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1 Introduction

Energy historians have emphasized the multiple dramatic transformations in energy use that
accompanied industrialization, as societies have shifted from reliance on biomass to coal and
then to oil and gas. According to Smil (2010, 2), the preindustrial era saw “only very
slow changes” in energy use, “but the last two centuries have seen a series of remarkable
energy transitions.” Rosenberg (1994, 169) notes that “the diversity of energy inputs and the
changing usage of those inputs over time is a central feature of the historical record.” And
in their seminal analysis, Marchetti and Nakicenovic (1979, 15) observe that the transitions
have been so regular that “it is as though the system had a schedule, a will, and a clock.” It is
important to understand the economic drivers of these transitions. First, energy use is closely
linked to the First Industrial Revolution (via coal), to the Second Industrial Revolution (via
electricity and oil), and to the distribution of output across countries. Yet growth theory
has largely abstracted from energy. Second, policymakers around the world are currently
attempting to induce a new transition to low-carbon resources in order to avoid dangerous
climate change. Understanding the drivers of past transitions should improve policies that
aim to stimulate and sustain a new transition.

Resource economists have long focused on how depletion or exhaustion can induce tran-
sitions between resources (e.g., Nordhaus, 1973; Chakravorty and Krulce, 1994; Chakravorty
et al., 1997). For example, the Herfindahl (1967) rule holds that resources should be ex-
ploited in order of increasing cost. In contrast, energy and economic historians have argued
that technological change, not depletion, has been critical to past transitions between differ-
ent types of resources (e.g., Marchetti, 1977; Marchetti and Nakicenovic, 1979; Rosenberg,
1983; Grübler, 2004; Fouquet, 2010; Wilson and Grubler, 2011).1 On this view, the British
transition from biomass to coal was driven by technologies such as the steam engine, not
by changes in the relative abundance of timber and coal. The later transition from coal to
oil was driven by the technology of the internal combustion engine, not by a lack of coal.

1I give five examples. Marchetti and Nakicenovic (1979, 7–8) argue, “The causal importance of resource
availability is weakened by the fact that oil successfully penetrated the energy market when coal still had
an enormous potential, just as coal had previously penetrated the market when wood still had an enormous
potential.” Fouquet (2010, 6591) observes, “In all cases, cheaper or better services were the key to the switch
[between sources of energy]. In a majority of cases, the driver was better or different services.” Rosenberg
(1994, 169) observes that “technological innovations are often not neutral with respect to their energy
requirements.” Flinn (1959) emphasizes that the surmounting of “technological barriers,” not the scarcity
of timber, drove the British to shift towards coal. Finally, Grübler (2004, 170) writes, “It is important to
recognize that these two major historical shifts [from biomass to coal, and then from coal to oil and natural
gas] were not driven by resource scarcity or by direct economic signals such as prices, even if these exerted
an influence at various times. Put simply, it was not the scarcity of coal that led to the introduction of
more expensive oil. Instead, these major historical shifts were, first of all, technology shifts, particularly at
the level of energy end use. Thus, the diffusion of steam engines, gasoline engines, and electric motors and
appliances can be considered the ultimate driver, triggering important innovation responses in the energy
sector and leading to profound structural change.”
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Resource economists’ emphasis on depletion may explain the development of a given type
of resource, but standard models cannot capture historians’ understanding of transitions
between types of resources.2

I develop a model of directed technical change in which innovation-led transitions occur
endogenously, even when resources are not depletable. A final good is produced from multiple
types of energy, which are gross substitutes. Each type of energy is produced by combining
an energy resource with specialized machines. For instance, coal is combined with steam
engines to produce mechanical motion or electricity. A fixed measure of scientists works to
improve these machines. Each scientist targets whichever type of machine provides a more
valuable patent. Scientists’ efforts change the quality of machines from period to period,
which in turn changes equilibrium use of each energy resource from period to period.

I show that the elasticity of substitution between resources and machines determines
whether a transition in energy supply can occur in the absence of policy and of depletion.
Imagine that there are two types of energy and that one type of energy initially attracts
the majority of scientists and uses more raw resources. I show that three forces determine
how each sector’s share of research and resource extraction changes in the following period.
First, as the dominant sector becomes more advanced, a market size effect increases that
sector’s share of research and of extraction. The improvement in the quality of the dominant
sector’s machines expands the market for its energy resource, and the resulting increase
in resource extraction raises the value of a patent by expanding the market for machines.
This positive feedback between extraction and research works to lock in whichever sector
is already dominant. Second, a patent quality effect drives scientists to the sector where
their patent will cover a higher quality machine. This effect draws additional scientists to
the sector that dominated research in the previous period, which again works to lock in
whichever sector is already dominant. Third, a supply expansion effect reduces the value
of a patent as the average quality of a sector’s machines increases. An improvement in the
quality of a sector’s machines shifts out the supply of machine services, which reduces the
price of machine services and thus reduces the value of a patent. This force pushes scientists
away from the sector that dominated research effort in the previous period. It is the only
force that works against lock-in and in favor of a transition away from the dominant sector.

The elasticity of substitution between resources and machines determines the relative
strengths of the patent quality and supply expansion effects.3 When that elasticity is strictly
greater than 1 (machines are “resource-saving”), demand for machine services is elastic and
the price of machine services does not fall by much as technology improves. The patent

2The overemphasis on depletion at the expense of innovation dates back to Jevons (1865), who underes-
timated the scope for innovation in his famous analysis of the advancing depletion of British coal reserves
(Madureira, 2012).

3Much literature has estimated the elasticity of substitution between energy and other inputs, but there
is not much literature on the elasticity of substitution between resources and other inputs in the production
of energy.
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quality effect dominates the supply expansion effect. Whichever sector dominates research
and extraction in some period then does so to an increasing degree in all later periods.4

However, when that elasticity is strictly less than 1 (machines are “resource-using”), demand
for machine services is inelastic and the price of machine services falls by a lot as technology
improves. The supply expansion effect dominates the patent quality effect. In that case,
as the dominant sector becomes more advanced, scientists can begin switching to the other
sector. Eventually, their research efforts raise the quality of technology in the dominated
sector, which begins increasing that sector’s share of extraction via market size effects. The
shift in scientists away from the dominant sector can thereby generate a transition in energy
supply.

To explore the implications for climate change policy, I extend the setting to allow re-
sources to generate carbon dioxide (CO2) emissions that eventually raise global temperature.
Such warming reduces the quantity of final good produced. I explore a case with three re-
sources, calibrated to data for coal, natural gas, and renewables (wind and solar) and to
economic growth. The elasticity of substitution between resources and machines is pinned
down by estimates of the marginal cost of reducing CO2 emissions. This calibrated elas-
ticity is less than 1, so that machines are resource-using. The laissez-faire economy evolves
towards a corner solution with all research and extraction activity focused on natural gas.
With enough time, the economy would leave this corner solution and begin using renewables,
but that time is too distant to limit warming over the next several centuries.

I find that innovation is critical to optimal policy. A policymaker who can use a subsidy
to redirect research towards the zero-emission renewable resource does so immediately and
completely when renewable energy is a decent enough substitute for other energy. These
scientists improve the quality of machines in the renewable sector to such a degree that
the policymaker can subsequently withdraw the subsidy without deterring scientists from
working on renewables. The economy then evolves towards using only renewables by the end
of the present century and thereby dramatically reduces total climate change.

