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ABSTRACT
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prices and attributes of marketed products as a consequence of policy changes. Examples are 
prospective regulation of product safety and reliability, or retrospective compensation for harm 
from defective products or misrepresentation of product features. This paper reexamines the 
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updates Marshallian consumer surplus is more appropriate than Hicksian compensating or 
equivalent variations. We identify the welfare questions that can be answered in the presence of 
partial observability on the preferences of individual consumers. We examine the welfare 
calculus when the experienced-utility of consumers differs from the decision-utility that 
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welfare impacts of unauthorized sharing of consumer information by video streaming services.
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1. INTRODUCTION

A common problem in applied economics is assessment of the welfare consequences for consumers of

policies/scenarios that regulate markets for products, or correct for past product defects or misrepresentations.  

Examples are (1) prospective regulation of information provided on coverage and costs in insurance contracts and 

other financial instruments such as mortgages, and retrospective redress of harm from failures to properly disclose 

information; (2) harm from environmental damage to recreation facilities such as ocean beaches; (3) safety 

regulation of consumer products such as automobile air bags, mobile phones, and privacy protection in video 

streaming services, or redress of harm from safety defects; and (4) evaluation of overall market performance; e.g., 

the prospective benefit of blocking a merger of dominant suppliers, or retrospective harm from collusion or 

restraints on entry.  This paper reexamines the foundations of welfare analysis for these applications, and provides 

a practical framework for analysis that rests on these foundations. 

Measuring changes in consumer well-being from policies that affect the availability, prices, and/or attributes 

of goods and services has been a central concern of economics from its earliest days.  Adam Smith (1776) observed 

that “haggling and bargaining in the market” would achieve “rough equality” between value in use and value in 

exchange.  Working at the fringes of mainstream economics, Jules Dupuit (1844) and Hermann Gossen (1854) 

deduced further that consumers exhibiting diminishing marginal utility would achieve maximum utility by 

equalizing marginal utilities per unit of expenditure across goods.  Dupuit was remarkably prescient, recognizing 

that if the marginal utility of income is constant, then the demand curve for a commodity (illustrated in Figure 1) 

is a marginal utility curve, so that the area to the left of this demand curve between the prices established by 

scenarios labeled a and b gives a measure (in monetary units) of “relative utility”.  Dupuit’s measure was later 

named Marshallian Consumer Surplus (MCS); see Alfred Marshall (1890, III.IV.2-8). 

To rephrase these propositions in microeconomic language, suppose the consumer maximizes a utility function 

U(q0,q1) of two goods subject to a budget constraint I = p0q0 + p1q1, where I is income and p0 and p1 are the goods 

prices.  Let q0 = D0(I,p0,p1) and q1 = D1(I,p0,p1) ≡ (I – p0D0(I,p0,p1))/p1 denote the demands that come out of this 

maximization, and let V(I,p0,p1) = U(D0(I,p0,p1),D1(I,p0,p1)) ≡ max
q0

 U(q0,(I – p0q0)/p1) denote the resulting indirect 

(or maximized) utility.  Then ∂V/∂I = (1/p1)∂U/∂q1 + [∂U/∂q0 – (p0/p1)∂U/∂q1 ](∂q0/∂I) ≡ (1/p1)∂U/∂q1 since the 

first-order condition for maximization makes the term in square brackets zero.  Rearranging this expression for 

∂V/∂I gives Smith’s proposition:  “value in exchange” ≡ p1 = (∂U/∂q1)/(∂V/∂I) ≡ “value in use” or marginal utility 

per unit of good 1 measured in money units.  Further, ∂V/∂p1 = – (D1(I,p0,p1)/p1)∂U/∂q1 ≡  – D1(I,p0,p1)∙ (∂V/∂I), 

giving Roy’s identity when both sides are divided by (∂V/∂I), or giving Dupuit’s link between demand and changes 
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in utility when (∂V/∂I) is constant.  A measure in monetary units of the consumer’s change in well-being is the 

difference in indirect utilities in the two scenarios, scaled by the marginal utility μ = ∂V(I,p0,p1a)/∂I of income at 

scenario a.  We term this the market compensating equivalent (MCE), 

(1)          MCE = [V(I,p0,p1b) – V(I,p0,p1a)]/μ. 

Given p0, the marginal utility of income is independent of I and p1 if and only if the indirect utility function has an 

additively separable form V(I,p0,p1) = μI/p0 – G(p1/p0) for some function G and constant μ, in which case Roy’s 

identity establishes that the demand for good 1, D1(I,p0,p1) = G’(p1/p0)/μ, is independent of income.   This is the 

case where the “relative utility” or “consumer surplus” of Dupuit and Marshall coincide with MCE, and these 

measures are given by integrating Roy’s identity between prices p1b and p1a. 

(2)         MCS = ∫  𝐩𝐩𝟏𝟏𝟏𝟏
𝐩𝐩𝟏𝟏𝟏𝟏

D1(I,p0,p1)dp1 = MCE 

Even if the marginal utility of income is not necessarily constant, applying the first mean value theorem for 

integrals to Roy’s identity establishes that ∫  p1a
p1b

D1(I,p0,p1)dp1 = [V(I,p0,p1b) – V(I,p0,p1a)]/μ* for some intermediate 

value μ* of the marginal utility of income, so that MCE equals MCS scaled by a factor μ*/μ.  Obviously,when the 

marginal utility of income is constant, μ*/μ = 1. 

Figure 1.  Dupuit’s Calculation of Relative Utility 

 

Dupuit’s idea of solving the inverse problem, recovering utility from demand, was brought into mainstream 

economics at the end of the 19th century by William Stanley Jevons (1871), Francis Edgeworth (1881), Alfred 

Marshall (1890), Vilfredo Pareto (1906), and Eugen Slutsky (1915).  MCS became the accepted measure of the 

change in consumer well-being.  However, John Hicks (1939) observed that when the marginal utility of income μ 
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= ∂V(I,p0,p1)/∂I is not constant, MCS is a measure of relative utility whose scaling is specific to the consumer and 

circumstance.  Hicks introduced two closely related alternative measures to remedy this defect:  Hicksian 

Contingent Valuation (HCV), the net decrease in scenario b income that equates utility in the two scenarios, and 

Hicksian Equivalent Variation (HEV), the net increase in scenario a income that equates utility in the two scenarios.  

Importantly, the MCE, HCV, and HEV measures correspond to different consumer choice assumptions:  The 

HCV measure assumes that the transfer is fulfilled in scenario b before the consumer makes a choice in that 

scenario, while the HEV measure assumes the transfer is fulfilled in scenario a before the scenario a choice.  The 

MCE measure assumes that choices are made under actual market and income conditions, without compensation, 

in each scenario, and that the post-choice transfer is determined after this as a remedy for the utility gain or loss 

caused by the change in scenario.  Then, HCV is appropriate for prospective welfare analysis when the transfer is 

made before choice in scenario b, and HEV when the transfer is made before choice in scenario a.  However, for 

retrospective welfare analysis where the objective is to redress past harm, or for prospective analysis where the 

transfers are hypothetical and not fulfilled, MCE is an appropriate measure of what it takes to “make the consumer 

whole” relative to a benchmark scenario subsequent to the choices the consumer did make or would have made 

in the uncompensated “as is” and “but for” scenarios.  MCE is also appropriate for assessment of residual gains 

and losses subsequent to prospective analysis where an inexact compensation scheme is fulfilled. 

HCV and HEV are often defined as areas to the left of income-compensated demand curves (i.e., demands with 

income adjusted as price changes to keep utility fixed at the scenario a or scenario b levels, respectively), as in 

Figure 2.2  However, their definition in terms of the indirect utility function, solutions to V(I – HCV,p0,p1b) = 

V(I,p0,p1a) and V(I,p0,p1b) = V(I+HEV,p0,p1a), are revealing.   Applying the mean value theorem, they satisfy 

(3)          
HCV =   [V(𝐼𝐼, p0, p1b) –  V(𝐼𝐼, p0, p1a)]/μ′

 
HEV =  [V(𝐼𝐼, p0, p1b) –  V(𝐼𝐼, p0, p1a)]/μ"

  , 

where μ’ and μ” are some intermediate values of the marginal utility of income.  Then, these two measures, the 

MCE measure from (1), and MCS are all proportional to the difference in utilities of the two scenarios, and differ 

only in scalings by marginal utilities of income valued at different points.  Obviously, if the marginal utility of 

income is constant, then MCE, HCV, HEV, and MCS are identical, and in applications where the marginal utility of 

                                                           

2 The figure comes from a log-linear utility function u = 0.8 log q0 + 0.2 log q1.  With a budget 50 = I = p0q0 + p1q1, p0 = 1, p1a 
= 5, and p1b = 3, the corresponding money-metric indirect utility based on scenario a is u = I∙(p1a/p1)0.2, and the welfare 
measures are MCE = 5.38 = HEV, HCV = 4.86, and MCS = 5.11.   
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income varies little, they will be close approximations.  MCE has a closed form when the indirect utility function 

is known, a computational advantage over HCV and HEV.   

 
Figure 2.  Consumer Surplus Measures for a Continuously Supplied Good 

 

 The Hicksian welfare apparatus was refined by Kaldor (1939) and Scitovsky (1942), and the Kaldor-Hicks 

criterion for public policy decisions states that if a policy change from a to b has a positive aggregate HCV, then 

this aggregate can be distributed so that the change is a Pareto improvement; the same argument applies to HEV 

and MCE in appropriate circumstances.  The MEC, HDV, and HEV measures are mute on the issue of income 

inequality and socially desirable redistribution, but can be adapted for this purpose by applying social weights that 

depend on socially weighted individual marginal utilities of income, estimated from observed consumer 

socioeconomic characteristics.  Samuelson (1947) and Hurwicz and Uzawa (1971) updated the Hicksian analysis 

using modern consumer theory, and their approach has been adapted to consumers making discrete choices by 

Diamond and McFadden (1974), Small and Rosen (1981), McFadden (1981, 1994, 1999, 2004, 2012, 2014), 

Yatchew (1985), and Zhou et al (2012).  For the most part, this literature assumes that consumers are strictly 

neoclassical utility maximizers, with self-interest defined narrowly to include only personally purchased and 

consumed goods.  Mostly, social motives are ignored and no allowance is made for ambiguities and uncertainties 

regarding tastes, budgets, hedonic attributes of goods and services, the reliability of transactions, or the 

consistency and completeness of preference maximization, and there is no distinction between the decision-utility 

postulated to determine market behavior and the experienced-utility of outcomes.  Public and environmental 

pa
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goods are incorporated only if they have active margins that allow them to be valued from market behavior.  The 

market demand functions of individual consumers are assumed to be completely observed, and consumers fully 

informed about policy regimes, so that utility can be recovered from the demand behavior it produces and the 

compensating transfers can be calculated and fulfilled exactly each consumer.  The primary focus of welfare theory 

has been prospective, assuming that compensating transfers are fulfilled before consumer choices are made.  The 

analysis has been fundamentally static, with the consumer pictured as making a once-and-for-all utility-

maximizing choice for contingent deliveries of market goods, even if resolution of uncertainties and fulfillment of 

contracts extend over time; as in Debreu (1959).  Analysis typically starts from prespecified scenarios, although in 

retrospective applications there are often substantive questions regarding the nature of the “but for” scenario, 

particularly when the “as is” scenario leads to experienced utility different from decision utility.  Two further 

assumptions are tacit in most practical welfare calculations:  First, policy scenario differences are limited in scope 

and magnitude, so that after accounting for a few major margins, general equilibrium effects can be neglected.  

Second, if compensating transfers are incomplete within a class of consumers, conducted say using a simple 

formula such as uniform transfers rather than an exact consumer-by-consumer calculation, the loss in social 

welfare from this imperfect redistribution can be neglected relative to the aggregate welfare change for the class.   

We review these assumptions.  Section 2 gives a foundation in consumer theory for the welfare calculus, with 

explicit treatment of discrete alternatives and their hedonic attributes.  Section 3 restates the welfare measures 

in Section 1 for general applications, using the consumer theory of Section 2.  Section 4 distinguishes retrospective 

and prospective policy applications of the welfare calculus.  Section 5 discusses partial observability of individual 

consumer preferences, and its implications for welfare measurement and aggregation.  Section 6 distinguishes 

decision-utility and experienced-utility foundations for calculation of well-being.  Section 7 gives computational 

formulas for common policy problems.  Section 8 contains an illustrative empirical application.  Appendices collect 

relevant mathematical results on approximation, give properties of extreme-value distributed random variables, 

and give R-code for discrete welfare calculations. 
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2.  CONSUMER FOUNDATIONS  

A common starting assumption for welfare analysis is that consumers have “nice” demand functions that allow 

recovery of indirect utility.  For example, Hurwicz and Uzawa (1971) give local and global sufficient conditions for 

recovery of money-metric indirect utility3 when the market demand function is single-valued and smooth; see 

also Katzner (1970) and Border (2014).  Another approach, originating in the revealed preference analysis of 

Samuelson (1948), Houthakker (1950), and Richter (1966), gives necessary and sufficient conditions for recovery 

of a preference order whose maximization yields the market demand function; Afriat (1967) and Varian (2006) 

provide constructive methods for recovery of utility under some conditions.  Technical difficulties arise because 

quite strong smoothness and curvature conditions on utility are needed to assure smoothness properties on 

market demand, while preferences recovered from upper hemicontinuous demand functions are not necessarily 

continuous; see Peleg (1970), Rader (1973), Conniffe (2007).  This section gives a restatement of the consumer 

theory behind welfare measurement, with extensions that include a “no local cliffs” Lipschitz continuity axiom on 

the preference map that avoids the Peleg-Rader problem and guarantees representation of preferences by utility, 

expenditure, indirect utility, and demand functions that satisfy bi-Lipschitz4 conditions in economic variables.  

These results facilitate practical welfare measurement, and are of independent interest.  Readers may find it useful 

to refer to Table 1 for notation, and consult as needed the technical material in the remainder of this section.  

Suppose consumers face scenarios m = a,b, and a universe of possible discrete alternatives indexed by a finite 

set J ≡ {0,…,J}.  Let Jm ⊆ J denote the set of alternatives available in the market under policy m, with |Jm| elements, 

and characterize then by real prices pjm in a compact interval P = [0,pU] with pU > 0, and observed hedonic attributes 

zjm in a compact finite-dimensional set Z.  Let pm and zm denote the vectors of pjm and zjm for j ∈ Jm.  Assume that 

there are “baseline” or “no purchase” alternatives that are always available and are unaffected by policy; e.g., a 

“no purchase” j is assigned pjm = 0 and zjm = 0 by convention.   Market goods supplied in continuous quantities are 

described by commodity vectors q ⊆ Q = [0,qU] with 0 ≪ qU, a bounded rectangle in n-dimensional space, with 

real market prices r ∈ R = [rL,rU], a commensurate bounded rectangle with 0 ≪ rL ≪ rU.  We assume that Z is a 

finite union of disjoint rectangles; this avoids technical complications and covers applications where measured 

attributes either vary continuously in some interval or take on a finite number of discrete levels.   

  

                                                           

3 Indirect utility is money-metric if the marginal utility of (real) income in a baseline scenario remains one as income changes. 

4 An increasing function is bi-Lipschitz if its left and right derivatives are bounded away from 0 and +∞. 
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            Table 1.  Notation 

m = a,b “As-Is”/baseline policy/scenario a and “But-For”/counterfactual policy/scenario b 

s ∈ S Finite-dimensional vector in a compact set S describing observed demographics and 
history of the decision-maker 

Im ∈ [IL,IU] Consumer real income, in an interval [IL,IU], with 0 < IL < IU < +∞, in scenario m 

j ∈ Jm ⊆ J = {0,…,J} Mutually exclusive discrete choices (e.g., “products”), including “benchmark” or “no-
purchase” alternatives that are not affected by policy change  

zjm ∈ Z Vector zm of observed hedonic attributes zjm for alternatives j ∈ Jm in scenario m, in a 
compact finite-dimensional set Z 

q ∈ Q’ ⊆ Q Vector of the goods and services that are supplied in continuous quantities, in a finite 
rectangle Q ≡ [0,qU] in n-dimensional Euclidean space, or in a subrectangle Q’ = [0,qA], 
where qA is an upper bound on vectors that are affordable, 0 ≪ qA ≪ qU  

wjm = (q,zjm) ∈ W Consumption vector given discrete choice j in scenario m, in W = Q×Z or in W’ = Q’×Z 

pjm ϵ P Real price, in a compact interval P = [0,pU] with pU > 0, of discrete product j in scenario 
m; pm is the vector with components 𝑝𝑝jm for j ∈ Jm 

rm ∈ R Finite-dimensional vector in a rectangle R = [rL,rU], with 0 ≪ rL ≪ rU,≪ +∞, of real 
prices of the goods and services that are available in continuous quantities; 
benchmark ra 

rm∙qm + pjm ≤ Im Budget constraint given discrete alternative j in scenario m 

≽ ∈ H 
 

A field H of complete transitive reflexive preference preorders ≽ on Q×Z, 
represented by sets G(≽) ⊆ W×W with (w’,w”) ∈ G(≽) ⟺ w’ ≽ w” 

U(q,z,≽) A direct utility function conditioned on choice j in scenario m, defined on Q’×Z×H as 
the minimum over q’ ∈ QU of ra⋅q’ such that (q’,z0a) ≽ (q,zjm) ≡ wjm 

M(u r,z,≽) An expenditure function, the minimum over q ∈ Q of r⋅q such that U(q,z,≽) ≥ u 

V�(I,r,z,≽) 
  

V� ≡ 𝐼𝐼 +  v�(𝐼𝐼, 𝐫𝐫, 𝑧𝑧, ≽), a money-metric indirect utility function, the maximum of 
U(q,z,≽) subject to the budget constraint r∙q ≤ I 

𝒱𝒱(Im ,pm,rm,zm,≽) 𝒱𝒱 = maxj∈𝐉𝐉m V�(Im – pjm,rm,zjm,≽)   unconditional maximum utility in scenario m 

P�k(I,pm,rm,zm,s) The probability that choice k in scenario m attains maximum utility 𝒱𝒱 

xjm = X(I – pjm,rm,zjm) A finite-dimensional vector of predetermined functions 

v�𝐼𝐼m − 𝑝𝑝jm, 𝐫𝐫, 𝑧𝑧jm, ≽�  v =  xjmβ with I = Im, parameters β = β(≽),  an approximation to v� �𝐼𝐼m − 𝑝𝑝jm, 𝐫𝐫, 𝑧𝑧jm, ≽�  

V(Im – pjm,r,zjm,≽) V = 𝐼𝐼m  − 𝑝𝑝jm + xjmβ + σεjm approximation to V� with additive EV1 “noise”, σ = σ(≽) 

Pk(I,pm,r,zm,s) Pkm = Eβ|s exp(xkmβ−𝑝𝑝km
𝜎𝜎

)/∑ exp(xjmβ−𝑝𝑝jm

σ
)Jm

j=0   MMNL approximation to P�k(I,pm,r,zm,s) 
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Assume that consumers are characterized by a vector s of observed demographics and history, and by real 

income Im in a bounded interval [IL,IU].  In many applications, Ia = Ib, but if changing from scenario a to scenario b 

entails a net production cost or fulfilled transfer, assessed as a lump sum net tax, then Ia and Ib will differ by the 

amount of this tax.  A consumer’s market opportunities under policy m are summarized in prices rm ∈ R, and for j 

∈ Jm, attributes zjm ∈ Z and prices pjm ∈ P, giving the budget constraint rm∙q ≤ Im – pjm for vectors q ∈ Q when a 

product j from Jm is chosen.  Let qA ∈ Q denote a vector that bounds all affordable vectors (i.e., rL∙q ≤ IU implies q 

≪ qA) and define Q’ = [0,qA].  Let z denote the vector of attributes and p the vector of prices for the discrete 

alternatives in J, and let zm and pm denote their subvectors for the available alternatives in Jm. 

We adopt a description of consumer preferences and optimizing behavior that is sufficiently flexible to 

encompass neoclassical preference maximization and some behavioral deviations, but is also empirically tractable.  

Assume that consumers have complete transitive reflexive preference preorders ≽ over vectors (q,z) ∈ Q×Z ≡ W.  

A preference preorder ≽ is characterized by the non-empty set G(≽) of pairs ((q’,z’),(q”,z”)) ∈ W×W that satisfy 

(q’,z’) ≽ (q”,z”).  Let H denote the field of preference preorders of consumers in the population.  We will assume 

that preferences for continuous goods are monotonic (i.e., q’ ≥ q” ⟹ q’ ≽ q”), and that qU is sufficiently large 

and continuous goods are sufficiently desirable so that they can substitute for any affordable (q,z); i.e., (qU,z0a) ≽ 

(qA,z) for all z ∈ Z and ≽ ∈ H.. We use the notation “≽ ∈ H” and “G(≽) ∈ H” interchangeably, the notation “≻” for 

strict preference, and the notation “∼” for indifference.  We use the Euclidean norm on Q, R, and Z; e.g., ‖𝐪𝐪‖ =

 �𝐪𝐪 ∙ 𝐪𝐪 for q ∈ Q.  

For non-empty subsets A,B of the metric space W×W, define the Hausdorff distance h(A,B) to be the greatest 

lower bound of positive scalars η such that each set is contained in an η-neighborhood of the other; i.e., if Nη(A) 

denotes the union of the open balls of radius η centered at the points in A, then h(A,B) is the greatest lower bound 

of η satisfying B ⊆ Nη(A) and A ⊆ Nη(B).  The set W×W is compact, so h is bounded, and if A,B ∈ W×W are closed, 

then h(A,B) = 0 if and only if A = B.   If the sets in H are all closed, then h is a metric on H termed the Hausdorff set 

metric, and the closure of H is compact in its metric topology.  We make a series of assumptions on preferences 

and budgets, beginning with a basic assumption on continuity of preferences: 

A1.  If a sequence of preorders ≽i ∈ H+ and sequences of consumption vectors (w’i,w”i) ∈ G(≽i) satisfy 

h(G(≽i),G(≽0)) → 0, w’i → w’0, and w”i → w”0, then G(≽0) ∈ H and (w’0,w”0) ∈ G(≽0). 

Since our attention is primarily on discrete choice, we will make strong and simple assumptions on continuous 

good preferences.  Fix baseline values (ra,za) ∈ R×Z.  For (q,z) ∈ Q×Z and ≽ ∈ H, define A(q,z,≽) = {q’∈Q|(q’,za) ≽ 

(q,z)}, the set of continuous commodity vectors q’ ∈ Q that combined with “benchmark” attributes za are at least 



10 

 

as good as (q,z).  We will assume for q ∈ Q’ that qU ∈ A(q,z,≽), so this set is non-empty.  Assumption A1 implies 

that A(q,z,≽) is compact, and if q’,q” ∈ Q’, z’,z” ∈ Z, and (q’,z’) ≻ (q”,z”), then A(q’,z’,≽) is contained in the interior 

of A(q”,z”,≽).  The next assumption strengthens our monotonicity requirement for continuous goods and imposes 

Lipschitz continuity conditions on preferences.  Let hQ(A’,A”) denote the Hausdorff distance between non-empty 

subsets A’,A” ⊆ Q.  If A’ ⊆ A”, then hQ(A’,A”) ≡ inf {η > 0|A" ⊆  Nη(A′)}. 

A2. For q’,q” ∈ Q, z’,z” ∈ Z, and ≽’,≽” ∈ H,  q” ≪ q’ implies (q’,z’) ≻’ (q”,z’).  If q ∈ Q’, then (qU,za) ≽’ (q,z’).  

There exist scalars α, δ > 0 such that (i) (q’,z’) ~’ (q”,z”) implies hQ(A(q’,z’,≽’),A(q”,z”,≽”)) ≤ α∙h(≽’,≽”), (ii) 

hQ(A(q’,z’,≽’),A(q”,z”,≽”)) ≤ α∙(|q’ – q”| + |z’ – z”| + h(≽’,≽”)), and (iii) (q’,z’) ≻’ (q”,z”) implies  

inf
𝐪𝐪∈A(𝐪𝐪′,𝑧𝑧′,≽′)

sup {η > 0 | Nη(q) ⊆ A(𝐪𝐪”, 𝑧𝑧", ≽ ′)} ≥ δhQ(A(q’,z’,≽’),A(q”,z”,≽’)). 

 

                                    Figure 3.  Lowest and Highest Slopes between Contours  

 

 

 

 

 

 

 

 For each ≽, the A(q,z,≽) define a contour map on Q, as illustrated in Figure 3.  Assumptions A1 and A2 do not 

impose any convexity condition on preferences, but do require that the open quadrant to the northeast of any 

point in A(q,z,≽) is contained in the interior of this set.  The Lipschitz continuity conditions (i) and (ii) rule out 

precipitous changes in A(q,z,≽) when (q,z,≽) changes.  The line between boundary points in the upper contour 

sets A’ = A(q’,z’,≽) and A” = A(q”,z”,≽) that achieves their Hausdorff distance gives the lowest slope between 

them, while the distance between boundary points with the highest slope is some fraction of their Hausdorff 

A’ 

 

“lowest slope”         

= hQ(A’,A”)  

“highest slope” 

= δhQ(A’,A”)     

A” 
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distance.  Condition (iii) bounds this fraction from below by δ > 0.  Then condition (iii) rules out “local cliffs” by 

bounding the ratio of the highest slope to the lowest slope between two contours as they converge.5   

 A last assumption confirms that income is in a range where consumer budgets are limiting but nevertheless 

allow choice of any available discrete alternative, and all affordable q are in Q’: 

 A3.  The consumption vector (0,z) is affordable for each z ∈ Z (i.e., IL > pU), and q ∈ Q and rL∙q ≤ IU ⟹ q ∈ Q’.  

We next establish that A1-A3 are sufficient to guarantee well-behaved representations of preferences by utility, 

expenditure, and indirect utility functions. 

  Lemma 2.1.  If A1, then each G(≽) ∈ H is a compact set, and H is a compact metric space with metric h.   

Proof:  For fixed ≽, A1 establishes that G(≽) is a non-empty closed subset of the compact space W×W.  The 

properties of h and H are given in Aliprantis and Border (2006, Sections 3.16-3.18), particularly Definition 3.70, 

Theorem 3.85, and Corollary 3.95.  ∎ 

 Lemma 2.2.  Suppose A1 and A2, (q’,z’), (q”,z”) ∈ Q’×Z, ≽ ∈ H, and (q’,z’) ≻ (q”,z”).  Let δ denote the bound 

from A2, 1 denote a vector of ones, and γ = hQ(A(q’, z’,≽),A(q”, z”,≽)).  If q’* is in the boundary of A(q’,z’,≽), q”* 

is in the boundary of A(q”,z”,≽), and r ∈ R, then q’* –  γδr/‖𝐫𝐫‖ ∈ A(q”,z”,≽) and q”* + γ1 ∈ A(q’,z’,≽). 

Proof:  By A2, all points in a neighborhood of q’* with radius γδ are contained in A(q”,z”,≽), giving the first result.  

If q”* + γ1 ∉ A(q’,z’,≽), then no point within radius γ of q”* is in A(q’,z’,≽), contradicting the definition of γ as the 

Hausdorff distance.  ∎  

 The next result uses the expenditure at baseline continuous good prices needed to achieve the level of 

satisfaction of a given vector of goods to define a well-behaved (i.e., bi-Lipschitz) utility function. 

