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The United States underwent an enormous housing market cycle between 2000 and 2011

(Figure 1). The rise and fall in house prices caused several problems for the U.S. economy.

During the boom, a surge in housing investment drew resources into construction from other

sectors (Charles, Hurst and Notowidigdo, 2018) and contributed to a capital overhang that

slowed the economic recovery from the subsequent recession (Rognlie, Shleifer and Simsek,

2017). During the bust, millions of households lost their homes in foreclosure, and falling

house prices led many others to cut consumption (Mayer, Pence and Sherlund, 2009; Mian,

Rao and Sufi, 2013; Mian, Sufi and Trebbi, 2015; Guren and McQuade, 2020). Large real

estate cycles are not unique to the U.S. (Mayer, 2011) or to this time period (Case, 2008;

Glaeser, 2013). Given the economic costs of these recurring episodes, understanding their

cause is critical for economists and policymakers.

This paper presents evidence that speculation was a key driver of this real estate cycle.1

Three stylized facts from the cycle guide our analysis. First, prices and volume jointly rise

and fall through the cycle. Second, volume falls before prices, resulting in a pronounced

lead–lag relation between prices and volume. Third, the period during which prices continue

to rise despite falling volume coincides with rapidly accumulating unsold listings. We refer

to this period as the quiet, which is preceded by the boom and followed by the bust. These

stylized facts hold on average across cities and are especially pronounced in cities with larger

cycles. They suggest that focusing on who was most active during each phase of the cycle

can shed light on the underlying mechanisms.

We study the behavior of speculative homebuyers during each phase of the housing cycle

using transaction-level data collected by CoreLogic on 50 million home sales between 1995

and 2011. We measure speculative buying and selling over time and across 115 metropolitan

statistical areas (MSAs), which together represent 48% of the U.S. housing stock. We pursue

two complementary approaches to identifying speculative activity. First, following Bayer,

Geissler, Mangum and Roberts (2020), we classify transactions based on their realized hold-

ing periods, denoting those buyers who resell the property within three years as short-term

buyers. Second, following Chinco and Mayer (2015), we classify transactions based on the in-

ferred occupancy status of the property, denoting buyers who list a mailing address distinct

from the property address as non-occupant buyers. We supplement our transaction data

1Harrison and Kreps (1978, p. 323) define speculation as follows: “Investors exhibit speculative behavior
if the right to resell a stock makes them willing to pay more for it than they would pay if obliged to hold it
forever.”

1



with a separate CoreLogic data set on homes listed for sale, sourced from a consortium of

local MLS boards. We link these data to transaction records to study the role of speculative

buyers for inventory dynamics across MSAs.

While overall volume increases substantially during the boom years of 2000–2005, both

short-term and non-occupant volume rise dramatically more. In an accounting sense, growth

in speculative volume explains between 40% and 50% of total volume growth. This relation

is also strong in the cross-section, as speculative volume growth can account for 30% to

50% of total volume growth across MSAs. Cities with stronger speculative volume booms

also experience larger house price booms: MSAs with a one standard deviation larger short-

volume and non-occupant boom see 25 and 15 percentage point larger cumulative price

increases, respectively.

As the volume boom ends, price growth remains positive but slows, and unsold list-

ings accumulate. Across MSAs, these patterns are more pronounced in cities with larger

speculative volume booms. Our linked listing-transaction data further reveal that short-

term buyers disproportionately contribute to the surge in aggregate inventories. MSAs with

larger speculative volume booms also see substantially larger price busts, volume busts, and

total foreclosures in the final phase of the cycle.

Our results suggest that the differential entry of speculative buyers plays a central am-

plifying role in the cycle. In robustness analysis, we consider and rule out several alternative

explanations of the rise in speculative volume. These alternatives include move-up purchases

due to rising home equity, the entry of professional real estate arbitrageurs, and various me-

chanical concerns arising from the way we measure short-term volume. Together, these

analyses lend support to our preferred interpretation, which focuses on a class of inexperi-

enced speculative entrants into the housing market during the boom.

Consistent with our interpretation of the data, a National Association of Realtors survey

reveals wide variation in expected holding times, shorter expected holding times among

investors, and increases in the short-term buyer share following recent price gains. We

confirm the statistical link between house price changes and speculative buyer entry using

monthly data and a panel VAR specification as in Chinco and Mayer (2015). Short-buyer

entry is strongly predictive of subsequent house price growth and predicted by recent past

price growth, whereas non-occupant entry can be predicted by past price growth but is less

informative for predicting subsequent prices. In lower-frequency horserace specifications,
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short-term volume also tends to be a stronger predictor of cycle dynamics than the non-

occupant boom. At the same time, non-occupant buyers disproportionately contribute to

the growth in short-term volume, indicating significant overlap between these categories.

One interpretation of these results is that short-term volume is a more precise measure of

speculative activity than non-occupant volume, perhaps because non-occupant volume also

includes longer-term “cash flow” investors and vacation homebuyers.

The last part of the paper presents a model that accounts for the evidence and allows

us to quantify the relative contribution of different types of speculators to the cycle. Our

approach adapts core insights from Cutler, Poterba and Summers (1990), De Long, Shleifer,

Summers and Waldmann (1990), and Hong and Stein (1999) to study the housing market.2

As in these papers, extrapolation—the belief that prices continue to rise after recent gains—

causes a predictable boom and bust in house prices after a positive demand shock. In

contrast to those papers, we relax the assumption of Walrasian market clearing, so that

homes listed for sale may not sell immediately. To do so, we microfound extrapolation

using the approach in Glaeser and Nathanson (2017) and then extend their framework to a

non-Walrasian setting.

In our model, a mover attempts to sell her house by posting a list price. A potential buyer

arrives and decides whether to purchase the house at that price. Potential buyers differ in the

benefits they derive from owning a house; non-occupants benefit less than occupants. Buyers

also differ in the expected amount of time until becoming a mover; short-term buyers have

shorter horizons ex ante. The average flow benefit of potential buyers fluctuates randomly

over time. Agents cannot observe this demand process, but they can observe the history of

price growth and the share of listings that sell each period. Using this market data, agents

infer the current level and growth rate of the demand process and optimally make decisions

in light of these beliefs—the choice of list price for movers, and whether or not to purchase

for potential buyers. As in Glaeser and Nathanson (2017), agents mistakenly believe that

potential buyers neglect time-variation in the growth rate when deciding whether to buy.

We study how our housing market responds to a large, unexpected increase to the growth

rate of the demand process. We choose parameter values to match facts about the housing

market, including the boom–bust cycle in prices and volume and the baseline speculative

2Section 6 motivates our model by reviewing related theoretical work. We also highlight the aspects of
our empirical results that prior work can and cannot explain.
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share of volume. In the model, the quiet occurs when agents overestimate the level of the

demand process and believe it continues to grow. This mistaken belief causes movers to

increase their list prices despite falling transaction volume.

We then use this setting to explore the relative importance of short-term and non-

occupant volume, because the model allows us to separate a buyer’s horizon from the utility

she receives from buying a house. Much of the rise in volume comes from non-occupant

purchases and short-term sales because speculators disproportionately buy housing as prices

rise. In a counterfactual without short-term potential buyers, the price bust nearly disap-

pears. The same holds in a counterfactual without non-occupants, but only because many

non-occupants have short horizons. Eliminating non-occupants while keeping the horizon

distribution constant fails to attenuate the housing cycle. These results suggest that short-

term speculation causes the house price cycle in the model.

Previous work has examined short-term buyers (Adelino, Schoar and Severino, 2016;

Bayer, Geissler, Mangum and Roberts, 2020; Bayer, Mangum and Roberts, 2016) and non-

occupant buyers (Haughwout, Lee, Tracy and van der Klaauw, 2011; Bhutta, 2015; Gao,

Sockin and Xiong, 2019; Chinco and Mayer, 2015) during this cycle. We contribute to this

empirical literature in four ways. First, unlike many studies, we use deeds records instead

of mortgage records, allowing us to observe speculation among all-cash buyers. Because

all-cash purchases disproportionately come from speculators and constitute a large share of

total sales, research relying on mortgage records likely undercounts speculation. Second,

the number of MSAs in our sample—115—is considerably larger than in some other studies,

allowing us to establish cross-MSA relations between speculation and other aspects of the

housing cycle. Third, we introduce new microdata on homes listed for sale that allow us to

study the joint dynamics of prices, volume, and inventories in the cross-section of cities, and

document the role of recent buyers in driving the surge of listings during the quiet. Finally,

we relate the price cycle to both types of speculation simultaneously, whereas the previous

literature has tended to look at only one type. We find substantial overlap between the

two types and, interestingly, a more robust relation of the price cycle to short-term than

non-occupant buying. Our model sheds light on this result.
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1 Dynamics of Prices, Volume, and Inventory

In this paper, we present evidence and a model showing that short-term speculation was a

central amplifying force of the last U.S. housing cycle. This section presents three stylized

facts from that cycle that guide our analysis. First, prices and volume jointly rise and fall

through the cycle. Second, volume falls before prices, resulting in a pronounced lead–lag

relation between prices and volume. Third, the period during which prices continue to rise

despite falling volume coincides with rapidly accumulating unsold listings. We refer to this

period as the quiet, which is preceded by the boom and followed by the bust.

Figure 1, Panel A, plots aggregate trends in prices and transaction volume between 2000

and 2011. Panels B through E plot analogous series for four cities that represent regions with

the largest boom–bust cycles during this time: Phoenix, AZ; Las Vegas, NV; Orlando, FL;

and Bakersfield, CA. During the 2000s housing cycle, volume peaks before prices, and there

is a sustained period during which volume is falling rapidly on high prices. This dynamic

holds consistently across regions that experienced large price cycles. At the aggregate level,

volume rises to 150% of its level in 2000 and then falls back to this level before prices begin

to fall. In the four cities in Panels B through E, volume more than doubles during the boom.

Prices subsequently peak between 200% and 300% of their 2000 levels.

Figure 2 shows that this lead–lag relation between prices and volume also holds on average

across all MSAs in our sample. We search for the horizon over which a given change in volume

has the most predictive power for the contemporaneous change in prices at the MSA level.

Changes in volume generally lead changes in prices if the correlation between prices and

volume is maximized at a positive lag.

To implement this search, we build a monthly panel of log house prices and transaction

volume at the MSA level running from January 2000 to December 2011.3 We normalize

transaction volume in each MSA-month by dividing by the total housing stock for the MSA

recorded in the 2000 Census. Using this panel, we run a series of simple regressions of the

form:

pi,t = βτvi,t−τ + ηi,t, (1)

where p is log price, v is volume, i indexes MSAs, and time is measured in months. To

3The data used to construct this panel and the sample restrictions we impose are discussed in detail in
Section 2.1 below.
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account for the seasonal adjustment in the CoreLogic price indices, for each regression we

demean prices at the MSA level and demean volume at the MSA–calendar month level.4

The coefficient βτ provides an estimate of how movements in volume around MSA–

calendar month averages at a τ -month lag are correlated with contemporaneous movements

in prices around MSA averages. We run these regressions separately for up to 4 years of lags

(τ = 48) and one year of leads (τ = −12). Figure 2, Panel A, plots the implied correlation

from each regression along with its 95% confidence interval. The correlation is positive at

most leads and lags but reaches its maximum at a positive lag of 24 months. Thus, changes

in volume generally lead changes in prices by about two years.

Figure 3, Panel A, plots aggregate trends in prices and inventories of homes listed for

sale between 2000 and 2011. Panels B through E plot analogous series for four cities that

represent the same regions as in Figure 1.5 During the period when the relation between

volume and prices reverses, aggregate inventories rise dramatically to nearly double their

level during the early years of the cycle. This pattern also characterizes the joint dynamic of

prices and inventories across cities in Panels B through E. In Phoenix, Reno, and Bakersfield,

inventories rise during the quiet to between double and triple their levels during the boom.

In Daytona Beach, inventories rise to 450% of their pre-quiet levels.

These stylized facts suggest that focusing on the dynamic of quantities—both volume

and inventories—can shed light on the drivers of the cycle. In particular, determining who

was most heavily participating in the housing market during each phase of the cycle may

differentiate between various explanations for that cycle.

2 Data

The primary goal of our empirical analysis is to study the behavior of speculative home

buyers during each phase of the housing cycle. This section describes our data and how we

identify speculative buyers. Further information is in Internet Appendix I.

4For other work regressing house prices on lagged transaction volume, see Leung, Lau and Leong (2002),
Clayton, Miller and Peng (2010), and Head, Lloyd-Ellis and Sun (2014).

5Data on unsold inventory is unavailable for Las Vegas, NV and Orlando, FL. Because of this, Figure 3,
Panels C and D, use data from Reno, NV and Daytona Beach, FL instead. We plot aggregate inventories
from the NAR, which are available starting in 2000. Our MSA-level inventory data are available for these
cities starting in 2001.
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2.1 Data Sources and Sample Selection

We use data on individual housing transactions provided by CoreLogic, a private vendor

that collects and standardizes publicly available tax assessments and deeds records from

municipalities across the U.S. Our main analysis data span the years 1995 through 2014 and

include observations from 115 MSAs, which together represent 48% of the U.S. housing stock.

In analyses that require us to identify an owner’s occupancy status we use a smaller subset of

102 MSAs for which we can be sure that there were no major changes in the way that mailing

addresses were coded during our sample period. Appendix I describes the approach we use

to select these MSAs. Our analysis of the housing cycle covers the time period 2000 through

2011 because measuring realized holding periods requires observing consecutive transactions.

We include all transactions of single-family homes, condos, or duplexes that satisfy the

following filters: (a) the transaction is categorized by CoreLogic as occurring at arm’s length,

(b) there is a nonzero transaction price, and (c) the transaction is not coded by CoreLogic

as being a nominal transfer of title between lenders following a foreclosure. We then drop a

small number of duplicate transactions where the same property is observed to sell multiple

times at the same price on the same day or where multiple transactions occur between the

same buyer and seller at the same price on the same day. Internet Appendix I specifies

the exact steps followed to arrive at a final sample of 51,080,640 transactions. Given the

geographic coverage of these data and their source in administrative records, our analysis

sample serves as a proxy for the population of transactions in the U.S. during the sample

period.

In addition to this transaction-level data, we use data on the listing behavior of indi-

vidual homeowners. Our listings data is also provided by CoreLogic and is sourced from a

consortium of local Multiple Listing Service (MLS) boards throughout the country. For each

listing, we observe the date the home was originally offered for sale, an indicator for whether

the listing ever sold, and the date of sale for those that did. We link these data to the deeds

data using the assessor’s parcel number (APN) for the property. When analyzing listings,

we focus our attention on a subset of the 115 MSAs for which we can be relatively certain

that the listings data is representative of the majority of owner-occupied home sales in the

area. Internet Appendix I describes in detail the approach we use to select these MSAs,

leaving us with a final sample of 57 MSAs for our listings analysis.

We supplement these transaction- and listing-level data with national and MSA-level
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housing stock counts from the U.S. Census, national counts of sales and listings of existing

homes from the National Association of Realtors (NAR), and national, MSA, and ZIP code-

level nominal house-price indices from CoreLogic.

We also use survey data to study heterogeneity in expected holding horizons in the cross-

section and over time. Each March, as part of the Investment and Vacation Home Buyers

Survey, the NAR surveys a nationally representative sample of around 2,000 individuals who

purchased a home in the previous year. The survey asks respondents to report the type of

home purchased (investment property, primary residence, or vacation property) as well as

the “length of time [the] buyer plans to own [the] property.” Data on expected holding times

and the share of purchases of each type are available between 2008 and 2015.

2.2 Identifying Speculators

We identify speculators using two complementary approaches, each of which has been used

in prior work on the U.S. housing boom. In the first approach, we categorize transactions

based on the their realized holding periods. We denote transactions held for less than 3

years as “short-term” sales and track the evolution of these sales over time. This approach

follows Bayer, Geissler, Mangum and Roberts (2020) who classify speculators in a similar

way based on the argument that those holding homes for short time periods are more likely

to have purchased those homes for investment purposes.

One potential concern with this classification is that holding periods are not fixed at the

time of purchase. Thus, changes in the distribution of realized holding periods over the course

of a housing cycle could be driven not by differential entry and exit of speculative buyers,

but rather by endogenous changes in holding periods at the individual level and mechanical

changes in underlying market liquidity. We address this concern in several ways in our

analysis. Our main strategy, however, simply uses an alternative approach to classifying

speculators that does not suffer from this limitation.

Our second approach classifies homebuyers based on their occupancy status. Those who

purchase a home without the intent to occupy it immediately are more “speculative” in

the sense that a larger portion of their overall expected return is derived from capital gains

rather than from the consumption value of living in the home. To identify these buyers, we

follow Chinco and Mayer (2015) and mark buyers as non-occupants when the transaction

lists the buyer’s mailing address as distinct from the property address. While this proxy may
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misclassify some non-occupants as living in the home if they choose to list the property’s

address for property-tax-collection purposes, we believe it to be a useful gauge of the level

of non-occupant purchases. Moreover, this measure of speculation does not suffer from the

same issue as our short-term buyer measure since it is based only on characteristics of the

buyer that are fixed at the time of purchase.

One key advantage of both methods we use to identify speculators is that they are based

on the full sample of housing transactions. Other work has identified speculators based on

the presence of multiple first-lien mortgage records in credit reporting data or self-reported

occupancy status on loan applications (Haughwout, Lee, Tracy and van der Klaauw, 2011;

Gao, Sockin and Xiong, 2019; Mian and Sufi, 2019). While based on similar ideas, such

approaches run the risk of omitting a substantial fraction of speculative activity.

Table 1 demonstrates this point using summary statistics on the proportion of all-cash

purchases in our data. Column 1 shows that in our sample, 29 percent of short-term buyers

and 38 percent of non-occupant buyers did not use a mortgage when purchasing their prop-

erty. These shares exceed the all-cash share among all buyers, which is 20 percent, suggesting

that mortgage-based measures of speculation may differentially underrepresent speculative

activity. The remaining columns of the table, which report averages at the MSA-by-month

level, show that the role of all-cash transactions among buyers we identify as speculative

remains high at all points in the housing cycle.6 The behavior of these buyers would go

unobserved in any analysis of speculative activity based on mortgage data alone.

3 Speculators During the Boom

3.1 Quantities and Prices

Figure 4 presents a simple illustration of the quantitative importance of speculative activity

during the 2000–2011 U.S. housing cycle. The figure plots monthly aggregate time series for

total transaction volume (with and without new construction), short-holding-period volume,

and non-occupant volume calculated using our underlying sample of CoreLogic deed trans-

fers. Each series is separately normalized relative to its average value in the year 2000 and

6Studying the role of speculators during the recovery from the crash is not a central focus of our paper.
Nevertheless, it is interesting to note that the all-cash share rises to 50 percent of speculative purchases
during the bust.
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seasonally adjusted by removing calendar-month fixed effects. For reference, the raw counts

of each type of transaction in the years 2000, 2005, and 2010 are also reported in the upper

right corner of the figure. To abstract from the effect of foreclosures on speculative volume

during the bust, we exclude foreclosures from the series in this figure.

While overall volume increased by roughly 40% during the boom years of 2000–2005,

speculative volume increased dramatically more. Both short-term sales and purchases by

non-occupants approximately doubled between 2000 and 2005. Not only did these speculative

components of volume increase more rapidly, but their increase also accounted for a non-

trivial portion of the overall increase in volume during this period. For example, total volume

increased from 2.73 million transactions in 2000 to 3.82 million in 2005. During the same

time period, short-holding-period volume increased from 510 to 940 thousand transactions,

which implies that volume growth in this category alone can account for 39%(= 0.43/1.09)

of the total volume increase during the boom. A similar calculation for non-occupant volume

(in the 102 MSAs with reliable non-occupant data) implies that this measure of speculative

activity can account for 53%(= 0.52/0.98) of the volume increase in the boom. If we exclude

new construction from the total volume statistics—because short-term sales can only involve

homes previously sold—short-term volume accounts for 57%(= 0.43/0.75) of the aggregate

increase in existing home sales. These calculations illustrate that speculators were, in an

accounting sense, a key driver of the volume boom.