In contrast, an emission tax is far less effective at limiting climate change. A policycmaker
who can use an emission tax but not a research subsidy designs a U-shaped emission tax:
a moderate early tax redirects scientists away from the coal resource, and a high tax in the
second century begins redirecting resource use towards the renewable sector. An extremely
large initial emission tax could fully redirect scientists towards the renewable sector, but such
a high tax creates too many other distortions to be optimal. As a result, the optimal emission
tax does not redirect enough scientists to generate the self-sustaining dynamics observed in
the case of the research subsidy and does not limit warming to any appreciable degree over

4The forces generating lock-in are similar to those explored in a related literature on path dependency in
technology adoption (e.g., David, 1985; Arthur, 1989; Cowan, 1990). That literature focuses on “dynamic
increasing returns” as the source of path dependency, where the likelihood of using a technology increases
in the number of times it was used in the past (perhaps through learning-by-doing or network effects). In
the present setting, market size and patent quality effects both act like dynamic increasing returns.
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the next two centuries. The welfare gains from the emission tax are tiny in comparison to
the gains from a research subsidy. A policymaker who can use both instruments chooses to
use the research subsidy in the near-term and delays the emission tax until the next century,
but welfare is not appreciably greater than when the policymaker does not have access to
the emission tax.

Finally, I also explore the implications of directed technical change for a different type
of policy instrument: a mandate to use a minimum share of renewables. Such mandates
are common. For instance, around 30 U.S. states mandate a minimum share of renewable
electricity. I show that accounting for innovation is critical to the evaluation of a mandate.
Even seemingly modest mandates can redirect research effort to renewables through market
size effects. As a result, mandates can kickstart a transition that makes themselves non-
binding over time.5 Such mandates appear far more costly if we ignore their implications for
innovation, as is common in cost-benefit analyses, and they can even be welfare-improving
if different types of energy are sufficiently substitutable for each other.

My theoretical setting generalizes Acemoglu et al. (2012). Their economy demonstrates
a high degree of lock-in or path dependency: whichever sector initially dominates resource
extraction and research effort will increase its dominance as time passes.6 This result is not
consistent with the history of energy transitions. I show that their high degree of lock-in
results from their use of a Cobb-Douglas aggregator to combine resources and machines,
which fixes the elasticity of substitution between resources and machines at unity. I show
that a unit elasticity is the knife-edge case in which the patent quality and supply expansion
effects exactly offset each other. The evolution of research and resource use in Acemoglu
et al. (2012) is therefore determined entirely by market size effects (demonstrated in Section 3
below), which generate positive feedbacks between research and extraction that lock in the
dominant sector. The assumption of Cobb-Douglas production has qualitatively important
implications for their economy’s dynamics.7

5Some have informally argued that these mandates might allow the energy sector to escape lock-in (e.g.,
Lehmann and Gawel, 2013). Formal analyses of this channel have focused on learning-by-doing as the
mechanism for technological change (Kalkuhl et al., 2012), which means that technology matures jointly
with energy production. In contrast, here renewable technology matures before renewables begin “escaping”
lock-in. Clancy and Moschini (2018) show that mandates can induce innovation but do not analyze dynam-
ics. Johnstone et al. (2010) report econometric evidence that mandates to produce renewable energy have
increased patenting activity.

6An exception is when they model resources as exhaustible or depletable. Thus, when transitions arise in
their setting, these transitions are driven by the same forces explored in the resource economics literature.

7Most analyses that combine directed technical change and energy have divided technologies between
those that augment resources and those that augment other factors such as labor (Smulders and de Nooij,
2003; Di Maria and Valente, 2008; Grimaud and Rouge, 2008; Pittel and Bretschger, 2010; André and
Smulders, 2012). These studies have focused on the potential for technical change to enable long-run growth
even when an exhaustible resource is essential to production. In contrast, the present paper and Acemoglu
et al. (2012) both allow research effort to be directed between multiple types of resources in order to study
questions about energy transitions. Acemoglu et al. (2016) develop a related setting in which two types
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Quantitatively, I undertake a more realistic calibration than do Acemoglu et al. (2012). In
particular, I calibrate a setting with multiple types of energy to match recent data on prices,
output, and research, and I estimate the optimal emission tax within a benchmark climate
system. My finding that a temporary research subsidy can be critical to limiting climate
change echoes one of their more novel results, despite my calibration generating an elasticity
of substitution between resources and machines that does not imply the extreme lock-in seen
in their setting. However, my results do not support their finding that a temporary emission
tax may be similarly effective. One could in principle mimic the effects of the temporary
research subsidy by adopting a sufficiently high emission tax in the first period, but the
policymaker chooses not to adopt such a high tax because it would distort resource supply
to a severe degree.8

Further, a major lesson of Acemoglu et al. (2012) was that the elasticity of substitution
between types of energy determines whether a temporary policy can effectively limit long-run
warming. I find that the same elasticity of substitution is critical to optimal policy, but the
reason is quite different. In Acemoglu et al. (2012), a catastrophe results unless the clean
resource crowds out the dirty resource completely, which happens without permanent policy
intervention only if the clean resource is sufficiently substitutable for the dirty resource. In
contrast, I work with a conventional climate model that has less extreme implications. The
elasticity of substitution between types of energy matters here because the policymaker finds
it easier to redirect research effort when that elasticity is larger. As a result, optimal policy
strongly redirects research only if that elasticity is sufficiently large. The importance of the
substitutability of different types of energy suggests that improved batteries could strongly
increase the attractiveness of kickstarting a transition to renewable energy.

Formally, I analyze directed technical change (Acemoglu, 2002) when final good produc-
tion has a nested constant elasticity of substitution structure that allows innovation and
other inputs to be complements. A prominent strand of literature argues that complemen-
tarities have been a critical—and often overlooked—element of economic growth (Rosenberg,
1976; Matsuyama, 1995, 1999; Evans et al., 1998). Milgrom et al. (1991) show how com-
plementarities between techniques and inputs can generate persistent patterns of technical
change without needing to assume increasing returns. In the present setting, increasing re-
turns to innovation can work to lock in the dominant technology, yet complementarities can
nonetheless produce changes in energy technologies and supply. This theory of innovation-led
transitions will apply to other settings with complementarities between machines and other

of energy technologies compete in each of many product lines. Each product line’s production function is
Cobb-Douglas. As a result, their setting again generates strong path dependency or lock-in. Hart (2015)
analyzes the implications of alternate assumptions about knowledge spillovers.

8Acemoglu et al. (2016) also quantitatively evaluate the dynamics of research subsidies and emission
taxes. In line with the present paper, they find that optimal policy uses a near-term research subsidy and
does not use a significant emission tax for many decades. Fried (2018) finds that endogenous innovation can
substantially increase the emission reductions from a given emission tax. I here consider the degree to which
a policymaker would choose to reduce emissions when aware of this dynamic.
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Figure 1: Overview of the theoretical setting, for N = 2.

factors of production. Such complementarities may be common. For instance, Grossman
et al. (2017) summarize evidence that capital and labor are complements.

The next section describes the theoretical setting. Section 3 analyzes the relative incen-
tive to research technologies in each sector. Section 4 describes the economy’s laissez-faire
dynamics. Section 5 numerically explores the implications for climate change policies that
aim to induce a transition to renewable energy. The final section concludes. The appendix
contains additional formal analysis, additional numerical results, and proofs.

