P (Ω1n(P ))

≥ P
(

inf
b∗∈D
〈Πnb

∗ − b∗, β̂〉 −
{
ν(Πnb

∗, Γ̂(Mn))− ν(b∗, Γ̂(Mn))
}
≥ −(1− η)κ̂un

)
≥ P

(
sup

(b∗,m)∈D×M
|〈Πnb

∗ − b∗, β̂ − Γ̂(m)〉| ≤ (1− η)κ̂un

)
. (165)

By Assumptions S.3, U, and Markov’s inequality we obtain

sup
(b∗,m)∈D×M

|〈Πnb
∗ − b∗, β̂ − Γ̂(m)〉| (166)

≤ sup
(b∗,m)∈D×M

∣∣∣∣ 1√
n
〈Πnb

∗ − b∗,GP,β −GP,Γ(m)〉
∣∣∣∣+Op

(
δcn + δbn√

n

)
= Op

(
δcn + δbn√

n

)

uniformly in P ∈ P. Since δcn ↓ 0 by Assumption S.3, δbn ↓ 0 by Assumption U, and κ̂un

satisfies Assumption S.8 with
√
nκun ↑ ∞, we conclude from (165) and (166) that

lim inf
n→∞

inf
P∈P

P (Ω1n(P )) = 1. (167)

Similarly, the definitions of ĜLn (b∗) and Ĝn(Πnb
∗), η ∈ (0, 1), and Vn ⊆ λ(M−M) yield

P (Ω2n(P )) ≥ P
(

sup
b∗∈D

|〈Πnb
∗ − b∗, Γ̂(v)〉| ≤ (1− η)κ̂gn for all v ∈ Vn

)
≥ P

(
sup

(b∗,m)∈D×M
|〈Πnb

∗ − b∗, Γ̂(m)〉| ≤ (1− η)

2λ
κ̂gn

)
. (168)
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After arguments analogous to those in (166) (evaluated with β̂ = 0), (168) implies

lim inf
n→∞

inf
P∈P

P (Ω2n(P )) = 1. (169)

Since Ωn(P ) ≡ Ω1n(P ) ∩ Ω2n(P ), results (167) and (169) establish that Ωn(P ) occurs

with probability tending to one, uniformly over P ∈ P.

To conclude, observe that when Ωn(P ) occurs, we have

sup
b∗∈D̂Ln

sup
(g,m̃)∈ĜLn (b∗)×M̂n

inf
m∈M̂n

{
〈Πnb

∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0
}

≤ sup
b∗∈D̃n

sup
(g,m̃)∈Ĝn(b∗)×M̂n

inf
m∈M̂n

{
〈b∗, Ĝβ − ĜΓ(m)〉 s.t. 〈g,m− m̃〉 ≥ 0

}
. (170)

The claim now follows from the definition of Cbs
n by combining (159), (162), (169), and

(170). Q.E.D.

F Bernstein Polynomials

The kth Bernstein basis polynomial of degree K is defined as

bKk : [0, 1] 7→ R : bKk (u) ≡

(
K

k

)
uk(1− u)K−k

for k = 0, 1, . . . ,K. A degree K Bernstein polynomial B is a linear combination of

these K + 1 basis polynomials:

B(u) : [0, 1] 7→ R : B(u) ≡
K∑
k=0

θkb
K
k (u),

for some constants θ0, θ1, . . . , θK . As is well-known, any continuous function on [0, 1]

can be uniformly well approximated by a Bernstein polynomial of sufficiently high

order.

The shape of B can be constrained by imposing linear restrictions on θ0, θ1, . . . , θK .

This computationally appealing property of the Bernstein polynomials has been noted

elsewhere by Chak, Madras, and Smith (2005), Chang, Chien, Hsiung, Wen, and Wu

(2007) and McKay Curtis and Ghosh (2011), among others. The following constraints

are especially useful in the current application. Derivations of these properties can be

found in Chang et al. (2007) and McKay Curtis and Ghosh (2011).

Shape Constraints
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S.1 Bounded below by 0: θk ≥ 0 for all k.

S.2 Bounded above by 1: θk ≤ 1 for all k.

