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Climate is what you expect; weather is what you get.1

1 Introduction

Economic analyses of climate change policies require estimates of the costs imposed by
climate change. Yet we know remarkably little about these costs, leading some economists
to question the value of conventional modeling (e.g., Ackerman et al., 2009; Pindyck, 2013).
The costs of climate change are hard to pin down before having lived through the climate
change experiment. However, we do have access to a rich source of variation in climate
variables: we live through changes in the weather on a daily basis. And since climate is just
the distribution of weather, many have wondered whether we can substitute this rich source
of variation for the missing time series variation in climate.

Pursuing this agenda, a rapidly growing literature has begun to estimate the costs of
future climate change by using time series variation in weather.2 This literature has sought
to identify the effects of weather on outcomes such as gross domestic product (Dell et al.,
2012), agricultural profits (Deschênes and Greenstone, 2007), crop yields (Schlenker and
Roberts, 2009), productivity (Heal and Park, 2013), health (Deschenes, 2014), mortality
(Barreca et al., 2016), crime (Ranson, 2014), energy use (Auffhammer and Aroonruengsawat,
2011; Deschênes and Greenstone, 2011), income (Deryugina and Hsiang, 2014), emotions
(Baylis, 2017), and more. The typical study first estimates the causal effects of weather
on the dependent variable of interest and then uses physical climate models’ projections to
simulate how the dependent variable would be affected by future climate change. Yet for
all the advances this literature has made in connecting weather to various outcomes, the
motivating link between weather and climate has lacked theoretical underpinning. Climate
is clearly not just weather, but it is indeed just the long-run distribution of weather. What
can we learn from the weather about the effects of a change in climate?

I develop a formal model of decision-making under climate change that can guide em-
pirical research. Each period’s weather is drawn from a distribution that depends on the
climate. Agents’ time t payoffs depend on the time t weather realization, their chosen time
t controls, and their chosen controls prior to time t. For instance, a farm’s time t profit may
depend on time t temperature and rainfall, on time t irrigation choices, and on time t − 1
crop choices. Agents are forward-looking, so their decisions can depend on their beliefs about
future weather. Agents observe the current weather before selecting their controls and have
access to a forecast of the next period’s weather, which draws on knowledge of the current
period’s weather and of the climate. We are interested in the average effect of a change in

1Common variant of Andrew John Herbertson (1901), Outlines of Physiography
2See Auffhammer and Mansur (2014), Dell et al. (2014), Deschenes (2014), Carleton and Hsiang (2016),

and Heal and Park (2016) for surveys. An older literature relied on cross-sectional variation (e.g., Mendelsohn
et al., 1994; Schlenker et al., 2005; Nordhaus, 2006), but as discussed in the surveys, cross-sectional approaches
have fallen out of favor due to concerns about omitted variables bias.
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the climate on agents’ intertemporal value, flow payoffs, and optimal choices of controls. In
the previous example, a farmer chooses her crop varieties after observing a signal of future
temperature and rainfall, and she chooses her quantity of irrigation after observing whether
a heat wave or drought has in fact come. We are interested in the average effect of a change
in climate on the present discounted value of future profits (as capitalized in land values),
on annual profit, and on controls such as irrigation.

I show that a change in climate affects dependent variables of interest through direct
weather channels and through expectations channels. The direct weather channels reweight
the dependent variable of interest for the new distribution of the weather. Calculating these
channels requires estimating how the dependent variable changes with the weather and how
the distribution of the weather changes with the climate. This exercise matches the approach
followed by the empirical literature to date.3 The expectations channels account for how a
change in the climate alters agents’ forecasts of later weather and thereby alters durable
investments, such as in crop varietals, levees, or air conditioning. Expectations matter
for time t dependent variables in two ways. First, altered expectations of time t weather
can affect durable investments in previous periods. Second, altered time t expectations of
later weather can affect durable investments at time t. Both of these expectations channels
allow for adaptation in advance of a weather shock actually occurring. I show that both
expectations channels vanish if agents’ actions do not depend on the weather or do not have
durable consequences. In these cases, a change in climate does indeed reduce to a change
in weather. However, these assumptions are unlikely to apply in general, so empirical work
must validate them on a case by case basis.

Estimating the economic consequences of climate change poses both econometric and cli-
mate modeling challenges. The econometric challenge of estimating the effect of the weather
on dependent variables of interest has been well appreciated, as has the climate modeling
challenge of simulating changes in the distribution of the weather. I describe a new pair of
challenges. I show that estimating the economic consequences of climate change also requires
econometrically estimating how dependent variables of interest change with forecasts of the
weather and interpreting climate models’ output in terms of changes in these forecasts.4

Applied econometricians have two estimation tasks, and climate modelers must distinguish
the forecastable and unforecastable components of future weather.5

3In practice, the literature has often focused on changes in summary statistics of the weather, such as
average temperature.

4Some recent work has studied the effects of forecasts (e.g., Rosenzweig and Udry, 2013, 2014; Shrader,
2017). There is also a long literature, primarily in agricultural economics, that seeks to value forecasts and
evaluate their usefulness. See Hill and Mjelde (2002), Meza et al. (2008), and Katz and Lazo (2011) for
recent surveys. This literature tends to adopt simulation-based approaches (e.g., Solow et al., 1998; Mjelde
et al., 2000) rather than the econometric approaches of interest in the present paper.

5Distinguishing the forecastable and unforecastable components of future weather is also a task for
economists, as it requires estimating how agents form expectations of future weather. Reduced-form ap-
proaches have dominated the empirical climate economics literature, but this observation could motivate
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I also show that the existence of forecasts can complicate the standard approach to
econometrically estimating even the direct effect of the weather. Weather is commonly
taken to be exogenous to economic decision-making, in which case time series variation in
weather identifies the causal effect of a change in the weather. However, I show that time
series estimates are vulnerable to a previously unappreciated omitted variables bias. Time
t outcomes often depend on time t − 1 choices, many of which appear in the error term of
standard time series (or panel) regressions. These time t− 1 choices in turn depend on time
t− 1 weather and on time t− 1 forecasts of time t weather. Therefore, time series estimates
of the causal effect of time t weather on time t dependent variables are biased in the common
case where weather is serially correlated and/or partially forecastable.6 Future work should
seek instruments that isolate truly surprising variation in weather, unrelated to either past
weather or past forecasts.

As an example, let the variable of interest be time t agricultural profits, which depend
on time t temperature and on time t − 1 choices of crop varieties. The standard approach
would regress time t profits on time t temperature, under the assumption that weather, being
chosen by nature rather than man, is exogenous to any other factors that might affect profits.
However, time t − 1 crop choices depend on time t − 1 beliefs about time t temperature.
Those beliefs may be influenced by observations of temperature at time t−1 and by forecasts
released at time t− 1. Time t− 1 crop choices clearly affect time t agricultural profits and
thus are included in the standard regression’s error term. But if temperature is serially
correlated between the two periods or if the time t− 1 forecasts are at all skillful, then these
time t − 1 crop choices are correlated with time t temperature. Past choices can thus act
as omitted variables in the standard weather regression. In this example, standard methods
may fail to account for unobserved dimensions of crop choices when estimating the effect of
temperature on profits, and we already discussed how standard methods fail to recognize
expectations-based changes in crop choices when extrapolating the effects of weather shocks
to a change in the climate. The first failure potentially works to understate the consequences
of a truly surprising weather shock and thus to understate the direct weather component
of climate change, but the second failure potentially works to overstate the total costs of
climate change. The net bias in standard estimates of the cost of climate change is unclear.