2 Setting

I study a discrete-time economy in which final-good production uses multiple types of energy
intermediates. Each energy intermediate is generated by combining energy resources with
machines. Resources are supplied competitively. A fixed measure of households works as
scientists, trying to improve the quality of machines used in producing the energy interme-
diates. Scientists decide which type of machine to work on. The equilibrium allocation of
resources and scientists changes over time as technologies improve. Figure 1 illustrates the
model setup, which I now formalize.

Begin with final-good production. The time t final good Yt is produced competitively
from N energy intermediates Yjt, with j ∈ {1, 2, ..., N}. The final good is the numeraire
in each period. The representative firm’s production function takes the familiar constant
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elasticity of substitution (CES) form:

Yt = AY

( N∑
j=1

νjY
ε−1
ε

jt

) ε
ε−1

.

The parameters νj ∈ (0, 1) are the distribution (or share) parameters, with
∑N

j=1 νj = 1.
AY > 0 is a productivity parameter. I say that resource j is higher quality than resource
k if and only if νj > νk. The parameter ε is the elasticity of substitution. The energy
intermediates are gross substitutes (ε > 1), consistent with evidence in Papageorgiou et al.
(2017).

The energy intermediates Yjt are the energy services produced by combining resource
inputs Rjt with machine inputs Xjt. Production of energy intermediates has the following
CES form:

Yjt =

(
κR

σ−1
σ

jt + (1− κ)X
σ−1
σ

jt

) σ
σ−1

.

The parameter κ ∈ (0, 1) is the distribution (or share) parameter. The elasticity of substi-
tution between the resource and machine inputs is σ. I call machines resource-using when
resources and machines are gross complements (σ < 1), and I call machines resource-saving
when resources and machines are gross substitutes (σ > 1). Resources and machines are less
substitutable than are different types of energy intermediates (σ < ε).

Machine services Xjt are produced in a Dixit-Stiglitz environment of monopolistic com-
petition from machines of varying qualities:

Xjt =

∫ 1

0

A1−α
jit x

α
jit di,

where α ∈ (0, 1). The machines xjit that work with resource j at time t are divided into a
continuum of types, indexed by i. The quality (or efficiency) of machine xjit is then given
by Ajit. Machines of type i are produced by monopolists who each take the price (pjXt) of
machine services as given (each is small) but recognize their ability to influence the price
pjxit of machines of type i. The cost of producing a machine is a > 0 units of the final good,
normalized to a = α2.

Scientists choose which resource they want to study and are then randomly allocated to
a machine type i. Each scientist succeeds in innovating with probability η ∈ (0, 1]. If they
fail, scientists earn nothing and the quality of that type of machine is unchanged. Following
Acemoglu et al. (2012), successful scientists receive a one-period patent to produce their type
of machine, and using resource j as an example, they improve the quality of their machine
type to

Ajit = Aji(t−1) + γAji(t−1), (1)
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where γ > 0.9 Scientists are of fixed measure, normalized to 1:

1 =
N∑
j=1

sjt.

Firms that enter into production of resource j find a deposit containing one unit of
the resource. Firms must pay a fixed cost (in units of the final good) to develop the nth
deposit. In equilibrium, all deposits with fixed costs less than pjRt get developed. Order the
continuum of deposits by fixed cost. The fixed cost of the nth deposit is then Fj(n), which
we set to Fj(n) = (n/Ψj)

1/ψ for ψ,Ψj > 0. In equilibrium, Fj(Rjt) = pjRt. As a result,

Rjt = Ψjp
ψ
jRt. (2)

Resources are therefore supplied isoelastically. I say that resource j is more accessible than
resource k if and only if Ψj > Ψk. I impose ψ ≥ α/(1−α), which ensures that the own-price
elasticity of resource supply is greater than the elasticity of machine services with respect to
the resource price.

The economy’s time t resource constraint is

Yt ≥ ct + a
N∑
j=1

∫ 1

0

xjit di+
N∑
j=1

∫ Rjt

0

Fj(n) dn,

where ct ≥ 0 is the composite consumption good. Households have strictly increasing utility
for the consumption good. Scientists therefore each choose their resource type so as to
maximize expected earnings.

I study equilibrium outcomes.

Definition 1. An equilibrium is given by sequences of prices for energy intermediates
({p∗jt}Nj=1), prices for machine services ({p∗jXt}Nj=1), prices for machines ({p∗jxit}Nj=1), prices
for resources ({p∗jRt}Nj=1), demands for inputs ({Y ∗jt}Nj=1, {R∗jt}Nj=1, {X∗jt}Nj=1, {x∗jit}Nj=1), and
factor allocations ({s∗jt}Nj=1) such that, in each period t: (i) {Y ∗jt}Nj=1 maximizes profits of
final good producers, (ii) ({R∗jt}Nj=1, {X∗jt}Nj=1) maximizes profits of energy intermediate pro-
ducers, (iii) ({p∗jxit}Nj=1, {x∗jit}Nj=1) maximize profits of the producers of each machine i in
each sector j, (iv) resource producers enter until they earn zero profits, (v) {s∗jt}Nj=1 maxi-
mizes expected earnings of scientists, (vi) prices clear the factor and input markets, and (vii)
technologies evolve as in equation (1).

9I here follow the literature in using an increasing returns representation of innovation. I will show that an
innovation-led transition is possible even though increasing returns push scientists toward the more advanced
sector. See Hart (2015) for an analysis of decreasing returns to innovation in a setting closely related to
Acemoglu et al. (2012).
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The equilibrium prices clear all factor markets and all firms maximize profits. If scientists
are employed in any two sectors, they receive the same expected reward from both, and if
they are not employed in some sector, they receive a greater expected reward in some other
sector that has nonzero scientists. The first appendix establishes that the equilibrium is
stable in a tâtonnement sense when N = 2. Throughout, I drop the asterisks when clear.

3 The Equilibrium Direction of Research

The first-order condition for a producer of machine services yields the following demand
curve for machines of type i in sector j:

xjit =

(
pjXt
pjxit

α

) 1
1−α

Ajit. (3)

The monopolist producer of xjit therefore faces an isoelastic demand curve and accordingly
marks up its price by a constant fraction over marginal cost: pjxit = a/α = α. In equilibrium,
the producer of machine type i for use with resource j earns profits of:

πjxit = (pjxit − a)xjit = α(1− α)p
1

1−α
jXtAjit.

If a scientist succeeds in innovating at time t, she exercises her patent to obtain the monopoly
profit πjxit. Her expected reward to choosing to research machines that work with resource
type j is therefore

Πjt = η α (1− α)p
1

1−α
jXt (1 + γ)Aj(t−1), (4)

where Aj(t−1) is the average quality of machines in sector j. This average quality evolves as

Ajt =

∫ 1

0

[
ηsjt(1 + γ)Aji(t−1) + (1− ηsjt)Aji(t−1)

]
di = (1 + ηγsjt)Aj(t−1), (5)

where sjt is the measure of scientists working on resource j.
Now consider the relative incentive to research technologies that work with resource j

rather than technologies that work with resource k. From equation (4), we have

Πjt

Πkt

=
Aj(t−1) + γAj(t−1)

Ak(t−1) + γAk(t−1)

[
pjXt
pkXt

] 1
1−α

. (6)

The intermediate-good producer’s first-order conditions for profit-maximization yield

pjXt = (1− κ)pjt

[
Xjt

Yjt

]−1/σ

and pjRt =κ pjt

[
Rjt

Yjt

]−1/σ

.
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The relative incentive to research technologies for use in sector j increases in the relative price
of the intermediates and decreases in the machine-intensity of sector j’s output. Combining
the first-order conditions, we have

pjXt =
1− κ
κ

[
Rjt

Xjt

]1/σ

pjRt. (7)

From equation (3) and the monopolist’s markup, we have

xjit = p
1

1−α
jXtAjit.