 Theorem 2.3.  Suppose A1 and A2.  For each (q,z) ∈ Q’×Z and ≽ ∈ H, define 

(5)     U(q,z,≽) = min{ra∙q’ | q’ ∈ A(q,z,≽)}. 

Then, U is a continuous direct utility function on Q’×Z×H; i.e., U is continuous in its arguments and U(q’,z’,≽) ≥ 

U(q”,z”,≽) ⟺ (q’,z’) ≽ (q”,z”).  Further, U is locally non-satiated with a range U(Q’,z,≽) contained in the bounded 

                                                           

5 Preferences on a compact set that are representable by absolutely continuous utility functions with gradients that are 
bounded positive and finite satisfy the Lipschitz continuity condition.  The utility function in ℝ2 satisfying u = q1 – �1 − q2 
for 0 ≤ q2 ≤ 1 and u = q1 + �q2 − 1 for q2 > 1 is an example that has a local cliff and fails to satisfy the condition at q2 = 1. 
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interval [0,ra∙qU], is Lipschitz in (q,z,≽), and is bi-Lipschitz in q; i.e., there exist scalars αU, λU > 0 such that q’,q” ∈ 

Q’ and z’,z” ∈ Z imply 

(6)         
ℎQ(A(𝐪𝐪’, 𝑧𝑧’, ≽), A(𝐪𝐪”, 𝑧𝑧”, ≽)) ∙ λU ≥  |U(𝐪𝐪’, 𝑧𝑧’, ≽) –  U(𝐪𝐪”, 𝑧𝑧”, ≽)|  ≥  ℎQ(A(𝐪𝐪’, 𝑧𝑧’, ≽), A(𝐪𝐪”, 𝑧𝑧”, ≽))/λU

 
|U(𝐪𝐪’, 𝑧𝑧’, ≽ ′) –  U(𝐪𝐪”, 𝑧𝑧”, ≽ ")| ≤  𝛼𝛼𝑈𝑈 ∙ (|𝐪𝐪’ –  𝐪𝐪”|  +  | 𝑧𝑧’ –  𝑧𝑧”|  + ℎ(≽′, ≽ ")) 

 . 

Proof:  A1 and A2 imply that A(q,z,≽) is non-empty and closed, hence compact, so (5) is well-defined.  Suppose 

(q’,z’) ≽ (q”,z”).  If (q,za) ∈ A(q’,z’,≽), then (q,za) ≽ (q’,z’) and transitivity implies (q,za) ≽ (q”,z”), and hence (q,za) 

∈ A(q”,z”,≽).  Therefore, ra⋅q ≥ U(q”,z”,≽), and hence U(q’,z’,≽) ≥ U(q”,z”,≽).  A1 implies that U is continuous in 

its arguments.  In particular, U is sequentially continuous in ≽ in the Hausdorff metric topology on H, or 

equivalently the topology of closed convergence.   

 If q*’ ∈ argmin{ra∙q | q ∈ A(q’,z’,≽)} and q*” ∈ argmin{ra∙q | q ∈ A(q”, z”,≽)}, then U(q’, z’,≽) – U(q”, z”,≽) = 

ra⋅(q*’ – q*”).   Let γ ≡ hQ(A(q’,z’,≽),A(q”,z”,≽)).  Lemma 2.2 with r = ra implies 𝐪𝐪�" = 𝐪𝐪∗’ −  δγ𝐫𝐫a/‖𝐫𝐫a‖ ∈

 A(𝐪𝐪”, 𝑧𝑧”, ≽) and 𝐪𝐪�′ = 𝐪𝐪∗" +  γ𝟏𝟏 ∈  A(𝐪𝐪′, 𝑧𝑧’, ≽).  Then ra⋅(q*’ – 𝐪𝐪�")  = 𝛿𝛿𝛿𝛿‖𝐫𝐫a‖ ≤ ra⋅(q*’ – q*”) and ra⋅(𝐪𝐪�′ − q*”) 

= γra∙1 ≥ ra⋅(q*’ – q*”).  Defining λU = max(ra∙1,1/δ‖𝐫𝐫a‖), this gives the first row of (6).  Then, the first Lipschitz 

condition in A2 gives the second inequality in (6), 

 |U(𝐪𝐪’, 𝑧𝑧’, ≽) –  U(𝐪𝐪”, 𝑧𝑧”, ≽)| ≤ λUhQ(A(q’,z’,≽),A(q”,z”,≽)) ≤ λUα∙(|q’ – q”| + | z’ – z”| + h(≽’,≽”)).  ∎ 

 Theorem 2.4. Suppose A1 and A2, and U:Q’×Z×H → [0,ra∙qU] from (5).  For each (r,z) ∈ R×Z, ≽ ∈ H, and u ∈ 

U(Q’,z,≽), define 

(7)           M(u,r,z,≽) = minq’∈Q’{r∙q’ | U(q’,z,≽) ≥ u}. 

Then M is an expenditure function that is continuous in its arguments, and concave, linear homogeneous, and 

non-decreasing in r.  Further, M satisfies M(u,ra,za,≽) ≡ u, is Lipschitz in (r,z,≽), and is bi-Lipschitz and increasing 

in u; i.e., there exists scalars αM, λM > 0 such that (r’,z’,≽’), (r”,z” ,≽”) ∈ R×Z×H and u’,u” ∈ U(Q’,z,≽) with u’ ≥ u” 

imply 

(8)           
(u’ –  u”)λM  ≥  M(u′, 𝐫𝐫′, 𝑧𝑧′, ≽ ′) –  M(u”, 𝐫𝐫′, 𝑧𝑧′, ≽ ′)  ≥  (u’ –  u”)/λM

  
|M(u′, 𝐫𝐫′, 𝑧𝑧′, ≽ ′) –  M(u′, 𝐫𝐫", 𝑧𝑧", ≽ ")| ≤  αM ∙ (|rʹ − r"|  + |𝑧𝑧′ −  z"| + ℎ(≽′, ≽ "))

. 

Proof:  Mas-Colell, Whinston, and Green (1995, Proposition 3E2) demonstrate that M is concave, linear 

homogeneous, and non-decreasing in r.  The continuity of M in its arguments follows from the Berge Maximum 

Theorem (Aliprantis and Border, 2006, Theorem 17.31).  Suppose (r’,z’,≽’), (r”,z”,≽”) ∈ R×Z×H, and u’ ≥ u”.  
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Consider q*’ ∈ argmin {r’⋅q | U(q,z’,≽’) ≥ u’} and q*” ∈ argmin {r’⋅q | U(q,z’,≽’) ≥ u”}.  Let γ = 

hQ(A(𝐪𝐪∗′,z’,≽),A(𝐪𝐪∗”,z’,≽)).  From Lemma 2.2,  𝐪𝐪�" = 𝐪𝐪∗’ −  δγ𝐫𝐫/‖𝐫𝐫‖  ∈  A(𝐪𝐪∗”, 𝑧𝑧′, ≽ ′) and q�′ = 𝐪𝐪∗" +  γ𝟏𝟏 ∈

 A(𝐪𝐪∗′, 𝑧𝑧′, ≽ ′), so that r⋅(q*’ – 𝐪𝐪�")  = 𝛿𝛿𝛿𝛿‖𝐫𝐫‖ ≤ r⋅(q*’ – q*”) = M(u′, r′, 𝑧𝑧′, ≽ ′) –  M(u”, r′, 𝑧𝑧′, ≽ ′) ≤  r⋅(𝐪𝐪�′ − q*”) 

= γr∙1.  This establishes the first row inequality in (8) with λM = λU max(rU∙1 , 1/𝛿𝛿�𝐫𝐫L�).   

 Next consider q*’ ∈ argmin
U(𝐪𝐪,z′≽′)≥u′

𝐫𝐫′ ∙ 𝐪𝐪 and q*” ∈ argmin
U(𝐪𝐪,𝑧𝑧",≽")≥𝑢𝑢′

𝐫𝐫" ∙ 𝐪𝐪, and define γ = hQ(A(𝐪𝐪∗",z”,≽”),A(𝐪𝐪∗”,z’,≽’)) 

≤ α(|z’ – z”| + h(≽’,≽”)).   Then, A(q*’,z’,≽’) = A(q*”,r”,≽’).  If M(u′, 𝐫𝐫′, 𝑧𝑧′, ≽′) >  M(u′, 𝐫𝐫", 𝑧𝑧", ≽ ′), then q*” + γ1 

∈ A(𝐪𝐪∗”,z’,≽’), implying M(u′, 𝐫𝐫′, 𝑧𝑧′, ≽′) −  M(u′, 𝐫𝐫", 𝑧𝑧", ≽ ′)  ≤ γr’∙1 + |(r” – r’)∙q*”| ≤ �𝐫𝐫U�α(|z’ – z”| + h(≽’,≽”))   

≤ |r” – r’|∙�𝐪𝐪U� + �𝐫𝐫U�α(|z’ – z”| + h(≽’,≽”)), proving the second row in (8) with αM = max(�𝐪𝐪U�, �𝐫𝐫U�α).  ∎ 

 Theorem 2.5.  Suppose A1-A3 and U:Q’×Z×H → [0,ra∙qU] from (5).  For I ∈ [IL–pU,IU], r ∈ R, z ∈ Z, and ≽ ∈ H, 

define a money-metric indirect utility function 

(9)       V(I,r,z,≽) ≡ maxq∈Q’{U(q,z,≽) | r∙q ≤ I}  

satisfying V(I,ra,za,≽) ≡ I that is continuous in its arguments with a range contained in the bounded interval 

[0,ra∙qU], is quasi-convex and homogeneous of degree zero in (I,r), is non-increasing in r, is Lipschitz in (r,z,≽), and 

is bi-Lipschitz increasing in I; i.e., there exist scalars αV ≥ ra∙qU and λV > 0 such that  I’ > I”, r’,r” ∈ R, z’,z” ∈Z, and 

≽’,≽” ∈ H imply  

(10)     
λV(𝐼𝐼’ –  𝐼𝐼”)   ≥  V(𝐼𝐼’, 𝐫𝐫′, 𝑧𝑧′, ≽ ′) –  V(𝐼𝐼”, 𝐫𝐫′, 𝑧𝑧′, ≽ ′)  ≥  (𝐼𝐼’ –  𝐼𝐼”)/λV

 
|V(𝐼𝐼’, 𝐫𝐫′, 𝑧𝑧′, ≽ ′) –  V(𝐼𝐼”, 𝐫𝐫", 𝑧𝑧", ≽ ")| ≤  αV(|𝐼𝐼’ –  𝐼𝐼”| + |𝐫𝐫′ − 𝐫𝐫|+|z'-z| + ℎ(≽′, ≽ "))

. 

Further, V(I,r,z,≽) is twice continuously differentiable in (I,r) except on a set of measure zero, and continuous good 

demands are almost everywhere in (I,r) single-valued and continuously differentiable, and satisfy Roy’s identity, 

q = D(𝐼𝐼 , 𝐫𝐫, 𝑧𝑧, ≽) ≡ – ∂V(𝐼𝐼 ,𝐫𝐫,𝑧𝑧,≽)/∂𝐫𝐫
∂V(𝐼𝐼 ,𝐫𝐫,z,≽)/∂𝐼𝐼

 .   

 Proof:  Theorem 2.3 implies that U is continuous in its arguments, and A3 assures that the budget set for q is a 

non-empty subset of Q’ for all discrete choices.  Then, (9) is well-defined.  Local non-satiation from A2 implies that 

V is the inverse with respect to u of I = M(u,r,z,≽); see Mas-Colell, Whinston, and Green (1995, Propositions 3D3 

and 3E1).  Result (8) then implies the first row of (10) with λV = λU.  The continuity of M in its arguments from 

Lemma 2 and the bi-Lipschitz condition (8) imply V is continuous in its arguments and Lipschitz-continuous in 

(r,z,≽).  It is immediate from the properties of M that V is homogeneous of degree zero in (I,r), and non-increasing 
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in r.  Consider budgets (Ii,ri) for i = 0,1 and (I𝜃𝜃,r𝛉𝛉) = θ(I0,r0) + (1-θ)(I1,r1) for θ ∈ (0,1), and let q* denote a maximand 

of (5) subject to the budget (I𝜃𝜃,r𝛉𝛉).  Then V(I𝜃𝜃,r𝛉𝛉,z,≽) = U(q*,z,≽).  But r𝛉𝛉⋅q* ≤ I𝜃𝜃 implies either or both r0⋅q* ≤ I0 or 

r1⋅q* ≤ I1, and therefore either V(I0,r0,z,≽) = U(q*,z,≽) or V(I1,r1,z,≽) = U(q*,z,≽), so that V is quasi-convex:  

V(I𝜃𝜃,r𝛉𝛉,z,≽) ≤ max{ V(I0,r0,z,≽), V(I1,r1,z,≽)}.  From the definition of quasi-convexity, there exists an increasing 

transformation ψ such that such that ν(I,r,z,≽) = ψ(V(I,r,z,≽)) is a convex function of (I,r).  Results of Rademacher 

(1919) and Alexandrov (1939) establish that since ν(I,ra,za,≽) ≡ ψ(I) is convex in I, ψ is bi-Lipschitz on (IL–pU,IU), 

continuously differentiable in I except possibly on a countable set, and almost everywhere twice continuously 

differentiable in I.  Then, ψ-1(v) is also bi-Lipschitz and increasing, and hence continuously differentiable except on 

a countable set.  This implies that V(I,r,z,≽) = ψ-1(ν(I,r,z,≽)) is increasing and bi-Lipschitz in I, and hence 

continuously differentiable in I except for a countable set, and almost everywhere twice continuously 

differentiable in (I,r).  Then the Roy (1942) identity applied to ν(I,ra,z,≽), or equivalently to V(I,r,z,≽), establishes 

that continuous good demands are almost surely single-valued and continuously differentiable in (I,r).  ∎   

 Lemma 2.6.  Suppose A1-A3, the direct utility function U(q,z,≽) from (5), and its associated money metric 

indirect utility function V(I,r,z,≽) from (9).  For q ∈ Q’, define U*(q,z,≽) = min
𝐫𝐫∈R

V(𝐫𝐫 ⋅ 𝐪𝐪, 𝐫𝐫, 𝑧𝑧, ≽).   Then U*(q,z,≽) is 

quasi-concave and R-monotone6, U*(q,z,≽) ≥ U(q,z,≽), with equality if for some r ∈ R, the conditions q’ ∈ Q’ and 

r∙q’ ≤ r∙q imply U(q’,z,≽) ≤ U(q,z,≽).  Then, U and U* are observationally equivalent; i.e., V(I,r,z,≽) ≡ 

maxq∈Q’{U*(q,z,≽) | r∙q ≤ I} and the continuous good demands from maximization of U and U* subject to the 

budget constraint r∙q ≤ I coincide except on a set of (I,r) of measure zero.  

Proof:  V(𝐫𝐫 ⋅ 𝐪𝐪, 𝐫𝐫, 𝑧𝑧, ≽) = max{U(q’,z,≽) | r∙q’ ≤ r∙q} ≥ U(q,z,≽)} implies U*(q,z,≽) ≥ U(q,z,≽).  Suppose for some r 

∈ R, the conditions q’ ∈ Q’ and r∙q’ ≤ r∙q imply U(q’,z,≽) ≤ U(q,z,≽), so that q’ is a maximand of U subject to this 

budget constraint.  Then U*(q,z,≽) ≤ V(r∙q,r,z,≽) ≤ U(q,z,≽).  Hence, U and U* are observationally equivalent.  

Suppose q0,q1 ∈ Q’ and qθ = θq0 + (1-θ)q1 for θ ∈ (0,1), and let rθ ∈ R be such that U*(qθ,z,≽) = V(rθ∙qθ,rθ,z,≽).  Since 

rθ∙qθ ≥ min{rθ∙q0,rθ∙q1}, U*(qθ,z,≽) = V(rθ∙qθ,rθ,z,≽) ≥ min{V(rθ∙q0,rθ,z,≽), V(rθ∙q1,rθ,z,≽)} ≥ min{U*(q0,z,≽), 

U*(q1,z,≽)}, so U* is quasi-concave in q.  Suppose r∙q” > r∙q’ for all r ∈ R.  Then there exists r” satisfying U*(q”,z,≽) 

= V(r”∙q”,r”,z,≽) > V(r”∙q’,r”,z,≽) ≥ U*(q’,z,≽), so U* is R-monotone.  ∎ 

                                                           

6 A function u(q) is quasi-concave if 0 < θ < 1 implies u(θq’+(1-θ)q”) ≥ min(u(q’),u(q”)), and is R-monotone if r∙q’ ≥ r∙q” for 
all r ∈ R implies u(q’) ≥ u(q”). 
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The indirect utility function (9) in Theorem 2.5 gives the utility obtainable conditioned on a discrete 

alternative j with attributes zjm.  The consumer is assumed to choose j to maximize utility subject to the budget 

constraint rm∙q + pjm ≤ I when the alternatives j ∈ Jm have attributes zjm, achieving unconditional indirect utility 

(11)         u = 𝒱𝒱(I,pm,rm,zm,≽) ≡ max
j∈𝐉𝐉m

V(𝐼𝐼 − 𝑝𝑝jm, 𝐫𝐫m, 𝑧𝑧jm, ≽) . 

Associated with (11) is an unconditional expenditure function I = ℳ(u,pm,rm,zm,≽) obtained as an implicit solution 

of (11), or equivalently as 

(12)         I = ℳ(u,pm,rm,zm,≽) ≡ min
j∈Jm

[M�u, 𝐫𝐫m, 𝑧𝑧jm, ≽� + 𝑝𝑝jm] . 

Theorems 2.4 and 2.5 imply that ℳ is bi-Lipschitz increasing in u and 𝒱𝒱 is bi-Lipschitz increasing in I.   

Next characterize the choices and demands coming from the indirect utility function (11).  For k ∈ Jm, and I ∈ 

[IL,IU], pm ∈ P|Jm|, zm ∈ Z|𝐉𝐉m|, and rm ∈ R, define the set of preferences that make alternative k uniquely optimal, 

(13)       Hk(I,pm,rm,zm) = {≽∈H | V(I – pkm,rm,zkm,≽) > V(I – pjm,rm,zjm,≽) for j ∈ Jm\{k}} 

and let H#(I,pm,rm,zm) = ⋃ Hk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m) 
k∈𝐉𝐉m

 denote the set of all preferences that result in a unique utility-

maximizing choice.  For ≽ ∈ H#(I,pm,rm,zm), choice is indicated by 

(14)        δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, ≽) = 𝟏𝟏Hk(𝐼𝐼,𝐩𝐩m,𝐫𝐫,𝐳𝐳m)(≽) ≡ � 1    if ≽ ∈  Hk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m) 
0 otherwise

, 

and using Theorem 2.5 and Roy’s identity, continuous good demands are given for almost all (I,r) by 

(15)        D(I,pm,rm,zm,≽) = – ∑ δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, ≽) ∙ ∂V(𝐼𝐼 – 𝑝𝑝km,𝐫𝐫m,𝑧𝑧km,≽)/∂𝐫𝐫
∂V(𝐼𝐼 – 𝑝𝑝km,𝐫𝐫m,𝑧𝑧km,≽)/∂𝐼𝐼

 
k∈𝐉𝐉m

  . 

In applications, the preferences ≽ of an individual consumer that appear as an argument in (9) are unobserved 

and heterogeneous across consumers.  Limited observations on the market choices of a single consumer will 

provide only partial identification of ≽, insufficient in general to determine (9) with precision.  The approach we 

take is to treat the ≽ as “random effects”, with a probability FH(∙|s) on the field of preferences H whose salient 

features we can hope to identify from market data.  Poor identification of individual consumer preferences is 

worsened if there is preference randomness within the individual, arising from the limits of psychophysical 

discrimination as in Thurstone (1927).  However, intra-consumer randomness does provide a mechanism for 

breaking ties in utilities so that H# has probability one.  We will not at this point distinguish intra-consumer and 

inter-consumer preference heterogeneity, but this can be done in applications where one has multiple 
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observations on market choices of individuals; see Ben-Akiva, McFadden, and Train (2016). We follow the dictates 

of consumer sovereignty in assuming that while preferences can depend on consumer history through s, they 

predetermined in analysis of current policies and market circumstances.  Then, (11) provides a policy-independent 

yardstick for welfare analysis.7  Our final preference assumption is that preference heterogeneity is almost surely 

sufficient to break ties.8  

A4. FH(H#(I,pm,rm,zm)|s) ≡ 1 for (I,pm,rm,zm) ∈ [IL,IU]×PJm+1×R×ZJm+1 and s ∈ S. 

Given A4, the discrete alternatives k ∈ Jm, are chosen with probabilities 

(16)        Pk(I,pm,rm,zm,s) = FH(Hk(I,pm,rm,zm)|s). 

The conditional probability of ≽ given choice k then satisfies FH(A|s,k) = FH(A∩Hk(I,pm,rm,zm)|s)/Pk(I,pm,rm,zm,s) for 

measurable A ⊆ H, and the conditional probability of continuous good demand in a measurable set B ⊆ Q, given 

choice k, is FH({≽ ∈ Hk(I,pm,rm,zm) | s,D(I,pm,rm,zm,≽) ∈ B})/Pk(I,pm,rm,zm,s).   

We next show that the field of indirect utility functions (9) with the properties given by Assumptions A1-A4 

can be approximated uniformly by a practical finitely-parameterized family, with random parameters in the 

population that are also finitely parameterized.  Then, this family can be estimated from observed choices in 

sufficiently rich arrays of market environments faced by samples of consumers, and the estimated family can be 

used to carry out welfare calculations with no essential loss of generality.   

Theorem 2.7.  Suppose A1-A4.  Let V�(I,rm,zjm,≽) for (I,rm,zjm,≽) ∈ [IL–pU,IU]×R×Z×H denote the true indirect 

utility function from Theorem 2.5, and define v��𝐼𝐼, 𝑝𝑝jm, 𝐫𝐫m, 𝑧𝑧jm, ≽� ≡ V�(I – pjm,rm,zjm,≽) – I on [IL,IU]×[0,pU]×R×Z×H.  

Given a small scalar γ ∈ (0,1), there exists a bound η = - ln(γ/4|Jm|); a vector of predetermined twice continuously 

differentiable functions X:[IL–pU,IU]×R×Z ⟶ ℝN drawn from a Schauder basis9 for the space ℭ([IL–pU,IU]×R×Z); a 

                                                           

7 Our analysis lumps unobserved perceptions and attributes of alternatives together with unobserved preferences.  To 
maintain taste sovereignty when these unobserved factors are influenced by policy, we would need to make these sources 
of randomness explicit and consider how to detect their presence and identify their influence on welfare. 

8 A sufficient condition for A4 is that the indirect utility (9) have the form V(I,r,zjm,≽) = V*(I,r,zjm,≽) + ζj(≽), where ζj(≽) is a 
component of a vector of absolutely continuous psychometric disturbances in |J|-dimensional space, conditioned on the 
heterogeneity in V*.  More generality, A4 is satisfied by a probabilistic transversality condition that ensures that the 
distribution of the vector of indirect utilities for the various alternatives is absolutely continuous in |J|-dimensional space; 
see Shannon (2006). 

9 A Schauder basis may be polynomials, Fourier series, or other series of functions that span the space of continuous 
functions on a compact finite-dimensional space.  The basis may be tailored to reduce the number of terms required to 
achieve a given tolerance.   
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commensurate vector of Lipschitz-continuous real functions β from a compact subset ℬ ⊆ ℭ(H,ℝN), and a 

Lipschitz-continuous real function σ:H ⟶  [σL,σU] from a compact subset 𝒮𝒮 ⊆ ℭ(H,[σL,σU]) with σL > 0 and σU < 

γ/2η; and independent standard type I extreme value distributed random variables εj such that:   

 (i) There is an approximate indirect utility function10 

(17)          V(I  – pjm,rm,zjm,β,σ,εj) =  I + v(I,pjm,rm,zjm,β) + σεj  

on [IL–pU,IU]×R×Z×ℬ×𝒮𝒮×ℝ with v(I,pjm,rm,zjm,β) ≡ X�𝐼𝐼 – 𝑝𝑝jm, 𝐫𝐫m, 𝑧𝑧jm� ⋅ β − 𝑝𝑝jm such that |v�(I,pjm,rm,zjm,≽) – 
v(I,pjm,rm,zjm,β(≽))| < γ uniformly.  Further, in the event C = {ε | |εj| ≤ η for j ∈ J} that has Prob(C) > 1 – γ/2, 
|V�(I,rm,zjm,≽) – V(I,rm,zjm,β(≽),σ(≽),εj)| < γ uniformly. 

(ii) Suppose δ�km(𝐼𝐼, ≽) ≡ δ�k(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, ≽) is the choice indicator given by (14) for V�, and let δkm(𝐼𝐼, β, σ) ≡ 
δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, β, σ, 𝛆𝛆) be an indicator for the discrete alternative that maximizes V(I  – pjm,rm,zjm,β,σ,εj) on Jm.  
Then except for ≽ and ε each in sets that have probability at most γ/3, δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, β(≽), σ(≽), 𝛆𝛆) = 
δ�k(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, ≽).  Letting P�k(I,pm,rm,zm,s) denote the true discrete choice probability, from (16), and 

Pk(Im,pm,rm,zm,s) = 𝐄𝐄δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m, β, σ, 𝛆𝛆) ≡ Eβ,σ|s 
exp (vkm(𝐼𝐼,β)/𝜎𝜎 )

∑ exp (vjm(𝐼𝐼,β)/𝜎𝜎) 
j∈𝐉𝐉m

  ≡ ∫ exp (vkm(𝐼𝐼,β)/𝜎𝜎 )
∑ exp (vjm(𝐼𝐼,β)/𝜎𝜎) 

j∈𝐉𝐉m
 F(dβ, dσ|𝑠𝑠) 

ℬ×𝒮𝒮 ,  

where vkm(I,β) ≡ X(𝐼𝐼, 𝐫𝐫m, 𝑧𝑧km) ∙ β – 𝑝𝑝km, one then has, uniformly, |P�k(I,pm,r,zm,s) – Pk(I,pm,r,zm,s)| < γ. 

(iii)  Let F(A|s) ≡ FH({≽∈H|(β(≽),σ(≽)|s) ∈ A}) for Borel sets A ⊆ ℬ×𝒮𝒮 and s ∈ S, and let FT(A|s) denote the 
empirical probability obtained from T independent draws from F.  Let ℱ1 denote the family of functions of the 
form (17) for j ∈ Jm, ℱ2 denote the family of functions formed as differences of the functions in ℱ1, and ℱ 
denote the family of functions of the form min(f1,…,fK) for fk ∈ ℱ2 and 1 ≤ K ≤ |J|, plus the function f ≡ 1.  Let 
𝒦𝒦 denote the family of functions exp(v(I,pjm,rm,zjm,β)/σ)/∑ exp(v(I, pim, 𝐫𝐫m, zim, β)/σ)i∈Jm  for v given in (17).  
Let ℐ denote the family of indicator functions i = 1(f>0) for f ∈ ℱ, and 𝒢𝒢 denote the family of functions of the 
form i∙f for i ∈ 𝒥𝒥 and f ∈ ℱ.  Letting E𝛃𝛃,σ and E𝛃𝛃,𝛔𝛔,T denote expectation operators with respect to F and FT 
respectively, there exists T such that Prob( sup

T′ ≥ T
sup

f∈ℱ∪𝒦𝒦∪ℐ∪𝒢𝒢
|(𝐄𝐄T′ − 𝐄𝐄)f|  >  𝛿𝛿/3) < γ/3. 