Previous literature has defended the reduction of climate change to time series variation
in weather in two ways. First, some authors appeal to the envelope theorem. As presented
in Hsiang (2016), the argument is that (1) a change in climate can differ from a change

future use of structural approaches.
6Previous work has indeed shown that forecasts matter. Lave (1963) illustrates the value of rain forecasts

to raisin growers, and Wood et al. (2014) find that developing-country farmers with better access to weather
information make more changes in their farming practices. Roll (1984) and Shrader (2017) both take care to
consider weather surprises relative to forecasts. Severen et al. (2016) show that cross-sectional approaches
to estimating the dependence of land values on climate have been biased by ignoring priced-in expectations
of future climate change. Neidell (2009) demonstrates the importance of accounting for forecasts when
estimating the health impacts of air pollution.
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in weather only because of differences in beliefs; (2) beliefs can matter only through the
choice of control; (3) marginally changing a control must have no effect on payoffs around an
optimum; (4) therefore beliefs do not matter for payoffs; (5) therefore a change in climate has
identical effects as a change in weather. I highlight two challenges to this argument. First,
I show that this argument ignores how expectations of climate change affect past controls.
Past controls (i.e., past investments) are taken as given by a time t decision-maker. Step (3)
in the argument arises through optimization, but a time t decision-maker can optimize only
time t controls. Time t dependent variables can indeed respond to marginal changes in time
t − 1 controls. Second, the envelope theorem is potentially relevant only when dependent
variables are objectives, such as streams of utility or profits. Every other dependent variable
can vary with a marginal change in even a time t control. In practice, the envelope theorem
applies when the dependent variable is either land values or stock prices, as these are the
expectation of a stream of profits, and the envelope theorem may apply to annual profits
if a particular setting has weak intertemporal linkages. However, as described above, the
literature has studied many more dependent variables, including gross domestic product,
productivity, health, energy use, and crop yields. All of these dependent variables are either
themselves controls or are functions of controls and thus all can be directly influenced by
beliefs, even around an optimum.

Previous literature has also sought to transform time series variation in weather into
variation in climate by using “long differences” (e.g., Dell et al., 2012; Burke and Emerick,
2016), which many hope better account for long-run adaptation. This approach differs from
the simplest time series approach in aggregating outcomes and weather over many timesteps,
so that the time index comes to represent, for example, decades rather than years. The hope
is that using only longer-run weather variation allows expectations and adaptation to catch
up to average weather within a timestep. I here give a structural meaning to long differences.
I show that long differences mitigate the omitted variables bias induced by forecasts, but I
also show that the usefulness of their results for climate change is unclear. The problem is
that long difference estimates entangle the direct effects of weather with the effects of weather
on adaptive, durable investments. This entanglement poses a problem because calculating
the cost of climate change requires separately analyzing the implications of climate change
for forecasts and for realized weather. The structure of expectations embedded in a long
difference estimate is almost surely different from the structure of expectations implied by
climate change. It is not clear that the information content of a historical sequence of weather
shocks approximates the information content of knowing that some type of permanent change
in the climate is underway: farmers may learn little from the incremental changes in average
weather realized over the last decades but nonetheless may respond strongly once permanent
changes in average weather become apparent or become clearly forecasted. Long difference
estimates aim to approximate a change in the climate by aggregating the effects of variations
in the weather, but when it comes to information sets, a change in the climate could be
different even from aggregated variations in the weather.
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The next section describes the setting. Section 3 analyzes the effects of climate change
on dependent variables of interest and shows which combinations of assumptions reduce a
change in climate to the direct weather channels. Section 4 demonstrates underappreciated
challenges to causally identifying even the direct weather channels. Section 5 relates the
analysis to envelope theorem arguments and long difference approaches. The final section
concludes.

2 A Model of Decision-Making Under Climate Change

The minimal model for decision-making under climate change requires three periods: a
period of interest, a later period (so that expectations can matter in the period of interest),
and an earlier period (so that past expectations can matter for the period of interest). I here
develop a general form of such a model.7

An agent selects an action a1 in period 1 and obtains payoffs π1(a1, w1) that depend on
the action and on the weather w1, with π1 strictly concave in a1. From the perspective of an
applied econometrician at time 0, w1 has probability p1(w1;C), where C is a climate index.
Period 1 weather is realized before the agent chooses a1.

In period 2, the agent chooses another action a2 and receives payoffs π2(a1, a2, w2), which
may depend on the period 1 action and on period 2 weather w2.8 Let π2 be strictly concave in
a2 and weakly concave in a1. The period 2 weather is a random variable from the perspective
of the period 1 agent, but that agent has access to a forecast θ1(w1, C) that she uses to update
her beliefs about period 2 weather. The forecast may depend on knowledge of the climate
and, in light of possible serial correlation in weather, on the period 1 weather outcome. The
agent’s posterior probability density function for period 2 weather is p2(w2; θ1). Assume that
the period 1 agent correctly extracts information from the forecast, so that she has rational
expectations over period 2 weather. The distribution from which w2 is actually drawn is
then described by p2(w2; θ1). The period 2 weather is realized before the agent chooses her
control a2, and the agent also obtains access to a forecast θ2(w2, C) of period 3 weather w3

before choosing her control a2.9 The agent uses this forecast to assess the distribution of
period 3 weather as p3(w3; θ2).10

7The most similar model is Kelly et al. (2005). They are interested in the additional costs of having to
learn about a change in the climate from an altered sequence of weather as opposed to knowing outright how
the climate has changed. They therefore focus on mapping uncertainty about future climate change into the
variance of the weather.

8I abstract from constraints. One could also model a1 as affecting constraints on a2. The results would
be qualitatively similar to those we will obtain below.

9In many cases, controls must be chosen before the weather is realized. Such cases can be matched to
the current setting by interpreting those controls as a1 rather than a2.

10In general, the distributions of period 2 and period 3 weather could also depend on the climate index C
directly, as when an agent’s forecast does not include all effects of climate change on the weather distribution.
For instance, agents may learn about the effects of climate change over time (e.g., Kelly et al., 2005), which
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In period 3, the weather is realized before the agent chooses her control a3. The period 2
agent had rational expectations, so period 3 weather is in fact distributed as p3(w3; θ2). The
agent receives payoff π3(a2, a3, w3), with π3 strictly concave in a3 and weakly concave in a2.

This setting can capture a variety of stories about climate impacts and adaptation. I
give five examples.

1. First, each period could be a year, with the control being the choice of crop to plant.
This year’s crop choice affects next year’s profits when there is a cost to switching
crops from year to year. The farmer has access to a drought forecast when making
planting decisions.

2. Second, the three periods could occur within a single harvest cycle. Period 1 would then
be the spring planting decisions, period 2 would include growing season choices such
as irrigation and fertilizer application, and period 3 would represent the harvest. The
farmer has access to multiweek or multimonth forecasts when making these decisions.

3. Third, this setting can represent decisions about flood protection. In that case, π1

would decrease in a1 so as to capture the costs of, for instance, building levees or
raising one’s home, and π2 would increase in a1 for at least some weather outcomes
w2 so as to capture the benefits of levees or a raised home. The decision-maker has
access to forecasts of future rainfall, which determine the expected benefits of flood
protection and which may change after observing an unexpectedly large rainfall.

4. Fourth, household investments in air conditioning can provide immediate benefits based
on the current weather and can also provide future benefits that depend on future
weather. Households may purchase air conditioning based on forecasts of a heat wave
in the coming week.

5. Fifth, workers can schedule vacation and tasks around the weather. Weather forecasts
of a week or more are now a central feature of daily life. Workers who anticipate,
for instance, extreme heat in period 2 can undertake outdoor tasks in period 1 and
perhaps even plan to go to the beach or the mountains in period 2. Alternately, office
workers in a cold period 1 who anticipate warm weather in period 2 may concentrate
their hours and effort into period 1 so as to enjoy the weather in period 2.

In period 3, the agent solves:

V3(a2, w3) = max
a3

π3(a2, a3, w3).

would prevent their forecasts from capturing the full effect of the climate on the distribution of weather.
We here assume that agents and modelers have access to the same information about how climate affects
the weather. Extending the setting to allow the modeler to have different information about the effects of
climate change (i.e., allowing the modeler and agent to use different weather distributions) would not affect
the interaction between the climate and agents’ decisions that is of primary interest here.
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The first-order condition implicitly defines the optimal period 3 control a∗3(a2, w3):

∂π3(a2, a
∗
3, w3)

∂a3

= 0.

In period 2, the agent solves:

V2(a1, w2) = max
a2

{
π2(a1, a2, w2) + βE2

[
V3(a2, w3)

]}
,

where Et represents expectations at the time t information set (i.e., using θt). The first-order
condition implicitly defines the optimal period 2 control a∗2(a1, w2, θ2):

∂π2(a1, a
∗
2, w2)

∂a2

+ βE2

[
∂π3(a∗2, a

∗
3, w3)

∂a2

]
= 0.

And in period 1, the agent solves:

V1(w1) = max
a1

{
π1(a1, w1) + βE1

[
V2(a1, w2)

]}
.

The first-order condition implicitly defines the optimal period 1 control a∗1(w1, θ1):

∂π1(a∗1, w1)

∂a1

+ βE1

[
∂π2(a∗1, a

∗
2, w2)

∂a1

]
= 0.