Substituting into the definition of Xjt and using the definition of Ajt, we have

Xjt = p
α

1−α
jXt Ajt. (8)

Substitute into equation (7) and solve for equilibrium machine prices:

pjXt =

[
pjRt

1− κ
κ

] σ(1−α)
σ(1−α)+α

[
Rjt

Ajt

] 1−α
σ(1−α)+α

. (9)

Substituting into equation (6) and then using (2), we have:

Πjt

Πkt

=
(1 + γ)Aj(t−1)

(1 + γ)Ak(t−1)︸ ︷︷ ︸
patent quality effect

(
(1 + ηγsjt)Aj(t−1)

(1 + ηγskt)Ak(t−1)

) −1
σ+α(1−σ)

︸ ︷︷ ︸
supply expansion effect

(
Rjt

Rkt

) 1
σ+α(1−σ)

ψ+σ
ψ

︸ ︷︷ ︸
market size effect

(
Ψj

Ψk

) −σ/ψ
σ+α(1−σ)

. (10)

Four terms determine scientists’ relative incentive to research machines. The first term
is a patent quality effect that directs research effort to the sector in which scientists will
end up with the patent to better technology.10 The other channels derive from the relative
price of machine services: (pjXt/pkXt)

1/(1−α) in equation (6). The supply expansion effect
pushes scientists away from the more advanced sector. From equation (8), the supply of Xjt

shifts out when its machines’ average quality Ajt increases, and it shifts out to an especially
large degree when α is small. When σ is small (machines are resource-using), the demand
curve is steep because the marginal product of additional machines is constrained by the

10The patent quality effect depends on the realized technology, not solely on the increment to technology
produced by a scientist’s efforts, which introduces a type of business-stealing distortion. If γ differed by
sector and were very small in the more advanced sector, scientists could have a stronger incentive to research
machines in the more advanced sector even though their efforts would not improve these machines. This
business-stealing distortion vanishes under the assumption of identical γ: by attracting scientists to the more
advanced sector, the patent quality effect here also attracts them to the sector where they make the greatest
advance.
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supply of Rjt. By shifting out supply, the increase in Ajt induces a relatively large decline in
the equilibrium price pjXt. However, when σ is large, machines are resource-saving and the
demand curve is relatively flat. The increase in Ajt then induces a relatively small decline
in the equilibrium price pjXt. Improving technology therefore pushes scientists away to a
greater degree when the demand curve is steep (σ is small) or the shift in supply is large (α
is small) because it then reduces pjXt more strongly.

Pause to consider the net effect of a relative improvement in sector j’s average technology.
We have seen that this relative improvement attracts scientists through the patent quality
effect and repels scientists through the supply expansion effect. From equations (5) and (10),
the supply expansion effect dominates the patent quality effect if and only if σ < 1. As
σ → 0, demand for machines becomes perfectly inelastic and the supply expansion effect
becomes large. As σ → ∞, demand for machines becomes perfectly elastic and the supply
expansion effect vanishes. As σ → 1, the two effects exactly cancel, so that the incentives to
research machines in one sector or the other do not directly depend on the relative quality
of technology in each sector.

The remaining machine price channels in equation (10) connect research incentives to
resource supply. In particular, we see research directed towards the sector with greater
resource use. This is a market size effect. It arises for two reasons. First, from equation (7),
an increase in Rjt shifts out demand for Xjt, and does so to an especially large degree when
machines and resources are stronger complements (i.e., as σ becomes small). Second, also
from equation (7), an increase in pjRt (for given Rjt) also shifts out demand for Xjt as firms
substitute machines for resources. This channel is especially strong when the elasticity of
substitution between resources and machines is large, and it vanishes as that elasticity goes
to zero. Each of these outward shifts in demand for Xjt increases scientists’ incentives to
work on improving machines in sector j. Therefore, the market size effect draws scientists
towards whichever sector is increasing its share of resource supply over time.

Now consider how sector j’s share of extraction changes from time t to t + 1. Combin-
ing the intermediate-good producers’ first-order condition for resources with the final-good
producers’ first-order conditions, we find demand for each resource:

pjRt =κ νjA
ε−1
ε

Y

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

and pkRt = κ νkA
ε−1
ε

Y

[
Ykt
Yt

]−1/ε [
Rkt

Ykt

]−1/σ

. (11)

Market-clearing for each resource then implies[
Rjt

Ψj

]1/ψ

=κ νjA
ε−1
ε

Y

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

, (12)[
Rkt

Ψk

]1/ψ

=κ νkA
ε−1
ε

Y

[
Ykt
Yt

]−1/ε [
Rkt

Ykt

]−1/σ

. (13)

Demand for sector j’s resources (for example) shifts inward as the share of those resources
in the production of intermediate good j increases and also shifts inward as the share of
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intermediate good j in production of the final good increases. Rearranging equations (12)
and (13) and then dividing, we have:[

Rjt

Rkt

] 1
σ

+ 1
ψ

=
νj
νk

[
Ψj

Ψk

]1/ψ [
Yjt
Ykt

] 1
σ
− 1
ε

. (14)

The change in sector j’s share of resource extraction from time t to time t+ 1 therefore has
the same sign as the change in sector j’s share of intermediate good production. Observe
that increasing the average quality of technology Ajt increases production of the intermediate
good Yjt. Thus, sector j’s share of resource extraction tends to increase when the average
quality of its technology is advancing relative to sector k. The sector that is advancing more
rapidly tends to attract even more scientists in later periods through market size effects,
which works to lock in that sector’s technological advantage.

4 The Equilibrium Evolution of Resource Use and Tech-

nology

I now study the evolution of the economy in a special case with N = 2. Label the two
sectors as j and k. I first analyze when transitions can occur and then describe long-
run outcomes. I show that both the possibility of a transition and the nature of long-run
outcomes are sensitive to whether machines are resource-using or resource-saving. I then
study three special cases that highlight the relevant dynamics and illustrate the main ideas
with a numerical example.

The following assumption will be useful for studying transitions, because it establishes a
time t0 in which sector j dominates research activity with technology that is more advanced
than (or not too much less advanced than) sector k’s technology:

Assumption 1. Aj(t0−1)/Ak(t0−1) > [Ψj/Ψk]
θ and s∗jt0 > 0.5 for some time t0, where θ ,

1/[(1− α)(1 + ψ)] ∈ (0, 1].

The next lemma establishes one set of structural conditions under which Assumption 1 holds:

Lemma 1. If νj = νk and Ψj = Ψk, then Assumption 1 holds if (i) Aj(t0−1) > Ak(t0−1) and
(ii) either σ > 1 or σ is not too much smaller than 1.

Proof. See appendix.

Define a transition in research as occurring at the first time t ≥ t0 at which sjt begins
declining, a transition in extraction as occurring at the first time t ≥ t0 at which Rjt/Rkt

begins declining, and a transition in technology as occurring at the first time t ≥ t0 at which
Ajt/Akt begins declining. Finally, define resource j as being locked-in from time t0 when no
type of transition occurs after t0. We have the following result:
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Proposition 2. Let Assumption 1 hold. If σ > 1, then resource j is locked-in from time
t0. If σ < 1, then a transition in extraction occurs only after a transition in research and a
transition in technology occurs only after a transition in extraction. If resource j is relatively
accessible (Ψj ≥ Ψk), then a transition in technology occurs while sector j still provides the
larger share of resource supply.