(iv) Let D�(I,pm,rm,zm,≽) and D(I,pm,rm,zm,β,σ,ε) denote the continuous good demands given by (15) for the 
indirect utility functions V� and V respectively.  If on a closed subset A of [IL–pU,IU]×R×Z, V is continuously 
differentiable in (I,r), then X can be selected with a sufficient number of terms so that on the set A and except 
for sets of ≽ and ε that each have probability at most γ/3, |𝐷𝐷�(I,pm,rm,zm,≽) – D(I,pm,rm,zm,β(≽),σ(≽),εj)| < γ 
uniformly. 

Proof:  Let Hδ
#(I,pm,rm,zm) = ⋃ {≽∈ H |V�(𝐼𝐼 – 𝑝𝑝km, 𝐫𝐫m, 𝑧𝑧km, ≽) >  V��𝐼𝐼 – 𝑝𝑝jm, 𝐫𝐫m, 𝑧𝑧jm, ≽� +  δ for  j ∈ 𝐉𝐉m & j ≠  k} 

k∈𝐉𝐉m
  for 

0 < δ ≤ γ.  Then Hδ
#(I,pm,rm,zm) ↘ H 

#(I,pm,rm,zm), and A4 implies that there exists δ(I,pm,rm,zm) > 0 such that 

                                                           

10 The approximation V is not guaranteed to satisfy the slope and curvature properties of V�, but at each point where V� is 
twice continuously differentiable with non-zero slopes and a non-singular (bordered) hessian, the approximation V for a 
sufficiently small tolerance γ will also have these properties and preserve signs, and hence locally have the same slope and 
curvature properties as V�. 
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F(Hδ(𝐼𝐼,𝐩𝐩m,𝐫𝐫,𝐳𝐳m)
# (I,pm,rm,zm)|s) ≥ 1 – γ/2.  Further, the continuity of V� on [IL–pU,IU]×R×Z×H implies there exists an open 

neighborhood N(I,pm,rm,zm) in [𝐼𝐼L, 𝐼𝐼U] × P|𝐉𝐉m| × R × Z|𝐉𝐉m| such that ≽ ∈ Hδ(𝐼𝐼,𝐩𝐩m,𝐫𝐫,𝐳𝐳m)
# (I,pm,rm,zm) and (𝐼𝐼,𝒑𝒑�m,𝒓𝒓� ,𝒛𝒛�m) ∈ 

N(I,pm,rm,zm) imply max
k∈𝐉𝐉m

{V���̃�𝐼 –  𝑝𝑝�km, 𝐫𝐫�, 𝑧𝑧�km, ≽� − max
j≠k

V�(�̃�𝐼 –  𝑝𝑝� jm, 𝐫𝐫�, 𝑧𝑧�jm, ≽)} >  δ(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫m, 𝐳𝐳m)/2 .  One can then 

extract a finite family of these open neighborhoods that cover [𝐼𝐼L, 𝐼𝐼U] × P|𝐉𝐉m| × R × Z|𝐉𝐉m|.  Let δ0 > 0 denote the 

minimum of the δ(I,pm,rm,zm) for this finite family and define a constant σ = σ(≽) ≡ δ0
12η

.  Recall that Z is a finite 

union of disjoint rectangles.  Combine each of these rectangles with the rectangular domains of income and prices, 

shift and scale these rectangles so they form a unit cube, and apply Appendix Theorem A.1 to establish the 

existence of a vector of multivariate polynomials v(I,rm,zjm,≽) ≡ X(𝐼𝐼, 𝐫𝐫m, 𝑧𝑧jm) ⋅ β(≽) that satisfy |v�(I,rm,zjm,≽) – 

v(I,rm,zjm,≽)| <  δ0
12

 ≤ γ.  From the properties of EV1 variates, the event C has Prob(C) > 1 – γ/2, and if C, then |σεj| 

< δ0/12.  In the event C, V(I,rm,zjm,≽) given by (17) satisfies  

      |V�(I,rm,zjm,≽) – V(I,rm,zjm,≽)| ≤ �v�𝐼𝐼, 𝐫𝐫m, 𝑧𝑧jm, ≽�   −  v��𝐼𝐼, 𝐫𝐫m, 𝑧𝑧jm, ≽�� + |σεj | < δ0/6. 

This establishes (i). 

For any point (𝐼𝐼,𝒑𝒑�m,𝒓𝒓� ,𝒛𝒛�m) ∈ [𝐼𝐼L, 𝐼𝐼U] × PJm+1 × R × ZJm+1, let (I,pm,rm,zm) be the center of a neighborhood in 

the open cover that includes (𝐼𝐼,𝒑𝒑�m,𝒓𝒓� ,𝒛𝒛�m).  The probability of the event C∩Hα(𝐼𝐼,𝐩𝐩m,𝐫𝐫,𝐳𝐳m)
# (I,pm,rm,zm) is at least 1 – γ. 

In this case, V(𝐼𝐼 – 𝑝𝑝�km, 𝐫𝐫�, �̃�𝑧km, ≽) − max
j≠k

V�𝐼𝐼 –  𝑝𝑝�jm, 𝐫𝐫�, �̃�𝑧jm, ≽� > δ�𝐼𝐼,𝐩𝐩m,𝐫𝐫𝐦𝐦,𝐳𝐳m�
2

>  δ0/2 for some k implies 

V�(𝐼𝐼 – 𝑝𝑝�km, 𝐫𝐫�, �̃�𝑧km, ≽) − max
j≠k

𝐕𝐕�(𝐼𝐼 – 𝑝𝑝�jm, 𝐫𝐫�, �̃�𝑧jm, ≽) >  δ0/6.  Then (ii) holds with probability at least 1 – γ.  The 

bound on the difference between the exact and approximate choice probabilities then follows. 

The proof of (iii) utilizes results on convergence of empirical processes given in Appendix A.  The functions in 

the family ℱ1, and hence in ℱ2, are linear in (β,γ,ε0,…,ε|J|).  Then these families are contained in a finite-

dimensional subspace defined by their intercepts and slope coefficients.  The functions in ℱ2 are Lipschitz in 

these intercepts and slope coefficients, implying that ℱ is Lipschitz in these parameters.  By construction, the 

domain [IL–pU,IU]×R×Z×ℬ×𝒮𝒮 and the domain ℬ×[σL,σU] of (β,σ) are compact, so that v(I,pjm,rm,zjm,β) is bounded 

on its domain by a constant M.  Therefore, f* = M + σU|ε| is an envelope function for ℱ1 and 2f* is an envelope 

function for ℱ2 , and hence for ℱ, that from Appendix B(a) satisfies EFf* ≤ M + 1.219384 σU.  The family 𝒦𝒦 is 

Lipschitz in (β,σ) ∈ ℬ×[σL,σU] since σL > 0, with envelope function f* ≡ 1.  Apply Theorem A.3 to establish the 

result for ℱ and 𝒦𝒦, and Theorem A.4 to establish the result for ℐ and 𝒢𝒢. 
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From Theorem 2.5, V� is almost everywhere continuously differentiable in (I,r), and where it is, continuous good 

demands are unique and are given by (15).  Let A be a closed set on which this continuous differentiability holds.  

Then, Lemma 6 establishes that the derivatives of V approximate uniformly on A the corresponding derivatives of 

V�.  Combined with the bi-Lipschitz property of V� in I, this establishes (v).  ∎  

Result (iii) in this theorem shows that utility and the distribution of tastes can be approximated using the 

empirical distribution of the finite-dimensional taste parameters (β,σ); thus, using a distribution that has finite 

support, and is trivially a finite-parameter approximation.  In general, it is then possible to achieve an 

approximation of the same precision using other finite-parameter families of distributions.  The proof of this 

theorem assumes a constant for the scaling factor σ, and this is sufficient for the approximation results, but 

allowing heterogeneity in σ may give more parsimonious approximations with respect to the specification of β. 

 The direct utility function (5) given by Lemma 2 can be interpreted as a continuous mapping from the compact 

space of preferences H onto a compact subset 𝒰𝒰 of the normed linear space ℭ(Q’×Z) of continuous real-valued 

functions u:Q’×Z ⟶ ℝ.  The probability FH on H induces a probability FU on 𝒰𝒰 that satisfies FU(A|s) = 

FH({≽∈H|U(⋅,⋅,≽)∈A} | s) for measurable subsets A of 𝒰𝒰.  Then, given A1-A4, the field of preferences can be 

characterized by (𝒰𝒰,FU) rather than (H,FH).  With this characterization, the money-metric utility function (9) in 

Lemma 4 is written V:[IL–pU,IU]×R×Z×𝒰𝒰 ⟶ ℝ, and correspondingly the choice indicator δk(𝐼𝐼, 𝐩𝐩m, 𝐫𝐫𝐦𝐦, 𝐳𝐳m, U) from 

(14) and continuous good demand D(I,pm,rm,zm,U) from (15) are written as functions of U ∈ 𝒰𝒰. 

Consider the family (17) of the indirect utility functions V(Im – pjm,rm,zjm,β,σ,εj) ≡ Im + v(Im,pjm,rm,zjm,β) + σεj, 

where  v(Im,pjm,rm,zjm,β) ≡ X(Im – pjm,rm,zjm)∙β – pjm.  A major simplification of the welfare calculus occurs when 

v(I,pjm,rm,zjm,β) is independent of income.  Make explicit the price index π = π(rm) used to deflate income and 

prices to real terms, where π(ra) = π(rb) by assumption, and rewrite V as  

(18)        V(Im – pjm,rm,zjm,β,σ,εj) = Im/π(rm) + v(pjm/π(rm),rm/π(rm),zjm,β) + σεj. 

But this is a Gorman Polar Form, with the properties that choice among the products j ∈ Jm is independent of 

income, and continuous good demands have the form 

(19)        D(I,pm,rm,zm,β,σ,εm) =  –∂v(pjm/π(rm),rm/π(rm),zjm,β)/∂rm + [Im + v(pjm/π(rm),rm/π(rm),zjm,β)]∂ln π(rm)/∂rm , 

so that the only goods showing income effects are those whose prices influence the index π, and the Engle curves 

for these goods are affine linear.  The Gorman polar preference field has been studied extensively in welfare 

economics, and has important aggregation properties for both continuous and discrete choice; see Chipman and 
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Moore (1980,1990), Small and Rosen (1981), and McFadden (2004,2014).  The Gorman form (19) defines a hedonic 

preference field in which product attributes influence tastes only through an effective price, 𝑝𝑝�jm = pjm – X(rm,zjm)∙β. 

 

3. WELFARE ANALYSIS 

We restate for product markets the neoclassical welfare calculus outlined in Section 1, utilizing the treatment 

of consumer theory given in Section 2.11  There is a baseline, “as is,” or “incumbent” policy/scenario m = a and a 

counterfactual, “but for,” or “replacement” policy/scenario m = b.12  Consumers face menus of mutually exclusive 

products j ∈ Jm ⊆ J with at least one “benchmark” or “no purchase” alternative whose attributes are unaffected 

by scenario changes.13  Our analysis will be carried out for a population of consumers who have preferences that 

satisfy assumptions A1-A4 in Section 2, and hence have indirect utility functions, conditioned on selection of 

product j and stated in terms of real income and prices, that from Lemma 7 are uniformly approximated by 

(20)          V(I – pjm,rm,zjm,β,σ,εj) ≡ I + vjm(I,β) + σεjm, 

where vjm(I,β) is shorthand for v(I,pjm,rm,zjm,β) ≡ X(I – pjm,rm,zjm)β – pjm.  The vector β and positive scalar σ are 

randomly distributed in the population with a probability F(β,σ|s) that is in a parametric family with parameter α, 

given observed socioeconomic history s, and the εjm are independent standard Extreme Value type I random 

variables.  By construction, V is money-metric for a “no purchase” or “benchmark” alternative in scenario a (e.g., 

v(I,p0a,ra,z0a,β) ≡ 0).  In the event Hm
k (I,β,σ) = {εm | V(I – pkm,rm,zkm,β,σ,εk) > V(I – pjm,rm,zjm,β,σ,εj) for j ∈ Jm\{k}}, the 

                                                           

11 The basics of this theory can be found in Varian (1992, Chap. 7, 10), Mas-Colell, Whinston, and Green (1995, Chap. 3), and 
other graduate-level textbooks.  See also McFadden and Winter (1966) and Border (2014). 

12 For convenience we will use the “baseline/as is/incumbent” and “counterfactual/but for/replacement” labels for both 
retrospective analysis of past policy and prospective analysis of policies not yet implemented, noting that these labels are 
arbitrary and interchangeable in many prospective applications.  In retrospective applications, associating a with the 
historical scenario and b with the counterfactual leads to measures of welfare change often termed “Willingness to Pay” 
(WTP), while reversing these labels and making b the baseline leads to “Willingness to Accept” (WTA) welfare measures. 

13 In many applications, the attainable products will be the same in both scenarios except for specific changes in prices or 
other attributes.  However, the notation allows the possibility that products may appear or disappear when scenarios 
change.  The case where psychometric noise is independent in the two scenarios, even for “brands” that are common to 
both scenarios, will be handled by indexing alternatives, including the “no purchase” alternative, differently so that Ja∩Jb = 
∅.  If the products in an application are not mutually exclusive, or the consumer can buy more than one unit of a product, 
then Jm indexes the mutually exclusive possible portfolios of product purchases.  In general, Jm may index locations or 
“addresses” in physical or hedonic space, and with added technical machinery need not be restricted to be finite. 
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consumer maximizes (21) at alternative k ∈ Jm, an event indicated by δkm(I,β,σ,εm) = 1, with a probability that is 

uniformly approximated by a mixed multinomial logit, 

(21)          Pkm = Pk(I,pm,rm,zm,,s,𝛼𝛼) ≡ Eβ,σ|s 𝐿𝐿km(𝐼𝐼, β, σ) , 

where 𝐿𝐿km(𝐼𝐼, β, σ) = exp (vkm(𝐼𝐼,β)/𝜎𝜎 )
∑ exp (vjm(𝐼𝐼,β)/𝜎𝜎) 

j∈𝐉𝐉m
 is the “flat” multinomial logit probability of the event {ε|δkm(I,β,σ,ε) = 1}.  

The components of the vector of taste parameters β are termed “part-worth” or Willingness-to-Pay (WTP) 

coefficients for unit changes in the corresponding components of X.  The parameter σ scales psychometric noise 

and is large when consumer acuity is low.14  Unconditional maximum indirect utility in scenario m when income 

is I satisfies  

(22)      um = 𝒱𝒱k(I,pm,rm,zm,β,σ,ε) ≡ max
j∈𝐉𝐉m

 [I + v(I,pjm,rm,zjm,β) + σεj]. 

We assume consumer sovereignty – tastes are predetermined at the time of market choice.  This implies that 

the distribution F(β,σ|s,α) is the same in each scenario m, and that the psychometric disturbances εjm are 

independent of income, and hence independent of income transfers.  There is a substantive conceptual question 

about how psychometric noise should be treated in welfare calculations.  Its presence may be attributable to 

whims, which enter perceived tastes temporarily and influence choice, but may be too transient to enter 

experienced utility.  The welfare calculus should arguably minimize attributions of apparent gains and losses from 

transient whims, even when these whims capture genuine momentary sensations of well-being.  A more critical 

argument for excluding whimsy from the welfare calculus is that while it can influence observed choices, 

psychometric noise is impossible to incorporate into fulfilled compensating transfers.  If whimsy is to be excluded, 

the question is how to do this.  Our approach is to form expectations of welfare measures after first computing 

these measures for each configuration of psychometric noise.  An alternative is to form expected utility by 

averaging out the effects of psychometric noise before calculating welfare measures; this requires appropriate 

scaling of utility to be meaningful.  In either case, there will remain a question of the consequences of inexact 

compensating transfers.   

                                                           

14 One motivation for introducing “psychometric noise” is that it is behaviorally realistic, but these disturbances also act 
as a perturbation of preferences, simplifying the mathematics of consumer demand analysis by smoothing “knife-edge” 
responses.  Maskin and McFadden (2011) and Fosgerau and McFadden (2012) show that these “trembling payoff” 
perturbations can be used to strengthen conventional results in consumer theory and tighten some of the properties of 
Harsanyi-Selten “trembling hand” equilibria in game theory. 



22 

 

A more complicated question is the relationship of psychometric noise in the two scenarios.  If there are 

different products, and no natural correspondence between the indexing of the products in scenario a and 

scenario b, or there are changes in a broad spectrum of product attributes that arguably encompass unobserved 

attributes even for “branded” products, or psychometric noise comes primarily from transient context-dependent 

“animal spirits” rather from unobserved attributes of products, then it is plausible to assume that the relevant 

components of ε in the two scenarios are statistically independent.  This is handled flexibly in our notation by 

either assuming that εja and εjb are statistically independent for each j, or by assuming εja = εjb but Ja∩Jb = ∅.  

However, if the products in scenarios a and b are identifiably the same “brands”, either unchanged or with changes 

only in prices or selected attributes, it is plausible that unobserved attributes and whims do not change and the 

relevant components of ε are the same in both scenarios for j ∈ Ja∩Jb.  We consider both cases.  Since psychometric 

noise in our setup is defined as part of the approximation of true preferences, and not established by psychological 

experiments as an element, even transitory, in actual preferences, there is good reason to avoid assumptions on 

ε that complicate the welfare calculus, but also concern if the assumptions made on ε have a substantial effect on 

welfare conclusions.  Generally, if the scaling of psychometric noise that is assumed to be EV1 makes this noise 

substantial relative to scenario changes in observed product attributes and prices, the prerequisites of the 

approximation Lemma 7 will fail, and the welfare conclusions will be sensitive to assumptions on εjb versus εja.  

The most effective remedy is then to expand X and tighten the specification (21) to make σ small. 

 There are three substantive issues whose resolution affects the form of the welfare calculus:  Is the analysis 

prospective, comparing policies not yet put into place, or retrospective, comparing “as is” and “but for” past 

policies?  Is information on the tastes of individual consumers complete or partial, and if partial what welfare 

measures are relevant to transfers that can actually be fulfilled?  Should well-being be assessed in terms of the 

decision-utility postulated to determine economic demand behavior, or in terms of experienced-utility after taste 

ambiguities and uncertainties are resolved?  These issues are discussed in Sections 4, 5, and 6 below.  In the 

remainder of this section, we restate for our general model of discrete product choice and neoclassical 

assumptions the welfare measures introduced in Section 1.  In this restatement, we will assume that there is a 

single vector of psychometric noise components that are invariant across the policy scenarios, and treat situations 

where the noise associated with a “branded” product is assumed to change across scenarios by giving it different 

indices.  The case of statistically independent psychometric noise in the two scenarios is then handled by assuming 

Ja∩Jb = ∅.   

 One standard Hicksian welfare measure for the net gain in well-being from scenario b relative to scenario a is 

Hicksian Compensating Variation (HCV), the net decrease in scenario b income that makes the two scenarios 
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indifferent.  Let HCV(s,k,β,σ,ε) denote this measure for an observed history s and scenario a choice k, and a vector 

(β,σ,ε) of unobservables.15  In terms of the conditional indirect utility function (21), HCV(s,k,β,σ,ε) satisfies  

(23)  max
j∈𝐉𝐉b

 [𝐼𝐼b − HCV +  v(𝐼𝐼b − HCV, 𝑝𝑝jb, 𝐫𝐫b, 𝑧𝑧jb, β)  +  σεj] =  𝐼𝐼a  +  v(𝐼𝐼a, 𝑝𝑝ka, 𝐫𝐫a, 𝑧𝑧ka, β)  +  σεk. 

Removing the conditioning on k when it is not observed gives the measure HCV(s,β,σ,ε) = min
k∈𝐉𝐉a

HCV(𝑠𝑠, k, β, σ, 𝛆𝛆).  

The Hicksian Equivalent Variation (HEV), denoted HEV(s,β,σ,ε), is the net increase in scenario a income that 

makes the two scenarios indifferent.  Because the scenario a choice may change with the income transfer, HEV 

does not depend explicitly on the uncompensated scenario a choice k; from (23), HEV(s,β,σ,ε) satisfies 

(24)     max
j∈𝐉𝐉b

 [𝐼𝐼b +  v(𝐼𝐼b, 𝑝𝑝jb, 𝐫𝐫b, 𝑧𝑧jb, β)  +  σεj] =  max
j∈𝐉𝐉a

 [𝐼𝐼a + HEV +  v(𝐼𝐼a + HEV, 𝑝𝑝ja, 𝐫𝐫a, 𝑧𝑧ja, β)  +  σεj]. 

Sometimes, HCV is termed Willingness-to-Pay (WTP), and HEV is termed Willingness-to-Accept (WTA); this 

terminology is related to the description of β as a vector of WTP coefficients, but only in special cases is there a 

simple mapping between β and HCV or HEV.   

 The definition of Market Compensating Equivalent (MCE) that generalizes (1) is the difference in the utilities 

(23) that the consumer would attain in scenarios a and b in the absence of compensation, scaled by a marginal 

utility of income in scenario a that converts the utility difference into monetary units.  The conditional indirect 

utility V(I – pjm,rm,zjm,β,σ,εj) ≡ I + v(I,pkm,rm,zkm,β) + σεkm is denominated in monetary units and is money-metric for 

a “no purchase” alternative.  However, if there are neoclassical income effects for other alternatives k, one has 

∂V(I – pkm,rm,zkm,β,σ,εk)/∂I ≡ 1 + ∂v(I,pkm,rm,zkm,β)/∂I ≢ 1.  If alternative k is chosen in scenario a, then 

(25) MCE(s,k,β,σ,ε) =  
max
j∈𝐉𝐉b

 �𝐼𝐼b+ v�𝐼𝐼b,𝑝𝑝jb,𝐫𝐫b,𝑧𝑧jb,β�+ σεj�− max
j∈𝐉𝐉a

 �𝐼𝐼a + v�𝐼𝐼a,𝑝𝑝ja,𝐫𝐫a,𝑧𝑧ja,β�+ σεj�

µk(𝐼𝐼a,β)
. 

where   

(26)       μk(Ia,β) = ∂v(Ia – pka,ra,zka,β)/∂Ia  ≡ 1 + [∂X(Ia – pka,ra,zka)/∂Ia]β, 

gives a definition of MCE(s,k,β,σ,ε) that at least locally has the money-metric property in scenario a. 16  Later, when 

we consider cases where choice k in scenario a is not observed, or one observes or uses only the information that 

                                                           

15 Note that when k is observed in scenario a, the distribution of ε is conditioned on the event {ε|δka(I,β,σ,ε) = 1}. 

16 The scale factor μk(Ia,β) in the definition of MCE is natural for retrospective analysis where the consumer has experienced 
scenario a, or for prospective analysis when scenario a is a default that will occur unless there is a policy intervention, and 
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“as is” choice is from a set D ⊆ Jm, μk(Ia,β) will be replaced by a scale factor μD(Ia,β). Note that μk(Ia,β) defined 

by (26) is independent of σ and ε, and if X does not depend on income, then μk(Ia,β) ≡ 1. 

 The measure (25) can be interpreted as a generalization to multiple products with varying attributes of the 

Marshallian consumer surplus (MCS) introduced in Section 1; this generalization is more useful for applications 

than multivariate extensions, path-dependent when there are income effects, of the integral form (2) for MCS.  

First-order Taylor’s expansions of (24) imply 

(27) HCV(𝑠𝑠, k, β, σ, 𝛆𝛆) ∙ μ 
′ =  HEV(𝑠𝑠, k, β, σ, 𝛆𝛆) ∙ μ 

′′ =  MCE(𝑠𝑠, k, β, σ, 𝛆𝛆) ∙ μk(𝐼𝐼a, β)  , 

where μ 
′ = 1 + ∂v(I’ – pjb,rb,zjb,β)/∂I and μ 

′′ = 1 + ∂v(I” – pka,ra,zkb,β)/∂I are marginal utilities of income evaluated 

at the chosen alternatives j in scenario b and k in scenario a when there is no compensation, evaluated at incomes 

I’ and I” intermediate between uncompensated and compensated levels.  If the marginal utility of income is 

constant, then HCV = HEV = MCE.  In general, (24) can be solved quickly for HCV or HEV by iteration starting from 

either zero or MCE.   

 With the apparatus above, practical welfare analysis of product markets can be carried out in three steps.  

First, observations on the market choices of surveyed consumers, augmented by extra-market data on stated 

preferences if necessary to identify tastes for relevant attributes, can be used to estimate the mixed MNL model 

(22) and recover the probability F(β,σ|s).  An obvious caution is that the vector of predetermined functions X in 

(21) has to be comprehensive enough to achieve the approximation accuracy promised by Lemma 7, so that 

estimation of (22) needs to include a careful econometric specification analysis.  A “method of sieves” or “semi-

non-parametric” approach to the specification of X provides practical guidelines for this specification search.  With 

this caveat, this setup is both practical and sufficiently general to handle welfare analysis of policy changes that 

affect discrete choice without making unwarranted assumptions on preferences.   

 Second, construct a large synthetic population.  Start from a random sample from the target population.  For 

each sampled person, assign a history s, incomes Ia and Ib, choice sets Ja and Jb, and market environments (pa,ra,za) 

and (pb,rb,zb), using available data for the sampled individual wherever possible in order to preserve ecological 

correlations in the target population.  Make multiple draws of (β,σ) from the estimated probability F(β,σ|s) and 

of εa and εb from the standard Extreme Value Type I distribution.  If εa and εb are not statistically independent, the 

                                                           
is unambiguous when indirect utility has been transformed so that the marginal utility of income in scenario a remains 
constant when income changes.  However, more generally, MCE will be affected by transformations of utility and the 
evaluation point for the marginal utility of income, and additional criteria may be needed to select among alternative 
versions of MCE. 
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analysis has to include a specification for their joint distribution and a mechanism for sampling from it.  Assign 

utility-maximizing choices k in scenario a and j in scenario b.  Each draw defines a synthetic consumer.   

 Third, calculate the measures HCV(𝑠𝑠, k, β, σ, 𝛆𝛆), HEV(𝑠𝑠, k, β, σ, 𝛆𝛆), and MCE(𝑠𝑠, k, β, σ, 𝛆𝛆) from (24) and (25) for 

each consumer in the synthetic population.  These measures can be aggregated over this synthetic population or 

subpopulations to estimate hypothetical compensating transfers for relevant consumer classes.  However, 

transfers that are actually fulfilled in the target population can depend only on observable history s and (if 

observed) the scenario a choice k.  Define uniform transfers UMCE(s,k) = 𝐄𝐄β,σ,𝛆𝛆|s,kMCE(𝑠𝑠, k, β, σ, 𝛆𝛆) and UMCE(s) 

= 𝐄𝐄k,β,σ,𝛆𝛆|sMCE(𝑠𝑠, k, β, σ, 𝛆𝛆).  Fulfillment of these transfers in the real population in retrospective welfare analysis 

will not in general make individual consumers “whole”, but will balance individual gains and losses in the sense 

that a MCE welfare measure taken subsequent to these uniform transfers aggregates to zero.  In the same way, 

one can solve for uniform transfers tk = UHCV(s,k) and t = UHCV(s) that if fulfilled in scenario b balance the gains 

and losses from the remaining unfulfilled Hicksian transfers, so that a subsequent MCE aggregates to zero: 

(28)      0 = 

⎩
⎨

⎧𝐄𝐄β,σ,𝛆𝛆|s,k �max
j∈𝐉𝐉b

 �𝐼𝐼b − tk +  v�𝐼𝐼b − tk, 𝑝𝑝jb, 𝐫𝐫b, 𝑧𝑧jb, β� +  σεj� − [𝐼𝐼a  +  v(𝐼𝐼a, 𝑝𝑝ka, 𝐫𝐫a, 𝑧𝑧ka, β)  +  σεk]�
 

𝐄𝐄k,β,σ,𝛆𝛆|s �max
j∈𝐉𝐉b

 �𝐼𝐼b − t +  v�𝐼𝐼b − t, 𝑝𝑝jb, 𝐫𝐫b, 𝑧𝑧jb, β� +  σεj� − [𝐼𝐼a  +  v(𝐼𝐼a, 𝑝𝑝ka, 𝐫𝐫a, 𝑧𝑧ka, β)  +  σεk]�     
 . 