We are interested in how period 2 value V2, payoffs π2, and controls a2 change in response
to a change in the climate index C, with the applied econometrician’s expectations of these
changes taken at time 0 (before any weather variables have been realized). We study period
2 outcomes because period 2 is the only period that can enter into agents’ expectations while
also containing expectations of the future. Economists have tried to identify how climate
change will affect all three of these dependent variables: the effect of climate change on land
values or stock prices corresponds to changes in V2, the effect of climate change on profits
from growing particular crops corresponds to changes in π2, and the effect of climate change
on decision variables such as hours worked, crime, and air conditioning use correspond to
changes in a2.11 We now analyze how climate change affects these variables of interest before
considering how to econometrically identify the effects of climate change.

11The effects of climate change on variables such as gross domestic product, health, and farm yields
correspond to changes in a function of a2, but this function is not typically π2 or V2: in standard models,
agents (whether households or firms) do not seek to maximize production, health, or yields.
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3 The Consequences of Climate Change

Begin by considering how climate change affects expected period 2 value E0[V2], which
corresponds to dependent variables such as land values. These expectations are taken with
respect to time 0 because we, as applied econometricians, seek to identify expected impacts
before we know what the weather will be in a given year. We seek the average treatment
effect of climate change, where the averaging occurs over weather realizations just as over a
population of individuals. This expected value is:

E0 [V2(a∗1(w1, θ1), w2)] =

∫ ∫
V2(a∗1(w1, θ1), w2) p2(w2; θ1(w1, C)) dw2 p1(w1;C) dw1.

If we marginally increase the climate index C, this value changes as:

dE0 [V2]

dC
=

∫ ∫
π2(a∗1, a

∗
2, w2)

dp0(w1, w2)

dC
dw2 dw1

+ β

∫ ∫ ∫
π3(a∗2, a

∗
3, w3)

dp0(w1, w2, w3)

dC
dw3 dw2 dw1

+

∫ ∫
∂π2(a∗1, a

∗
2, w2)

∂a1

∂a∗1(w1, θ1)

∂θ1︸ ︷︷ ︸
dV2/ dθ1

∂θ1(w1, C)

∂C
p0(w1, w2) dw2 dw1, (1)

where we substitute in for dV2/ dC from the envelope theorem and write p0(x, y) for the joint
distribution of x and y evaluated at time 0. The first two lines are direct weather channels.
The first line reweights period 2 flow payoffs to reflect changes in the joint distribution of
period 1 and period 2 weather. It captures the effect of realized weather on profits, where
the period 1 weather realization affects period 2 profits by affecting the period 1 control and
where the period 2 weather realization affects period 2 profits both directly and through
the period 2 control. The second line reweights period 3 flow payoffs in a similar fashion.
It captures the effect of anticipated changes in weather on future profits. Identifying these
channels requires identifying how time t flow payoffs change with current and past weather
and then using a physical climate model to calculate how climate change may alter the
distribution of weather. We will see that in certain special cases one can ignore the effects
of past weather on time t payoffs. These special cases are consistent with the type of
exercise commonly undertaken in the literature (see Carleton and Hsiang, 2016), though we
will discuss in Section 4 why identifying the effect of wt on πt is more complicated than
commonly recognized.

The third line is a past expectations channel. It arises because (and only because) climate
change directly alters period 1 beliefs about period 2 weather and thus alters the marginal
benefit to period 1 investment. For instance, expectations of different weather due to climate
change may drive a period 1 farmer to plant a different crop or invest in an irrigation system,
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a polity to build levees, or a household to adopt air conditioning.12 In this interpretation, the
past expectations channel captures the benefits of adaptation. One could plausibly construct
∂θ1/∂C from simulations of a climate model, but estimating how either a∗1 or V2 changes with
θ1 poses a challenge that has been generally overlooked in the empirical climate economics
literature to date.

Now consider how a marginal change in the climate index affects expected period 2 payoffs
E0[π2], which corresponds to dependent variables such as profits. We have:

dE0 [π2]

dC
=

∫ ∫
π2(a∗1, a

∗
2, w2)

dp0(w1, w2)

dC
dw2 dw1

+

∫ ∫ [
∂π2

∂a1

+
∂π2

∂a2

∂a∗2(a∗1, w2, θ2)

∂a1

]
∂a∗1(w1, θ1)

∂θ1

∂θ1(w1, C)

∂C
p0(w1, w2) dw2 dw1

+

∫ ∫
∂π2

∂a2

∂a∗2(a∗1, w2, θ2)

∂θ2

∂θ2(w2, C)

∂C
p0(w1, w2) dw2 dw1, (2)

where we suppress arguments for π2 in the last two lines. The first line is a direct weather
channel, as in the first line of equation (1). The second line is a past expectations channel,
analogous to the third line in equation (1) but now with a new term that accounts for how
an expectations-induced change in a∗1 affects π2 by changing a∗2. The third line is new. It is
a current expectations channel. It reflects how the period 2 control depends on expectations
of period 3 weather. Climate change affects period 2 payoffs π2 via period 1 expectations
of period 2 weather (second line) and also via period 2 expectations of period 3 weather
(third line).13 One may interpret the past expectations channel as capturing the benefits of
adaptation and the current expectations channel as capturing the costs of adaptation.

Finally, consider how a marginal change in the climate index affects the expected period
2 control E0[a∗2], which corresponds to dependent variables such as the quantity of irrigation.

12In contrast, durable investment decisions mattered in the first line only insofar as climate change altered
period 1 weather. For instance, a warm winter may change the timing of planting and thus payoffs during
the summer, but that decision does not depend on beliefs about climate change per se. It would arise even
for a farmer who knew nothing about climate change and just happened to observe a warm winter with
early blooms on the plants. Or a country may build levees or adopt air conditioning because it experienced
flooding or a heat wave in period 1, not because beliefs about climate change led it to expect flooding or
a heat wave in period 2. Even a nonbeliever in climate change bears the effects reported in the first line,
whereas only agents with expectations of climate change bear the effects in the third line. The effects of
period 3 weather on period 2 value in the second line may arise even for a nonbeliever if, for instance, the
value of land or a firm is determined in a market where other actors do believe in climate change.

13Anticipating Section 5, the changes in the period 2 control a∗2 seen on the second and third lines were
missing from equation (1) because there the envelope theorem (i.e., period 2 optimization) ensured that we
did not need to consider how climate change affects the period 2 choice of control. The envelope theorem
applies only to total value V2, not to flow payoffs π2. And it never allows us to ignore the effect of climate
change on the earlier, period 1 choice of control.
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We have:

dE0 [a∗2]

dC
=

∫ ∫
a∗2(a∗1, w2, θ2)

dp0(w1, w2)

dC
dw2 dw1

+

∫ ∫
∂a∗2(a∗1, w2, θ2)

∂a1

∂a∗1(w1, θ1)

∂θ1

∂θ1(w1, C)

∂C
p0(w1, w2) dw2 dw1

+

∫ ∫
∂a∗2(a∗1, w2, θ2)

∂θ2

∂θ2(w2, C)

∂C
p0(w1, w2) dw2 dw1. (3)

The first line is a direct weather channel, as seen in the first line of equation (1) and also
the first line of equation (2). The second line is a past expectations channel, as seen in the
third line of equation (1) and also the second line of equation (2). The final line is a current
expectations channel, as seen in the third line of equation (2). We need to consider how
climate change affects period 2 controls by altering past investments that relied on forecasts
of period 2 weather and also by altering period 2 forecasts of future weather.

Thus far, we have seen that estimating the consequences of climate change requires
estimating how a time t dependent variable changes with realized time t weather, with
past forecasts of time t weather, and, for many dependent variables of interest, with time t
forecasts of future weather. We now consider two special cases: when agents cannot mitigate
weather shocks, and when agents’ decisions do not have long-term consequences. In each of
these special cases, we will also explore the implications of the following assumption:

Assumption 1. ∂2θt/∂wt∂C = 0 for t = 1, 2.

This assumption says that the effect of climate change on time t forecasts (and thus on time
t+1 weather) is independent of the time t weather realization. It yields the following lemma:

Lemma 1. Let Assumption 1 hold. Then∫
dp0(w1, w2)

dC
dw1 =

∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C

and ∫ ∫
dp0(w1, w2, w3)

dC
dw2 dw1 =

∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
.

Proof. See appendix.