The shift in the composition of volume toward speculative buyers also correlates highly

with changes in total volume across local markets. This correlation can be seen in the

top two panels of Figure 5. Panel A presents scatter plots of the percent change in total

volume at the MSA-level from 2000–2005 versus the percent change in volume for short

holding periods and long holding periods separately. Not only does the growth in volume of

short-holding-period transactions correlate strongly with the increase in total volume across

MSAs, but the magnitude of this relation is also much stronger for short holding periods

relative to long holding periods. A similar conclusion arises from Panel B, which presents

analogous scatter plots grouping transactions according to the occupancy status of the buyer

rather than the holding period of the seller. The relation between total volume growth and

non-occupant volume growth across MSAs is strong, positive, and larger in magnitude than

the corresponding relation with growth in sales to owner-occupants.

Panels C and D further show that these cross-sectional differences in the growth rate
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of speculative volume explain a significant portion of the differences in the growth in total

volume across MSAs. For each MSA, we plot the change in either short-holding-period

volume (Panel C) or non-occupant volume (Panel D) divided by initial total volume on

the y-axis against the percent change in total volume on the x-axis. The slope of this line

provides an estimate of how much of a given increase in total volume during this period

came in the form of short-holding-period or non-occupant volume. For short-holding-period

volume, the answer is 30%.7 For non-occupant volume the slope is even larger and implies

that for the average MSA in our sample 54% of the increase in total volume between 2000 and

2005 came from non-occupant purchases. Thus, shifts in the composition of volume toward

speculative buyers appear to have been a major determinant of changes in total transaction

volume during the boom.

Table 2 shows how speculative volume relates to measures of the size of the price and

quantity cycles in the cross-section of MSAs. We estimate the correlation between growth

in each speculative measure and housing market outcomes and perform a horserace analysis

that regresses these outcomes on both measures of speculative activity. To aid interpretation

of these relations, we scale the change in outcomes for all quantity measures relative to

total volume in 2003. The regressions do not annualize changes, so we report annualized

coefficients separately in the table. Appendix Table IA.II reports summary statistics.

We focus here on the house price boom (Panel A, columns 1-3) and return to the other

outcomes in Section 4. House price booms are strongly related to the size of speculative

volume booms across cities. Cities with a one standard deviation larger short-volume boom

(12.9%) see a 24.9 percentage point larger cumulative price increase during the boom.8 Cities

with a one standard deviation larger non-occupant boom (27.1%) see a 15.4 percentage point

larger cumulative price increase during the boom. On average across cities, prices rise by

97% during the boom and quiet. Thus, the relation between speculative volume and prices

is economically large in the cross-section. Notably, in the horserace specification, the short-

volume boom retains a strong positive association while the non-occupant boom reverses

sign. We return to this result below.

To further investigate the link between house price changes and speculative buyer entry,

7If we exclude new construction from total volume the 30% figure rises slightly to 36%. This relation is
indicated in the figure by the hollow squares in Panel C.

8Adelino, Schoar and Severino (2016) and Bayer, Geissler, Mangum and Roberts (2020) also document
positive relations between short-term buying and price booms across regions during this period.
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we examine higher frequency data. Speculative buyers may both cause and respond to house

price changes. Because of the potential for this type of strong feedback mechanism, we do

not attempt to directly identify the “causal” effect of speculators on house prices.9 Instead,

we follow the approach in Chinco and Mayer (2015), who estimate predictive regressions

that are flexible enough to allow for some types of feedback between speculative entry and

house prices. In particular, we estimate a series of panel vector auto-regressions (pVARs)

describing the relation between house price growth and the share of purchases made by non-

occupant buyers and “short buyers” (i.e., those who will sell within three years of purchase)

at a monthly frequency in each MSA between January 2000 and December 2006 (the year

when prices peaked).

Table 3 reports results from three different pVAR specifications. In column 1, we estimate

a simple two-equation model that jointly links both month-over-month house price growth

to the lagged share of transactions by short-buyers (top panel) and the contemporaneous

short-buyer share to lagged house price appreciation (middle panel). Both equations also

include lags of the relevant dependent variable (house price appreciation in the top panel

and the short-buyer share in the middle panel).

The results indicate that a 1 percentage point increase in the fraction of purchases made

by short-term buyers in a given month is associated with a 0.02 percentage point increase

in the house-price appreciation rate in the following month. That is, short-buyer entry is

predictive of subsequent house price growth, though we stress that these predictive regres-

sions do not necessarily imply a causal relation. Interestingly, the results in the middle panel

indicate that short-buyer entry can also be predicted by recent house price growth. A 1

percentage point increase in house price growth in the prior month is associated with a 0.16

percentage point increase in the short-buyer share of entrants.

In column 2, we estimate a similar model swapping out the short-buyer share for the

share of purchases made by non-occupants. Unlike short-buyer entry, non-occupant entry

does not appear to be predictive for subsequent house price growth. The coefficient on the

lagged non-occupant share in the top panel is roughly half the magnitude of its short-buyer

analog from column 1 and is not statistically significant. Non-occupants do, however, appear

to respond similarly to past price growth. The estimate in the bottom panel indicates that

9Gao, Sockin and Xiong (2019) exploit state capital gains tax changes as an instrument for speculation
and use this variation to measure the consequences of housing speculation for the real economy.
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a 1 percentage point increase in house price growth in the prior month is associated with

a 0.12 percentage point increase in the non-occupant share of entrants. This estimate is

qualitatively similar to and statistically indistinguishable from the analogous coefficient for

short-term buyers.

Finally, in column 3 of the table we estimate a three-equation pVAR that allows for

joint relations between all three variables of interest. The results from this specification are

both qualitatively and quantitatively similar to those from columns 1 and 2. Short-buyer

entry is strongly predictive of subsequent house price growth and predicted by recent past

price growth, whereas non-occupant entry can be predicted by past price growth but is less

informative for predicting subsequent prices. Stronger predictive power for the short-buyer

share is also consistent with the horserace specification in Table 2.

These results are similar both qualitatively and quantitatively to those in Chinco and

Mayer (2015) (see their Table 7). They find coefficients for lagged out-of-town second-house

buyers versus house price growth of 0.02 percentage points, which matches our short-buyer

share coefficient. They find that local second-house buyers do not predict future house

price growth. Combining their two groups of second-house buyers would deliver an estimate

identical to our non-occupant coefficient. Relative to their specification, we consider a sample

of MSAs that is five times as large and focus on the distinction between short-term buyers

and non-occupants rather than differences within the group of non-occupants.

3.2 Characterizing Speculative Buyers

Our results thus far indicate that short-term buyers were a major driver of changes in

transaction volume over time and across MSAs during the boom, and that more speculative

entry is associated with more price growth. In this section, we use our detailed microdata

to shed further light on the nature of these speculative short-term purchases.

First, we ask what share of short-term volume was from sellers who were non-occupant

buyers. The results above indicate that both short-term and non-occupant buyers were

disproportionately active during the run-up in house prices from 2000 to 2005, though with

potentially different amplification effects on house prices. However, there may be overlap

between these two groups. Focusing on the 102 MSAs with reliable non-occupant data, of

the 2000–2005 short-term volume, we find that 800 thousand out of 3.00 million (27%) were

non-occupant buyers (excluding developer buyers, defined below). Between 2000 and 2005,
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the number of short-term-non-occupant-buyer transactions increases from 90 thousand to

230 thousand, or 39% of the overall growth in short-term transactions (which grew from 370

thousand to 730 thousand, excluding developer buyers). Non-occupant buyers thus account

for an excess share of the growth in short-term buyers, further suggesting that speculative

motives drive short-term trading behavior.

Second, we ask what share of short-term buyers were experienced investors versus inex-

perienced speculators in merely one or two homes. To answer this question, we count the

total number of transactions for each unique buyer name in an MSA and then ask what

share of total transactions in that MSA are associated with buyers with few purchases dur-

ing the entire sample period versus buyers with many purchases. We classify buyers with

one or two purchases as inexperienced and those with three or more as experienced. Of the

2000–2005 short-term volume, 2.52 million of 3.44 million (73%) were inexperienced buyers

(excluding developer buyers). Between 2000 and 2005, the number of inexperienced short-

term-buyer transactions increases from 320 thousand to 590 thousand, or 71% of the growth

in short-term transactions.

Consistent with the evidence in Bayer, Geissler, Mangum and Roberts (2020), who use a

similar methodology, entry of inexperienced buyers is critical for understanding the growth in

aggregate volume. The relative lack of experience among this class of investors may also be

relevant for understanding the contemporaneous patterns in prices. Bayer, Geissler, Mangum

and Roberts (2020) and Bayer, Mangum and Roberts (2016) show that inexperienced short-

term investors in Los Angeles and some other cities pursue a momentum-trading strategy

and that their behavior is influenced by that of other nearby speculators, respectively. Both

of these patterns are consistent with the notion of extrapolation-induced entry of short-term

buyers we consider in our model.

Third, we ask what role credit played in enabling short-term volume. We evaluate this

question by decomposing the increase in short-term selling into transactions based on how

much leverage the buyer originally used. We focus on a low-leverage group (purchase loan-

to-value (LTV) < 60%), a medium-leverage group (purchase LTV ∈ [60%, 85%)), and a

high-leverage group (purchase LTV > 85%). Of the 2000–2005 short-term volume, 1.19

million (31%) were low-LTV buyers, 1.32 million (34%) were medium-LTV buyers, and 1.33

million (35%) were high-LTV buyers. In contrast, for the long-term volume transactions

for which we observe purchase LTVs (i.e., with initial purchase during or after 1995), the
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distribution skews more toward high-leverage buyers, with 22% in the low-LTV, 30% in the

medium-LTV, and 48% in the high-LTV groups, respectively. Between 2000 and 2005, the

number of low-LTV, medium-LTV, and high-LTV short-term-buyer transactions increases

from 200 to 250 thousand, from 140 to 370 thousand, and from 170 to 280 thousand, or 13%,

59%, and 28% of the growth in short-term transactions, respectively.

As in our analysis of cash transactions among speculative buyers (Table 1), short-term

volume is associated with lower use of leverage in the cross-section relative to the general

population.10 At the same time, the proportional growth in short-term buying is stronger

among high-LTV sellers, making a larger relative contribution to the overall growth in short-

term volume. This evidence is consistent with high credit growth among speculative buyers

during the boom, as documented by Haughwout, Lee, Tracy and van der Klaauw (2011),

Bhutta (2015), and Mian and Sufi (2019). While speculative buyers may not all have been

credit-constrained, our results align with the idea that credit supply can enable speculative

entry into the housing market. Thus, although our theoretical analysis abstracts from shifts

in credit supply, we view our extrapolation-based story as complementary to credit-supply

explanations of the boom.

Last, we ask what share of short-term volume was due to firms or developers rather than

individuals. We mark transactions as developer purchases when the buyer name is both not

parsed as a person by CoreLogic and contains strings reflecting developer names.11 Across

the cities in our sample, these transactions account for 6% of total volume and 10% of the

growth in volume between 2000 and 2005. Of the 4.02 million transactions between 2000

and 2005 made by buyers with short-holding periods, 580 thousand (14%) were developer

buyers. Between 2000 and 2005, the number of short-term-buyer transactions increases from

510 thousand to 950 thousand while the number of short-term-developer-buyer transactions

increases from 80 thousand to 130 thousand, or 12% of the growth in short-term transactions.

We conclude that, though developers were actively involved in the housing market, they did

not contribute disproportionately to the growth in short-term volume during the boom. A

possible explanation is that developers were more likely to engage in speculation in the raw

land market (Nathanson and Zwick, 2018).

10Internet Appendix Table IA.I extends Table 1 to look at average purchase LTVs for short-term and
non-occupant buyers. Both speculative buyer types have lower average LTVs, which is exclusively driven by
their higher cash transaction shares.

11We identify developer names using CoreLogic’s internal new construction flag, as Internet Appendix I
describes.
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Taken together, the results point to the importance of a class of inexperienced specu-

lative entrants into the housing market during the cycle. These short-term speculators are

increasingly likely to be non-occupant purchasers over the course of the boom, and they

depend less on credit on average than the general population of homebuyers. These findings

both suggest these buyers are not renters transitioning to homeownership. In Section 5.3,

we also find that a relatively small share of the new buyers are existing homeowners trading

up to a new house. The evidence is therefore most consistent with the interpretation that

these buyers are amateur investors buying additional property in pursuit of capital gains.

Internet Appendix Figure IA.I presents additional evidence for this interpretation based

on the Federal Reserve Survey of Consumer Expectations.12 First, consistent with extrapo-

lation, the share of respondents reporting that housing is a good or very good investment is

strongly increasing in recent local house price appreciation. Second, those who view housing

as a good investment also state a higher probability of buying a non-primary home. Third,

there is a significant positive relation between recent house price appreciation and the prob-

ability of buying a non-primary home, which is driven by those with high liquid savings.

This last result suggests the speculative behavior we document is not only due to a home

equity effect.

4 Speculators During the Quiet and Bust

The previous section documented that speculative buyers played an outsized role in driving

the increase in transaction volume during the boom and that their entry was strongly cor-

related with price changes across local markets. We now turn to studying the behavior of

these investors during the later stages of the cycle.

One of the key stylized facts about the aggregate housing cycle is the existence of a

long “quiet” period during which prices rise while transaction volumes rapidly fall. This

period is also accompanied by a large increase in unsold listings. Table 2, Panel B, columns

4–6, shows that the rise in listings during the quiet correlates strongly with the run-up of

speculative volume during the boom across MSAs. Cities with a one standard deviation

larger short-volume boom (12.9%) see a larger cumulative increase in listings during the

12We thank Andreas Fuster for sharing this evidence with us.

16



quiet of 76.9 percentage points relative to 2003 total volume.13 Cities with a one standard

deviation larger non-occupant boom (27.1%) see a cumulative increase in listings during the

quiet of 71.7 percentage points relative to 2003 total volume. Across cities, the mean increase

in inventories during the quiet is 178% of 2003 total volume with a standard deviation of

144%. Thus, the relation between speculative booms and the rise of listings is quantitatively

important in accounting for the cross-section of inventories.

Consistent with the aggregate evidence in Figure 3, which shows only a modest increase in

listings during the boom, we find a small and statistically insignificant relation in the cross-

section between speculative booms and the change in listings during the boom.14 Given the

strong cross-sectional relation during the boom between short-term volume and total volume,

this fact suggests that the increase in demand during the boom was sufficient to absorb the

increasing flow of listings from short-term buyers. As demand slowed, the continuing flow of

listings from recent buyers saturated the market, resulting in accumulating unsold inventories

during the quiet.

Figure 6 demonstrates this point with listings data linked to transaction data at the prop-

erty level. The link to past transactions allows us to ask directly whether recent purchases

disproportionately contribute to the surge of listings during the quiet. We plot monthly

aggregate time series for total listings and short holding-period listings, defined as a listing

where the previous sale occurred within the past three years. These data only count a home

listed for sale the first time it appears during a listing spell, thereby measuring the flow of

short-holding-period listings without double counting unsold listings. Each series is sepa-

rately normalized relative to its average value in the year 2003 and seasonally adjusted by

removing calendar-month fixed-effects.

The increase in listings during the quiet comes largely from recent purchases. While total

listings rise to 150% of their 2003 average at the peak of the quiet, short-holding-period

listings rise to 250% of their 2003 average and remain above 200% well into the bust. From

13Table 2 reports the change in the inventory of unsold listings. Internet Appendix Table IA.III reports
analogous results using the change in the flow of new listings and shows qualitatively similar results. The
rise in unsold listings during the quiet was driven both by an increase in the rate at which homes were listed
for sale and a reduction in the probability of sale conditional on listing.

14Internet Appendix Table IA.II shows that the mean cumulative increase in listings from 2003 to 2005 is
92% relative to 2003 total volume with a standard deviation across cities of 95%. Of 57 MSAs in the sample,
12 see a decline in listings during this time. In terms of percentage changes, the mean cumulative increase
is equivalent to a 25% (s.d.=33%) increase in accumulated listings between 2003 and 2005. This increase is
modest compared with the mean price boom across MSAs of 98% (s.d.=48%) and the mean volume boom
across MSAs of 48% (s.d.=43%).
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2003 to 2007, we see an aggregate rise of listings within sample from 1.17 million in 2003 to

1.73 million in 2007. Short-holding-period listings rise from 280 thousand to 590 thousand,

thus accounting for 55% of the rise in aggregate listings during this time. In later stages of

the bust, short-holding-period listings fall well below their 2003 level, consistent with the

idea that purchases during this phase of the cycle are more likely to include fundamental

buyers and longer-term investors.

This evidence complements Genesove and Mayer (1997) and Genesove and Mayer (2001),

who document the role of home equity and loss aversion, respectively, in preventing list prices

from adjusting downward during a market downturn in Boston. Short-holding-period buyers

are more likely to maintain high list prices because—in the home equity view—they will have

paid down less of their mortgages when they turn to sell and because—in the loss aversion

view—they will have paid higher initial prices than long-holding-period buyers. In our model,

extrapolation creates another force causing recent buyers to set overly optimistic list prices,

the same force that helps explain their initial entry into the market. Each of these forces

likely plays a role in accounting for the facts.

Table 2, Panel C, considers how the size of the speculative boom is associated with

the severity of the bust. Both total volume and prices fall substantially more after their

respective peaks in cities with larger speculative booms. Cities with a one standard deviation

larger short-volume boom and non-occupant boom respectively see cumulative declines in

total volume (relative to 2003 volume) 13.5 and 13.9 percentage points larger. The results

correspond to 7.4 and 4.5 percentage point larger cumulative price declines during the bust.

Total volume falls on average across cities by 63% in the quiet and bust relative to

2003 volume. Prices fall on average across cities by 28% during the bust. Thus, the size

of the speculative volume boom is associated with larger busts in both volume and prices.

These facts are consistent with the aggregate pattern in Figure 4, in which speculative

volume declines more sharply during the quiet and bust than does total volume. Turning

points in both short-holding-period volume and non-occupant volume exactly coincide with

the turning point in aggregate volume, the sharp rise in listings during the quiet, and the

slowing of price growth before its reversal.

Finally, we look at whether speculative booms are associated with higher foreclosures

during the bust. Aside from the policy interest in foreclosures, this outcome is relevant for

three reasons. First, in Section 2.2, we note that a significant share of speculative purchases
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are all-cash purchases. However, more than half of speculative purchases involve mortgages.

To the extent that speculators derive lower use benefits from housing, they may be more

likely to default when underwater. Second, as speculative entry increases following past price

growth, speculators are increasingly likely to buy when prices are higher, including later in

the cycle. Third, to the extent the speculative boom amplifies the price cycle, it may cause

more non-speculative buyers to become underwater in the bust, as these buyers happened

to be unlucky in market timing.

We find that the short-term speculative boom coincides with a larger number of foreclo-

sures during the bust, while the non-occupant boom does not. A one standard deviation

increase in the short-volume boom is associated with 11.5 percentage points more foreclosures

(relative to 2003 volume) during the bust, equal to 370 thousand more foreclosures. During

this time, there were 2.68 million foreclosures across the 115 cities in our data. Cities with

larger short-term speculative booms therefore experienced more severe foreclosure crises.

In contrast, the relation between foreclosures and the non-occupant boom is insignificant

and small in the pairwise specification and becomes meaningfully negative in the horserace

specification.15

One interpretation of this result is that short-holding-period volume is a more precise

measure of speculative activity than non-occupant volume, perhaps because non-occupant

volume also includes longer-term “cash flow” investors and vacation homebuyers. Given sig-

nificant overlap between the short-holding-period and non-occupant category, conditioning

on the level of short-term volume would leave these latter types of non-occupants in the resid-

ual variation. This residual activity might actually mitigate the speculative cycle because

these buyers are less likely to enter and exit the market concurrently with the short-term

buyers. We explore this idea in the model, which allows us to separate a buyer’s horizon

from the utility she receives from buying a house.

15Related work documents a disproportionate share of investors among delinquencies and foreclosures.
See, e.g., Haughwout, Lee, Tracy and van der Klaauw (2011) and Piskorski and Seru (2018). Because this
work relies on mortgage data sets, it does not consider the significant number of all-cash investors, which
may explain our different results for non-occupants relative to these papers. Guren and McQuade (2020)
also relate the extent of foreclosures to the size of the boom in the cross-section.
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5 Robustness and Alternative Explanations

5.1 Endogenous Holding Periods

The evidence above indicates that the differential entry of speculative buyers played a major

role in driving the volume boom. However, the results for short-term volume growth are

based on realized rather than expected holding periods. This way of measuring short-term

speculation may complicate the interpretation of our results if buyers’ intended holding

periods endogenously respond to changes in economic conditions during the boom. The

results on non-occupant buyers partially address this concern as they are based on a measure

of speculative entry that does not suffer from the same issue. However, to address this issue

further, we provide two direct pieces of evidence suggesting that the results for short-term

volume are not just driven by endogenous changes in holding periods.

