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1 Introduction

A large body of evidence documents that high-quality early childhood programs boost the
skills of disadvantaged children.! Much of this research reports treatment effects of programs
on cognitive test scores, school readiness, and measures of early-life social behavior. A few
studies analyze longer-term benefits in terms of completed education, adult health, crime
and labor income.? Rigorous evidence on their long-term social efficiency is scarce.?

This paper investigates the social benefits and costs of an influential pair of essentially
identical early childhood programs conducted in North Carolina that targeted disadvantaged
children. The Carolina Abecedarian Project (ABC) and the Carolina Approach to Respon-
sive Education (CARE)—henceforth ABC/CARE—were evaluated by randomized control
trials. Both programs were launched in the 1970s. Participants were followed through their
mid 30s. The programs started early in life (at 8 weeks of life) and engaged participants
until age 5. They generated numerous positive treatment effects.* Parents of participants
(primarily mothers) received free childcare that facilitated parental employment and adult
education. The program has a 13.7% (s.e. 3%) per-annum tax-adjusted internal rate of

return and a 7.3 (s.e. 1.84) tax-adjusted benefit/cost ratio.

The program is a prototype for many programs planned or in place today.® About 19%

1See Cunha et al. (2006), Almond and Currie (2011), Duncan and Magnuson (2013), and Elango et al.
(2016) for surveys.

2Examples include: Heckman et al. (2010a), Havnes and Mogstad (2011), and Campbell et al. (2014).

3Belfield et al. (2006) and Heckman et al. (2010b) present a life cycle cost-benefit analysis of the Perry
Preschool Program. Our approach is more comprehensive in terms of the outcomes analyzed and in providing
a general methodology that can be replicated to assess the social efficiency of other programs.

4A companion paper, Garcia et al. (2018), reports these treatment effects. Participants in ABC/CARE
benefit in terms of both cognitive and socio-emotional skills, education, employment and labor income, and
risky behavior and health. The parents of participants benefit in terms of labor income and education.

®Programs inspired by ABC/CARE have been (and are currently being) launched around the world.
Sparling (2010) and Ramey et al. (2014) list numerous programs based on the ABC/CARE approach. The
programs are: Infant Health and Development Program (IHDP) in eight different cities in the U.S. (Spiker
et al., 1997); Early Head Start and Head Start. (Schneider and McDonald, 2007); John’s Hopkins Cerebral
Palsy Study in the U.S. (Sparling, 2010); Classroom Literacy Interventions and Outcomes (CLIO) study.
(Sparling, 2010); Massachusetts Family Child Care Study (Collins et al., 2010); Healthy Child Manitoba
Evaluation (Healthy Child Manitoba, 2015); Abecedarian Approach within an Innovative Implementation
Framework (Jensen and Nielsen, 2016); and Building a Bridge into Preschool in Remote Northern Territory
Communities in Australia (Scull et al., 2015). Current Educare programs in the U.S. are also based on



of all African-American children would be eligible for ABC/CARE today.’ Implementation
of the ABC/CARE program in disadvantaged populations would be an effective, socially
efficient policy for promoting social mobility.”

This paper addresses a fundamental problem that arises in evaluating social programs.
Few program evaluations have complete life-cycle histories of participants. In our data,
the oldest experimental subject is in his/her mid 30s. At issue is determining the life-cycle
impact of the program. We forecast the full life-cycle benefits and costs of the program using
non-experimental data guided by economic theory.®

As a byproduct, we also address the problem of aggregating evidence from the multi-
plicity of treatment effects found in ABC/CARE. We estimate economically interpretable
aggregates: internal rates of return and benefit/cost ratios that monetize the large array of
benefits and costs generated. In constructing these aggregates, we account for model estima-
tion and forecasting error and the welfare cost of taxation to fund programs. Our estimates
survive extensive sensitivity analyses.

We construct synthetic cohorts from non-experimental samples. The cohorts are chosen
to approximate the life cycles of experimentals in their post-experimental years. We formu-
late and estimate production functions that predict program treatment effects and assess
their within-sample forecast accuracy. Some of the inputs of the estimated production func-

tions are changed by treatment and are measured in both experimental and non-experimental

ABC/CARE (Educare, 2014; Yazejian and Bryant, 2012). Appendix A.8 lists these Educare programs, all
of which implement curricula based on ABC/CARE.

643% of African-American children were eligible at its inception.

"Garcfa and Heckman (2016) estimate that if ABC/CARE were implemented on the current stock
of eligible children, the intra-black gap (black disadvantaged relative to black advantaged) in high-school
graduation, years of education, employment and labor income at age 30 for females would be reduced by
110%, 76%, 22%, and 30%, respectively. It would eradicate the intra-black high-school graduation gap,
reduce the years of education gap to 0.12 years, reduce the employment gap to 14 percentage points, and
reduce the labor income gap to 4,075 USD (2014). For males, the program would eradicate the intra-black
high-school graduation gap, reduce the years of education gap to 0.18 years, and reduce the employment gap
to 9 percentage points.

8Ridder and Moffitt (2007) discuss data combination methods. These methods are related to the older
“surrogate marker” literature in biostatistics (see e.g., Prentice, 1989). However, as noted below, exogeneity
is an integral part of the models we estimate, although it is not considered in the statistics literature. That
literature does not provide testable predictions for validation of its forecasts as we do.



samples. If the production functions mapping inputs to outputs across cohorts are unaffected
by treatment (i.e., are “treatment invariant”), we can safely use them to forecast treatment
effects at older ages provided that we accurately forecast the path of future inputs. We test
and do not reject treatment invariance in experimental and non-experimental samples that
overlap in age.” We forecast experimental treatment effects using our estimated production
functions applied to non-experimental data with inputs and outputs suitably adjusted for
cohort effects.

Our analysis is a template for estimating the life-cycle gains of social experiments for
which there is less than full lifetime follow-up. Supplementing experimental data with non-
experimental data enhances the information available from social experiments. Using eco-
nomic theory and econometric methods to generate empirically concordant forecasts en-
hances the credibility of the procedure.

The quest for long-run estimates from experiments with short-term follow-up has recently
led to application of informal procedures for estimating long-term benefits using short-term
measures of childhood test scores (e.g. Chetty et al., 2011; Kline and Walters, 2016). We
show by example that these procedures can give very misleading estimates of true life cycle
program benefits by focusing on earnings, not counting the full array of benefits generated,
and relying solely on test scores to predict future earnings.

This paper proceeds in the following way. Section 2 describes the ABC/CARE program.
Section 3 discusses our methodology for forecasting life-cycle outcomes and the evidence
supporting our assumptions. To make matters concrete, we consider in detail how we fore-
cast life cycle labor income. Section 4 discusses how we forecast other life-cycle outcomes.
Section 5 reports baseline estimates of internal rates of return and benefit/cost ratios and re-
ports an array of sensitivity analyses. Section 6 uses our estimates to examine the predictive

validity of widely used informal forecasting methods. Section 7 summarizes our findings.

9See Hurwicz (1962) for the definition treatment (policy) invariance. We build on the methodology of
Heckman et al. (2013), who relate intermediate and long-term outcomes in a mediation analysis. However,
they do not construct out-of-sample forecasts.