We now turn to the special cases.
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3.1 Special Case 1: Agents cannot mitigate weather shocks

Begin by considering a case in which weather may matter for payoffs but does not interact
with decisions that an agent can take. For instance, temperatures during the growing season
may matter for the quality or quantity of a later harvest, but a farmer without access to
irrigation may have little ability to mitigate these consequences. Or especially hot, humid
days may be harmful to health, but a household may lack access to electricity that could
power air conditioning. These cases correspond to the following restrictions:

Assumption 2. ∂2πt/∂at∂wt = 0 for t = 1, 2, 3 and ∂2πt/∂at−1∂wt = 0 for t = 2, 3.

In this special case, the optimized controls are independent of the weather.
The following proposition and corollary describe the effect of climate change on each

variable of interest:

Proposition 1. Let Assumption 2 hold. Then:

dE0 [a∗2]

dC
=0,

dE0 [π2]

dC
=

∫
π2(a∗1, a

∗
2, w2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2,

dE0 [V2]

dC
=

dE0 [π2]

dC
+ β

∫
π3(a∗2, a

∗
3, w3)

(∫ ∫
dp0(w1, w2, w3)

dC
dw1 dw2

)
dw3.

Corollary 1. Let Assumptions 1 and 2 hold. Then:

dE0 [a∗2]

dC
=0,

dE0 [π2]

dC
=

∫
π2(a∗1, a

∗
2, w2)

∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
dw2,

dE0 [V2]

dC
=

dE0 [π2]

dC
+ β

∫
π3(a∗2, a

∗
3, w3)

∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
dw3.

Proof. See appendix.

We see three interesting results. First, Proposition 1 shows that controls should not respond
to a change in climate. This result arises because controls do not respond to weather when
Assumption 2 holds. The implied independence of controls from weather and climate can
be used to test the plausibility of Assumption 2 when estimating effects on dependent vari-
ables such as V2 and π2. Second, Proposition 1 shows that Assumption 2 eliminates the
expectations channels when analyzing π2 and V2. If weather does not affect the choice of
control, then forecasts of future weather do not matter for payoffs and total value. Third,
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the corollary shows that including Assumption 1 eliminates the need to consider weather in
the earlier period. When weather realizations do not interact with climate change in deter-
mining future weather, then we can calculate how climate change alters the distribution of
a given period’s weather directly, without needing to simulate how it alters the distribution
of a longer sequence of weather.

The special case described by Corollary 1 is consistent with standard approaches in the
literature: we can estimate the effect of a change in climate by identifying the causal effect of
weather on flow payoffs and then simulating payoffs under the new distribution of weather.
However, this special case cannot be motivating the literature: this special case implies that
controls are independent of climate change, but much of the literature has in fact focused
on estimating the effects of climate change on controls or on functions of controls. The next
special case is probably closer to the spirit of the literature to date.

3.2 Special Case 2: Agents’ decisions do not have long-term con-
sequences

We now consider a special case in which decisions affect only contemporaneous payoffs. This
restriction turns the setting into a sequence of static investment choices, as when farmers can
costlessly switch between crops after each year or when increasing air conditioning requires
turning on an existing system rather than installing a new system. Formally, we impose the
following restriction:

Assumption 3. ∂πt/∂at−1 = 0 for t = 2, 3.

This restriction yields the following results:

Proposition 2. Let Assumption 3 hold. Then:

dE0 [π2]

dC
=

∫
π2(a∗1, a

∗
2, w2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2,

dE0 [V2]

dC
=

dE0 [π2]

dC
+ β

∫
π3(a∗2, a

∗
3, w3)

(∫ ∫
dp0(w1, w2, w3)

dC
dw1 dw2

)
dw3,

dE0 [a∗2]

dC
=

∫
a∗2(a∗1, w2, θ2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2.

Corollary 2. Let Assumptions 1 and 3 hold. Then:

dE0 [π2]

dC
=

∫
π2(a∗1, a

∗
2, w2)

∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
dw2,

dE0 [V2]

dC
=

dE0 [π2]

dC
+ β

∫
π3(a∗2, a

∗
3, w3)

∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
dw3,

dE0 [a∗2]

dC
=

∫
a∗2(a∗1, w2, θ2)

∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
dw2.
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Proof. See appendix.

These results are similar to the results in Section 3.1, with the important difference being
that the optimized control a∗2 can now change with the climate. Once we restrict attention
to static investments, we lose all of the expectations channels. And with the addition of
Assumption 1, we are once again in a special case where, corresponding to much of the
recent empirical climate economics literature (see Carleton and Hsiang, 2016), we need only
estimate how a dependent variable changes with contemporary weather and then reweight
outcomes for the new distribution of weather. The combination of Assumptions 1 and 3
can indeed motivate standard approaches. However, Assumption 3 may be overly restrictive
in many cases of interest. Future empirical work should highlight the extent to which a
given environment involves dynamic decision-making and test the restrictions imposed by
Assumption 3.

4 Identifying the Effects of Weather and Forecasts

We have seen that determining the economic impacts of climate change involves (1) a climate
modeling challenge and (2) an econometric challenge. The climate modeling challenge is
(1a) to project how climate change alters the distribution of weather and (1b) to project
how climate change alters forecasts of the weather. The economics and climate science
literatures have devoted substantial attention to (1a) (e.g., Auffhammer et al., 2013; Kirtman
et al., 2013; Burke et al., 2014; Melillo et al., 2014; Lemoine and Kapnick, 2016) but not
much attention to (1b), except insofar as climate models are themselves forecasts.14 The
econometric challenge is (2a) to identify how the dependent variable of interest changes with
the weather and (2b) to identify how the dependent variable of interest changes with forecasts
of the weather. The economics literature has devoted substantial attention to (2a), as the
many recent reviews attest (Auffhammer and Mansur, 2014; Dell et al., 2014; Deschenes,
2014; Carleton and Hsiang, 2016; Heal and Park, 2016; Hsiang, 2016), but little attention to
(2b).15 However, I will here argue that these estimates of (2a) are not as clearly identified
as commonly believed. Intuitively, time t dependent variables often respond to time t − 1
decisions. Time t− 1 decisions in turn often depend on either time t− 1 weather or on time
t − 1 forecasts of time t weather. Because time t weather is typically correlated with time

14As an exception, Lemoine and Kapnick (2016) allow forecasts to evolve with the climate. However,
they explore only simple forecasting rules rather than modeling forecasts directly, as they are interested in
projecting the costs of changing the variance of the climate. Climate modeling studies have found that the
occurrence of climate change makes forecasts more skillful, insofar as accounting for increases in greenhouse
gases (and the resulting warming trend) produces better results than does using the historical distribution
of weather and climate (e.g., Smith et al., 2007; Jia et al., 2014; Yang et al., 2015).

15As an exception, Shrader (2017) studies (2b) with fishery revenue as the dependent variable and El Niño
as the weather pattern of interest.
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time t− 1 weather and with time t− 1 forecasts of time t weather, the effect of unobserved
time t− 1 decisions on time t outcomes induces correlation between the time t weather and
the error term in the standard time t regression equation. Past weather and information can
each induce omitted variables bias in the standard weather regression.

The recent benchmark for estimating the causal impact of weather on a dependent vari-
able y is to estimate an equation of the form:

yit = αi + wit β + xitγ + νt + εit, (4)

where xit is a vector of covariates and β is the coefficient of interest. See, for instance,
Hsiang (2016). In this panel regression with time and unit fixed effects, the causal effect of
weather w on outcomes y is identified by idiosyncratic weather shocks with respect to the
average weather experienced by unit i. In common usage, the coefficient β is identified if and
only if Cov(wit, εit) = 0, so that changes in the weather are independent of other changes
that could affect the outcome variable. Since weather is often taken to be the ultimate
exogenous variable, generated by nature as from random dice rolls, the assumption that
Cov(wit, εit) = 0 is often taken to be a safe one.16

Now consider the connection to our general theoretical framework. The outcome variable
yit could be V2(a∗1, w2), π2(a∗1, a

∗
2(a∗1, w2, θ2(w2, C)), w2), a∗2(a∗1, w2, θ2(w2, C)), or a function of

these. In all cases, we can write the outcome of interest Y2 as a function of a∗1 and w2:
Y2(a∗1, w2), with C a parameter. A first-order Taylor series expansion of Y2(a∗1, w2) around
some point (ā, w̄) yields:

Y2(a∗1, w2) ≈Y2(ā, w̄) +
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

(a∗1 − ā) +
∂Y2(a∗1, w2)

∂w2

∣∣∣∣
(ā,w̄)

(w2 − w̄)

=

[
Y2(ā, w̄)− ∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

ā− ∂Y2(a∗1, w2)

∂w2

∣∣∣∣
(ā,w̄)

w̄

]

+
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

a∗1 +
∂Y2(a∗1, w2)

∂w2

∣∣∣∣
(ā,w̄)

w2.