Our first approach instruments for realized short-term volume growth using ex-ante de-

mographic characteristics of an area that are likely to be correlated with intended short

holding periods among the population of potential homebuyers. In particular, we use the

2000 Census 5% microdata to calculate the share of recent homebuyers (within the last 5

years) in each MSA that were either younger than 35 or aged 65 and older at the time

of questioning and include both shares as instruments for 2000–2005 short-term volume

growth. This approach follows Edelstein and Qian (2014), who use data from the American

Housing Survey to study demographic and mortgage characteristics as predictors of ex-ante

investment horizon. Both older and younger buyers tend to have shorter horizons than

middle-aged buyers, likely due to life cycle forces that affect the propensity to move, which

gives the instrument its relevance.16

The strength of this instrument is that it is predetermined relative to the realized holding

periods for sellers during the boom and may therefore help purge our estimates of mechanical

bias arising from endogenous changes in holding periods over the course of an ownership spell.

We stress that this instrument does not remove the potential influence of age-specific shocks,

so we do not interpret the IV regressions as demonstrating a causal relation. Rather our goal

with this exercise is to mitigate potential mechanical feedback effects between total volume

and short-term volume.

16Internet Appendix Table IA.IV reports the first stage regressions of the short volume boom on the old
and young shares.
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Table 4 presents the results. As a baseline, we first show that a basic OLS regression

of the 2000–2005 percent change in total volume on the 2000–2005 change in short-term

volume divided by year-2000 total volume replicates the conclusion from Figure 5, Panel C.

Column 1 presents this result. Because we are interested in instrumenting for short-volume

growth, the left- and right-hand-side variables in this regression are swapped relative to

their analogs in Figure 5. Thus, the coefficient estimate of 2.3 reported in Panel A is not

directly comparable to the 0.3 number from Figure 5, Panel C. Panel B of the table, however,

reports a variance decomposition indicating that 33 percent of the variation in total volume

growth across MSAs can be explained by changes in short-term volume, which matches the

short-term volume result from Figure 5. Column 2 shows that the same regression using

non-occupant volume on the right-hand-side replicates the corresponding Figure 5 result for

that measure of speculation. Columns 3 and 4 report quantitatively similar relations in

ZIP-code level regressions with MSA fixed effects.17

Table 4, column 5, shows that the short-term volume coefficient does not fall when

we instrument using year-2000 homebuyer age. If a mechanical relation were driving this

correlation, we would expect the IV coefficient to fall relative to the OLS. Instead, the

coefficient modestly (and insignificantly) increases from 2.30 to 2.85. Thus, the change in

realized short-term volume is quantitatively important for determining overall volume growth

even when using only the portion of short-term volume growth predicted by pre-existing

buyer characteristics.

Our second approach to addressing the measurement issues associated with studying

realized rather than expected holding periods leverages survey data from the National As-

sociation of Realtors (NAR) that asks recent buyers about their intended holding period.

Unfortunately these data are only available at the national level from 2008 onward. How-

ever, the data that are available suggest that expected investment horizons vary considerably

across individuals and commove strongly with recent price changes.

17Throughout the paper, we focus our empirical analysis on MSA-level outcomes for two reasons. First,
while there is independent and interesting variation across ZIP codes within cities, the variation across cities
is likely more informative for the aggregate housing cycle. Focusing on ZIP-level analysis would effectively
place much of the interesting variation into MSA-by-time fixed effects. Second, and related to the first,
spatial correlation across ZIP codes within cities hinders interpretation of cross-sectional results for some
housing market outcomes. For example, MSA fixed effects account for 86% of the variation in house price
booms across ZIP codes, but only 16% of the variation in volume booms across ZIP codes. It is likely this
difference is due to data limitations in house price index estimation, with local price indices often derived
from spatial interpolation. This issue may help explain differences in results in cross-MSA analyses, as in
our paper, and cross-ZIP, within-MSA analyses, as in Griffin, Kruger and Maturana (2020).
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Figure 7, Panel A, documents the substantial cross-sectional heterogeneity in expected

holding times among respondents to the NAR’s Investment and Vacation Home Buyers

Survey. Each bar reports an equal-weighted average of the share of recent buyers who report

a given expected holding time across survey years. Averages are reported separately by

property type.

We emphasize three facts from this data. First, the vast majority of recent homebuyers

(roughly 80%) report knowing what their expected holding time will be. Second, there is

wide variation in expected holding times among those who report. About half of the expected

holding times are between 0 and 11 years and are distributed somewhat uniformly over that

range. The survey question groups the remaining half of the responses into a single expected

holding time of greater than or equal to 11 years; however, there may be substantial variation

within that group as well. Third, expected holding times also vary in an intuitive way across

property types. Recent buyers of investment properties report substantially shorter expected

holding periods than recent buyers of primary residences.

This baseline heterogeneity in expected holding periods correlates strongly in the time

series with recent house price changes. To demonstrate this, we separately calculate for each

year of the survey the fraction of respondents (except those reporting “don’t know”) who

report an expected holding time of less than 3 years or had already sold their property by the

time of the survey. Figure 7, Panel B, plots this short-term buyer share against annual house

price appreciation at the national level. A simple regression of the short-term buyer share on

the equal-weighted average year-over-year change in the nominal quarterly FHFA U.S. house

price index during the survey year yields a statistically significant coefficient estimate of 0.82.

This coefficient implies that a recent nominal gain of 10% in house prices is associated with

an increase in the short-term buyer share of 8.2 percentage points. For reference, nominal

house price appreciation was 11% in the U.S. in 2005 and much larger in some metropolitan

areas. Thus, changes in house prices during the 2000–2005 boom period may have induced

significant shifts in the distribution of expected holding times among homebuyers entering

the market at that time.

5.2 Mechanical Short-Term Volume

In Figure 4 we document a rise in the share of volume coming from short-term sales during

the boom. Our interpretation of this pattern is that short-term volume rises due to a shift
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in the composition of buyers toward those with shorter intended holding periods. However,

even in the absence of such a shift, any increase in total volume during the early part of

the boom will generate a mechanical increase in the share of late-boom volume coming from

short-term sales. The richness of our data allows us to quantify the contribution of this

mechanical force relative to changes in the composition of buyers.

For each pair of distinct months between 1995 and 2005, we compute a conditional selling

hazard πt′,t. This hazard is the share of homes purchased in month t′—and that have not

yet sold by month t—that sell in month t. By focusing on selling hazards instead of total

volume, we remove the mechanical force that comes from volume increasing over the cycle.

We estimate the following regression at the month-pair level:

πt′,t = αbuyy(t′) + αselly(t) + αdurationt−t′ + εt′,t,

where y(·) gives the year of the month. The first set of fixed effects, αbuyy(t′), captures the

average propensity of buyer cohorts from year y(t′) to sell in any future year. The second

set of fixed effects, αselly(t), captures the average propensity of all owners to sell in year y(t).

The third set of fixed effects, αdurationt−t′ , measures time-invariant selling hazard profiles as a

function of time elapsed since purchase t− t′. We interpret year-to-year movements in αbuyy(t′)

as changes in the composition of buyers across those years, holding fixed both year-specific

shocks to selling hazards that affect all cohorts equally and duration-specific drivers of selling

hazards that do not vary over the cycle.

Internet Appendix II reports a sharp increase in α̂buyy(t′) from y(t′) = 2000 to y(t′) = 2005.

The magnitude implies a 3.2 percentage point larger annual selling hazard of buyers later

in the boom. Using these estimates, we perform a counterfactual in which αbuyy(t′) remains

constant at its estimate in 2000 throughout the boom, representing a situation in which the

composition of buyers remains constant. In this counterfactual, the disproportionate rise in

short-term volume falls by 88%. Therefore, the changing composition of buyers during the

boom can explain almost all of the disproportionate rise in short-term volume.

5.3 Repeat Buyers

The patterns we document are consistent with speculative motives leading short-term buyers

to enter and exit the local housing market in response to expected capital gains. But some
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short-term sellers likely do not exit the market and instead choose to buy another house

within the same MSA. Such a pattern may reflect move-up purchases enabled by higher

home equity during the boom, as in Stein (1995) and Ortalo-Magné and Rady (2006) or the

repeated buying and selling of homes within the same market by experienced “flippers” as

in Choi, Hong and Scheinkman (2014) and Bayer, Geissler, Mangum and Roberts (2020).

To explore this alternative explanation, we follow the methodology of Anenberg and

Bayer (2013) and construct a direct measure of repeated within-MSA purchases. We use the

names of buyers and sellers to match transactions as being possibly linked in a joint buyer-

seller event. For each sale transaction, we attempt to identify a purchase transaction in

which the seller from the sale matches the buyer from the purchase. To allow the possibility

that a purchase occurs before a sale or with a lag, we look for matches in a window of plus or

minus one quarter around the quarter of the sale transaction. We only look for within-MSA

matches, as purchases associated with cross-city moves are similar in spirit to our model.

Our match accounts for several anomalies that would lead a naive match strategy to

understate the match rate.18 Our approach is likely to overstate the number of true matches,

because it does not use address information to restrict matches, and it allows common names

to match even if they represent different people. Because we find a low match rate even with

this aggressive strategy, we do not make use of address information in our algorithm or

otherwise attempt to refine matches.

We focus on transactions between 2002 and 2011 because the seller name fields are

incomplete in prior years for several cities. We also restrict sales transactions to those

with human sellers, as indicated by the name being parsed and separated into first and last

name fields by CoreLogic. The sample includes 16.3 million sales transactions. Of these, we

are able to match 3.9 million to a linked buyer transaction, or 24%. Thus, three-quarters of

transactions do not appear to be associated with joint buyer-seller decisions. Among sellers

who had bought within the last three years, the match rate is slightly higher, equal to 31%,

consistent with move-up purchase or flipper behavior. In addition, the match rates peak in

2005 at 29% and 38% for all transactions and short-term transactions, respectively.19 These

18These include: inconsistent use of nicknames (e.g., Charles versus Charlie), initials in place of first
names, the presence or absence of middle initials, transitions from a couples buyer to a single buyer via
divorce, transitions from a single buyer to a couples buyer via cohabitation, and reversal of order in couples
purchases.

19In terms of growth between 2002 and 2005, internal moves account for approximately 40% of the growth
in aggregate volume in our data, and the growth in internal short-volume accounts for 46% of total short
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patterns confirm and extend the findings in Anenberg and Bayer (2013), who conduct a

similar match for the Los Angeles metro area and show that internal moves account for a

substantial share of the volatility of transaction volume in that city. However, the evidence

supports the notion that sellers not engaging in repeat purchases account for most of the

short-term volume and its growth, even during the cycle’s peak.

6 Summary of Empirical Findings and Theoretical Mo-

tivation

Our findings support a narrative in which short-term speculation amplifies the housing cycle.

Moreover, short-term speculation is quantitatively first order in the following senses. First,

at the aggregate level, short-term speculation accounts for a large share of transactions

during the cycle. Second, across cities, those with larger speculative booms experience much

larger overall cycles, both in terms of a larger boom and a more severe bust. We also find

evidence consistent with extrapolative expectations driving the differential entry of short-

term speculators across cities and with that entry amplifying the price cycle.

While this evidence is consistent with the short-term speculation narrative, we are not

documenting a sharply identified causal link between speculators and the cycle. For example,

our instrumental variables analysis primarily addresses concerns with simultaneity but not

more general endogeneity concerns. The analysis of predictability running from the size

of the speculative boom or the share of speculative activity to subsequent housing market

outcomes similarly does not permit strong causal statements. The next section presents a

model consistent with the empirical evidence, which also permits stronger causal statements

within the model’s framework and allows us to study the speculative mechanism in further

detail.

Three strands of the literature theoretically explain the comovement of prices and volume

in the housing market and asset markets more generally. The first consists of models in

which investors disagree about asset values, such as Scheinkman and Xiong (2003). The

second exploits features specific to the housing market, such as credit constraints (Stein,

volume growth. The importance of internal volume varies across cities and years during the boom, with the
internal move share of MSA-level short-volume growth ranging from 35% to 46% on average. On average
across MSAs, growth in internal short-volume accounts for 35% of the growth in total short volume in 2005,
the peak year in total volume.
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1995; Ortalo-Magné and Rady, 2006) or search and matching frictions (see the review in

Han and Strange (2015)). Finally, two recent papers incorporate insights from psychology

into models with extrapolative expectations to generate trade (Barberis, Greenwood, Jin and

Shleifer, 2018; Liao and Peng, 2018). Some papers straddle multiple categories. Guren (2014)

incorporates extrapolation into a search model of the housing market, while Piazzesi and

Schneider (2009) and Burnside, Eichenbaum and Rebelo (2016) incorporate disagreement

into the same. While all of these papers can explain the comovement of prices and volume

during the boom and bust, there are three additional results from our empirical work that

no prior model seems able to explain simultaneously.

First, the increase in volume during the boom, and listings during the boom and quiet,

come disproportionately from short-term sales (Figures 4 and 6). Search-and-matching mod-

els struggle to generate this pattern if the decision to list is independent of homeowner char-

acteristics, as in Wheaton (1990), Piazzesi and Schneider (2009), Dı́az and Jerez (2013),

Guren (2014), Head, Lloyd-Ellis and Sun (2014) and Anenberg and Bayer (2020).20 These

models may generate a mechanical increase in short-term volume, but they cannot explain

the result in Section 5.2 that homeowners who bought later in the boom were more likely to

resell than homeowners who bought earlier. In contrast, the disagreement and extrapolation–

psychology papers seem able to generate a disproportionate short-term volume boom, as long

as rising prices generate more disagreement or psychological urge to both buy and sell the

asset.

Second, non-occupants constitute a disproportionate share of the increase in buying activ-

ity during the boom (Figure 4). Non-occupant purchasing is absent from many search-and-

matching models, either because the owner-occupied and rental markets are separate (Guren,

2014), or because all non-occupant owners are previous occupants of the same house (Head,

Lloyd-Ellis and Sun, 2014; Burnside, Eichenbaum and Rebelo, 2016). The extrapolation–

psychology papers also provide no role for non-occupants, as they model more general asset

markets where all owners receive the same flow benefits from the asset. Nathanson and

Zwick (2018) present a disagreement model in which non-occupants disproportionately buy

housing during a boom, but their model is static and is therefore not suited to explain the

20Two exceptions are Hedlund (2016) and Ngai and Sheedy (2016), who respectively focus on credit
constraints and within-market moves. As we explain in Section 5.3, short-term volume increases significantly
among low-LTV sellers, and most short-term sellers do not relocate within the same MSA. Therefore, these
two papers do not explain all of the disproportionate rise in short-term volume during the boom.
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dynamics at the heart of this paper.

The third result is the existence of the quiet, during which prices and volume diverge while

listings accumulate (Figures 1 and 3). Disagreement papers and credit-constraint housing

models predict a monotonic relation between prices and volume, and therefore do not explain

a period when these outcomes move in opposite directions.21 Barberis, Greenwood, Jin and

Shleifer (2018) and Liao and Peng (2018) can generate a divergence of prices and volume, but

listings fall with volume because of Walrasian market clearing. A similar pattern of prices,

volume, and listings appears in Burnside, Eichenbaum and Rebelo (2016). In contrast, Guren

(2014) matches all three variables. However, listings sharply decline during his boom (more

than one-for-one with respect to prices), and they never rise above their pre-shock level in

his impulse response. Empirically, we find that listings modestly rise during the boom in

aggregate and in most MSAs (Section 4). The sharp rise in listings during the quiet, far

above their 2000 level, is perhaps the most salient aspect of Figure 3.

In light of these papers, the goal of our model is to match the joint dynamics of prices,

volume, and listings in a way that matches the disproportionate role of non-occupants

and short-term sales in driving up volume during the boom and listings during the boom

and quiet. Additionally, the model should explain the cross-sectional and time-series re-

lations between speculative volume and other cycle outcomes in Tables 2 and 3. Finally,

the model should clarify the differences between short-term and non-occupant volume: the

short-holding-period boom tends to be a stronger predictor of quiet and bust dynamics

than the non-occupant boom, and short-term volume is associated with stronger house price

predictability in the pVARs.

7 The Model

7.1 Environment and Preferences

We present a discrete-time model of a city with a fixed amount of perfectly durable housing,

normalized to have measure one. Agents go through a life cycle with three possible phases:

21Disagreement also struggles to explain the widespread optimism about house price growth during the
boom we study (Case, Shiller and Thompson, 2012; Foote, Gerardi and Willen, 2012; Cheng, Raina and
Xiong, 2014), although it can generate the dispersion in these beliefs (Piazzesi and Schneider, 2009; Burnside,
Eichenbaum and Rebelo, 2016) and surely accounts for some of the average prices and volume in the housing
market (Bailey, Cao, Kuchler and Stroebel, 2016).
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potential buyer, stayer, and mover.

Each period, movers list their houses for sale. After posting a list price, each mover

matches to a randomly selected potential buyer, who decides whether to purchase at the

listed price or exit the housing market permanently.22 If the potential buyer chooses to

purchase then the mover receives the list price and exits the market. A purchasing potential

buyer becomes a stayer and receives flow utility edi at the beginning of each future period

until he randomly becomes a mover, which happens with Poisson hazard λi.

At t, potential buyer flow utility satisfies

di = dt + ai, (2)

where dt is a time-varying demand shifter, and ai varies across potential buyers at a given

time. Each potential buyer has one of two occupancy types, ni ∈ {0, 1}. The distribution of

ai across potential buyers of type n is N (µn, σ
2
a). We normalize µ0 = 0 so that µ1 gives the

average log difference in flow utility between occupants (ni = 1) and non-occupants (ni = 0).

The demand shifter, dt, is a difference-stationary process with a persistent growth rate:

dt = dt−1 + gt + εdt

gt = (1− ρ)µ+ ρgt−1 + εgt ,

where εdt and εgt are mean-zero independent normals with variances (1−γ)σ2 and γ(1−ρ2)σ2,

so that σ2 is the variance of ∆d and γ ∈ (0, 1) is the share of that variance coming from g.

Potential buyers vary in λi, ai, and ni. The mover hazard, λ, follows a discrete distribu-

tion βλ. The share of each occupancy type is βn, and βλn is the share of each (n, λ) pair. To

match the data on expected holding times in Figure 7, Panel A, we allow non-zero correlation

between λi and ni. We denote the CDF of ai across all potential buyers by F , a mixture of

two normals.23

22In other models, some movers fail to match to a potential buyer due to search frictions (Head, Lloyd-Ellis
and Sun, 2014; Guren, 2018). We abstract from this possibility.

23Potential buyer types in our model bear some similarities to the taxonomies in Frankel and Froot (1986),
Cutler, Poterba and Summers (1990) and De Long, Shleifer, Summers and Waldmann (1990), which feature
positive feedback traders, fundamentalists, and rational arbitrageurs. Whereas those papers assume different
objectives or beliefs across agents, we derive heterogeneous investment behavior arising from exogenous
differences in horizons. Hong and Stein (1999) also connect investment to horizons, and we differ from that
paper primarily by departing from Walrasian market clearing.
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Agents are risk-neutral and act to maximize their expectation of the net present value of

their utility. The flow utility of living outside the city equals zero, a normalization constant.

Perfect credit markets exist with a constant interest rate equal to r. Potential buyers discount

the time until becoming a mover at r. Movers discount time while being a mover at the rate

rm ≥ r, which captures possible costs of moving. To rule out rational bubbles, we assume

that 1 + r > eµ+σ
2/2, the unconditional expected growth of demand, and guarantee that this

inequality holds by setting µ = −σ2/2 in the quantitative exercise so that the unconditional

expected growth rate of edt is 0.

7.2 Information and Beliefs

We denote the average list price at t by Pt, and the share of those listings that sell by πt. At

t, agents observe the history of price changes and sales shares, Pt′/Pt′−1 and πt′ for t′ < t.