S.3 Monotonically increasing: θ0 ≤ θ1 ≤ · · · ≤ θK .

S.4 Concave: θk − 2θk+1 + θk+2 < 0 for k = 0, . . . ,K − 2.

Each Bernstein basis polynomial is itself an ordinary degree K polynomial. The

coefficients on this ordinary polynomial representation (i.e. the power basis represen-

tation) can be computed by applying the binomial theorem:

bKk (u) =

K∑
i=k

(−1)i−k

(
K

i

)(
i

k

)
ui. (171)

Representation (171) is useful for computing the terms Γ?d(bdk) and Γds(bdk) that appear

in the finite-dimensional program (25). To see this note for example that with d = 1,

Γ1s(b1k) ≡ E
[∫ 1

0
b1k(u, Z)ω1s(u, Z) du

]
= E

[
s(1, Z)

∫ p(Z)

0
b1k(u, Z) du

]

If b1k(u, Z) = b1k(u) is a Bernstein basis polynomial, then
∫ p(Z)

0 b1k(u) du can be com-

puted analytically through elementary calculus using (171). The result of this integral

is a known function of p(Z). The coefficient Γ1s(b1k) is then simply the population

average of the product of this known function with s(0, Z), which is also known or

identified. Thus, no numerical integration is needed to compute or estimate the γdks

terms. This conclusion depends on the form of the weights, and may not hold for all

target weights ω?dk, although it holds for all of the parameters listed in Table 1. When

it does not, one dimensional numerical integration can be used instead.

G Implementation and Computation

In this appendix, we discuss computation for the sample analog bounds, the test statis-

tic, the bootstrap statistic, and our data-driven choices of tuning parameters for the

bootstrap statistic.

G.1 Estimating Bounds

Consider the finite dimensional problem (25). We assume throughout Appendix G that

Θ is polyhedral, so that it can be represented as

Θ ≡ {θ ∈ Rdθ : Rθ ≤ q} (172)
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for a known vector q ∈ Rdq and a known dq × (K0 +K1) dimensional matrix R, where

θ ≡ (θ0, θ1), and dθ ≡ K0 +K1. We also assume throughout Appendix G that Θ ⊂ Rdθ

is a bounded set.

Let Γ̂?d(bdk) and Γ̂ds(bdk) denote estimators of Γ?d(bdk) and Γds(bdk), respectively.

For the target parameter, these can be constructed as, e.g.

Γ̂?d(bdk) ≡
1

n

n∑
i=1

∫ 1

0
bdk(u,Xi)ω̂

?
d(u, Zi) dµ

?(u), (173)

where ω̂?d is an estimator of the known or identified weighting function, ω̂?d. Depending

on the choices of basis and target parameter, the integral can often be evaluated an-

alytically. An estimator analogous to (173) can also be constructed for each Γds(bdk).

These require an estimator ω̂ds, which in turn requires an estimator for the propensity

score, p(z), and possibly the functions s(d, z) that define the IV–like estimand. Letting

ŝ(d, z) be the latter estimator, we then define

β̂s ≡
1

n

n∑
i=1

ŝ(Di, Zi)Yi

as an estimator of βs.

Given these estimators, the bound β
?
fd can be estimated by solving the linear pro-

gram

β̂
?

fd ≡ max
θ≡(θ0,θ1)

K0∑
k=1

θ0kΓ̂
?
0(b0k) +

K1∑
k=1

θ1kΓ̂
?
1(b1k)

s.t.

K0∑
k=1

θ0kΓ̂0s(b0k) +

K1∑
k=1

θ1kΓ̂1s(b1k) = β̂s for all s ∈ S

and Rθ ≤ q. (174)

Solving the analogous minimization problem yields an estimator of the lower bound,

β̂
?

fd
. Both of these problems are linear programs with dθ ≡ K0 + K1 variables and

|S|+ dq constraints.

It is possible that no solution to (174) exists. This could be an indication that

no solution to the population problem (25) exists either, which would imply that the

model is misspecified. However, it could also be that (25) is feasible, but that (174)

is infeasible due to statistical error in the estimation of the Γds(bdk) and βs terms.