2 ABC/CARE: Background

The Carolina Abecedarian Project and the Carolina Approach to Responsive Education
(ABC/CARE) were enriched childcare programs that targeted the early years of disadvan-
taged, predominately African-American children in Chapel Hill, Durham, and Raleigh in
North Carolina.'® Appendix A describes these programs in detail. We summarize their
main features here.

The goal of these programs was to enhance the life skills of disadvantaged children. They
supported language, motor, and cognitive development as well as socio-emotional competen-
cies considered crucial for school success including task orientation, the ability to communi-
cate, independence, and pro-social behavior.!! They also provided free health screenings to
treatment-group members with costs of medications borne by the parents.

The design and implementation of ABC and CARE were very similar. Both had two
phases, the first of which lasted from birth until age 5. In this phase, children were randomly
assigned to treatment. The second phase of the study consisted of home visits from ages 5
through 8 that were assigned by a second-stage randomization. The first phase of CARE,
from birth until age 5, had an additional treatment arm of home visits designed to improve
home environments.'?

ABC recruited four cohorts of children born between 1972 and 1976. CARE recruited two
cohorts of children, born between 1978 and 1980. For both programs, families of potential
participants were referred to researchers by local social service agencies and hospitals at the
beginning of the mother’s last trimester of pregnancy. Eligibility was determined by a score
on a childhood “risk index” of disadvantage.

Our analysis uses data from the first phase and pools the ABC treatment group with

that of the CARE treatment groups. We do not use the data from the CARE group that

10Both ABC and CARE were designed and implemented by researchers at the Frank Porter Graham
Center of the University of North Carolina in Chapel Hill.

HSparling (1974); Ramey et al. (1976, 1985); Wasik et al. (1990); Ramey et al. (2012).

12Wasik et al. (1990).

13See Appendix A.2 for details on the construction of the “risk index” used to determine eligibility.

4



only received home visits in the early years. Campbell et al. (2014) test and do not reject
the hypothesis that the CARE data through age 5 (without home visits) and the ABC data
through age 5 come from the same distribution.

The initial ABC sample consisted of 120 families. Due to attrition and non-response, the
study sample was reduced to 114 subjects: 58 in the treatment group and 56 in the control
group. In CARE;, the initial sample had 65 families: 23 were randomized to a control group,
25 to a family education treatment group, and 17 to a center-based childcare treatment
group that followed ABC protocols.'* We use standard weighting methodologies to account
for attrition, non-response, and missing data.'®

For both programs, data were collected annually on cognitive and socio-emotional skills,
home environments, family structure, and family economic characteristics from birth until
age 8. After age 8, data on cognitive and socio-emotional skills, education, and family
economic characteristics were collected at ages 12, 15, 21, and 30.'° In addition, there is
information from administrative criminal records, and from a physician-administered medical
survey, when the subjects were in their mid 30s.'” Many control-group children in both ABC

and CARE attended alternative formal childcare arrangements (75% and 74% respectively).®

3 Forecasting Life-cycle Costs and Benefits: Method

To explain our forecasting procedure, the following notation is useful. W = 1 indicates

that parents referred to the program participate in the randomization protocol. W = 0

“There were no randomization compromises in CARE. During preschool, 5 subjects attrited (3 in the
treatment group, 1 in the family education group, and 1 in the control group). Details on attrition and
non-response are presented in Appendix A.3.

15See Appendix C.2.

16 At age 30, measures of cognitive skills are not available for both ABC and CARE.

17See Appendix A.7 for a more comprehensive description of the data. There, we document the balance
in observed baseline characteristics across the treatment and control groups after dropping the individuals
for whom we have no crime or health information. There is substantial missing data for these outcomes,
which we address using the methodology exposited in Appendix C.

18The alternative arrangements were generally lower quality than ABC/CARE (see Appendix A.6.1 for
details). In our main analysis, we compare treatment- and control-group children, irrespective of take-up of
alternatives. In Appendix F, we address the problem of substitution bias (Heckman, 1992; Heckman et al.,
2000; Kline and Walters, 2016). We disaggregate our analysis to distinguish treatment effects by type of
alternative selected by the control group.



indicates otherwise. R indicates randomization into treatment (R = 1) or control (R = 0).
D indicates whether or not a family attends the program. D = R implies compliance with
the initial randomization protocol. Lowercase variables d and r denote realizations of D and
R, respectively. We suppress individual subscripts to avoid notational clutter.

Individuals are eligible to participate in the program if their baseline background vari-
ables B € By, where B, is the set of scores on the childhood risk index that determines
program eligibility. Because all of the eligible individuals with the option to participate
chose to do so (W = 1, and D = R), we can safely interpret the treatment effects gener-
ated by the experiment as average treatment effects for the eligible population and not just
average treatment effects for the treated.'”

Define Y,! as the outcome vector at age a for the treated. Y is the age-a outcome
vector for the controls. At age a the vector of average treatment effects for the population

for which B € B is:

A, ::E[Y;—YﬂW:l] :E[Y;}—Y;O\BEBO} : (1)
Randomization identifies this parameter in the experimental sample.

3.1 Using Economic Models to Make Forecasts

This paper uses economic models to generate unbiased, out-of-sample forecasts of A,. We
use a structural production function (mediation) model for treatment (D = 1) and control
(D = 0) outcomes at age a in sample k € {e,n}, where e denotes membership in the
experimental sample and n denotes membership in a non-experimental (auxiliary) sample.

The vector of production functions for output Y,;fa is:

Y;vc,la = ¢Z,a(X1?,av Bk) + Ez,aa (2>

19 All providers of health care and social services (referral agencies) in the area of the ABC/CARE study
were informed of the programs. They referred mothers whom they considered disadvantaged. Eligibility was
corroborated before randomization. Conversations with the program staff indicate that all but one of the
referred mothers attended and agreed to participate in the initial randomization (Ramey et al., 2012).



d € {0,1},k € {e,n},a € {1,..., A} where ¢, (-,-) is a vector of structural production
relationships mapping inputs X, By, into outputs holding the error term ef , fixed.”" By
are baseline variables not affected by treatment. X ,‘ia are variables potentially affected by
treatment. A is the oldest age through which benefits are projected. In the experiment we
analyze, participants are observed through age a* < A.

The relationship between the inputs X ,ia, B, and outputs Y}fa can, in principle, differ
between experimental and non-experimental samples although in our data this is not the
case. Equation (2) characterizes the outcomes of the two treatment regimes in any sample,
including a non-experimental sample with no direct empirical counterpart for the case d = 1.
We present conditions for identifying and estimating ¢i7a (+,+) in non-experimental samples.
A crucial condition is that for fixed values of inputs X , = , B), = b there are no differences
in the technologies and in the distributions of szﬂ across treatment regimes and samples.

We first formalize this assumption and then remark on its content.

Assumption A—1 Structural Invariance For all x,b € supp(X,‘ia, B,),k € {e,n}, and

ae{l,..., A}

Dpq (z.D) = ¢y o(x,b)
= ¢a($, b>7 (3&)

where ¢q(x,b) is the common structural function (across d and k) generating the determin-

istic portion of the effect of By = b, X,‘ia = x on outcomes and

F, (| Fiz X!, =z,B,=b) = F.,(| Fiz X!, =z,B,=b)
= F, (| Fiz X,ia =z,B,=b), (3b)

where F,ia (z| Fix Q = w) is the distribution of Z for Q fized at w and F, (z| Fix Q@ = w)
is the age-a distribution of the errors of the production functions, assumed to be common

across treatment regimes and samples given X,ia =x and By =0b. I

We clarify Assumption A-1 with two remarks.