Matching this to the regression equation (4), we seek β =
∂Y2(a∗1,w2)

∂w2

∣∣∣
(ā,w̄)

. The term in

brackets on the second line is just a constant that will be absorbed into the fixed effect αi.

16Note that it may or may not be a problem if changes in the weather cause changes in other variables
that in turn cause changes in the dependent variable of interest. For instance, recent empirical literature has
argued that weather affects labor productivity (Heal and Park, 2013), income (Deryugina and Hsiang, 2014),
and economic growth (Dell et al., 2012), which are often omitted variables in regressions of, for instance,
the effect of weather on crime (Ranson, 2014). The extent to which this omission poses a problem depends
on whether a researcher is interested in the “direct” effect of weather on yit or in the total effect, including
indirect effects that arise through effects on omitted variables. In the latter case, one needs to beware of
double-counting when tallying up estimated impacts across studies.
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The terms on the third line can vary over time and over agents and thus would not be picked
up by time or unit fixed effects. The potential problem arises from the dependence of Y2 on
a∗1. In principle, a∗1 could be included in the vector xit, but the weather regression literature
rarely (if ever) mentions including previous decisions in the observed covariates, and even if
one were to take that approach, it would be difficult to prove that all relevant controls a1

are observed and included in xit. Thus, it is likely that
∂Y2(a∗1,w2)

∂a1

∣∣∣
(ā,w̄)

a∗1 ends up in εit.

Now consider whether weather shocks really are orthogonal to the error. Assume that

εit =
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

a∗1 + zit, (5)

with Cov(zit, εit) = 0.17 In other words, assume that β is identified unless a∗1 poses some
particular problem. This is the best possible case. Using a first-order Taylor series expansion
of a∗1(w1, θ1) around some point (w̄1, θ̄1), we have:

Cov(wit, εit) =
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

Cov(w2, a
∗
1(w1, θ1))

≈ ∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

Cov

(
w2,

∂a∗1(w1, θ1)

∂w1

∣∣∣∣
(w̄1,θ̄1)

w1 +
∂a∗1(w1, θ1)

∂θ1

∣∣∣∣
(w̄1,θ̄1)

θ1

)

=
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

∂a∗1(w1, θ1)

∂w1

∣∣∣∣
(w̄1,θ̄1)

Cov (w2, w1)

+
∂Y2(a∗1, w2)

∂a1

∣∣∣∣
(ā,w̄)

∂a∗1(w1, θ1)

∂θ1

∣∣∣∣
(w̄1,θ̄1)

Cov (w2, θ1) .

Weather is often serially correlated, so that Cov(w2, w1) > 0. And if forecasts have any
informational content, then Cov(w2, θ1) 6= 0. In these common cases, we need at least one
of the following two conditions to hold in order for equation (4) to properly identify β:

1. ∂Y2(a∗1, w2)/∂a1 = 0,

2. ∂a∗1(w1, θ1)/∂w1 = 0 and ∂a∗1(w1, θ1)/∂θ1 = 0.

For proper identification, we need past controls not to matter for the dependent variable
of interest, or we need past choices of controls to be independent of past weather and in-
dependent of past forecasts. When past controls are irrelevant for time t outcomes, then
past information and weather are irrelevant for time t outcomes and do not affect the time

17Note that the assumption that Cov(zit, εit) = 0 is violated if (in a more general analysis) the vector
wit does not capture all of the relevant weather variables. The presence of correlated weather variables in
εit would bias the estimated β. For instance, heat and humidity may be correlated and may both affect
outcome variables (e.g., Barreca, 2012), yet many regressions include only temperature in wit.
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t regression error.18 When past choices of controls are independent of past weather and
independent of past forecasts, then past controls may appear in the time t regression error
but will be uncorrelated with time t weather. In all other cases, the standard weather re-
gression equation (4) is vulnerable to omitted variables bias.19 As an example, imagine that
agents undertake durable adaptation investments in response to extreme weather and/or
to forecasts of future weather, as when ongoing droughts lead to investments in irrigation
systems. These investments would directly affect later outcomes while also being correlated
with later weather, as when past investments in irrigation systems affect current yields while
being correlated with current drought conditions through past drought conditions and past
drought forecasts.

The following proposition describes sufficient conditions for equation (4) to properly
identify β:

Proposition 3. Let either Assumption 2 or Assumption 3 hold, and let equation (5) hold
with Cov(zit, εit) = 0. Then the coefficient β in the regression equation (4) is identified.

Proof. First, let Assumption 2 hold. The proof of Proposition 1 shows that ∂a∗1(w1, θ1)/∂w1 =
0 and ∂a∗1(w1, θ1)/∂θ1 = 0.

Second, let Assumption 3 hold. This assumption directly states that π2 is independent of
a∗1. Using equation (A-3), Assumption 3 also implies that a∗2 is independent of a1. Therefore,
∂Y2(a∗1, w2)/∂a1 = 0 for each possible meaning of Y2.

The regression equation (4) is identified in the same special cases in which the effect of climate
on the outcome of interest reduces to the effect of weather on the outcome of interest, without
expectations channels. Thus, if changing the climate is economically equivalent to a surprise
change in today’s weather, whether because agents cannot take decisions that mitigate the
consequences of weather shocks or because all decisions are short-run decisions, then the
conventional regression equation (4) is identified and also gives us all the information we
need to calculate the economic consequences of climate change. However, the regression
equation (4) is not identified in general. One may have hoped that the empirical climate
economics literature has at least been properly estimating the direct weather channels even

18Assuming that past weather cannot directly affect time t outcomes. Any such relation could be ac-
commodated in a more general form of the analysis by letting wt be a vector that includes past weather
realizations.

19For instance, Miller (2015) provides evidence that farmers in India select their crops as if they had a
signal of the coming season’s precipitation. Realized precipitation is thus endogenous in regressions that aim
to identify its effect on, for instance, income. Also studying Indian agriculture, Rosenzweig and Udry (2013)
show that farmers’ investments respond to forecasts (and respond more strongly to more skillful forecasts),
and Rosenzweig and Udry (2014) show that forecasts of planting season weather affect migration decisions
and thus wages.
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when neither Assumption 2 nor Assumption 3 holds, but we now see that the regressions
used to identify the consequences of changes in the weather may themselves be biased.

How can we identify β in settings with dynamic and/or weather-dependent investments?
First, we could instrument for wit, seeking the unpredictable portion of weather variation.
One could imagine using deviations from published forecasts or deviations from retrospective
weather models’ predictions as the weather outcome of interest. The burden of the argument
would rest in establishing that agents did not have access to further sources of information.
Second, we could find settings in which the control a1 is either observed by the applied
econometrician or was exogenously fixed independent of weather or of expectations. Quasi-
experiments in which a1 were held fixed for some actors but not for others would reveal the
bias present in more naive regressions. The burden of the argument would rest in establishing
that the regression’s covariates includes all possibly relevant period 1 actions.

How is ignoring forecasts likely to bias standard panel estimates of ∂Y2/∂w2? Much
of the literature estimates negative impacts of extreme weather on variables of interest.
Imagine that a forecast of extreme weather induces a choice of control that mitigates the later
negative impact, as when forecasts of heat waves lead households to purchase air conditioning
or farmers to supply more water to their crops. In this case, conflating the effects of the
forecasts and the weather shock is likely to bias the estimated effect of the weather shock
towards zero: protective actions reduce the impact of the weather shock.20 However, it is
unclear how calculations of climate change impacts would be biased by ignoring forecast
information. On the one hand, reducing climate change to only the direct weather channels
may overstate the costs of climate change by ignoring the potential for adaptation, but on the
other hand, estimating the costs of weather shocks from variation that includes a forecasted
component may tend to understate the costs of weather shocks and thus to understate the
costs of climate change.21

Finally, note that estimating the marginal effect of the climate on outcomes of interest
also generally requires estimating the marginal effect of forecasts on outcomes of interest.
Future empirical analysis that seeks to identify the marginal effects of forecasts will run into
similar identification challenges as just discussed above. For instance, consider the following

20Alternately, an office worker who applies more effort on cold days so as to take advantage of warmer
days to come will bias estimates of the effect of higher temperature on productivity towards a more negative
effect.