Analogous definitions can be given for UHEV(s,k) and UHEV(s).17  Note that the measures considered in this 

paragraph are all determined by decision-utility, with no adjustment for possible differences in decision and 

experienced utility.  

       

4. PROSPECTIVE VERSUS RETROSPECTIVE WELFARE ANALYSIS 

Traditional welfare theory considers a prospective policy change in a static “what if” environment.  An 

“incumbent” or “default” policy/scenario a is compared with a “replacement” policy/scenario b in a situation 

where neither has been implemented and both are on the table.  The theory assumes that the policymaker has 

the information and authority to carry out net lump sum transfers in the event that policy b is adopted, adjusted 

for direct policy-induced effects on incomes, that make each consumer indifferent between the policies, and 

                                                           

17 Another approach to defining UHCV(s,k) and UHEV(s,k) is to first define ”representative” utility for the class of consumers 
with history s, perhaps the expectation of (21) with respect to the unobservables, and then define UHCV(s,k), or UHEV(s,k) 
as analogs of HCV or HEV for “representative” utility.  However, these definitions will not in general have the property that 
UHCV(s,k) = 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kHCV(β,σ,ε) or UHEV(s,k) = 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kHEV(β, σ, 𝛆𝛆). 
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assumes that if policy b is adopted, these transfers are fulfilled before consumers maximize utility.  Under these 

conditions, the Hicksian Contingent Variation (HCV) defined in (24) is the precise measure of each lump sum 

transfer required.  If instead, a and b are reversed, so that transfers are fulfilled if a is adopted, then the Hicksian 

Equivalent Variation (HEV) is the precise measure of each lump sum transfer required.  So long as population 

aggregate HCV or HEV, adjusted for policy-induced income changes, exceeds zero, a shift from policy a to policy b 

with the exact individual transfers fulfilled, plus any distribution of the residual surplus, is a Pareto improvement.  

In practice many welfare calculations are retrospective rather than prospective.  The welfare question is what 

transfers after the fact redress harm from a past “as is” or “baseline” scenario a in which some products were 

defective or improperly marketed, using as a benchmark a “but for” or “counterfactual” scenario b in which these 

flaws were absent.18  A key feature of these applications is that the transfer occurs after the decision-utility-

maximizing choice would have been made in the “but for” scenario, and hence could not be a factor in “but for” 

choice.   Put another way, the “but for” utility maximization that would have occurred at the consumer’s original 

income will not in general coincide with that assumed in the Hicksian compensating variation calculation in which 

the transfer would have been made prior to consumer choice and would have influenced that choice.  Since at the 

time the corrective transfer is being considered, the consumer is in the “as is” situation, this transfer is 

denominated in “as is” monetary units.  Then, the transfer that “makes whole the consumer with choice k in the 

baseline scenario” equals the difference in the utilities (21) that would have been attained in the “but for” and 

“as is” scenarios, scaled to “as is” monetary units, the MCE (25). 

Suppose the purpose of a prospective policy analysis is not to actually fulfill the HCV or HEV transfers associated 

with a move from scenario a to scenario b, but simply to determine whether it is possible in principle to 

compensate consumers so that the move from scenario a to scenario b would be a Pareto improvement.  Then, 

arguably, aggregate MCE rather than aggregate HCV or HEV is the appropriate welfare criterion.   Further, MCE is 

easier to compute and aggregate than HCV or HEV, since it is obtained as an explicit solution (25) from the indirect 

utility functions (21) of individual consumers, and the distribution of these solutions in the target population.  

Equation (27) shows that HCV, HEV, and MCE differ only due to differences in the marginal utility of income at 

different arguments.  Later, we show in examples that these differences are often but not always modest.  Then, 

                                                           

18 Retrospective policy analysis is often conducted in conjunction with litigation, and statues and legal rulings often control 
the definition of harm and the scope and magnitude of remedies.  These legal standards are often rooted in economic 
arguments, but may nevertheless deviate from a purely economic analysis of harm and remedy.  In this paper, we consider 
only the economic foundation of retrospective analysis, and do not take up legal considerations. 
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the distinction between prospective and retrospective welfare measures often will be empirically unimportant, 

but occasionally will be of practical as well as theoretical significance. 

The distinction we have made between prospective and retrospective welfare analysis does not require explicit 

consumer dynamics, but a MCE transfer to redress past harm obviously occurs at some time later than the period 

of the harm, introducing issues such as discounting and pre-judgement interest, but more fundamentally the 

longer-run impacts of injury on consumer assets and opportunities.   We leave this as a topic for future research, 

but note that in a fully dynamic model, the impact of policy on state variables justifies scaling MCE in monetary 

units that make the consumer whole in terms of lifetime well-being. 19 

 

5. PARTIAL OBSERVABILITY AND WELFARE AGGREGATES    

 Traditional welfare analysis assumes that the individual utility functions required to calculate measures of 

well-being can be recovered fully (with money-metric scaling) from observations on this consumer’s market 

choices.  This is unrealistic, first because the analyst typically has observations on a consumer’s choices in only a 

small number of market environments, often only one, and because markets are observed only over a limited 

range of conditions.  For example, variations in historical product prices are limited by production costs and 

competition between products, and the dimensionality of possible product attributes is high, with only a limited 

range of bundles of attributes appearing in historically available products.  However, different consumers 

generally face somewhat different observed market environments, and if one can maintain the consumer 

sovereignty assumption that consumer tastes are predetermined at the time of market choice, and assume 

plausibly that given s there is no ecological correlation of market environments and tastes, then observations 

across consumers can be used to estimate the distribution of tastes in the population.  Further, in many 

applications it is reasonable to assume that consumers value products using hedonic effective prices that adjust 

market price for the attributes of the product; then the analysis can recover distributions of hedonic weights.  This 

                                                           

19 Technically, retrospective welfare analysis should be conducted with a multi-period consumer model, with redress in 
the second period from harm in the first period.  If the consumer has intertemporarly separable utility, then the ideal MCE 
measure satisfies V1b(I1) + V2(I2 – MCE) = V1a(I1) + V2(I2), where V1 and V2 are indirect utilities for the respective periods, and 
non-income arguments in indirect utility are suppressed.  Applying the first mean value theorem for integrals, MCE = [V1b(I2) 
– V1a(I1)]/μ2, where μ2 is a marginal utility of income in the second period.  But the consumer will allocate income between 
periods to equate marginal utilities of income (without accounting for MCE), so that μ2 will to a first approximation equal 
μ(Ia,β,σ).  Consequently, the MCE defined in (25) approximates the two-period ideal.  Further analysis of intertemporal utility 
to sharpen the definition of MCE is left to the reader. 
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will often be sufficient to infer the distribution of consumer utilities for new or modified products even if their 

attribute bundles are novel.   

 A more challenging recovery problem arises when markets are incomplete, due to transaction costs, 

asymmetric information that causes market failure through adverse selection and moral hazard, or failure to 

establish ownership and control of the distribution of some goods and services.  For example, consumers cannot 

insure against some kinds of events, cannot directly purchase environmental amenities such as clean air and 

unpolluted beaches, and lack market opportunities that show their tastes for “existence goods” such as protecting 

endangered species or reducing global warming.  If there is sufficient market redundancy, or if there are active 

margins where unmarketed and marketed goods are complements or substitutes, then it may be possible to 

recover indirectly preferences for unmarketed goods.  For example, consumer preferences for environmental 

amenities are reflected in their willingness to travel to unpolluted beaches or move to neighborhoods with cleaner 

air.  However, when preferences for unmarketed goods and services leave no market trace, they obviously cannot 

be recovered from market data.  Experimental methods for directly eliciting stated preferences for these goods in 

hypothetical markets are successful in some marketing contexts, but sensitivity to context and framing can make 

experimental data unreliable; see Ben Akiva et al (2016), McFadden (2017), Miller et al. (2011).  For the remainder 

of this section, we assume that there is sufficient market information to recover distributions of preferences in 

the population, and study the construction of aggregate measures of welfare.  These aggregates may be sufficient 

for policy decisions, or sufficient to determine transfers that are judged appropriate to remedy harm to a class of 

consumers even if the compensation is not exact for each individual. 

 When a welfare analysis seeks to fulfill the transfers HCV, HEV, or MCE that in retrospective or prospective 

applications leave a class of consumers indifferent to the policy change, an obvious limitation is that an actual 

transfer to a consumer can be a function only of observed characteristics.  It is common in applied welfare analysis 

to estimate welfare effects by postulating a representative consumer whose demands are close to the per capita 

market demands of a consumer class, calculating the transfer that keeps “representative” utility constant, and 

assuming that this per capita transfer could in principle be redistributed to keep the utility of each consumer in 

the class constant.  A necessary and sufficient condition for the existence of a representative consumer meeting 

these conditions exactly is that the utilities of individuals in the class be representable in Gorman Polar Form with 

possibly heterogeneous committed expenditures but a common price deflator; see Chipman and Moore (1990), 

McFadden (2004).  In (21), this requires that the X functions be independent of income, so that discrete choices 

will exhibit no neoclassical income effect and HCV, HEV, and MCE coincide.  In practical fulfillment of compensating 

transfers, the policymaker faces a decision-theory problem in which there will be social losses from under or over-
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compensation of individuals, and some (Bayesian) criterion must be applied to determine a loss-minimizing 

transfer rule.  For example, if the policymaker has a quadratic social loss function, and a diffuse Bayesian prior, 

the optimal transfer to an individual equals the expected compensating transfer given observed characteristics.  

This suggests two rules in the case of partial observability.  First, if transfers are fulfilled, prospectively or 

retrospectively, then they should equal the expected value of the exact compensating transfer given available 

information on the individual.  Second, the impact of a policy change on a class of consumers in either prospective 

or retrospective applications should equal the expected value of the exact aggregate compensating transfers, with 

the appropriate compensating transfers determined by whether or not the transfers are hypothetical or fulfilled, 

and if the latter, whether this occurs before or after preference-maximizing choices in each scenario.   

 Relevant aggregates defined in Section 3 are the expected values UMCE(s,k) = 𝐄𝐄β,σ,𝛆𝛆|s,kMCE(𝑠𝑠, k, β, σ, 𝛆𝛆) and 

UMCE(s) = 𝐄𝐄k,β,σ,𝛆𝛆|sMCE(𝑠𝑠, k, β, σ, 𝛆𝛆), or uniform Hicksian measures such as UHCV(𝑠𝑠, k) and UHCV(𝑠𝑠).  Section 3 

describes a computational approach to forming the relevant aggregates using a synthetic population; this 

approach can accommodate any assumptions the analyst chooses on the properties of ε and the observed 

histories on which the welfare measures are conditioned.  However, in selected cases, it is possible to reduce 

computation by forming analytic expectations with respect to ε.  In the remainder of this section, we do this for 

the case where the scenario a choice is not observed, and three cases where this choice is observed:  (A) 

psychometric noise is independent across the two scenarios, even for “brands” whose prices and attributes do 

not change; (B) components of ε across scenarios are independent for “brands” with changing attributes and 

prices, but are the same for  benchmark “brands” whose attributes and prices do not change; and (C) all “brands” 

are present in both scenarios a and b, and εja = εjb for j ∈ Ja = Jb.   

Consider the unconditional indirect utility function (23).  Appendix A(b) shows that its expectation with respect 

to (β,σ,ε), given history s, income I, and scenario m is   

(29)  Eβ,σ|s Eε max
j∈𝐉𝐉m

 [I + v(I,pjm,rm,zjm,β) + σεj] = I + Eβ,σ|s {σ ∙ ln ∑ exp�vjm(𝐼𝐼, β) σ⁄ � +  𝜎𝜎 ∙ γ0
 
j∈Jm }, 

where γ0 denotes Euler’s constant and vjm(𝐼𝐼, β)  ≡ v�𝐼𝐼, 𝑝𝑝jm, 𝐫𝐫m, 𝑧𝑧jm, β�.  Scaling and differencing for m = b,a, 

(30)     UMCE(s) ≡ 𝐄𝐄k,β,σ,𝛆𝛆|sMCE(𝑠𝑠, k, β, σ, 𝛆𝛆) = 𝐄𝐄β,σ|𝑠𝑠[Ib – Ia +  σ ∙ ln
∑ exp�vjb(𝐼𝐼b,β) σ⁄ � 

j∈Jb
∑ exp�vja(𝐼𝐼a,β) σ⁄ � 

j∈Ja
]/μ(Ia,β,σ) ,  

where the mean scaling factor μ(Ia,β,σ) is a weighted harmonic mean of the marginal utilities of income (26), with 

the MNL choice probabilities from (22) as weights, and depends on σ through these weights, 
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(31)       1
µ(𝐼𝐼a,β,σ)

≡  𝐄𝐄k|,β,σ
1

µk(𝐼𝐼a,β)
=  ∑ 𝐿𝐿km(𝐼𝐼a,β,σ)

µk(𝐼𝐼a,β)k∈Ja   . 

 A Hicksian analogue of (30) is obtained by forming the expectation of (24) and solving 

(32)       0 = 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − UHCV(𝑠𝑠) −  𝐼𝐼a + σ ∙ ln
∑ exp�vjb(𝐼𝐼b−UHCV(𝑠𝑠),β) σ⁄ � 

j∈Jb
∑ exp�vja(𝐼𝐼a,β) σ⁄ � 

j∈Ja
] . 

A formula for UHEV(s) is more complicated.  If scenario a optimal choices before and after the income transfer 

change due to income effects, then (29) is replaced by a complex expression from Appendix A(e).  However, if the 

marginal utility of income μk(Ia,β) from (26) is independent of Ia and k remains the optimal choice after the transfer, 

then from (27), UHEV(s) = UMCE(s).  Of course, if discrete choice exhibits no income effects, then the definitions 

above satisfy UMCE(s) = UHCV(s) = UHEV(s). 

 Next consider situations in which choice of alternative k in scenario a is observed, δk(𝐼𝐼a) = 1.  We consider 

the three cases (A), (B), and (C) defined above. 

(A) Suppose psychometric noise is independent across the two scenarios for all alternatives, including 

alternatives whose prices and attributes do not change (e.g., the “no purchase” alternative).  This supposition is 

appropriate if this noise is whimsy that is memoryless and transient, and arises anew every time a choice is made, 

so there is no carryover from one choice scenario to the next.  From Appendix A(b), expected utility given the 

utility-maximizing choice k is the same as (29) when m = a and I = Ia.  Further, independence implies that (29) will 

also apply when m = b and I = Ib.   Then, (32) with conditioning on k added continues to hold in case (A), with a 

solution defining a uniform transfer UHCV(s,k) for each k.  Further, (30) is altered only by substituting the choice-

k specific scale factor (26), giving 

(33)      UMCE(s,k) = 𝐄𝐄β,σ|𝑠𝑠,k[Ib – Ia +  σ ∙ ln
∑ exp�vjb(𝐼𝐼b,β) σ⁄ � 

j∈Jb
∑ exp�vja(𝐼𝐼a,β) σ⁄ � 

j∈Ja
]/μk(Ia,β) . 

Note that (30) is the expectation of (33) with respect to the MNL probability 𝐿𝐿km(𝐼𝐼a, β, σ).  While the formula (33) 

depends on k only due to the scale factor, its expectation conditioned on choice k in a population with 

heterogeneous observed environments will in general vary substantially with k due to selection on the 

environments that yield this choice.   

 (B) Suppose the alternatives in Ja∪Jb can be partitioned into a set A of alternatives with indices that appear 

only in Ja; a set B of alternatives that appear only in Jb; and a set C of “benchmark” alternatives appearing in both 
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scenarios that satisfy vja(Ia,β) = vjb(Ib,β) for j ∈ C; this requires that their attributes and prices not change, and if 

these vjm depend on income, that Ia = Ib.  This setup is appropriate when the psychometric noise εj for product j is 

a durable unobserved attribute of this product, but the “brand” is reindexed and evaluated anew with a 

statistically independent draw of psychometric noise when the scenario change leads to changes in its attributes 

or price.  As a result of this assumption, the vjm(I,β) ≡ vj(I,β) for j ∈ A∪B∪C do not depend on the scenario m. 

Utilizing the conditional expectation formulas in Appendix A(c),  

(34)        UMCE(s,k) = 𝐄𝐄β,σ|𝑠𝑠,k �𝐼𝐼b − 𝐼𝐼a + max
j∈B∪C

�vj(𝐼𝐼b, β) +  σεj� −  (vk(𝐼𝐼a, β) +  σεk)� /μk(𝐼𝐼a, β) 

                = 𝐄𝐄β,σ|𝑠𝑠,k
1

µk(𝐼𝐼a,β)
�𝐼𝐼b − 𝐼𝐼a + 𝜎𝜎 ∙ ln �

∑ exp�vj(𝐼𝐼b,β)/𝜎𝜎�j∈B∪C
∑ exp�vj(𝐼𝐼a,β)/𝜎𝜎�j∈A∪C

�� + �
𝐄𝐄β,σ|𝑠𝑠,k

𝐿𝐿(C|A,C)
𝐿𝐿(A|A,C)

 𝜎𝜎∙ln (1−𝐿𝐿(A|A,B,C))
µk(𝐼𝐼a,β)

if k ∈ A
  

−𝐄𝐄β,σ|𝑠𝑠,k
𝜎𝜎∙ln (1−𝐿𝐿(A|A,B,C))

µk(𝐼𝐼a,β)
           if k ∈ C

  , 

where L(A|A,B,C) = 
∑ 𝑒𝑒vj�𝐼𝐼b,β�/𝜎𝜎

j∈A

∑ 𝑒𝑒vj(𝐼𝐼a,β)/𝜎𝜎
j∈A∪B∪C

 and L(C|A,C) = 
∑ 𝑒𝑒vj�𝐼𝐼b,β�/𝜎𝜎

j∈C

∑ 𝑒𝑒vj(𝐼𝐼a,β)/𝜎𝜎
j∈A∪C

.  

The left-hand expectation term in the last line of (34) coincides with the expression (33) for UMCE(s,k) when 

the psychometric noise in scenario b is independent of the psychometric noise in scenario a.  The right-hand 

expectation term is an adjustment for the effect of the conditioning event on the expected maximum utility from 

B∪C, downward if k ∈ A and upward if k ∈ C.   This expectation incorporates the effects of selection, which can be 

powerful if σ is large:  Many choices from A will come from favorable draws of psychometric noise even when 

observed attributes make these alternatives unattractive.  Then, regression to the mean in draws of psychometric 

noise will tend to make alternatives in B less desirable than their analogues in A even if they are objectively better.  

In contrast, when the analogues in B of alternatives in A objectively improve, choices from C that result from a 

favorable draw will lead to an even better expected outcome in scenario b since alternatives with this draw remain 

available.  If the scale factors μk(Ia,β) vary with k, then the interaction of selection and income effects no longer 

gives the result that (30) with scale factor (31) equals the expectation of (34) with respect to k.  For example, if 

alternatives in A have μk(Ia,β) > 1, and alternatives in C have μk(Ia,β) = 1, then the expectation of (34) with respect 

to k exceeds MCE(s) from (30).  Equation (34) can also be adapted to calculate UHCV(s,k) for this case:  Reduce 

income Ib in scenario b by UHCV(s,k), with this quantity adjusted to that (34) equals zero. 

 (C) Suppose Ja = Jb = J = {0,…,J}, δk(𝐼𝐼a) = 1, and εa = εb = ε, so that all alternatives are indexed the same and 

have the same psychometric noise in both scenarios.   It is possible to obtain analytic formulas for MCE(s,k) under 
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quite general conditions in which the differences vjb(𝐼𝐼b
∗, β) – vja(𝐼𝐼a

∗, β), evaluated at income levels that may differ 

from Ia or Ib respectively due to transfers, vary across multiple alternatives.  Appendix A(e) provides formulas that 

can be assembled to program this calculation, but these are too complex to be useful for comparison to the 

previous cases.  We instead consider the special circumstance in which Ia = Ib = I and the scenario affects only 

product J, so vjm(I,β) is independent of m for j < J.  For this case, Appendix A(d) implies the following results: 

If k = J, then 

(35)      UMCE(s,J) = 𝐄𝐄β,σ|𝑠𝑠,J
1

µJ(𝐼𝐼,β)
�

 vJb(𝐼𝐼, β) − vJa(𝐼𝐼, β)      if vJb(𝐼𝐼, β) > vJa(𝐼𝐼, β)
  

σ

𝐿𝐿Ja
∙ ln

∑ evjb(𝐼𝐼,β)/𝜎𝜎
j∈J

∑ evja(𝐼𝐼,β)/𝜎𝜎
j∈J

              if vJb(𝐼𝐼, β) < vJa(𝐼𝐼, β)
   , 

while If k < J,  

(36) UMCE(s,k) = 𝐄𝐄β,σ|𝑠𝑠,k
1

µk(𝐼𝐼,β)
�

− 𝐿𝐿Ja

𝐿𝐿ka
(vJb(𝐼𝐼, β) − vJa(𝐼𝐼, β)) + σ

𝐿𝐿ka
∙ ln

∑ evjb(𝐼𝐼,β)/𝜎𝜎
j∈J

∑ evja(𝐼𝐼,β)/𝜎𝜎
j∈J

  if vJb(𝐼𝐼, β) > vJa(𝐼𝐼, β)
  

0                                         if vJb(𝐼𝐼, β) < vJa(𝐼𝐼, β)
  , 

where Lka = evka(𝐼𝐼,β)/𝜎𝜎 ∑ evja(𝐼𝐼,β)/𝜎𝜎
j∈J� .  As in case (B), this formula can be adapted to solve for the transfer 

UHCV(s,k) that when fulfilled makes a subsequent UMCE zero, while computation of UHEV(s,k) is in general more 

complicated. 

We consider an example where due to a fixing agreement the price of a single product, say a tablet computer,  

is higher in scenario a than in scenario b.  For the alternative configurations of Ja, Jb, εa, and εb, we estimate in 

Table 2 the measures  𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kMCE(s,k,β,σ,ε), 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kHCV(s,k,β,σ,ε), and  𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kHEV(s,k,β,σ,ε) in a synthetic 

population, and the measure UMCE(s,k).  Suppose the product J = 1 has price p1m in scenario m.  Suppose the “no 

purchase” alternative has p0m = 0.  Suppose consumers have utilities of the form (21) with v1m(I, β) = β1I + β2 – p1m 

for alternatives where the product is purchased, and v0m(I, β) = 0 for “no purchase” alternative, for scenarios m 

= a,b.  Then μ0(Ia,β) = 1 and μ1(Ia,β) =  1 + β1.  The psychometric noise cases we consider are (A) independent noise 

across scenarios, represented by Ja = (0,1} and Jb = {2,3}, with j = 0,2 corresponding to “no purchase” and j = 1,3 

corresponding to “purchase”; (B) Ja = {0,1} and Jb = {0,3}, with j = 0 corresponding to a common “no purchase” 

and j = 1,3 corresponding to “purchase”; and (C) Ja = Jb = {0,1}, with j = 0 corresponding to a common “no 

purchase” and j = 1 to a common purchase.  Suppose that β1 = 0.002 and σ = 9 are fixed parameters, and that β2 

is normal with mean zero and standard deviation 60.  The choice probabilities are then mixed logit, with P0m(I) = 

𝐄𝐄β  1
1+exp (vjm (𝐼𝐼,β)/σ)

  for non-purchase of the product j in scenario m.  Suppose the consumer faces p1a = $110 
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and p1b = $90, and the base income is I = $50,000.  The probabilities of buying the product in a synthetic 

population of 10,000 are P1a(50000) = 0.430, P1b(50000) = 0.555, and P1a(56000) = 0.505.  These probabilities 

imply an arc income elasticity of 1.45 and an arc price elasticity of -1.59 for the given market changes.  The table 

shows first that for this example, 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,𝑠𝑠,k,MCE(s,k,β,σ,ε), 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,𝑠𝑠,k,HCV(s,k,β,σ,ε), and 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kHEV(s,k,β,σ,ε) 

estimated in the synthetic population are almost the same.  This result is consistent with the conclusion of Willig 

(1976) that income effects are typically small.  The value of UMCE using an analytic expectation with respect to 

ε differs modestly from the synthetic population estimate of 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,𝑠𝑠,k,MCE(s,k,β,σ,ε), but the difference is well 

within sampling error.  The Marshallian consumer surplus, estimated here using the trapezoid rule, is nearly 

identical to UMCE.    

The example suggests that UMCE will be an adequate approximation when 𝐄𝐄β,σ,𝛆𝛆|𝑠𝑠,kaHCV(s,k,β,σ,ε) is the 

ideal measure.  However, the closeness of UMCE and expected HCV is sensitive to the magnitude of the change 

in price in the two scenarios, and larger changes can lead to a gap between these measures.  In short, when 

UMCE is used as an approximation to expected HCV, it is desirable to use synthetic population methods with 

large samples to check the quality of the approximation. 

Table 2.  Comparisons of Welfare Measures ($pp) 

 Case A Case B Case C 𝛔𝛔 = 0 
Total Population     
    Marshallian consumer surplus  9.819 9.799  9.781 9.854 
    UMCE (analytic E𝛆𝛆) 9.848 9.858 9.802 9.840 
    MCE (synthetic population) 9.886 9.806 9.755 9.840 
    HCV (synthetic population) 9.883 9.803 9.753 9.837 
    HEV (synthetic population) 9.886 9.806 NC 9.840 
Class of Product Purchasers     
    UMCE (analytic E𝛆𝛆) 18.568 18.283 19.960 19.960 
    MCE (synthetic population) 18.609 18.368 19.960 19.960 
    HCV (synthetic population) 18.610 18.368 19.960 19.960 
    HEV (synthetic population) 18.609 18.368 NC 19.960 
Class of Non-Purchasers     
    UMCE (analytic E𝛆𝛆) 3.305 3.535 2.180 2.240 
    MCE (synthetic population) 3.340 3.382 2.097 2.240 
    HCV (synthetic population) 3.335 3.375 2.093 2.235 
    HEV (synthetic population) 3.340 3.382 NC 2.240 

 

There is variation in the welfare measures when one moves from Case A with independent disturbances to 

Case C with common disturbances.  In particular, Cases A and B attribute less welfare gain to purchasers and 
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more welfare gain to non-purchasers than does Case C and a σ = 0 case with no psychometric noise.  Then, the 

assumptions made on the persistence of psychometric errors across scenarios makes some difference.   