20Fixing and conditioning are fundamentally different concepts. See Haavelmo (1943) and Heckman and
Pinto (2015) for discussions. The “do” operator in Pearl (2009) is an example of fixing.



Remark R—1 There are Two Distinct Aspects of Structural Invariance Assump-
tion A—1 has two distinct aspects that can be resolved further into two separate assumptions:
(i) structural relationships and distributions evaluated at the same arguments have identical
values for treatment and control groups in the experimental sample, and (ii) analogous con-
ditions hold across the experimental and non-experimental samples. Condition (ii) enables

analysts to stmulate treatment and control outcomes in non-experimental samples.

Remark R-2 Accounting for Cohort Effects A second aspect of Assumption A-1,
that the structural relationships and distributions are identical in the experimental and non-
experimental samples, embeds an implicit assumption about the absence of cohort effects
in the post-sample period for the experimental sample. In particular, a structural function

d . (x,b) or distribution F? (2| Fix Q = w), which we identify and estimate in the non-
experimental sample with subjects who are older than those in the experimental sample, is
a valid tool for forecasting the experimental sample at older ages currently out of the age
range of the experiment. Note that this does not mean that there are no cohort effects in the
outcome of interest, Y}C‘fa. Instead, it means that there are no cohort effects in the mapping
between Xy, ., By and Y}g‘fa, ke {en}.

To test Assumption A-1 in the experimental and non-experimental samples and to make
accurate forecasts at age a > a*, we require the common support conditions that we now

formalize. They are tested in Appendix C.3.6.

Assumption A—2 Support and Input Forecast Conditions For a € {1,..., A} and
de {0,1}
supp(Y., X2, Be,€ca) C supp(Y,ly, X2, B €n). (4)

e,a’ e,a’ n,a’ n,a’

We also require that the path of inputs in the post-treatment lives of the experimental treat-
ments and controls have counterparts in the non-experimental sample. This includes ac-

counting for cohort effects.

To make the discussion specific, we now consider how one can use this framework to

forecast life-cycle labor income.

3.2 Forecasting Labor Income

Step 1. Constructing a Synthetic Cohort. We use the Children of the National Lon-

gitudinal Survey of Youth (CNLSY) to construct a synthetic cohort from ages 21 to 29

8



using similarity with the baseline variables in the experimental samples (B). We use both
the National Longitudinal Survey of Youth 1979 (NLSY79) and the Panel Study of Income
Dynamics (PSID) to construct a synthetic cohort from ages 29 to 67. Whenever we use
the NLSY79 and PSID together, we combine samples. Thus we use three non-experimental
datasets to obtain information across the life cycle. We satisfy support conditions.?!
Because we do not observe each element of the eligibility index discussed in Section 2,
we approximate B, € By. We delimit the sample to include observations satisfying the
following criteria: (i) NLSY79: Black, labor income less than $300,000 (2014 USD) in any
given year, birth year between 1957 and 1965; (ii) PSID: Black, labor income less than
$300,000 (2014 USD), birth year between 1945 and 1981; and (iii) CNLSY: Black, labor
income less than $300,000 (2014 USD) in any given year, birth year between 1978 and 1983.
We weight individuals in the non-experimental samples according to their resemblance

22 'We match on baseline pre-treatment match

to individuals in the experimental sample.
variables: year of birth, gender, and number of siblings at baseline. All are available in
the non-experimental datasets. This procedure generates a synthetic cohort in the non-
experimental sample for subsequent analysis in our structural forecasting procedure.

By design, there is no treatment effect in the non-experimental sample. Matching to the
experimental sample is executed using baseline variables not affected by treatment in the
experimental sample. Figure 1 demonstrates that the synthetic cohort is comparable to the
control group of the experiment. At age 30, average observed labor income for the control
group in the experimental sample coincides with average labor income for the synthetic
cohort.*

Step 2. Establishing Exogeneity of Inputs. Forecasting does not require that we

take a position on the exogeneity of X, for k € {e,n} and a € {1,... A} with respect

21See Appendix C.3.6.

22We use Mahalanobis’ matching Algorithm 1 and weights derived from the Mahalanobis distances that
downweight dissimilar observations. See Appendix C for details.

23We observe labor income in the experimental samples at ages 21 and 30. We use the data at age 21 to
initialize our forecasting model and hence cannot use it for testing our forecast.
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to labor income. Estimated structural models with biased parameters can still give reliable
forecasts if relationships between observed and unobserved variables are the same within
sample and in the forecast sample.?* However, exogeneity facilitates the use of economic
theory to interpret treatment effects, to forecast outcomes in samples where inputs are
manipulated differently than in the experimental sample, and to test the validity of the
construction of our synthetic cohort. Exogeneity also makes identification of q&ia (+,-) in the
non-experimental sample straightforward. Assumption A-3 formalizes a strong form of the
exogeneity condition.

Assumption A—-3 Ezogeneity Let {1,..., A} index the periods of a life cycle. For all
a,a’ € {1,..., A} and for d,d € {0,1},

el , L X! |B,=b (5)

for all b in the support of By, k € {e,n}, where “M 1. N|Q” denotes independence of M
and N given Q. [

Below we discuss how this condition can be weakened and unbiased forecasts can still be
obtained.

To appreciate the benefit of Assumption A-3, consider the following example. Suppose
that years of education is a component of X d:a/. The joint distribution of ef , and X ,f:a, can
differ substantially across experimental and non-experimental samples. In the experimental
sample, years of education are boosted by treatment, which is randomly assigned. In the
non-experimental samples, however, there is no experimental variation. Individuals with
high observed levels of education could have high values of efia due to omitted ability. This
creates a fundamentally different dependence between ef , and X ;;{’a, in the non-experimental
sample. Assumption A-3 avoids this problem when making forecasts. Below, we establish
that our forecasts based on this assumption are concordant with forecasts from approaches

that do not necessarily require Assumption A-3.

248ee Liu et al. (2016). Conditions C-1 to C-3 in Appendix C.3 spell out the requirements.
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Step 3. Determining Inputs. Analysis of the non-experimental data reveals that
the inputs determining labor income under Assumption A-3 are: average PIAT achievement
score from ages 5 to 7, completed education, labor income at age 21, and lagged labor income.
Appendix Table C.3 shows that these variables predict labor income. Appendix C.3.6 shows
that there is common support across datasets. We report tests for endogeneity of these
variables in the experimental and auxiliary samples used in this paper in Appendix C.3.7.%
After conditioning on X ,ff’a and By, we do not reject the null hypothesis of exogeneity.
Accordingly, we use OLS for making our baseline estimates.