Potential buyer i also observes her flow utility, di, occupancy type, ni, horizon type, λi,

and the list price to which he matches, Pi,t. Agents cannot observe the demand shifter, d,

or its growth rate, g, and must infer current values of these latent demand variables using

historical market data and their private information.

Glaeser and Nathanson (2017) propose a behavioral approximation called the cap rate

error that agents use to solve this inference problem. The cap rate error is the belief that

another potential buyer i decides to purchase a listing if and only if

edi ≥ κPi,t, (3)

where κ is a time-invariant constant. By employing the cap rate error, agents infer demand

growth from market data without taking a stand on the evolution of the beliefs of other

market participants. Because agents neglect the sensitivity of market outcomes to others’

beliefs, the cap rate error endogenously leads to extrapolative beliefs about house price

growth as well as predictable booms and busts in house prices. We follow Glaeser and

Nathanson (2017) in assuming that the cap rate error characterizes the beliefs of agents in

our model. Our contribution is analyzing the implications for quantity dynamics. In Glaeser

and Nathanson (2017), volume is constant and listings sell immediately.

We focus on equilibria in which all movers at a given time post the same list price (and

discuss conditions for this outcome below). In this case, substituting (2) into (3) and then
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taking logs yields

d̃t = logPt − F−1(1− πt) + log κ, (4)

where the tilde denotes an inference true under the cap rate error (but not necessarily in

reality). Movers at t deduce the history of price levels, Pt′ for t′ < t, from the history of

price changes as well as the price they faced when they purchased their house. They directly

observe πt′ for t′ < t. Therefore, using (4), they infer the full history of demand before time

t as d̃t′ for t′ < t. Kalman filtering produces the following posterior beliefs about dt and gt:

Lemma 1. Movers at t have a normal posterior on gt and dt with means

ĝt = µ+ (1− α)ρ
∞∑
j=1

(αρ)j−1
(

∆d̃t−j − µ
)

and d̂t = d̃t−1 + ĝt, where α ∈ (0, 1) is a constant depending on σ, γ, and ρ.

Proof. Appendix A.1.

We denote the perceived posterior variance on dt by σ̃2. In the quantitative exercise, we

choose κ so that the average value of dt − d̂t equals zero, as in Glaeser and Nathanson

(2017). Lemma 1 implies the recursions

ĝt+1 = (1− ρ)µ+ ρĝt + ρ(1− α)
(
d̃t − d̂t

)
(5)

d̂t+1 = d̂t + ĝt+1 +
(
d̃t − d̂t

)
, (6)

which are useful for defining value functions below. Intuitively, due to (4), ĝt rises with past

price growth, as in Glaeser and Nathanson (2017), and also with the growth of π, so that

movers infer a higher demand growth rate when the speed at which listings sell is increasing.

7.3 Prices

Movers choose prices optimally given their mistaken belief about potential buyer demand.

The demand curve that movers believe they face is

π̃(P, dt) = 1− F (logP + log κ− dt).
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The mover value function satisfies the recursion

V m(d̂t, ĝt) = sup
P
E
(
π̃(P, dt)P + (1 + rm)−1(1− π̃(P, dt))V

m(d̂t+1, ĝt+1)
)
, (7)

where the expectation is over dt ∼ N (d̂t, σ̃
2). Because movers believe that d̃t = dt, each

potential realization of dt determines d̂t+1 and ĝt+1 via (5) and (6), so (7) is well-defined.

Movers at a given time post the same list price when a unique solution to (7) exists, which

we verify at each point of the state space of our quantitative exercise.24 The following lemma

clarifies how this list price depends on mover beliefs, d̂t and ĝt.

Lemma 2. The optimal list price takes the form ed̂tp(ĝt) for some function p(·).

Proof. Appendix A.2.

The log list price scales one-for-one with the current belief about the level of demand d̂t.

It also depends on the belief about the demand growth rate ĝt because the option of selling

next period becomes more valuable when movers expect faster demand growth. In the limit

of infinite mover impatience (rm → ∞), this option is irrelevant, so p(·) is constant. In

this case, price setting closely resembles the extrapolative rule of thumb that Guren (2018)

assumes, and price growth expectations satisfy a condition analogous to the reduced form

extrapolation formulas that Barberis, Greenwood, Jin and Shleifer (2015, 2018) and Liao and

Peng (2018) assume (see Appendix A.3).25 In our quantitative exercise, we use a finite rm

and measure the extent to which price growth expectations depend on recent price growth.

24In general, movers may be indifferent between different list prices, or they may prefer to set an infinite
list price when the right side of (7) is unbounded. We rule out these possibilities by verifying that a unique
price in a fine mesh maximizes the right side of (7), and that the value function at this price exceeds the
limiting value as P →∞.

25In particular, price growth expected over the next period is an affine function of an exponential weighted
average of past growth. In our context, that affine function is

Et∆ logPt+1 = µ+
ρ2(1− α)

1 + ρ(1− α)

∞∑
j=0

ρj(∆ logPt−j − µ).
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7.4 Buyer Composition

Potential buyers decide whether to buy in light of their beliefs and flow utility. The value to

potential buyer i at time t of owning a house is

V b
i,t =

∞∑
j=1

λi(1− λi)j−1
(

j∑
k=1

edi

(1 + r)k
+
Ei,tV

m(d̂t+j, ĝt+j)

(1 + r)j

)
, (8)

where Ei,t denotes the potential buyer’s expectation conditional on her information set.

Potential buyer i imputes d̂t using the equation

d̂t = logPi,t − log p(ĝt),

which holds due to Lemma 2. Because she observes the history of price growth and sales

shares, she directly calculates ĝt using the formula in Lemma 1. By (5) and (6), future values

of these variables depend on the innovations d̃t+j− d̂t+j for j ≥ 0. From the standpoint of the

potential buyer, these innovations are distributed independently as N (0, σ̃2) for j > 1. For

j = 0, however, her information about her own flow utility is informative, and her posterior

on this innovation is

dt − d̂t ∼ N

(
σ̃2(di − µni − d̂t)

σ̃2 + σ2
a

,
σ̃2σ2

a

σ̃2 + σ2
a

)
. (9)

A purchase occurs when V b
i,t ≥ Pi,t. Lemma 3 uses (8) to simplify this decision rule.

Lemma 3. Potential buyer i purchases a house at t if and only if

edi ≥ κλini(ĝt)Pi,t.

The cutoff rule that potential buyers use to determine whether to purchase resembles the

belief that movers have under the cap rate error except for the functions κλn(·), which are no

longer constant and instead depend on the potential buyers’ expected horizon λi, occupancy

type ni, and demand growth expectations ĝt.

While it is difficult to fully characterize the properties of the κλn(·) functions analytically,

in the quantitative exercise below we document three properties of these functions that are

helpful for understanding how the composition of buyers varies over the housing cycle. First,
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each κλn(·) decreases in ĝt, with steeper slopes for larger values of λ. Intuitively, when ĝt is

high potential buyers expect larger capital gains in the future and will therefore be willing

to purchase at higher prices today. Moreover, potential buyers with larger λ expect to sell

sooner, so their demand is more sensitive to expected capital gains. In the limiting case of

an infinite horizon investor (λ→ 0), equation (8) makes clear that the buying decision does

not depend on ĝt; in this case, κλn limits to a constant value of r. Second, κλ0(·) is nearly

identical to κλ1(·) for each λ. The cutoffs depend very little on occupancy type because σa

is much larger than σ̃. Finally, κλn(·) is typically larger for greater values of λ, reflecting

higher cutoffs for short-term buyers. Because listings do not sell immediately, there is an

endogenous illiquidity cost to becoming a mover. Short-term buyers expect to pay this cost

sooner, so they are less inclined to purchase a house ex ante.

Together with Lemma 2, Lemma 3 gives the following equation for the realized share of

listings that sell:

πt = 1−
∑
n,λ

βλnΦ
(

log p(ĝt) + log κλn(ĝt) + d̂t − dt − µn
)
, (10)

where Φ is the CDF of N (0, σ2
a). Holding d̂t and dt constant, πt increases in ĝt when each

κλn(·) decreases and when rm is large, so that p(·) is nearly constant. In this case, ĝt tends to

raise d̃t due to (4), leading agents to overestimate time-t demand when the expected growth

rate is high that period. This error raises ĝt+1 via (5), leading to positive feedback over time.

The share of sales going to each type of buyer is

bλn,t = π−1t βλn

(
1− Φ

(
log p(ĝt) + log κλn(ĝt) + d̂t − dt − µn

))
. (11)

When µ1 > 0—so that non-occupants benefit less from housing on average—log non-occupant

demand is more sensitive than log occupant demand to the demand shifter, dt, and the be-

lief about its growth rate, ĝt. This result holds because the normal distribution has the

monotone likelihood property, so that Φ′/(1 − Φ) is an increasing function. Because κλn(·)
quantitatively does not depend on n, the argument of Φ(·) is always larger for non-occupants

than occupants of the same λ type when µ1 > 0.

In the quantitative exercise, the log of short-term buyer demand is more sensitive than

long-term buyer demand to ĝt for two reasons. First, κλn(·) decreases more sharply for larger
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values of λ. Second, κλn is greater for larger values of λ, meaning that an equal decrease

in log κλn(ĝt) boosts demand more for short-term buyers than long-term buyers due to the

monotone likelihood property. For a similar reason, the demand shifter, dt, increases short-

term buying more strongly than long-term buying.

7.5 Quantities

The following accounting identities characterize the evolution of inventories, It, new listings,

Lt, and volume, Vt, given sales probabilities, πt, and the composition of buyers, bλn,t:

It = (1− πt−1)It−1 + Lt

Vt = πtIt

Lt =
∑
λ

λSλt−1

Sλt = (1− λ)Sλt−1 + (bλ0,t + bλ1,t)Vt,

where Sλt measures end-of-period stayers of type λ. Volume to buyers of occupancy type n

equals
∑

λ b
λ
n,tVt. To track realized short-term sales, the quantity we observe in the data, we

define Ikt to be the inventory of listings at t of homes purchased at time t− k. This quantity

satisfies the recursion

Ikt = (1− πt−1)Ik−1t−1 +
∑
λ

λ(1− λ)k−1(bλ0,t−k + bλ1,t−k)Vt−k

for k > 0, with initial condition I0t = 0. The sales volume of houses purchased within the

last j periods equals V j
t =

∑j
k=1 πtI

k
t . In the data we track new short-term listings; here,

new listings of homes purchased within the last j periods equals

Ljt =

j∑
k=1

∑
λ

λ(1− λ)k−1(bλ0,t−k + bλ1,t−k)Vt−k.

As these equations make clear, the current composition of buyers affects the composition

of stayers, thereby altering future listings and volume. Volume rises when there are more

listings or when the selling probability is higher.
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8 Model Results

8.1 Simulation Methodology

Solving the model requires calculating the functions p(ĝt) and κλn(ĝt). To do so, we discretize

ĝ using the Rouwenhorst (1995) method and then calculate the function values at these

discrete points. To evaluate the functions outside these points, we use cubic splines between

mesh points and linear splines beyond the boundaries.

Each simulation of our model corresponds to 148 sequential realizations of εdt and εgt . The

first 100 periods burn in the simulation, leaving 48 analysis periods. Each period represents

a quarter, so our analysis spans 12 years. We draw a control sample of 1,000 independent

simulations to analyze the baseline properties of the model. To analyze the impulse response

to a shock, we draw a treatment sample of 1,000 additional simulations that are identical to

the control except in periods 101–104 during which the growth rate shocks εgt are two standard

deviations higher.26 Impulse responses are average differences between the treatment and

control outcomes.

We set r = 0.012 and ρ = 0.880, corresponding to annual values of 5% and 0.51 in Guren

(2018) and Glaeser and Nathanson (2017), respectively. We select values of the remaining

parameters so that moments from our simulation match the empirical counterparts in Table

5. The composition of buyers and the volatility of demand growth determine βλn and σ,

respectively, and the selling hazard disciplines rm, as more patient movers take longer to sell

by setting higher prices. We target three features of the national U.S. housing cycle: the ratio

of price boom to bust, the volume boom relative to the price boom, and the degree to which

the non-occupant volume boom exceeds the occupant boom. Intuitively, these moments

determine γ, σa, and µ0 through quantifying extrapolation, the elasticity of demand, and

the excess sensitivity of non-occupants.

8.2 Parameter Estimates and Buyer Cutoff Rules

Table 6 reports parameter values that match the moments in Panels B and C of Table 5.

Non-occupant flow utility is 0.9% less than occupant flow utility on average, corresponding to

26We shock εg instead of εd so that in the rational benchmark, prices never overshoot. A sequence of
4 shocks matches the experiment in Barberis, Greenwood, Jin and Shleifer (2018). We choose 2 standard
deviations to explore a large but plausible increase in demand.
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less than a standard deviation in each group’s flow utility distribution. The mover discount

rate is 14%. To map this number into a flow cost of moving, we calculate how much higher

the mover value function would be if the mover discount rate were r for a single period. The

average difference is 3.7% of the list price, in line with the typical costs of selling a house

(Han and Strange, 2015) and smaller than the estimate in Guren (2018) of 2.1% per month.

Panel B reports the magnitude of extrapolative expectations implied by our parameter

estimates. Following Armona, Fuster and Zafar (2016), we focus on the regression coefficients

on last year’s price growth of expected annualized price growth over the next 1 and 2–5 years.

We calculate these coefficients by regressing movers’ expectations in period 105 of the control

simulations against price growth in the previous 4 periods. The resulting values of 0.127 and

0.042 are somewhat smaller than corresponding values of 0.226 and 0.047 that Armona,

Fuster and Zafar (2016) find through a survey (see their Table 5). Therefore, to match the

key housing cycle moments in panel C of Table 5, our model requires a smaller amount of

extrapolation than these authors found.

In Figure 8 we plot the potential buyer cutoff functions κλn(ĝt) given our chosen param-

eters over a wide range of expected demand growth rates. These functions determine the

relative sensitivity of buyer demand across buyers with different expected holding periods

and occupancy types. Three features of these functions stand out: (1) each κλn(·) decreases,

with steeper slopes for larger values of λ, (2) κλ0(·) and κλ1(·) are nearly identical for each

λ, and (3) κλn(·) are generally larger for greater values of λ. These results imply that the

sensitivity of buyer demand to the expected growth rate will be larger among buyers with

shorter expected holding periods and that short-term buyers are more likely to be marginal.

Because holding periods and occupancy status are correlated according to our estimates in

Table 6, the similarity in cutoff rules between occupants and non-occupants implies that

non-occupants are also more likely to be marginal entrants into the market when expected

capital gains are high.

8.3 Impulse Responses

Figure 9 plots impulse responses. As with the national U.S. cycle in Figures 1 and 3, the

cycle in the model progresses through a boom, quiet, and bust (Panels A and B). We use

grey shading to mark the transition points between these phases, defined as the peaks of

volume and prices. The quiet lasts 8 quarters, close to the duration in Figure 1 and the
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correlation-maximizing lag in Figure 2.

In the boom, demand rises because its true level, dt is higher and because the expected

growth rate, ĝt, rises in response to price growth. Both channels differentially stimulate

buying from potential buyers with higher λ (Panel C) and non-occupants (Panel D). The

overall increase in housing demand pushes up the share of listings that sell, πt (Panel E).

Short-term buyers re-list their houses quickly, increasing the flow of listings during the boom

(Panel F). Prices and volume increase as a result. Tempering the volume boom is the decline

in inventory (Panel B), which occurs as the stock of unsold listings diminishes.

The qualitative behavior of volume, inventories, and sale probabilities during the boom

is similar in search and matching models, such as Guren (2014). The key difference is

the increasing flow of listings coming differentially from short-term buyers (Panel F). This

flow limits the decline in inventories to 1.5 log points, amplifying and sustaining the rise

in volume. Relative to the price boom, this decline in inventories is an order of magnitude

smaller than in Guren (2014). Furthermore, the differential flow of short-term listings leads

to the short-term volume boom in Panel C, which matches Figure 4. The disproportionate

increase in demand from non-occupants, together with the overall rise in volume, produces

the strong non-occupant volume boom in Panel D that also matches Figure 4.

In the quiet, demand begins to fall because the price level has risen so high. Due to

the cap rate error, agents misattribute demand growth during the boom entirely to dt, even

though much of it comes from ĝt, the expected capital gains channel. As a result, agents

over-estimate the demand level, and d̂t − dt becomes increasingly positive. As (10) shows,

sales probabilities then fall (Panel E). Movers increase their list prices throughout the quiet

because they continue to revise upward d̂t, their estimate of the level of demand, for two

reasons. First, because of past price growth, the expected growth rate, ĝt, remains high,

which mechanically causes upward revisions to the expected level of demand. Second, the sale

probability, πt, remains high even though it is falling, and these high realizations constitute

positive surprises about demand that cause movers to increase their beliefs. Eventually, πt

falls below its pre-shock average, ending these upward revisions and the concomitant increase

in list prices.

One of the distinguishing features of the quiet in both the model and the data is the

sharp rise in unsold inventories. At their peak, unsold listings are 1.4 log points above their

pre-shock level. The two causes of the glut of inventories are the fall in selling probabilities
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(Panel E) and the elevated flow of short-term listings continuing throughout the quiet (Panel

F), which matches the data in Figure 6. This second cause is novel to our model and may

explain why inventories rise above their pre-shock level here whereas they fail to do so in

models lacking this channel, such as Guren (2014).27

The bust begins as movers cut list prices. Agents revise down their expectations of the

growth rate, which further depresses demand and sale probabilities. Because the cap rate

error leads movers to ignore this channel, movers do not cut prices enough to restore demand,

and the bust continues over several periods. Volume falls below its pre-shock level, as in

Figure 1. The decline in ĝt leads to a smaller share of short-term buyers, depressing the flow

of new listings (Panel F), which allows inventories to recover (Panel B).

The model generates a second boom in prices, volume, and listings in the last 5 years

of the simulation. This second boom occurs because prices overshoot on the way down, as

is common in models with extrapolative expectations (Hong and Stein, 1999; Glaeser and

Nathanson, 2017). Underpricing occurs when agents think that demand is lower than its

true value, so that d̂t − dt becomes negative. As (10) shows, sale probabilities then rise,

increasing volume. This increase in demand disproportionately affects short-term buyers, so

short-term volume and listings rise during the second boom.

8.4 Counterfactuals

Many features of the impulse responses discussed above closely match the patterns observed

in the data. However, the fact that our model matches these patterns does not directly speak

to the role that speculators play in generating those patterns. To quantify the contribution

of speculators to the housing cycle, we rerun the simulation under counterfactuals with only

long-term buyers or occupants. Doing so allows us to make causal statements within the

model’s framework that are not feasible in our empirical analysis.

To study the role of short-term buyers, we re-run the simulations setting βλ = 0 for all

values of λ except for λ = 0.03, which is close to the reciprocal of the average horizon among

potential buyers in the baseline. By assigning all potential buyers the same (low) value

of λ this counterfactual removes both short-term buyers and the heterogeneity in holding

27Our model understates the rise in listings during the quiet because of our simplifying assumption that
each mover matches to a potential buyer regardless of the number of contemporaneous movers. With a
more realistic matching function, such as the one in Guren (2014), our model might hit the peak of listings
(relative to price growth) that appears in Figure 3.
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periods that generates variation in the composition of buyers. We run two versions of this

counterfactual: one in which we keep the share of non-occupants among potential buyers

with λ = 0.03 equal to its baseline, and one in which we change this ratio to the non-occupant

share in the whole baseline population. The second version controls for the non-occupant

share as we alter the λ distribution.

We perform a similar pair of counterfactual exercises to measure the effect of removing

non-occupant buyers. The first counterfactual sets the non-occupant shares, βλ0 , to zero, and

then scales up the occupant shares, βλ1 , so that they sum to one. This method skews the

λ distribution toward long-term buyers because occupants have longer horizons than non-

occupants (Table 6). Therefore, we explore a second counterfactual in which we maintain

the original λ distribution while eliminating non-occupants. We continue to set each βλ0 to

zero, but now we update βλ1 to the baseline λ share among all potential buyers.