 

Table 3.  Effect of Psychometric Noise on Distribution of Welfare Changes ($pp) 

 Case A Case B Case C 
UMCE  

at 
Buyers Non-

buyers 
Total Buyers Non-

buyers 
Total Buyers Non-

buyers 
Total 

σ = 0 19.960 2.240 9.840 19.960 2.240 9.840 19.960 2.240 9.840 
σ = 9 18.568 3.305 9.848 18.283 3.535 9.858 19.960 2.180 9.802 
σ = 36 13.641 6.943 9.895 5.046 14.057 10.086 19.960 1.683 9.737 
σ = 64 11.687 8.463 9.927 -9.086 25.560 10.370 19.960 1.224 9.734 

 

 Table 3 continues the example with different scale factors σ, and shows that at high levels of σ relative to the 

observed changes in the scenarios, the effects of selection on psychometric noise can drastically alter the 

distribution of welfare gains between purchasers and non-purchasers.  We infer from this table that unless there 

is compelling evidence to support the case (B) assumptions, they should be rejected in favor of case (A) or case 

(C) assumptions that more closely approximate a model in which neoclassical tastes, heterogeneous across 

consumers but durable within each consumer, describe choice behavior without significant added psychometric 

noise.  Finally, there is a substantial advantage in simplicity for the analytic expectations coming out of the case 

(A) compared to case (C), suggesting that case (C) be used only if there is persuasive evidence for durable 

psychometric noise.   

 

6.  DECISION-UTILITY VERSUS EXPERIENCED-UTILITY 

 Decision-utility is defined as the objective function that the neoclassical consumer optimizes in making her 

market choices, the function that can be recovered (with money-metric scaling) from sufficiently rich observations 

on these market choices.  The foundations of welfare theory restated in Section 2 assume that decision-utility is 

a direct and complete measure of well-being.  In reality, anticipated decision-utility and realized experienced-

utility can differ.  The most straightforward case, covered by neoclassical theory, is decision-making under 

uncertainty where the decision utility function equals the expectation over objective probabilities of a utility 

function of outcomes, and the experienced utility function equals this utility function evaluated at the realized 

outcome.  For example, consumers may be uncertain about attributes of alternatives such as product durability, 
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so that buying a product is equivalent to buying a lottery ticket on its attributes.  Under von Neumann-

Morgenstern assumptions on utility, sufficiently rich market observations on choice among risky prospects will 

suffice to recover the utility function of outcomes.   

 Beyond neoclassical decision-making under uncertainty, there are a number of factors that can cause gaps 

between decision-utility and experienced-utility:  (1) misperceptions of shrouded, ambiguous, or misleadingly 

promoted product attributes, (2) unrealistic personal probability judgements on uncertain events, (3) whims and 

psychometric noise that induce instabilities in tastes, (4) factors that influence the sensation of well-being but do 

not influence market choices, such as provision of pure public goods and services, (5) inconsistencies in 

preferences, such as time-inconsistent discounting and unanticipated habit-formation or addiction, and (6) flaws 

in the process of utility maximization, such as reference point bias and hypersensitivity to recent experience. 

 When there are gaps between decision-utility and experienced-utility, which should be used to measure 

well-being?  Roughly, welfare measures based on decision-utility focus on equity in opportunity, while those based 

on experienced-utility focus on equity in outcomes.  It may seem evident that consumer perceptions and decision-

making in markets are simply instruments to achieve final outcomes, so experienced utility should be at the core 

of welfare assessment.  However, there are complicating factors.  First, when consumers are fully and accurately 

informed about the prospects and contingencies they face, and there are sufficient contingent markets so that 

they can insure against risks if they choose, then they have it in their own hands to make informed choices and 

live with the consequences of these choices.  Further, interventions based on experienced utility can introduce 

“moral hazard” in which the anticipation of ex post remedies for bad outcomes leads consumers to take excess 

risks and be less diligent in their decisions, particularly by failing to take steps to avoid or mitigate harm.  Then, 

for fully informed consumers facing complete contingent markets, policies should arguably be evaluated in terms 

of decision-utilities.  However, when consumers are poorly informed or lack opportunities to manage risks, ex 

post equity is a social concern, and/or consumers are unable to look after their own interests, interventions by a 

benevolently paternalistic regulator based on experienced utility may be appropriate.  In general, it will be 

important to know how perceptions, decision utility, and experienced utility are linked.  Misperceptions of 

attributes, biased personal probabilities, and instabilities in tastes arising from psychometric noise, listed above 

as sources (1)-(3) of gaps between perception and experience, do not substantially alter the neoclassical 

preference structure, and can in principle be accounted for starting from decision utility and correcting these 

factors.  For example, it should be straightforward in principle to correct consumer misperceptions arising from 

supplier misrepresentation of product attributes.  In practice, identification and recovery of personal perceptions 

and probabilities may overburden market data and require extra-market experimental observations.  Other 
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elements entering experienced utility such as sources (4)-(6) of gaps between perceptions and experience, 

particularly factors that leave no trace in market choices, can confound choice behavior so that there may be no 

identifiable decision-utility or linked experienced utility that capture consumer well-being.  Then recovery of 

experienced-utility will often be beyond the capacity of economists using customary market-based techniques.  

Ben-Akiva, McFadden, and Train (2016) discuss experimental methods for direct elicitation of preference that can 

be used in principle to address these identification and recovery tasks.  These are widely used in market research 

to forecast demand for new products and the value of extra-market resources, with varying degrees of reliability; 

see McFadden (2017).  The focus of this paper is welfare analysis using market observations, and we will not here 

consider further experimental, cognitive, or neurological approaches to direct measurement of well-being. 

An additional issue in welfare assessment arises when the impacts of real product defects are confounded by 

flaws in perception.  For example, a homeowner in a neighborhood stigmatized by an environmental hazard 

coming from improper disposal of industrial waste is harmed by a reduced market value when refinancing, and 

this harm is compounded if misperceptions exaggerate the environmental hazard.  Thus, a consumer may incur 

real harm from misperceptions of others, whether or not this consumer has accurate perceptions.  What 

components of harm in this case are a compensable liability of the polluter is a question of the applicable law.   

To facilitate analysis of the consequences of gaps between anticipation and experience, let superscript “d” 

denote decision utility and superscript “e” denote experienced utility.  From (21), choice in scenario m at income 

I then maximizes vjm
d �𝐼𝐼, βd�  +  σdεjm

d ; let δjm(I, βd, σd, 𝛆𝛆d) denote an indicator for this choice, and Pjm(I, βd, σd) the 

probability of this choice given βd,σd.  Let vjm
e (𝐼𝐼, βe) + σeεjm

e  denote the experienced utility obtained from choice 

j.  The application will determine the structure of  vjm
e (𝐼𝐼, βe) and its linkage to vjm

d �𝐼𝐼, βd�, and the mappings from 

(βd,σd) to (βe,σe) and from εd to εe.20  The decision utility and experienced utility from a choice situation with 

income I are, in this notation, 

(37)      um
d �𝐼𝐼, βd, σd� = 𝐼𝐼 +  max

j=0,…,Jm
�vjm

d �𝐼𝐼, βd� + σdεjm
d �     

and 

                                                           

20 One case which is straightforward occurs when vjm
d (𝐼𝐼) and vjm

e (𝐼𝐼) differ only because of differences in observed 
anticipated and experienced product attributes, 𝑧𝑧jm

d  and 𝑧𝑧jm
e , due to say false advertising of attributes, and βd = βe, σd = σe, 

and εm
d =  εm

e .  Cases that are more challenging for economic analysis occur when either anticipated or experienced 
attributes are unobserved, or ve and vd differ due to optimization errors and volatility in tastes.  In such cases, the analyst 
will often have no recourse other than using extra-market observations such as experimental elicitation of stated 
preferences, with attendant questions of reliability. 
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(38)    um
e �𝐼𝐼, βe, σe, βd, σd� =  𝐼𝐼 + ∑ δjm(𝐼𝐼, βd, σd, 𝛆𝛆d)�vjm

e (𝐼𝐼, βe) + σeεjm
e �Jm

j=0  

                                ≡ um
d �𝐼𝐼, βd, σd� +  ∑ δjm�𝐼𝐼, βd, σd, 𝛆𝛆d��vjm

e (𝐼𝐼, βe) − vjm
d �𝐼𝐼, βd� + σdεjm

d − σeεjm
e �Jm

j=0 , 

where experienced utility in the last expression equals anticipated utility plus a correction that comes from 

differences in anticipated and realized attributes and tastes plus a correction that comes from differences in 

anticipated and realized psychometric noise.  Combined with (25) defining decision-utility MCEd, (38) implies the 

experienced-utility welfare measure, given (βd,σd), (βe,σe), 𝛆𝛆m
d  and 𝛆𝛆m

d  for m = a,b, and δka(𝐼𝐼, βd, σd, 𝛆𝛆d) = 1, 

(39)   μk(𝐼𝐼a, β) ∙ MCEe(𝑠𝑠, k, βe, σe, 𝛆𝛆𝟏𝟏
𝐞𝐞, 𝛆𝛆𝟏𝟏

𝐞𝐞 , βd, σd, 𝛆𝛆𝟏𝟏
d, 𝛆𝛆b

d) = μk(𝐼𝐼a, β) ∙ MCEd(𝑠𝑠, k, βd, σd, 𝛆𝛆𝟏𝟏
d, 𝛆𝛆b

d)        

                        + vkb
e (𝐼𝐼b, βe) − vkb

d �𝐼𝐼b, βd� + σeεkb
e  − σdεkb

d −  vka
e (𝐼𝐼a, βe) + vka

d �𝐼𝐼a, βd� − σeεka
e + σdεka

d  , 

and when σdεjm
d = σeεjm

e  for m = a,b,  

(40)   μk(𝐼𝐼a, β) ∙ MCEe(𝑠𝑠, k, βe, σe, 𝛆𝛆𝟏𝟏
𝐞𝐞, 𝛆𝛆𝟏𝟏

𝐞𝐞 , βd, σd, 𝛆𝛆𝟏𝟏
d, 𝛆𝛆b

d) = μk(𝐼𝐼a, β) ∙ MCEd(𝑠𝑠, k, βd, σd, 𝛆𝛆𝟏𝟏
d, 𝛆𝛆b

d) 

                                                       + vkb
e (𝐼𝐼b, βe) − vkb

d �𝐼𝐼b, βd� −  vka
e (𝐼𝐼a, βe) + vka

d �𝐼𝐼a, βd� . 

In general, economists should be very cautious in applying the traditional welfare calculus when behavioral 

factors are needed in decision-utility to explain behavior; as transfers that restore decision utility levels can have 

unreliable and unintended effects on experienced well-being.  If anticipated tastes are an unreliable guide to 

realized tastes, this is a challenge to the foundations of welfare economics; see Lowenstein and Ubel (2008), Thaler 

and Sunstein (2003,2008), McFadden (2014), Train (2015).  There is currently no accepted general welfare theory 

for non-neoclassical consumers who have shifts between anticipated and realized tastes, even though the random 

decision-utility setup itself can accommodate many non-neoclassical elements. However, there may be some 

special circumstances and assumptions that overcome this limitation.  For example, differences in “as is” or “but 

for” (𝑧𝑧jm
d , 𝑝𝑝jm

d ) and (𝑧𝑧jm
e , 𝑝𝑝jm

e ) may be limited to identifiable misperceptions such as misinformation about product 

attributes, and the joint distribution of anticipated and realized tastes may by assumption be generated through 

limited differences such as personal misjudgments on the probabilities of contingent events or biases in risk 

preferences and time discounts used in making decisions.  If it is plausible that such limited shifts in tastes can be 

fully described and modeled using specific external evidence, then welfare analysis based on (40) may be justified.   

 An example of consumer behavior that appears to be distorted by unrealistic personal probability 

judgements is consumer choice of health insurance policies.  An argument, simplified from Heiss, McFadden, and 

Winter (2013) and McFadden and Zhou (2015), shows that misperceptions can be identified and corrected in some 

cases.  Suppose consumers face stochastic medical expenses c, and have the subjective perception that these have 
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a distribution Kd(c) with a mean μd and variance sd
2.  Suppose they have a menu of insurance alternatives j = 0,…,J 

with plan j characterized by a premium pj and a copayment rate rj, with p0 = 0 and r0 = 1.  Suppose their decision-

utility is a money-metric transformation of a constant-absolute-risk-aversion (CARA) expected utility function, 

(41)      uj =  −1
β

ln ∫ exp �−β�𝐼𝐼 − 𝑝𝑝j − rj𝑐𝑐�� Kd(d𝑐𝑐) +  𝜎𝜎εj 
+∞

c=0  ≡ I – pj – κd(βrj)/β + 𝜎𝜎εj, 

where I is income, κd is the cumulant generating function of Kd, β is a risk-aversion parameter with a probability 

distribution in the population, and the parameter σ scales psychometric noise εj.  Replacing the cumulant 

generating function κd in (38) with a quadratic approximation gives a utility uj = I – pj – μdrj – ½sd
2βrj

2 + 𝜎𝜎εj of the 

form (21).  Suppose (ln β,ln σ) is distributed bivariate normal, and the psychometric noise is i.i.d. EV1.  Then 

observations on consumer insurance choices in real or experimental markets allows estimation of the parameters 

of the bivariate normal distribution, and μd, and sd
2.   Observations on objective probabilities Ke(c) for health 

expenses allow estimation of μe and se
2.  Then specialization of (40) using (41) and the quadratic approximations 

to the cumulant generating functions κd and κe  allow estimation of the money-metric loss in consumer utility 

arising from poor choices due to misperception of medical expense risk. 

 An open question about measurement of well-being of consumers who have behavioral elements in their 

decision-making and a gap between decision-utility and experienced-utility is whether experienced utility could 

be elicited directly in conjoint analysis experiments, either through experiments used to uncover the components 

of experienced utility, or through conjoint elicitation methods such as elicitation of stated personal probabilities.  

Established experimental designs for such elicitations are not available now, and there are major scientific 

challenges to their development, particularly known biases in personal probability judgements and the problem 

of verification, but there will be high payoffs to future scientific breakthroughs in these areas. 

 

7. WELFARE CALCULUS FOR COMMON POLICY PROBLEMS 

Suppose mixed MNL choice probabilities of the form (22), along with the associated parameter α of a 

population distribution of taste parameters F(β,σ|α) and a money-metric utility of the form (21), have been 

estimated from choice data collected in real or hypothetical markets.  Using these estimates, prospective benefit-

cost analysis using decision utility can be carried out by solving (24) or evaluating (25) for each consumer in a 

synthetic population defined by draws of s , parameters (β,σ) from F(β,σ|s,α), and psychometric noise εa and εb.  

The measures such as HCV, HEV, or MCE can then be averaged over the synthetic consumers falling into classes 
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defined by restrictions on s, with the law of large numbers operating to ensure reliable estimates of the net 

transfer to the class that when optimally distributed leaves its members indifferent to the policy change.  

Alternately, one can concentrate on estimating a UMCE measure (30) for this class.  To simplify notation, suppress 

the “d” superscript for decision utility.  Let C denote the set of alternatives whose attributes are unchanged by a 

shift from policy a to policy b.  By construction, C is a proper subset of Ja and Jb which contain alternatives whose 

attributes do not change, and C always contains at least j = 0.  Then (30) can be rewritten as  

(42)        UMCE(s) ≡ 𝐄𝐄β,σ|𝑠𝑠 �𝐼𝐼b − 𝐼𝐼a +  σ ∙ ln  𝐿𝐿𝐂𝐂a(𝐼𝐼a,β,σ)
𝐿𝐿𝐂𝐂b(𝐼𝐼b,β,σ)

� /μ(𝐼𝐼a, β, σ) 

where LCm is the logit probability at random parameters (β,σ) of choice from C in scenario m.  For example, 

introducing a set B of new products with attributes included in (xb,pb), keeping unchanged the attributes of existing 

products in C, is UMCEb(s) = 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a – σ∙ln 𝐿𝐿𝐂𝐂b(𝐼𝐼b, β, σ)]/μ(𝐼𝐼a, β, σ). 

For small policy changes and Ja = Jb = J, a Taylor’s expansion of the first form of (42) in variations ∆vj ≡ 

 vjb(𝐼𝐼b, β) −  vja(𝐼𝐼a, β) ≡  ΔXjβ − Δpj , where ΔXj ≡ X(Ib – pjb,rb,zjb) – X(Ia – pja,ra,zja) and Δpj ≡ pjb – pja, gives the 

approximation, 

(43)       UMCE(s) = 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a + ∑ [𝐿𝐿ja(𝐼𝐼𝑎𝑎, β, σ)Δvj + 𝑂𝑂(�Δvj�
2/𝜎𝜎)] 

j∈𝐉𝐉 ]/μ(𝐼𝐼a, β, σ) . 

Another useful approximation, due to Doug MacNair, applies the expansion ln(1 – y) = – y + O(y2) to (42) with LBb 

= 1 – LCb and LAa = 1 – LCa the probabilities of choosing products whose attributes change, to obtain 

(44)     UMCEb(s) = 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a +  σ ∙ [𝐿𝐿𝐁𝐁b(𝐼𝐼b, β, σ)  − 𝐿𝐿𝐀𝐀a(𝐼𝐼a, β, σ)  + 𝑂𝑂((1 − 𝐿𝐿𝐂𝐂m
 )2]]/μ(𝐼𝐼a, β, σ).  

When σ and μ = μ(𝐼𝐼a, β, σ) are homogeneous in the population, (44) has a particularly simple form,  

(45)        UMCEb(s) ≈ [𝐼𝐼b−𝐼𝐼a
𝜇𝜇

+ 𝜎𝜎
µ

𝐄𝐄β|𝑠𝑠[𝐿𝐿𝐁𝐁b(𝐼𝐼b, β, σ)  − 𝐿𝐿𝐀𝐀a(𝐼𝐼a, β, σ)]], 

the income difference scaled by μ plus the difference in the (σ/μ)-scaled full population market share of 

consumers choosing the products affected by the policy change.  For example, if a set A of products is “new” in 

scenario b, and income and the attributes of the remaining products in C are unchanged, then UMCEb(s) ≈ 

 𝜎𝜎
µ

∙𝐄𝐄β|𝑠𝑠𝐿𝐿𝐀𝐀b(𝐼𝐼b, β, σ)], a scaled market share of the new products. 

Consider a policy that affects attributes and price of products, and let Xjλ = Xja + λΔXj, pjλ = pja  + λΔpj, and Iλ = 

Ia + λ(Ib – Ia) for λ ∈ [0,1] and j = 1,…,J denote a linear path that achieves this change.  Let UMCEλ denote (42) 
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evaluated at point λ on this path.  Let vjλ ≡ Xjλβ −  𝑝𝑝jλ and 𝐿𝐿jλ = evjλ/𝜎𝜎/ ∑ eviλ/𝜎𝜎
𝐢𝐢∈𝐉𝐉 .  Then ∂vjλ/∂λ = ΔXjβ – Δpj, 

and since the numerator of LCλ does not vary with λ,   

 (46)          d UMCEλ(𝑠𝑠)
dλ

= 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a +  ∑ 𝐿𝐿jλ�ΔXjβ − Δ𝑝𝑝j�]/μ(𝐼𝐼a, β, σ)J
j=1 . 

Then the incremental change in UMCE is a demand-weighted average of the changes ΔXjβ − Δ𝑝𝑝j in the systematic 

components of utility.  First, consider the common circumstance where ΔXj and Δ𝑝𝑝j do not depend on s; this will 

be the case for example for a product offered in a national market where interactions of product attributes and 

individual characteristics are not needed to explain choice behavior.  Then, (46) reduces to  

(47)        d UMCEλ(𝑠𝑠)
dλ

= 𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a + ∑ �ΔXjβ�jλ − Δ𝑝𝑝j�𝐿𝐿jλ(𝐼𝐼𝜆𝜆, β, σ)/μ(𝐼𝐼a, β, σ)J
j=1 ,  

where β�jλ =  𝐄𝐄β,σ|𝑠𝑠,αβ𝐿𝐿jλ(𝐼𝐼𝜆𝜆,β,σ)
𝐄𝐄β,σ|𝑠𝑠,αPj�𝐿𝐿jλ,β,σ�

 denotes the mean of β among consumers who choose j when the alternatives are 

characterized by (𝐗𝐗λ, 𝐩𝐩λ).  In this case, β�jλ gives WTP for attribute changes that translate directly into incremental 

compensating variation.  In the special sub-case of changes that are uniform in j, Δ𝑥𝑥j = Δ𝑥𝑥1 for j ≠ 0, β�jλ is 

independent of j and is the mean of β among all buyers.  In the special case that the relevant components of β are 

homogeneous, then β�jλ = β in the corresponding components, and these coefficients are unequivocal measures 

of “part-worths”.  More generally, obtaining β�jλ is a calculation that requires estimates of both F(β,σ|s,α) and 

𝐿𝐿jλ(𝐼𝐼𝜆𝜆, β, σ).   

Second, when the relevant components of β are homogeneous, but Δ𝑥𝑥j and Δ𝑝𝑝j are heterogeneous over s, (46) 

reduces to  

(48)          d UMCEλ(𝑠𝑠)
dλ

= 𝐄𝐄β,σ|𝑠𝑠 �𝐼𝐼b − 𝐼𝐼a + �ΔXȷ������
λ

∙ β −  �Δ𝑝𝑝ȷ�����
λ

� /μ(𝐼𝐼a, β, σ), 

so the relevant components of β give WTP for mean attribute changes among consumers choosing j when product 

features are described by (𝐗𝐗λ, 𝐩𝐩λ).  Third, when β is heterogeneous and the ΔXj are heterogeneous over the 

population (i.e., vary with s), the relationship between values of β and 𝐄𝐄β,σ|𝑠𝑠,αUMCEb(β, σ) is more complex; (42) 

requires a calculation that handles selection driven by both consumer history and taste heterogeneity.   

The scaling parameter σ appears in (42) and (44) to have a prominent direct role in determining the level of 

UMCE(s), but (43) indicates that this is offset elsewhere, so that the final impact of σ is only indirect, through its 

influence on the choice probabilities.  To see this more generally, write (42) as 
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(49)   UMCE(s) ≡ ∫ dUMCEλ(𝑠𝑠)
dλ

1
λ=0  dλ  =  𝐄𝐄β,σ|𝑠𝑠[𝐼𝐼b − 𝐼𝐼a +  ∑ ∫ 𝐿𝐿jλ�ΔXjβ − Δ𝑝𝑝j�dλ1

λ=0 ]/μ(𝐼𝐼a, β, σ) 
j∈𝐉𝐉 . 

This is a line integral over the rectifiable path of the area behind the demand functions for the products in A 

between the old and new vectors of quality-adjusted net values, which is the Mashallian consumer surplus 

associated with the change from policies a to b; (49) depends on σ only through its influence on the acuity of 

consumer response to price changes.  These price effects are usually bounded even when there is a positive 

probability of very small σ.  Recall that the own price elasticity of a MNL probability Ljλ = 
exp (

vjλ
σ )

 ∑ exp (
viλ

σ ) 
i∈𝐉𝐉

 equals 

−𝑝𝑝jλ(1−𝐿𝐿jλ)
σ

.  Use the inequality e-c/σ ≤ σ/c for c > 0.  If ck = max
j=0,…,J

(vjλ − vkλ) > 0, then Lkλ is bounded above by σ/ck, 

and if c-k ≡ min
i≠k

ci > 0, then 1 – Lkλ is bounded by Jσ/c-k.  Then the price elasticity is bounded in magnitude by 

max{pkλ/ck,Jpkλ/c-k} no matter how small σ.  The limited sensitivity of (49) to σ is also seen by considering limiting 

cases.  For constant σ ⟶ 0, UMCE(s) ⟶ 𝐄𝐄β,σ|𝑠𝑠 {min
j∈𝐉𝐉

 vjλ −  min
j∈𝐉𝐉

 vja}/μ(𝐼𝐼a, β, σ), and for σ ⟶ +∞, UMCE(s) ⟶ 

𝐄𝐄β,σ|𝑠𝑠 1
|𝐉𝐉|

 ∑ {vjλ − vja}/μ(𝐼𝐼a, β, σ)  
j∈𝐉𝐉 .  The difference in these expressions comes only from the difference between 

least and average quality-adjusted net values, reflecting two extremes in the acuity of consumers in gravitating to 

alternatives with the greatest quality-adjusted net values. 

Next consider retrospective welfare analysis that quantifies the harm to consumers from a past “as is” scenario 

a compared to a “but-for” scenario b in which product attributes are changed by altering attributes or seller 

conduct judged defective or improper.  By its nature, retrospective analysis deals with loss of experienced utility, 

and with compensating transfers to make consumers whole after their “as is” choices have been made, so that 

experienced-utility MCE rather than HCV or HEV is the target of the analysis, even if choices are influenced by 

neoclassical income effects.  The analysis in these applications is focused on objective changes in product 

attributes rather than shifts in consumer tastes, so it is reasonable to assume that the decision-utility and 

experienced-utility tastes are the same, that in most cases Ia = Ib, and that εjm =  εjm
d =  εjm

e , so that any gap 

between decision utility and experienced utility comes from differences in zjm
d  and zjm

e .  Then experienced utility 

MCE is given by (40), with MCEd given by (25).  The circumstances of the application will determine the 

configurations of vjm
d (𝐼𝐼, β, σ) and vjm

e (𝐼𝐼, β, σ) that prevail.  A critical question is whether consumers are fully and 

accurately informed about the attributes of products in both the “as is” and “but for” scenarios, or whether the 

issue is misinformation or deception on product attributes in the “as is” scenario.   

The first case we consider is one in which consumers have full information on the available products under 

both “as is” and “but for” conditions.  One example is anti-trust litigation in which the question is the harm to 
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consumers caused by improper supplier conduct such as price collusion, market allocation, bundling, or artificial 

barriers to entry.  Other examples are environmental litigation in which the question is the harm caused by 

improper disposal of hazardous wastes, and patent litigation in which the question is the value to consumers of 

infringing features.  With full information, anticipations are realized, so that vjm
d (𝐼𝐼, β) = vjm

e (𝐼𝐼, β) for m = a,b.  In 

many applications, the class of consumers of interest is not the general population, but individuals meeting 

specific conditions, such as residence in a specified region.  If the class is defined by consumer characteristics s in 

a set T, and either the “as is” choice is unobserved, or it is observed but εa and εb are statistically independent, 

then the per capita transfer prescribed for this class is 

(50)     UMCE(𝐓𝐓) = 𝐄𝐄s|𝐓𝐓𝐄𝐄β,σ|𝑠𝑠σ ∙ ln 𝐿𝐿𝐂𝐂a(𝐼𝐼a,β,σ)
𝐿𝐿𝐂𝐂b(𝐼𝐼b,β,σ) /μ(𝐼𝐼a, β, σ). 