Proof. See appendix.

We see two cases. First, if machines are resource-saving (σ > 1), then a transition cannot
happen. The economy is locked-in to the dominant sector. The proof shows that sector j
increases its share of resource supply whenever it dominates research effort. And when sector
j is both increasing its share of resource supply and dominating research effort, the market
size and patent quality channels in equation (10) both pull more scientists towards sector
j. Sector j therefore increases its dominance of research effort over time and continually
increases its technological advantage over sector k. Sector j’s increasing share of resource
supply and its increasing share of research activity form a positive feedback loop that prevents
sector k from ever catching up: sector j’s increasingly improved technology and increasing
share of resource extraction both work to attract ever more scientists to sector j, and the
improving relative quality of technology in sector j works to increase its share of extraction
over time.

The dynamics are qualitatively different if machines are resource-using (σ < 1). Now
sector j’s dominant share of research activity works to push scientists away from sector j
through the supply expansion effect in equation (10), but sector j’s improving relative tech-
nology works to increase its share of resource supply and thus strengthens the market size
effect that pulls scientists towards sector j. The change in the market size effect is especially
significant when sector j’s technology is still immature, so that sector j can increasingly
dominate research effort over time. However, the market size effect becomes less and less
sensitive to the quality of sector j’s technology as that technology becomes more advanced.
The supply expansion effect eventually dominates the market size effect, which pushes scien-
tists back towards sector k. At this point a transition in research occurs. As sector j’s share
of research continues to fall, a transition in extraction can occur. The transition in extraction
is innovation-led : it can occur only after the transition in research. Even though research
transitions before extraction, sector k does not begin to dominate research effort (triggering
a transition in technology) until sometime after the transition in extraction, when both the
market size effect and the supply expansion effect are working to push scientists towards
sector k. Finally, if resource j is relatively accessible, then a transition in technology must
happen while sector j still dominates resource supply. Just as the transition in extraction
must follow a transition in research, so too a change in the sector that dominates resource
supply must follow a change in the sector that dominates research.

Now consider long-run equilibria for any economy. The following proposition shows that
a corner research allocation can persist indefinitely if and only if σ > 1.
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Proposition 3. Assume that σ > 1 and let t0 be an arbitrary time such that, in equilibrium,
either s∗jt0 = 0 or s∗jt0 = 1. Then s∗jt = s∗jt0 for all t ≥ t0. However, if σ < 1, then for any
time t0 there exists t > t0 such that s∗jt ∈ (0, 1).

Proof. See appendix.

Consider an allocation with all scientists working in sector j at time t0. Improving sector
j’s technology increases its share of extraction over time. The corner allocation can persist
only if Πjt/Πkt ≥ 1 for all later times t when evaluated at sjt = 1. When σ > 1, the market
size effect works to increase Πjt/Πkt over time and so too does the combination of the patent
quality and supply expansion effects. The corner allocation persists indefinitely. However,
when σ < 1, the market size effect conflicts with the combined patent quality and supply
expansion effects. The proof shows that as the average quality of technology in sector j
improves, the market size effect becomes negligibly small: resources are not constrained by
the availability of machines when machines become very advanced, so further improvements
in their average quality does not affect resource use very much. Eventually the supply
expansion effect dominates not just the patent quality effect but also the market size effect.
Πjt/Πkt then begins to decline. If the allocation of scientists is held fixed at the corner, then
eventually Πjt/Πkt falls below unity, at which point the corner allocation can no longer be an
equilibrium. Corner allocations are self-sustaining equilibria for σ > 1 but must eventually
disappear when σ < 1.

The steady state for this economy holds the research allocation fixed at some value s, so
that each type of technology improves at a constant rate. The next proposition shows that
a steady state with s ∈ (0, 1) is not stable if σ > 1:

Proposition 4. Assume that σ > 1. If s∗jt ∈ (0.5, 1), then s∗j(t+1) > s∗jt. If s∗jt ∈ (0, 0.5),
then s∗j(t+1) < s∗jt.

Proof. See appendix.

When machines are resource-saving, any equilibrium research allocation in which the major-
ity of scientists work in one sector at time t will have an even larger majority of scientists
in that sector at time t + 1. In contrast, the next proposition shows that the economy
approaches an interior steady state when machines are resource-using (σ < 1).

Proposition 5. Assume σ < 1. Then the only steady-state research allocation has sjt = 0.5
and the following are true as t→∞:

1. s∗jt → 0.5.

2. If νj = νk and Ψj = Ψk, then R∗jt = R∗kt and Aj = Akt.

3. If νj ≥ νk and Ψj ≥ Ψk with strict inequality for at least one, then R∗jt > R∗kt and
Ajt > Akt.
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4. R∗jt and R∗kt become constant, and R∗jt/R
∗
kt approaches

[(
νj
νk

)ψ
Ψj
Ψk

] ε
ε+ψ

.

Proof. See appendix.

The proposition gives four results. First, the economy approaches a steady-state research
allocation in which the average quality of each technology improves at the same rate. The
steady state is both unique and stable. Second, if the two resources are of the same qual-
ity and accessibility, then the steady state has identical technology and extraction in each.
Third, if one sector’s resource is of higher quality and more accessible, then that sector dom-
inates resource use and has better technology. Fourth, extraction eventually approaches a
constant value in each sector. As discussed previously, resource supply becomes less sensitive
to further advances in machine quality as machines becomes more advanced, so that resource
use cannot grow at a nonzero constant rate for all time. Observe that the long-run share
of each resource is not sensitive to the magnitude of σ as long as σ < 1. These shares are
instead completely determined by the characteristics of each resource (specifically, Ψj, Ψk,
νj, and ψ) and by the elasticity of substitution between the two types of energy (ε).

We have previously seen when a transition can happen. We now see a case in which a
transition must happen.

Corollary 6. Assume that σ < 1, νj = νk, and Ψj = Ψk. Then when Assumption 1
holds, both a transition in research and a transition in extraction happen before reaching the
steady-state research allocation.

Proof. By Proposition 5, Ajt = Akt in the steady-state research allocation. But Assumption 1
ensures that Ajt0 > Akt0 . Thus there exists t1 > t0 such that sjt1 < 0.5. By Proposition 2, a
transition in research, a transition in extraction, and a transition in technology must happen
between t0 and t1.

The sector with more advanced technology can attract the majority of researchers when
neither technology is very advanced. However, the relatively backward sector must eventually
dominate the research allocation because the steady state has both sectors being equally
advanced. As the technologies improve, scientists must eventually start switching towards
the relatively backward sector, and by Proposition 2, extraction must also start switching
towards the relatively backward sector sometime before the relatively backward sector begins
to dominate the research allocation. Transitions in research, extraction, and technology must
happen before reaching the steady-state research allocation.

I next explore three special cases that highlight the competing effects that drive the
evolution of the economy, structurally grounding Assumption 1 in each case. I then provide
a numerical example with three types of energy before turning to the full, calibrated model.
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4.1 Special Case With Only Market Size Effects

Begin by considering the Cobb-Douglas case studied in previous literature, which arises as
σ → 1. Let Yjt = Rκ

jtX
1−κ
jt and Ykt = Rκ

ktX
1−κ
kt . Equation (10) becomes:

Πjt

Πkt

=

(
1 + ηγsjt
1 + ηγskt

)−1(
Rjt

Rkt

)ψ+1
ψ
[

Ψj

Ψk

]−1/ψ

. (15)

As previously discussed, the patent quality and supply expansion effects exactly cancel, so
that the market size effect completely determines the evolution of the research allocation.