21Recent literature has emphasized that the effects of temperature may be nonlinear, with especially high
temperatures causing especially severe damages (e.g., Burke et al., 2015). This result is consistent with the
bias story outlined here. Extreme outcomes may be less likely to be correctly forecasted than are more
common outcomes, so that the panel regression may come closer to correctly identifying the direct costs of
extreme temperatures. However, the same mechanism would imply that the estimated effects of extreme
temperatures may be especially uninformative about the costs of climate change, which converts formerly
rare extremes into more common, forecastable events.
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regression, where we seek β̃:

yit = α̃i + θi(t−1) β̃ + xitγ̃ + ν̃t + ε̃it. (6)

It is easy to see that identifying the marginal effect of a better forecast faces a similar
challenge as does identifying the marginal effect of weather: past weather wt−1 is an input to
past forecasts and past forecasts aim to predict current weather wt, so bias arises whenever
current weather can affect current outcomes directly. To identify the β̃ in equation (6),
we would need to argue that the regression includes every weather channel as an observed
covariate in xit,

22 or we would need to instrument for θt−1 by using variation in forecasts that
does not rely on past weather and does not successfully predict future weather. Farmer’s
almanacs or long-run hurricane forecasts could be two such sources of exogenous variation.
To my knowledge, this type of instrumental variables analysis has not been undertaken to
date.

5 Relation to Previous Arguments

We have seen that the effect of a change in climate does not include expectations channels
when there are no dynamic linkages between periods and also when weather does not interact
with decision-making. Neither of these restrictions is likely to apply to many (perhaps most)
cases of interest. Yet a large and growing literature estimates climate impacts from panel
variation in weather. This literature has often been subject to the informal complaint that
“climate is not weather.” We now consider arguments that have been deployed in defense of
reducing climate to weather.

5.1 Appeals to the Envelope Theorem

The most forceful and complete response is in Hsiang (2016). He argues that “the total effect
of climate can be exactly recovered using β̂TS derived from weather variation” (pg. 53). He
considers agents who solve the following static problem:

Yt(C) = max
bt

zt(bt, wt(C)), (7)

where we add a time subscript to his notation, use wt for weather in place of his c, and strip
away noncritical vector notation. He writes weather as a function of climate C so as to indi-
cate that the weather is drawn from a distribution controlled by C. Totally differentiating,
he obtains:

dYt(C)

dC
=
∂zt(b

∗
t (C), wt(C))

∂wt(C)

dwt(C)

dC
+
∂zt(b

∗
t (C), wt(C))

∂bt

db∗t (C)

dC
.

22In his study of the role that El Niño forecasts play in fishery revenue, Shrader (2017) includes realized
sea surface temperature as a covariate.
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He calls the first term “direct effects” and the second term “belief effects,” because the
second term depends on how agents adjust their actions as a result of understanding that
the climate has changed. The first-order condition for the agent’s problem (7) implicitly
defines b∗t (C):

∂zt(b
∗
t , wt(C))

∂bt
= 0.

Therefore, we have:

dYt(C)

dC
=
∂zt(b

∗
t (C), wt(C))

∂wt(C)

dwt(C)

dC
=
∂Yt(C)

∂wt

dwt(C)

dC
,

which is an application of the envelope theorem. The belief effects have vanished because
only actions can depend on beliefs and agents maximize their actions. The consequences
of any marginal change in the climate can therefore be approximated by estimating how Yt
varies with the weather wt and then simulating changes in the weather that correspond to a
change in the climate. Further, Hsiang (2016) argues that panel regressions of the form in
equation (4) can recover ∂Yt/∂wt as the estimated β. By this reasoning, panel regressions
tell us not just about the effects of weather on the dependent variable Yt but also about the
effect of climate.

We have seen that, in a dynamic model, beliefs can enter into dYt/ dC through effects
on bt−1 and through effects on the distribution of zt+1. These channels are missing from the
static model considered here. However, there is another problem with the envelope theorem
argument, one that is internal to the setting. The envelope theorem argument identifies the
yit from the left-hand side of the panel regression (4) with the value function on the left-hand
side of the agent’s problem (7). Converted to our notation, the maximization problem (7)
becomes

Vt = max
at

πt(at, wt(C)).

The yit from the regression equation (4) could be identified with Vt, with a∗t , or with some
function thereof.23 The envelope theorem applies only when we identify yit with Vt.

24 There
is no theorem that says that the optimal choice of control (a∗t in our setting, or b∗t in Hsiang
(2016)) cannot respond to changes in a parameter such as C.

Is it more plausible that yit corresponds to Vt or more plausible that yit corresponds to a∗t ?
There are a limited set of options for objective functions in neoclassical settings: individuals
and households maximize utility, and firms maximize profits. The applied econometrician
does not observe utility. All observed individual-level dependent variables must be controls
or functions of controls: settings that estimate the effects of climate on outcomes such

23In our dynamic setting, there is a difference between Vt and maximized πt, so we there saw yet another
possible definition for yit.

24As Hsiang (2016, 57) recognizes: “Existing papers leveraging weather variation do not explicitly check
the assumptions critical to this result: that Y is the solution to a (constrained) maximization. . . ”

19 of 31



Lemoine Identifying Climate Impacts June 2017

as labor productivity (Heal and Park, 2013), health (Deschenes, 2014), mortality (Barreca
et al., 2016), crime (Ranson, 2014), energy use (Auffhammer and Aroonruengsawat, 2011;
Deschênes and Greenstone, 2011), income (Deryugina and Hsiang, 2014), gross domestic
product (Dell et al., 2012), and emotions (Baylis, 2017) cannot rely on envelope theorem
arguments.25 With respect to firms, the applied econometrician can observe profits. Settings
such as Deschênes and Greenstone (2007) that focus on profits can appeal to an envelope
theorem argument.26 However, settings that estimate the effects of climate change on yields
(Schlenker and Roberts, 2009), input choices (Zhang et al., 2016), and production (Cachon
et al., 2012) cannot rely on envelope theorem arguments.

Our dynamic setting in fact shows precisely how far one can get with an envelope theorem
argument. In Section 3, we saw that:

1. dE0[π2]/ dC and dE0[a∗2]/ dC each depend in general on ∂a∗2/∂θ2, and

2. dE0[V2]/ dC, dE0[π2]/ dC, and dE0[a∗2]/ dC each depend in general on ∂a∗1/∂θ1,

where a∗t is the optimized period t control and θt is the climate-dependent period t forecast
of period t+ 1 weather. Dependence on ∂a∗t/∂θt indicates sensitivity to beliefs about future
weather. The envelope theorem eliminates ∂a∗2/∂θ2 only from dE0[V2]/ dC: we can ignore
the effect of time t beliefs on the time t control when the dependent variable is a measure of
time t intertemporal value (such as land values). However, other dependent variables depend
on contemporaneous beliefs, and even intertemporal value can depend on past beliefs via past
choices of controls. We cannot assume away expectations as a general rule; instead, we must
justify that particular settings satisfy restrictions that render expectations irrelevant to the
effect of the climate on the dependent variable of interest. We can, at best, abstract from
expectations on a case by case basis.

5.2 Use of Long Differences

Sensitive to the criticism that time series variation may not account for expectations-based
adaptation, several papers have adopted “long differences” approaches to estimation. As
described in Dell et al. (2014) and Burke and Emerick (2016), long differences change the
regression equation (4) to

yid = α̂i + wid β̂ + xidγ̂ + ν̂d + ε̂id, (8)

where we have replaced the time index t with an index d whose increments correspond to
nt units of time. A long difference approach selects n to be a large, positive integer and

25For instance, Barreca et al. (2016) demonstrate the importance of air conditioning in mediating the
temperature-mortality relationship. This result highlights the potential importance of expectations-driven
investments (“adaptation”) in distinguishing a change in the climate from a change in the weather.

26Indeed, the envelope theorem argument in Hsiang (2016) can be seen as an extension of the line of
reasoning begun in Deschênes and Greenstone (2007).
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averages yit, wit, and xit over each timestep d. In the prototypical example with only two
values of d (e.g., Dell et al., 2012), the regression acts like differencing over the two “long”
timesteps. The hope is that the estimated coefficients capture longer-run opportunities for
belief formation and adaptation because each timestep now includes longer-run weather
variation.

