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The role of speculation in driving asset prices has long been debated among economists

(Keynes, 1936; Fama, 1970; Shiller, 1981; Black, 1986).1 Modern empirical work on “spec-

ulative dynamics” begins with Cutler et al. (1991), who document short-run momentum

and long-run reversals in the prices of many diverse assets. These patterns are especially

strong during asset bubbles, which have drawn attention due to their frenzied activity and

subsequent social costs (Kindleberger, 1978; Shiller, 2005; Glaeser, 2013). Several distinct

theories have been offered to explain these asset pricing facts.2

This paper explores a less studied feature of asset bubbles—the speculative dynamics

of volume. Large swings in transaction volume consistently accompany price cycles (Stein,

1995; Genesove and Mayer, 2001; Hong and Stein, 2007), yet many theories of bubbles ignore

implications for volume. As Cochrane (2011) writes:

Every asset price “bubble”. . . has coincided with a similar trading frenzy, from
Dutch tulips in 1620 to Miami condos in 2006. . . . Is this a coincidence? Do prices
rise and fall for other reasons, and large trading volume follows, with no effect on
price? Or is the high price. . . explained at least in part by the huge volume? . . . To
make this a deep theory, we must answer why people trade so much.

Figure 1 plots time-series patterns in prices and volume for four distinct episodes: the 2000–

2011 US housing market, the 1995–2005 market in technology stocks, the experimental bub-

bles studied by Smith et al. (1988), and the 1985–1995 Japanese stock market. During these

episodes, prices and volume comove strongly. The figures also reveal a more nuanced feature

of the data: in each case, volume peaks well before prices. Improving our understanding of

bubbles requires focus on the complex, joint dynamics of prices and volume.

To take up this challenge, we first present a simple model of the joint speculative dynamics

of prices and volume during bubbles. Following past work, the model features extrapolative

expectations: investors expect prices to increase after past increases.3 The model departs

from past work in two ways. First, instead of featuring the standard dichotomy between

feedback traders and rational arbitrageurs, the model focuses on investors who differ not in

their beliefs but in their expected investment horizons. Some buyers plan to sell after one

1Harrison and Kreps (1978, p. 323) define speculation in the following way: “Investors exhibit speculative
behavior if the right to resell a stock makes them willing to pay more for it than they would pay if obliged
to hold it forever.”

2These theories include Cutler et al. (1990), De Long et al. (1990), Barberis et al. (1998), Daniel et al.
(1998), Hong and Stein (1999), Abreu and Brunnermeier (2003), Pástor and Veronesi (2006), Pástor and
Veronesi (2009), Piazzesi and Schneider (2009), and Burnside et al. (2016).

3Key models with extrapolative expectations include Cutler et al. (1990), De Long et al. (1990), Hong
and Stein (1999), Barberis and Shleifer (2003), Barberis et al. (2015), and Glaeser and Nathanson (2016).
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year, while others plan to hold for many years. The second departure involves specifying

a term structure for extrapolation. In particular, extrapolation declines with the forecast

horizon, so that short-run expectations display more sensitivity than long-run expectations

to past prices. When this term structure holds, past price growth disproportionately attracts

short-horizon investors, who in turn generate excess volume when they sell.

These modeling innovations benefit from much empirical support. Prior work estimating

extrapolative future expectations finds that short-run expectations display more sensitiv-

ity to past price changes than long-run expectations (Graham and Harvey, 2003; Vissing-

Jorgensen, 2004; Armona et al., 2016). In survey evidence from the National Association

of Realtors, expected holding times vary considerably across buyers in the housing market.

Furthermore, the share of respondents reporting an expected holding time of less than 3

years comoves strongly with recent house price growth.

We model a housing market populated by extrapolative investors with heterogeneous

horizons. Due to the generality of the stylized facts presented above, we abstract from

several special features of the housing market, such as debt and new construction, in order

to ease comparison with other asset markets. We focus on the housing market because

data availability allows us to test directly the model’s predictions about the composition of

buyers and sellers over the course of a bubble episode. In the model, potential buyers arrive

each instant and decide whether to buy a house. If they buy, they must hold the house for

some period, after which they are free to sell. The expected duration of this period and

the flow utility received during it vary across potential buyers. Potential buyers expect to

sell immediately upon the period’s expiration at the prevailing price. As in prior work (e.g.,

Hong and Stein, 1999), the asset price reacts sluggishly to changes in the number of potential

buyers who wish to buy. This “price stickiness” combines with extrapolative expectations

to generate positive feedback between price growth and demand that causes bubbles.

The model is analytically tractable, allowing us to characterize how prices, volume, and

the composition of buyers respond to a one-time demand shock. We partition time following

the shock into three epochs: a boom in which prices, volume, and the short-term buyer share

rise; a quiet in which prices continue to rise while volume and the short-term buyer share fall;

and a bust in which prices fall on low volume. This partition implies a lead–lag relationship

between volume and prices that is consistent with the data in Figure 1 and absent from other
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theories in which trading volume comoves with prices.4 In our model, price growth during

the boom attracts short-term buyers who raise volume by selling quickly. During the quiet,

demand from short-term investors falls due to a slowdown in price growth. This decline in

demand causes a drop in volume and makes it difficult for previous cohorts of short-term

buyers to sell their houses.

We prove that the increases in prices and volume during this cycle are larger when

the frequency of potential buyers with short horizons is greater. This finding ties together

prices and volume during bubbles by demonstrating that a single factor is responsible for

movements in both. Using the empirical literature on extrapolative expectations and the

survey evidence on expected holding times, we calibrate our model and find that the marginal

effect of short-term potential buyers on the price and volume booms is quantitatively large

and first-order relevant for explaining aggregate price and volume dynamics.

The second part of the paper documents new facts on the composition of buyers and

sellers during the recent US housing bubble using transaction-level data between 1995 and

2014 for 115 metropolitan statistical areas (MSAs) that represent 48% of the US housing

stock. While we organize the analysis around the model’s key predictions, these facts provide

a model-free depiction of the joint dynamics of prices and volume that highlights the role of

speculation in driving the bubble.

We present three facts concerning the composition of aggregate volume. First, much of

the 2000–2005 rise in volume comes from short-term investment, with 42% of the national

volume increase arising from the growth in sales of homes held for less than 3 years. The rise

in short-term sales also explains much of the variation in volume across MSAs and across

ZIP codes within each MSA. Second, as predicted by the model, the short-term buyer share

falls during the 2005–2006 quiet and subsequent bust. Finally, a sharp rise in non-occupant

purchases explains much of the variation in volume across and within MSAs between 2000

and 2005. This fact matches the model’s prediction of a rising share of “speculative buyers”—

those who would not buy absent expected capital gains—during the boom.

We then present three facts about the the joint price–volume relationship. First, the

lead–lag relationship between national prices and volume holds also within MSAs, with

MSA-level prices correlated most strongly with a 24-month lag of volume. Second, the

4Alternative theories that generate comovement without a clear lead–lag relationship have focused on
credit constraints (Stein, 1995; Ortalo-Magné and Rady, 2006), loss aversion (Genesove and Mayer, 2001),
or disagreement (Scheinkman and Xiong, 2003; Piazzesi and Schneider, 2009).
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2000–2005 rise in volume is driven entirely by new listings, whereas the 2005–2006 decline

in volume is due primarily to a slowdown in the rate at which listings sell. This dichotomy

matches the model’s predictions about the differential drivers of volume during the boom

and quiet. Finally, the 2000–2011 house price cycle was larger in MSAs where the 2000 level

of existing sales as a share of the housing stock was greater. As shown in our model, a higher

frequency of short-term buyers increases both steady-state volume and the amplitude of the

price response to the demand shock.

Related Literature

Our theoretical approach builds on the strand of papers beginning with Cutler et al. (1990)

and De Long et al. (1990) that explain asset price fluctuations using the interaction of

fundamental and feedback traders, who play roles similar to long-run and short-run investors

in our framework. The most closely related example is Hong and Stein (1999), who offer

a model of price underreaction and overshooting in which price stickiness arises due to the

slow diffusion of news about future dividends. Unlike our paper, this literature considers

neither the joint dynamics of volume and prices nor the role of heterogeneous holding times.

A literature going back to Amihud and Mendelson (1986) emphasizes the importance of

heterogeneous investment horizons for financial markets. Henderson and Ioannides (1989)

and Kan (1999) establish this heterogeneity in the housing market by showing that demo-

graphics like age and education predict both the actual and self-reported expectation of

the amount of time until moving. Edelstein and Qian (2014) demonstrate that the share

of short-term buyers, as measured by such predictive characteristics, comoves with house

prices between 1970 and 2005.5 Our paper draws out the implications of this underlying

heterogeneity for prices and volume in a bubble.

Our approach differs from but is complementary to models in which disagreement in-

creases both prices and volume in financial markets (Hong and Stein, 2007; Simsek, 2013;

Daniel and Hirshleifer, 2015).6 The seminal disagreement papers (Harrison and Kreps, 1978;

Scheinkman and Xiong, 2003) link prices and volume through comparative statics and hence

5Like us, Edelstein and Qian (2014) present a model in which short-term investors are more attracted to
expected capital gains than long-term investors. Unlike us, they do not solve for dynamics and do not derive
explicit results about the effect of short-term investors on prices and volume.

6Bailey et al. (2016) present empirical evidence that house prices and volume are higher in US counties
with larger disagreement about future house price growth. They measure an individual’s house price growth
expectations using the past house price growth experienced by the people in that individual’s social network.
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cannot explain the dynamics of volume over the course of a bubble episode in a single asset.

Penasse and Renneboog (2016) show that volume and short-term investment rise and fall

during a disagreement-induced bubble, but they assume that the extent of disagreement

exogenously rises and falls during the bubble. In our model of a bubble, the only exogenous

shift is a one-time initial demand shock.

That speculators anticipate wanting to sell in the near future distinguishes our framework

from several recent dynamic models of disagreement in bubbles. In Burnside et al. (2016), the

extent of disagreement varies over a bubble due to epidemiological forces governing random

meetings between optimists and pessimists. In their framework, volume rises primarily

due to an influx of optimistic buyers, which lowers the time that listings spend on the

market. However, this increase in volume is not accompanied by the variation in holding

times observed in the data. In Barberis et al. (2016), volume rises during a bubble through

a process called “wavering” in which the beliefs of investors unexpectedly change.7 The

unanticipated nature of these belief changes implies that speculators do not have short

investment horizons at the time of purchase, in contrast with our model and the empirical

evidence we present in Section 1.

A large literature surveyed by Han and Strange (2015) uses search and matching models

to understand some of the facts this paper presents concerning the joint dynamics of house

prices and sales. The housing market in these models often is a closed system in which the

joint buyer–seller problem determines equilibrium dynamics (Wheaton, 1990; Caplin and

Leahy, 2011; Dı́az and Jerez, 2013; Ngai and Tenreyro, 2014). This approach does not speak

to the significant entry of non-occupant and short-term buyers we document. As the entry

of such buyers explains 30% to 50% of the 2000–2005 rise in volume, our model explains an

important share of volume dynamics that is missed by search and matching models.8

Volume growth during the boom in our model comes entirely from an increase in listings,

whereas increases in the speed at which listings sell drive volume growth in several search and

matching models (Dı́az and Jerez, 2013; Head et al., 2014; Burnside et al., 2016; Hedlund,

2016). The 2000–2005 US housing boom matches our model well: as we show, listings

7Piazzesi and Schneider (2009) also present a model where investor beliefs unexpectedly change: optimistic
homebuyers unexpectedly become pessimists upon buying a house, leading to short-term trading volume.

8Relative to our paper, search and matching models are often less concerned with price determination.
In that literature, prices are usually set through Nash bargaining and react quickly to shocks rather than
exhibiting the autocorrelation present in the data. Caplin and Leahy (2011), Dı́az and Jerez (2013), Head
et al. (2014), and Guren (2016) discuss this point and propose solutions.
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increased sharply while selling speed remained flat. To establish this point we replicate the

empirical analysis of Ngai and Sheedy (2016), who further present a theoretical explanation

that stresses the moving decision of occupant homeowners. In contrast, our theory focuses

on the entry of short-term buyers into the housing market when prices are rising.

Our empirical findings contribute to a growing literature documenting the significant

role of speculators in the 2000s US housing cycle. Haughwout et al. (2011) and Bhutta

(2015) demonstrate the importance of investors—defined as borrowers with simultaneous

mortgages on multiple properties—for explaining mortgage credit growth during the boom.9

Using deeds records, we confirm their mortgage-based findings using the alternate definition

of non-occupant buyer proposed by Chinco and Mayer (2016). Bayer et al. (2011) and Bayer

et al. (2016) estimate increased entry of short-term buyers into the Los Angeles, CA housing

market during the boom, whereas Adelino et al. (2016) calculate a rise during this time

in the national share of house purchases sold within one year. Our analysis extends these

results by showing that the rise in short-term transactions accounts for much of the total

increase in volume.

Last, our model can help explain the relationship between prices and volume in the stock

market. Lee and Swaminathan (2000) and Jones (2002) show that higher volume predicts

lower subsequent returns, and Statman et al. (2006) and Griffin et al. (2007) document

a positive relationship between volume and recent returns. In our model these patterns

arise as a result of changes in the activity of short-horizon investors and are particularly

important during bubble episodes. In line with this mechanism, Cochrane (2002) and Ofek

and Richardson (2003) argue that short-horizon trading became more prevalent during the

technology bubble shown in Figure 1(b).

1 Motivating Evidence

1.1 The Term Structure of Extrapolative Expectations

Much of the early theoretical work on extrapolative expectations does not consider the

forward term structure of extrapolation. The two papers we are aware of that explicitly model

9Gao et al. (2016) calculate an increase in investor activity using HMDA data, and Nathanson and Zwick
(2017) show that developers increased their speculative land holdings during this time. Empirical studies of
speculation in other markets include Fu and Qian (2014) and Penasse and Renneboog (2016).
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how past price changes are extrapolated into expectations of future prices at varying horizons

are Barberis et al. (2015) and Glaeser and Nathanson (2016).10 In both papers, extrapolation

is modeled in a way that leads short-term expectations to exhibit more sensitivity to recent

price changes than long-term expectations. This approach, which we adopt in our model,

is supported by a growing body of empirical evidence suggesting that past asset returns

do indeed influence annualized expected capital gains more strongly over short versus long

future horizons.

In the housing market, Armona et al. (2016) survey expected capital gains over 1- and 5-

year horizons and relate those expectations to perceptions of recent local price changes. They

find that 1-year-ahead expectations are nearly five times more sensitive to perceived past

price changes than annualized 2-5-year-ahead expectations.11 Furthermore, when provided

with new information about local changes in house prices over the last year, respondents

in the survey update their forecasts of 1-year price gains more strongly than their 2-5-

year forecasts. Both of these facts suggests that short-run house price expectations display

significantly more sensitivity to past returns than do long-run expectations.

Similar evidence exists for the US stock market. Vissing-Jorgensen (2004) reports the

average expectation of annualized stock market returns over 1- and 10-year horizons among

respondents to the UBS/Gallup Index of Investor Optimism survey between 1998 and 2002.

Over this period, 1-year expectations moved closely with recent price changes—first rising

from 10% to 16% as stock prices increased, and then falling to 6% as prices fell. In contrast,

10-year expectations remained relatively constant over this period and were uncorrelated

with the large contemporaneous movements in the stock market.

These patterns persist even in a sample of more sophisticated survey respondents. The

Duke CFO Global Business Outlook, which surveys chief financial officers of US firms, pro-

vides data on annualized 1- and 10-year stock return expectations. Graham and Harvey

(2003) use data from the 2000–2003 waves of this survey and find that the 1-year expected

10Hong and Stein (1999) assume that past price changes are extrapolated linearly into a fixed future
horizon. Their model does not deliver predictions about the effects of recent price changes on expectations
at differing future horizons.