Next consider cases where consumers are misinformed about products in the “as is” scenario 1, due to failure 

to deliver goods as promised, or to deceptive advertising, resulting in experienced utility that deviates from 

anticipated utility, an application studied by Chorus and Timmermans (2009), Alcott (2013), Schmeiser (2014), and 

Train (2015).  In these cases, consumers are fully informed in scenario b.  Then, J = Ja = Jb, (𝑧𝑧ja
d , 𝑝𝑝ja

d ) and (𝑧𝑧ja
e , 𝑝𝑝ja

e ) 

are different for j in a set of products D where the misinformation occurs in scenario a, but (𝑧𝑧ja
d , 𝑝𝑝ja

d ) and (𝑧𝑧ja
e , 𝑝𝑝ja

e ) 

agree for j ∉ D and (𝑧𝑧jb
d , 𝑝𝑝jb

d ) and (𝑧𝑧jb
e , 𝑝𝑝jb

e ) agree for all j.  Continue to assume that anticipated and experienced 

taste parameters are the same.  There are two leading possibilities for defining the “but for” scenario:  the 

benchmark “but for” net values can match either the anticipated decision-utility net values when the anticipation 

is accurate, or match the realized utility net values when these net values are correctly anticipated in the “as is” 

scenario.  The former benchmark applies to contract violations, where the violator is obligated to provide the 

promised product or equivalent compensation.  The latter benchmark arguably applies to false advertising cases 

where the “but for” scenario correctly informs consumers of the actual product attributes, so that anticipations 

are realistic.   

In the contract violation case, the “but for” net values are defined to match what consumers anticipated in the 

“as is” situation. Then vjb
e (𝐼𝐼, β) = vjb

d (𝐼𝐼, β) = vja
d (𝐼𝐼, β) for all j, but vja

e (𝐼𝐼, β) ≠ vja
d (𝐼𝐼, β) for j ∈ D.  The appropriate 

metric for comparing consumer welfare under the “as is” and the “but for” scenarios for consumers with the 

observed “as is” choice k is the experienced MCE, which becomes 

(51)    MCEe(𝑠𝑠, k, β, σ, 𝛆𝛆) = �max
j∈𝐉𝐉

�vjb
d (𝐼𝐼b, β) +  σεjb

 � −  [vka
e (𝐼𝐼a, β) +  σεka

 ]� /μk(𝐼𝐼a, β)                

             
                

  =   {max
j∈𝐉𝐉

�vjb
d (𝐼𝐼b, β) +  σεkb

 � −  max
j∈𝐉𝐉

�vja
d (𝐼𝐼a, β) +  σεja

 � + vka
d (𝐼𝐼a, β) − vka

e (𝐼𝐼a, β)}/μk(𝐼𝐼a, β).  
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If εa = εb, this expression reduces to MCEe(𝑠𝑠, k, β, σ, 𝛆𝛆) = {vka
d (𝐼𝐼a, β) − vka

e (𝐼𝐼a, β)}/μk(𝐼𝐼a, β), the scaled difference 

in the anticipated and realized net value for the chosen alternative.  Even without the last assumption,  

(52)         UMCEe(𝑠𝑠, k) =  𝐄𝐄β,σ|𝑠𝑠,k(vka
d (𝐼𝐼a, β) − vka

e (𝐼𝐼a, β))/μk(𝐼𝐼a, β). 

Selection again enters the calculation of UMCE for a class of consumers.  For consumers with s ∈ T and observed 

“as is” choices in a set D, 

(53)         UMCEe(𝑠𝑠, k) =  𝐄𝐄s|T𝐄𝐄β,σ|𝑠𝑠 ∑ 𝐿𝐿ka(𝐼𝐼a,β,σ)∙[vka
d (𝐼𝐼a,β) − vka

e (𝐼𝐼a,β)]/µk(𝐼𝐼a,β)k∈𝐃𝐃

𝐄𝐄s|𝐓𝐓𝐄𝐄β,σ|𝑠𝑠𝐿𝐿𝐃𝐃𝟏𝟏(𝐼𝐼a,β,σ)
 . 

These per capita transfers can be applied separately to disjoint D sets, or combined into a weighted average of 

the form (52) to give a uniform transfer for all consumers in C whose scenario a purchases are from D.  Since only 

consumers who choose an alternative in subset D experience any difference between anticipated and realized net 

values, the numerator of (52) is the expected compensating variation per capita for all consumers with 

characteristics in T, while the denominator is the share of the population with characteristics in T and scenario a 

choices in D.  In (56), commonly vka
d (𝐼𝐼a, β, σ) ≥  vka

e (𝐼𝐼a, β, σ) for all tastes.  However, it is possible that there are 

tastes appearing in reality, or in the utility model approximation to it, that lead to some “as is” winners with 

vka
d (𝐼𝐼a, β, σ) < vka

e (𝐼𝐼a, β, σ).  This raises two issues, first whether the transfers should be calculated including or 

excluding winners in the calculation of the aggregate needed to make losers whole.  The argument hinges on 

whether the distribution fulfilling the aggregate transfer can in principle claw back gains from winners to 

compensate losers; if not, the calculation should exclude winners.  A related issue is that it may be impossible to 

distinguish winners and losers in the class of consumers in C and D, in which case the per capita calculation 

excluding winners but applied to both losers and winners gives an unwarranted transfer to winners.  

In the second case, with false advertising or other misinformation about alternatives’ actual attributes, the 

MCE is the difference between the realized utility obtained from (i) the alternative the person chose when 

misinformed and (ii) the alternative the person would have chosen if fully informed.  If the chosen alternative is 

the same in the “but for” and “as is” scenarios, then MCEe(𝑠𝑠, k, β, σ, ε) = 0; i.e., there is no loss for consumers 

whose choice was unaffected by the misinformation.  Since the “but for” anticipated net values are defined to 

match the net values that consumers realized in the “as is” situation, one has vkb
e (𝐼𝐼a, β, σ) = vkb

d (𝐼𝐼a, β, σ) = 

vka
e (𝐼𝐼a, β, σ) for all k.  Given εa = εb, the experienced-utility MCE has the form (51) specialized to this relation among 

the net values: 

   



44 

 

(54)  UMCEe(𝑠𝑠, k) 

         = 𝐄𝐄β,σ|𝑠𝑠,k �max � σ
𝐿𝐿ja(𝐼𝐼a,β,σ) ∙ ln 

∑ exp�vka
e (𝐼𝐼a,β,σ) σ⁄ �

Jb
k=0

∑ exp�vka
d (𝐼𝐼a,β,σ) σ⁄ �Ja

k=0
, 0� + vja

d (𝐼𝐼a, β, σ)  −  vja
e (𝐼𝐼a, β, σ)� /μ(𝐼𝐼a, β, σ). 

 

Again, it is normal in false advertising situations (but not necessarily for all forms of misinformation) that 

vka
e (𝐼𝐼a, β, σ) ≤ vka

d (𝐼𝐼a, β, σ). Then (53) is less than (51); i.e., the transfer is lower when the “but for” scenario 

consists of providing the correct information that leads anticipated and realized utilities to agree than when the 

“but for” scenario consists of providing consumers with their anticipated utilities.  When there are tastes such 

that vka
e (𝐼𝐼a) > vka

d (𝐼𝐼a), so that these consumers win from the misrepresentation, there is again a question of 

whether they should be included or excluded in the calculation of the per capita transfer. 

Analogously to (52), in the class of consumers with characteristics in T who chose alternative J in scenario a, 

(55)         𝐄𝐄ε|β,σ,,𝛿𝛿Ja(𝐼𝐼a)=1MCEe(β, σ, ε)  

                                  =  
𝐄𝐄s|𝐓𝐓𝐄𝐄ζ|𝑠𝑠PJa(𝐼𝐼a,β,σ)∙� vj1

a (𝐼𝐼a,β)− vj1
r (𝐼𝐼a,β)�+𝐄𝐄ε|β,σ,,𝛿𝛿Ja(𝐼𝐼a)=1max�σ∙ln 

∑ exp�vka
e (𝐼𝐼a,β) σ⁄ �J2

k=0
∑ exp�vka

d (𝐼𝐼a ,β) σ� �J1
k=0

,0�/µ(𝐼𝐼a,β,σ)

𝐄𝐄ε|β,σ,,𝛿𝛿Ja(𝐼𝐼a)=1P𝐉𝐉𝟏𝟏(𝐼𝐼a,β,σ)
. 

 

Retrospective welfare analysis for consumer durables whose attributes are affected by contract violations or 

deceptions can require a combination of the preceding calculations.  For example, consider homeowners whose 

properties lose value due to groundwater contamination from an industrial site, or automobile owners whose 

vehicles fail to deliver promised performance after correction of defective emission controls, and lose resale value 

as a result.  Then members of the class of owners of the affected durables at the time the defect is announced are 

harmed in the amount given by (51) if they are legally entitled to a non-defective product, as in the case of 

environmental injury, or given by (53) if they are legally entitled only to the opportunity to make a product choice 

with the correct information, as in the case of false advertising.  Further, as long as there is no further contract 

violation or deception following the announcement, the harm is fully capitalized in the resale value of the durables 

and these calculations conclude the calculation of harm.  Pre-announcement owners who choose to continue to 

hold their durables have willingly declined the opportunity to mitigate their losses by selling, and post-

announcement buyers who find that the lower price offsets the reduced performance are not harmed. 
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8. AN ILLUSTRATIVE APPLICATION 

An empirical example of applied welfare analysis using the methods of this paper, due to Kenneth Train (2015), 

examines the impact on consumers of video streaming services that share customers’ personal and usage 

information without their prior knowledge.  This analysis is based on choice models estimated using data from a 

conjoint experiment designed and described by Butler and Glasgow (2015).  Each choice experiment included four 

alternative video steaming services with specified price and the attributes listed in Table 4 plus a fifth alternative 

of not subscribing to any video streaming service. 

Each of 260 respondents was presented with 11 choice experiments.  The choice model was of the form (9) 

for money-metric utility, with (β,ln σ) having a multivariate normal distribution.  Estimates obtained using 

maximum simulated likelihood are given in Table 5. The results indicate that people are willing to pay $1.56 per 

month on average to avoid commercials.  Fast availability is valued highly, with an average WTP of $3.95 per 

month in order to see TV shows and movies soon after their original showing. On average, people prefer having a 

mix with more TV shows and fewer movies, but the mean is not significantly different from zero.  Average 

willingness to pay for more content of both kinds is $2.96 per month.  Interestingly, people who want fast 

availability tend to be those who prefer more TV shows and fewer movies: the correlation between these two 

WTP’s is 0.51, while the correlation between WTP for fast availability and more content of both kinds is only 0.04. 

Apparently, the desire for fast availability mainly applies to TV shows.21      

Table 4.  Non-Price Attributes 

Attribute Levels 
Commercials shown 
between content 

Yes (“commercials’) 
No (baseline category) 

Speed of content 
availability 

TV episodes next day, movies in 3 months (“fast content”) 
TV episodes in 3 months, movies in 6 months (baseline category)  

Catalogue 10,000 movies and 5,000 TV episodes (“more content”) 
2,000 movies and 13,000 TV episodes (“more TV/fewer movies”)  
5,000 movies and 2,500 TV episodes (the baseline category) 

Data-sharing policies Information is collected but not shared (baseline category) 
Usage information is share with third parties (“share usage”)22 
Usage and personal information are shared with third parties (“share 

usage and personal”) 

                                                           

21 The model was also estimated using an Allenby-Train hierarchical Bayes method, with similar results; the details of both 
estimation methods are given in Bhat (2001); Train (2000, 2009, 2015), and Ben Akiva, McFadden, and Train (2016).  

22 Butler and Glasgow use the terms “non-personally identifiable information (NPPI)” and “personally identifiable 
information (PII)” for what we are labelling “share usage” and “share usage and personal”.  
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Table 5A.  MSL Estimates of WTPs for Video Streaming Services 

 Population Mean Std Dev in Population 
 Estimate Std Error Estimate Std Error 
Ln(1/σ) -2.002 0.0.945 1.0637 0.0755 
WTP for:     

Commercials -1.562 0.4214 3.940 0.5302 
Fast Availability 3.945 0.4767 3.631 0.4138 
More TV, fewer movies -0.6988 0.4783 4.857 0.5541 
More content 2.963 0.4708 2.524 0.4434 
Share usage only -0.6224 0.4040 2.494 0.4164 
Share personal and usage -2.705 0.5844 6.751 0.7166 
No service -27.26 2.662 19.42 2.333 

Table 5B.  Correlation Point Estimates 
(* denotes significance at 5% level) 

 Commer-
cials 

Fast 
Avail- 

ability 

Mostly 
TV 

Mostly 
movies 

Share 
usage 

Share 
personal 

and usage 

No 
service 

Ln(1/σ) -0.5813* -0.1371 0.0358 0.0256 0.0022 -0.1287 0.2801* 
Commercials  1.0000 0.1172 -0.3473* 0.0109 -0.2562 -0.0079 -0.4108* 
Fast 
Availability 

 1.0000 0.8042* -0.4019* -0.3542* -0.4206* 0.2391* 

Mostly TV   1.0000 -0.5890* -0.1695 -0.3328* 0.4616* 
Mostly movies    1.0000 0.5141* 0.5181* -0.0147 
Share usage     1.0000 0.9370* -0.0563 
Share personal 
and usage 

     1.0000 -0.0975 

No service       1.0000 

 

 Consider how a video streaming service might share its subscribers’ personal and usage information with third 

parties who then use that information for targeted marketing to the subscribers. The Table 5 estimates imply that 

consumers have an average WTP of 62 cents per month to avoid having their usage data shared in aggregate form; 

however, the hypothesis of zero average WTP cannot be rejected. Consumers are much more concerned about 

their personal information being shared along with their usage information:  The average WTP to avoid such 

sharing is $2.71 per month. The correlation between WTP to avoid the two forms of sharing is a substantial 0.937.  

However, some people like having their data shared, because they value the targeted marketing that they receive 

as a result of the sharing. In the demand model, the WTP is normally distributed with a mean of -2.71 and standard 

deviation of 6.751, which implies that 34.4% of the population like to have their information shared.  

For the welfare analysis, there are three providers, Netflix, Amazon Prime, and Hulu, and that customers can 

subscribe to any one of these services, any combination of them, or to no service. Table 6 gives the “as is” 

alternatives available to customers, and the shares of customers in the sample who chose each alternative.  At 
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the time of the survey, Hulu had about 6 million subscribers, which, given the market shares above, imply that 

total market size is 31 million potential subscribers. This is less than the number of households in the US because 

the survey screened for people who either already subscribe, or were likely to subscribe, to a video-screening 

service if they did not currently have one.  The market is then the US households who are open to the possibility 

of subscribing to a video streaming service.  

Table 6: Market Shares of Video Steaming Service Portfolios 

Alternative Share 
Netflix                                           0.2867 
Amazon Prime                              0.0467 
Hulu                                                0.0400 
Netflix + Amazon Prime              0.1167 
Netflix + Hulu                                0.0700 
Amazon Prime + Hulu                  0.0100 
Netflix + Amazon Prime + Hulu  0.0733 
No video streaming service         0.3567 

 In the “as is” scenario, customers think that none of the service providers shares their usage and personal 

information, but in fact one of them does. The analysis chooses Hulu as the one who shares, but the selection is 

arbitrary.  How much are consumers hurt by the fact that Hulu shared its subscribers information without their 

knowing beforehand, and how much would Hulu be liable for under different theories of damages? 

Assume for the welfare analysis that when people were choosing among services, they anticipated that these 

services would have the attributes given in Table 7.  Note that none of the providers were thought to share their 

subscribers’ information. 

Table 7: Anticipated Attributes for Decision Utility 

 Netflix Amazon 
Prime 

Hulu 

Price per month 7.99 6.58 7.99 
Commercials 0 0 0 

Fast Availability 0 0 1 
More TV, fewer movies 0 1 0 

More content 1 0 0 
Share usage only 0 0 0 

Share personal and usage 0 0 0 

The attributes of the alternatives that represent multiple services are the sum of the attributes of the services 

within the packages.  For example, the price of Netflix+Amazon Prime is $14.67 per month and provides the “More 
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content” of Netflix and the “MoreTV, fewer movies” of Amazon Prime.  Alternative specific constants were 

calibrated such that the predicted shares for the alternatives equal the observed shares in Table 7. 

 Now suppose that, in reality, Hulu shared its subscribers’ personal and usage information, and that this fact 

was revealed months after people began subscribing. The experienced utility is based on the attributes in Table 7 

except that “Share personal and usage” receives a 1 for Hulu.  What is the difference between the welfare that 

people expected to obtain when they made their choices compared to the welfare they actually obtained?  Only 

Hulu subscribers obtained experienced utility that differed from decision utility. The aggregate difference is $22.9 

million per month, or $3.81 on average for Hulu subscribers.  Note that, for the population as a whole, the average 

WTP to avoid sharing is $2.71, as stated above. The average WTP conditional on having subscribed to Hulu is $3.81. 

That is, the average Hulu subscriber dislikes sharing their information more than the average person in the 

population does.  How does this arise?  Note in Table 5B that the correlation between the WTPs for between “Fast 

Availability” and Share personal and usage” is -0.42. Hulu is the only service that offered Fast Availability, and so 

people who valued this attributed tended to choose Hulu. However, the people who place a high value on Fast 

Availablity also tend to dislike sharing their information more than other people. The difference between the 

conditional mean of $3.80 and the unconditional mean of $2.71 arises because of this correlation. 

The damages that Hulu would need to pay in compensation for its sharing of its subscribers’ information 

depends critically on what was illegal: was it illegal for Hulu to share its customers’ information, or was it illegal 

for Hulu not to disclose that it was doing so.  If it was illegal for Hulu to share its subscribers’ information, then 

the aggregate damage that Hulu is responsible for is $22.9 million for each month that the sharing had been 

undisclosed.  However, some customers like having their data shared, and this aggregate nets their gains from the 

losses that people who dislike sharing incurred. To obtain Pareto neutral compensation on a person-by-person 

basis, the $22.80 would not be enough to compensate the people who were hurt by the sharing: the people who 

liked the sharing would need to contribute their gains too.  We can calculate the welfare impact separately for 

people who like sharing and people who dislike sharing. Among the Hulu subscribers who have a negative WTP 

for sharing, the aggregate loss in welfare is $30.4 million.  Hulu subscribers who have a positive WTP for sharing 

obtained an aggregate gain of $7.50 million. For Hulu to be able to compensate the people who were hurt from 

its sharing, Hulu would need to pay $30.4, since it does not have the ability to claw back compensation from the 

people who gained.  

 Next suppose information sharing is legal, but nondisclosure is Illegal.  If Hulu is liable for nondisclosure, then 

the relevant comparison is between 
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(i) the utility that consumers obtained in the “as is” situation, where they choose among the 
alternative under the concept that Hulu did not share but it in fact did; this is the realized 
utility for the alternative that the person chose based on decision utilities, and  

(ii) the utility that consumers would have obtained  Hulu had disclosed its sharing practice 
before customers choose among the services; this is the realized utility that the customer 
would choose based on realized utilities. 

Every Hulu subscriber who likes sharing would have chosen Hulu if they had known in advance that it shared 

information. And some of the Hulu subscribers who dislike sharing would still have chosen Hulu if they had known 

that Hulu shared their information. None of these subscribers were hurt by the nondisclosure. The only Hulu 

subscribers who were hurt by the nondisclosure are those who dislike sharing sufficiently that they would not 

have chosen Hulu if they had known the sharing practice.  However, the welfare losses from non-disclosure are 

not borne only by Hulu subscribers. People who like sharing but didn’t know that Hulu shares and chose a different 

provider were potentially hurt because they were not able to take advantage of this undisclosed attribute of Hulu 

service. People who would have chosen Hulu if they had known that Hulu shares but didn’t obtained less welfare 

than they would have obtained under full disclosure.  Table 8 gives the losses for each group of consumers from 

the non-disclosure of Hulu’s sharing practice. 

Table 8: Damages Arising from Non-Disclosure 
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All people 16.5 0.53 2.16 0.14 
People who dislike sharing 13.0 0.64 3.05 0.00 
People who like sharing   3.5 0.33 0.00 0.39 

 

The total loss is $16.5 million per month, which consists of $13.0 million loss to people who dislike sharing and 

3.55 loss to people who like sharing. The $13.0 million loss was incurred by Hulu subscribers who dislike sharing 

sufficiently to not choose Hulu if they had known its sharing practices. The $3.5 million loss was incurred by people 

who did not subscribe to Hulu but like sharing sufficiently to have chosen Hulu if they had known its sharing 

practices.  The average loss per person in the population is simply the aggregate loss divided by market size (31 

million). The average loss for Hulu subscribers can best be explained by starting in the bottom row of Table 10. 

Hulu subscribers who like sharing their information incurred zero harm from the nondisclosure: they subscribed 

to Hulu and so obtained the benefits of the sharing even though they didn't realize beforehand that they would. 
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Importantly, they also did not gain from the nondisclosure.  They obtained greater welfare from Hulu than they 

had expected when they chose Hulu. But they obtained the benefits of sharing even without prior disclosure, 

which would not have changed anything for them.  Hulu subscribers who dislike sharing were hurt by $3.05 on 

average.  Not all Hulu subscribers who dislike sharing were hurt by the non-disclosure.  Only those who would not 

have chosen Hulu if they had known of its sharing practices were hurt, and these people were hurt by more than 

$3.05 on average (since the $3.05 average include Hulu subscribers who dislike sharing but were not hurt from 

the nondisclosure since they still would have chosen Hulu.)  The top row in Table 10 gives a loss per Hulu subscriber 

of $2.16: it is the average of the $3.05 in the second row and $0.00 in the third row, weighted by the share of Hulu 

subscribers who dislike and like sharing.  The losses for people who did not subscribe the Hulu are analogous. 

People who dislike sharing and did not subscribe to Hulu incurred no loss, since they would not have chosen Hulu 

if its sharing practices had been disclosed.  Some people who did not subscribe to Hulu but like sharing would 

have chosen Hulu if they had known that Hulu shared their information. These people obtained less utility that 

they could have obtained under full disclosure. 

In the “as is” situation, 19.3 percent of people in the market subscribed to Hulu. If everyone had been 

informed about Hulu’s sharing practice, then this share would have dropped to 16.0 percent, which is a 17 percent 

reduction in subscribers. However, as explained above, this change includes two different movements: the share 

drops because some Hulu subscribers would not have chosen Hulu if they had known that Hulu would share their 

information, and the share rises because some people who did not subscribe to Hulu would have subscribed if 

they had known.  Table 9 gives the share of people in each group. 12.5% of people subscribed to Hulu and would 

still have also done so if the sharing practice had been disclosed. 6.8% subscribed to Hulu but would not have if 

they had known about its sharing practice. That is, about a third of Hulu’s subscribers would have not subscribed 

if they had been informed. 3.5% of people did not subscribe to Hulu but would have done so if they had known 

that Hulu shares their information.    

Table 9: Choice Shares without and with Disclosure 

 Would have subscribed to 
Hulu if its sharing practices 
had been disclosed 

Would not have subscribed 
to Hulu if its sharing 
practices had been 
disclosed 

Total 

Subscribed to Hulu 0.125 0.068 0.193 
Did not subscribe to Hulu 0.035 0.772 0.807 
Total 0.160 0.840  

The share of people who subscribed to Hulu was 19.3%. If its sharing practices had been disclosed, then the share 

of subscribers would have been 0.193-0.068+0.035 = 0.16, i.e., 16 % as stated above. 
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9. CONCLUSIONS 

 This paper provides a foundation for applied welfare analysis of product regulation or compensation for 

product defects.  It gives a practical setup for money-metric indirect utility functions whose features can be 

estimated using data on choice in real or hypothetical markets, and shows that there is essentially no loss of 

generality in restricting analysis to this setup.  It draws a distinction between prospective and retrospective policy 

applications, and between cases where compensating transfers are hypothetical or are actually fulfilled.  It 

introduces a Market Compensating Equivalent (MCE) welfare measure, an updated version of Marshallian 

consumer surplus, and shows that when compensating transfers are not actually fulfilled, it is preferred to 

commonly prescribed Hicksian compensating or equivalent variations.  Further, MCE is shown to have desirable 

computational and aggregation properties.  The problem of carrying out welfare calculations when tastes of 

individual consumers are only partially observed is addressed, and computational formulas are given for 

calculation of expected compensating transfers.  Decision-utility and experienced-utility are distinguished, and 

the issues of conducting welfare calculus in experienced utility are discussed.  A number of common welfare 

calculus problems are treated, and formulas are given for their resolution.  Finally, an application illustrates the 

use of these methods and the importance of the distinctions introduced in this paper. 
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Appendix A:  Approximation Theory for Functions and Probabilities  

This appendix provides the mathematical basis for uniform parametric approximations to utility functions and 
probabilities.  The first theorem adapts Bernstein-Weierstrauss approximation theory to the class of functions 
considered in this paper, and the second theorem utilizes Pollard’s methods for establishing uniform weak 
convergence of empirical probabilities; see Lorentz (1937), Kadison-Liu (2016), Pollard (1984).  

Let bjK(p) = �K
j � pj(1 − p)K−j denote the binomial probability of j successes in K draws, each with probability 

p ∈ [0,1]; and define bj,K(p) ≡ 0 for j < 0 or j > K.  Differentiating,   d
dp

bjK(p) = K[bj-1,K-1(p) – bj,K-1(p)].  Higher order 

derivatives can be defined recursively; see Doha et al (2011).  Note that ∑ bjK(p)K
j=0  ≡ 1 and ∑ d

dp
bjK(p)K

j=0  ≡ 0.  

The following result is a straightforward multivariate restatement of the Bernstein-Weierstrauss theorem on 
approximation of continuous functions by polynomials.   

Theorem A.1.  Let H denote a compact metric space with metric h.    Consider f ∈ ℭ([0,1]n×H).  Let K = (K1,…,Kn) 
denote a vector of positive integers, j = (j1,…,jn) a vector of integers satisfying 0 ≤ ji ≤ Ki for i = 1,…,n, p = (p1,…,pn) 
∈ [0,1]n , j⊘K = (j1/K1,…,jn/Kn).  Define the multivariate binomial probability bj,K(p) = ∏ bjiKi(pi)n

i=1 , the vector β∙K(h) 
of functions βj,K(h) ≡ f(j⊘K,h) on H for 0 ≤ j ≤ K, and the multivariate polynomial BK(p,β∙K(h)) = ∑ b𝐣𝐣,𝐊𝐊(𝐩𝐩)β𝐣𝐣,𝐊𝐊(h).0≤𝐣𝐣≤𝐊𝐊   
Let C denote the compact range of f.  Then, βj,K ∈ ℭ(H,C)), and BK(p,β∙K(h)) has the following approximation 
properties:  (i) lim

𝐊𝐊→∞
max  

[0,1]n×H
|B𝐊𝐊(𝐩𝐩, β∙𝐊𝐊(h)) − f(𝐩𝐩, h)| = 0, and (ii) if ∂f(p,h)/∂pi exists and is continuous on closed 

set A ⊆ [0,1]n×H, then lim
𝐊𝐊→∞

max  
A

�∂BK(𝐩𝐩,β𝐊𝐊(h))
∂pi

− ∂f(𝐩𝐩,h)
∂pi

� = 0.  If in addition, f is Lipschitz in its arguments, then β∙K is 

Lipschitz on H. 