Table 1 displays the treatment effects of the program for these inputs.?® Assignment to
treatment has statistically and economically significant causal effects on the inputs generating
final outcome treatment effects. Our forecasted treatment effects are based on these program-
induced changes in inputs. For females, it increases the average PIAT score by almost one
third of a standard deviation.?” For males, the effect is almost half of a standard deviation.
The program substantially boosts high school graduation for females and college graduation
for both males and females. We use years of education attained to summarize both effects
in a measure that is comparable across genders. Labor income at age 21 for girls is not
greatly boosted by the program. This arises in part because treated girls are more likely
to be enrolled in college at age 21 and thus do not work at that age. The program boosts

annual labor income, especially for males, for whom the average treatment effect at age 30

is almost 20,000 (2014 USD).*

2These tests are based on the assumption that sﬁy o for k € {e,n} is characterized by a factor structure.
The factors are predicted by measurements of cognitive and non-cognitive skills. We use estimated factors
as control functions. We do not reject the null of exogeneity. See Appendix C.3.7. Factor structure models
are widely used in structural estimation of production functions of skills during early childhood. See, e.g.,
Cunha and Heckman (2008) and Cunha et al. (2010).

26We first present raw treatment-control mean differences. As we report in Table 1, the treatment effects
are substantial across multiple outcomes. In some cases, this finding is at odds with what other studies report
(Ramey et al., 1985; Clarke and Campbell, 1998; Campbell et al., 2001, 2002, 2008, 2014). The difference
is explained, mainly, by the fact that we consider effects by gender. Only Campbell et al. (2014) consider
treatment effects by gender. They focus on health effects and find that men have many more positive effects
especially in cardiovascular and metabolic conditions if compared to women. This is consistent with the
results we report below.

27The test is standardized to an in-sample standard deviation of 15 units.

28Table 1 displays age-21 and age-30 labor income because labor income is observed at ages 21 and 30 in
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Table 1: Summary of Treatment Effects for Inputs Generating Labor Income (X,f’a)

Females Males
Control Average Control Average

Inputs Mean Treatment Effect Mean Treatment Effect
PIAT Scores 95.63 4.92 93.46 7.70

High School Graduation 0.51 0.25 0.61 0.07
College Graduation 0.08 0.13 0.12 0.17
Years of Education 11.76 2.14 12.90 0.66
Labor Income at 30 23,443.42 2,547.50 29, 340.31 19,809.74

Note: This table shows the control-group level and the raw mean difference between treatment and control
(average treatment effects), by gender. PIAT scores have a sample mean of 100 and a standard deviation
of 15. High school and college graduation are expressed in rates. Labor income is in 2014 USD. Average
treatment effects are bolded when statistically significant at the 10% level.

Step 4. Testing the Empirical Implications of Assumption A—1. Under Assump-
tion A-3, we build on Heckman et al. (2013) to test for invariance. Condition (3a) of As-
sumption A—1 combined with Assumptions A-2 and A-3 and the normalization E(ggﬂ) =0

for all @ € {1,..., A}, generates the following testable implications:

E[Y X ,=x,B.=bD=1] = E [Ye?a|Xga =x,B.=b,D =0 (6a)

E [Yja|X;{a =z, B.=bD=d = E[Y,,X,.,=xB,="0l, (6b)

for d € {0,1} where Y,, , is the counterpart of Y., in the non-experimental sample.
If the only goal is to construct unbiased forecasts of mean treatment effects, the minimal
requirement is that experimental treatment effects should equal differences in the conditional

0

means of the non-experimental samples evaluated at X, , = &' and X, , = ° respectively:

E[Y.|X!, =2',B.=bD=1] -E[Y’|X°, =2° B, =b,D = 0]

=E [V, 4| Xno=2" B, =b] —E[Y,. X, =2", B, =b]. (6¢)

Equations (6a) and (6b) are sufficient conditions for Equation (6¢) to hold. We test

the experimental sample. Labor income at age 30 is an input in our methodology only after age 30.
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Condition (6a) across treatment regimes and Condition (6b) for d = 0 at age 30, where
we observe labor income in the experimental sample for both the treatment and the con-
trol groups. Assuming linearity, if Condition (6a) holds, the coefficient associated with D,

denoted by T, should be zero in
Yigo =1 D+ Be-vls+ Xy - By + el (6a)

Failing to reject the null hypothesis Hy : = 0 is equivalent to failing to reject invariance
across treatment regimes.

Panel (a) of Table 2 displays estimates of the coefficients of Equation (6a) for labor
income at age 30 by gender. We do not reject the null hypothesis that the technology is
invariant across treatment regimes for either gender.?” Panel (b) of Table 2 reports estimates
for the remaining coefficients in Equation (6a). Years of education is strongly boosted by
ABC/CARE (see Table 1).

Define K = 1 (k = e) as an indicator of whether an observation comes from the exper-
imental sample. The coefficient on K, denoted by 7, should be zero in the following linear

technology (i.e., Hp : m = 0 if Condition (6b) is true)
Yisz0 =7 K+ B Yr30 + Xi30 - Br30 + €k (6b)

Panel (c) in Table 2 displays estimates of the parameters of Equation (6b) for labor

income at age 30 for males and females. Estimates of m are small and not statistically

significant.?® We do not reject the null hypothesis that the technologies are invariant across

samples so the data are consistent with invariance.

29Note that after accounting for background variables and the intermediate inputs, average labor income
is $2,213 (2014 USD) higher in the control group for females. This value is relatively small in the context of
annual labor income at age 30 and given that the average in the control group is $23,443 (2014 USD). The
same holds for the males, where the treatment-control difference is $232 net of inputs and the average for
the control group is $29,340 (2014 USD).

30The averages of labor income in the experimental and non-experimental sample for females and males
are $24, 584 and $40,007, and $24,098 and $32,717 (2014 USD), respectively.
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Table 2: Testing Invariance in Technologies (gbfia (x, b)) of Labor Income at Age 30

Females Males
coefficient  p-value coefficient p-value

Panel (a). Invariance Across Treatment Regimes
D (treatment indicator) -2,212.806  0.586 231.606 0.969

Panel (b). Precision of Estimated Coeflicients of (6a)
B, (baseline variables)

Mother’s Education (at birth) -957.0972  0.387  1,850.201 0.358
X4, (age-30 inputs)

PIAT (5-7) 5.726 0.975 327.186 0.338
Years of Education (30) 2,356.143  0.006  4,474.721 0.018
Labor Income (21) 0.218 0.320 0.322 0.175
R? 0.281 0.207
Observations 52 50

Sample: Experimental Treatment and Control Groups at Age 30

Panel (c). Invariance Across Experimental and Non-Experimental Samples
K (treatment indicator) -142.631 0.965  1,887.575 0.654

Panel (d). Precision of Estimated Coefficients of Counterpart to (6b)
in the Non-experimental Sample

By, (baseline variables)

Mother’s Education (at birth) -229.481 0.631 427.224 0.459
X! 4, (age-30 inputs)

PIAT (5—7) 266.1971 0.002 219.220 0.044
Years of Education (30) 4,263.156  0.000  4,434.173 0.000
Labor Income (21) 0.355 0.000 0.685 0.000
R? 0.221 0.182
Observations 829 746

Sample: Experimental Treatment and Control Groups and Non-
Experimental Synthetic Cohort at Age 30

Note for Panel (a) and (b): Estimates of the coefficients in Equation (6a) for labor income at age 30 by
gender within the experimental sample. D denotes the treatment indicator (D = 0 for control-group par-
ticipants and D = 1 for treatment-group participants). B, is comprised of baseline variables not affected
by treatment (mother’s education at birth) and X 330 is age-30 intermediate inputs. We drop labor income
observations above the 95" percentile to avoid precision issues.