11The coefficient when regressing 1-year expectations on past 1-year price growth perceptions equals 0.262
(0.029), whereas the coefficient when regressing the implied 2-5-year annualized expectations on 1-year
perceptions equals 0.058 (0.012). Case et al. (2012) conduct a similar survey and report the 1- and 10-
year annualized capital gains expectations for the housing market at the city–year level. Using CoreLogic
county house price indices and their survey data, we find a coefficient of 0.246 (0.025) when regressing 1-year
expectations on the past year’s house price appreciation and a coefficient of 0.146 (0.038) when regressing
the annualized 10-year expectations on the past year’s house price appreciation.

7



risk premium (expected return less treasury yield) is positively and significantly related to

excess returns over the previous week, month, two months, and quarter, whereas the 10-

year annualized expected risk premium is slightly negatively related to these past returns.

In Appendix Table A1, we use the survey data from 2000 to 2011 and confirm that the

1-year expectations remain more sensitive to past returns than the 10-year expectations in

the longer sample.12 Thus, the available evidence all points toward a term structure for

extrapolation in which short-run forecasts are more sensitive to recent prices changes than

long-run forecasts.

1.2 Variation in Expected Holding Times

In the presence of a downward-sloping term structure for extrapolative expectations, our

model implies that recent price changes will differentially draw in short-term investors who

amplify volume by selling more frequently and destabilize prices through positive feedback.

The magnitude of these effects will depend on the degree of heterogeneity in the distribution

of expected holding times among prospective investors. While not much data are available

concerning the expected holding times of investors, the best data we are aware of, which

come from the housing market, suggest that investment horizons vary considerably across

individuals and commove strongly with recent price changes.

Each March, as part of the Investment and Vacation Home Buyers Survey, the National

Association of Realtors (NAR) surveys a nationally representative sample of around 2,000

individuals who purchased a home in the previous year. The survey asks respondents to

report the type of home purchased (investment property, primary residence, or vacation

property) as well as the “length of time [the] buyer plans to own [the] property.” Data on

expected holding times and the share of purchases of each type are available for 2008–2015.

Figure 2(a) documents the substantial cross-sectional heterogeneity in expected holding

times among respondents to the survey.13 Each bar reports an equal-weighted average of the

12Although the data are available from 2000 to 2016, we use only 2000–2011 to match the window used by
Greenwood and Shleifer (2014), who also find a coefficient of about 0.03 when regressing the 1-year return
expectation on the prior year’s return. Interestingly, the coefficients decline considerably when the 2012–2016
sample is included, possibly because declines in interest rates over this time both increased lagged returns
and decreased future return expectations.

13The bins in the figure are those used by the NAR in its data release (we do not have access to less
aggregated data). We reclassify respondents who have already sold their properties as having an expected
holding time in [0,1).
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share of recent buyers who report a given expected holding time across survey years. Averages

are reported separately by property type. Two facts stand out. First, the vast majority of

recent homebuyers (roughly 80%) report knowing what their expected holding time will be.

Second, there is wide variation in expected holding times among those who report. About

half of the expected holding times are between 0 and 11 years and are distributed somewhat

uniformly over that range. The survey question groups the remaining half of the responses

into a single expected holding time of greater than or equal to 11 years; however, there

may be substantial variation within that group as well. Expected holding times also vary

in an intuitive way across property types. Recent buyers of investment properties report

substantially shorter expected holding periods than recent buyers of primary residences or

vacation homes.

There is also significant variation in the time series. To demonstrate this variation, we

construct a “short-term buyer share,” which is measured as the fraction of respondents who

report an expected holding time of less than 3 years or had already sold their property by

the time of the survey.14 Across survey years, the short-term buyer share varies from 26%

to 41% for investment properties, from 10% to 22% for primary residences, and from 13%

to 34% for vacation properties. The weighted average of the short-term buyer share across

property types varies from 13% to 26%.

This variation over time is not random. As shown in Figure 2(b), the short-term buyer

share moves closely with recent price appreciation in the housing market.15 A simple re-

gression of the pooled short-term buyer share on the equal-weighted average year-over-year

change in the nominal quarterly FHFA US house price index during the survey year yields

a statistically significant coefficient estimate of 0.82.16 This coefficient implies that a recent

nominal gain of 10% in house prices is associated with an increase in the short-term buyer

share of 8.2 percentage points. The nominal house price appreciation in the US in 2005

was equal to 11% and was much larger in some metropolitan areas. Thus, changes in house

prices over the last cycle may have induced significant shifts in the distribution of expected

holding times among homebuyers at different points in the cycle.

14In constructing this measure, we omit respondents who do not know their expected holding time.
15Appendix Figure A1 shows that internet search queries for “house flipping,” an explicitly short-term

investment strategy, also move closely with the housing cycle in the US.
16Unlike the CoreLogic indices available to us that we use elsewhere in the paper, the FHFA house price

index covers the period 2015–2016. For this reason we use the FHFA index in Figures 2 and A1, which
match house prices to other data over that time.
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2 A Model of Investors with Heterogeneous Horizons

2.1 Primitives and Information Environment

We present an infinite-horizon, continuous-time model of a city with a fixed amount of

perfectly durable housing, normalized to have measure one. Agents go through a life cycle

with three possible phases: potential buyer, stayer, and mover. The flow utility of all agents

equals the sum of composite consumption (whose price is normalized to 1) and housing

utility received from owning a house in the city. Agents maximize the present value of this

flow utility using an instantaneous discount rate of r.

In each instant, agents arrive. Each agent begins as a potential buyer and must decide

between buying a home immediately and leaving the city forever. A potential buyer who

buys a home becomes a stayer. Stayers receive housing utility δ > 0 from living in the

city until receiving an idiosyncratic taste shock and becoming movers, at which point their

housing utility drops to 0. This taste shock arrives with an instantaneous Poisson hazard

λ > 0, which is distributed across potential buyers independently from δ and according to

a time-invariant probability density function f(λ). For any δ0 > 0, the measure of agents

arriving at t for whom δ ≥ δ0 equals Atδ
−ε
0 , where ε > 0 and

∫∞
0
λεf(λ)dλ exists.17

Potential buyers and movers maximize the present value of flow utility by choosing

whether to buy or list, respectively. Stayers do not sell their homes until becoming movers,

at which point they choose whether to list their homes for sale at the current price Pt. Until

selling, movers decide at each instant whether to list at the current price. All agents may

borrow or lend at the common discount rate r.

This environment contains three features common in the housing search literature: a

lockup period in which homeowners do not sell, a Poisson hazard of the expiration of this

lockup period, and a loss of housing flow benefits upon lockup expiration (Wheaton, 1990;

Caplin and Leahy, 2011; Burnside et al., 2016). In contrast to this literature, the Poisson

hazard may differ across agents in our model. Another contrast is that movers depart the

city after selling rather than simultaneously searching for another house. The absence of a

joint buyer–seller problem simplifies the model and matches the fact discussed in Section 4

17This heterogeneity in δ is necessary only to produce the demand curve in Lemma 3 that is a smoothly
decreasing function of the current price. We believe that a similar demand curve would hold in a model with
risk-averse agents and homogeneous δ. This alternate model may better describe the stock market because
dividends are the same for all owners of a stock.
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that the median seller in our data does not reappear as a buyer in the same MSA within a

year.

In addition to their individual types and the current price, all agents observe summary

information about the complete history of prices. In particular, there exists a function

ω(·)→ R that maps the history of prices into a single factor observed by market participants

at time t. We denote this factor by ωt ≡ ω({Pt′ | t′ ≤ t}). Potential buyers and movers use

ωt to form expectations of future prices, which govern their decisions of whether to buy or

list, respectively. Agents form expectations regarding price growth between time t and t+ τ

in a manner that is consistent with the following assumption:

Assumption 1. There exist functions γ and g such that for all δ, λ, τ ≥ 0 and Pt, ωt ∈ R,

E[Pt+τ/Pt | δ, λ, Pt, ωt] = 1 + γ(ωt)g(τ) (1)

and the following properties hold:

(a) (g(τ)/τ)′ < 0 for all τ > 0;

(b) g(0) = 0;

(c) γ(ω)g′(0) ≤ r for all ω ∈ R; and

(d)
∫∞
0
e−r

′τg(τ)dτ > 0 for all r′ > r.

Assumption 1(a) endows agents with extrapolative expectations that satisfy the empirical

evidence on the forward term structure presented in Section 1. The decrease of g(τ)/τ is

necessary and sufficient for nontrivial increases in ωt to raise short-term expected capital

gains more strongly than long-term expected capital gains:18

Lemma 1. Given (1), Assumption 1(a) holds if and only if

∂2

∂τ∂ωt
E

[
Pt+τ − Pt

τPt
| ωt
]
< 0

for all τ > 0 and ωt ∈ R such that γ′(ωt) > 0.

Assumption 1(b) imposes the weak constraint that E[Pt+τ/Pt] = 1 for τ = 0. Assumption

1(c) is necessary and sufficient for the expected growth rate of prices to always fall below r:

18Appendix A contains the proof of Lemma 1 as well as all other omitted proofs.
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Lemma 2. Given (1) and Assumptions 1(a) and 1(b), E[Pt+τ/Pt | ωt] < erτ for all τ > 0

and ωt ∈ R if and only if Assumption 1(c) holds.

In our risk-neutral framework, this condition is necessary for demand from arbitrarily short-

term buyers to be finite.19 Finally, Assumption 1(d) guarantees that an increase to γ(ωt)

raises the present value of expected capital gains for all potential buyers.

2.2 Equilibrium Quantities

Solving the model requires knowing the number of agents of each type at each point in time,

as well as the stock of previous listings that did not sell. In particular, we track the number of

potential buyers who decide to buy Dt and the number of stayers St. These jointly determine

the flow of listings Lt, the inventory of unsold listings It, and sales volume Vt.

Due to Lemma 2, Pt > e−rτE[Pt+τ | Pt, ωt] for all t and τ > 0, so movers always choose

to list their homes for sale. As a result, we may describe the evolution of listings using the

stock of stayers of each type λ, or St(λ). Because all new movers list, the flow of listings is

simply the total number of stayers receiving idiosyncratic mover shocks:

Lt =

∫ ∞
0

λSt(λ)dλ. (2)

Given At, Pt, and ωt, a measure Dt of potential buyers decide to buy. If Dt is less than

the number of homes listed for sale, then all interested potential buyers are able to buy.

Otherwise, homes are rationed randomly among the set of interested potential buyers. Let

Dt(λ) denote the measure of potential buyers of type λ who decide to buy. Then sales volume

to potential buyers of type λ equals

Vt(λ) =

Dt(λ) if Lt > Dt or It > 0

Dt(λ)
Dt

Lt if Lt ≤ Dt and It = 0,
(3)

where It is the inventory of unsold listings. The stayer stocks for each λ evolve according to

the law of motion

Ṡt(λ) = Vt(λ)− λSt(λ), (4)

19As shown in the proof of Lemma 2, Assumption 1(c) implies the stronger condition that E[Pt+τ/Pt |
ωt] < 1 + rτ for all τ > 0 and ωt ∈ R, which guarantees that the transversality condition holds as appears
to be the case empirically in housing markets (Giglio et al., 2016).
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which is the number of new buyers of type λ less the number of stayers of type λ who become

movers. Unsold listings follow the law of motion

İt = Lt − Vt, (5)

where Vt =
∫∞
0
Vt(λ)dλ equals total sales.

These expressions have two key implications for the dynamics of volume. First, volume

today depends on volume before, as past buyers become current sellers. Second, the number

of listings today depends both on the level of past volume and on the expected holding

periods among past buyers. The larger the number of past buyers with short horizons, the

larger the flow of current listings.

2.3 The Composition of Buyers

The interesting dynamics in the model concern how the composition of buyers—specifically,

the composition of expected holding periods—varies over the cycle. This composition de-

pends on the distribution of λ among buyers. The probability density function of λ among

buyers at time t is given by the function Vt(λ)/Vt. By (3), this function coincides with

Dt(λ)/Dt, the probability density function of demand across potential buyers at t. Thus to

understand how the composition of buyers varies over time, we must calculate the distribu-

tion of demand across λ.

To derive Dt(λ), we assume that potential buyers believe that they will sell their house

as soon as they list it:20

Assumption 2. Potential buyers believe that listing movers sell instantaneously.

One consequence of Assumption 2 is that the expected holding time of a buyer of type λ

equals 1/λ. The other consequence is that a potential buyer of type (δ, λ) tries to buy if the

current price is below the present discounted value of the housing utility she would receive

as a stayer plus the expected resale value of the house at the time she anticipates becoming

a mover. That is, a potential buyer tries to buy if and only if

Pt ≤
∫ ∞
0

λe−λτ
(∫ τ

0

e−rτ
′
δdτ ′ + e−rτEtPt+τ

)
dτ. (6)

20Appendix B microfounds Assumption 2 as a manifestation of limited attention.
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The value of δ at which a buyer of type λ is indifferent implies the equation for demand

given in Lemma 3.

Lemma 3. Demand from each λ type equals

Dt(λ) = f(λ)At︸ ︷︷ ︸
potential
buyer

measure

× (rPt)
−ε︸ ︷︷ ︸

fundamental
demand

× Σλ(ωt)︸ ︷︷ ︸
speculative
demand

,

where

Σλ(ωt) =

(
1− λγ(ωt)

r

∫ ∞
0

e−(r+λ)τg′(τ)dτ

)−ε
. (7)

Demand for each λ is composed of three terms. The first term f(λ)At equals the rela-

tive measure of potential buyers of type λ. The second term, which we call “fundamental

demand,” is a decreasing function of current prices with constant elasticity ε. This term re-

flects the relationship between demand and prices were prices to remain permanently at their

current level. The third term, which we call “speculative demand,” links current demand to

expected capital gains. If buyers expect prices to remain constant, then Σλ(ωt) ≡ 1 and spec-

ulative demand does not magnify total demand. Otherwise, speculative demand magnifies

total demand when buyers expect capital gains and attenuates total demand when buyers

expect capital losses, with the force of this multiplier depending on the buyer’s horizon.

Only speculative demand matters for variation in the composition of buyers over time, as

the other two demand components are always proportional to each other across λ types. As a

consequence, variation in the composition of buyers depends entirely on changes in expected

capital gains. Proposition 1 formally states this relationship using the log of speculative

demand, which we denote σλ ≡ log Σλ:

Proposition 1. At any ωt such that γ′(ωt) > 0, the following hold for all λ > 0.

(a) Expected capital gains increase speculative demand from all types: σ′λ(ωt) > 0.

(b) Short-term buyers are more sensitive to expected capital gains: ∂σ′λ(ωt)/∂λ > 0.

(c) Expected capital gains skew the composition of buyers shorter-term:

∂
∫ λ
0
Vt(λ

′)dλ′/Vt

∂ωt
≤ 0,

with equality if and only if R<λ ∩ supp f = ∅ or R>λ ∩ supp f = ∅.
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Part (a) formally states that greater expected capital gains increase demand. This effect

appears in any user cost model of housing (e.g., Poterba, 1984). The focus in most user cost

models is primarily the intensive margin demand for housing capital. Our model highlights

the extensive margin instead, as the stimulative effect of expectations on demand operates

through drawing new buyers into the market. Consistent with this mechanism, Agarwal et al.

(2015) document increased participation in the owner-occupied housing market in response

to rising prices.

Part (b) shows that the stimulative effect of capital gains is stronger for buyers with

shorter expected holding times. Buyers looking to make a “quick buck” are drawn to rising

prices more than those buying for the long run. The proof of Proposition 1 shows that

this effect follows from the higher sensitivity of short-term expectations to ωt embodied by

Assumption 1(a).

Part (c) links expected capital gains to the composition of buyers. Because short-horizon

buyers are more sensitive to capital gains, an increase in expected capital gains skews the

composition of buyers towards those with shorter holding times. This skewing occurs as long

as heterogeneity exists in f—that is, as long as | supp f | > 1.21 Proposition 1(c) explains the

evidence presented in Section 1 that both expected capital gains and the short-term buyer

share respond strongly to recent home price appreciation.

Proposition 1 illustrates the key mechanism generating time variation in volume in the

model, namely, time variation in the composition of holding periods for buyers and sellers

driven by time variation in expected capital gains. To close the model, we now specify how

prices are determined.