Our results in Section 5 provide a formal statistical test of the null hypothesis that

the model is not misspecified. Those results also provide a procedure for building a
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confidence region for β?. It is possible for this confidence region to be nonempty even

when (174) is infeasible.

G.2 Reformulation of the Test Statistic

We continue to assume that m has been parameterized by some finite dimensional

θ ∈ Θ, where Θ is polyhedral and characterized by the linear constraints Rθ ≤ q, as in

(172). We also assume that β is a finite dimensional parameter so that B = Rdβ .

The test statistic, Tn, is defined by the optimization problem (35). The choice of

norm on B affects the nature of the objective in (35), and will affect both the objective

and constraints for the bootstrap statistic problem discussed in the next section. For

computational reasons, it turns out to be convenient to choose a norm ‖ · ‖B for which

the unit ball is polyhedral. This suggests taking ‖ · ‖B to be either the 1–norm or the

max–norm on Rdβ . For concreteness, we will take ‖ · ‖B to be the 1–norm, so that

‖β̂‖B = ‖β̂‖1 ≡
∑dβ

l=1 |β̂l|.
Given these choices, we can rewrite (35) as

Tn = min
θ

√
n‖β̂ − Γ̂θ‖1 s.t. Rθ ≤ q. (175)

This problem can be reformulated as a linear program by introducing non-negative

slack variables, w+, w− ∈ Rdβ . Specifically, it can be shown that (175) is equivalent to

Tn = minθ,w+,w−
√
n
(∑dβ

l=1w
+
l + w−l

)
s.t. Rθ ≤ q

w+ − w− = β̂ − Γ̂θ

w−, w+ ≥ 0.

(176)

For a discussion of this reformulation see e.g. Boyd and Vandenberghe (2004, pg. 294).

G.3 Reformulation of the Bootstrap Statistic

In this section, we show that the optimization problem that defines the bootstrap

statistic, i.e. (70), can be reformulated as a bilinear program. Throughout this section,

we assume that the researcher has selected values of the tuning parameters κ̂mn , κ̂
u
n,

and κ̂gn. In the next section, we discuss the computational aspects of our data-driven

recommendations for choosing these parameters.

Consider the inner minimization problem in (70). We rewrite this problem here in
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terms of θ ∈ Θ̂ (replacing m ∈ M̂n) as

T bs
n,inner(b

∗, g, θ̃) ≡ minθ (Ĝβ − ĜΓθ)
′b∗

s.t. g′(θ − θ̃) ≥ 0

Rθ ≤ q
‖β̂ − Γ̂θ‖1 ≤ κ̂mn ,

(177)

where we continue to use the notation κ̂mn despite having exchanged m’s for θ’s else-

where. We write this inner problem as a function of (b∗, g, θ̃) to emphasize that these

variables are fixed from the outer maximization problem in (70). Using a similar idea

as in the reformulation (176) for the test statistic, we rewrite (177) as the following

linear program:

T bs
n,inner(b

∗, g, θ̃) = minθ,w+,w− (Ĝβ − ĜΓθ)
′b∗

s.t. g′(θ − θ̃) ≥ 0

Rθ ≤ q
w+ − w− = β̂ − Γ̂θ∑dβ

l=1w
+
l + w−l ≤ κ̂

m
n

w−, w+ ≥ 0.

(178)

As long as Θ̂n ≡ {θ ∈ Θ : ‖β̂ − Γ̂θ‖1 ≤ κ̂mn } is nonempty, a feasible solution to

(178) can always be achieved by taking θ = θ̃ since θ̃ ∈ Θ̂n from the outer optimization

constraint in (70). We assume that κ̂mn has been chosen to be sufficiently large to ensure

this is the case, which simply requires κ̂mn ≥ Tn/
√
n. Together with our assumption

that Θ is bounded, we can conclude that strong duality holds; see, e.g. Corollary 5.3.7

in Borwein and Lewis (2010). The dual of (178) can be shown to be

T bs
n,inner(b

∗, g, θ̃) = maxσ Ĝ′βb
∗ + q′σ1 + κ̂mn σ2 − g′θ̃σ3 + β̂′σ4

s.t. σ1, σ2, σ3 ≤ 0

R′σ1 + Γ̂′σ4 − gσ3 = −Ĝ′Γb
∗

σ2 ≤ σ4,l ≤ −σ2 for l = 1, . . . , dβ,

(179)

where σ = (σ′1, σ2, σ3, σ
′
4)′ with σ1 ∈ Rdq , σ2 ∈ R, σ3 ∈ R, and σ4 ∈ Rdβ . Given (179),
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we can now write (70) as a single maximization problem:

T bs
n = maxb∗,g,θ̃,σ Ĝ′βb

∗ + q′σ1 + κ̂mn σ2 − g′θ̃σ3 + β̂′σ4

s.t. σ1, σ2, σ3 ≤ 0

R′σ1 + Γ̂′σ4 − gσ3 = −Ĝ′Γb
∗

σ2 ≤ σ4,l ≤ −σ2 for l = 1, . . . , dβ.

b∗ ∈ D̂n g ∈ Ĝn(b∗)

Rθ̃ ≤ q
‖β̂ − Γ̂θ̃‖1 ≤ κ̂mn .

(180)

Our next task is to reformulate (180) into a bilinear maximization problem. This

involves several steps.

First, we reformulate the constraint b∗ ∈ D̂n. To this end, note that B∗ = Rdβ but

equipped with the max–norm ‖·‖∞, defined as ‖b∗‖∞ ≡ maxl |b∗l |. Hence, by definition

of D̂n (see (58)) the constraint b∗ ∈ D̂n is equivalent to

‖b∗‖∞ ≤ 1 and β̂′b∗ − ν(b∗, Γ̂(Θ)) ≥ −κ̂un. (181)

The first constraint in (181) can be rewritten as the set of linear constraints−1 ≤ b∗l ≤ 1

for l = 1, . . . , dβ. To reformulate the second constraint in (181), we rephrase the

definition of a support function (see (38)) as a minimization problem by applying

strong duality; see, e.g., Corollary 5.3.7 in Borwein and Lewis (2010). That is,

ν(b∗, Γ̂(Θ)) =

(
maxθ ((b∗)′Γ̂)θ

s.t. Rθ ≤ q

)
=

(
minσ5≥0 q′σ5

s.t. R′σ5 = Γ̂′b∗

)
.

Using the minimization form of the support function, we conclude that the second

constraint in (181) is equivalent to the existence of a σ5 ∈ Rdq such that

σ5 ≥ 0 and R′σ5 = Γ̂′b∗ and q′σ5 ≤ β̂′b∗ + κ̂un. (182)

Notice that the constraints in (182) are linear in the variables of optimization, which

now include the dual variables, σ5.

Second, we reformulate the constraint that g ∈ Gn(b∗). To implement this con-

straint, we take Vn = {±ej}dθj=1, where ej is the jth unit basis vector in Rdθ . Then,

from (69), g ∈ Gn(b∗) is equivalent to ‖g − (b∗)′Γ̂‖∞ ≤ κ̂gn. As noted above, this max

norm constraint can also be written as a set of linear inequalities.
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Third, we observe that the transpose of the equality constraint in (180) implies that

σ3g
′ = σ′1R+ σ′4Γ̂ + (b∗)′ĜΓ.

We substitute this expression into the term g′θ̃σ3 = σ3g
′θ̃ in the objective of (180).

This allows us to rewrite the objective as

Ĝ′βb
∗ + q′σ1 + κ̂mn σ2 − σ′1Rθ̃ − σ′4Γ̂θ̃ − (b∗)′ĜΓθ̃ + β̂′σ4. (183)

The benefit of this substitution is that, whereas the term σ3γ
′θ̃ in the objective of (180)

is the product of three variables of optimization, every term in (183) is the product of

at most two variables of optimization.

Fourth, we recall the reformulation that we used on the inner problem to move from

(177) to (178). Here, it will be applied to the constraint ‖β̂ − Γ̂θ̃‖1 ≤ κ̂mn .