Note for Panel (c) and (d): Estimates of the coefficients in Equation (6b) for labor income at age 30 by
gender pooling the experimental treatment and control groups and the synthetic cohort at age 30. K de-
notes membership to the experimental or non-experimental sample (K = 0 synthetic cohort in the non-
experimental sample and K = 1 experimental sample). By, is comprised of baseline variables not affected
by treatment (mother’s education at birth) and X 5’30 is age-30 intermediate inputs.
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We use analogous procedures to test Condition (3b) of Assumption A-1. First, we test
invariance in the distributions of 5%,(1 across treatment regimes within the experimental sam-
ple for labor income at age 30. Then, invoking invariance across treatment regimes, we
test invariance across the experimental and non-experimental residual distributions. Resid-
uals are generated from the estimated forecasting model in Equation (2) assuming a linear
technology. We adjust the residuals for model estimation error as explained in step 8 of

Appendix C.7.1.

Table 3: Testing Invariance in Distributions of the Error Terms (F] ﬁa) of Labor Income at

Age 30

Females Males

Panel (a). Invariance Across Treatment Regimes

Equality in means t-stat  p-value  t-stat p-value
1.075  0.287  -0.0390 0.969
Equality in distributions K-S p-value K-S p-value
0.272 0.632

Sample: Experimental Treatment and Control Groups at Age 30

Panel (b). Invariance Across Experimental and

Non-Experimental Samples

Equality in means t-stat p-value  t-stat p-value
0.054  0.957 -0.226 0.822

Equality in distributions K-S p-value K-S p-value
0.481 0.046

Sample: Experimental Treatment and Control Groups and

Non-Experimental Synthetic Cohort at Age 30

Note for Panel (a): Tests for equality in distributions of residuals within the experimental sample across
treatment regimes at age 30 in labor income by gender. Residuals are the relevant outcome net of mother’s
education at birth, average PTAT test from ages 5 to 7, years of education at age 30, and labor income at
age 21. Residuals are adjusted for estimation error as explained in step 6 of Appendix C.7.1. Tests are a
t-test of equality in means and the Kolgomorov-Smirnov test.

Note for Panel (b): Tests for equality in distributions of residuals across the experimental and non-
experimental samples pooling the experimental treatment and control groups and the synthetic cohort at
age 30 for labor income by gender. Residuals are the relevant outcome net of mother’s education at birth,
average PIAT test from ages 5 to 7, years of education at age 30, and labor income at age 21. Residuals
are adjusted for estimation error as explained in step 6 of Appendix C.7.1. Tests are a t-test of equality in
means and the Kolgomorov-Smirnov test.

With the empirical counterparts of EZ’G in hand, we implement two tests to compare

the distributions in Table 3: t-tests of mean comparisons and Kolgomorov-Smirnov tests of
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equality of distributions. We do not reject equality of treatment and control distributions of
e{., for both females and males—Panel (a). As before, we pool the experimental treatment
and control groups and the synthetic cohort to test invariance across samples by gender. Ex-
cept for one hypothesis test of Condition (6b) for males, we do not reject the null hypothesis
of invariance across samples—see Panel (b).

Steps 5. Accounting for Estimation Error, Forecast Error, and Plausible
Ranges of Externally Supplied Parameters. We obtain standard errors from the em-
pirical bootstrap distribution. Our inference accounts for each step of our estimation pro-
cedure, as well as forecast error. We conduct sensitivity analyses for externally supplied
parameters. A step-by-step recipe for accounting for parameter uncertainty is presented in
Appendix C.7. The forecasted present value of the gain induced by treatment using the esti-
mates displayed in Figure 2 is $133,032 (s.e. $76,634) in 2014 USD. We explore the estimates
from alternative forecasting models in Appendix C.6.3! When pooling males and females
and when separating the samples by gender, the present value gains remain within a range
that does not change our inference that the program had substantial lifetime benefits.

Step 6. Validating Forecasts. Invariance across treatment regimes and samples is
the essential ingredient for constructing valid forecasts. Figure 2 displays our forecasted
labor income profiles. Forecasted and actual labor income are closely aligned in both the
treatment and the control regimes.*> Computing the net present value, the internal rate of

return and benefit/cost ratios is straightforward once age-by-age forecasts are available.??

31 As both a referee and various discussants of our paper have pointed out, our identification and estimation
strategies do not impose cross-sectional restrictions. We use different datasets to identify and estimate the
¢, (x,b) for each outcome (e.g., labor income, health, crime). Thus, the predictor variables that we are able
to use differ across outcomes and we cannot conduct joint estimations.

32The content in Figure 2 is sufficient but not necessary to calculate the gain of the program due to
labor income. It would be sufficient to forecast the difference between the treatment and control groups.
Forecasting the levels, however, provides us with additional testable implications. It also allows us to easily
account for forecasting error and to verify that the life-cycle profiles that we estimate are comparable to
observed profiles for similar socio-economic groups. The pattern of life-cycle labor income we generate is
typical for that of low-skilled workers (Blundell et al., 2015; Gladden and Taber, 2000; Sanders and Taber,
2012; Lagakos et al., 2016).

33Some practical details involved in doing this are in Appendices C.4 and C.5.
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3.2.1 Alternative Forecasting Models for Labor Income

An alternative non-parametric forecasting method compresses the whole forecasting proce-
dure. Under Assumptions A-1 and A-3, we can use matching on baseline variables and
variables affected by treatment to construct counterparts to the experimental treatment and
control groups in the non-experimental sample.?* Matching is a non-parametric estimation
procedure for conditional mean functions. Matching creates direct counterparts in the auxil-
iary sample for each member of the experimental sample. Instead of estimating a model for
the life-cycle profile of labor income and forecasting from it, we directly use the counterpart

matched profiles.®®

This is an intuitively appealing non-parametric estimator of life-cycle
program treatment effects that is valid under exogeneity (Heckman and Navarro, 2004).

This is a fundamentally different matching procedure than what is used to construct the
synthetic cohort in Step 1. In the main analysis of this paper, we match on baseline variables
not affected by treatment to construct a synthetic cohort with B € By. Using these samples,
we estimate production functions on this cohort to forecast out-of-sample treatment effects.
In contrast, in the analysis of this subsection, we match both on baseline variables (B)
and on variables affected by treatment (X ,ia) compressing the construction of the synthetic
cohort and the estimation of the production functions for out-of-sample forecasts to a single,
non-parametric procedure.

Table C.12 shows that there is close agreement between non-parametric estimates based
on matching and the more parametric model-based approach previously presented. This

reassuring concordance is consistent with exogeneity of inputs and structural invariance.*¢

34Heckman et al. (1998) discuss this procedure.

35See Appendix C.3.5 for details.

36Note that the non-parametric estimates are more tightly estimated because there are fewer steps in
estimation. We are conservative in using the less precisely estimated forecasts in our main analysis.
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4 Forecasting Other Life-cycle Benefits

In this section, we adapt the methodology described in Section 3 to forecast the net benefits of
the program arising from enhanced parental income, health, and reduced crime. In the text,
we focus on forecasting health benefits and briefly discuss forecasts of crime and parental
labor income.?” Procedures for forecasting the benefits and costs of education are reported

in Appendix D.