2.4 Equilibrium Prices

As pointed out by Barberis et al. (2015), extrapolative expectations do not generate pro-

tracted booms and busts in asset prices without some additional source of sluggish adjust-

ment. As the goal of this paper is to study volume dynamics during an extended price boom

and bust, we specify a sluggish price adjustment process rather than assuming a Walrasian

market in which prices equate the number of interested buyers and sellers at each instant.22

21If | supp f | > 1, then there always exists λ such that R<λ ∩ supp f 6= ∅ and R>λ ∩ supp f 6= ∅. If
| supp f | = 1, then such λ do not exist.

22An alternative source of sluggish adjustment is for agents to base extrapolative expectations on only
lagged prices and not the current price (Glaeser and Nathanson, 2016; Barberis et al., 2016).

15



The log price pt = logPt changes according to the rule

ṗt = c log(Dt/D), (8)

where c > 0 is a constant determining the speed of price adjustment, and D is given by

D =

(∫ ∞
0

λ−1f(λ)dλ

)−1
. (9)

As shown in Appendix A, (9) gives the unique value of D such that a steady state exists

in which all listings sell instantaneously and prices are expected to and do remain constant.

The rule in (8) brings prices towards such a steady state in a slow and predictable manner.

Appendix B microfounds (8) as the equilibrium outcome of a simple stock-flow matching

model. In this microfoundation, some sellers are inattentive as in Hong and Stein (1999),

Mankiw and Reis (2002), and Guren (2016) and do not adjust their listing prices in response

to abnormal levels of demand, while other sellers observe current demand and choose their

listing prices in response to it. The constant c is larger when the share of attentive sellers

is higher and the demand elasticity ε is lower. In equilibrium, the allocation of listed houses

to potential buyers coincides with the rule in (3).

3 The Joint Dynamics of Prices and Volume

We provide a series of propositions that characterize the relationship between prices and

volume over the course of a boom–bust cycle. We then present a numerical calibration,

which allows us to study the potential quantitative relevance of the factors driving the

model.

We focus on how volume and prices respond to a one-time permanent demand shock. In

particular, we study an impulse response around the unique steady state that results from a

single positive shock to the number of potential buyers, At, at a time we normalize to t = 0.

Specifically, At follows the path where At = Ai for t < 0 and At = Af > Ai for t ≥ 0.

To characterize how prices and volume respond to this shock, we impose additional

structure on how agents form expectations. We specify both the information that agents

have available to them when they form forecasts of future prices and how that information
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influences these forecasts, which are governed in the model by ω(·) and γ(·), respectively.

Following Barberis et al. (2015), we assume that agents observe only a weighted average

of past price changes:

ωt =

∫ t

−∞
µe−µ(t−τ)ṗτdτ, (10)

where the parameter µ > 0 measures the relative weight put on more recent price changes. To

study dynamics, it is useful to know how this average changes in response to an instantaneous

change in prices, which is simply the differential form of (10):

ω̇ = µ(ṗ− ω). (11)

Our specification of ω is sufficiently general that the impulse response may not always

result in a well-behaved boom and bust in prices. In some cases, prices may rise without

falling or they may oscillate indefinitely. We restrict focus to a parameter region in which a

boom is followed by a bust that asymptotes without indefinitely oscillating. In particular, we

require γ(·), the function mapping past price information to future expected price changes,

to satisfy the following assumption:

Assumption 3. γ(ω) ≡ 0 for ω ≤ 0, limω→0+ γ(ω) = 0, γ′(ω) > 0 for ω > 0, and

lim
ω→0+

γ′(ω) >
r

min(cε, µ)

(∫ ∞
0

∫ ∞
0

λe−(r+λ)τg′(τ)dτf(λ)dλ

)−1
.

The requirement that γ ≡ 0 for ω < 0 rules out oscillations after the bust, as agents

stop expecting capital gains once the historical average return becomes negative. The rest

of Assumption 3 guarantees that price increases initially beget further increases and that

prices eventually overshoot.

3.1 The Three Epochs

We present a series of propositions partitioning the boom–bust cycle into three epochs. To

define these epochs, we provide a lemma that guarantees that prices do not rise indefinitely:

Lemma 4. t2 ≡ min{t > 0 | ṗt = 0} exists.

The time t2 marks the first time that prices stop rising. We set V max ≡ max{Vt | t ∈ [0, t2]}
as the peak of volume during this rise in prices and t1 ≡ max{t ∈ [0, t2] | Vt = V max} to be
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the latest time this peak occurs (V max and t1 exist due to the continuity of Vt). The boom

is the period (0, t1], the quiet is the period (t1, t2], and the bust is the period (t2,∞).

Proposition 2 characterizes the boom:

Proposition 2. The boom exists (t1 > 0). Throughout the boom, prices rise and expected

capital gains are positive (ω > 0). At least initially, prices are convex (p̈ > 0), expected

capital gains rise (ω̇ > 0), no unsold listings accumulate (I = 0), and if | supp f | > 1,

volume rises (V̇ > 0) and listings rise (L̇ > 0). Volume remains constant throughout the

boom if | supp f | = 1.

As the proof shows, the shock to A at t = 0 causes demand D to jump above available

listings. As a result, the price of housing begins to increase, and this increase raises ω.

The rise in ω stimulates demand, further increasing prices and leading to convexity in the

price path. When | supp f | > 1, demand rises more sharply for potential buyers with higher

values of λ, causing an increase in listings and hence volume. Volume rises solely due to the

underlying heterogeneity in horizons among market participants—without this heterogeneity,

volume and listings remain constant during the boom.

Proposition 2 fits the 2000–2005 US housing market remarkably well. As shown in Fig-

ure 1(a), prices and volume rose during this time, with prices rising at an increasing rate.

According to the analysis of the Michigan Survey of Consumers presented by Piazzesi and

Schneider (2009), during 2002–2003 an increasing share of respondents said now was a “good

time to buy” a house, whereas during 2004–2005 an increasing share described housing as

“too expensive” while the share of respondents expecting further house price increases dou-

bled. This evidence is consistent with our characterization of the boom as an initial demand

shock followed by a period of rising prices and expected capital gains.

Proposition 3 characterizes the quiet:

Proposition 3. The quiet exists (t1 < t2) if and only if | supp f | > 1. Prices increase and

expected capital gains remain positive (ω > 0) throughout the quiet, and at least ultimately

prices are concave (p̈ < 0) and expected capital gains decrease (ω̇ < 0). Volume is lower at

the end of the quiet than at the beginning (Vt1 > Vt2), and unsold inventory may accumulate

(I > 0) during the quiet.

Prices continue to increase during the quiet by the definition of t2. Because ω averages

past price changes, it remains positive throughout the quiet. As time reaches t2, prices
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are concave as price growth slows, and this slowdown in price growth causes ω to fall.

The combination of rising prices and falling expected capital gains unambiguously lowers

demand. It falls to the steady-state value D at t2, as this is the unique value at which

price growth is flat according to the price adjustment rule (8). When | supp f | > 1, listings

may remain above this steady-state value because past capital gains have lured short-term

potential buyers disproportionately, so the decline in demand can trigger a buildup of unsold

inventory and a fall in volume. When | supp f | = 1, listings equal D for the entire time

between 0 and t2, so volume never falls as t2 is approached and the quiet fails to exist

because t1 = t2.

Proposition 3 fits the US housing market between 2005 and 2007. As shown in Figure

1(a), in 2005 volume began to fall and prices began to grow at a slower rate. Piazzesi and

Schneider (2009) report that the share of households in the Michigan Survey of Consumers

expecting further house price growth sharply fell from 2005 to 2007, and expected house

price growth in the four metropolitan areas surveyed by Case et al. (2012) also declined

during this time. This survey evidence is consistent with the fall in ω during the quiet.

Proposition 4 characterizes the bust:

Proposition 4. The limit of prices is limt→∞ pt = p0 + ε log(Af/Ai). Prices decline, unsold

inventory may exist (I > 0), and volume is weakly below its steady-state value (V ≤ D)—

strictly except possibly at isolated instants—during the bust until the limit is reached.

At the end of the quiet, demand equals the steady-state value D and is declining because

expected capital gains are falling. As the bust begins, demand falls below D and prices

begin to fall. The negative price growth triggers further declines in expected capital gains

and demand. This spiral stops once two conditions are met: expected capital gains reach

their minimum value of 0, and prices reach their “fundamental” value of p0 + ε log(Af/Ai).23

At this fundamental price, demand returns to its steady-state value of D and prices stabilize.

Because demand remains low until this limit is reached, volume lies below D and a stock of

unsold inventory may persist during this phase of the bust.

The bust corresponds to the period after 2007 shown in Figure 1(a) during which prices

23Prices do not overshoot on the decline because Assumption 3 rules out negative expected capital gains.
Without this assumption, prices would overshoot on the way down as is standard in models with extrapolative
expectations (e.g., Glaeser and Nathanson, 2016). Negative overshooting may occur empirically for a variety
of reasons, such as a continuing glut of listed houses (Shleifer and Vishny, 1992; Rognlie et al., 2016),
foreclosures (Guren and McQuade, 2015), or a contraction in credit (Garriga and Hedlund, 2016).
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fell and volume was lower than average. Low volume typically accompanies price declines in

the housing market (Stein, 1995; Genesove and Mayer, 2001; Ortalo-Magné and Rady, 2006).

Our explanation for this fact is that prices decline when housing has become overvalued

relative to fundamental demand. This overvaluation, combined with the sluggish adjustment

of prices, leads to an extended period during which prices decline towards their fundamental

value on low transaction volume.

The three epochal propositions produce two empirical predictions about the joint dy-

namics of prices and volume. First, volume leads prices over their joint cycle (assuming

heterogeneity in investment horizons). Second, the speed at which listings sell remains con-

stant over the boom, declines during the quiet as a stock of unsold inventory appears, and

remains low during the bust as the stock of unsold inventory persists on low volume.24

3.2 The Composition of Buyers over the Cycle

To illustrate the forces driving prices and volume over the three epochs, we now characterize

the relative contribution of short-term and speculative potential buyers to demand over the

cycle. A potential buyer is “speculative” if she would like to buy given ωt but would not

want to buy if the current value of ω were equal to 0. For a given λ, speculative potential

buyers have lower flow utility δ than nonspeculative potential buyers who would like to

buy. By Lemma 3, the share of demand attributed to speculative potential buyers equals∫∞
0

(1− Σλ(ωt)
−1)f(λ)dλ, which we term the speculative share.

Proposition 5 characterizes the evolution of the short-term buyer and speculative shares:

Proposition 5. For any λ′ such that R<λ′ ∩ supp f 6= ∅ and R>λ′ ∩ supp f 6= ∅, both the

speculative share and the share of buyers for whom λ > λ′ rise during the boom, fall but

remain above steady-state during the quiet, and fall during the bust.

Both the short-term buyer and speculative shares depend positively on ω, so Proposition 5

follows from the facts about ω established in Propositions 2–4.

Proposition 5 shows that speculative and short-term buyers begin to pull out of the

market during the quiet after becoming more prevalent during the boom. The level of their

24The model’s prediction on listing speed is not sharp because Propositions 3 and 4 prove only that unsold
listings may exist during the quiet and bust. In the calibration of the model below, we find that the stock
of unsold listings appears precisely at the beginning of the quiet and persists into the bust.
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activity during the quiet remains high, and it is this combination of high but decreasing

speculative activity that generates rising prices and declining volume during the quiet.

This proposition generates two empirical predictions. First, the short-term buyer share—

where the horizon is measured ex post as the amount of time between the purchase and the

next listing—should grow over the boom and fall during the quiet. Second, the speculative

share—measured as the share of buyers with low housing utility—should rise over the boom

and fall during the quiet.

3.3 Short-Term Buyers and the Size of the Cycle

Propositions 2–4 characterize the relative timing of the price and volume responses. We now

describe the relative magnitude of these responses. In particular, we show that a common

factor—the distribution of expected holding times f(·)—determines the magnitude of the

price and volume responses as well as the level of steady-state volume. The following propo-

sition characterizes the effects of increasing both the level of f(·) (in the sense of first-order

stochastic dominance) as well as its heterogeneity.

Proposition 6.

(a) An increase to f(·) raises V0 and Pmax while keeping P0 and P∞ constant.

(b) If 1 = | supp(fA)| < | supp(fB)| and fA < fB, then P
max/P0, P

max/P∞, V
max/V0, and

V0 are larger under fB than fA.

P∞ denotes the limiting price specified in Proposition 4.

As shown in the proof of Proposition 6(a), a larger f(·) raises steady-state volume V0 by

increasing the average speed at which stayers choose to list. A larger f(·) also raises the

speculative demand function Σ(·) because the demand of short-term buyers is more sensitive

to expected capital gains; this increase to Σ(·) raises the maximal price reached during the

cycle without changing the steady states. Proposition 6(a) makes the empirical prediction

that price cycles are larger in markets with higher steady-state volume.

Proposition 6(b) clarifies the importance of volume for understanding asset bubbles in

a special case. In this example, all potential buyers have the same expected holding time

under fA, while potential buyers have shorter and more variable expected holding times

under fB. As shown by the proposition, the price and volume responses during the cycle are
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larger under fB than fA. Volume is not a sideshow to prices, but rather a manifestation of

the speculative forces responsible for price dynamics. These speculative forces are captured

by the heterogeneity in f(·). We conjecture that a mean-preserving spread in f(·) always

increases Pmax and V max while leaving V0 unchanged. Although we are not able to prove

this conjecture, we verify it in our calibration below.

3.4 Calibration

To study predictions of our model quantitatively, we simulate the impulse response charac-

terized in Propositions 2–4. We choose parameter values using surveys and prior literature

to discipline the calibration and ask whether, subject to this parameterization, the changes

in volume and buyer composition are large.

Parameter Choices

Table 1 lists the model parameters and their sources. We calibrate f(·) using the expected

holding times reported in the NAR survey shown in Figure 2(a).25 To select µ, we rerun

the regression shown in Figure 2(b) by replacing the lagged four-quarter house price change

with ω as given by (10). We choose µ to maximize the R2 of this regression, leading us

to µ = 1.18 (standard error 0.64) and R2 = 68%. This estimate is noisy due to the small

amount of data used in the estimation, but it is close to the value of µ = 0.5 estimated by

Barberis et al. (2015) in the context of the stock market.

To calibrate g(·), we adopt the functional form g(τ) = ρ(1− e−τ/ρ). For all ρ, g′(0) = 1,

so ρ controls the extent to which the initial gain is extrapolated into the future. The half-life

of the cumulative gains implied by g(·) equals ρ log 2, so a larger ρ produces greater relative

sensitivity of long-term expected gains to short-term expected gains.26 In each year from

2014 to 2016, the New York Fed’s Survey of Consumer Expectations reports the median

expectation of house price growth in the United States over the next 1 and 5 years (see

Fuster and Zafar, 2015 and Kuchler and Zafar, 2016 for information on this survey). The

ratio of these expectations equals (1−e−5/ρ)/(1−e−1/ρ), so we use the sample ratios to obtain

25We map the expected holding time for each bin to its median, except for [11,∞), which we map to 20.
λ equals the inverse of the expected holding time for each bin (e.g., λ = 2 for an expected holding time of
0.5 years). Using the share of sales to each property type in each year, we calculate f(·) for each year and
then take an equal-weighted average across years to obtain the distribution used in the calibration.

26The half-life is the value τhl such that g(τhl) = (1/2) limτ→∞ g(τ).
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a value of ρ = 20.9 (half-life of 14.5 years). An alternative method is to use the coefficient

estimates from Armona et al. (2016) of the relative sensitivities of 1-year and 5-year forward

capital gains expectations to the prior year’s house price appreciation. By equating these

estimates to g(τ) limω→0+ γ
′(ω) for τ = 1 and τ = 5, we obtain a much smaller number of

ρ = 1.4 (half-life of 1.0 year).27 We use the average of these two numbers as our baseline,

and return to each extreme in the sensitivity analysis.