Proof:  The continuous function f is uniformly continuous on [0,1]n×H and bounded by a constant M, so that 
given ε > 0, there exists δ ∈ (0,1) such that |p’ – p| ≤ δ and h(h,h’) ≤ δ imply |f(p’,h’) – f(p,h)| < ε/6.   Define the 
set Jδ = {j|0 ≤ j ≤ K and |j⊘K – p| ≤ δ/2}.  By Hoeffding’s inequality, Prob(𝐉𝐉δ

𝑐𝑐) ≤ 2∑ exp(– δ2Ki/2)n
i=1 .  Select K ≥ 

192nM/εδ3 and K > 2/δ.  In the inequality |B𝐊𝐊(𝐩𝐩, β∙𝐊𝐊(h)) − f(𝐩𝐩, h)| ≤ �∑ + ∑  𝐉𝐉δ
𝑐𝑐𝐉𝐉δ � b𝐣𝐣,𝐊𝐊(𝐩𝐩)|f(j⊘K,h) – f(p,h)|, the 

first sum is bounded by ε/6, while the second sum is bounded by 2M∙Prob(𝐉𝐉δ
𝑐𝑐) ≤ 4M∙∑ exp(– δ2Ki/2)n

i=1  ≤ 

4M∙∑ 2
δ2Ki

n
i=1     ≤ εδ/24 ≤ ε/24.  This establishes |B𝐊𝐊(𝐩𝐩, β∙𝐊𝐊(h)) − f(𝐩𝐩, h)| <  𝜀𝜀/3 for each (p,h) ∈ [0,1]n×H.   

Next suppose that on a compact set A, ∂f(p,h)/∂p1 exists and is continuous.  Then it is uniformly continuous 

and bounded on A; let M be a bound.  The δ above can be chosen so that �∂f(𝐩𝐩′,h′)
∂p1

−  ∂f(𝐩𝐩,h)
∂p1

� ≤ ε
6
 and 

f�𝐩𝐩+δ′∆1,h� − f(𝐩𝐩,h)
δ′ − ∂f(𝐩𝐩,h)

∂p1
 ≡ ζ(δ’,p,h) with |ζ(δ’,p,h)| ≤ ε

6
 for |δ’| ≤ δ and |ζ(δ’,p,h)| ≤ M(1+2/δ) for |δ’| > δ, where 

∆1 is a vector with a one in component 1, zeros elsewhere.  Define p2+ = (p2,…,pn), j2+ = (j2,…,jn), K2+ = (K2,…,Kn), and 
b𝐣𝐣𝟐𝟐+,𝐊𝐊𝟐𝟐+

 (𝐩𝐩𝟐𝟐+) =  ∏ bjiKi(pi)n
i=2  on [0,1]n-1.  Then 

 

      ∂BK(𝐩𝐩,β𝐊𝐊(h))
∂pi

  = K1 �∑ + ∑  𝐉𝐉δ
𝑐𝑐𝐉𝐉δ � b𝐣𝐣2+,𝐊𝐊2+

 (𝐩𝐩2+) �b𝐣𝐣𝟏𝟏−𝟏𝟏,𝐊𝐊𝟏𝟏−𝟏𝟏(p1) − b𝐣𝐣𝟏𝟏,𝐊𝐊𝟏𝟏−𝟏𝟏(p1)� f(j1 K1⁄ , 𝐣𝐣2+ ⊘ 𝐊𝐊2+, h)  



55 

 

                           =  �∑ + ∑  𝐉𝐉δ
𝑐𝑐𝐉𝐉δ � b𝐣𝐣2+,𝐊𝐊2+

 (𝐩𝐩2+)b𝐣𝐣𝟏𝟏,𝐊𝐊𝟏𝟏−𝟏𝟏(p1) �f((j1+1) K1⁄ ,𝐣𝐣2+⊘𝐊𝐊2+,h) − f(j1 K1⁄ ,𝐣𝐣2+⊘𝐊𝐊2+,h)
1/K1

� 

                           =  �∑ + ∑  𝐉𝐉δ
𝑐𝑐𝐉𝐉δ � b𝐣𝐣2+,𝐊𝐊2+

 (𝐩𝐩2+)b𝐣𝐣𝟏𝟏,𝐊𝐊𝟏𝟏−𝟏𝟏(p1) �∂f(j1 K1⁄ ,𝐣𝐣2+⊘𝐊𝐊2+,h)
∂p1

+ ζ(δ’, 𝐩𝐩, h)� 

                           = ∂f(𝐩𝐩,h)
∂p1

+ �∑ + ∑  𝐉𝐉δ
𝑐𝑐𝐉𝐉δ � b𝐣𝐣2+,𝐊𝐊2+

 (𝐩𝐩2+)b𝐣𝐣𝟏𝟏,𝐊𝐊𝟏𝟏−𝟏𝟏(p1) �∂f(j1 K1⁄ ,𝐣𝐣2+⊘𝐊𝐊2+,h)
∂p1

−  ∂f(𝐩𝐩,h)
∂p1

+ ζ(δ’, 𝐩𝐩, h)�. 

On Jδ, the term above in square brackets is bounded by ε
6
, which then also bounds the first sum, and on 𝐉𝐉δ

𝑐𝑐 this 

term is bounded by 5M/δ.  The probability of 𝐉𝐉δ
𝑐𝑐 is bounded by 2∑ exp(– δ2Ki/2)n

i=1 , so the second sum is bounded 

by 10M
𝛿𝛿

∙  ∑ exp(– δ2Ki/2)n
i=1  ≤  10M

𝛿𝛿
∙ ∑ 1

δ2Ki/2
n
i=1 .  Then K ≥ 192nM/εδ3 implies that the second sum is bounded by 

20ε/192 < ε/6.  This establishes the approximation property �∂BK(𝐩𝐩,β𝐊𝐊(h))
∂pi

− ∂f(𝐩𝐩,h)
∂pi

<  𝜀𝜀/3� at each (p,h) in A. 

A final step to establish (i) and (ii) uniformly considers the open cover of neighborhoods where the results 
hold (with tolerance ε/2 rather than ε/3), extracts finite sub-coverings for the compact domains, and uses the 
minimum value of δ from these finite sub-coverings.  By construction, β∙K retains the properties of f with respect 
to h; hence, in particular, if f is Lipschitz in H, then so is β∙K.  ∎ 

The next results will establish uniform convergence of empirical expectations for a family of functions that 
encompasses the applications in this paper.  These results are obtained as specializations of the general theory of 
stochastic convergence treated in Dudley (2014), Kosorak (2008), Pollard (1984), and van der Vaart and Wellner 
(1996), referred to hereafter as VW.  Let Y denote a closed subset of ℝn, 𝒴𝒴 denote the Borel σ-field of subsets of 
Y, and F denote a probability on 𝒴𝒴.  Define a family ℱ of functions f:Y ⟶ ℝ that is contained in the Banach space 
ℒ1(Y,𝒴𝒴,F) and includes the constant function f(y) ≡ 1.  We assume that the functions in ℱ are bounded by an 
envelope function f* ∈ ℒ1(Y,,F); i.e., f* ≥ |f| for f ∈ ℱ.  Let Θ denote a compact subset of ℝd, with a bound α > 
max(1,max

θ∈Θ
‖θ‖).  Assume that the functions in ℱ are indexed by θ ∈ Θ and are Lipschitz with respect to this index; 

specifically, |fθ’(y) – fθ”(y)| ≤ ‖θ′ − θ"‖ ⋅ f ∗(y)  ≤ α ∙ f ∗(y).  We will call ℱ with the properties above a Lipschitz-
parametric family. 

Let FT denote the empirical probability defined by T independent draws {y1,…,yT} from F; i.e., for A ∈ 𝒴𝒴, FT(A) = 
1
T

∑ 𝟏𝟏(yt ∈ A)T
t=1 .  For f ∈ ℒ1(Y,,F) and a probability Q on 𝒴𝒴, define EQf ≡∫ f(y)Q(dy) 

Y  and ETf ≡ 1
T

∑ f(yt)T
t=1 .  Define 

‖f‖Q = EQ|f|, and note that ‖f‖F is the norm of ℒ1(Y,,F).  A strong law of large numbers establishes that ETf ⟶
𝑎𝑎𝑠𝑠

𝐄𝐄𝐅𝐅f 

pointwise for each f ∈ ℱ and for f*.  We give conditions under which this convergence is uniform on ℱ. 

A measure of the “density” or “complexity” of ℱ is its bracketing number N[](γ,ℱ,Q), defined for γ > 0 and a 
probability Q on 𝒴𝒴, the minimum cardinality of a family ℱγ ⊆ ℒ1(Y,𝒴𝒴,F), not necessarily a subset of ℱ, such that 
for each f ∈ ℱ, there are f’,f” ∈ ℱ satisfying f’ ≥ f ≥ f” and EQ(f’ – f”) < γ.  A related measure of the complexity of ℱ 
is its covering number N(γ,ℱ,Q), defined for γ > 0 and a probability Q on 𝒴𝒴 as the minimum cardinality of a family 
ℱγ ⊆ ℒ1(Y,𝒴𝒴,F), not necessarily a subset of ℱ, such that for each f ∈ ℱ, inf

f′∈ℱγ
𝐄𝐄Q|f’ –  f| < γ.  Obviously, N(γ,ℱ,Q) ≤ 

N[](γ,ℱ,Q).  We will be interested in families of functions for which the bracketing or covering number is finite.  
The following result specializes VW Theorem 2.7.11: 
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Lemma A.2.  Consider a Lipschitz-parametric family ℱ and a positive constant M > 1.  For each probability Q 
on 𝒴𝒴 such that EQf* ≤ M and each  γ > 0, N[](γ,ℱ,Q) ≤ 2 + 2(8αM/γ)d.   

Proof:  Let J be the largest integer no greater than 8αM/γ, and j = (j1,…,jd) a vector of indices with 1 ≤ ji ≤ J for 
each i.  Consider the family of open balls of radius γ/2M centered at bj = (-α + j1γ/4M,…,-α+jdγ/4M).  This family 
covers Θ ⊆ [-α,α]d and contains Jd elements.  Discard the balls that do not intersect Θ.  From each of the remainder, 

select a point θj ∈ Θ and let ℱγ denote the family of functions min (fθ𝐣𝐣 + 𝛾𝛾f∗

2M
, f ∗) and max (fθ𝐣𝐣 − 𝛾𝛾f∗

2M
, −f ∗) plus f* 

and –f*.  Then, ℱγ contains at most 2(1+Jd) functions.  For θ in the ball containing θj, the Lipschitz condition gives 
�fθi(y) − fθ(y)� ≤ 𝛾𝛾

2M
f ∗(y), implying fθ𝐣𝐣(𝑦𝑦) + 𝛾𝛾

2M
f ∗(𝑦𝑦) − f(y) ≥ 0 ≥ fθ𝐣𝐣(𝑦𝑦) − 𝛾𝛾

2M
f ∗(𝑦𝑦) − f(y).  Then ℱγ brackets ℱ, 

and N[](γ,ℱ,Q) ≤ 2 + 2(8αM/γ) d.  ∎ 

 Augment the Lipschitz-parametric family ℱ with the countable family ℱ0 ≡  ⋃ ℱ1/k
∞
𝑘𝑘=1  of the approximating 

functions in Lemma A.2 at tolerances γ = 1/k for k = 1,2,… ; i.e., consider the family ℱ* ≡ ℱ∪ℱ0.  Then the bound 
on bracketing numbers that the lemma establishes for ℱ also holds for ℱ*, and ℱ0 is dense in ℱ*.  Then, ℱ* is said 
to be Q-measurable for any probability Q on 𝒴𝒴 such that EQf* ≤ M; see VW, 2.2.3 and 2.2.4.   

Theorem A.3.  Consider a Lipschitz-parametric family ℱ ⊆ ℒ1(Y,,F) that has an envelope f* ∈ ℒ1(Y,𝒴𝒴,F).  For 
each tolerance γ ∈ (0,1), lim

T→∞
Prob(sup

T′≥T
sup
f∈ℱ

|(𝐄𝐄T′ − 𝐄𝐄)f | >  𝛿𝛿) =  0 . 

Proof:  From the discussion following Lemma A.2, consider the augmented family ℱ* that contains ℱ and also 
contains the countable dense subfamily ℱ0.  Given γ ∈ (0,1), the condition EFf* < ∞ implies there exists a constant 
M > EFf* such that EFf*∙1(f*>M) < γ/4.  Define ℱM = {min(M,max(f,-M)) | f ∈ ℱ*}.  From Lemma A.2, the bracketing 
number bound established on ℱ by the functions in ℱγ also holds for ℱM and the corresponding finite family ℱγ

M 
= {min(M,max(f,-M)) | f ∈ ℱγ} for all probabilities Q on 𝒴𝒴, since fM

∗ = min(M,max(f*,-M)) is an envelope function 
for ℱM and EQfM

∗  ≤ M.  Then from Lemma A.2, N(γ, ℱM, FT) ≤ 2+2(8αM/γ) d.  This bound is independent of T.  Then, 
the result follows for ℱ*, and hence for ℱ, from VW Theorem 2.4.3.  ∎   

The following result is stated in a form sufficient for our needs; for more general results, see VW, 2.6.17.   

Theorem A.4.  Consider a finite-dimensional linear subspace 𝒦𝒦 of ℒ1(Y,,F).  Without loss of generality, assume 
that 𝒦𝒦 includes the function f(y) ≡ 1.  For a fixed integer J, define ℱ to be a subset of the family of functions of 
the form min(f1,…,fj) for fj ∈ 𝒦𝒦,1 ≤ j ≤ J.  Let ℐ denote the family of indicator functions i(y) = 1(f(y)>0) for f ∈ ℱ, 
and 𝒢𝒢 denote the family of functions g = f∙i for f ∈ ℱ and i ∈ ℐ.  Suppose ℱ has an envelope function f* ∈ ℒ1(Y,,F).  
Then, for each tolerance γ ∈ (0,1),  

               lim
T→∞

Prob(sup
T′≥T

sup
i∈ℐ

 |(𝐄𝐄T′ − 𝐄𝐄)i| >  𝛿𝛿) =  0 and lim
T→∞

Prob(sup
T′≥T

sup
g∈𝒢𝒢

 |(𝐄𝐄T′ − 𝐄𝐄)g| >  𝛿𝛿) =  0. 

Proof:  The proof utilizes a geometric measure of the complexity of a family of functions ℱ or a family of sets 
𝒞𝒞, the Vapnik-�̆�𝐶ervonenkis (VC) index, denoted V(ℱ) or V(𝒞𝒞); see VW 2.6.1, Dudley (2014, 2.6.1).  Classes of 
functions or sets with a finite VC index are termed VC-classes.  VW Lemma 2.6.15 establishes that 𝒦𝒦 is a VC-
class.  Then VW, Lemma 2.6.18(ii) establishes that ℱ is a VC-class with index V(ℱ), and the truncated class ℱM 
= {min(M,max(f,-M)) | f ∈ ℱ } for M > 0 is a VC-class with index at most V(ℱ)+2; see Dudley (2014, Theorem 
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4.41).  Pollard (1984, Lemma 2.4.18) establishes that the family 𝒞𝒞 of sets C = {y∈Y | f(y) > 0} for f ∈ ℱ is a VC-
class, implying that ℐ is a VC-class (see VW, p. 151, #9).  VW Theorem 2.6.7 applied to ℱM with envelope f* ≡ M 
or to ℐ with envelope i* ≡ 1 implies bounds N(γ, ℱM,Q) ≤ K(M/γ)V(ℱ)+2 and N(γ, ℐ,Q) ≤ K(1/γ) V(ℱ)+2 for γ ∈ 
(0,1) and any probability Q on 𝒴𝒴, where K is a constant that does not depend on γ or M.  Let ℱγ/2

M  and ℐγ/2M 
denote the sets of centers of open balls of radius γ/2 and γ/2M that cover ℱM and ℐ respectively, and satisfy 
card(ℱγ/2

M ) ≤ 2K(2M/γ)V(ℱ)+2 and card(ℐγ/2M) ≤ 2K(2M/γ) V(ℱ)+2.  Let 𝒢𝒢M = {i∙f | i ∈ ℐ and f ∈ ℱM}.  For i ∈ℐ and 
f ∈ ℱM, one has min

i′∈ℐγ/2M
min

f′∈ℱγ/2
𝐄𝐄|i ∙ f − i′ ∙ f ′| ≤ max

f∈ℱM
  min

i′∈ℐγ/2M
𝐄𝐄|(i − i′) ∙ f| + max

i′∈ℐγ/2M
min

f′∈ℱγ/2
𝐄𝐄|(f − f ′) ∙ i′| < γ.  

Then the covering number N(γ, 𝒢𝒢M ,Q) for any probability Q on 𝒴𝒴 is bounded by the number of functions in 
𝒢𝒢γ ={i∙f | i ∈ ℐγ/2M and f ∈ ℱγ/2}, which is in turn bounded by 4K2(2M/γ)2V(ℱ)+4.  The countable families 
⋃ ℱ1/2K

M∞
𝑘𝑘=1  and ⋃ ℐ1/2kM

∞
𝑘𝑘=1  are dense in ℱM and ℐ respectively, so that these families are F-measurable.  Then 

VW Theorem 2.4.3 applies to give the result.  ∎  

 

Appendix B:  Properties of Extreme Value Type 1 Random Variables 

a. A standard Extreme Value Type 1 (EV1) random variable has CDF F(ε) ≡ exp(-e-ε), density e-ε ∙ exp(-e-ε), and 
for t < 1 the moment generating function Γ(1-t).  Johnson and Kotz (1970, Ch. 21) show the linear transformation 
ξ = v + σε with σ > 0 has CDF exp (−e−(ξ−v) σ⁄ ), mean v + σγ0, where γ0 = 0.5772156649⋯ is Euler’s constant, 
median v – σ ln ln 2, mode v, and variance σ2π2/6.  For 0 < ρ < 0.08, the tails of F(ε) satisfy F(2∙ln ρ) + 1 – F(–2∙ln ρ) 
< ρ and ∫ |ε|F(dε) <  ρ 

|ε|>−2∙ln ρ .  Also, E|ε| ≤ 1.219384 (i.e., integrating by parts, E|ε| = ∫ exp(−eε) dε∞
0   + 

∫ [1 − exp(−e−ε)]dε ≤ E1(1) +  ∫ exp(−ε) dε∞
0  ∞

0 , where E1(c) ≡ ∫ e−y

y
dy∞

c  is the exponential integral with values 

given in Abramovitz and Stegum, 1964, Table 5.1).  Finally, Eε2 = γ0
2+ π2/6 = 1.978112∙∙∙. 

b. Consider J = {0,…,J}, constants aj and independent standard EV1 random variates εj for j ∈ J, and a non-
empty subset C of J.  Define q𝐂𝐂  =  ln ∑ eajj∈𝐂𝐂  and ξC = max

j∈𝐂𝐂
(aj +  εj) − qC.  Then ξC is again a standard EV1 random 

variable; i.e., Prob(ξC < c) = Prob(εj < c + q𝐂𝐂 − aj for j ∈ 𝐂𝐂) = ∏ exp(−e−c−q𝐂𝐂+aj) 
j∈𝐂𝐂 ≡ exp (−e−c).  Given k ∈ C, 

the probability of the event YC(k) = {ε| ak + εk ≥ aj + εj for j ∈ C} is multinomial logit, 

     LC(k) = ∫ f(εk) ∏ F�εk + ak − aj�dεk
 
j∈𝐂𝐂\{k}

+∞
εk=−∞   = ∫ e−εkexp (−e−εk ∑ eaj−ak)dεkj∈𝐂𝐂

+∞
εk=−∞ =  eak

∑ eajj∈𝐂𝐂
 ,   

and for A ⊆ C, LC(A) =  
∑ eajj∈𝐀𝐀

∑ eajj∈𝐂𝐂
.  The conditional CDF of εk, given k ∈ C and YC(k), is 

        Prob(εk < c| YC(k)) = 1
𝐿𝐿𝐂𝐂(k) ∫ f(εk) ∏ F�εk + ak − aj�dεk

 
j∈𝐂𝐂\{k}

c
εk=−∞    

            = 1
𝐿𝐿𝐂𝐂(k) ∫ e−εkexp (−e−εk ∑ eaj−ak)dεkj∈𝐂𝐂

c
εk=−∞ = exp (−e−(c+ak−q𝐜𝐜)) ≡ F(c + ak – qC). 

Then the payoff ak + εk, conditioned on the event YC(k), has the same CDF as ξC + qC, and is therefore the same for 
all k.  Term this the Optimizer Invariance Property (OIP).  An immediate implication of OIP is   
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         γ0 + q𝐂𝐂 = E(ξC + q𝐂𝐂) ≡ E maxj∈C(aj + εj) ≡ E{ ak + εk | YC(k)}. 

so these unconditional and conditional means are the same.  This result is obtained in Dubin and McFadden (1984), 
Anas and Feng (1988), Resnick and Roy (1990), and Dubin (1985).  A consequence is that when B and C are disjoint 
non-empty subsets of J, then the conditional (on YC(k) for some k ∈ C) and unconditional expectations of utility 
differences are given by the same log sum difference: 

     𝐄𝐄 �max
j∈𝐁𝐁

(aj  +  εj) −  max
j∈𝐂𝐂

(aj  +  εj) |  YC(k)�  ≡ 𝐄𝐄{max
j∈𝐁𝐁

(aj  + εj) −  max
j∈𝐂𝐂

(aj  + εj)} ≡  ln
∑ eajj∈𝐁𝐁

∑ eajj∈𝐂𝐂
  . 

If k ∉ C, then the conditional CDF of ξC, given ak + εk > ξC + qC, is 

       Prob(ξC < c|ak + εk > ξC + qC) =  1
𝐿𝐿𝐂𝐂∪{k}(k) ∫ f(ξ𝐂𝐂)[1 − F(ξC + q𝐂𝐂 − ak)]dξ𝐂𝐂

c
 ξ𝐂𝐂=−∞  

                            = F(c) 
𝐿𝐿𝐂𝐂∪{k}(k)

−  
∫ e−ξCexp (−e−ξ𝐂𝐂[1+eak−q𝐂𝐂]c

ξ𝐂𝐂=−∞ )dξC

𝐿𝐿𝐂𝐂∪{k}(k)
  = 

F(c) − 𝐿𝐿𝐂𝐂∪{k}(𝐂𝐂)F(c + q𝐂𝐂 − ln[eq𝐂𝐂+eak])
𝐿𝐿𝐂𝐂∪{k}(k)

. 

Using the OIP, this result is unchanged if instead of a single alternative k ∉ C, there is a set of alternatives A with 
A∩C = ∅ and either k maximizes aj + εj for j ∈ A, with conditioning on the event YA(k), or q𝐀𝐀  =  ln ∑ eajj∈𝐀𝐀  replaces 
ak, a standard EV1 variate ξA replaces εk, and A replaces {k}.  

Next, given k ∉ C, the conditional CDF of ξC, given ak + εk < ξC + qC, is 

        Prob(ξC < c|ak + εk < ξC + qC) =  1
𝐿𝐿𝐂𝐂∪{k}(𝐂𝐂) ∫ f(ξC)F(ξ𝐂𝐂 + q𝐂𝐂 − ak)dξ𝐂𝐂

c
 ξC=−∞  

                            = 1
𝐿𝐿𝐂𝐂∪{k}(𝐂𝐂) ∫ e−ξ𝐂𝐂exp (−e−ξ𝐂𝐂[1 + eak−q𝐂𝐂]c

ξ𝐂𝐂=−∞ )dξ𝐂𝐂    = F(c + q𝐂𝐂  − ln[eq𝐂𝐂 + eak]). 

Again by the OIP, this result is unchanged if k ∈ B with B∩C = ∅, q𝐁𝐁  =  ln ∑ eajj∈𝐁𝐁  replaces ak, a standard EV1 
variate ξB replaces εk, and A replaces {k}. 

c.  Let A, B, C denote disjoint non-empty subsets of J.  Define qA = ln ∑ eajj∈𝐀𝐀 , and define qB and qC analogously.  
Define ξA = max

j∈𝐀𝐀
�aj + εj� − q𝐀𝐀, with analogous definitions for ξB and ξC, and let “ABC” denote the event ξA + qA > 

ξB + qB > ξC + qC, and so on.  The possible events and outcomes are given below: 

 
 ABC ACB BAC BCA CAB CBA 

Choice at a A A A C C C 
Choice at b B C B B C C 

Type difference difference compound compound compound compound 

The probability of the event ABC is 
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P(ABC) =  ∫ 𝑓𝑓(ξB)F(ξ𝐁𝐁 + q𝐁𝐁 − q𝐂𝐂)[1 − F(ξB + q𝐁𝐁 − q𝐀𝐀)]dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

     = ∫ e−ξ𝐁𝐁 exp�−e−ξ𝐁𝐁 [1 + eq𝐂𝐂−qB]� dξ𝐁𝐁 − ∫ e−ξ𝐁𝐁 exp�−e−ξ𝐁𝐁 [1 + eq𝐀𝐀−q𝐁𝐁 + eq𝐂𝐂−qB]� dξ𝐁𝐁 +∞
ξ𝐁𝐁=−∞  +∞

ξ𝐁𝐁=−∞   

         = P(B|B,C) – P(B|A,B,C) ≡ P(B|B,C)∙P(A|A,B,C), 

where P(A|A,B,C) = eq𝐀𝐀/(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂) and P(B|B,C) = eq𝐁𝐁/(eqB + eq𝐂𝐂).  This formula gives the probability of 
any other of the events by substituting the corresponding permutation of A, B, C.  Next,  

E{(ξ𝐁𝐁 + q𝐁𝐁)∙1(ABC)} = ∫ (ξ𝐁𝐁 + q𝐁𝐁)𝑓𝑓(ξ𝐁𝐁)F(ξ𝐁𝐁 + q𝐁𝐁 − q𝐂𝐂)[1 − F(ξ𝐁𝐁 + q𝐁𝐁 − q𝐀𝐀)]dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

   = ∫ (ξ𝐁𝐁 + q𝐁𝐁)e−ξ𝐁𝐁�exp�−e−ξ𝐁𝐁 [1 + eq𝐂𝐂−q𝐁𝐁]� − exp�−e−ξ𝐁𝐁 [1 + eq𝐀𝐀−q𝐁𝐁 + eq𝐂𝐂−q𝐁𝐁]��dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

       = {P(𝐁𝐁|𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐁𝐁 + eq𝐂𝐂)] − P(𝐁𝐁|𝐀𝐀, 𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)]}, 

The event ACB also has an expectation satisfying this “difference type” formula with B and C interchanged. 

The event BAC has  

     E{(ξ𝐁𝐁 + q𝐁𝐁) ∙1(BAC)} = ∫ (ξ𝐁𝐁 + q𝐁𝐁)f(ξ𝐁𝐁) ∫ f(ξ𝐀𝐀)F(ξ𝐀𝐀 + q𝐀𝐀 − q𝐂𝐂
ξ𝐁𝐁+q𝐁𝐁−q𝐀𝐀

ξ𝐀𝐀=−∞ )dξ𝐀𝐀dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

            = ∫ (ξ𝐁𝐁 + q𝐁𝐁)f(ξ𝐁𝐁) ∫ e−ξ𝐀𝐀exp (−e−ξ𝐀𝐀[1 + eq𝐂𝐂−q𝐀𝐀]ξ𝐁𝐁+q𝐁𝐁−q𝐀𝐀
ξA=−∞ )dξ𝐀𝐀dξ𝐁𝐁

+∞
ξ𝐁𝐁=−∞  

= P(A|A,C) ∫ (ξB + q𝐁𝐁)e−ξ𝐁𝐁 exp�−e−ξ𝐁𝐁� exp �−e−ξ𝐁𝐁+q𝐀𝐀−q𝐁𝐁[1 + eq𝐂𝐂−q𝐀𝐀]�dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

= P(A|A,C) ∫ (ξ𝐁𝐁 + q𝐁𝐁)e−ξ𝐁𝐁exp �−e−ξ𝐁𝐁[1 + eqA−q𝐁𝐁 +  eq𝐂𝐂−q𝐁𝐁]�dξ𝐁𝐁
+∞

ξ𝐁𝐁=−∞  

= P(A|A,C)P(B|A,B,C){ γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)} . 