Table 7 reports key outcomes from the impulse responses under the baseline and each

of these four counterfactuals. In the counterfactuals with only long-term buyers, the price

bust nearly disappears, the volume boom is half its baseline size, and sale probabilities rise

less. Inventories fall more during the boom and attain a smaller level at the end of the

quiet.28 Therefore, eliminating short-term buyers prevents the model from matching the

key aggregate facts (Figures 1 and 3). Interestingly, short-term volume still rises more than

total volume, even though the composition of buyers remains the same throughout the boom

(by construction). This pattern is a manifestation of the mechanical increase in short-term

volume that we quantify in Section 5.2.

We obtain similar results in the first counterfactual with only occupants: the price bust,

volume boom, rise in sale probabilities, and end-of-quiet listings become significantly smaller.

However, when we adjust the λ distribution in the last counterfactual, eliminating non-

occupants fails to attenuate the cycle. In fact, the cycle outcomes grow in this scenario.

Evidently, non-occupants amplify the housing cycle, but only because many of them have

short horizons. Long-term non-occupants fail to amplify the cycle and may even dampen it.

These results speak to the finding in Tables 2 and 3 that a short-holding-period boom

more robustly predicts price booms and busts than does a non-occupant volume boom. Our

28These counterfactuals do a better job matching inventory levels during the bust, which reach 1.6 log
points, a higher level than the baseline. In the baseline, new listings fall sharply during the bust because
short-term buyers exit the market (Panel F of Figure 9). Thus, the baseline does a better job matching
listing behavior in the boom and quiet than in the bust.
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findings are also consistent with Gao, Sockin and Xiong (2019), who find that non-occupants

amplify the housing bust, as that paper does not look separately at long-term versus short-

term non-occupants. Chinco and Mayer (2015) find a stronger effect of out-of-town than

local non-occupants buyers on subsequent house price growth. This finding is consistent

with our results if the out-of-town buyers have shorter horizons than local ones. Finally,

our results echo Nathanson and Zwick (2018), who theoretically predict larger house price

booms in cities with a greater share of non-occupant buyers when those buyers disagree about

future house prices and when the housing stock is fixed. Static disagreement in that model

functions similarly to how, in this model, variation in horizons interacts with extrapolative

expectations to generate heterogeneous expected returns.

To gauge the role of various model ingredients for producing the results, Internet Ap-

pendix IV simulates a rational version of our model and a version with Walrasian market

clearing. The rational model dampens or eliminates most cycle dynamics, except for the

disproportionate non-occupant volume boom. In the Walrasian model, prices and volume

continue to go through a boom and bust cycle, but volume peaks after prices, thus eliminat-

ing the quiet. Therefore, departing from rationality seems necessary to produce the price and

quantity dynamics in the data, and relaxing Walrasian market clearing appears necessary to

generate the quiet.

9 Final Remarks

Our paper raises additional lines of inquiry within the housing market. We have argued, the-

oretically and empirically, that short-term investors play a crucial role in the housing cycle.

Do the expansions in credit that typically accompany housing booms appeal disproportion-

ately to short-term investors? Barlevy and Fisher (2011) document a strong correlation

across U.S. metropolitan areas between the size of the 2000s house price boom and the take-

up of interest-only mortgages. These mortgages back-load payments by deferring principal

repayment for some amount of time and thus might appeal especially to buyers who expect

to resell quickly. The targeting of credit expansions to short-term buyers might explain the

amplification effects of credit availability on real estate booms documented by Favara and

Imbs (2015), Di Maggio and Kermani (2017), and Rajan and Ramcharan (2015). Mian and

Sufi (2019) explore this channel in contemporaneous work.
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A second line of inquiry within housing concerns tax policy. The capital gains tax dis-

courages housing speculation by lowering expected after-tax capital gains. However, it dis-

courages productive residential investment as well. Is this tax optimal, and if not, what

type of tax policy would be better? Many economists have analyzed or proposed transac-

tion taxes (Tobin, 1978; Stiglitz, 1989; Summers and Summers, 1989; Dávila, 2015). It is

unclear whether these taxes would particularly discourage short-term investors, given that

the incidence of this tax might fall more on buyers than sellers.

A third research question involves new construction, which is absent from our model. In

a static model, Nathanson and Zwick (2018) predict that undeveloped land amplifies house

price booms by facilitating speculation by developers. Developers have short investment

horizons because the time from land purchase to home sale ranges from a few months to a

few years. Moreover, because developers do not receive flow utility, their payoffs resemble

those of the non-occupants in our model. Therefore, adding construction to the model in

this paper might further clarify the role of land markets and new construction in housing

cycles.

Although this paper focuses on the housing market, many of the patterns we study appear

in other asset markets as well. Several famous bubbles involve large movements in transaction

volume (Cochrane, 2011). The lead–lag relation between prices and volume holds, albeit at

different frequencies, in four other boom-bust episodes shown in Figure 10: the 1995–2005

market in technology stocks, the 1985–1995 Japanese stock market, the experimental bubbles

studied by Smith, Suchanek and Williams (1988), and the 1985–1995 bubble in Postwar art.

Short-horizon trading was prevalent during the technology boom (Cochrane, 2002; Ofek and

Richardson, 2003). Even outside of bubbles, stock market volume increases following high

returns and predicts negative subsequent returns (Lee and Swaminathan, 2000; Jones, 2002;

Statman, Thorley and Vorkink, 2006; Griffin, Nardari and Stulz, 2007).

Cutler, Poterba and Summers (1991) document price dynamics such as momentum and

mean reversion in many asset classes. They conclude the generality of these patterns suggests

that inherent features of the speculative process likely explain them. Can our model of

speculation explain the joint dynamics of prices and volume outside the housing market? In

the Walrasian variant of our model in Internet Appendix IV, we do not generate a consistent

lead–lag relation, but we find that some movers do not sell when the expected growth rate

is very large. We conjecture that it may be possible to generate price and volume outcomes
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that resemble the quiet but in a market design that more closely resembles the Walrasian

benchmark. We hope that future work will investigate the striking similarity of volume

dynamics in other markets.
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FIGURE 1
The Dynamics of Prices and Volume

Panel A. National

50
75

10
0

12
5

15
0

M
on

th
ly

 T
ra

ns
ac

tio
n 

Vo
lu

m
e 

(R
el

at
iv

e 
to

 2
00

0,
 %

)

10
0

12
5

15
0

17
5

20
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

Prices
Volume

Panel B. Phoenix, AZ Panel C. Las Vegas, NV

20
60

10
0

14
0

18
0

22
0

M
on

th
ly

 T
ra

ns
ac

tio
n 

Vo
lu

m
e 

(R
el

at
iv

e 
to

 M
ea

n 
in

 2
00

0,
 %

)

10
0

14
0

18
0

22
0

26
0

30
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

20
60

10
0

14
0

18
0

22
0

M
on

th
ly

 T
ra

ns
ac

tio
n 

Vo
lu

m
e 

(R
el

at
iv

e 
to

 M
ea

n 
in

 2
00

0,
 %

)

10
0

14
0

18
0

22
0

26
0

30
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

Panel D. Orlando, FL Panel E. Bakersfield, CA

20
60

10
0

14
0

18
0

22
0

M
on

th
ly

 T
ra

ns
ac

tio
n 

Vo
lu

m
e 

(R
el

at
iv

e 
to

 M
ea

n 
in

 2
00

0,
 %

)

10
0

14
0

18
0

22
0

26
0

30
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

20
60

10
0

14
0

18
0

22
0

M
on

th
ly

 T
ra

ns
ac

tio
n 

Vo
lu

m
e 

(R
el

at
iv

e 
to

 M
ea

n 
in

 2
00

0,
 %

)

10
0

14
0

18
0

22
0

26
0

30
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

Notes: This figure displays the dynamic relation between prices and volume in the U.S. housing market
between 2000 and 2011. Panel A plots monthly prices and sales volume at the aggregate level. Panels B
through E plot analogous series for a set of cities that represent regions with the largest boom–bust cycles
during this time: Phoenix, AZ; Las Vegas, NV; Orlando, FL; and Bakersfield, CA. Monthly price index
information comes from CoreLogic and monthly sales volume is based on aggregated transaction data from
CoreLogic for 115 MSAs representing 48% of the U.S. housing stock. We apply a calendar-month seasonal
adjustment for volume. Shaded regions denote the quiet, defined as the period between the peak of volume
and the last peak of prices before their pronounced decline.
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FIGURE 2
The Lead–Lag Relationship between Prices and Volume
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Notes: This figure shows that the correlation between prices and lagged volume is robust across MSAs and
maximized at a positive lag of 24 months. We regress the demeaned log of prices on seasonally adjusted
lagged volume divided by the 2000 housing stock following equation (1) for each lag from -12 months to
48 months and plot the implied correlation and its 95% confidence interval calculated using standard errors
that are clustered by month. The implied correlation equals βτ std(vi,t−τ )/ std(pi,t), where vi,t−τ and pi,t
are the demeaned regressors.
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FIGURE 3
The Dynamics of Prices and Inventories

Panel A. National
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Notes: This figure displays the dynamic relation between prices and inventory in the U.S. housing market
between 2000 and 2011. Panel A plots monthly prices and the inventory of listings at the aggregate level.
Panels B through E plot analogous series for a set of cities that represent regions with the largest boom–
bust cycles during this time: Phoenix, AZ; Reno, NV; Daytona Beach, FL; and Bakersfield, CA. Aggregate
inventory information comes from the National Association of Realtors, which are available starting in 2000.
Our MSA-level inventory data are available for these cities starting in 2001. Monthly price index information
comes from CoreLogic and monthly inventory by MSA is based on aggregated data from CoreLogic for 57 of
the 115 MSAs in our main sample for which listings data are available. We apply a calendar-month seasonal
adjustment for inventories. Shaded regions denote the quiet, defined as the period between the peak of
volume and the last peak of prices before their pronounced decline.
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FIGURE 4
Normalized Aggregate Volume by Transaction Type
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Non-Occupant Volume Total Volume (Including New Construction)

Volume (000s) 2000 2005 2010

ShortS1 510 940 150
ExistingS1 2,130 2,880 930
TotalS1 2,730 3,820 1,150
Non-OccupantS2 510 1,030 290
TotalS2 2,310 3,290 990

Notes: This figure plots monthly aggregate time series for total transaction volume (navy triangles), total vol-
ume excluding new construction (blue circles), short-holding-period volume (red squares), and non-occupant
volume (orange diamonds) between 2000 and 2011. All series exclude foreclosures. The non-occupant volume
series only includes observations from the 102 MSAs for which we can consistently identify these transac-
tions; the other series include observations for all 115 MSAs. Each series is separately normalized relative
to its average value in the year 2000 and seasonally adjusted by removing calendar-month fixed effects. For
reference, the raw counts of each type of transaction in the years 2000, 2005, and 2010 are reported in the
upper right corner of the figure. In the table, S1 refers to the short-holding-period sample of 115 MSAs and
S2 refers to the non-occupant sample of 102 MSAs.

52



FIGURE 5
Short-Holding-Period, Non-Occupant, and Total Volume Growth Across MSAs

Panel A. Total Volume Versus Panel B. Total Volume Versus
Volume by Holding Period Volume by Occupancy Status

0%
20

0%
40

0%
60

0%
80

0%

Pe
rc

en
t C

ha
ng

e 
in

 V
ol

um
e 

by
 G

ro
up

0% 50% 100% 150% 200% 250%

Percent Change in Total Volume

Holding Period < 3 Years Holding Period ≥ 3 Years
0%

20
0%

40
0%

60
0%

80
0%

Pe
rc

en
t C

ha
ng

e 
in

 V
ol

um
e 

by
 G

ro
up

0% 50% 100% 150% 200% 250%

Percent Change in Total Volume

Non-Occupant Buyers Occupant Buyers

Panel C. Role of Short Volume Panel D. Role of Non-Occupant Volume
in Total Volume Growth in Total Volume Growth

slope = 0.36
slope = 0.30

0%
25

%
50

%
75

%
10

0%
12

5%

C
ha

ng
e 

in
 S

ho
rt-

H
ol

di
ng

-P
er

io
d 

Vo
lu

m
e 

as
 a

Pe
rc

en
t o

f I
ni

tia
l T

ot
al

 V
ol

um
e

0% 50% 100% 150% 200% 250%

Percent Change in Total Volume

Including New Construction Excluding New Construction

slope = 0.54

0%
25

%
50

%
75

%
10

0%
12

5%

C
ha

ng
e 

in
 N

on
-O

cc
up

an
t V

ol
um

e 
as

 a
Pe

rc
en

t o
f I

ni
tia

l T
ot

al
 V

ol
um

e

0% 50% 100% 150% 200% 250%

Percent Change in Total Volume

Notes: This figure illustrates the quantitative importance of short-holding-period and non-occupant volume
in accounting for the increase in total volume across MSAs between 2000 and 2005. The top two panels
present MSA-level scatter plots of the percent change in total volume from 2000 to 2005 versus the percent
change in volume for short and long holding periods (Panel A) and the percent change in volume for occupant
and non-occupant buyers (Panel B). The bottom two panels show that the growth in short-holding-period
and non-occupant volume were quantitatively important components of the growth in total volume across
MSAs. For each MSA, we plot the change in short-holding-period volume (Panel C) and non-occupant
volume (Panel D) divided by initial total volume on the y-axis against the percent change in total volume on
the x-axis. Because short-holding-period volume is based on the holding period of the seller and therefore
cannot, by definition, include sales of newly constructed homes, Panel C also includes a version of the scatter
plot that excludes new construction from total volume for reference.
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FIGURE 6
The Flow of Listings for Short-Holding-Period Buyers
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Notes: This figure illustrates the time variation in propensities to list among recent buyers versus all buyers
between 2000 and 2011 in the U.S. We link listings micro data to transaction data at the property level to
identify short-holding-period listings. We plot monthly aggregate time series for total listings (blue circles)
and short-holding-period listings (red squares), defined as a listing where the previous sale occurred within
the past three years. The series include observations for the 57 MSAs in our listings sample. Each series
is separately normalized relative to its average value in the year 2003 and seasonally adjusted by removing
calendar-month fixed effects. For reference, the raw counts of each type of listing in the years 2003, 2007,
and 2010 are also reported in the upper right corner of the figure.
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FIGURE 7
Expected Holding Times of Homebuyers, 2008–2015

Panel A. Response Heterogeneity by Property Type
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Notes: This figure presents evidence on heterogeneity in expected holding times among recent homebuyers
and the correlation between expected holding times and recent price changes from the National Association
of Realtors’ Investment and Vacation Home Buyers Survey. Panel A plots the response frequency averaged
equally over each survey year from 2008 to 2015. In Panel B, “annual house price growth” equals the average
across that year’s four quarters of the log change in the all-transactions FHFA U.S. house price index from
four quarters ago, and “short-term buyer share” equals the share of respondents other than those reporting
“don’t know” who report an expected horizon of less than three years. We reclassify buyers who have already
sold their properties by the time of the survey as having an expected holding time in [0,1). We use the FHFA
index here because, unlike the CoreLogic indices used elsewhere in the paper, the FHFA house price index
covers the period 2015–2016. 55



FIGURE 8
Buying Cutoffs for Different Expected Growth Rates
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Notes: The buying cutoff, κλn(ĝt), determines how large a potential buyer’s flow utility must be relative to
the price of a house for her to decide to buy. It depends on the potential buyer’s quarterly moving hazard,
λ, her occupancy type, n, and the current expected quarterly growth rate of the demand process, ĝt. We
plot values of these functions for the λ values in our calibration, which appear in the legend. Solid lines
correspond to occupants (n = 1); dashed lines correspond to non-occupants (n = 0). The horizontal grey
dashed line gives κ, which agents mistakenly believe is the time-invariant buying cutoff for other potential
buyers.
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FIGURE 9
Impulse Responses

Panel A. Prices and Volume Panel B. Inventory of Listings
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. The shaded grey area denotes the beginning and end of the quiet. A short holding period is
defined as less than or equal to 12 quarters and a long holding period is defined as greater than 12 quarters.
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FIGURE 10
The Joint Dynamics of Prices and Volume

Panel A. U.S. Equities, Tech (1995–2005) Panel B. Japan Equities (1985–1995)
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Notes: These figures display the dynamic relation between prices and transaction volume for four distinct
bubble episodes: the 1995–2005 market in technology stocks (Panel A), the 1985–1995 Japanese stock market
(Panel B), the bubbles in experimental asset markets (Panel C), and the 1985–1995 bubble in the Postwar
art market (Panel D). Panel A data come from CRSP and cover the Dotcom sample in Ofek and Richardson
(2003). For prices, we plot aggregate Dotcom market capitalization. For volume, we plot average monthly
turnover (shares traded/shares outstanding), weighted by market cap. Panel B data come from the Tokyo
stock exchange online archive and cover all first- and second-tier (i.e., large and micro-cap) stocks. For
volume, we plot total shares traded per month (shares-outstanding data are not available). For prices,
we plot aggregate market capitalization. Panel C data were manually entered from the published Smith,
Suchanek and Williams (1988) manuscript and cover all eight experiments that include a price boom and bust
(IDs are 16, 17, 18, 26, 124xxf, 39xsf, 41f, 36xx). For prices, we plot average deviations from fundamental
value. For volume, we plot the average number of trades. Panel D data come from Figure 1 of the working
paper version of Penasse and Renneboog (2016) and cover aggregate art prices and transaction volume from
auction houses for paintings and works on paper for more than 10,000 artists.
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TABLE 1
All-Cash Buyer Shares

Transaction-Level MSA-Level

All Months All Months Boom Quiet Bust

Short Buyers 0.29 0.38 0.29 0.28 0.52
(0.21) (0.16) (0.17) (0.20)

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50
(0.18) (0.15) (0.14) (0.18)

All Buyers 0.20 0.25 0.22 0.20 0.30
(0.16) (0.15) (0.14) (0.16)

Notes: This table presents statistics on the share of buyers of various types who purchased their homes
without the use of a mortgage (“all-cash buyers”). In column 1, the all-cash buyer share is measured at the
transaction level and includes all transactions recorded between January 2000 and December of 2011 from the
CoreLogic deeds records described in Section 2.1. The first row includes only transactions by homebuyers
who are observed to have sold the home within three years of purchase. The second row includes only
non-occupant buyers. The third row includes all buyers. In columns 2–5, all-cash buyer shares are first
calculated at the MSA-by-month level and then averaged across MSA-months within a given time period.
The standard deviation of these MSA-month means is reported in parentheses for reference. Column 2
includes all MSA-months between January 2000 and December 2011. Column 3 includes only MSA-months
between January 2000 and August 2005. Column 4 includes only MSA-months between August 2005 and
December 2006. Column 5 includes only MSA-months between December 2006 and December 2011. All
statistics are calculated in the full sample of 115 MSAs with the exception of those for non-occupants, which
are calculated in the sample of 102 MSAs with valid non-occupancy data.
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TABLE 2
Speculative Booms and Housing Market Outcomes

Panel A. MSA-Level Prices

Price Boom Price Bust

Short-Volume Boom 1.930*** 3.104*** -0.571*** -0.898***
(0.297) (0.564) (0.083) (0.158)

Non-Occupant Volume Boom 0.570*** -0.714** -0.166*** 0.206***
(0.173) (0.279) (0.049) (0.078)

Number of Observations 115 102 102 115 102 102
R-squared 0.272 0.098 0.309 0.293 0.103 0.323

Panel B. MSA-Level Inventories

∆ Listings Boom ∆ Listings Quiet

Short-Volume Boom -1.133 -1.564 5.961*** 7.022***
(1.027) (1.956) (1.353) (2.593)

Non-Occupant Volume Boom -0.070 0.545 2.645*** -0.119
(0.505) (0.922) (0.718) (1.222)

Number of Observations 57 48 48 57 48 48
R-squared 0.022 0.000 0.014 0.261 0.228 0.336

Panel C. MSA-Level Volume Quiet and Bust

∆ Volume Quiet + Bust Foreclosures Bust

Short-Volume Boom -1.047*** -0.663*** 0.895** 2.863***
(0.096) (0.177) (0.398) (0.746)

Non-Occupant Volume Boom -0.512*** -0.237*** -0.060 -1.245***
(0.051) (0.087) (0.215) (0.368)

Number of Observations 115 102 102 115 102 102
R-squared 0.515 0.505 0.567 0.043 0.001 0.130