To calibrate γ(·), we adopt the functional form γ(ω) = r(1 − e−φω/r) for ω > 0. Here,

φ > 0 is a free parameter governing the sensitivity of expectations to small increases in ω. As

required by Assumption 1, γ(ω)g′(0) ≤ r for all ω, and as required by Assumption 3, γ′(ω) >

0 for all ω > 0. We use the results of the survey of homeowner expectations conducted by

Case et al. (2012) to estimate φ. Case et al. (2012) report the average expectation of the

following year’s price growth of homeowners in Alameda County (CA), Middlesex County

(MA), Milwaukee County (WI), and Orange County (CA) in the spring of each year from

2003 to 2012. Using the CoreLogic monthly house price indices for these areas going back

to 1976, we calculate ωt for each county and year with (10) and our estimate of µ mentioned

above. We then choose φ and a constant to minimize the mean-squared error of g(1)γ(ω)

plus this constant versus the expectation reported by Case et al. (2012). The resulting value

is φ = 0.98 (standard error 0.27).28 Our specification explains 70% of the variance in 1-year

expectations across counties and years in this sample.

We set r = 0.07, which corresponds to a steady-state price–rent ratio of about 1/0.07 =

14. We choose c = 1, which implies a half-life of price adjustment of about 8 months. We

set the elasticity of demand, ε, equal to 0.6, a value in the range of estimates suggested by

Hanushek and Quigley (1980). Finally, for round-number convenience, we choose a demand

shock size to match a long-run price impact of 10%. This price impact equals (Af/Ai)1/ε, so

we set Af/Ai = 1.06: a demand shock of 6%.

27Armona et al. (2016) calculate the expected 1-year gain, which equals γ(ω)g(1), and the annualized 2-5-
year expected gain, which equals (1+γ(ω)(g(5)−g(1))/(1+γ(ω)g(1)))1/4−1. The right derivatives at ω = 0
are g(1) limω→0+ γ

′(ω) and (1/4)(g(5)− g(1)) limω→0+ γ
′(ω). The ratio of these equals (1/4)(g(5)/g(1)− 1),

the value of which uniquely identifies ρ.
28The value of the constant is 0.022 (0.004).

23



Results

The differential equations given by our model allow us to solve for the impulse response in

continuous time. In order to quantify the marginal effects of heterogeneous holding times, we

supplement the baseline model with one in which λ is the same for all potential homebuyers.

We set this value to (
∫∞
0
λ−1f(λ)dλ)−1, the unique value at which steady-state volume

remains unchanged.

Figure 3 displays the resulting impulse responses; the quiet is shaded. Panel (a) plots

our two main objects of study: prices and volume. In the core model, prices significantly

overshoot the long-run cumulative growth of 10%, more than doubling before decreasing to

the new level. Prices initially are convex, with price changes begetting further changes. In

contrast, prices display a much less pronounced boom and bust when expected holding times

equal the average. In the baseline model, volume rises and then falls, beginning its decline 11

months before prices. This delay is close to the empirical delay of 24 months we document

below. The total rise in volume in our simulation equals 22%, a substantial fraction of the

40% rise in total sales volume between 2000 and 2005 in the sample we use below. As shown

on the right, volume remains constant as prices rise when λ is homogeneous.

Panel (b) documents the changing composition of buyers over the cycle. At each time,

we calculate the share of purchases going to buyers whose expected holding time is less than

3 years. In steady state, this share equals 20% (as identified by the NAR survey), and it

rises to a high of 39%. This rise occurs as prices increase, and it drives the concomitant and

subsequent surge in volume. As predicted by Proposition 5, the share declines but remains

high during the quiet. In the homogeneous simulation, no homebuyers have expected holding

times of less than 3 years, as all holding times equal 10.5 years.

Finally, Panel (c) documents the evolution of unsold listings over the cycle. Until the

quiet begins, all listings sell, so unsold listings equal 0. The stock grows as volume begins to

decline. Quantitatively, it reaches 6% of the housing stock in the baseline model, but only

2% when horizons are homogeneous.

In sum, Figure 3 shows that our calibrated model can quantitatively generate large swings

in prices and volume during the boom and quiet periods, a dramatic shift in the composition

of buyers, and a sharp rise in inventories in the period leading to the bust. These features

depend critically on heterogeneity in the expected holding times of potential homebuyers.
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Sensitivity Analysis

To provide intuition on how the parameters drive the results, we report key statistics of the

simulation under parameters other than our baseline in Table 2. The three statistics we

report are the excess price boom Pmax/P∞ − 1, the volume boom V max/V0 − 1, and the

maximal inventory of unsold listings maxt It. We vary each parameter to a low and high

value while keeping the remaining parameters at the baseline values.

First we vary the degree of heterogeneity in f(·). In the “high” treatment, we keep

steady-state volume (
∫∞
0
λ−1f(λ)dλ)−1 constant but put all the mass in f(·) on the most

extreme values of λ in its support. The “low” treatment replicates the right panel of Figure

3, in which no heterogeneity exists. The booms in price and volume are much larger in

the high treatment than in the baseline—prices more than quadruple, and volume almost

doubles. Unsold inventories also rise to 18% of the housing stock. These results provide

strong evidence tying together price booms, volume booms, and the distribution of expected

holding times.

Varying the housing-demand elasticity produces similar effects. Our low treatment sets

ε = 0.3 (half the baseline), whereas our high treatment sets ε = 1.8 (an average of values

calculated by Diamond, 2016). Prices more than quadruple and volume nearly doubles under

the high elasticity, whereas prices and volume are much more stable under the low treatment.

Short-term buyers enter the market more aggressively when housing demand is more elastic,

so increasing the elasticity achieves similar results to increasing the frequency of short-term

buyers. The simulation results are less sensitive to variations in the other parameters.

4 Speculative Dynamics in the US Housing Bubble

While the calibration in the previous section allows for an assessment of the potential quan-

titative relevance of the factors that drive our model, their actual empirical relevance has

yet to be established. In this section, we provide empirical evidence linking shifts in the

distribution of realized holding periods over the course of the 2000–2011 US housing cy-

cle to dynamic patterns in volume and prices that directly mirror the patterns implied by

our model. We focus on the housing market both because of its macroeconomic relevance

and because the availability of comprehensive, asset-level microdata permits a uniquely rich

analysis of holding periods and the details of buyers and sellers.
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4.1 Data

To conduct our analysis, we use data on individual housing transactions provided by CoreL-

ogic, a private vendor that collects and standardizes publicly available tax assessments and

deeds records from municipalities across the US. Our main analysis sample spans the years

1995–2014 and includes data from 115 metropolitan statistical areas (MSAs), which together

represent 48% of the US housing stock.

We include all transactions of single-family homes, condos, or duplexes that satisfy the

following filters: (a) the transaction is categorized by CoreLogic as occurring at arm’s length,

(b) there is a nonzero transaction price, and (c) the transaction is not coded by CoreLogic

as being a nominal transfer of title between lenders following a foreclosure. We then drop a

small number of duplicate transactions where the same property is observed to sell multiple

times at the same price on the same day or where multiple transactions occur between the

same buyer and seller at the same price on the same day. Appendix C specifies the exact

steps followed to arrive at our final sample of 51,080,640 transactions. Given the geographic

coverage of these data and their source in administrative records, our analysis sample serves

as a proxy for the population of transactions in the US during our sample period.

We supplement these data with national and MSA-level housing stock counts from the US

Census, national counts of sales and listings of existing homes from the NAR, and national

and MSA-level nominal house-price indices from CoreLogic.

4.2 The Composition of Buyers

Time-Series Evidence

The key mechanism that generates time variation in transaction volume in our model is that

changes in expected capital gains over the course of the housing cycle differentially attract

buyers with shorter versus longer expected holding periods. This phenomenon was stated

formally in Proposition 1 and implies that large swings in volume should be accompanied by

equally large changes in the distribution of realized holding periods among those who choose

to sell their homes at various points in the cycle.

As evidence for this prediction, Figure 4(a) presents a simple yet compelling illustration

of the time variation in realized holding periods during the 2000–2011 US housing cycle. We

define the holding period of each transaction as the number of days since the last transaction
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involving the same property. We then group all transactions with holding periods of less

than 5 years into bins of 1, 2, 3, 4, or 5 years and count the number of transactions falling

into each bin. Figure 4 plots these bin counts by year for each year between 2000 and 2011.

During the boom years of 2000–2005, there is a clear compression in the distribution

of realized holding periods toward shorter holding periods. This pattern then reverses as

national house prices peak in 2006 and begin to fall in the subsequent years. The increase in

transaction volume at short holding periods during the boom years represents a nontrivial

portion of the overall increase in volume during this period. For example, total volume

across all holding periods (including those greater than 5 years) increased from 2,766,902

transactions in 2000 to 3,835,049 transactions in 2005. During the same period, total volume

in the 1-, 2-, and 3-year bins increased from 484,666 transactions to 928,611, which implies

that these three groups alone account for 42 percent of the total increase in volume between

2000 and 2005.29

Figure 4(b) directly tests Proposition 5, which predicts that the short-term buyer share

rises during the boom and falls during the quiet and bust. For each month, the short-

term buyer share equals the fraction of purchases for which the expected time until listing

conditional on the eventual sale date of property is less than 3 years.30 We focus on the

time until listing rather than sale for two reasons: (1) time until listing is what identifies

horizons within our model, and (2) time until sale is confounded by the fact that the length

of time between listing and sale varies empirically over the cycle. As predicted by the model,

the resulting time series in Figure 4(b) first rises during the boom and then falls during the

bust and quiet (using a procedure described in Section 4.3, we select a time interval as the

quiet and shade this period in the figure). Figure 4(b) corresponds to the simulated series

in Figure 3(b) that takes the same shape.

Some short-term sellers may stay within the MSA by buying another house. These

within-MSA movers complicate mapping the data to the model because in the model, sellers

leave the city and expect to do so upon buying. To measure the extent of within-MSA moves,

for each seller we search for buyers in the MSA within a quarter of the sale using the names

in the deeds records. As documented in Appendix D, the match rates in this exercise fall

29This finding is in line with the evidence provided by Bayer et al. (2011), who document a similar increase
in volume among short-holding-period buyers in the Los Angeles MSA during this period.

30Given purchase month tb and sale month ts, the expected listing month tl assuming a uniform prior
over such months is E[tl|tb, ts] =

∑ts
t=tb

tst
∏ts−1
t′=t (1 − st′)/

∑ts
t=tb

st
∏ts−1
t′=t (1 − st′); st is the probability we

calculate in Section 4.3 that a house listed in month t sells during that month.

27



below 50% and are close to the rates found by Anenberg and Bayer (2013) when performing

a similar match for the Los Angeles metro area. This evidence supports our claim that much

of the short-term investment represents buyers entering and then exiting the local housing

market.

Cross-sectional Evidence

This shift in the composition of buyers and sellers toward shorter holding periods during

the boom years correlates highly with changes in total volume across local markets. This

correlation can be seen clearly in Figure 5, which presents scatter plots of the percent change

in total volume at the MSA-level from 2000–2005 versus the percent change in volume

for short holding periods (< 3 years) in Panel (a) and long holding periods (≥ 3 years)

in Panel (b).31 Not only does the growth in volume of short-holding-period transactions

correlate strongly with the increase in total volume across MSAs during this period, but this

relationship is much stronger for short holding periods relative to long holding periods.

Panel (c) further shows that these cross-sectional differences in the growth rate of short-

holding-period volume explain a significant portion of the differences in the growth in total

volume across MSAs during this period. For each MSA, we plot the change in short-holding-

period volume divided by initial total volume on the y-axis against the percent change in

total volume on the x-axis. The slope of this line provides an estimate of how much of a

given increase in total volume during this period came in the form of short-holding-period

volume. The answer is 33%. Thus, as predicted broadly by Proposition 1 and specifically

by Proposition 5, shifts in the distribution of holding periods of buyers and sellers over the

course of the cycle appear to be a major determinant of changes in total transaction volume.

Because expected capital gains increase demand through the extensive margin, Proposi-

tion 1 suggests that volume increases more strongly among buyers with low housing utility.

Proposition 5 formalizes this intuition by showing that the speculative share of purchases

increases during the boom. While we do not observe housing utility in our data, we do

observe whether each purchased property is owner-occupied. Under the assumption that

non-occupants receive less housing utility than occupants, we test these predictions by ex-

amining whether non-occupant purchases rose more than occupant purchases from 2000 to

31For visual clarity, we group MSAs into 25 equal-sized bins based on their percent change in total volume
during this period and calculate the average percent change in short- and long-holding-period volume in each
of these bins.
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2005.32

To track non-occupant buyers in the market over time, we follow Chinco and Mayer (2016)

by marking buyers as non-occupants when the transaction lists the buyer’s mailing address as

distinct from the property address.33 While this proxy may misclassify some non-occupants

as living in the home if they choose to list the property’s address for property-tax-collection

purposes, we believe it to be a useful gauge of the level of non-occupant purchases. For the

analysis of non-occupant purchases, we drop 13 MSAs for which the mailing address data

are not consistently populated using a procedure specified in Appendix C.

Using this proxy, Figure 6 displays plots that are analogous to those in Figure 5 but

use non-occupancy as the sorting variable rather than holding periods. Similarly to the

patterns we documented for short holding periods, we find that non-occupant volume is an

important driver of total volume during the cycle. The top panels compare volume growth

for non-occupant and occupant buyers; the relationship between total volume growth and

non-occupant volume growth is much stronger. The bottom panel shows that non-occupant

volume growth accounts for more than half of the growth in total volume across MSAs.

The MSA-level results from Figures 5 and 6 also hold across local neighborhoods within

MSAs. Table 3 repeats the cross-MSA analysis using a ZIP-code-level panel data set con-

structed from the same underlying sample of transactions.34 The first three columns re-

port regression results that are directly analogous to Panels (a)-(c) of Figure 5; the latter

three columns report results that are directly analogous to Panels (a)-(c) of Figure 6. All

specifications include a full set of MSA fixed effects, so the coefficient estimates reflect only

within-MSA variation in transaction volume. Echoing the earlier cross-MSA results, changes

in short-holding-period and non-occupant volume are more strongly correlated with changes

in total volume than are changes in long-holding-period and occupant volume. The third

(respectively sixth) column indicates that 24% (respectively 36%) of the cross-ZIP-code vari-

ation within an MSA in the growth of volume over this period arises from differences in the

32One interpretation of the housing utility received by investors, who represent one group of non-occupant
buyers, is the rent they collect. This rent is less than the housing utility of many owner occupants because in
a competitive market, rent equals the housing utility of the marginal occupant. Frictions that arise from the
separation of ownership and control may further lower rent relative to occupant housing utility (Nathanson
and Zwick, 2017).

33In related work, Haughwout et al. (2011) use an alternative proxy for nonowner occupancy based on the
number of first-lien mortgages present on an individual’s credit report. They also find a large increase in
non-occupant purchases during this time period.

34We assign each transaction to a Census ZIP-Code Tabulation Area (ZCTA) using the postal ZIP code
of the property and a ZCTA-to-ZIP code crosswalk file provided by the Missouri Census Data Center.
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number of short-holding-period (respectively non-occupant) transactions.

4.3 The Joint Dynamics of Prices and Volume

Figure 7 plots prices, transaction volume, and unsold listings over the 2000–2011 US housing

cycle; transaction volume equals the monthly count of all transactions in our data, and un-

sold listings equal the inventory of listed existing houses reported by the NAR (both series

are seasonally adjusted using month-of-year fixed effects). We mark the quiet as the period

between the peak of volume and the last peak of prices before its pronounced decline. The

existence of this quiet period confirms the prediction of Proposition 3, and the contempo-

raneous sharp increase in unsold listings matches the path of simulated unsold inventory in

Figure 3(c) that was raised as a possibility by Proposition 3. We now examine the joint

behavior of prices, volume, and listings more carefully as they relate to the predictions of

our model.

The Lead–Lag Relationship

Propositions 2–4 predict that prices and volume both go through a boom and bust cycle,

with the volume cycle leading the price cycle. In Figure 8, we present evidence that this

relationship holds on average across MSAs in our sample. To do so, we search for the horizon

over which a given change in volume has the most predictive power for the contemporaneous

change in prices at the MSA level. Changes in volume generally lead changes in prices if the

correlation between prices and volume is maximized at a positive lag.