How does the market size effect evolve over time? Substituting the Cobb-Douglas forms,
equation (14) becomes [

Rjt

Rkt

]ψ+1
ψ
−κ ε−1

ε

=
νj
νk

[
Ψj

Ψk

]1/ψ [
Xjt

Xkt

](1−κ) ε−1
ε

.

Substituting equation (7) into equation (8) and then using equation (2), we have:

Xjt =

[
1− κ
κ

R
ψ+1
ψ

jt Ψ
−1/ψ
j

]α
A1−α
jt .

We then have: [
Rjt

Rkt

]Γ

=
νj
νk

[
Ψj

Ψk

] 1
ψ

[1−α(1−κ) ε−1
ε

] [
Ajt
Akt

](1−α)(1−κ) ε−1
ε

, (16)

where Γ , ψ+1
ψ
− ε−1

ε

(
κ+ α(1− κ)ψ+1

ψ

)
> 0. Sector j’s share of resource extraction increases

in the relative quality of sector j’s technology. The more that sector j advances relative
to sector k, the more that Rjt/Rkt grows, and the more that Rjt/Rkt grows, the more
that Πjt/Πkt shifts up for any given sjt. The equilibrium sjt must therefore increase as
Aj(t−1)/Ak(t−1) increases.11

Using equations (15) and (16) and the result from the appendix that the total derivative
of Πjt/Πkt with respect to sjt is negative, we have sjt > 0.5 if and only if

Aj(t−1)

Ak(t−1)

>

[
νj
νk

]− 1

(1−α)(1−κ) ε−1
ε

[
Ψj

Ψk

]− κ
(1−α)(1−κ)(ψ+1)

.

11This result explains why relative technology does not directly affect research incentives in Acemoglu
et al. (2012): technology matters in their equation (17) via the same patent quality effect seen here (which
they call a “direct productivity effect”) and also through their “price effect”, but substituting in for relative
output prices from their equation (A.3) shows that these two effects exactly cancel. Relative technology
ends up playing a role in their setting’s equilibrium (see their equation (18)) because relative market size
is proportional to the relative quality of technology (see their equation (A.5)). Thus, their Cobb-Douglas
assumption generates the same dynamics as in the Cobb-Douglas case analyzed here.
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If Ψj < Ψk and νj < νk, then Assumption 1 holds when this inequality holds. We now
see how lock-in arises: sjt > 0.5 implies that Ajt/Akt > Aj(t−1)/Ak(t−1), which ensures that
sj(t+1) > sjt, which implies that Aj(t+1)/Ak(t+1) > Ajt/Akt, and so on. There is a knife-edge
case in which sjt = 0.5 for all time, but if equilibrium sjt ever takes on any other value, then
the economy progresses to a corner allocation in research.

4.2 Special Case Without Market Size Effects

Now consider a case with σ = ε > 1. From equation (14), we have

Rjt

Rkt

=

(
νj
νk

[
Ψj

Ψk

]1/ψ
) σψ

σ+ψ

.

The shares of extraction are fixed over time, independently of the quality of technology
in either sector. Because Rjt/Rkt is fixed over time, market size effects cease to steer the
evolution of research activity. Substituting for Rjt/Rkt in equation (10), we have:

Πjt

Πkt

=

(
Aj(t−1)

Ak(t−1)

) (1−α)(ε−1)
(1−α)ε+α

(
1 + ηγsjt
1 + ηγskt

) −1
(1−α)ε+α

(
νj
νk

) ε
(1−α)ε+α

.

As the average quality of technology in sector j improves, the patent quality effect shifts
Πjt/Πkt upward and so increases the share of scientists working in sector j. If

Aj(t−1)

Ak(t−1)

>

(
νj
νk

)− ε
(1−α)(ε−1)

,

then sjt > 0.5. If, in addition, νj < νk, then Assumption 1 holds. In that case, sector j is
locked-in insofar as its share of research increases towards a corner allocation in which sector
j attracts all scientists, but this increasing dominance of research activity does not affect
sector j’s share of extraction. There is a knife-edge case in which sjt = 0.5 for all time, but
as with the Cobb-Douglas case analyzed above, if equilibrium sjt ever takes on any other
value, then the economy progresses to a corner allocation in research.

4.3 Special Case With Dominant Supply Expansion Effect

Finally, consider the special case of a Leontief production function for each intermediate good,
which arises as σ → 0. In order to aid exposition, fix ψ = α/(1−α). Let Yjt = min{Rjt, Xjt}
and Ykt = min{Rkt, Xkt}. In equilibrium, Rjt = Xjt and Rkt = Xkt. From equation (8), we
have:

pjXt =

(
Rjt

Ajt

) 1−α
α

.
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From equation (6), we then have:

Πjt

Πkt

=
Aj(t−1)

Ak(t−1)

(
Ajt
Akt

)−1/α(
Rjt

Rkt

)1/α

. (17)

From equation (8),

pjXtXjt = X
1/α
jt A

− 1−α
α

jt .

And from equation (2),

pjRtRjt = Ψ
−1/ψ
j R

1+ψ
ψ

jt .

Intermediate good producers’ zero-profit condition is

pjtYjt =Ψ
−1/ψ
j R

1+ψ
ψ

jt +X
1/α
jt A

− 1−α
α

jt .

Substituting for pjt from the final good producers’ first-order condition and then setting
Xjt = Rjt and Yjt = Rjt, we have:

νjY
1/ε
t = R

1−ε
ε

jt

[
Ψ
−1/ψ
j R

1+ψ
ψ

jt +R
1/α
jt A

− 1−α
α

jt

]
.

Using ψ = α/(1− α), we have:

νjY
1/ε
t =R

1−ε
ε

+ 1
α

jt

[
Ψ
− 1−α

α
j + A

− 1−α
α

jt

]
.

Obtaining an analogous result for sector k and dividing the two, we obtain:

Rjt

Rkt

=

νj
νk

[
Ψ
− 1−α

α
k + A

− 1−α
α

kt

]
[
Ψ
− 1−α

α
j + A

− 1−α
α

jt

]


εα
α+(1−α)ε

. (18)

If νj = νk, then we have Rjt ≥ Rkt if and only if Ajt is large enough. Substituting into
equation (17), we have:

Πjt

Πkt

=
Aj(t−1)

Ak(t−1)

(
Ajt
Akt

)−1/α

νj
νk

[
Ψ
− 1−α

α
k + A

− 1−α
α

kt

]
[
Ψ
− 1−α

α
j + A

− 1−α
α

jt

]


ε
α+(1−α)ε

. (19)

Now consider how Πjt/Πkt evolves when sjt = 1. If Πjt/Πkt decreases over time, then the
corner allocation cannot persist. Take logs and differentiate with respect to Aj(t−1), holding
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sjt fixed:

∂ ln(Πjt/Πkt)

∂Aj(t−1)

=

(
1− 1

α

)
1

Aj(t−1)

− ε

α + (1− α)ε

1[
Ψ
− 1−α

α
j + A

− 1−α
α

jt

]−(1− α)

α
(1 + ηγsjt)

−(1−α)
α A

−(1−α)
α
−1

j(t−1)

=
1− α
α

1

Aj(t−1)

{
− 1 +

ε

α + (1− α)ε

A
− 1−α

α
jt[

Ψ
− 1−α

α
j + A

− 1−α
α

jt

]
︸ ︷︷ ︸

→0 as Ajt→∞

}
.