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures at
the MSA level. Short-Volume Boom has a mean of 16.0% and a standard deviation of 12.9%. Non-Occupant
Volume Boom has a mean of 29.3% and a standard deviation of 27.1%. ∆ Volume Quiet + Bust is defined
as the change in total volume from 2005 through 2011. ∆ Listings Boom is defined as the change in total
listings from 2003 through 2005. ∆ Listings Quiet is defined as the change in total listings from 2005 through
2007. Foreclosures Bust is defined as total foreclosures from 2007 through 2011. Price Boom is defined as
the change in prices from 2000 through 2006. Price Bust is defined as the change in prices from 2006 through
2011. To aid interpretation of these relations, we scale the change in outcomes for all quantity measures
relative to total volume in 2003 and multiply by 100. Internet Appendix Table IA.II presents summary
statistics for each sample. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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TABLE 3
House Price Appreciation and Speculative Buyer Shares (Monthly Panel VAR)

House Price Appreciation Rate

Lagged Price Appreciation 0.375*** 0.387*** 0.372***
(0.026) (0.027) (0.026)

Lagged Short-Buyer Share 0.021*** 0.023***
(0.005) (0.005)

Lagged Non-Occupant Share 0.009 0.006
(0.008) (0.006)

Short-Buyer Share

Lagged Price Appreciation 0.163*** 0.162***
(0.048) (0.048)

Lagged Short-Buyer Share 0.780*** 0.781***
(0.024) (0.023)

Lagged Non-Occupant Share 0.001
0.017

Non-Occupant Share

Lagged Price Appreciation 0.124*** 0.172***
(0.044) (0.045)

Lagged Short-Buyer Share -0.071***
(0.016)

Lagged Non-Occupant Share 0.892*** 0.900***
(0.025) (0.021)

Notes: This table presents estimates from MSA-by-month panel vector autoregressions (pVARs) describing
the relation between house price growth and the share of purchases made by non-occupant buyers and “short
buyers,” defined as buyers who will sell within three years of purchase. The left-hand-side variables are house
price appreciation from t− 1 to t, the short-buyer share of total volume in t, and the non-occupant share of
total volume in t. The right-hand-side variables are lagged versions of these variables. The sample includes
8,568 observations for 102 MSAs for which we can consistently identify non-occupant buyers. House price
appreciation has a mean of 0.84% and a standard deviation of 1.32%. Short-buyer share has a mean of 21.0%
and a standard deviation of 5.5%. Non-occupant share has a mean of 32.8% and a standard deviation of
18.9%. Column (1) includes only house price appreciation and the short-buyer share. Column (2) includes
only house price appreciation and the non-occupant share. Column (3) includes both speculative volume
measures. The sample period includes the boom and quiet, which runs from January 2000 through December
2006. Regressions include MSA and month fixed effects and thus report the average autoregressive relations
within MSAs over time. We seasonally adjust house prices by removing MSA-by-calendar-month fixed effects
before computing house price growth. Standard errors are clustered at the MSA level.
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TABLE 4
The Speculative Share of Total Volume in the Boom

Panel A. Accounting Regressions

OLS: Volume Boom IV: Volume Boom

Short-Volume Boom 2.30 2.67 2.28 2.84
(0.11) (0.12) (0.18) (0.46)

Non-Occupant Volume Boom 1.25 1.74
(0.08) (0.11)

MSA-level X X X
ZIP-level (MSA Effects) X X X

Number of Observations 115 102 6826 5662 102 6826
R-squared 0.78 0.69 0.67 0.66 0.79 0.60

Panel B. Variance Decomposition

Variance of LHS 0.083 0.093 0.268 0.289
Variance of RHS 0.012 0.041 0.020 0.057
Contribution to Boom (%) 33 55 20 34

Notes: This table presents regressions at the MSA and ZIP levels of the percentage change in total volume
from 2000 to 2005 on the change in short-holding-period volume or the change in non-occupant volume from
2000 to 2005 relative to total volume in 2000. Panel A presents OLS regressions and IV regressions, where
the short-volume boom is instrumented with demographic data from the 2000 Census 5% microdata. The
instruments are the share of recent buyers under 35 and the share of recent buyers aged 65 or older. The
ZIP-level regression is estimated with MSA fixed effects and with standard errors clustered at the MSA
level. Census microdata was not available for 13 MSAs in our sample, hence the lower sample count in
column 5. See Internet Appendix Table IA.IV for first-stage regressions. The F-statistics in the MSA-level
and ZIP-level (Kleibergen-Paap Wald F-statistic reflecting MSA-level clustering) regressions are 40 and 8,
respectively. Panel B presents the inputs needed to interpret the Panel A regressions in terms of a variance
decomposition that matches the plots in Figure 5.
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TABLE 5
Inputs into model calibration

Parameter or target Value Source

Panel A: Assumed parameters

r (non-mover discount rate) 0.012 Guren (2018)
Potential λ values {0.50, 0.17, 0.05, 0.03, 0.01} Figure 7
ρ (demand growth persistence) 0.880 GN (2017)

Panel B: Steady-state targets

Occupant buyer shares (0.06, 0.07, 0.16, 0.16, 0.34) Figure 7
Non-occupant buyer shares (0.04, 0.03, 0.04, 0.04, 0.06) Figure 7
Annual volatility of demand growth 0.023 GN (2017)
Quarterly selling hazard 0.75 Guren (2018)
Mean demand error 0 Model
Mean demand growth 0 Model

Panel C: Cycle targets

Price overshoot 2.3 Figure 1
Volume boom/price boom 0.4 Figure 1
Non-occupant boom/occupant boom 3.1 Figure 4

Notes: This table reports parameters that we assume in the calibration, as well as targets we use to determine
the remaining parameters. In the model, we target the mean buyer shares, quarterly selling hazard, and
demand error across all analysis periods in control simulations. We theoretically derive the annual volatility
of demand growth as well as the mean demand growth as functions of parameters. Price overshoot is the
ratio of log price growth from the beginning to peak to log price growth from the beginning to the trough
after the peak. Volume boom/price boom is the ratio of log existing volume growth from the beginning
to the peak of volume (2000 to 2005, using numbers from Figure 4) to aforementioned log price growth.
Non-occupant boom/occupant boom is the ratio of each category of log volume growth from 2000 to 2005
in the sample of MSAs we use for non-occupant analysis. In the model, we use quarterly minimums and
maximums instead of aggregating at the year level. We match all targets to within rounding. GN (2017)
denotes Glaeser and Nathanson (2017).
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TABLE 6
Outputs from model calibration

Parameter or outcome Interpretation Value

Panel A: Derived parameters

σa Flow utility dispersion 0.066
µ1 Occupant premium 0.009
γ g variance share 0.070
κ Cap rate error 0.029
σ Demand volatility 0.011
µ Mean demand growth −0.000
rm Mover discount rate 0.141
βλ0 Non-occupant shares (0.143, 0.022, 0.030, 0.030, 0.045)
βλ1 Occupant shares (0.185, 0.052, 0.119, 0.119, 0.254)

Panel B: Steady-state outcomes

1-year extrapolation – 0.127
2–5-year extrapolation – 0.042

Notes: See text for definitions of parameters in Panel A. We find these values by searching for parameters
such that moments from the model match targets in Table 5. Panel B reports regression coefficients of
annualized price growth in the next year and between 2 and 5 years from now on last year’s price growth.
We run these regressions across control simulations at the beginning of the analysis period.
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TABLE 7
Model counterfactuals

All long-term buyers All occupants

Outcome Baseline No occupant Occupant No short-term Short-term
adjustment adjustment adjustment adjustment

Price boom 14.5 8.7 8.7 9.4 14.6
Price bust −8.2 −0.4 −0.4 −0.6 −8.3
Volume boom 5.8 2.9 2.9 2.1 5.8
Listings, end of boom −1.3 −3.1 −3.1 −0.2 −1.3
Listings, end of quiet 1.4 0.4 0.4 0.0 1.4
Short volume boom 14.1 3.4 3.4 6.4 14.1
Non-occupant volume boom 12.3 3.6 3.6 – –
Sale probability boom 7.1 6.0 6.0 2.3 7.1

Notes: We report 100 times changes in log outcomes between treatment and control simulations. We define
the end of the quiet as the first local maximum in the impulse response of log prices, and we measure the
following outcomes at that time: price boom and listings end of quiet. We define the end of the boom as
the first local maximum in the impulse response of log volume before the end of the quiet, and we measure
the following outcomes at that time: volume boom, listings end of boom, short volume boom, non-occupant
volume boom, and sale probability boom. The price bust is the change from the end of the quiet to the first
local minimum of the impulse response of log prices after the end of the quiet. A two-sided minimum does
not occur in the 48 analysis periods in the fourth column, so we extend the analysis 60 additional periods to
find such a minimum. The counterfactals involve different values of the underlying distribution of potential
buyers, βλn, that the text describes. We alter κ in each counterfactual to maintain a zero demand error while
keeping other parameters the same. The baseline values correspond to Figure 9.
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A Omitted Proofs of Mathematical Statements

A.1 Proof of Lemma 1

Movers at t believe that they observe dt−j = d̃t−j for all j > 0. Let g∗t denote the mean of
the posterior on gt−1 from this information, and σ2

l its variance. We solve for these outcomes
using standard Kalman filtering. Denote σ2

d = (1− γ)σ2 and σ2
g = γ(1− ρ2)σ2.

We have gt−1 = g∗t + ζgt , where ζgt ∼ N (0, σ2
l ). Therefore, gt = (1 − ρ)µ + ρgt−1 + εgt =

(1− ρ)µ+ ρg∗t + ρζgt + εgt . The prior on gt at t+ 1 is thus N ((1− ρ)µ+ ρg∗t , ρ
2σ2

l + σ2
g). The

information is ∆d̃t, which according to movers equals gt + εdt . Therefore, the new posterior
variance satisfies σ2

l = σ2
d(ρ

2σ2
l + σ2

g)(σ
2
d + ρ2σ2

l + σ2
g)
−1. Solving yields

σ2
l = (2ρ2)−1

(
−(1− ρ2)σ2

d − σ2
g +

√
((1− ρ2)σ2

d + σ2
g)

2 + 4ρ2σ2
dσ

2
g

)
.

The new posterior mean satisfies g∗t+1 = (1−α)∆d̃t +α((1−ρ)µ+ρg∗t ), where α = σ2
d/(σ

2
d +

ρ2σ2
l + σ2

g). Iterating (and then subtracting one from the time subscripts everywhere) gives

g∗t = µ+ (1− α)
∞∑
j=1

(αρ)j−1
(

∆d̃t−j − µ
)
.

Because ĝt = (1−ρ)µ+ρg∗t , we have proved the Lemma formula. We have dt = dt−1+gt+ε
d
t =

(dt−1 − d̃t−1) + d̃t−1 + (1− ρ)µ+ ρgt−1 + εgt + εdt = (dt−1 − d̃t−1) + d̃t−1 + ĝt + ρζgt + εgt + εdt ,
which immediately gives d̂t = d̃t−1 + ĝt, with σ̃2 = ρ2σ2

l + σ2
g + σ2

d.

A.2 Proof of Lemma 2

Write V m(d̂t, ĝt) = ed̂tvm(d̂t, ĝt) and P = ed̂tp. Denote ζt = dt − d̂t. Then π̃(P, dt) =
1− F (log p + log κ− ζt), which we denote π̃(p, ζt) by abuse of notation. Substituting these
expressions into (7) and using (5) and (6) yield

vm(d̂t, ĝt) = sup
p
E

(
π̃(p, ζt)p+

(1− π̃(p, ζt))e
(1−ρ)µ+ρĝt+(1+ρ−αρ)ζtvm(d̂t+1, ĝt+1)

1 + rm

)
, (12)

with the expectation over ζt ∼ N (0, σ̃2). Because d̂t appears only through the first argument
of vm, this function does not depend on d̂t. It follows that the argmax also does not depend
on d̂t. We denote it p(ĝt).

A.3 Limit of Infinite Mover Impatience

When rm → ∞, p(·) becomes constant, as is clear from the equation for vm. In that case,
E log(Pt+j/Pt) = E(d̂t+j − d̂t). From the point of view of movers at t, we can iteratively
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apply (5) and (6) to obtain

Et log

(
Pt+j
Pt

)
= jµ+

ρ(1− ρ)j

1− ρ
(ĝt − µ) .

Therefore, ĝt proxies for expected future price growth, with ρ controlling the term structure
of future expectations. We can also express ĝt in terms of past price growth. In particular,
making substitutions to (5) gives ĝt+1 = (1−ρ)µ+ρĝt+ρ(1−α)(∆ logPt+1−ĝt+1). Recursively
expanding this equation and moving back time subscripts gives

ĝt − µ =
ρ(1− α)

1 + ρ(1− α)

∞∑
j=0

ρj (∆ logPt−j − µ) .

Therefore, beliefs about future price growth endogenously extrapolate from past price growth,
as in Glaeser and Nathanson (2017). In contrast to that paper, here we allow forward-looking
movers through finite rm, in which case prices become less extrapolative. We choose rm to
match moments in our quantitative exercise.

We can also derive price setting at t + 1 as a function of market data. In particular,
logPt+1 − logPt = d̂t+1 − d̂t. From (5) and (6), we know that this difference equals (1 −
ρ)µ + ρd̂t + (1 + ρ(1 − α))(d̃t − d̂t), and from (4), we have d̃t − d̂t = log κp − F−1(1 − πt).
Substituting the equation just derived for ĝt yields

logPt+1 − logPt =

µ+ (1 + ρ(1− α))
(
log κp− F−1(1− πt)

)
+

ρ2(1− α)

1 + ρ(1− α)

∞∑
j=0

ρj (∆ logPt−j − µ) .

Therefore, movers set list prices as a markup over last period’s price, where the markup
is the sum of three terms: the mean growth rate µ, the information learned from sales
probabilities at t, and a weighted sum of past price growth. This rule closely resembles the
“backward-looking rule of thumb” that Guren (2018) assumes. The formula there, however,
lacks a term corresponding to the one here with πt, as his rule-of-thumb sellers do not adjust
list prices in response to market data other than past prices.

A.4 Proof of Lemma 3

We define V s
λ (d̂t, ĝt) =

∑∞
j=1 λ(1 − λ)j−1(1 + r)−jEtV

m(d̂t+1, ĝt+1), where the expectation
is conditional on mover information at t. This expression gives the resale value of owning
a house at t for a stayer of type λ conditional on public information. We write this value
recursively as

V s
λ (d̂t, ĝt) = (1 + r)−1Et

(
(1− λ)V s

λ (d̂t+1, ĝt+1) + λV m(d̂t+1, ĝt+1)
)
.
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We write V s
λ (d̂t, ĝt) = ed̂tvsλ(d̂t, ĝt). Plugging in the result from the proof of Lemma 2 that

V m(d̂t, ĝt) = ed̂tvm(ĝt), we get

vsλ(d̂t, ĝt) = (1 + r)−1E
(
e(1−ρ)µ+ρĝt+(1+ρ−αρ)ζt

(
(1− λ)vsλ(d̂t+1, ĝt+1) + λvm(ĝt+1)

))
, (13)

with the expectation over ζt ∼ N (0, σ̃2). Because d̂t enters only vsλ, that function does not

depend on d̂t, so we can write V s
λ (d̂t, ĝt) = ed̂tvsλ(ĝt). Substituting this expression into (8),

using the recursive formulation for the resale value, and using the potential buyer imputation
of d̂t give

V b
i,t =

edi

r + λi
+

Pi,t
(1 + r)p(ĝt)

Ei,t
(
e(1−ρ)µ+ρĝt+(1+ρ−αρ)ζt

(
(1− λi)vsλi(ĝt+1) + λiv

m(ĝt+1)
))
,

where the expectation is over ζt drawn from the normal in (9). Letting Ψλi(ĝt, ζt) denote the
argument inside the expectation, we can then simplify the buying decision, V b

i,t ≥ Pi,t, as

edi ≥ Pi,t(r + λi)

1−

∫∞
−∞Ψλi

(
ĝt, ζ +

σ̃2(di−µni−d̂t)
σ̃2+σ2

a

)
φ(ζ)dζ

(1 + r)p(ĝt)

 ,

where φ is a mean-zero normal pdf with variance σ̃2σ2
a(σ̃

2 + σ2
a)
−1. Write edi = κiPi,t. Then

the equation becomes

κi ≥ (r + λi)

1−

∫∞
−∞Ψλi

(
ĝt, ζ +

σ̃2(log κi+log p(ĝt)−µni−d̂t)
σ̃2+σ2

a

)
φ(ζ)dζ

(1 + r)p(ĝt)

 .

In Internet Appendix III, we prove that vm(·) and vλs (·) are continuous functions that weakly
increase. As a result, the right side of the above inequality continuously and weakly decreases
in κi. The left side continuously and strictly increases in κi. Therefore, if the right side limits
to a non-positive number as κi → 0, then the inequality holds for all κi > 0, meaning we
can set κλini(ĝt) = 0. If the right side limits to a positive number as κi → 0, then by the
Intermediate Value Theorem, there exists a unique κλini(ĝt) > 0 such that the inequality holds
if and only if κi ≥ κλini(ĝt), which proves the Lemma.

68



For Online Publication

I Data Appendix

To conduct our empirical analysis we make use of a transaction-level data set containing
detailed information on individual home sales taking place throughout the US between 1995
and 2014. The raw data was purchased from CoreLogic and is sourced from publicly available
tax assessment and deeds records maintained by local county governments. In some analyses
we supplement this transaction-level data with additional data on the listing behavior of
individual homeowners. Our listings data is also provided by CoreLogic and is sourced from
a consortium of local Multiple Listing Service (MLS) boards located throughout the country.

Selecting Geographies

To select our sample of transactions, we first focus on a set of counties that have consistent
data coverage going back to 1995 and which, together, constitute a majority of the housing
stock in their respective MSAs. In particular, to be included in our sample a county must
have at least one “arms length” transaction with a non-negative price and non-missing date
in each quarter from 1995q1 to 2014q4.29 Starting with this subset of counties, we then
further drop any MSA for which the counties in this list make up less than 75 percent of
the total owner-occupied housing stock for the MSA as measured by the 2010 Census. This
leaves us with a final set of 250 counties belonging to a total of 115 MSAs. These MSAs are
listed below in Table IA.VI along with the percentage of the housing stock that is represented
by the 250 counties for which we have good coverage. Throughout the paper, when we refer
to counts of transactions in an MSA we are referring to the portion of the MSA that is
accounted for by these counties.

Selecting Transactions

Within this set of MSAs, we start with the full sample of all arms length transactions of single
family, condo, or duplex properties and impose the following set of filters to ensure that our
final set of transactions provides an accurate measure of aggregate transaction volume over
the course of the sample period:

1. Drop transactions that are not uniquely identified using CoreLogic’s transaction ID.

2. Drop transactions with non-positive prices.

3. Drop transactions that are recorded by CoreLogic as nominal transfers between banks
or other financial institutions as part of a foreclosure process.

4. Drop transactions that appear to be clear duplicates, identified as follows:

(a) If a set of transactions has an identical buyer, seller, and transaction price but are
recorded on different dates, keep only the earliest recorded transaction in the set.

29We rely on CoreLogic’s internal transaction-type categorization to determine whether a transaction
occurred at arms length.
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(b) If the same property transacts multiple times on the same day at the same price
keep only one transaction in the set.

5. If more than 10 transactions between the same buyer and seller at the same price
are recorded on the same day, drop all such transactions. These transactions appear
to be sales of large subdivided plots of vacant land where a separate transaction is
recorded for each individual parcel but the recorded price represents the price of the
entire subdivision.

6. Drop sales of vacant land parcels in MSAs where the CoreLogic data includes such
sales.30 We define a vacant land sale to be any transaction where the sale occurs a year
or more before the property was built.

Table IA.VII shows the number of transactions that are dropped from our sample at each
stage of this process as well as the final number of transactions included in our full analysis
sample.

Identifying Occupant and Non-Occupant Buyers

We identify non-occupant buyers using differences between the mailing addresses listed by
the buyer on the purchase deed and the actual physical address of the property itself. In
most cases, these differences are identified using the house numbers from each address. In
particular, if both the mailing address and the property address have a non-missing house
number then we tag any instance in which these numbers are not equal as a non-occupant
purchase and any instance in which they are equal as occupant purchases. In cases where
the mailing address property number is missing we also tag buyers as non-occupants if both
the mailing address and property address street names are non-missing and differ from one
another. Typically, this will pick up cases where the mailing address provided by the buyer
is a PO Box. In all other cases, we tag the transaction as having an unknown occupancy
status.