To implement this search, we construct a monthly panel of log house prices and trans-

action volume at the MSA level running from January 2000 to December 2011; volume

equals the total number of transactions in our data in a given month and MSA divided by

that MSA’s housing stock in the 2000 Census. Using this panel, we run a series of simple

regressions of the form

pi,t = βτvi,t−τ + ηi,t, (12)

where p is log price, v is volume, i indexes MSAs, and time is measured in months. To

account for the seasonal adjustment in the CoreLogic price indices, for each regression we

demean prices at the MSA level and demean volume at the MSA–calendar month level.

The coefficient βτ provides an estimate of how movements in volume around MSA–
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calendar month averages at a τ -month lag are correlated with contemporaneous movements

in prices around MSA averages. We run these regressions separately for up to 4 years of lags

(τ = 48) and one year of leads (τ = −12). Figure 8 plots the implied correlation from each

regression along with its 95% confidence interval.35 The correlation is positive at most leads

and lags but reaches its maximum at a positive lag of 24 months. Thus, changes in volume

generally lead changes in prices by about two years.

Listings over the Cycle

Proposition 2 predicts that during the boom, volume increases entirely because owners are

more likely to list their houses for sale. The speed at which listings sell remains constant, with

all listings selling instantaneously just as they do in steady state. Conversely, Proposition 3

shows that volume falls during the quiet because the speed at which listings sell begins to

decline, as listings outstrip demand.

To determine the relative importance of listing and selling rates for explaining empirical

movements in volume, we use the methodology presented by Ngai and Sheedy (2016) to

measure each of these rates over the course of the housing cycle. In discrete time, the

equations determining these rates are Vt = stIt, It = It−1 − Vt−1 + Lt, and Lt = nt(Kt − It);
K denotes the housing stock, s denotes the rate at which listings sell, and n denotes the

rate at which owners list unlisted houses. Using monthly data on V , I, and K, we calculate

st = Vt/It and nt = (It−It−1+Vt−1)/(Kt−It) for each month. We average these probabilities

within each year and plot the resulting averages in Figure 9.36

Figure 9 shows that the listing rate nt rose 40% during the 2000–2005 boom, whereas the

rate st at which listings sold remained flat. In contrast, the decline in volume during the 2005–

2006 quiet is driven primarily by st, which contracts by about 30% while nt remains high.

As is suggested by the steady-state equation V = Ksn/(s+ n), these rates multiplicatively

determine volume, so their proportional changes determine their relative importance. This

evidence confirms the model’s predictions about the drivers of volume during the boom and

the quiet.

35The implied correlation equals βτ std(vi,t−τ )/ std(pi,t), where vi,t−τ and pi,t are the demeaned regressors.
Confidence intervals for each estimate come from standard errors clustered at the month level.

36In discrete time, V and L are the integrals of their continuous time counterparts, whereas I equals the
integral of continuous-time listings. In this exercise, we use existing sales from the NAR for V , because it is
analogous to the data on I. Burnside et al. (2016) plot the same series for st.
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Initial Volume and the Size of the Cycle

Proposition 6 shows that an increase to the distribution of expected holding times f(·) raises

both the level of steady-state volume as well as the magnitude of the increase in prices

during the boom and subsequent decreases in prices during the bust. Rather than measure

f(·) directly, we test whether steady-state volume and the amplitude of the price cycle are

positively correlated across MSAs. Our measure of steady-state volume equals the number

of existing home sales in 2000 as a share of the housing stock.37 The boom in each MSA

equals the percentage change in prices between January 2000 and the month in which prices

peaked, and the bust equals the percentage change between the month of the peak and the

month in which prices reached their lowest level subsequent to the peak month.38

Figure 10 plots the relationship between steady-state volume and the magnitude of the

boom and bust in prices across MSAs. Panel (a) shows a clear positive relationship between

initial volume and the magnitude of the price boom: MSAs with higher initial volume

experienced significantly larger house price booms. As shown in Panel (b), these MSAs also

experienced more drastic drops in prices following the boom.

Columns 1 and 3 of Table 4 quantify this relationship by reporting coefficient estimates

from simple linear regressions of the price boom (Column 1) and bust (Column 3) on steady-

state volume. A one percentage point increase in the share of the existing housing stock that

turned over in 2000 is associated with a 15 percentage point higher increase in prices from

January 2000 to peak and a 4 percentage point larger fall in prices from peak to trough.

In Columns 2 and 4, we report analogous and nearly identical estimates from regressions

that instead assume that the boom ended in January of 2006 for all MSAs. These results

are strongly consistent with the prediction of our model that steady-state volume should be

correlated with the magnitude of swings in house prices during boom–bust episodes.

37We omit new construction sales from this exercise in order to avoid conflating differences in supply elas-
ticity or the rate of new construction with differences in steady-state existing sales volume. New construction
sales are identified as described in Appendix C.

38We restrict the price peak to occur prior to January 2012, since prices in some markets had already
recovered to levels higher than those experienced during the boom by the end of our sample.
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5 Conclusion

This paper develops a tractable model of asset bubbles that nevertheless generates a rich,

joint dynamic of prices and transaction volume. Theoretical and empirical results on the

composition of buyers and sellers during a bubble suggest that investigating the speculative

dynamics of volume can help us understand what factors drive bubbles. In particular,

short-term investors have the capacity to destabilize financial markets. We documented the

importance of short-term investors in the 2000–2011 housing cycle. Studying this activity in

other asset markets and historical episodes would be illuminating.

Our focus on short-term investors raises two additional lines of inquiry:

First: Do the expansions in credit that accompany asset price booms appeal dispropor-

tionately to short-term investors? Barlevy and Fisher (2011) document a strong correlation

across US metropolitan areas between the size of the 2000s house price boom and the take-

up of interest-only mortgages. These mortgages back-load payments by deferring principal

repayment for some amount of time and thus might appeal especially to buyers who expect

to resell quickly. The targeting of credit expansions to short-term buyers might explain the

amplification effects of credit availability on asset price booms documented by Di Maggio

and Kermani (2015), Favara and Imbs (2015), and Rajan and Ramcharan (2015).

Second: Do policies that aim to achieve financial-market stability work better if they

discourage the participation of short-term investors? For instance, consider the financial

transactions tax proposed by Tobin (1978), supported by Stiglitz (1989) and Summers and

Summers (1989), and analyzed theoretically by Dávila (2015). If the incidence of this tax

falls entirely on buyers, then the tax burden is independent of the investment horizon; if the

incidence falls entirely on sellers, then the tax burden is larger in present-value terms for

short-term investors who plan to resell quickly. Our model suggests that transaction taxes

discourage bubbles more powerfully when their incidence falls more strongly on sellers. One

policy that discourages short-term investors more directly is the short-term capital gains

tax, and our model provides a rationale for this policy. Any tax that discourages short-term

investors will also discourage the liquidity provision and, in the case of the housing market,

the residential investment they provide. We hope that future work will weigh all of these

effects to guide policy carefully.
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A Omitted Proofs of Mathematical Statements

Lemma 1

By (1), E[(Pt+τ − Pt)/(τPt) | ωt] = γ(ωt)g(τ)/τ . The cross-partial in Lemma 1 equals
γ′(ωt)(g(τ)/τ)′. Because γ′(ωt) > 0, this cross-partial is negative for all τ > 0 if and only if
Assumption 1(a) holds.

Lemma 2

If Assumption 1(c) fails, then we can find ωt such that γ(ωt)g
′(0) > r. Then E[Pt+τ/Pt |

ωt] − erτ equals 0 at τ = 0 and has a positive derivative with respect to τ at τ = 0, which
means that E[Pt+τ/Pt | ωt] > erτ for some τ > 0. Now suppose Assumption 1(c) holds.
For τ > 0, g(τ) =

∫ τ
0
g′(τ0)dτ0 <

∫ τ
0
g(τ0)/τ0dτ0 < g′(0)τ . As a result, for all ωt ∈ R

E[Pt+τ/Pt | ωt] = 1 + γ(ωt)g(τ) < 1 + γ(ωt)g
′(0)τ ≤ 1 + rτ < erτ . The last inequality follows

because 1 + rτ and erτ coincide for τ = 0 and the derivative of the latter exceeds that of the
former for all τ > 0.

Lemma 3

By (6), a potential buyer buys if and only if

δ ≥ rPt

(
1− λ

r

∫ ∞
0

(r + λ)e−(r+λ)τ
(

E

[
Pt+τ
Pt
| ωt
]
− 1

)
dτ

)
.

Substituting (1) reduces the integral to
∫∞
0

(r + λ)e−(r+λ)τγ(ωt)g(τ)dτ and then integrating

by parts further reduces it to
∫∞
0
e−(r+λ)τγ(ωt)g

′(τ)dτ . The measure of potential buyers at
t of type λ whose flow utility exceeds some δ0 > 0 equals f(λ)Atδ

−ε
0 , so we are done.

Proposition 1

We prove the stronger statement of Proposition 1 in which each derivative with respect
to ωt is replaced by the right-sided derivative ∂+/∂ωt or the left-sided derivative ∂−/∂ωt
throughout. We write the proof in terms of ∂+/∂ωt; the identical proof holds replacing those
partials with ∂−/∂ωt. We use this more general form of the proposition in the proof of
Proposition 2.

For notational ease, we define i(λ) to be the expression such that (7) produces σλ(ωt) =
−ε log(1 − γ(ωt)i(λ)). From Lemma 2, 1 + γ(ωt)g(τ) < erτ for τ > 0, so γ(ωt)i(λ) <
λ/r

∫∞
0

(r + λ)e−(r+λ)τ (erτ − 1)dτ = 1. For ωt such that ∂+γ(ωt)/∂ωt > 0, ∂+σλ(ωt)/∂ωt =
ε(∂+γ(ωt)/∂ωt)i(λ)/(1 − i(λ)) > 0 because i(λ) > 0 by Assumption 1(d). Differentiating
again yields ∂∂+σλ(ωt)/∂ωt∂λ = ε(∂+γ(ωt)/∂ωt)i

′(λ)/(1 − i(λ))2. Integrating by parts and
applying Assumption 1(a) yields

ri′(λ) =

∫ ∞
0

e−(r+λ)τg′(τ)dτ −
∫ ∞
0

λe−(r+λ)ττg′(τ)dτ >
r

r + λ

∫ ∞
0

e−(r+λ)τg′(τ)dτ > 0,

where the final inequality follows because the last integral equals r2/(λ(r + λ))i(λ) > 0.
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To prove (c), we first note that Vt(λ)/Vt = Dt(λ)/Dt by (3). By Lemma 3, Dt(λ)/Dt =
f(λ)Σλ(ωt)/

∫∞
0
f(λ′)Σλ′(ωt)dλ

′. Thus, we must show that

∂+
∂ωt

∫ λ
0

Σλ′(ωt)f(λ′)dλ′∫∞
0

Σλ′(ωt)f(λ′)dλ′
≤ 0

for all λ. Differentiating, subtracting parts of the integral that appear on each side, and
multiplying and dividing by Ssigmaλ′ reduces this inequality to∫ ∞

λ

Σλ′(ωt)f(λ′)dλ′
∫ λ

0

∂+σλ′(ωt)

∂ωt
Σλ′(ωt)f(λ′)dλ′ ≤∫ λ

0

Σλ′(ωt)f(λ′)dλ′
∫ ∞
λ

∂+σλ′(ωt)

∂ωt
Σλ′(ωt)f(λ′)dλ′.

The first part of the proof showed that ∂+σλ(ωt)/∂ωt > 0 and ∂∂+σλ(ωt)/∂ωt∂λ > 0 for all
λ. Thus ∂+σλ′(ωt)/∂ωt increases in λ′ and is positive, letting us reduce the inequality to∫ ∞

λ

Σλ′(ωt)f(λ′)dλ′
∫ λ

0

Σλ′(ωt)f(λ′)dλ′ ≤∫ λ

0

Σλ′(ωt)f(λ′)dλ′
∫ ∞
λ

Σλ′(ωt)f(λ′)dλ′,

which holds with equality. Strict inequality results if and only if supp f contains both a
point above and a point below λ.

Demand Target

Because prices remain constant, Dt = D by (8). Because potential buyers expect prices to
remain constant, Σλ(ωt) = 1 for all λ and ωt by (7). Thus, by Lemma 3, Dt(λ)/Dt = f(λ)
for all t. Because Lt = Dt, Vt = Lt by (3), so Vt(λ) = f(λ)D. In a steady state, each St(λ)
remains constant, so St(λ) = Vt(λ)/λ = Df(λ)/λ. Because Vt = Lt, It = 0. As a result, the
housing stock is comprised entirely of stayers, so 1 =

∫∞
0
St(λ)dλ = D

∫∞
0
f(λ)/λdλ. Solving

for D provides (9).

Lemma 4

By Lemma 3, total demand across all potential buyers equals

Dt = At(rPt)
−εΣ(ωt), (A1)

where Σ(ωt) ≡
∫∞
0

Σλ(ωt)f(λ)dλ is aggregate speculative demand. Define p ≡ log(Af )/ε −
log(r)− log(D)/ε and σ(ω) ≡ log Σ(ω). Substituting (A1) into (8) yields

ṗ = cε(p− p) + cσ(ω). (A2)
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Substituting (A2) into (11) gives

ω̇ = µcε(p− p) + µcσ(ω)− µω. (A3)

With the initial conditions p0 = p − log(Af/Ai)/ε and ω0 = 0, (A2) and (A3) specify the
joint dynamics of p and ω. Figure A2 illustrates the corresponding phase diagram. The
following two paragraphs justify the way it was drawn.

The ṗ = 0 locus is given by p = p + σ(ω)/ε. For a given ω, ṗ < 0 for p above this locus
and ṗ > 0 for p below this locus. By Assumption 3, σ(ω) = 0 for ω ≤ 0 and σ′(ω) > 0
for ω > 0, so the ṗ = 0 locus equals p = p for ω < 0 and increases for ω > 0. The
ω̇ = 0 locus is given by p = p + σ(ω)/ε − ω/(cε). For a given ω, ω̇ < 0 for p above this
locus and ω̇ > 0 for p below this locus. For ω < 0, this locus equals a decreasing line, and
for ω > 0, this locus lies beneath the ṗ = 0 locus. The right slope of this locus at 0 equals
limω→0+ σ

′(ω)/ε−1/(cε), which > 0 as long as limω→0+ σ
′(ω) > ε/min(cε, µ). This inequality

holds because differentiating σ yields

σ′(ω) =
εγ′(ω)

∫∞
0

(1− γ(ω)i(λ))−ε−1i(λ)f(λ)dλ∫∞
0

(1− γ(ω)i(λ))−εf(λ)dλ
,

where i(λ) is as defined in the proof of Proposition 1. Taking limits yields limω→0+ σ
′(ω) =

(limω→0+ γ
′(ω))ε

∫∞
0
i(λ)f(λ)dλ > ε/min(cε, µ), where Assumption 3 is used.

We have drawn the phase diagram such that the ṗ = 0 locus is bounded for large ω and
that the ω̇ = 0 locus asymptotes to a decreasing linear function for large ω. These features
hold as long as σ(ω) is bounded. As shown in the proof of Lemma 2, g(τ) < g′(0)τ for τ > 0,
so i(λ) < (λg′(0)/r)

∫∞
0

(r+ λ)e−(r+λ)ττdτ = (g′(0)/r)λ/(r+ λ). Therefore Assumption 1(c)
implies that σ(ω) < log

∫∞
0

(r/(r + λ))−εf(λ)dλ, which exists because
∫∞
0
λεf(λ)dλ exists.

Tracing the system from the initial point makes it clear that p must decrease in finite
time. Because p > p0 and ω0 = 0, p and ω increase at t = 0 by (A2) and (A3). Eventually,
the right ω̇ = 0 locus is reached because this locus goes to −∞ for large ω due to its linearity.
Next, ω begins to increase while p continues increasing. The right ṗ = 0 locus is then reached
because it is bounded from above. After this point, ω continues decreasing while p begins
to decrease, as desired.