4.1 Health

One contribution of this paper is forecasting and monetizing the life-cycle benefits of the
enhanced health and reduced health costs of participants using a version of Equation (2).
The model recognizes that: (i) health outcomes such as diabetes, heart disease, or death
are absorbing states; and (ii) there is no obvious terminal time period for benefits and costs
except death, which we forecast.

We adapt the Future Adult Model (FAM)—a forecasting model for health conditions
and costs developed by Dana Goldman and coauthors (Goldman et al., 2015).3% We forecast
health outcomes of program participants from their mid 30s up to their projected age of
death.? Our version of FAM passes a variety of specification tests and accurately forecasts
health outcomes and health behaviors.?’

Our methodology has four steps—extensive details are provided in Appendix G: (i) follow
an adapted version of the steps in Section 3 to predict the health state occupancy probabil-
ities for the ABC/CARE subjects; (ii) estimate quality-adjusted life year (QALY) models

using the Medical Expenditure Panel Survey (MEPS) and the PSID;*! (iii) estimate medical

37 Appendices E and C.3.8 provide further documentation.

38 Appendix G discusses the FAM methodology in detail. It is not a competing risks model, but forecasts
vectors of incidence and costs of disease one category at a time using univariate models.

39The simulation starts at the age in which we observe the subjects’ age-30 follow-up.

40Goldman et al. (2015) present tests of the model assumptions and predictive performance for population
aggregate health and health behavior outcomes.

41QALY is a measure which reweighs a year of life according to its quality given the burden of disease
(Dolan, 1997; Shaw et al., 2005).
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cost models using MEPS and the Medicare Current Beneficiary Survey (MCBS), allowing
estimates to differ by health state and observed characteristics; and (iv) forecast the medical
expenditures and QALYs that correspond to the simulated individual health trajectories.*?

Our application of FAM uses the information on age-30 observed characteristics and a
mid-30s health survey allowing us to account for components that are important for fore-
casting health outcomes. The models forecast the probability of having any of the major
disease categories and health states at age a 4+ 1 based on the state of health as summarized
by major disease categories at age a.*?

Using the occupancy probabilities for each health outcome at each age, we take a Monte-
Carlo draw for each subject. Each simulation depends on each individual’s health history
and characteristics. For every simulated trajectory of health outcomes, we forecast the life-
cycle medical expenditure using the models estimated from the MEPS and the MCBS. We
estimate the expected life-cycle medical expenditure by taking the mean of each individual’s
simulated life-cycle medical expenditure.

The models estimated using MCBS represent medical costs in the years 2007 to 2010. The
MEPS estimation captures costs during 2008 to 2010. To account for real medical cost growth
after 2010, we adjust each model’s forecast using the method described in Appendix G.2.3.
The same procedure is applied to calculate QALYs. We compute QALY based on a widely-
used health-related Quality-of-Life measure available in MEPS.** We then apply this model
to the PSID data. QALY's monetize the health of an individual at each age. Although there
is not a clear age-by-age treatment effect on QALYSs, there is a statistically and substantively

significant difference in the accumulated present value of the QALYs between the treatment

42As part of step (i), we impute some of the variables used to initialize the FAM models (see Ap-
pendix G.1.6.1).

43Gee Tables G.1 to G.3 for a summary. Our forecasts are based on two-year lags, due to data limitations
in the auxiliary sources we use to simulate the FAM. For example, if the individual is 30 (31) years old in
the age-30 interview, we simulate the trajectory of her health status at ages 30 (31), 32 (33), 34 (35), and so
on until her projected death. Absorbing states are an exception. For example, heart disease at age a does
not enter in the estimation for heart disease at age a + 1 because it is an absorbing state: once a person has
heart disease, she carries it through the rest of her life.

“HRQoL measure EQ-5D.
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and the control groups.*

We estimate three models of medical spending: (i) Medicare spending (annual medical
spending paid by parts A, B, and D of Medicare); (ii) private spending (medical spending
paid by a private insurer or paid out-of-pocket by the individual); and (iii) all public spending
other than Medicare. Each medical spending model includes the variables we use to forecast
labor and transfer income, together with current health, risk factors, and functional status
as explanatory variables.

We also calculate medical expenditures before age 30.° The ABC/CARE interviews
at ages 12, 15, 21 and 30 have information related to hospitalizations at different ages and
number of births before age 30. We combine this information along with individual and

family demographic variables to use MEPS to forecast medical spending for each age.

4.2 Crime

To estimate the life-cycle benefits and costs of ABC/CARE on crime, we use rich data ob-
tained from public records. Two previous studies consider the impacts of ABC on crime:
Clarke and Campbell (1998) use administrative crime records up to age 21, and find no sta-
tistically significant treatment effects. Barnett and Masse (2002, 2007) analyze self-reported
crime at age 21. They lacked access to the longer-term, administrative data that we use and
report weak treatment effects on crime. Our study improves on this research in two ways: (i)
we use administrative data on the accumulated number of crimes that participants commit
through their mid 30s; (ii) we use micro-data specific to the states in which participants
grew up, as well as other national datasets, to forecast criminal activity from the mid 30s
to 50. We forecast using methods standard in the criminology literature.*” See Appendix E

for a complete discussion of our crime forecasts.

450ur baseline estimation assumes that each year of life is worth $150,000 (2014 USD). Our estimates
are robust to substantial variation in this assumption, as we show in Appendix H.

46See Appendix G.2.4.

47Cohen and Bowles (2010) and McCollister et al. (2010).
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4.3 Parental Labor Income

ABC/CARE offers childcare to the parents of treated children for more than nine hours a day
for five years, 50 weeks a year. Only 27% of participant mothers of children reported living
with a partner at baseline. This barely changed during the course of the experiment (see
Appendix A). The childcare component generates substantial treatment effects on maternal

8 In addition, subsidized childcare

labor force participation and parental labor income.*
induced wage growth due to enhanced parental educational attainment and through wage
growth due to work experience.

We observe parental labor income at eight different ages for the participants through
age 21.%9°0 To estimate the profile of parental earnings over the entire life-cycle, we use two
different approaches in Appendix C.3.8: (i) an approach based on projections using standard
Mincer equations; and (ii) an approach based on the analysis of Section 3.

Any childcare inducements of the program likely benefit parents who, at baseline, did
not have any other children who were not eligible for program participation. Additional
childcare responsibilities would weaken the childcare effects of ABC/CARE, especially if
younger siblings are present. In Appendix C.3.8, we show that the treatment effect for
discounted parental labor income is much larger when participant children have no siblings

at baseline. Treatment effects weaken when comparing children who have siblings younger

than 5 years old to children who have siblings age 5 years or older."

48There is also an effect on maternal school enrollment. Some of the mothers of participants decided to
enroll in school and further their education. This could be one of the reasons why they make more money
afterward. We quantify the social cost of additional education in Appendix D.

49The ages at which parental labor income is observed are 0, 1.5, 3.5, 4.5, 8, 12, 15, and 21. At age 21
the mothers of the ABC/CARE subjects were, on average, 41 years old.

50We linearly interpolate parental labor income for ages for which we do not have observations between
0 and 21.

5IThese patterns persist when splitting the ABC/CARE sample by gender, but the estimates are not
precise because the samples become too small. See Appendix C.3.8.
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4.4 Program Costs

The yearly cost of the program was $18,514 per participant in 2014 USD. We improve on
previous cost estimates by using primary-source documents.”® Appendix B discusses program

costs in detail.