The right-hand term in braces decreases in Ajt, going to 0 as Ajt → ∞. Therefore the
derivative becomes negative as Ajt becomes large. As established by Proposition 3, a corner
allocation in research cannot persist indefinitely. A corner allocation can persist for some
finite interval when Ajt is not too large, but over time the weakening market size effect leads
Πjt/Πkt to decrease as Ajt continues to grow.

Now consider a steady-state research allocation, with sjt = s for all t ≥ t0. Because a
corner allocation cannot persist, s must be strictly greater than 0 and strictly less than 1.
As t increases, Aj(t−1) and Ak(t−1) become arbitrarily large. From equation (19), we have:

Πjt

Πkt

→
Aj(t−1)

Ak(t−1)

(
Ajt
Akt

)− 1
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ε
α+(1−α)ε

=

(
Aj(t−1)

Ak(t−1)

)− 1−α
α
(

1 + ηγs

1 + ηγ(1− s)

)− 1
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ε
α+(1−α)ε

. (20)

At an equilibrium with s ∈ (0, 1), Πjt = Πkt. Then, for t sufficiently large, we must have:

(
1 + ηγs

1 + ηγ(1− s)

) 1
α

=

(
Aj(t−1)

Ak(t−1)

)− 1−α
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ε
α+(1−α)ε

.

At a steady state, Aj(t−1) = (1 + ηγs)∆Aj(t−1−∆) and Ak(t−1) = (1 + ηγ(1 − s))∆Ak(t−1−∆).
Therefore the following must hold for all ∆ ≥ 0:(

1 + ηγs

1 + ηγ(1− s)

) 1
α

=

(
1 + ηγs

1 + ηγ(1− s)

)−∆ 1−α
α
(
Aj(t−1−∆)

Ak(t−1−∆)

)− 1−α
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ε
α+(1−α)ε

.

This can hold for all t ≥ 0 if and only if(
1 + ηγs

1 + ηγ(1− s)

)−∆ 1−α
α

= 1,
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which in turn holds if and only if s = 0.5. Thus, the steady state research allocation must
have s = 0.5. From equation (20), νj ≥ νk and Ψj ≥ Ψk then imply Aj(t−1) ≥ Ak(t−1) in
the steady-state research allocation, with Aj(t−1) > Ak(t−1) if in addition either νj > 0.5 or
Ψj > Ψk. Further, from equation (18), Rjt/Rkt approaches a constant value as t becomes
large and νj ≥ νk with Ψj ≥ Ψk imply Rjt ≥ Rkt, with Rjt > Rkt if either νj > νk or
Ψj > Ψk.

Finally, consider an early time t0 at which Aj(t0−1) and Ak(t0−1) are much smaller than
Ψj and Ψk, respectively, and the economy is not yet at a steady-state research allocation.
Equation (19) becomes:

Πjt0

Πkt0

≈
(
Aj(t0−1)

Ak(t0−1)

)− 1−α
α
(

1 + ηγsjt0
1 + ηγ(1− sjt0)

)− 1
α

(
νj
νk

[
Ajt0
Akt0

] 1−α
α

) ε
α+(1−α)ε

=

[(
Aj(t0−1)

Ak(t0−1)

)(1−α)(ε−1)(
1 + ηγsjt0

1 + ηγ(1− sjt0)

)−1(
νj
νk

)ε] 1
α+(1−α)ε

. (21)

The right-hand side increases in Aj(t0−1)/Ak(t0−1) and decreases in sjt0 . We have that sjt0 >
0.5 if and only if12

Aj(t0−1)

Ak(t0−1)

>

(
νj
νk

) −ε
(1−α)(ε−1)

. (22)

If sjt0 > 0.5, then Aj(t0−1)/Ak(t0−1) increases over time and the right-hand side of equa-
tion (21) shifts up over time. As a result, sj(t0+1) > sjt0 . Therefore, sector j can increase
its share of research effort over an interval of time with not-too-advanced technology. The
reason is that the market size effect increasingly favors researching in sector j, as can be seen
from equation (18). However, eventually sector j’s technology becomes sufficiently advanced
that the market size effect weakens and the supply expansion effect pushes scientists back
towards sector k. A transition in research thus arises because the sensitivity of Rjt/Rkt

to technological quality diminishes as technology advances, eventually making the supply
expansion effect the primary determinant of research activity.

4.4 Numerical Example

I now consider a numerical example in order to make these ideas more concrete. Let there
be three types of energy (N = 3), which differ only in their quality ν and in their initial
technology. Let the first type of energy represent coal, the second represent oil, and the
third represent gas. Looking back two hundred years, technologies for using coal were far
more advanced than technologies for using oil, which in turn were more developed than

12If νj ≤ νk and Ψj ≤ Ψk, then inequality (22) implies that Assumption 1 holds at t0.
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(a) Research Shares with σ = 0.5 (b) Extraction Shares with σ = 0.5

(c) Research and Extraction Shares with σ = 1.5 (d) Historical Extraction Shares

Figure 2: Top: An example of an innovation-led transition, with σ = 0.5. Bottom left: An
example of lock-in, with σ = 1.5. Resources 2 and 3 have nearly identical extraction shares.
Bottom right: Shares of global fossil energy supply, from Smil (2010).
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technologies for using gas. I therefore fix the initial average quality of technology at 0.05
for coal, at 1% of this value for oil, and at 0.1% of this value for gas. We can think of
the quality of fossil fuel resources as largely determined by the ratio of carbon to hydrogen
bonds.13 Energy derives from breaking hydrogen bonds. Fuels with a lot of carbon and little
hydrogen are considered to be of lower quality because they are bulkier and more polluting.
Coal is mostly carbon, oil has more hydrogen bonds per unit carbon, and natural gas has
the most hydrogen bonds per unit carbon. I therefore set ν1 = 0.27 (for coal), ν2 = 0.34 (for
oil), and ν3 = 0.40 (for gas).14

The top panels of Figure 2 plot a case with σ = 0.5, and the lower left panel plots a case
with σ = 1.5. The “coal” sector 1 begins with the majority of extraction and research activity.
In the case of resource-saving technologies (bottom left), research activity and extraction are
locked-in to the “coal” sector 1, which attracts all research effort in all periods and increases
its share of resource extraction over time. In the case of resource-using technologies, we
see innovation-led transitions. Research begins transitioning immediately towards the “oil”
sector 2 (top left panel), and extraction eventually follows (top right panel). The “gas”
sector 3 does not attract any research effort for a while and maintains a very small share of
extraction even as oil displaces coal. However, after 20 periods, research effort shifts strongly
towards the gas sector, and extraction shifts towards the gas sector after 60 periods. In the
long run, all sectors attract identical shares of research effort and maintain stable shares of
extraction, with their ordering determined by the quality ν of each resource.

The endogenous dynamics of our setting with resource-using machines are qualitatively
similar to historical patterns. The bottom right panel of Figure 2 plots resource shares since
1800. The historical patterns in these shares are similar to the patterns that emerge from
our numerical simulations with resource-using machines: resource shares change rapidly as a
transition occurs, and transitions do not drive formerly dominant resources out of the market.
In fact, resource shares have been fairly stable since 1970. The historical patterns are nothing
like the patterns that emerge from our simulations with resource-saving machines.