Proposition 2

Because p > p0 and ω0 = 0, (A2) implies that ṗ0 > 0. By the definition of t2, ṗt > 0 for
t ∈ (0, t2) and ṗt2 = 0. It follows that pt increases on (0, t2] ⊃ (0, t1]. Because ṗt = 0 for
t < 0, the definition of ω in (10) implies that ωt > 0 for t ∈ (0, t2] ⊃ (0, t1].

To show that p̈ > 0 at least initially, we show that p̈0 > 0. Substituting (A1) into (8),
differentiating, and using (11) yields p̈/c = −εṗ + σ′(ω)µ(ṗ− ω) for ω > 0. Because ω0 = 0
and limω→0+ σ

′(ω) > ε/min(cε, µ) as shown in the proof of Lemma 4, p̈0 > 0. At least
initially, ω̇ > 0 because ω̇0 > 0 given (A3) and the fact that p > p0 and ω0 = 0.

To show that I = 0 at least initially, we show that D > L at least initially and that Dt

and Lt are continuous for t > 0. From these facts, (5) implies that İ = 0 for some non-empty
interval at the beginning of the boom, implying that I = 0 during this interval. By (8) and
(10), pt and ωt are continuous, so by (A1) Dt is continuous for t > 0. The jump in A at
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t = 0 implies that limt→0+Dt = AfD/Ai > D. By (2), Lt is continuous if each St(λ) is,
and by (4) St(λ) =

∫ t
−∞ e

−λ(t−τ)Vτ (λ)dτ so it is continuous. Therefore Lt is continuous, so

in particular limt→0+ Lt = D. It follows that at least initially D and L are continuous and
D > L, as claimed.

To prove that V̇ > 0 at least initially when | supp f | > 1, we show that V̇0 = 0 and
V̈0 > 0 in this case. By (3), Vt = Lt when Dt > Lt and It = 0, both of which hold initially.
As a result, we show that L̇0 = 0 and L̈0 > 0. We have L̇0 =

∫∞
0
λṠ0(λ)dλ. But Ṡ0(λ) =

V0(λ) − λS0(λ) = 0 because V (λ) and S(λ) are continuous at t = 0. So L̇0 = 0. Taking
another derivative yields L̈0 =

∫∞
0
λS̈0(λ)dλ. We have S̈0(λ) = V̇0(λ) − λṠ0(λ) = V̇0(λ).

Thus L̈0 =
∫∞
0
λV̇0(λ)dλ. Because ω̇0 > 0, by Proposition 1(c)

∫ λ
0
V̇0(λ

′)dλ′ ≤ 0 for all λ > 0

and strictly for some λ > 0, so V0(λ) + V̇0(λ) strictly first-order stochastically dominates
V0(λ) as distributions. The former must have a larger mean as a result, so

∫∞
0
λV̇0(λ) > 0,

giving L̈0 > 0.
We now show that Vt = D for t ∈ [0, t2] when | supp f | = 1, which proves that volume

remains constant during the boom in this case. By (9), f must be a single mass point on
λ = D. By (2), Lt = DSt(D) ≤ D because St ≤ 1, the total housing stock. Because ṗt > 0
for t ∈ [0, t2), Dt > D ≥ Lt for t ∈ [0, t2) by (8). It follows from (3) that Vt = Lt for
t ∈ [0, t2] because Dt ≥ Lt over this interval. As a result, (2) and (4) combine into the
equation Ṡt(D) = 0 for t ∈ [0, t2). It follows that St(D) = S0(D) = 1 and that Vt = Lt = D
for t ∈ [0, t2], as claimed.

Proposition 3

Because ṗt2 = 0, Dt2 = D by (8). By (3), Vt ≤ Dt for all t, so Vt2 ≤ D. As shown in
the discussion of the demand target in this appendix, V = D in steady state, so V0 = D.
If | supp f | > 1, then Proposition 2 implies that V max > D = V0 because V̇0 > 0 at least
initially during the boom. It follows that V max > Vt2 and that t1 < t2. If | supp f | = 1,
then Vt = D for all t ∈ [0, t2] as shown at the end of the proof of Proposition 2. In this case
t1 = t2 and the quiet does not exist.

As shown at the beginning of the proof of Proposition 2, pt increases and ωt > 0 on
(0, t2]. From that proof, p̈/c = −εṗ+ σ′(ω)µ(ṗ− ω), so p̈t2 = −σ′(ωt2)µωt2 < 0 and p̈ < 0 at
least ultimately during the quiet. From (11), ω̇t2 = −µωt2 < 0, so ω̇ < 0 at least ultimately
during the quiet. By the definition of t1, Vt1 > Vt2 when t1 < t2. Figure 3 confirms the
possibility that I may be positive during the quiet.

Proposition 4

The proof of Lemma 4 showed that prices begin to decline when the right ṗ = 0 locus shown
in Figure A2 is reached. We prove that after this point, p limits to p and that ṗ < 0 or ṗ = 0
for isolated instants until this limit is reached. Given that result, (8) implies that Dt < D
except at isolate instants at which Dt = D until the limit is reached. Because (3) implies
that Vt ≤ Dt, the same statement applies to Vt.

Right after t2 when the ṗ = 0 locus is first reached, the system shown in Figure A2
moves left so that ṗ < 0. The price decline continues until either the ω = 0 axis is reached or
convergence to (0, p) occurs. Before either of these events, the system can never fall below

37



the right ṗ = 0 locus, and any intersection with it occurs for but an instant. As a result,
p continues to decrease until convergence to the steady-state or until ω = 0 but p > p. In
the first case, we are done. In the second case, we know that ω < 0 right after ω = 0 from
examining the phase diagram. It is clear that ω remains below 0 for the rest of time until
steady-state is reached, as the system remains weakly above the left ṗ = 0 locus. In this
region, σ(ω) = 0, so (A2) becomes ṗ = cε(p− p). Thus, ṗ < 0 for the rest of time, as p > p
when ω = 0.

Figure 3 confirms the possibility that I > 0 during the bust when p > p.

Proposition 5

Propositions 2 and 3 showed that ω > 0 during the boom and quiet, initially rising during
the boom and ultimately falling during the quiet. From Figure A2, it is clear that during
the bust—that is, after the ṗ = 0 is reached—ω monotonically decreases until reaching 0. To
prove Proposition 5, it is sufficient to show that the short-term buyer share and speculative
share equal their steady-state values for ω ≤ 0 and strictly increase in ω for ω > 0.

We begin with the speculative share, which equals
∫∞
0

(1−Σλ(ωt)
−1)f(λ)dλ as explained

in the text. For all λ > 0, Assumption 3 implies that Σλ(ω) = 1 for ω ≤ 0 and Σ′λ(ω) > 0 for
all ω > 0; the second fact holds because that which γ(ωt) multiplies in (7) is positive as shown
in the proof of Proposition 1. It follows that the speculative share equals its steady-state
value (the value when ω = 0) of 0 when ω ≤ 0 and increases in ω for ω > 0.

We turn now to the share of buyers for whom λ > λ′. For ω > 0, γ′(ω) > 0 by Assumption

3, so Proposition 1(c) implies that
∫ λ′
0
Vt(λ)dλ/Vt strictly decreases with ωt, so the share of

buyers for whom λ > λ′ strictly increases with ωt. When ωt ≤ 0, Lemma 3 implies that
Vt(λ)/Vt = Dt(λ)/Dt = f(λ), its steady-state value.

Proposition 6

We begin by proving part (a). Because V0 = D = (
∫∞
0
λ−1f(λ)dλ)−1, an increase to f(·)

increases V0 because 1/λ decreases. We next show that σ(·) increases pointwise if f(·)
increases. We have ∂Σλ/∂λ = εγ(ω)i′(λ)(1− i(λ)γ(ω))−ε−1, which equals 0 for ω ≤ 0 and is
positive otherwise. An increase to f(·) thus increases σ = log

∫∞
0

Σλf(λ)dλ for ω > 0 and
keeps it constant at ω ≤ 0.

We now show that Pmax increases in σ. Pt = Pmax when the system first intersects the
ṗ = 0 locus shown in Figure A2. Because this locus is given by p = p + σ(ω)/ε, it shifts
up for ω > 0 due to an increase in σ. If the path of (p, ω) also shifts to the right, then the
intersection with this locus must occur at a higher value of p. Thus we prove that the path
does shift to the right. This shift occurs if dp/dω decreases as σ increases. This derivative
equals ṗ/ω̇ = (µ(1 − ω/ṗ))−1. Because ω > 0 and ṗ > 0 before the ṗ = 0 locus is reached,
we must show that ω/ṗ decreases in σ. By (A2), ṗ increases in σ, so we are done.

As the final step in the proof of part (a), we show that P0 and P∞ are independent of f .
As shown in the proof of Proposition 4, limt→∞ pt = p, which does not depend on f . The
initial condition p0 given in the proof of Lemma 4 also does not depend on f . Thus σ has
no bearing on P0 or P∞.
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We turn now to part (b). Because fA < fB, by Proposition 6 V0 and Pmax are larger under
fB while the steady-state prices P0 and P∞ stay unchanged. Under fA, Lt = λ∗St(λ

∗) ≤ λ∗,
where λ∗ is the sole member of supp fA, and V0 = λ∗. Therefore V max/V0 = 1 under fA. By
Proposition 2, V max/V0 > 1 under fB because | supp fB| > 1.
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B Microfoundation of Price Adjustment Rule

This appendix presents one possible microfoundation for the price adjustment rule (8). This
microfoundation is consistent with (3), which specifies how housing is allocated between
sellers and interested buyers at each time.

Market Mechanism

At each time, movers may post a listing price; we call listing movers “sellers.” A centralized
mechanism matches potential buyers to sellers. We assume there exists a cutoff price P c

t (δ, λ)
such that a potential buyer of type (δ, λ) purchases from a matched seller if and only if the
seller’s listing price is no greater than P c

t (δ, λ). We verify the existence of P c
t (·, ·) below.

The matching mechanism works as follows. When the stock of sellers equals 0 (but the
flow may still be positive), the potential buyer with the highest cutoff price matches to the
seller with the lowest listing price, then the potential buyer with the second highest cutoff
price matches to the seller with the second lowest listing price, et cetera until either the pool
of potential buyers or the pool of sellers has been exhausted.1 When the stock of sellers is
positive, this mechanism is applied first to the oldest cohort of movers and then is applied
successively to younger cohorts of movers until either the pool of potential buyers or the
entire pool of sellers has been exhausted.2

Each matched pair trades at the seller’s listing price if and only if that price does not
exceed the potential buyer’s cutoff price. If trade does not occur, the potential buyer per-
manently exits the market and the seller remains a mover.

Information

Because trade may occur at different prices at the same time, some care is needed to define
“the market price” at a given time. Letting i index sellers at t, we define the market price
by Pt = e

∫
logPi,tdi, where Pi,t is seller i’s price. Under this definition, the log of the market

price equals the average of the logs of the listing prices.
Before the posting of list prices, movers and potential buyers at t receive two pieces of

information: the price history {Pt′ | t′ ≤ t − dt} and the number D̃t of current potential
buyers whose cutoff price is at least Pt−dt. We will take the limit as dt→ 0 to describe the
continuous-time model.

Preferences

Movers act to maximize their utility after the matching process has occurred. We assume
that they have lexicographic preferences over holding a house, preferring any outcome in
which they do not own a house to all outcomes in which they do own a house. This extreme
assumption strongly motivates movers to sell their houses at each time—selling a house is
the only way to divest ownership of it (there is no free disposal)—and can be thought of as
the limit as the “holding costs” assumed in housing search models (Piazzesi and Schneider,

1This mechanism presumes that δ and λ are observable.
2The assumption that older cohorts of sellers are matched before younger cohorts is made in the stock-flow

matching literature (Ebrahimy and Shimer, 2010).
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2009; Guren and McQuade, 2015; Han and Strange, 2015) go to infinity. Within each class
of outcomes, utility is linear in consumption.

Movers understand the market mechanism described above, but there does not exist
common knowledge of the rationality of movers, leading to uncertainty over the prices that
other movers will post. Following Gilboa and Schmeidler (1989), we assume that each mover
displays “ambiguity aversion” over this uncertainty, acting to maximize her utility contingent
on the pricing decisions made by other movers that would minimize her utility. In this setting,
the mover’s decision is robust to the range of possible actions by other movers.

Potential buyers maximize the present value of utility discounted at a constant rate r,
where utility is linear in consumption and the flow utility δ received while a stayer.

Rigidities

A fraction e−βdt of movers are inattentive to D̃t and assume that it equals its steady-state
value D. The remaining 1−e−βdt of movers use the true value of D̃t when setting prices. The
allocation of movers to each group is independent of their prior histories, so in continuous
time attentiveness arrives with Poisson intensity β. This attention rigidity is similar to the
slow diffusion of news in Hong and Stein (1999) and the sticky information sets in Mankiw
and Reis (2002).

Potential residents and movers hold rigid beliefs concerning the the number of movers
at each moment. Instead of inferring how this number may vary over time, agents assume
that the flow of new movers and the stock of existing movers remain constant over time at
their values in the unique steady state in which the stock of movers equals 0. As shown in
Appendix A, the flow of new movers in this steady state equals the value D defined by (9).

As stated in Assumption 2, potential buyers assume that upon becoming a mover, they
sell instantaneously at the prevailing market price. A potential buyer’s expectation of future
market prices is given by Et[Pt+τ |δ, λ, Pi,t, ωt−dt, D̃t] = (1 + γ(ωt−dt)g(τ))Pi,t for τ > 0; Pi,t is
the listing price to which the potential buyer is matched, ωt−dt = ω({Pt′ | t′ ≤ t− dt}), and
γ and g satisfy the conditions in Assumption 1.

Cutoff Prices

The following lemma shows that, as assumed above, a potential buyer purchases the house
to which she is matched if and only if the listing price does not exceed a time- and type-
dependent cutoff.

Lemma B1. A potential buyer of type (δ, λ) buys if and only if Pi,t ≤ δ/rΣλ(ωt−dt)
−1.

Proof. The potential buyer anticipates selling at the market price with certainty when
becoming a mover, so her expected utility of becoming a mover at t + τ equals (1 +
γ(ωt−dt)g(τ))Pi,t, where Pi,t is the listing price of the house to which she is matched at

t. The expected utility of buying this house equals
∫∞
0
λe−λτ (

∫ τ ′
0
e−rτ

′
δdτ ′ + e−rτ (1 +

γ(ωt−dt)g(τ))Pi,t)dτ . She buys if and only if this quantity is at least Pi,t, which occurs
exactly when rPi,t(1− λγ(ωt−dt)/r

∫∞
0

(r + λ)e−(r+λ)τg(τ)dτ) ≤ δ. As shown in the proof of
Lemma 2, γ(ωt−dt)g(τ) < erτ − 1 for all τ > 0 and ωt−dt. It follows that the term in paren-
theses exceeds 1−λ/r

∫∞
0

(r+λ)e−(r+λ)τ (erτ−1)dτ = 0, so it can be divided by to obtain the
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decision rule Pi,t ≤ δ/r(1−λγ(ωt−dt)/r
∫∞
0

(r+λ)e−(r+λ)τg(τ)dτ)−1. Differentiating by parts
as in the proof of Lemma 3 and then applying (7) yields the cutoff rule in Lemma B1.

Lemma B1 shows that the cutoff assumed above equals P c
t (δ, λ) = δ/rΣλ(ωt−dt)

−1. This
cutoff leads to the following demand curve that is useful for proving the results below:

Lemma B2. For any P̃ > 0, the number of potential residents for whom P c
t (δ, λ) ≥ P̃ equals

At(rP̃ )−ε
∫∞
0

Σλ(ωt−dt)
−εf(λ)dλ.

Proof. P c
t (δ, λ) ≥ P̃ if and only if δ ≥ rP̃Σλ(ωt−dt). For each λ, the measure of such potential

buyers equals Atf(λ)(rP̃Σλ(ωt−dt))
−ε. Integrating over λ yields the result.

Listing Prices

The following lemma characterizes the price P ∗t chosen by attentive movers.

Lemma B3. Each attentive mover chooses to list at the price P ∗t = Pt−dt(D̃t/D)1/ε.