5 Estimates and Sensitivity Analysis

Figure 3 summarizes our findings. It displays the discounted (using a 3% discount rate)
life-cycle benefits and costs of the program (2014 USD) pooled across genders, over all
outcome categories, and for separate categories as well.”® These benefits are the inputs of
our baseline estimates for the annual internal rates of return and benefit/cost ratios. We
conduct extensive sensitivity and robustness analyses to produce ranges of plausible values
for the estimates of the internal rate of return (8.0, 18.3) and benefit/cost ratio (1.52, 17.40).
We document that no single component of benefits drives our estimates.

The costs of the program are substantial, as frequently been noted by critics.”® But
so are the benefits, which far outweigh the costs. The individual gains in labor income,
parental labor income, crime, and health are at least as large in magnitude as the costs.
As a consequence, our measures of social efficiency remain statistically and economically
significant even after eliminating the benefits from any one of the four main components
that we monetize.

Pooling males and females, the program is socially efficient: the internal rate of return

52Qur calculations are based on progress reports written by the principal investigators and related docu-
mentation recovered in the archives of the research center where the program was implemented. We display
these sources in Appendix B. The main component is staff costs. Other costs arise from nutrition and services
that the subjects receive when they were sick, diapers during the first 15 months of their lives, and trans-
portation to the center. The control-group children also receive diapers during approximately 15 months,
and iron-fortified formula. The costs are based on sources describing ABC treatment for 52 children. We
use the same costs estimates for CARE, for which there is less information available. The costs exclude any
expenses related to research or policy analysis. A separate calculation by the implementers of the program
indicates almost an identical amount (see Appendix B).

53Using discount rates of 0%, 3%, and 7%, the estimates for the benefit/cost ratios are 17.40 (s.e. 5.90),
7.33 (s.e. 1.84), and 2.91 (s.e. 0.59), respectively. We report estimates for discount rates between 0% and
15% in Appendix H.1.

548ee, e.g., Fox Business News (2014) and Whitehurst (2014).
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and the benefit/cost ratio are 13.7% and 7.3, respectively. These estimates are statistically
significant, even after accounting for sampling variation and forecast and estimation error in
the experimental and auxiliary samples and the tax costs of financing the program.®®

We conduct an extensive set of sensitivity analysis. Table 4 displays the results of a
sensitivity analysis of the estimates of the benefit/cost ratio to alternative plausible assump-
tions. Table 5 presents the corresponding internal rates of return. Our estimates are not
driven by our methods for accounting for attrition and item non-response, by the condi-
tioning variables, by the functional forms of projection equations used when computing the
net-present values or by values of externally set parameters, such as the value of life intro-
duced in our predictions of crime and health costs.’® Although the internal rate of return
remains relatively high when using participant outcome measures only up to ages 21 or 30,
the benefit/cost ratios indicate that accounting for benefits that go beyond age 30 is impor-
tant. The return to each dollar is at most 3/1 when only considering benefits up to age 30
(see the columns in the forecast span rows).

Accounting for the treatment substitutes available to controls also matters. Males benefit
the most from ABC/CARE relative to attending alternative formal childcare, while females
benefit the most from ABC/CARE relative to staying at home. We explore these differences
futher in Appendix F.

Our baseline estimates account for the deadweight loss caused by distortionary taxes
collected to fund programs, plus the direct costs associated with collecting taxes.”” We

assume a marginal tax rate of 50%.°® Our estimates are robust to dropping it to 0% or

55We obtain the reported standard errors by bootstrapping all steps of our empirical procedure, including
variable selection, imputation, model selection steps, and forecast error (see Appendix C.7).

56See Appendix C for a detailed discussion.

5"When the transaction between the government and an individual is a direct transfer, we consider 0.5
as the cost per each transacted dollar. We do not weight the final recipient of the transaction (e.g., transfer
income). When the transaction is indirect, we classify it as government spending as a whole and consider
its cost as 1.5 per dollar spent (e.g., public education).

8Feldstein (1999) estimates that the deadweight loss caused by increasing existing tax rates (marginal
deadweight loss) may exceed two dollars per dollar of revenue generated. We use a more conservative value
(0.5 dollars per dollar of revenue generated). In Tables 4, 5, and in Appendix H.2, we explore the robustness
of this choice of the welfare cost and find little sensitivity.
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doubling it to 100% (deadweight loss columns). Our baseline estimate of benefit/cost ratios
is based on a discount rate of 3%. Not discounting roughly doubles our benefit/cost ratios,
while they remain statistically significant using a higher discount rate of 7% (discount rate
columns).

Parental labor income effects induced by the childcare subsidy are an important compo-
nent of the benefit/cost ratio.”® We take a conservative approach in our baseline estimates
and do not account for potential shifts in parental labor income profiles due to education
and work experience subsidized by childcare (see the discussion in Section 4.3). Our base-
line estimates rely solely on parental labor income when participant children are ages 0 to
21. Alternative approaches considering the gain for the parents through age 67 generate
an additional increase in the gain due to parental labor income (see parental labor income
columns).%

Individuals in ABC/CARE could experience positive cohort effects that might (i) make
them more productive and therefore experience wage growth; (ii) experience a negative shock
such as an economic crisis and therefore experience a wage decline. Our estimates are robust
when we vary annual growth and decay rates in labor income between —0.5% and 0.5%.
This is consistent with the range of values in Lagakos et al. (2016).

We also examine the sensitivity of our estimates to (i) dropping the most costly crimes
such as murders and rapes;’! and (ii) halving the costs of victimization and judiciary costs
related to crime. The first sensitivity check is important because we do not want our esti-
mates to be based on a few exceptional crimes. The second is important because estimates

of victimization costs are controversial because they are subjective (see Appendix E.3). Our

59There is no inconsistency between the weak female treatment effects on wages at age 30 and the high
lifetime net present value treatment effect for earnings given life-cycle wage growth attributable to enhanced
inputs (education, PIAT scores, etc.).

60Tf labor markets operate without frictions and the marginal rate of substitution between leisure and
consumption equals the marginal wage rate, parental labor income should not be valued at the margin. The
bottom box of Figure 4 shows that the benefit/cost ratio and the internal rate of return remain sizable
in magnitude and statistically significant if we omit parental income from the benefits attributed to the
program.

61Two individuals in the treatment group were convicted of rape and one individual in the control group
was convicted of murder.
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benefit/cost estimates are robust to these adjustments, even though crime is a major com-
ponent of it. We also examine the sensitivity with respect to our main health component:
quality-adjusted life years. This is an important component because healthier individuals
survive longer, and treatment improves health conditions. Since this component is largely
realized later in life and thus is heavily discounted, improvements in future medical care have
a negligible effect on the estimated life-cycle benefits. Dropping this component or doubling

the value of life does not have a major impact on our calculations.

Figure 4: Benefit/Cost Ratio and Internal Rate of Return when Accounting for Different
Combinations of the Main Benefits

Parental Income
Health

\ 5.7%
0.57 19
4.6% 8.7%
1.7 2.5
3.4% 4.0%
’ 1.3
Crime Labor Income

Note: This figure presents all possible combinations of accounting for the benefits from the four major
categories in our analysis. The non-overlapping areas present estimates arising from a single category as the
benefit. Where multiple categories overlap, we account for benefits from each of the overlapping categories.
The other components remain constant across all calculations and are the same as in Figure 3. Health
combines QALYs (quality-adjusted life years) and health expenditure. Inference is based on non-parametric,
one-sided p-values from the empirical bootstrap distribution. We put boxes around point estimates that are
statistically significant at the 10% level.