Restricting the Sample for the Non-Occupant Analysis

Our analysis of non-occupant buyers focuses on the growth of the number of purchases by
these individuals between 2000 and 2005. To be sure that this growth is not due to changes
in the way mailing addresses are coded by the counties comprising the MSAs in our sample,
for the non-occupant buyer analysis we keep only MSAs for which we are confident such
changes do not occur between 2000 and 2005. In particular, we first drop any MSA in which
the share of transactions in any one year between 2000 and 2005 with unknown occupancy
status exceeds 0.5. Of the remaining MSAs, we then drop those for which the increase in
the number of non-occupant purchases between any year and the next exceeds 150%, with
the possible base years being those between 2000 and 2005.31 The 102 MSAs that remain
after these two filters are marked with an “x” in columns 3 and 7 of Table IA.VI.

30MSAs are flagged as including vacant land sales if more then 5 percent of the sales in the MSA occur
more then two years before the year in which the property was built.

31This step drops only Chicago-Naperville-Elgin, IL-IN-WI.
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Restricting the Sample for Listings Analysis

The geographic and time series coverage of the CoreLogic MLS data is not as comprehensive
as the transaction-level data. As a result, our analysis of listings behavior is restricted to a
subset of markets for which we can be relatively certain that the MLS data is representative
of the majority of owner-occupied home sales in the area. We impose several filters to
identify this subset of MSAs. First, starting with the full set of 115 MSAs contained in
the transaction-level data, we drop any MSA for which there is not at least one new listing
in every month and in every county subcomponent of the MSA between January 2000 and
December 2014. Within the remaining set of MSAs we then drop any MSA for which the
number of new listings between 2006 and 2008 is more than 2.5 times the number of new
listings between 2003 and 2005. This filter eliminates MSAs that experience large jumps
in coverage during the quiet. Finally, we also drop any MSA for which the number of sold
listings (from the MLS data) is less than 25 percent of total sales volume (from the transaction
data) over the period 2003-2012. This filter eliminates MSAs for which the listings data is
likely to be unrepresentative of sales activity during our main sample period. This leaves a
final sample of 57 MSAs for our listings analysis. These MSAs are marked with an “x” in
columns 4 and 8 of Table IA.VI.

Identifying New Construction Sales

In several parts of our analysis we omit new construction sales from the calculation of total
transaction volume. To identify sales of newly constructed homes, we start with the internal
CoreLogic new construction flag and make several modifications to pick up transactions that
may not be captured by this flag. CoreLogic identifies new construction sales primarily using
the name of the seller on the transaction (e.g. “PULTE HOMES” or “ROCKPORT DEV
CORP”), but it is unclear whether their list of home builders is updated dynamically or
maintained consistently across local markets. To ensure consistency, we begin by pulling
the complete list of all seller names that are ever identified with a new construction sale
as defined by CoreLogic. Starting with this list of sellers, we tag any transaction for which
the seller is in this list, the buyer is a human being, and the transaction is not coded as a
foreclosure sale by CoreLogic as a new construction sale. We use the parsing of the buyer
name field to distinguish between human and non-human buyers (e.g. LLCs or financial
institutions). Human buyers have a fully parsed name that is separated into individual first
and name fields whereas non-human buyer’s names are contained entirely within the first
name field.

This approach will identify all new construction sales provided that the seller name is
recognized by CoreLogic as the name of a homebuilder. However, many new construction
sales may be hard to identify simply using the name of the seller. We therefore augment this
definition using information on the date of the transaction and the year that the property
was built. In particular, if a property was not already assigned a new construction sale using
the builder name, then we search for sales of that property that occur within one year of
the year that the property was built and record the earliest of such transactions as a new
construction sale.

Finally, for properties that are not assigned a new construction sale using either of the
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two above methods, we also look to see if there were any construction loans recorded against
the property in the deeds records. If so, we assign the earliest transaction to have occurred
within three years of the earliest construction loan as a new construction sale. We use a
three-year window to allow for a time lag between the origination of the construction loan
and the actual date that the property was sold. Construction loans are identified using
CoreLogic’s internal deed and mortgage type codes.

II Mechanical Short-Term Volume

Table IA.V reports the buy-year fixed effects estimates for years 2000 to 2005 relative to
2000. The fixed effects are linear differences of a monthly selling hazard, so multiplying by
12 roughly gives the effect on the annualized selling probability. Therefore, buyers in 2005
have a 3.2 percentage point larger annual selling hazard than buyers in 2000 (12 times 0.0027
equals 0.0324).

We use these estimates to construct counterfactual growth of short-term volume from
2000 to 2005. For each 2000m1 ≤ t′ < t ≤ 2005m12, we construct the counterfactual selling
hazard as

πct′,t = πt′,t −
(
α̂buyy(t′) − α̂

buy
2000

)
,

which subtracts away any increase due to the change in the composition of buyers from 2000
to the year of t′. We then compute the counterfactual of vt′,t, the volume of homes bought
in t′ and sold in t, using the following iterative procedure. Let et′,t count homes bought in t′

that have not yet sold by t, and let c superscripts mark counterfactual values. We initialize
counterfactuals with actuals: for each 1995m1 ≤ t′ < 2005m12,

ect′,t′ = et′,t′

vct′,t′ = vt′,t′ .

We then iteratively update the counterfactuals over t running from t′ + 1 to 2005m12:

ect′,t = ect′,t−1 − vct′,t−1
vct′,t = πct′,te

c
t′,t.

To compute short-term volume in year y, we sum vt′,t across all subscripts for which y(t) = y
and 0 < t−t′ < 36; we sum vct′,t across the same indices for counterfactual short-term volume.

The remaining columns of Table IA.V report the results. Between 2000 and 2005, total
volume grows 36.7% and short-term volume grows 77.5% in the actual data. The dispro-
portionate rise in short-term volume is the difference, 40.8%. Counterfactual short-term
volume rises 41.5% between 2000 and 2005, giving a disproportionate rise of 4.8%. There-
fore, 4.8%/40.8% = 11.8% of the disproportionate rise in short-term volume remains in the
counterfactual. We attribute the 88.2% that disappeared to the changing composition of
buyers between 2000 and 2005.
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III Value Function Monotonicity

This section establishes that the functions vm(·) and vsλ(·), which we define in the proofs of
Lemmas 2 and 3, weakly and continuously increase. We follow Stokey, Lucas and Prescott
(1989). To apply their results, we need to work with a one-point (Alexandroff) compactifi-
cation of a subset of the real numbers. For a topological set X, the Alexandroff compactifi-
cation is the set X∗ = X ∪ {∞}, whose open sets are those of X together with sets whose
complements are closed, compact subsets of X; X∗ is compact (Kelley, 1955).

Lemma 4. Let f : (0,∞)×R→ R be continuous. Suppose there exists functions g0 : R→ R
and g∞ : R → R such that limx→0 f(x, y) = g0(y) and limx→∞ g∞(y) uniformly. Define
f̃ : [0,∞)∗ ×R→ R by f̃(x, y) = f(x, y) for x ∈ (0,∞) and f̃(x, y) = gx(y) for x ∈ {0,∞}.
Then f̃ is continuous.

Proof. Let Z ⊂ R be open. We show that f̃−1(Z) is open by demonstrating that for each
(x, y) ⊂ f̃−1(Z), there exists an open set U such that (x, y) ∈ U ⊂ f̃−1(Z). If x ∈ (0,∞),
then set U = f−1(Z), which is open by the continuity of f . Consider the case x = 0.
Because Z is open, there exists ε > 0 such that all z with |z − g0(y)| < ε are in Z. By
uniform convergence, there exists δ > 0 such that |f(x′, y′)− g0(y)| < ε for all x ∈ [0, δ) and
y ∈ R. Therefore, U = [0, δ) × R suffices. Consider the case x = ∞. There likewise exists
ε > 0 such that all z with |z − g∞(y)| < ε are in Z. By uniform convergence, there exists
N > 0 such that |f(x′, y′)− g∞(y)| < ε for all x > N and y ∈ R. Therefore, U = (N,∞)×R
suffices.

We next establish the existence of a continuous solution vm(·) to (12). Let C be the space
of bounded continuous functions from R to itself. Let a > 0 be a constant. For v ∈ C, we
define the operator T by (Tv)(ĝ) = supp f(p, ĝ), where

f(p, ĝ) =

∫ ∞
−∞

(
π̃(p, ζ)p

a+ e
ρĝ
1−ρ

+
(1− π̃(p, ζ))e(1−ρ)µ+ρĝ+(1+ρ−αρ)ζ

1 + rm
×(

a+ eρµ+
ρ2ĝ
1−ρ+

ρ2(1−α)ζ
1−ρ

)
v((1− ρ)µ+ ρĝ + ρ(1− α)ζ)

a+ e
ρĝ
1−ρ

φ(ζ)dζ,

where φ(·) is the probability density function of N (0, σ̃2). If v is a fixed point of T , then

vm(ĝ) = (a+ e
ρĝ
1−ρ )v(ĝ) solves (12). We find a fixed point by demonstrating that T : C → C

and then showing that for a sufficiently small value of a, T satisfies the Blackwell conditions
and is hence a contraction mapping.

We first show that Tv ∈ C. We have the bound

||Tv|| ≤ sup
p

∫ ∞
−∞

a−1π̃(p, ζ)pφ(ζ)dζ+

(1 + rm)−1e(1−ρ)µ||v|| sup
x

aeρx+
(1+ρ−αρ)2σ̃2

2 + e
ρµ+ ρx

1−ρ+
(1−αρ)2σ̃2

2(1−ρ)2

a+ e
ρx
1−ρ

,
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so Tv is bounded.
Demonstrating continuity is much more complicated. We first apply Lemma 12.14 of

Stokey, Lucas and Prescott (1989) to establish the continuity of f(·, ·).
In their terminology, X = (0,∞), Z = R2, their y corresponds to our p, their z corre-

sponds to our (ĝ, ζ), and the transition function Q puts mass φ(ζ ′) on (ĝ, ζ ′) and mass 0
on other elements of Z. To apply their lemma, we must show that Q has the Feller prop-
erty, which means (see their page 375) that

∫
h(z′)Q(z, z′)dz′ is continuous in z as long

as h is continuous and bounded.32 Given our specification of Q, this integral reduces to∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′, which is trivially continuous in ζ. To demonstrate continuity in ĝ, we

closely follow the proof of their Lemma 9.5. Choose a sequence ĝn converging to ĝ. Then
|
∫∞
−∞ h(ĝn, ζ

′)φ(ζ ′)dζ ′ −
∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′| ≤

∫∞
−∞ |h(ĝn, ζ

′)− h(ĝ, ζ ′)|φ(ζ ′)dζ ′. Each func-
tion ζ ′ 7→ |h(ĝn, ζ

′)− h(ĝ, ζ ′)| converges pointwise to the zero function (by the continuity of
h), so by the Lebesgue Dominated Convergence Theorem (their Theorem 7.10), this integral
limits to zero. Therefore, ĝ 7→

∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′ is continuous in ĝ, and Q has the Feller

property. As a result, f(·, ·) is continuous on (0,∞)× R.
The next step is to invoke our Lemma 4. To do so, we must show uniform converge

of f(p, ĝ) for p → 0 and p → ∞. In the first limit, f(p, ĝ) → 0, and this convergence is
uniform because terms with ĝ multiplying the terms with p are uniformly bounded in ĝ. In
the second limit, the convergence is to the integral in which π̃ = 0, and the convergence is
uniform for the same reason. Hence, Lemma 4 applies, and the induced f̃ is continuous.

The final step is to show that (Tv)(ĝ) is continuous. This statement follows immediately
from Berge’s Maximum Theorem on general topological spaces (see, for instance, page 570
of Aliprantis and Border (2006)) because supp∈(0,∞) f(p, ĝ) = supp∈[0,∞)∗ f̃(p, ĝ) and because
[0,∞)∗ is compact. Therefore, Tv ∈ C.

We next verify the Blackwell conditions for T (Theorem 3.3 in Stokey, Lucas and Prescott
(1989)). Monotonicity is trivial. Given the bound above, discounting holds as long as

(1 + rm)−1e(1−ρ)µ sup
x

aeρx+
(1+ρ−αρ)2σ̃2

2 + e
ρµ+ ρx

1−ρ+
(1−αρ)2σ̃2

2(1−ρ)2

a+ e
ρx
1−ρ

< 1.

We are free to choose any positive value of a. By considering the limit as a → 0, we find
that we can choose such an a to satisfy this inequality as long as

(1 + rm)−1e
µ+

(1−αρ)2σ̃2

2(1−ρ)2 < 1.

Because 0 ≤ α ≤ 1, it is sufficient for eµ+σ̃
2/2 < 1 + rm. If we can show that σ̃ ≤ σ, then we

are done because we assumed in Section 7 that eµ+σ
2/2 < 1 + r ≤ 1 + rm. From the proof of

32Their lemma also requires that the term inside the integral defining f(·, ·), other than φ(ζ)dζ, is bounded
in p, ĝ, and ζ. This boundedness holds because v is bounded, because limp→∞ p̃(ζ, p)p = 0, and because
limζ→∞(1− π̃(p, ζ))ecζ = 0 for any c > 0.
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Lemma 1, we have

σ̃2 =
σ2
g

2
+

(1 + ρ2)σ2
d

2
+

√
((1− ρ2)σ2

d + σ2
g)

2 + 4ρ2σ2
dσ

2
g

2

= σ2

(
1 + ρ2(1− 2γ)

2
+

√
(1− ρ2)2 + 4(1− γ)γρ2(1− ρ2)

2

)
.

We want to show that the term inside the large parentheses is no greater than 1. By isolating
the square root and then squaring, we reduce this inequality to

(1− ρ2)2 + 4(1− γ)γρ2(1− ρ2) ≤ (1− ρ2(1− 2γ))2,

which simplifies to 0 ≤ γ(2−ρ2), which is true because 0 ≤ γ, ρ ≤ 1. Therefore, by Theorem
3.3 of Stokey, Lucas and Prescott (1989), T is a contraction mapping. By the Contraction
Mapping Theorem (their Theorems 3.1 and 3.2), T has a unique fixed point in C, as desired.

Call this function v∗. As mentioned above, vm(ĝ) = v∗(ĝ)(a + e
ρĝ
1−ρ ) then solves (12); this

function clearly inherits the continuity of v∗.
Finally, we show that vm is weakly increasing. Let C ′ ⊂ C be the set of v such that

v(ĝ)(a+e
ρĝ
1−ρ ) weakly increases. We claim that C ′ is closed. Let {vn} be in C ′ converging in C

to v. For any ĝ0 < ĝ1, vn(ĝ1)(a+e
ρĝ1
1−ρ )−vn(ĝ0)(a+e

ρĝ0
1−ρ ) ≥ 0. Because vn converges pointwise

to v, we must have v(ĝ1)(a + e
ρĝ1
1−ρ )− v(ĝ0)(a + e

ρĝ0
1−ρ ) ≥ 0 as well. Therefore, Corollary 1 to

Theorem 3.2 of Stokey, Lucas and Prescott (1989) shows that vm ∈ C ′ as long as T : C ′ → C ′,
which is immediate from (12).

The task remaining for this appendix is to show that each vs(·) weakly and continuously
increases. The argument proceeds as with vm(·), but we use (13), and we can skip the steps
involving a supremum. Define the map T on C by

(Tv)(ĝ) =(1 + r)−1
∫ ∞
−∞

(
ae(1−ρ)µ+ρĝ+(1+ρ−αρ)ζ

a+ e
ρĝ
1−ρ

+

eµ+
ρĝ
1−ρ+

(1−αρ)ζ
1−ρ

a+ e
ρĝ
1−ρ

)
((1− λ)v(g′) + λv∗(g′))φ(ζ)dζ,

where g′ = (1 − ρ)µ + ρĝ + ρ(1 − α)ζ, and a > 0 is a constant to be specified later. If v

is a fixed point of T , then vsλ(ĝ) = (a + e
ρĝ
1−ρ )v(ĝ) solves (13). Clearly, Tv is bounded. To

prove continuity, we again apply Lemma 12.14 of Stokey, Lucas and Prescott (1989), this
time with X = Z = R, our ĝ corresponding to their y, and our ζ corresponding to their z.
In order to apply their lemma, we have to absorb the ζ terms into the Q transition function
so that their f is bounded. Using the identity e−z

2/(2σ2)+bz = eσ
2b2/2e−(z−σ

2b)2/(2σ2), we have

e(1+ρ−αρ)ζφ(ζ) = eσ̃
2(1+ρ−αρ)2/2φ(ζ − σ̃2(1 + ρ− αρ))
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and

e
(1−αρ)ζ

1−ρ φ(ζ) = e
σ̃2(1−αρ)2

2(1−ρ)2 φ

(
ζ − σ̃2(1− αρ)

1− ρ

)
.

These functions serve as constants times a valid transition function (we showed above that
the normal distribution with 0 mean and variance σ̃2 has the Feller property), and the
remainder of the integrand is bounded in both ĝ and ζ. Thus, Lemma 12.14 applies and Tv
is continuous. As a result, T : C → C.

Next we verify the aforementioned Blackwell conditions for T . Monotonicity again is
trivial. Discounting holds if

1− λ
1 + r

sup
ĝ

ae(1−ρ)µ+ρĝ+
(1+ρ−αρ)2σ̃2

2 + e
µ+ ρĝ

1−ρ+
(1−αρ)2σ̃2

2(1−ρ)2

a+ e
ρĝ
1−ρ

< 1.

Because we are free to pick any a > 0, the inequality holds for some such a if

(1− λ)e
µ+

(1−αρ)2σ̃2

2(1−ρ)2 < 1 + r,

which always holds, because α ∈ (0, 1), σ̃ ≤ σ (see above), eµ+σ
2/2 < 1 + r by assumption,

and λ ∈ (0, 1). Therefore, T satisfies the Blackwell conditions and is a contraction mapping.

As a result, it has a unique fixed point in C. Call it v∗∗. Then vsλ(ĝ) = (a+e
ρĝ
1−ρ )v∗∗(ĝ) solves

(13).
Finally, we show that vsλ weakly and continuously increases. Continuity follows from the

continuity of v∗∗. As argued above, weak monotonicity holds as long as T : C ′ → C ′, where
this set is defined as above. That T maps C ′ into itself is immediate from (13) and the fact
that vm weakly increases. QED

IV Model Variants

Rational

In the fully rational variant of our model, movers know the true cutoff functions κλn(ĝt)
that potential buyers use. These functions affect the mover value function, which in turn
determines the κλn(·), so we iterate until finding a fixed point to solve the model, using the
same parameters as the baseline.

We now spell out this procedure in more detail. Movers recognize that the true demand
curve is

π(P, dt, ĝt) = 1−
∑
n,λ

βλnΦ
(
logP + log κλn(ĝt)− dt − µn

)
.

Their value function is then

V m(d̂t, ĝt) = sup
P
E
(
π(P, dt, ĝt)P + (1 + rm)−1(1− π(P, dt, ĝt))V

m(d̂t+1, ĝt+1)
)
,

where the expectation is over dt ∼ N (d̂t, σ̃
2). By an argument analogous to the proof of
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Lemma 2, the solution takes the form ed̂tvm(ĝt) with argmax ed̂tp(ĝt), although vm(·) and
p(·) may differ from the corresponding functions in the baseline model. Because the mover
value function takes this form, an argument analogous to the proof of Lemma 3 confirms
the existence of functions κλn(·) such that potential buyers buy when edi ≥ κλn(ĝt)Pi,t. These
functions depend on vm(·), which depends on the κλn(·) functions. We iteratively solve for
these functions using the same discretization as in the baseline model and then compute
impulse responses using the same sequences of shocks.

The results appear in Figure IA.II. For ease of comparison with Figure 9, we use the
same axis ranges for corresponding panels. Prices no longer overshoot, inventories never rise
above their pre-shock value, and the volume boom lasts only four quarters and is only about
one quarter of its size in the baseline model. Interestingly, non-occupant volume continues
to rise much more than occupant volume. As Section 7 discusses, non-occupant demand is
more elastic to the level of the demand shifter, dt, because µ0 < 0 and due to a property of
the normal distribution. Therefore, even when potential buyers have rational expectations,
non-occupants react more strongly to the demand shock underlying the impulse response.