Proof. Suppose the measure of listing movers equals Lt and the cumulative distribution
function of their list prices equals F p

t (·). Suppose a given mover i chooses a listing price
Pi,t. Given Lemma B2, the number of potential buyers whose cutoff is at least Pi,t equals

D̃t(Pi,t/Pt−dt)
−ε. Under the mover’s assumption that the stock of movers equals 0, the mover

sells with certainty at Pi,t if and only if LtF
p
t (Pi,t) ≤ D̃t(Pi,t/Pt−dt)

−ε. We define P sup
t (Lt, F

p
t )

to be the supremum of Pi,t satisfying this inequality. The listing mover can guarantee selling
her house and attain a payoff arbitrarily close to P sup

t (Lt, F
p
t ) by choosing a price arbitrarily

close to but below this value.
Due to ambiguity-averse preferences, the attentive mover sets P ∗t = minLt,F

p
t
P sup
t (Lt, F

p
t ).

Because this function decreases in Lt, the minimizing value of Lt is D, the value that attains
when all of the movers thought to exist decide to list. It follows that P ∗t = minF p

t
P sup
t (D,F p

t ).

We claim that this minimum equals Pt−dt(D̃t/D)1/ε. If F p
t (Pt−dt(D̃t/D)1/ε) = 1, then this

assertion trivially holds. If F p
t (Pt−dt(D̃t/D)1/ε) < 1, then P sup

t (D,F p
t ) ≥ Pt−dt(D̃t/D)1/ε. It

follows that P ∗t = minF p
t
P sup
t (D,F p

t ) = Pt−dt(D̃t/D)1/ε, as claimed. Because the mover is
certain to sell at this price, she always chooses to list.

Lemma B3 allows us to characterize the evolution of the market price Pt over time.
Because inattentive movers believe that D̃t = D, Lemma B3 implies that they list at Pt−dt
at time t. With lower-case p denoting logP , the log market price at t equals pt = e−βdtpt−dt+
(1 − e−βdt)p∗t . Substituting the expression for p∗t from Lemma B3 yields pt − pt−dt = (1 −
e−βdt) log(D̃t/D)/ε. Dividing by dt and taking the limit dt→ 0 yields

ṗt = (β/ε) log(Dt/D), (B1)

where we have used the definitional fact that limdt→0 D̃t = Dt. In continuous time, movers
are inattentive almost surely and post at Pt, so transactions take place at Pt almost surely.
As a result, (B1) reproduces (8) with c = β/ε.
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The fact that inattentive movers post at Pt rationalizes Assumption 2. Because potential
buyers believe that the stock of movers remains equal to 0 at all times, they must believe
that all movers sell instantaneously, and all but a measure 0 of such movers sell at Pt. In
this way, Assumption 2 follows from the assumed rigidities in attention to D̃t and to the
variation in the number of movers.

The price chosen by inattentive movers coincides with a rigidity assumed in Guren (2016)
in which some sellers copy the most recent listing price plus an increase proportional to
recent price growth. In continuous time, under this rigidity inattentive movers copy the
latest market price, which is the behavior they follow in our microfoundation.

Rationing

We now show that (3) holds given the market mechanism and the chosen prices of movers.
In continuous time, all but a zero measure of matched potential buyers see a price of Pt.

If Lt > Dt or It > 0, all Dt potential buyers whose cutoff price is at least Pt are matched,
and all of them buy. Volume Vt(λ) to potential buyers of type λ in this case equals Dt(λ),
the number of potential buyers of type λ whose cutoff price is at least exceeds Pt (according
to the proof of Lemma B2).

If Lt ≤ Dt and It = 0, then only the Lt potential buyers with the highest cutoff prices
buy. As shown in the proof of Lemma B2, the number of potential buyers of type λ whose
cutoff price is at least P̃t equals Dt(λ)(P̃t/Pt)

−ε. The market-clearing cutoff for P̃t solves

Lt =
∫∞
0
Dt(λ)(P̃t/Pt)

−εf(λ)dλ = Dt(P̃t/Pt)
−ε, so P̃t = Pt(Dt/Lt)

1/ε. It follows that Vt(λ) =

Dt(λ)(P̃t/Pt)
−ε = LtDt(λ)/Dt, as given by (3).
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C Data Appendix

To conduct our empirical analysis we make use of a transaction-level data set containing
detailed information on individual home sales taking place throughout the US between 1995–
2014. The raw data was purchased from CoreLogic and is sourced from publicly available
tax assessment and deeds records maintained by local county governments.

Selecting Geographies

To select our sample, we first focus on a set of counties that have consistent data coverage
going back to 1995 and which, together, constitute a majority of the housing stock in their
respective MSAs. In particular, to be included in our sample a county must have at least one
“arms length” transaction with a non-negative price and non-missing date in each quarter
from 1995q1 to 2014q4.3 Starting with this subset of counties, we then further drop any
MSA for which the counties in this list make up less than 75 percent of the total owner-
occupied housing stock for the MSA as measured by the 2010 Census. This leaves us with
a final set of 250 counties belonging to a total of 115 MSAs. These MSAs are listed below
in Table A2 along with the percentage of the housing stock that is represented by the 250
counties for which we have good coverage. Throughout the paper, when we refer to counts
of transactions in an MSA we are referring to the portion of the MSA that is accounted for
by these counties.

Selecting Transactions

Within this set of MSAs, we start with the full sample of all arms length transactions of single
family, condo, or duplex properties and impose the following set of filters to ensure that our
final set of transactions provides an accurate measure of aggregate transaction volume over
the course of the sample period:

1. Drop transactions that are not uniquely identified using CoreLogic’s transaction ID.

2. Drop transactions with non-positive prices.

3. Drop transactions that are recorded by CoreLogic as nominal transfers between banks
or other financial institutions as part of a foreclosure process.

4. Drop transactions that appear to be clear duplicates, identified as follows:

(a) If a set of transactions has an identical buyer, seller, and transaction price but are
recorded on different dates, keep only the earliest recorded transaction in the set.

(b) If the same property transacts multiple times on the same day at the same price
keep only one transaction in the set.

5. If more than 10 transactions between the same buyer and seller at the same price
are recorded on the same day, drop all such transactions. These transactions appear
to be sales of large subdivided plots of vacant land where a separate transaction is
recorded for each individual parcel but the recorded price represents the price of the
entire subdivision.

3We rely on CoreLogic’s internal transaction-type categorization to determine whether a transaction
occurred at arms length.
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6. Drop sales of vacant land parcels in MSAs where the CoreLogic data includes such
sales.4 We define a vacant land sale to be any transaction where the sale occurs a year
or more before the property was built.

Table A3 shows the number of transactions that are dropped from our sample at each stage
of this process as well as the final number of transactions included in our full analysis sample.

Identifying Occupant and Non-Occupant Buyers

We identify non-occupant buyers using differences between the mailing addresses listed by
the buyer on the purchase deed and the actual physical address of the property itself. In
most cases, these differences are identified using the house numbers from each address. In
particular, if both the mailing address and the property address have a non-missing house
number then we tag any instance in which these numbers are not equal as a non-occupant
purchase and any instance in which they are equal as occupant purchases. In cases where
the mailing address property number is missing we also tag buyers as non-occupants if both
the mailing address and property address street names are non-missing and differ from one
another. Typically, this will pick up cases where the mailing address provided by the buyer
is a PO Box. In all other cases, we tag the transaction as having an unknown occupancy
status.

Restricting the Sample for the Non-Occupant Analysis

Our analysis of non-occupant buyers focuses on the growth of the number of purchases by
these individuals between 2000 and 2005. To be sure that this growth is not due to changes
in the way mailing addresses are coded by the counties comprising the MSAs in our sample,
for the non-occupant buyer analysis we keep only MSAs for which we are confident such
changes do not occur between 2000 and 2005. In particular, we first drop any MSA in which
the share of transactions in any one year between 2000 and 2005 with unknown occupancy
status exceeds 0.5. Of the remaining MSAs, we then drop those for which the increase in
the number of non-occupant purchases between any year and the next exceeds 150%, with
the possible base years being those between 2000 and 2005.5 The MSAs that remain after
these two filters are marked with an “x” in Table A2.

Identifying New Construction Sales

In Table 4 and Figure 10 we correlate the size of the 2000–2005 house price boom with the
level of initial volume relative to the total housing stock in 2000. In performing this exercise,
we omit new construction sales from the calculation of transaction volume. This is done to
ensure that our calculations are not simply picking up cross-sectional differences in supply
elasticity or new construction rates across markets.

To identify sales of newly constructed homes, we start with the internal CoreLogic new
construction flag and make several modifications to pick up transactions that may not be

4MSAs are flagged as including vacant land sales if more then 5 percent of the sales in the MSA occur
more then two years before the year in which the property was built.

5This step drops only Chicago-Naperville-Elgin, IL-IN-WI.
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captured by this flag. CoreLogic identifies new construction sales primarily using the name
of the seller on the transaction (e.g. “PULTE HOMES” or “ROCKPORT DEV CORP”),
but it is unclear whether their list of home builders is updated dynamically or maintained
consistently across local markets. To ensure consistency, we begin by pulling the complete
list of all seller names that are ever identified with a new construction sale as defined by
CoreLogic. Starting with this list of sellers, we tag any transaction for which the seller is
in this list, the buyer is a human being, and the transaction is not coded as a foreclosure
sale by CoreLogic as a new construction sale. We use the parsing of the buyer name field
to distinguish between human and non-human buyers (e.g. LLCs or financial institutions).
Human buyers have a fully parsed name that is separated into individual first and name
fields whereas non-human buyer’s names are contained entirely within the first name field.

This approach will identify all new construction sales provided that the seller name is
recognized by CoreLogic as the name of a homebuilder. However, many new construction
sales may be hard to identify simply using the name of the seller. We therefore augment this
definition using information on the date of the transaction and the year that the property
was built. In particular, if a property was not already assigned a new construction sale using
the builder name, then we search for sales of that property that occur within one year of
the year that the property was built and record the earliest of such transactions as a new
construction sale.

Finally, for properties that are not assigned a new construction sale using either of the
two above methods, we also look to see if there were any construction loans recorded against
the property in the deeds records. If so, we assign the earliest transaction to have occurred
within three years of the earliest construction loan as a new construction sale. We use a
three-year window to allow for a time lag between the origination of the construction loan
and the actual date that the property was sold. Construction loans are identified using
CoreLogic’s internal deed and mortgage type codes.
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D Matching Sellers and Buyers

Our model abstracts from the situation in which sellers become buyers and this joint buyer-
seller problem—anticipating that selling in the future will necessitate buying another house—
affects their initial decision to buy. To explore how restrictive this assumption is, we conduct
an empirical analysis of the frequency of move-up buyers using the sample of MSAs defined
in Appendix C. This appendix describes our algorithm and results in more detail.

The deeds data are well suited for tracking properties over time, but information about
buyers and sellers is limited to names and addresses. As a first pass, we use the names
of buyers and sellers to match transactions as being possibly linked in a joint buyer-seller
event. For each sale transaction, we attempt to identify a purchase transaction in which
the seller from the sale matches the buyer from the purchase. To allow the possibility that
a purchase occurs before a sale or with a lag, we look for matches in a window of plus or
minus a quarter around the quarter of the sale transaction. We only look for matches within
MSA, as purchases associated with cross-city moves are more similar in spirit to our model’s
departure from the standard search framework.

Our match accounts for several anomalies, which would lead a naive match strategy
to understate the match rate. These include: inconsistent use of nicknames (e.g., Charles
versus Charlie), initials in place of first names, the presence or absence of middle initials,
transitions from a couples buyer to a single buyer via divorce, transitions from a single buyer
to a couples buyer via cohabitation, and reversal of order in couples purchases.

Our approach is likely to overstate the number of true matches, because it does not
use address information to restrict matches and it allows common names to match even if
they represent different people. Because we find a low match rate even with this aggressive
strategy, we do not make use of address information in our algorithm or otherwise attempt
to refine matches.

We focus on transactions between 2002 and 2014 because the seller name fields are
incomplete in prior years for several cities. We also restrict sales transactions to those
with human sellers, as indicated by the name being parsed and separated into first and last
name fields by CoreLogic. The sample includes 18.9 million sales transactions. Of these, we
are able to match 6.9 million to a linked buyer transaction, or 37%. Thus, nearly two-thirds
of transactions do not appear to be associated with joint buyer-seller decisions.

The mean match rate also varies across cities, ranging from 16% at the 10th percentile
to 40% at the 90th percentile. The match rate increases with the cycle, reaching nearly 50%
at the peak of the volume cycle in mid-2005 and falling to approximately 25% during the
bust years of 2008 through 2011. These patterns are largely consistent with the findings in
Anenberg and Bayer (2013), who conduct a similar match for the Los Angeles metro area.

We have not attempted to decompose the covariance in match rates with the cycle into
components due to true joint buyer-seller decisions versus false matches from having a larger
haystack to search through. Thus, the time series patterns of match rates should be judged
with caution. We leave to future work a comprehensive investigation of how the joint buyer-
seller problem interacts with the forces at play in our model.
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FIGURE 1
The Joint Dynamics of Prices and Volume

(a) US Housing Market (2000–2011) (b) US Equities, Tech (1995–2005)
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Notes: These figures display the dynamic relationship between prices and transaction volume for four distinct
bubble episodes: (a) the 2000–2011 US housing market, (b) the 1995–2005 market in technology stocks, (c)
the bubbles in experimental asset markets, and (d) the 1985–1995 Japanese stock market. Panel (a) data
come from CoreLogic and cover 115 cities. For prices, we use CoreLogic’s single-family home price index,
which is based on repeat sales. For volume, we plot a seasonally adjusted monthly count of transactions
in the data set used in Section 4; we seasonally adjust volume by removing calendar-month fixed effects.
Panel (b) data come from CRSP and cover the Dotcom sample in Ofek and Richardson (2003). For prices,
we plot aggregate Dotcom market capitalization. For volume, we plot average monthly turnover (shares
traded/shares outstanding), weighted by market cap. Panel (c) data were manually entered from the pub-
lished Smith et al. (1988) manuscript and cover all eight experiments that include a price boom and bust
(IDs are 16, 17, 18, 26, 124xxf, 39xsf, 41f, 36xx). For prices, we plot average deviations from fundamental
value. For volume, we plot average number of trades. Panel (d) data come from the Tokyo stock exchange
online archive and cover all first- and second-tier (i.e., large and micro-cap) stocks. For volume, we plot total
shares traded per month (shares-outstanding data are not available). For prices, we plot aggregate market
capitalization.
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FIGURE 2
Expected Holding Times of Homebuyers, 2008–2015

(a) Response Heterogeneity
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FIGURE 3
Simulation Results
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FIGURE 4
The Dynamics of Holding Times in the Housing Market

(a) Realized Holding Times of Sales
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FIGURE 5
The Role of Short-Holding-Period Volume Growth for Total Volume Growth

(a) Holding Periods < 3 Years (b) Holding Periods ≥ 3 Years
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Notes: This figure illustrates the quantitative importance of short-holding-period volume in accounting for
the increase in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of the
percent change in total volume from 2000 to 2005 versus the percent change in volume for short holding
periods (< 3 years) in Panel (a) and long holding periods (≥ 3 years) in Panel (b). Panel (c) shows that
the growth in short-holding-period volume is a quantitatively important component of the growth in total
volume across MSAs. For each MSA, we plot the change in short-holding-time volume divided by initial
total volume on the y-axis against the percent change in total volume on the x-axis.
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FIGURE 6
The Role of Non-Occupant Volume Growth for Total Volume Growth

(a) Non-Occupant Buyers (b) Occupant Buyers
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(c) Contribution of Non-Occupant Volume to Total Volume Growth

slope = 0.54

0%
50

%
10

0%
15

0%

C
ha

ng
e 

in
 N

on
-O

cc
up

an
t V

ol
um

e 
as

 a
Pe

rc
en

t o
f I

ni
tia

l T
ot

al
 V

ol
um

e

0% 50% 100% 150% 200%

Percent Change in Total Volume

Notes: This figure illustrates of the quantitative importance of non-occupant volume in accounting for the
increase in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of the
percent change in total volume from 2000 to 2005 versus the percent change in volume for non-occupant
buyers (transactions with distinct mailing and property addresses) in Panel (a) and occcupant buyers (trans-
actions with mailing address missing or matching the property address) in Panel (b). Panel (c) shows that
the growth in non-occupant volume is a quantitatively important component of the growth in total volume
across MSAs. For each MSA, we plot the increase in non-occupant volume divided by initial total volume
on the y-axis against the percent change in total volume on the x-axis.
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FIGURE 7
The Dynamics of Prices, Volume, and Inventories