Incorporating these four observations into (180), we reformulate the program as

T bs
n = max Ĝ′βb

∗ + q′σ1 + κ̂mn σ2 − σ′1Rθ̃ − σ′4Γ̂θ̃ − (b∗)′ĜΓθ̃ + β̂′σ4

as a function of b∗, g, θ̃, σ1, σ2, σ3, σ4, σ5, w̃
+, w̃−

s.t. σ1, σ2, σ3 ≤ 0, σ5, w̃
+, w̃− ≥ 0

R′σ1 + Γ̂′σ4 − gσ3 = −Ĝ′Γb
∗

σ2 ≤ σ4,l ≤ −σ2 for l = 1, . . . , dβ.

−1 ≤ b∗l ≤ 1 for l = 1, . . . , dβ

R′σ5 = Γ̂′b∗

q′σ5 ≤ β̂′b∗ + κ̂un

−κ̂gn ≤ e′j(g − (b∗)′Γ̂) ≤ κ̂gn for j = 1, . . . , dθ

Rθ̃ ≤ q
w̃+ − w̃− = β̂ − Γ̂θ̃∑dβ

l=1 w̃
+
l + w̃−l ≤ κ̂

m
n .

(184)

This program is almost linear in both its objective and constraints. However, it does

contain the following terms that are bilinear in the sense of being the product of two

different variables of optimization: σ1Rθ̃, σ
′
4Γ̂θ̃, (b∗)′ĜΓθ̃, and gσ3. As a result, (184)

is a bilinear programming problem. Despite being non-convex, bilinear programs like

these can be reliably solved to global optimality, see e.g. Tawarmalani and Sahinidis

(2005) and the references cited therein.
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G.4 Reformulation of the Tuning Parameter Selection Problems

We use (84) to choose κ̂un, as well as κ̂mn , which we take as κ̂mn = κ̂un + Tn/
√
n. To

do this, we compute supm∈Mn
‖Ĝβ − ĜΓ(m)‖B. In terms of the finite dimensional

framework used throughout this section, this problem can be written as

max
θ
‖Ĝβ − Ĝβθ‖1 s.t. Rθ ≤ q. (185)

This problem looks superficially similar to the reformulated test statistic problem,

(175), with the important difference that it is a maximization problem, rather than

a minimization problem. Since ‖ · ‖1 is a convex function, this means that (185) is a

non-convex optimization problem.

However, (185) can be reformulated as a mixed integer linear program (MILP) by

applying a fairly standard argument. The argument is based on the observation that

the nonlinearity of the objective comes from the absolute value function, i.e.:

‖Ĝβ − Ĝβθ‖1 ≡
dβ∑
l=1

∣∣∣e′l (Ĝβ − Ĝβθ
)∣∣∣ ,

where el are unit vectors in Rdβ . As a result, the objective can be linearized by

introducing dβ binary variables that indicate whether each absolute value is obtained

for a positive or negative number, together with dβ slack variables to stand in for the

magnitude of the absolute value itself. Specifically, (185) is equivalent to

maxθ,ζ,σ,w
∑dβ

l=1 σl

s.t. Rθ ≤ q
ζl ∈ {0, 1} for l = 1, . . . , dβ

w = Ĝβ − Ĝβθ

wl ≤ σl ≤ wl + (1− ζl)BigMl for l = 1, . . . , dβ

−wl ≤ σl ≤ −wl + ζlBigMl for l = 1, . . . , dβ

(186)

In (186), ζ are binary variables, w is a definitional variable that helps with notation,

and BigMl are large numbers, referred to as “big M” parameters in the operations

research literature (e.g. pp. 136-137 of Schrijver (1998)). The big M parameters are

chosen by the researcher in such a way as to ensure that constraints in which they

enter are never binding when BigMl is multiplied by 1. It is important to note that

these parameters are not tuning parameters in the usual statistical sense. In particular,

while the choice of the big M parameters can impact the speed at which (186) is solved,

these parameters can (and should) always be chosen so as not to impact the optimal
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value of (186).