Do long differences accomplish their goal of including expectations channels in their
estimates of weather impacts? Consider long differences within our theoretical framework.
In order to allow for “differences” of arbitrary “length”, extend the setting of Section 2 to
an arbitrary number of periods in the natural way. Following Section 4, write Yt(a

∗
t−1, wt) as

the reduced-form representation of the outcome of interest, whether that outcome be Vt, πt,
a∗t , or a function thereof. Consider a long-difference aggregation from t to T , nt:

Yt→T (w) ,
T∑
s=t

Ys(a
∗
s−1(ws−1, θs−1(ws−1, C)), ws),

where w is the vector of ws for s ∈ {t − 1, t, ..., T}. Let w̄ be the average weather for the
unit of interest. A first-order Taylor series expansion of Yt→T around w̄ yields:

Yt→T (w) ≈ Yt→T (w̄)

+
T∑
s=t

[
∂Ys(a

∗
s−1, ws)

∂ws

∣∣∣∣
w̄

(ws − w̄)

+
∂Ys(a

∗
s−1, ws)

∂as−1

∣∣∣∣
w̄

(
∂a∗s−1(ws−1, θs−1)

∂ws−1

∣∣∣∣
w̄

+
∂a∗s−1(ws−1, θs−1)

∂θs−1

∣∣∣∣
w̄

∂θs−1

∂ws−1

∣∣∣∣
w̄

)
(ws−1 − w̄)

]
=χt→T +

∂YT (a∗T−1, wT )

∂wT

∣∣∣∣
w̄

wT

+
T−1∑
s=t

[
∂Ys(a

∗
s−1, ws)

∂ws

∣∣∣∣
w̄

+
∂Ys+1(a∗s, ws+1)

∂as

∣∣∣∣
w̄

(
∂a∗s(ws, θs)

∂ws

∣∣∣∣
w̄

+
∂a∗s(ws, θs)

∂θs

∣∣∣∣
w̄

∂θs
∂ws

∣∣∣∣
w̄

)]
ws

+
∂Yt(a

∗
t−1, wt)

∂at−1

∣∣∣∣
w̄

(
∂a∗t−1(wt−1, θt−1)

∂wt−1

∣∣∣∣
w̄

+
∂a∗t−1(wt−1, θt−1)

∂θt−1

∣∣∣∣
w̄

∂θt−1

∂wt−1

∣∣∣∣
w̄

)
wt−1,

where χt→T is a constant for given w̄. The second-to-last line captures how realized weather
ws affects Ys (inclusive of the effect of ws on the control a∗s) and it captures how realized
weather ws affects Ys+1 through expectations-driven investment. The last line reflects how
the weather at time t− 1 affects outcomes at time t by affecting investments at time t− 1.
This term was the source of the bias described in Section 4.

Now assume that the flow payoff πt and the probabilities pt(wt; θt−1) do not depend
directly on time, so that we can drop the time subscript on Y . Write a∗ to indicate the
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steady-state a that would arise from observing w̄ forever. We have:

Yt→T (w) ≈ χt→T

+

[
∂Y (a∗, w)

∂w

∣∣∣∣
w̄

+
∂Y (a∗, w)

∂a

∣∣∣∣
w̄

(
∂a∗(w, θ)

∂w

∣∣∣∣
w̄

+
∂a∗(w, θ)

∂θ

∣∣∣∣
w̄

∂θ

∂w

∣∣∣∣
w̄

)] T−1∑
s=t

ws

+
∂Y (a∗, w)

∂w

∣∣∣∣
w̄

wT +
∂Y (a∗, w)

∂a

∣∣∣∣
w̄

(
∂a∗(w, θ)

∂w

∣∣∣∣
w̄

+
∂a∗(w, θ)

∂θ

∣∣∣∣
w̄

∂θ

∂w

∣∣∣∣
w̄

)
wt−1, (9)

noting that we no longer need time subscripts on the θ or the w evaluated at known points.
The contribution of the last line becomes small as T becomes large (i.e., as the “difference”
becomes “long”), in which case we have:

Yt→T (w) ≈ χt→T +

[
∂Y (a∗, w)

∂w

∣∣∣∣
w̄

+
∂Y (a∗, w)

∂a

∣∣∣∣
w̄

(
∂a∗(w, θ)

∂w

∣∣∣∣
w̄

+
∂a∗(w, θ)

∂θ

∣∣∣∣
w̄

∂θ

∂w

∣∣∣∣
w̄

)]
︸ ︷︷ ︸

Γ

T−1∑
s=t

ws.

The approximation becomes exact as T → ∞, yielding the cross-sectional result in which
average weather is all that matters.27 Helpfully, we no longer have to worry about the bias
from ignoring correlation between the error term in (8) and investments at time t− 1. The
coefficient β̂ should therefore converge to Γ (the term in square brackets), which clearly
includes expectations-driven investments (often referred to as “long-run adaptation”). One
might therefore hope that we have solved the problem of properly identifying the causal effect
of weather at the same time as we have defined an effect that is closer to the experience of
changing the climate.

Unfortunately, matters are not so simple, because the effects of forecasts are entangled
with the effects of weather inside Γ. This entanglement poses a problem because we saw in
Section 3 that simulating the future impacts of climate change requires separately simulating
both how climate change affects forecasts and how climate change affects the distribution
of weather. In order to use an estimate of Γ to project the costs of future climate change,
one has to believe that changes in the climate convey the same information as do realized
changes in the weather: the ∂θ/∂w terms embedded in Γ must adequately approximate
∂θ/∂C. However, the marginal effect of climate on a forecast θ may not be even roughly
approximated by the marginal effect of weather.28 If a known change in climate carries a
stronger signal than a change in the weather, then Γ may underestimate long-run adaptation.

Burke and Emerick (2016) and Hsiang (2016) emphasize the value of comparing the β̂
estimated via long differences to the β estimated from conventional time series regressions.

27In particular, if w̄ is the average weather for the unit under consideration, then we have Yt→T (w) →
Yt→T (w̄) as T →∞ because the individual weather shocks average out to 0 in a stationary climate.

28As Dell et al. (2014, 779) observe when discussing long differences, adaptation depends on whether
agents “perceived [the change in average temperature] to be a permanent change or just an accumulation of
idiosyncratic shocks.”
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The authors argue that if these estimates are similar, then weather is a good proxy for
climate, with long-run adaptation not playing an important role in the data. The present
derivation clarifies what we learn when the estimated β̂ and β are similar. Consider shrinking
T towards t in equation (9). As we shrink T , we increase the relative contribution from the
final line and eventually lose the second line altogether. The expectations terms change from
being estimated in Γ to being a pure source of bias (via the time t− 1 term, as described in
Section 4). When the expectations channels are sufficiently small, then our estimated β̂ will
be comparable to our estimated β. In particular, these two estimates should be similar when
the outcome Yt does not depend on previous controls at−1. In this case, long-run adaptation
is not important, as argued by Burke and Emerick (2016) and Hsiang (2016). However,
these two estimates should also be similar when previous periods’ durable investments are
independent of previous weather, as when past weather does not contain a strong signal of
future weather. In this case, we estimate similar β and β̂ because weather shocks are not
strongly informative about later weather. Critically, we have not learned that the climate is
irrelevant for forecasts or adaptation: changing the climate is an experiment that plausibly
carries different information than does the experiment of changing a period’s weather.29

6 Conclusions

We have formally analyzed the implications of climate change for several types of outcomes
in a dynamic setting that distinguishes the informational content of climate and weather. We
have seen that climate change affects economic outcomes through direct weather channels
and also through expectations channels. The recent empirical literature has focused on the
direct weather channels, and I have described how future work may estimate the expecta-
tions channels. Further, we have also seen how ignoring expectations can bias estimates of
the direct weather channels, which suggests a need to reevaluate the conclusions of recent
empirical work. The net bias in projections of climate change impacts resulting from ignoring
expectations channels and using biased weather channels is ambiguous in sign. Future empir-

29Burke and Emerick (2016) do find similar coefficients from the time series and long difference regressions,
which they interpret as evidence of a lack of adaptation. They conduct an interesting set of checks to verify
that their result is not due to agents’ failure to recognize that the climate was changing: they show that
farmers’ responses do not depend on past experience of extreme weather, on the baseline variance of the
weather, on education, or on political affiliation. These results suggest that farmers with less reason to
extrapolate weather to climate performed the same type of extrapolation as did farmers with more reason
to extrapolate weather to climate. However, these results are consistent not only with general recognition of
climate change but also with a failure by all groups to extrapolate climate change from experienced weather
variation. For the studied 1980–2000 period, it is perfectly plausible that ∂θt/∂wt 6= ∂θt/∂C. See Kelly et al.
(2005), Deryugina (2013), and Kala (2016) for more on learning about climate change from observations of
the weather, see Bakkensen (2016) for a comparison of learning from personal observations and from official
forecasts in the case of tornadoes, and see Libecap and Hansen (2002) for an analysis of learning about
agricultural productivity from weather observations in the early twentieth century U.S.
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ical work should seek variation in weather forecasts that can identify expectations channels
and should seek truly exogenous variation in weather that can eliminate the potential bias
in the standard approach to estimating the direct weather channels. Future work should
also consider estimating structural models that can explicitly account for expectations and
learning and allow for coherent simulation of climate counterfactuals.