Walrasian

In the Walrasian version of our model, a mechanism selects a price each period so that the
number of potential buyers willing to buy at that price equals the number of movers willing to
sell. The main model assumes that each mover matches to a potential buyer with probability
one, which implicitly assumes that the potential buyer population moves in proportion to the
mover population. To maintain comparability with the main model, we make an analogous
assumption in the Walrasian variant that the number of potential buyers at time t is NIt,
where N > 1 is a constant.

Here, we describe equilibrium in which all movers sell. In this case, the cap rate error
implies the equation

It = NIt (1− F (log κ+ logPt − dt)) .

Solving for Pt yields what agents believe is the equilibrium pricing function:

P̃ (dt) = κ−1eF
−1(1−N−1)edt = p̃edt .

In equilibrium, movers must weakly prefer selling at this price versus waiting to sell next
period. Therefore, we must have edt ≥ (1 + rm)−1Ete

dt+1 , where Et denotes the mover
expectation that we now specify. By observing the current and past prices, movers believe
that they observe the history of demand as d̃t−j = log(p̃−1Pt−j) for j ≥ 0. By a Kalman
filtering argument similar to the proof of Lemma 1, the mover posterior on gt at t has mean

ĝmt = µ+ (1− α)
∞∑
j=0

(αρ)j
(

∆d̃t−j − µ
)

= µ+ (1− α)
∞∑
j=0

(αρ)j (∆ logPt−j − µ)

and variance σ2
l . We have dt+1 = dt + gt+1 + εdt+1 = dt + (1 − ρ)µ + ρgt + εgt+1 + εdt+1 =

dt + (1− ρ)µ+ ρĝmt + ρζgt + εgt+1 + εdt+1. Therefore,

Ete
dt+1 = edte(1−ρ)µ+ρĝ

m
t e(ρ

2σ2
l +σ

2)/2.
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Mover optimality therefore requires that

ĝmt ≤ ρ−1
(
log(1 + rm)− (1− ρ)µ− (ρ2σ2

l + σ2)/2
)
.

This inequality cannot hold at all times because ĝmt is unbounded. Therefore, when the
expected growth rate is sufficiently high, some movers will refrain from selling their homes
at the Walrasian equilibrium price. However, we check that the inequality holds for all ĝmt
in the discrete mesh and also for all realized values in the simulations. For our parameters,
the right side equals 0.15, which is much larger than the maximal realized value of 0.03.
Therefore, in our simulations, we assume the approximation that the equilibrium always
features full sale by all movers at all times.

We now solve for the optimal potential buyer decision, which determines the true pricing
function. For j ≥ 1, potential buyers set ∆d̃t−j = ∆ logPt−j. They face the same filtering
problem on gt as potential buyers in the main model, so their posterior mean ĝt follows
the formula in Lemma 1. Because they sell immediately in the approximate equilibrium we
consider, the mover value is just the price, V m

t = p̃ed̃t . (In fact, even in the exact equilibrium,
the mover value coincides with the price because movers are indifferent between selling and
not.) The remainder of the derivation follows the proof of Lemma 3 closely, so we omit it.
That is, there exist functions κλ(ĝt) such that a potential buyer purchases a house if and
only if edi ≥ κλi(ĝt)Pt. The functions no longer depend on n because the private flow utility
di is uninformative about dt, as potential buyers believe that they observe dt perfectly via
d̃t = log(p̃−1Pt). The actual equilibrium price must satisfy

It = NIt

(
1−

∑
λ

βλF (log κ(ĝt) + logPt − dt)

)
,

for which it is clear that a unique solution always exists of the form Pt = p(ĝt)e
dt . We

discretize the ĝt space and solve for the pricing function p(·) and the κλ(·) functions at these
values, interpolating/extrapolating in between and beyond the mesh.

We then simulate the model as in the main text. The price paths seem to be explosive
under the baseline parameters. We believe that prices explode because they adjust more
quickly with Walrasian market clearing. In any event, to maintain comparability with the
main model, we decrease γ to 0.042 so that the price overshoot is the same in the Walrasian
model as in the main model, and we update κ so that the demand error is still zero on
average. Other parameters remain the same.

Results appear in Figure IA.III. Prices and volume both go through a boom and bust
cycle in the Walrasian model, as in the main model. However, volume now peaks after prices
so there is no longer a quiet. The price boom is faster, with prices reaching their peak 9
quarters after the shock instead of 15. Under Walrasian market clearing, prices react more
quickly to new information, explaining the absence of the quiet and the shorter duration of
the price boom. Short-term and non-occupant volume continue to rise disproportionately in
the Walrasian model, so these aspects of the baseline model do not depend on our departure
from Walrasian market clearing.
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V Additional Exhibits
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FIGURE IA.I
Non-Primary Homebuying and House Price Appreciation

Panel A. View of Housing as Investment Panel B. View of Housing as Investment
vs. P(Buying Non-Primary Home) vs. Recent House Price Appreciation
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Notes: This figure uses data from the Federal Reserve Survey of Consumer Expectations and Armona, Fuster
and Zafar (2016) to study the relation between recent house price growth and the probability of buying a
non-primary home. In this data, local house price appreciation is computed at the ZIP-level from Zillow.
High versus low liquid savings refer to those below the 25th and above the 75th percentiles, respectively,
where the 25th percentile is $1,500 and the 75th percentile is $175,000.

80



FIGURE IA.II
Impulse Responses, Rational Model

Panel A. Prices and Volume Panel B. Inventory of Listings
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. A short holding period is defined as less than or equal to 12 quarters and a long holding period
is defined as greater than 12 quarters.
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FIGURE IA.III
Impulse Responses, Walrasian Model

Panel A. Prices and Volume Panel B. Inventory of Listings
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. A short holding period is defined as less than or equal to 12 quarters and a long holding period
is defined as greater than 12 quarters.
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TABLE IA.I
All-Cash Buyer Shares and Mean LTV by Buyer Type

Transaction-Level MSA-Level

All Months All Months Boom Quiet Bust

All-Cash Buyer Share

Short Buyers 0.29 0.38 0.29 0.28 0.52
(0.21) (0.16) (0.17) (0.20)

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50
(0.18) (0.15) (0.14) (0.18)

All Buyers 0.20 0.25 0.22 0.20 0.30
(0.16) (0.15) (0.14) (0.16)

Mean LTV

Short Buyers 0.59 0.52 0.60 0.59 0.41
(0.40) (0.18) (0.13) (0.13) (0.17)

Non-Occupant Buyers 0.50 0.48 0.52 0.54 0.41
(0.41) (0.14) (0.12) (0.11) (0.15)

All Buyers 0.65 0.62 0.64 0.64 0.59
(0.36) (0.13) (0.12) (0.11) (0.14)

Mean LTV | LTV > 0

Short Buyers 0.84 0.85 0.84 0.82 0.85
(0.16) (0.06) (0.05) (0.04) (0.07)

Non-Occupant Buyers 0.81 0.82 0.82 0.80 0.82
(0.17) (0.06) (0.06) (0.05) (0.06)

All Buyers 0.82 0.83 0.82 0.80 0.85
(0.16) (0.05) (0.04) (0.04) (0.05)

Notes: This table presents statistics on LTV ratios and the share of buyers of various types who purchased
their homes without the use of a mortgage. In column 1, statistics are measured at the transaction level
and includes all transactions recorded between January 2000 and December 2011 from the CoreLogic deeds
records described in Section 2.1. The first row of each panel includes only transactions by homebuyers
who are observed to have sold the home within three years of purchase. The second row of each panel
includes only non-occupant buyers. The third row of each panel includes all buyers. In columns 2–5, means
are first calculated at the MSA-by-month level and then averaged across MSA-months within a given time
period. The standard deviation of these MSA-month means is reported in parentheses. Column 2 includes
all MSA-months between January 2000 and December 2011. Column 3 includes only MSA-months between
January 2000 and August 2005. Column 4 includes only MSA-months between August 2005 and December
2006. Column 5 includes only MSA-months between December 2006 and December 2011. All statistics are
calculated in the full sample of 115 MSAs with the exception of those for non-occupants, which are calculated
in the sample of 102 MSAs with valid non-occupancy data.
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TABLE IA.II
Speculators and Housing Market Outcomes (Summary Statistics)

Panel A. Short-Volume Sample

Variable Mean Standard Deviation Observations

Short-Volume Boom 15.97 12.93 115
Price Boom 97.06 47.88 115
Price Bust -27.9 13.64 115
∆ Volume Quiet + Bust -62.96 18.87 115
Foreclosures Bust 82.84 55.96 115

Panel B. Non-Occupant Volume Sample

Variable Mean Standard Deviation Observations

Non-Occupant Volume Boom 29.29 27.05 102
Short-Volume Boom 16.88 13.36 102
Price Boom 100.57 49.27 102
Price Bust -28.99 13.97 102
∆ Volume Quiet + Bust -63.32 19.47 102
Foreclosures Bust 86.57 58.08 102

Panel C. Short-Volume Sample with Listings

Variable Mean Standard Deviation Observations

Short-Volume Boom 14.64 12.33 57
∆ Listings Boom 91.67 94.93 57
∆ Listings Quiet 178.39 143.86 57

Panel D. Non-Occupant Volume Sample with Listings

Variable Mean Standard Deviation Observations

Non-Occupant Volume Boom 27.81 27.32 48
Short-Volume Boom 15.84 12.88 48
∆ Listings Boom 82.11 93.67 48
∆ Listings Quiet 171.74 151.29 48

Notes: This table reports summary statistics for MSA-level variables in different samples of MSAs in Table
2. ∆ Volume Quiet + Bust is defined as the change in total volume from 2005 through 2011. ∆ Listings
Boom is defined as the change in total listings from 2003 through 2005. ∆ Listings Quiet is defined as the
change in total listings from 2005 through 2007. Foreclosures Bust is defined as total foreclosures from 2007
through 2011. Price Boom is defined as the change in prices from 2000 through 2006. Price Bust is defined
as the change in prices from 2006 through 2011. To aid interpretation of these relations, we scale the change
in outcomes for all quantity measures relative to total volume in 2003 and multiply by 100. Total volume
in 2003 has mean 28,061 and standard deviation 43,708 in the Short Volume Sample and mean 25,167 and
standard deviation 35,967 in the Short Volume Sample with Listings.
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TABLE IA.III
Speculators and Housing Market Outcomes (Additional Listing Outcomes)

Panel A. Propensity to List

∆ New Listings Boom ∆ New Listings Quiet

Short-Volume Boom 0.270 0.540 0.649*** 0.452
(0.182) (0.349) (0.160) (0.305)

Non-Occupant Volume Boom 0.115 -0.097 0.308*** 0.130
(0.092) (0.165) (0.080) (0.144)

Number of Observations 57 48 48 57 48 48
R-squared 0.038 0.033 0.082 0.229 0.243 0.278

Panel B. Sale Probability

∆ P(Sale) Boom ∆ P(Sale) Quiet

Short-Volume Boom 0.142*** 0.100 -0.163*** -0.273***
(0.032) (0.064) (0.031) (0.059)

Non-Occupant Volume Boom 0.058*** 0.019 -0.047** 0.061**
(0.017) (0.030) (0.018) (0.028)

Number of Observations 57 48 48 57 48 48
R-squared 0.268 0.206 0.247 0.332 0.122 0.404

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures at
the MSA level. Short-Volume Boom has a mean of 16.0% and a standard deviation of 12.9%. Non-Occupant
Volume Boom has a mean of 29.3% and a standard deviation of 27.1%. ∆ New Listings Boom is defined as
the change in the flow of listings from 2003 through 2005. ∆ New Listings Quiet is defined as the change
in the flow of listings from 2005 through 2007. These outcomes correspond to listing propensities among
existing homeowners. ∆ P(Sale) Boom is defined as the change in the probability of sale among the observed
stock of listings from 2003 through 2005. ∆ P(Sale) Quiet is defined as the change in the probability of sale
among the observed stock of listings from 2005 through 2007. To aid interpretation of these relations, we
scale the change in outcomes for all quantity measures relative to total volume in 2003. We do not scale the
sale probability. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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TABLE IA.IV
First-Stage Regressions of Demographics on Short Volume Boom

Old Share 1.69 0.31
(0.26) (0.11)

Young Share 0.66 0.51
(0.32) (0.15)

MSA-level X
ZIP-level (MSA Effects) X

Number of Observations 102 6826
R-squared 0.45 0.32

Notes: This table presents first-stage regressions corresponding to the IV specification in Table 4. Demo-
graphic data come from the 2000 Census 5% microdata. The Young Share is the share of recent buyers under
35. The Old Share is the share of recent buyers aged 65 or older. The ZIP-level regression is estimated with
MSA fixed effects and with standard errors clustered at the MSA level. The F-statistics in the MSA-level
and ZIP-level (Kleibergen-Paap Wald F-statistic reflecting MSA-level clustering) regressions are 40 and 8,
respectively.
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TABLE IA.V
Mechanical Short-Term Volume Estimates

Year α̂buyy − α̂
buy
2000 Total Volume

Actual
Short-Term

Volume

Counterfactual
Short-Term

Volume

2000 0 2821596 512787 512787
2001 0.0003 2757954 499643 494741
2002 0.0008 2985550 556987 534342
2003 0.0014 3226968 614429 557701
2004 0.0023 3667997 772708 659111
2005 0.0027 3857236 909976 725847

2000–2005
growth

– 36.7% 77.5% 41.5%

Notes: Total Volume gives annual transaction counts in our analysis sample. Actual Short-Term Volume are
sales of properties for which the previous purchased occurred less than 36 months in the past. We estimate
αbuyy , a fixed effect for the propensity to sell a house having bought it in year y, using the regression equation

in Section 5.2. In the counterfactual, we assume that αbuyy remains constant at its level in y = 2000 for
y ∈ {2001, 2002, 2003, 2004, 2005}.
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TABLE IA.VI
List of Metropolitan Statistical Areas Included in the Analysis Sample

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Akron, OH 1.00 x x New York-Newark-Jersey City, NY-NJ-PA 0.97 x
Ann Arbor, MI 1.00 x x North Port-Sarasota-Bradenton, FL 1.00 x
Atlanta-Sandy Springs-Roswell, GA 0.80 Norwich-New London, CT 1.00 x
Atlantic City-Hammonton, NJ 1.00 x x Ocala, FL 1.00 x x
Bakersfield, CA 1.00 x x Ocean City, NJ 1.00 x x
Baltimore-Columbia-Towson, MD 1.00 x Olympia-Tumwater, WA 1.00 x x
Barnstable Town, MA 1.00 x Orlando-Kissimmee-Sanford, FL 1.00 x
Bellingham, WA 1.00 x x Oxnard-Thousand Oaks-Ventura, CA 1.00 x x
Bend-Redmond, OR 1.00 x Palm Bay-Melbourne-Titusville, FL 1.00 x
Boston-Cambridge-Newton, MA-NH 0.89 x Pensacola-Ferry Pass-Brent, FL 1.00 x
Boulder, CO 1.00 x x Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.00 x
Bremerton-Silverdale, WA 1.00 x x Phoenix-Mesa-Scottsdale, AZ 1.00 x x
Bridgeport-Stamford-Norwalk, CT 1.00 x Pittsfield, MA 1.00
Buffalo-Cheektowaga-Niagara Falls, NY 0.80 x x Portland-Vancouver-Hillsboro, OR-WA 0.97 x x
California-Lexington Park, MD 1.00 x Port St. Lucie, FL 1.00 x x
Canton-Massillon, OH 0.92 x x Prescott, AZ 1.00 x x
Cape Coral-Fort Myers, FL 1.00 x x Providence-Warwick, RI-MA 0.78 x
Champaign-Urbana, IL 0.82 x Punta Gorda, FL 1.00 x
Charleston-North Charleston, SC 0.79 x Raleigh, NC 0.78 x
Chicago-Naperville-Elgin, IL-IN-WI 0.90 Reading, PA 1.00 x
Chico, CA 1.00 x Redding, CA 1.00 x
Cincinnati, OH-KY-IN 0.78 x x Reno, NV 0.99 x x
Cleveland-Elyria, OH 1.00 x x Riverside-San Bernardino-Ontario, CA 1.00 x x
Colorado Springs, CO 0.95 x Rockford, IL 0.84 x
Crestview-Fort Walton Beach-Destin, FL 1.00 x Sacramento–Roseville–Arden-Arcade, CA 1.00 x x
Dallas-Fort Worth-Arlington, TX 0.85 x Salem, OR 0.79 x
Dayton, OH 0.86 x x Salinas, CA 1.00 x
Deltona-Daytona Beach-Ormond Beach, FL 1.00 x x San Diego-Carlsbad, CA 1.00 x x
Denver-Aurora-Lakewood, CO 0.95 x San Francisco-Oakland-Hayward, CA 1.00 x x
El Centro, CA 1.00 x San Jose-Sunnyvale-Santa Clara, CA 1.00 x
El Paso, TX 0.99 x x Santa Cruz-Watsonville, CA 1.00 x
Elmira, NY 1.00 x San Luis Obispo-Paso Robles-Arroyo Grande, CA 1.00 x x
Erie, PA 1.00 x Santa Maria-Santa Barbara, CA 1.00 x
Eugene, OR 1.00 x x Santa Rosa, CA 1.00 x
Flagstaff, AZ 1.00 x Seattle-Tacoma-Bellevue, WA 1.00 x x
Fort Collins, CO 1.00 x x Sebastian-Vero Beach, FL 1.00 x
Fresno, CA 1.00 x Sebring, FL 1.00 x
Gainesville, FL 0.91 x Sierra Vista-Douglas, AZ 1.00 x
Gainesville, GA 1.00 Spokane-Spokane Valley, WA 0.87 x
Hanford-Corcoran, CA 1.00 x Springfield, IL 0.93 x
Hartford-West Hartford-East Hartford, CT 1.00 x Springfield, MA 1.00 x
Homosassa Springs, FL 1.00 x x Springfield, OH 1.00 x
Ithaca, NY 1.00 x x Stockton-Lodi, CA 1.00 x x
Jacksonville, FL 0.98 x Tampa-St. Petersburg-Clearwater, FL 1.00 x
Kahului-Wailuku-Lahaina, HI 1.00 x x The Villages, FL 1.00 x
Kingston, NY 1.00 x x Toledo, OH 0.92 x x
Lake Havasu City-Kingman, AZ 1.00 x x Trenton, NJ 1.00 x
Lakeland-Winter Haven, FL 1.00 x Tucson, AZ 1.00 x x
Lancaster, PA 1.00 x x Urban Honolulu, HI 1.00 x x
Las Vegas-Henderson-Paradise, NV 1.00 x Vallejo-Fairfield, CA 1.00 x
Los Angeles-Long Beach-Anaheim, CA 1.00 x x Vineland-Bridgeton, NJ 1.00 x x
Madera, CA 1.00 x Visalia-Porterville, CA 1.00 x
Merced, CA 1.00 x x Washington-Arlington-Alexandria, DC-VA-MD-WV 0.95 x
Miami-Fort Lauderdale-West Palm Beach, FL 1.00 x Worcester, MA-CT 1.00 x
Modesto, CA 1.00 x x Youngstown-Warren-Boardman, OH-PA 0.80 x x
Napa, CA 1.00 x Yuba City, CA 1.00 x
Naples-Immokalee-Marco Island, FL 1.00 x x Yuma, AZ 1.00 x
New Haven-Milford, CT 1.00 x

Notes: This table lists the Metropolitan Statistical Areas that are included in the final analysis sample along
with the share of the total 2010 owner-occupied housing stock for each MSA that is represented by the subset
of counties for which CoreLogic has consistent data coverage back to 1995.
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TABLE IA.VII
Number of Transactions Dropped During Sample Selection

Original Number of Transactions 57,668,026

Dropped: Non-unique CoreLogic ID 50
Dropped: Non-positive price 3,309,100
Dropped: Nominal foreclosure transfer 531,786
Dropped: Duplicate transaction 609,756
Dropped: Subdivision sale 1,304,920
Dropped: Vacant lot 831,774

Final Number of Transactions 51,080,640

Notes: This table shows the number of transactions dropped at each stage of our sample-selection procedure.
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