To see how (186) reformulates (185), first note that we have set wl = e′l(Ĝβ − Ĝβθ)

in (186) as a (notational) constraint. Next, observe that if wl ≥ 0, then wl ≤ σl ≤ −wl
is a contradiction, so the only feasible solution in this case is to take ζl = 1. However,

with ζl = 1, the constraints enforce σl = wl. Similarly, if wl ≤ 0, then the binary

constraints enforce any feasible solution to have ζl = 0 and hence σl = −wl. In both

cases, σl = |e′l(Ĝβ − Ĝβθ)|, so that the objective in (186) is always identical to that in

(185).

Using (86) to select κ̂gn involves solving a problem similar to (185), which can also

be reformulated as a MILP. In finite dimensions, and with the choice of Vn discussed

in the previous section, this problem can be written as

max
b∗
‖(b∗)′ĜΓ‖∞ s.t. ‖b∗‖∞ ≤ 1 and ν(b∗, Γ̂(Θ)) ≤ β̂′b∗ + κ̂un. (187)

We have already shown how to reformulate the constraints in this problem as linear

constraints; recall (182). However, as with (185), the objective in (187) is a nonlinear,

convex function, so maximizing it subject to linear constraints is a non-convex problem.

We reformulate (187) as the following MILP:

max σ1

as a function of b∗, σ1, σ2, w, π, ζ1, ζ2

s.t. −1 ≤ b∗l ≤ 1 for l = 1, . . . , dβ

σ2 ≥ 0

q′σ2 ≤ β̂′b∗ + κ̂un

R′σ2 = Γ̂′b∗

ζ1,j , ζ2,j ∈ {0, 1} for j = 1, . . . , dθ

w = (b∗)′ĜΓ

wj ≤ πj ≤ wj + (1− ζ1,j)BigM1,j for j = 1, . . . , dθ

−wj ≤ πj ≤ −wj + ζ1,jBigM1,j for j = 1, . . . , dθ

πj ≤ σ1 ≤ πj + (1− ζ2,j)BigM2,j for j = 1, . . . , dθ∑dθ
j=1 ζ2,j = 1

(188)

The justification of this reformulation is similar to the one discussed for (186). The

constraints involving the ζ1 binary variables ensure that πj is always the absolute value

of wj , which is constrained (defined) as the jth element of (b∗)′ĜΓ. The additional

constraints involving the ζ2 binary variables then ensure that σ1 is always the maximum

of πj , since
∑dθ

j=1 ζ2,j = 1 can be satisfied if and only if a single ζ2,j is equal to 1.
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G.5 Some Notes on Computation

We have shown that the main optimization problems in our methodology can all be

reformulated as problems with well-understood properties for which there exist globally

optimal algorithms. Admittedly, this has taken a substantial amount of work. However,

once the theoretical reformulation work has been done once, it does not need to be

performed again by a practitioner. The reformulated problems can be implemented

directly and solved using appropriate software. We are in the process of developing a

software package that processes the necessary optimization problems in the background

without requiring additional input from the user.

We summarize the computational steps involved in statistical inference. First, con-

struct consistent estimators of identified population quantities, as discussed in Section

G.1. The exact definition of the terms involved here will depend on the null hypothesis

of interest. Second, compute the test statistic, Tn, by solving (176). Third, solve the

MILP (186) one time each for a large number of bootstrap draws. Given a choice of

quantile αn, this provides a data-driven choice of κ̂un through (84), as well as a data-

driven choice of κ̂mn = κ̂un +Tn. Fourth, solve the MILP (188) one time each for a large

number of bootstrap draws. This yields a data-driven choice of κ̂gn. Fifth, with all tun-

ing parameters selected, solve the bilinear maximization problem (184) one time each

for a large number of bootstrap draws. This provides the critical value ĉ1−α defined in

(79). The null hypothesis is then rejected at level α if Tn > ĉ1−α.

In practice, we have found that the part of this procedure that takes the longest is

by far the bilinear program (184). The MILPs used to select the tuning parameters are

relatively small. Even though these programs must be solved a large number of times,

we have found that they can be solved extremely quickly using modern algorithms like

Gurobi (Gurobi Optimization, 2015), which is the software we use for this step in our

empirical application.
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Mourifié, I. (2015): “Sharp bounds on treatment effects in a binary triangular system,”
Journal of Econometrics, 187, 74–81. 5
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