Appendix: Proofs

Proof of Lemma 1

We have: ∫
dp0(w1, w2)

dC
dw1

=

∫ [
∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
p1(w1;C) + p2(w2; θ1)

∂p1(w1;C)

∂C

]
dw1

=
∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C

∫
p1(w1;C) dw1 + p2(w2; θ1)

∫
∂p1(w1;C)

∂C
dw1

=
∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
,

where we use Assumption 1 in the second equality and then recognize that probabilities
integrate to 1, both before and after a marginal change in C. This proves the first part of
the lemma.

We also have:∫ ∫
dp0(w1, w2, w3)

dC
dw2 dw1

=
∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C

∫ ∫
p2(w2; θ1) p1(w1;C) dw2 dw1 +

∫ ∫
p3(w3; θ2)

dp0(w1, w2)

dC
dw2 dw1

=
∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
+

∫
p(w3; θ2)

∂p2(w2; θ1)

∂θ1

∂θ2(w2, C)

∂C
dw2

=
∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
+ p3(w3; θ2)

∫
dp2(w2; θ1(w1, C))

dC
dw2

=
∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
,

where we use Assumption 1 in the first equality, use the result from the first part of the
lemma in the third line, and recognize in the last line that probabilities always integrate to
1. This proves the second part of the lemma.
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Proof of Proposition 1 and Corollary 1

Applying the implicit function theorem to the first-order condition that defines a∗2(a1, w2, θ2),
we have:

∂a∗2(a∗1, w2, θ2)

∂w2

= −
∂2π2
∂a2∂w2

+ β
∫

∂π3
∂a2

∂p3(w3;θ2)
∂θ2

∂θ2(w2,C)
∂w2

dw3

∂2π2
∂a22

+ βE2

[
∂2π3
∂a22

+ ∂2π3
∂a2∂a3

∂a∗3(a∗2,w3)

∂a2

] .
Using Assumption 2, we have:

∂a∗2(a∗1, w2, θ2)

∂w2

= −
β ∂π3
∂a2

∫ dp3(w3;θ2(w2,C))
dw2

dw3

∂2π2
∂a22

+ βE2

[
∂2π3
∂a22

+ ∂2π3
∂a2∂a3

∂a∗3(a∗2,w3)

∂a2

] = 0.

Similar analysis implies that a∗1(w1, θ1) is independent of w1.
Using the implicit function theorem on the first-order condition that defines a∗1(w1, θ1),

we have:

∂a∗1(w1, θ1)

∂θ1

= −
β
∫

∂π2
∂a1

∂p2(w2;θ1)
∂θ1

dw2

∂2π1
∂a21

+ βE1

[
∂2π2
∂a21

+ ∂2π2
∂a1∂a2

∂a∗2(a∗1,w2,θ2
∂a1

] . (A-1)

Assumption 2 implies that∫
∂π2

∂a1

∂p2(w2; θ1)

∂θ1

dw2 =
∂π2

∂a1

∫
∂p2(w2; θ1)

∂θ1

dw2 = 0,

and thus that ∂a∗1/∂θ1 = 0.
Using the implicit function theorem on the first-order condition that defines a∗2(a1, w2, θ2),

we have:

∂a∗2(a∗1, w2, θ2)

∂θ2

= −
β
∫

∂π3
∂a2

∂p3(w3;θ2)
∂θ2

dw3

∂2π2
∂a22

+ βE2

[
∂2π3
∂a22

+ ∂2π3
∂a2∂a3

∂a∗3(a∗2,w3)

∂a2

] . (A-2)

Assumption 2 implies that∫
∂π3

∂a2

∂p3(w3; θ2)

∂θ2

dw3 =
∂π3

∂a2

∫
∂p3(w3; θ2)

∂θ2

dw3 = 0,

and thus that ∂a∗2/∂θ2 = 0.
Using the independence of a∗t from wt and θt, we have:∫ ∫

a∗2(a∗1, w2, θ2)
dp0(w1, w2)

dC
dw2 dw1 =a∗2(a∗1, w2, θ2)

∫ ∫
dp0(w1, w2)

dC
dw2 dw1 = 0.
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Using equation (3) and ∂a∗1/∂θ1 = ∂a∗2/∂θ2 = 0 establishes the first parts of the proposition
and corollary.

Because wt−1 can only enter πt via a∗t−1, Assumption 2 implies that πt is independent of
wt−1. We thus have:∫ ∫

π2(a∗1, a
∗
2, w2)

dp0(w1, w2)

dC
dw2 dw1 =

∫
π2(a∗1, a

∗
2, w2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2.

The second part of the proposition follows from equation (2) and ∂a∗1/∂θ1 = ∂a∗2/∂θ2 = 0.
Using Assumption 1 and Lemma 1 in the last expression yields:∫ ∫

π2(a∗1, a
∗
2, w2)

dp0(w1, w2)

dC
dw2 dw1 =

∫
π2(a∗1, a

∗
2, w2)

∂p2(w2; θ1)

∂θ1

∂θ1(w1, C)

∂C
dw2.

The second part of the corollary follows.
The third part of the proposition follows from equation (1), the foregoing analysis, and∫ ∫ ∫

π3(a∗2, a
∗
3, w3)

dp0(w1, w2, w3)

dC
dw3 dw2 dw1 =

∫
π3(a∗2, a

∗
3, w3)

(∫ ∫
dp0(w1, w2, w3)

dC
dw1 dw2

)
dw3.

Using Assumption 1 and Lemma 1 in the last expression yields:∫ ∫ ∫
π3(a∗2, a

∗
3, w3)

dp0(w1, w2, w3)

dC
dw3 dw2 dw1 =

∫
π3(a∗2, a

∗
3, w3)

∂p3(w3; θ2)

∂θ2

∂θ2(w2, C)

∂C
dw3.

The third part of the corollary follows.

Proof of Proposition 2 and Corollary 2

From equations (A-1) and (A-2), Assumption 3 implies ∂a∗1/∂θ1 = ∂a∗2/∂θ2 = 0. Recog-
nizing that π2 being independent of a1 implies that π2 is independent of w1, we have from
equation (2):

dE0 [π2]

dC
=

∫ ∫
π2(a∗1, a

∗
2, w2)

dp0(w1, w2)

dC
dw2 dw1 =

∫
π2(a∗1, a

∗
2, w2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2.

This establishes the first part of the proposition. Applying Assumption 1 and Lemma 1 then
yields the first part of the corollary.

Now recognize that π3 is independent of w1 and w2. We have:∫ ∫ ∫
π3(a∗2, a

∗
3, w3)

dp0(w1, w2, w3)

dC
dw3 dw2 dw1 =

∫
π3(a∗2, a

∗
3, w3)

(∫ ∫
dp0(w1, w2, w3)

dC
dw1 dw2

)
dw3.

The second part of the proposition follows from the foregoing analysis and equation (1).
Applying Assumption 1 and Lemma 1 then yields the second part of the corollary.
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Applying the implicit function theorem to the first-order condition that defines a∗2, we
have:

∂a∗2(a∗1, w2, θ2)

∂a1

= −
∂2π2
∂a2∂a1

∂2π2
∂a22

+ βE2

[
∂2π3
∂a22

+ ∂2π3
∂a2∂a3

∂a∗3(a∗2,w3)

∂a2

] . (A-3)

This expression is zero under Assumption 3. Because a∗2 is independent of a1, it is also
independent of w1. Recognizing once again that ∂a∗1/∂θ1 = ∂a∗2/∂θ2 = 0, we have from
equation (3):

dE0 [a∗2]

dC
=

∫ ∫
a∗2(a∗1, w2, θ2)

dp0(w1, w2)

dC
dw2 dw1

=

∫
a∗2(a∗1, w2, θ2)

(∫
dp0(w1, w2)

dC
dw1

)
dw2.

This establishes the third part of the proposition. Applying Assumption 1 and Lemma 1
then yields the third part of the corollary.
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