(a) Prices and Volume
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(b) Prices and Inventories

18
00

22
00

26
00

30
00

34
00

38
00

A
nn

ua
liz

ed
 In

ve
nt

or
y 

of
 L

is
tin

gs
 (0

00
s)

10
0

12
0

14
0

16
0

18
0

20
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

Prices

Inventories

Notes: These figures display the dynamic relationship between prices, volume, and the inventory of listings
in the US housing market between 2000 and 2011. Panel (a) plots monthly prices and sales volume, and
panel (b) plots monthly prices and inventory. Inventory information comes from the National Association
of Realtors. We apply a calendar-month seasonal adjustment for both volume and inventories.
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FIGURE 8
The Correlation between Prices and Volume at Various Lags

-.5

0

.5

1

C
or

re
la

tio
n

-12 0 12 24 36 48
Volume Lag (Months)

Notes: This figure shows that the correlation between prices and lagged volume is robust across cities and
maximized at a positive lag of 24 months. We regress the demeaned log of prices on seasonally adjusted
lagged volume divided by the 2000 housing stock for each lag from -12 months to 48 months and plot the
implied correlation and its 95% confidence interval calculated using standard errors that are clustered by
month.
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FIGURE 9
Sale and Listing Rates for US Existing Homes, 2000–2011

(a) Sale Rate
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Notes: The figure displays the average monthly sale rate and listing rate for each year. For each month,
the sale rate equals sales divided by listed inventory, and the listing probability equals new listings divided
by the stock of unlisted houses. Monthly data on the US housing stock are interpolated from quarterly
estimates provided by the US Census, and monthly sales and inventory numbers come from data provided
by the National Association of Realtors; new listings are calculated using the inventory and sales data. The
shaded region corresponds to the quiet as demarcated in Figure 7.
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FIGURE 10
Initial Volume and the Magnitude of the Housing Boom and Bust

(a) Boom
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(b) Bust
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Notes: This figure provides empirical support for the cross-sectional prediction that the magnitude of price
swings during boom–bust episodes should be correlated with the level of steady-state transaction volume
across markets. We present binned scatter plots (“binscatters”) of the percent change in prices from January
2000 to peak (Panel (a)) and from peak to trough (Panel (b)) versus total existing homes in 2000. To facilitate
comparisons across cities of different sizes, we normalize existing sales by the size of the housing stock in
2000 for each city. House prices are measured using the monthly CoreLogic repeat-sales house price indicies.
The price peak for each MSA is measured as the highest price recorded for that MSA prior to January, 2012.
The trough is measured as the lowest price subsequent to the month in which the peak occurred.
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TABLE 1
Calibration Sources

Calibrated
Quantity

Role in Model
Source or Assumed

Value

f(·)
Distribution of

expected holding
times

NAR Investment and
Vacation Home
Buyers Survey

µ

Relative weight in
expectations on

recent price changes
versus those in

distant past

Estimation using
NAR survey

g(·)
Forward term
structure of
expectations

Survey of Consumer
Expectations;

Armona et al. (2016)

γ(·) Extrapolation
function

Estimation using
Case et al. (2012)

survey

r Discount rate 0.07

c Price stickiness 1

ε
Housing demand

elasticity
0.6

Af/Ai Size of demand shock 1.06

Notes: This table lists the model quantities we calibrate to produce Figure 3. Further details are provided
in Section 3.4.
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TABLE 2
Sensitivity of Simulation Results to Parameters

f ρ µ c φ ε Af/Ai r

A. Excess Price Boom

Low 0.30 0.18 0.83 0.40 0.75 0.36 0.92 1.79
Baseline 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
High 3.31 1.46 0.99 1.48 1.41 3.46 1.17 0.26

B. Volume Boom

Low 0.00 0.09 0.15 0.11 0.39 0.05 0.21 0.28
Baseline 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
High 0.94 0.26 0.23 0.19 0.25 0.86 0.23 0.14

C. Maximal Unsold Listings

Low 0.02 0.01 0.05 0.04 0.02 0.02 0.06 0.09
Baseline 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
High 0.18 0.07 0.05 0.05 0.08 0.16 0.06 0.01

Notes: The excess price boom equals Pmax/P∞ − 1, the volume boom equals V max/V0 − 1, and maximal
unsold listings equal maxt It. The alternate values for f , ρ, and ε are described in the text. The low and
high values for the remaining parameters are half and double their baseline values (we half and double
log(Af/Ai)).
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TABLE 3
Within-MSA Role of Short-Holding-Period and

Non-Occupant Volume Growth for Total Volume Growth (2000–2005)

Holding Period Occupancy Status

%∆ Short
Volume

%∆ Long
Volume

∆ Short/
Total Volume

%∆ Non-Occupant
Volume

%∆ Occupant
Volume

∆ Non-Occupant/
Total Volume

%∆ Total Volume 1.517*** 0.936*** 0.241*** 1.525*** 1.044*** 0.356***
(0.104) (0.020) (0.018) (0.094) (0.093) (0.027)

R2 0.57 0.95 0.77 0.17 0.48 0.75
Observations 6,763 6,763 6,763 5,597 5,597 5,597

Notes: This table reports estimates of the quantitative importance of short-holding-period and non-occupant
volume in accounting for the increase in total volume between 2000 and 2005 at the ZIP-code level. We
assign each transaction to a Census ZIP Code Tabulation Area (ZCTA) using the postal ZIP code of the
property and a ZCTA-to-ZIP code crosswalk file provided by the Missouri Census Data Center. Each column
reports estimates from a separate regression of the change in a given component of volume on the percent
change in total volume in the ZCTA. All specifications include MSA fixed effects. A short holding period is
defined as any holding period less than three years. Occupancy of the buyer is identified using information
on the mailing address of the property as described in the text. In columns 3 and 6, we divide the level
change in short-holding-period and non-occupant volume by total volume in the ZCTA in 2000. All other
changes are expressed as percent changes from the 2000 level for the indicated type of transaction. ZCTAs
are weighted according to their total volume in 2000. To eliminate the influence of outliers, all specifications
drop the 99.9th and 0.1st percentile of the left- and right-hand-side variables. Standard errors are reported
in parentheses and are clustered at the MSA level. Significance levels 10%, 5%, and 1% are denoted by *,
**, and ***, respectively.

66



TABLE 4
Initial Volume and the Magnitude of the Housing Boom and Bust

Percentage Change in Prices

2000–Peak 2000–2006 Peak–Trough 2006–Trough

Existing Sales/Stock (2000) 14.626*** 14.477*** −4.325*** −4.677***
(3.813) (3.739) (1.172) (1.259)

R2 0.11 0.10 0.12 0.12
Observations 115 115 115 115

Notes: This table reports estimates of the cross-sectional relationship between the magnitude of the housing
boom and bust and initial transaction volume at the MSA level. Each column reports estimates from
a separate regression where the dependent variable is the percentage change in prices measured over the
indicated horizon. Initial transaction volume is measured as total year 2000 existing home sales in each
MSA scaled by the total number of housing units in the MSA as reported in the 2000 Census. House prices
are measured using the monthly CoreLogic repeat-sales house price indicies. The price peak for each MSA
is measured as the highest price recorded for that MSA prior to January, 2012. The trough is measured as
the lowest price subsequent to either the month in which the peak occurred (column 3) or January, 2006
(column 4). In columns 1, 2, and 4, price changes are calculated using the January price level in 2000 and
2006. Heteroskedasticity robust standard errors are reported in parentheses. Significance levels 10%, 5%,
and 1% are denoted by *, **, and ***, respectively.
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FIGURE A1
Interest in “House Flipping” over the Housing Cycle
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Notes: Search data were downloaded from Google Trends on January 31, 2017. House price index is the
FHFA’s “all-transactions” series, which is nominal and quarterly. We normalize it to 100 in 2004q1 and map
quarters to months using the midpoints.
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FIGURE A2
Phase Diagram

ω

p
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Notes: This figure illustrates the phase diagram for the (p, ω) system specified by equations (A2) and (A3);
p denotes the log house price, and ω denotes the historical average log price change given by equation (10).
The dashed loci indicate points at which either ṗ = 0 or ω̇ = 0. The dotted arrows indicate the directions
p and ω move in each of the four areas demarcated by the dashed loci. The system begins at the marked
point on the p-axis.

69



TABLE A1
Sensitivity of S&P 500 Return Forecasts to

Historical Returns, 2000Q3–2011Q4

Lagged Annual Return 75-Year Weighted Average Return

One-Year
Forecast

Ten-Year
Forecast

(Annualized)

One-Year
Forecast

Ten-Year
Forecast

(Annualized)

Historical Return 0.029** −0.013* 0.045*** 0.011
(0.014) (0.007) (0.010) (0.015)

R-squared 0.12 0.06 0.17 0.03
Observations 44 44 44 44

Notes: Return forecasts come from the Duke CFO Global Business Outlook, a quarterly survey of chief
financial officers of U.S. firms. Historical returns on the S&P 500 come from CRSP’s daily dividend-inclusive
value-weighted return series vwretd. The historical return equals Pt/Pt−1 − 1 in the first two columns and

µ(1− e−µT )−1
∫ T
0
e−µτ ṗt−τdτ in the latter two columns, with p = logP , µ = 0.5, and T = 75. The sample

period is chosen to match that used by Greenwood and Shleifer (2014). Observations for 2001Q3 and 2002Q3
are dropped due to errors or gaps in the Duke CFO Global Business Outlook. Newey-West standard errors
are reported in parentheses. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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TABLE A2
List of Metropolitan Statistical Areas Included in the Analysis Sample

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis
Metropolitan Statistical Area

Share of Housing
Stock Represented

Included in
Non-Occupant

Analysis

Akron, OH 1.00 x New York-Newark-Jersey City, NY-NJ-PA 0.97 x
Ann Arbor, MI 1.00 x North Port-Sarasota-Bradenton, FL 1.00 x
Atlanta-Sandy Springs-Roswell, GA 0.80 Norwich-New London, CT 1.00
Atlantic City-Hammonton, NJ 1.00 x Ocala, FL 1.00 x
Bakersfield, CA 1.00 x Ocean City, NJ 1.00 x
Baltimore-Columbia-Towson, MD 1.00 x Olympia-Tumwater, WA 1.00 x
Barnstable Town, MA 1.00 Orlando-Kissimmee-Sanford, FL 1.00 x
Bellingham, WA 1.00 x Oxnard-Thousand Oaks-Ventura, CA 1.00 x
Bend-Redmond, OR 1.00 x Palm Bay-Melbourne-Titusville, FL 1.00 x
Boston-Cambridge-Newton, MA-NH 0.89 Pensacola-Ferry Pass-Brent, FL 1.00 x
Boulder, CO 1.00 x Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.00 x
Bremerton-Silverdale, WA 1.00 x Phoenix-Mesa-Scottsdale, AZ 1.00 x
Bridgeport-Stamford-Norwalk, CT 1.00 Pittsfield, MA 1.00
Buffalo-Cheektowaga-Niagara Falls, NY 0.80 x Portland-Vancouver-Hillsboro, OR-WA 0.97 x
California-Lexington Park, MD 1.00 x Port St. Lucie, FL 1.00 x
Canton-Massillon, OH 0.92 x Prescott, AZ 1.00 x
Cape Coral-Fort Myers, FL 1.00 x Providence-Warwick, RI-MA 0.78
Champaign-Urbana, IL 0.82 x Punta Gorda, FL 1.00 x
Charleston-North Charleston, SC 0.79 x Raleigh, NC 0.78 x
Chicago-Naperville-Elgin, IL-IN-WI 0.90 Reading, PA 1.00 x
Chico, CA 1.00 x Redding, CA 1.00 x
Cincinnati, OH-KY-IN 0.78 x Reno, NV 0.99 x
Cleveland-Elyria, OH 1.00 x Riverside-San Bernardino-Ontario, CA 1.00 x
Colorado Springs, CO 0.95 x Rockford, IL 0.84 x
Crestview-Fort Walton Beach-Destin, FL 1.00 x Sacramento–Roseville–Arden-Arcade, CA 1.00 x
Dallas-Fort Worth-Arlington, TX 0.85 x Salem, OR 0.79 x
Dayton, OH 0.86 x Salinas, CA 1.00 x
Deltona-Daytona Beach-Ormond Beach, FL 1.00 x San Diego-Carlsbad, CA 1.00 x
Denver-Aurora-Lakewood, CO 0.95 x San Francisco-Oakland-Hayward, CA 1.00 x
El Centro, CA 1.00 x San Jose-Sunnyvale-Santa Clara, CA 1.00 x
El Paso, TX 0.99 x Santa Cruz-Watsonville, CA 1.00 x
Elmira, NY 1.00 x San Luis Obispo-Paso Robles-Arroyo Grande, CA 1.00 x
Erie, PA 1.00 x Santa Maria-Santa Barbara, CA 1.00 x
Eugene, OR 1.00 x Santa Rosa, CA 1.00 x
Flagstaff, AZ 1.00 x Seattle-Tacoma-Bellevue, WA 1.00 x
Fort Collins, CO 1.00 x Sebastian-Vero Beach, FL 1.00 x
Fresno, CA 1.00 x Sebring, FL 1.00 x
Gainesville, FL 0.91 x Sierra Vista-Douglas, AZ 1.00 x
Gainesville, GA 1.00 Spokane-Spokane Valley, WA 0.87 x
Hanford-Corcoran, CA 1.00 x Springfield, IL 0.93 x
Hartford-West Hartford-East Hartford, CT 1.00 Springfield, MA 1.00
Homosassa Springs, FL 1.00 x Springfield, OH 1.00 x
Ithaca, NY 1.00 x Stockton-Lodi, CA 1.00 x
Jacksonville, FL 0.98 x Tampa-St. Petersburg-Clearwater, FL 1.00 x
Kahului-Wailuku-Lahaina, HI 1.00 x The Villages, FL 1.00 x
Kingston, NY 1.00 x Toledo, OH 0.92 x
Lake Havasu City-Kingman, AZ 1.00 x Trenton, NJ 1.00 x
Lakeland-Winter Haven, FL 1.00 x Tucson, AZ 1.00 x
Lancaster, PA 1.00 x Urban Honolulu, HI 1.00 x
Las Vegas-Henderson-Paradise, NV 1.00 x Vallejo-Fairfield, CA 1.00 x
Los Angeles-Long Beach-Anaheim, CA 1.00 x Vineland-Bridgeton, NJ 1.00 x
Madera, CA 1.00 x Visalia-Porterville, CA 1.00 x
Merced, CA 1.00 x Washington-Arlington-Alexandria, DC-VA-MD-WV 0.95 x
Miami-Fort Lauderdale-West Palm Beach, FL 1.00 x Worcester, MA-CT 1.00
Modesto, CA 1.00 x Youngstown-Warren-Boardman, OH-PA 0.80 x
Napa, CA 1.00 x Yuba City, CA 1.00 x
Naples-Immokalee-Marco Island, FL 1.00 x Yuma, AZ 1.00 x
New Haven-Milford, CT 1.00

Notes: This table lists the Metropolitan Statistical Areas that are included in the final analysis sample along
with the share of the total 2010 owner-occupied housing stock for each MSA that is represented by the subset
of counties for which CoreLogic has consistent data coverage back to 1995.
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TABLE A3
Number of Transactions Dropped During Sample Selection

Original Number of Transactions 57,668,026

Dropped: Non-unique CoreLogic ID 50
Dropped: Non-positive price 3,309,100
Dropped: Nominal foreclosure transfer 531,786
Dropped: Duplicate transaction 609,756
Dropped: Subdivision sale 1,304,920
Dropped: Vacant lot 831,774

Final Number of Transactions 51,080,640

Notes: This table shows the number of transactions dropped at each stage of our sample-selection procedure.

72