Figure 4 summarizes the results from our extensive sensitivity analyses reported in Ta-
ble H.1 of Appendix H, including the case where only one of the many streams we consider
is the source of the benefit. We calculate the estimates with all possible combinations of

the main benefit and cost streams. Our measures of economic efficiency remain statistically
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and economically significant even after eliminating the benefits from any one of the four
main components that we monetize. Overall, our sensitivity analyses indicate that no single
category of outcomes drives the social efficiency of the program. Rather, it is the life-cycle

benefits across multiple dimensions of human development.

6 Assessing Recent Benefit-Cost Analyses

We use our analysis to examine the empirical foundations of the approach to benefit/cost
analysis taken in a prototypical study of Kline and Walters (2016), which in turn is based
on estimates taken from Chetty et al. (2011).52 Although widely emulated, this approach
offers an imprecise approximation of benefit/cost ratios with questionable validity.

Kline and Walters (2016) use data from the Head Start Impact Study (HSIS) and report
a benefit/cost ratio between 1.50 and 1.84.°% Their analysis proceeds in three steps: (i)
calculate program treatment effects on cognitive test scores measured around age 5;% (ii)
monetize this gain using the return to cognitive test scores measured between ages 5 and
7 in terms of net present value of labor income at age 27 using the estimates of Chetty
et al. (2011);5%:56:67 and (iii) calculate the benefit/cost ratio based on this gain and their own
calculations of the program’s cost.%8:6

To analyze how our estimates compare to those based on this method, we present a series
of estimates in the fourth column of Table 6. For purposes of comparison, the fifth column

of Table 6 shows the analogous estimates based on our samples and forecasts.

52Examples of application of this approach include Attanasio et al. (2011), Behrman et al. (2011), and
Lafortune et al. (2018).

63HSIS is a one-year-long randomized evaluation of Head Start (Puma et al., 2010).

64They use an index based on the Peabody Picture Vocabulary and Woodcock Johnson III Tests.

65The Chetty et al. (2011) return is based on Stanford Achievement Tests.

66For this comparison exercise, we interpret the earnings estimated in Chetty et al. (2011) to be equivalent
to labor income.

67Calculations from Chetty et al. (2011) indicate that a 1 standard deviation gain in achievement scores
at age 5 implies a 13.1% increase in the net present value of labor income through age 27. This is based on
combining information from Project Star and administrative data at age 27.

68 Their calculation assigns the net present value of labor income through age 27 of $385,907.17 to the
control-group participants, as estimated by Chetty et al. (2011).

59 A1l monetary values that we provide in this section are in 2014 USD. We discount the value provided
by Chetty et al. (2011) to the age of birth of the children in our sample (first cohort).
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Table 6: Examining the Validity of Recent Ad Hoc Methods for Forecasting in Light of the
Analysis of This Paper

(1) (2) (3) (4) ()
Age NPV Source Component  Kline and Walters (2016)  Authors’ Method
Method
o7 Chetty et al. (2011) Labor income 0.58 (s.e. 0.28)
ABC/CARE-calculated Labor income 0.09 (s.e. 0.04) 1.09 (s.e. 0.04)
34 ABC/CARE-calculated Labor income 0.37 (s.e. 0.04) 0.15 (s.e. 0.05)
ABC/CARE-calculated All 1.21 (s.e. 0.05) 3.20 (s.e. 1.04)
Life-cvele ABC/CARE-calculated Labor income 1.56 (s.e. 0.08) 1.55 (s.e. 0.76)
“YEE ABC/CARE-calculated All 3.80 (s.e. 0.29) 7.33 (s.e. 1.84)

Note: This table displays benefit/cost ratios based on the methodology in Kline and Walters (2016) and
based on our own methodology. Age: age at which we stop calculating the net present value. NPV Source:
source where we obtain the net present value. Component: item used to compute net present value (all
refers to the net present value of all the components). Kline and Walters (2016) Method: estimate based on
these authors’ methodology. Authors’ Method: estimates based on our methodology. Standard errors are
based on the empirical bootstrap distribution.

For the first estimate, we calculate the benefit/cost ratio using both the “return to
IQ” and the net present value of labor income at age 27 reported in Chetty et al. (2011).
This calculation is the same type of calculation as that used in Kline and Walters (2016).
In the second exercise, we perform a similar exercise but use our own estimate of the net
present value of labor income at age 27.7° In this exercise, the standard errors account for
variation in the return because we calculate the return in every bootstrapped re-sample. In
that sense, our approach more accurately accounts for the underlying uncertainties when
compared to the approach of Kline and Walters (2016), who do not account for estimation
error in reporting standard errors. The estimated return is smaller because our sample is
much more disadvantaged than that used by Chetty et al. (2011).

The remaining exercises in Table 6 are: (i) increase the age range over which we calculate
the net-present value of labor income; or (ii) consider the value of all the components we
analyze throughout the paper, in addition to labor income. The more inclusive the benefits

measured and the longer the horizon over which they are measured, the greater the bene-

"0This allows us to compute our own “return to IQ” and impute it to the treatment-group individuals.
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fit/cost ratio. The final reported estimate, 7.3, is our baseline estimate that incorporates all
of the components across the life cycles of the subjects.

Our methodology provides a more accurate estimate of the benefits and costs of the
ABC/CARE program. We better quantify the effects of the experiment by considering the
full array of benefits over the whole life cycle. We also better approximate the uncertainty
of our estimates by considering both the sampling error in the experimental and auxiliary
samples, the forecast error due to the interpolation and extrapolation, and the sensitivity of

the estimates to externally specified parameters.

7 Summary

This paper presents a template for constructing economically interpretable summaries of the
multiple treatment effects generated from a randomized evaluation of a high-quality, widely
emulated early childhood program with follow-up through the mid 30s. We go beyond the
usual practice of reporting batteries of treatment effects. We report the costs and monetize
the treatments across numerous domains. We estimate the tax-adjusted internal rate of
return and the benefit /cost ratio of the program to assess the social efficiency of the program.
We use auxiliary information and economic models to guide monetization of treatment
effects and to extrapolate the measured benefits and costs to the full life cycles of participants.
We account for model estimation and forecast error and conduct extensive sensitivity analyses
of our estimates to alternative assumptions and methodologies. Under a variety of plausible
assumptions, we estimate that the tax-adjusted internal rate of return of the program ranges
from 8% to 18.3%. These estimates demonstrate the social profitability of ABC/CARE.
We conclude with a cautionary note. The program we study was targeted to a disadvan-
taged, predominately African-American population in a university town in North Carolina.
Blind generalization of our findings to other populations is clearly not warranted. In par-
ticular, there is no support in this study for universal application of ABC/CARE across all

socio-economic groups.
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However, the essential features of the ABC/CARE approach are currently in wide use
in a variety of early childhood intervention programs that target disadvantaged children. In
this sense, our analysis has lessons of general applicability to disadvantaged populations.

Our study indicates what is possible and that the possibilities are substantial.
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