The events BCA, CAB, and CBA also have expectations satisfying this “compound type” formula with the 
corresponding permutations of A, B, and C. 

Consider the event AC.  From (b), E max(ξ𝐀𝐀 + q𝐀𝐀, ξ𝐂𝐂 + q𝐂𝐂)]∙1(AC) = [γ0  + ln (eq𝐀𝐀 + eqC)]∙P(A|A,C).  Then, 

E{[max(ξ𝐁𝐁 + q𝐁𝐁, ξ𝐂𝐂 + q𝐂𝐂) – max(ξ𝐀𝐀 + q𝐀𝐀, ξ𝐂𝐂 + q𝐂𝐂)]}∙1(AC)   

= E{[ξ𝐁𝐁 + q𝐁𝐁
σ

 – (ξ𝐀𝐀 + q𝐀𝐀)]∙1(ABC) + E{[ξ𝐂𝐂 + q𝐂𝐂 – (ξ𝐀𝐀 + q𝐀𝐀)]∙1(ACB) + E{[ξ𝐁𝐁 + q𝐁𝐁 – (ξ𝐀𝐀 + q𝐀𝐀)]}∙1(BAC) 

  = {P(𝐁𝐁|𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐁𝐁 + eq𝐂𝐂)] − P(𝐁𝐁|𝐀𝐀, 𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)]} 

      + {P(𝐂𝐂|𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐁𝐁 + eq𝐂𝐂)] − P(𝐂𝐂|𝐀𝐀, 𝐁𝐁, 𝐂𝐂)[γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)]} 

     + P(A|A,C)P(B|A,B,C){ γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)} – [γ0  + ln (eq𝐀𝐀 + eq𝐂𝐂)]∙P(A|A,C) 
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  =  – P(C|A,C)∙ ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂) + ln(eq𝐁𝐁 + eq𝐂𝐂) – P(A|A,C)∙ln(eq𝐀𝐀 + eqC)  

  = P(A|A,C)∙ln e
q𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐂𝐂
 + P(C|A,C)∙ln eq𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐁𝐁+eq𝐂𝐂
 . 

Hence,  

E{[max(ξ𝐁𝐁 + q𝐁𝐁, ξ𝐂𝐂 + q𝐂𝐂) – max(ξ𝐀𝐀 + q𝐀𝐀, ξ𝐂𝐂 + q𝐂𝐂)] | AC} = ln e
q𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐂𝐂
 + P(𝐂𝐂|𝐀𝐀,𝐂𝐂)

P(𝐀𝐀|𝐀𝐀,𝐂𝐂)∙
∙ln eq𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐁𝐁+eq𝐂𝐂
 . 

The first term in the last expression coincides with the unconditional expectation of the maximum, and the 
final term adjusts for the conditioning event.  The adjustment is negative so that the information that the best in 
A is better than the best in C decreases the expected maximum utility over B and C.  By application of the OIC as 
described at the end of (b), this result is the same no matter which event YA(k) occurs.  Next, 

E{[max(ξ𝐁𝐁 + q𝐁𝐁, ξ𝐂𝐂 + q𝐂𝐂) – max(ξ𝐀𝐀 + q𝐀𝐀, ξC + q𝐂𝐂)]}∙1(CA)   

          = E{[ξB + q𝐁𝐁 – (ξ𝐂𝐂 + q𝐂𝐂)]∙1(BCA) = P(C|A,C)P(B|A,B,C)[γ0 + ln(eq𝐀𝐀 + eq𝐁𝐁 + eq𝐂𝐂)]  

                                   – P(C|A,C)∙ [γ0 + ln(eq𝐀𝐀 + eq𝐂𝐂)] + P(C|A,B,C)∙[γ0 + ln(eq𝐀𝐀 + eqB + eq𝐂𝐂)] 

        =  P(C|A,C)∙{ ln e
q𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐂𝐂
− ln eqB+eq𝐂𝐂

eq𝐀𝐀+eq𝐁𝐁+eq𝐂𝐂
}, 

and hence E{max(ξ𝐁𝐁 + q𝐁𝐁, ξ𝐂𝐂 + q𝐂𝐂) – max(ξ𝐀𝐀 + q𝐀𝐀, ξ𝐂𝐂 + q𝐂𝐂) | CA} = ln e
q𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐂𝐂
− ln eq𝐁𝐁+eq𝐂𝐂

eq𝐀𝐀+eq𝐁𝐁+eq𝐂𝐂
 . 

 As before, the first term in the last expression coincides with the unconditional expectation of the maximum, and 
the final term is a positive adjustment for the conditioning event, so that the information that the best in C is 
better than the best in A increases the expected maximum utility over B and C.  Again, by application of the OIC, 
this result is the same no matter which event YA(k) occurs. 

d.  Now consider J = {0,…,J} and C = {0,…,J-1}.  Assume that in a scenario change from m = a to m = b, constants 
ajm ≡ aj for j ∈ C do not change, but aJa ≠ aJb.  Assume εj for j ∈ J is the same in both scenarios.  Define q𝐂𝐂  =
 ln ∑ eajj∈𝐂𝐂  and ξC = max

j∈𝐂𝐂
(aj + εj) − q𝐂𝐂.  There is an alternative k that maximizes aj + εj over j ∈ C, and from (b), 

the CDF of ak + εk given that k maximizes the payoff in C is the same as the CDF of ξC + q𝐂𝐂.  Define ω = ξC – εJ and 
L(w) ≡ Prob(ω ≤ w) = 1/(1+e-w).  The possible events are then: 

 
Event Case Condition Probability Payoff 
Ybak aJa < aJb ξC+qC < aJa+εJ < aJb+εJ L(aJa – qC) aJb – aJa  
Ybka aJa < aJb aJa+εJ < ξC+qC < aJb+εJ L(aJb – qC) – L(aJa – qC) aJb – qC – ω 
Ykba aJa < aJb aJa+εJ < aJb+εJ < ξC+qC L(qC – aJb) 0 
Yabk aJa > aJb ξC+qC < aJb+εJ < aJa+εJ L(aJb – qC) aJb – aJa 
Yakb aJa > aJb aJb+εJ < ξC+qC < aJa+εJ L(aJa – qC) – L(aJb – qC) qC – aJa + ω  
Ykab aJa > aJb aJb+εJ < aJa+εJ < ξC+qC L(qC – aJa) 0 
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Note that ∫ ωd𝐿𝐿(ω) = ω𝐿𝐿(ω)]s
t − ∫ eω

1+eω
t

s
t

s dω = t𝐿𝐿(t) − s𝐿𝐿(s) − ln 1+et

1+es .  Then the expected payoff in the 

event Ybka is  

E{(aJb – qC – ω)∙1(ω∈Ybka)} = (aJb – qC)[L(aJb – qC) – L(aJa – qC)] – ∫ ωd𝐿𝐿(ω)aJb−q𝐂𝐂
aJa−q𝐂𝐂

 

     = (aJb – qC)[L(aJb – qC) – L(aJa – qC)] – (aJb – qC)L(aJb – qC) + (aJa – qC)[L(aJa – qC) + ln 1+eaJb−q𝐂𝐂

1+eaJa−q𝐂𝐂  

     = (aJa – aJb) L(aJa – qC) + ln eq𝐂𝐂+eaJb

eq𝐂𝐂+eaJa  , 

and the expected payoff in the event Yakb is  

 E{(qC – aJa + ω)∙1(ω∈Ybka)} = (qC – aJa)[ L(aJa – qC) – L(aJb – qC)] + ∫ ωd𝐿𝐿(ω)aJa−q𝐂𝐂
aJb−q𝐂𝐂

 

            = (qC – aJa)[L(aJa – qC) – L(aJb – qC)] + (aJa – qC)L(aJa – qC) – (aJb – qC)L(aJb – qC) – ln 1+eaJa−q𝐂𝐂

1+eaJb−q𝐂𝐂 

            = (aJa – aJb) L(aJb – qC) + ln eq𝐂𝐂+eaJb

eq𝐂𝐂+eaJa  . 

Combining these results with other payoffs in the table gives 

 
Scenario 
a Choice 

Case Expected Payoff Given  Choice 

J aJa < aJb aJb − aJa 
J aJa > aJb 1

𝐿𝐿(aJa − q𝐂𝐂)
 ln 

eq𝐂𝐂 + eaJb

eq𝐂𝐂 + eaJa
 

k aJa < aJb 
−

𝐿𝐿(aJa − q𝐂𝐂)
𝐿𝐿(q𝐂𝐂 − aJa)

(aJb – aJa)  +
1

𝐿𝐿(q𝐂𝐂 − aJa)
 ln

eq𝐂𝐂 + eaJb 

eq𝐂𝐂 + eaJa  

k aJa > aJb 0 

 

e. Assume scenarios m = a, b, a set of alternatives Ja = Jb = J = {0,…,J}, and noise ε that is the same in both 
scenarios.  Let ajm denote constants.   Order the alternatives so that Δi ≡ aib – aia is non-decreasing in i.  Define non-
decreasing constants ci = Δi + aka – arb ; then ck = akb – arb, and cr = aka – ara.   Let Ajm denote the event that alternative 
j is optimal in scenario m.  Consider the event  

       Bkr = Aka∩Arb = {ε | εk +aka ≥ εi + aia for i ≠ k & εr +arb ≥ εi + aib for i ≠ r},  

including both cases k = r and k ≠ r.  The Bkr are disjoint for different k or for different r except for sets of probability 

zero, and satisfy Aka = ⋃ 𝐁𝐁kr
J 
r=0  and Arb = ⋃ 𝐁𝐁kr

J
k=0 .  The event Bkr implies (arb – akb) ≥ εk – εr ≥ (ara – aka).  Hence, 

Bkr is non-empty if and only if arb – ara ≥ akb – aka, or equivalently ck ≤ cr, implying r ≥ k.   
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Consider the case r = k.  Then for i ≠ k, εi ≤ εk + aka – max(aia, aib + aka – akb).  Then 

      P(Bkk) = ∫ e−εk exp�−e−εk ∑ e−aka+max(aia,aib+aka– akb)J
i=0 �dεk

+∞
εk=−∞ =  eaka

∑ emax(aia,aib+aka– akb)J
i=0

 . 

Then, the conditional probability Pkb|ka that the optimal choice in scenario b is k, given that the optimal choice in 
scenario a is k, satisfies 

          Pkb|ka ≡ P(Bkk)/P(Aka) = 
∑ eaiaJ

i=0

∑ emax(aia ,aib+aka– akb)J
i=0

  .   

If r < k, Bkr is empty and Prb|ka = 0.  Finally, consider the case r > k.  Then ε ∈ Bkr requires εr + (ara – aka) ≡ εr – cr 
≤ εk ≤ εr + (arb – akb) ≡ εr – ck.  Let Bkri = {ε ∈ Bkr | εr – ci+1 ≤ εk ≤ εr – ci} for i = k,…,r-1 and consider the inequalities εn 
≤ min(εk + (aka – ana), εr + (arb – anb)) = (aka – ana) + min(εk, εr – cn).  If n > i, then εr – cn ≤ εk, implying εn ≤ (aka – ana – 
cn) + εr; otherwise, εn ≤ (aka – ana) + εk.  The probability of Bkri is then 

   Pkri = ∫ e−εrexp (−e−εr ∑ e(ana – aka+ cn)J
n=i+1 ) ∫ e−εk exp�−e−εk ∑ e(ana – aka)i

n=0 � dεkdεr εr – ci
εk=εr – ci+1

+∞
εr=−∞  

=
eaka 

∑ e anai
n=0

�� e−εrexp (−e−εr �� e(ana – arb+ Δn)
J

n=i+1
+ � eana – arb+ Δi

i

n=0
�)dεr 

+∞

εr=−∞

−  � e−εrexp (−e−εr �� eana – arb+ Δn
J

n=i+1
+ � eana – arb+ Δi+1

i

n=0
�)dεr 

+∞

εr=−∞
�  

                   = eaka 

∑ e anai
n=0

 �
∫ e−εr exp�−e−εr�∑ e(ana – arb+max(Δi,Δn)J

n=0 �� dεr
+∞

εr=−∞              

−  ∫ e−εrexp (−e−εr�∑ e(ana – arb+max(Δi+1,Δn)J
n=0 �)dεr

+∞
εr=−∞

� 

                     = eaka 

∑ e anai
n=0

 � earb 

∑ eana +max(Δi,Δn)J
n=0

− earb 

∑ eana +max(Δi+1,Δn)J
n=0

�  =  eaka earb 

eana +max(Δi,Δn) ∙ �eΔi+1−eΔi�
∑ eana +max(Δi+1,Δn)J

n=0
  . 

Then, the probability that the optimal choice in scenario b is r > k, given that the optimal choice in scenario a is k, 

satisfies  Prb|ka  ≡ ∑ Pkri/Pka
r−1
i=k = ∑ earb ∑ e anaJ

n=0
∑ eana +max(Δi,Δn)J

n=0
∙ �eΔi+1−eΔi�

∑ eana +max(Δi+1,Δn)J
n=0

r−1
i=k .    

Next, consider the expectations of  (akb  +  εk) ∙ 𝟏𝟏(𝛆𝛆 ∈ Bkk) for r = k and (arb  +  εr) ∙ 𝟏𝟏(𝛆𝛆 ∈ Bkri) for k ≤ i < 
r, given ε ∈ Aka.  First,  

  𝐄𝐄𝛆𝛆|𝐀𝐀𝐤𝐤𝟏𝟏(akb +  εk) ∙ 𝟏𝟏(𝛆𝛆 ∈ Bkk) = 1
Pka

∫ (akb+εk)e−εk exp�−e−εk ∑ e−aka+max(aia,aib+aka– akb)J
i=0 �dεk

+∞
εk=−∞  

                                                      = Pkb|ka�akb − aka + ln�∑ emax(aia,aib+aka– akb)J
i=0 � + 𝛿𝛿0�. 

Second, for k ≤ i < r, 
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       𝐄𝐄𝛆𝛆|𝐀𝐀𝐤𝐤𝟏𝟏(arb + εr) ∙ 𝟏𝟏(𝛆𝛆 ∈ Bkri) = Pkri
Pka

arb 

                                              + ∑ eana 𝐽𝐽
𝑛𝑛=0

∑ e anai
n=0

 �
∫ εre−εr exp �−e−εr �∑ eana – arb+max(Δi,Δn)J

n=0 �� dεr
+∞

εr=−∞              

−  ∫ εre−εrexp (−e−εr �∑ e(ana – arb+max�Δi+1,Δn�)J
n=0 �)dεr

+∞
εr=−∞

� 

        = Pkri
Pka

𝛿𝛿0  + ∑ eana 𝐽𝐽
𝑛𝑛=0 earb 

∑ e anai
n=0

 � 1
∑ eana+max(Δi,Δn)J

n=0
− 1

∑ e(ana +max�Δi+1,Δn�)J
n=0

� ∙ ln ∑ eana+max(Δi,Δn)J
n=0  

                         + ∑ eana 𝐽𝐽
𝑛𝑛=0 earb 

∑ e anai
n=0

∙ 1
∑ eana +max�Δi+1,Δn�J
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Hence, the conditional expectation of (arb + εr)∙1(ε∈Bkr) given ε ∈ Aka is  
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Summing this expression over r > k gives 
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Combining this expression with the earlier conditional expectation for r = k,  
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A consequence of this formula is 
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Appendix C.  R-Code for the Discrete Welfare Calculus using a Synthetic Population 

#Code to estimate losses from consumers not knowing their data were shared 
 
sink('P:\\USER\\Kenneth.Train\\misperceptions\\simulation of privacy 
results\\SimulationsForDan.txt') 
 
#Attributes 
# 1 price 
# 2 Commercials shown between shows 
# 3 Fast content availability 
# 4 More TV shows 
# 5 More movies 
# 6 share usage data 
# 7 share usage and personal data 
# 8 No service 
 
#Estimated parameters of distribution of WTP and scale 
#alpha is scale parameter; 1/alpha is distributed log-normal 
#WTPs are dsitributed normal 
#Estimates are in Table 9 and 10 of Foundations 
 
#Mean, stdev, and correlation matrix of underlying normals: 
#Order: log(1/alpha), commercials, fast, mostly TV, mostly movies, share usage, 
share personal and usage 
normmn <- c(-2.0002, -1.562,  3.945,  -0.6988,  2.963, -0.6224, -2.705, -27.26) 
normstd <- c(1.0637, 3.940, 3.631,  4.857,  2.524,  2.494,  6.751,  19.42) 
r1 <- c(1, -0.5813, -0.1371,  0.0358, 0.0256, 0.0022, -0.1287, 0.2801) 
r2 <- c(0,  1.0000,  0.1172, -0.3473, 0.0109, -0.2562, -0.0079, -0.4108) 
r3 <- c(0,  0,       1.0000,  0.8042, -0.4019, -0.3542, -0.4206, 0.2391) 
r4 <- c(0,  0,       0,       1.0000, -0.5890, -0.1695, -0.3328, 0.4616) 
r5 <- c(0,  0,       0,       0,       1.0000,  0.5141, 0.5181, -0.0147) 
r6 <- c(0,  0,       0,       0,       0,       1.0000, 0.9370, -0.0563) 
r7 <- c(0,  0,       0,       0,       0,       0,      1.0000, -0.0975) 
r8 <- c(0,  0,       0,       0,       0,       0,      0,       1.0000) 
 
corrMat=rbind(r1,r2,r3,r4,r5,r6,r7,r8) 
corrMat=corrMat+t(corrMat) - diag(1,8); 
 
 
#Specification of services available and combinations of services. 
# Look like netflix (N), Amazon Prime (A), huluplus (H), and combos eg NA 
 
N <- c(7.99, 0, 0, 0, 1, 0, 0, 0) 
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A <- c(6.58, 0, 0, 1, 0, 0, 0, 0) 
H <- c(7.99, 0, 1, 0, 0, 0, 0, 0)   
                          
nos <- c(0,0,0,0,0,0,0,1) #No service 
#Create matrix of attributes of the 8 alternatives: 
xmat <- rbind(N,A,H,N+A,N+H,A+H,N+A+H,nos)  #8 alts x 8 attributes 
#Indicator of which alternatives have Hulu: 
hasH <- c(0,0,1,0,1,1,1,0) 
ndraws <- 1000000 
 
samplen <- c(86, 14, 12, 35, 21, 3, 22, 107) #Number of people in survey who chose 
each of the 8 alternatives 
 
mktshares <- samplen/sum(samplen) 
market <- sum(samplen)*(6/58) #in million. We know Hulu has 6m customers and 58 
people in the survey have Hulu 
 
#Create draws of coefficients 
set.seed(1234) 
coef <- matrix(rnorm(8*ndraws),8,ndraws) 
coef <- matrix(rep(normmn,times=ndraws),8,ndraws) + diag(normstd) %*% 
(t(chol(corrMat)) %*% coef) 
print("Check mean, std, and correlation matrix of draws against true") 
print("Means: simulated and true") 
print(cbind(rowMeans(coef),normmn)) #Check against normmn 
print("Stds: simulated and true") 
print(cbind( sqrt(diag(cov(t(coef)))), normstd)) #Check against normstd 
print("Correlation matrix, simulated first, then true") 
print(cor(t(coef))) #Check against corrMat  
print(corrMat) 
wtpsharing <- coef[7,] 
pcoef <- exp(coef[1,]); #For lognormally distributed price 
coef[1,]<- -pcoef;  #First coef is for price 
coef[2:8,] <- matrix(rep(pcoef, each=7),7,ndraws) * coef[2:8,] #Attribute coefs are 
wtp times price coef 
 
#Calculate representative decision utility and choice probabilities 
u <- xmat %*% coef  
eu <- exp(u) 
eu[is.infinite(eu)] <- 10^300 
p <- eu / matrix(rep(colSums(eu),each=8),8,ndraws) 
s <- rowMeans(p) 
 
# Adjust constants to equal market shares 
 
alpha <- matrix(0,8,1)  
oldu <- u 
 
for(count in 1:20){ 
  alpha <- alpha+log(mktshares / s) 
  u <- oldu+matrix(rep(alpha,times=ndraws),8,ndraws) 
  eu <- exp(u) 
  eu[is.infinite(eu)] <- 10^300 
  p <- eu / matrix(rep(colSums(eu),each=8),8,ndraws) 
  s <- rowMeans(p)  
} 
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print("ASCs") 
print(alpha) 
print("Predicted and actual market shares at ASCs") 
print(cbind(s,mktshares)) 
 
 
#Calculate welfare impact of lack of knowlegde of sharing by hulu-like service 
#Actual attributes; which includes sharing of usage and personal data by hulu 
#Same as above but now 1 in column 7 for Hulu, to indicate that Hulu shares 
personal and usage info: 
 
H[7] <- 1  
 
xmatnew <- rbind(N,A,H,N+A,N+H,A+H,N+A+H, nos)  #8 alts x 8 attributes 
unew <- xmatnew %*% coef  
unew <- unew + matrix(rep(alpha,times=ndraws),8,ndraws) 
eunew <- exp(unew); 
eunew[is.infinite(eunew)] <- 10^300 
pnew <- eunew / matrix(rep(colSums(eunew),each=8),8,ndraws) 
newshares <- rowMeans(pnew) 
diffu <- unew-u 
 
hold <- log(colSums(eu)) / pcoef 
lsdecision <- mean(hold)  #expected log sum based on decision utility 
hold <- log(colSums(eunew)) / pcoef 
lsrealized <- mean(hold) #expected log sum based on realized utility 
hold <- colSums(p * diffu) / pcoef 
squareloss<- mean(hold) #expected difference between perceived and actual utility 
in money metric 
 
hulusubscribers= t(mktshares) %*% hasH  
 
print("Difference between peoples realized utility and decision utility for chosen 
alternative") 
print("in money metric.") 
print("Aggregate, and per-person who subscribed to Hulu") 
print(cbind((squareloss * market), (squareloss / hulusubscribers))) 
 
print("Note: Conditional mean WTP (second number above) differs from unconditional 
mean of 2.70.") 
 
print("Difference between peoples realized utility and the utility they would have 
obtained if informed"); 
print("in money metric."); 
print("Aggregate, and per-person who subscribed Hulu") 
print(cbind(((lsdecision-lsrealized+squareloss) *market),((lsdecision-
lsrealized+squareloss) / hulusubscribers))) 
print("Hulu share") 
print("Actual choices, informed choices, percent difference") 
print(cbind(hulusubscribers,(t(newshares) %*% hasH),((t(mktshares-newshares) %*% 
hasH) / hulusubscribers))) 
 
 
#Break down analysis further by conditioning on choice and whether person likes or 
dislikes sharing info. 
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poswtp <- coef[7,]>=0 #These people like sharing their information; others dislike 
it. 
 
everrors <- matrix(runif(8*ndraws),8,ndraws) 
everrors <- -log(-log(everrors)) 
util <- u+everrors  
util <- util / matrix(rep(pcoef,each=8),8,ndraws)  #So utils are back in money 
metric 
utilnew <- unew+everrors 
utilnew <- utilnew / matrix(rep(pcoef,each=8),8,ndraws) 
 
i=max.col(t(util)) 
inew=max.col(t(utilnew)) 
c=matrix(0,1,ndraws) 
exper_util=matrix(0,1,ndraws) 
cnew=matrix(0,1,ndraws) 
 
for(n in 1:ndraws) { 
   chosenalt <- i[n] 
   c[1,n] <- util[chosenalt,n] 
   exper_util[1,n] <- utilnew[chosenalt,n] 
   newchosenalt <- inew[n] 
   cnew[1,n] <- utilnew[newchosenalt,n] 
} 
Huluer <- i == 3 | i == 5 | i== 6 | i==7 
NumHuluer <- sum(Huluer) 
NumHuluerPosWTP <- sum(Huluer * poswtp) 
NumHuluerNegWTP <- sum(Huluer *(1-poswtp)) 
print("Dollar difference in welfare relative what expected") 
print("Aggregate, per person, per Hulu subscriber") 
print("Everyone:") 
xx <- exper_util-c 
print(cbind(market * mean(xx), mean(xx), sum(xx)/NumHuluer)) 
print ("People whose dislike sharing:") 
xx <-(exper_util-c) * (1-poswtp) 
print(cbind(market * mean(xx), mean(xx), sum(xx)/NumHuluerNegWTP)) 
print("People whose like sharing:") 
xx <-(exper_util-c) * poswtp 
print(cbind(market * mean(xx), mean(xx), sum(xx)/NumHuluerPosWTP)) 
 
NumOther <- sum(1-Huluer) 
NumOtherPosWTP <- sum(Huluer*poswtp) 
NumOtherNegWTP <- sum(Huluer*(1-poswtp)) 
print("Dollar difference in welfare relative to being informed") 
print("Aggregate, per person, average for Hulu subscribers, average for non-
subscribers") 
print("Everyone:") 
xx <- exper_util-cnew 
print(cbind(market*mean(xx), mean(xx), mean(xx[Huluer==1]), mean(xx[Huluer==0]) )) 
print("People whose dislike sharing:") 
print(cbind(mean(1-poswtp)*market*mean(xx[poswtp==0]), mean(xx[poswtp==0]), 
mean(xx[Huluer==1 & poswtp==0]), mean(xx[Huluer==0 & poswtp==0]) )) 
print("People whose like sharing:") 
print(cbind(mean(poswtp)*market*mean(xx[poswtp==1]), mean(xx[poswtp==1]), 
mean(xx[Huluer==1 & poswtp==1]), mean(xx[Huluer==0 & poswtp==1]) )) 
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choicemat <- array(0,dim=c(8,8,2)) #Rows for actual choice, cols for choice if 
informed, depth for wtp<>0 
exper_diff <- array(0,dim=c(8,8,2)) 
welfare_diff <- array(0,dim=c(8,8,2)) 
for(rr in 1:8) { 
  for(cc in 1:8) { 
     k <- (i == rr) & (inew == cc) & (poswtp==0) 
     choicemat[rr,cc,1] <- sum(k==1) 
     exper_diff[rr,cc,1] <- sum(c[k==1]-exper_util[k==1]) 
     welfare_diff[rr,cc,1] <- sum(exper_util[k==1]-cnew[k==1]) 
     k <- (i == rr) & (inew == cc) & (poswtp==1) 
     choicemat[rr,cc,2] <- sum(k==1) 
     exper_diff[rr,cc,2] <- sum(c[k==1]-exper_util[k==1]) 
     welfare_diff[rr,cc,2] <- sum(exper_util[k==1]-cnew[k==1]) 
  } 
} 
 
 
print("Hulu subscriber or not") 
matH <- matrix(c( hasH,(1-hasH)),8,2) 
subscribe1 <- t(matH) %*% choicemat[,,1] %*% matH 
subscribe2 <- t(matH) %*% choicemat[,,2] %*% matH 
print("Share of population who chose row and would have chosen col") 
print((subscribe1+subscribe2)/ndraws ) 
print("Of people who dislike sharing, share who chose row and would have chosen 
col") 
print( subscribe1/sum(subscribe1) ) 
print("Of people who like sharing, share who chose row and would have chosen col") 
print( subscribe2/sum(subscribe2) ) 
 
sink() 
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