5 Climate Change Policy

Now consider the implications of the present model for policies to address climate change.
I focus on competition among three resources in the electricity sector, with resources 1, 2,
and 3 representing coal, natural gas, and renewables, respectively.

13Smil (2017, 245) describes how oil is of higher quality than coal because it has higher energy density, is
cleaner, and is more transportable and storable. On page 270, he writes: “There has been a clear secular
shift toward higher-quality fuels, that is, from coals to crude oil and natural gas, a process that has resulted
in relative decarbonization (a rising H:C ratio) of global fossil fuel extraction. . . ”

14The remaining parameters are AY = 1, ε = 3, α = 0.5, κ = 0.5, ψ = 3, Ψ1 = Ψ2 = Ψ3 = 1, η = 1, and
γ = 0.5. The qualitative results are not sensitive to the choice of these parameters.
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I make the following extensions to the theoretical setting analyzed above. First, I allow
ψ to differ by sector. Second, I allow climate change to reduce economic output. Let sector
j’s greenhouse gas emission intensity be ej, and let non-electricity emissions be given by the
constant ē. Time t emissions are

Et = ē+
3∑
j=1

ejRjt.

Time t emissions augment the atmospheric stock of carbon dioxide (CO2), which slowly
equilibrates with land and ocean reservoirs and eventually causes warming. The three-box
model of the carbon cycle and two-box model of the climate system follow the benchmark
DICE climate-economy model (Nordhaus, 2008). Also following DICE, warming of Tt degrees
Celsius reduces time t output to Yt/(1 + D(Tt)), where D(Tt), D

′(Tt) > 0. In the absence
of policy, climate change affects equilibrium resource use and consumption only by reducing
total output.

The third extension provides for a policymaker who can use policy instruments to affect
the equilibrium. This policymaker seeks to maximize intertemporal welfare, which takes the
standard discounted power utility form in per capita consumption, with population growing
exogenously as in DICE. Consistent with Nordhaus (2008), the policymaker’s utility discount
rate is 1.5% per year and the elasticity of intertemporal substitution is 0.5.15 Depending
on the scenario, the policymaker can tax greenhouse gas emissions and/or can subsidize
R&D into the renewable resource, financed through a lump sum tax on the representative
household. In contrast to standard climate-economy models, the cost of reducing emissions
at time t is endogenous: this cost depends on the supply of each energy resource, on the
time t quality of the machines for using each type of resource, and on the substitutability of
each type of energy for the other.

Finally, in contrast to the theoretical setting, I allow the two fossil resources to be de-
pletable. I model depletion by replacing Rjt in equation (2) with

∑t
k=0Rjk and adjusting the

economy’s aggregate resource constraint appropriately. I assume that fossil resource owners
have a one-period property right to extract a unit of the resource.16

I solve for equilibrium by (i) solving for the resource extraction allocation that equates
resource supply and demand given any allocation of research effort and (ii) solving for the
research allocation that maximizes scientists’ expected profits given the resource allocation
implied by each research allocation. I use a 10-year timestep and a policy horizon of 400
years.

I next describe the calibration before presenting laissez-faire trajectories and analyzing
optimal policy.

15The appendix shows that the primary results are virtually unchanged for an annual utility discount rate
of 0.01%, with the only difference being that the magnitude of the gains from policy increases.

16The results are virtually identical in the absence of depletion.
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5.1 Calibration

Begin by considering the supply of each type of resource. I estimate ψ1 = 2.07 and ψ2 = 1.61
from supply curves for coal and gas developed for the MESSAGE energy model (McCollum
et al., 2014). Drawing in part on the work of others, Johnson et al. (2017) describe the
supply of power from solar photovoltaics, concentrating solar power, onshore wind, and
offshore wind available by region of the world and by resource quality.17 Aggregating across
resource types and regions, I estimate ψ3 = 3.00. I assume that the renewable resource does
not generate emissions (e3 = 0) and calculate the emission intensities of coal and gas by
dividing emissions for each resource from 2010–2014 (from the Carbon Dioxide Information
Analysis Center) by resource consumption over the initial timestep (described below). Other
emissions ē come from summing emissions from all other reported categories, which includes
emissions from oil. I calibrate κ = 0.04 to the distribution parameter for energy in Golosov
et al. (2014), and I fix α at 0.5 and η at 0.02.18

For any given σ and ε, there are ten remaining parameters: each Aj0, each Ψj, AY , ν1,
ν2, and γ (where ν3 = 1 − ν1 − ν2). I calibrate these so that the first period’s equilibrium
matches conditions on each Rj0, each sj0, each pj0, and Y0, as well as a condition on the
growth rate of final-good production. Initial resource consumption comes from summing
consumption from 2011–2015, as reported in the BP Statistical Review of World Energy.19

The International Energy Agency’s World Energy Investment 2017 gives R&D spending on
clean energy, on thermal generation, on coal production, and on oil and gas production.
I divide thermal expenditures equally between coal and gas and attribute all oil and gas
spending to gas. The first period must therefore have 12% of scientists working on coal, 65%
of them working on gas, and 23% of them working on renewables. I calibrate each pj0 to be
consistent with levelized costs from the Energy Information Administration Annual Energy
Outlook, using combined cycle plants to represent natural gas and solar photovoltaics to
represent renewables. World Bank data for global output from 2011–2015 implies Y0 = 765
trillion year 2014 dollars over the first ten-year timestep. Finally, I require Yt to grow at
an annual rate of 2% from the first to the second timestep, which is consistent with growth
rates assumed in the benchmark DICE-2007 climate-economy model (Nordhaus, 2008).20

17Costs are reported in dollars per unit power and resource potential is reported in units of energy. I convert
costs to dollars per unit electrical energy by using the capacity factor reported for each resource quality bin
in each region. This capacity factor adjusts for the fact that the power producible from renewable resources
is not available throughout the day or throughout the year. And I convert dollars per unit of electrical
energy to dollars per units of energy in the resource by using the efficiency of each type of generator. From
the Energy Information Administration’s Annual Energy Review 2011, the efficiencies are 12% for solar
photovoltaics, 21% for solar thermal, and 26% for wind.

18Fixing η is not interesting because I calibrate γ to market data, as described below.
19To obtain the energetic content of renewables from the reported tonnes of oil equivalent, use BP’s

assumed thermal efficiency of 38% to obtain the equivalent electrical energy and then use a 20% generator
efficiency to convert electrical energy to energy in the renewable resource (see footnote 17).

20In order to calibrate the ten free parameters, I search for the Ψ1, Ψ2, Ψ3, A1,0, and γ that match
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It remains to determine ε and σ. I explore several different values of ε, ranging from 3 to
15. I calibrate σ in order to match recent estimates of the emission reductions induced by
different emission taxes.21 The top left panel of Figure 3 plots the marginal abatement cost
curve estimated in Morris et al. (2012) for the United States (adjusted to be in year 2014
dollars). A calibration with σ = 0.85 matches these estimates reasonably well across a wide
range of ε, as measured by mean squared error. The dashed lines in the top left panel of
Figure 3 plot results for the two most extreme values of ε studied here.22

Now consider the laissez-faire evolution of the calibrated economy. The top right panel
of Figure 3 depicts the research allocation for ε = 15 (the cases with alternate ε are similar).
The gas resource quickly comes to dominate the resource allocation and continues to do
so throughout the 400-year horizon. The lower two panels depict each resource’s share of
supply for ε = 3 (lower left) and ε = 15 (lower right). In both cases, the gas resource’s
share increases monotonically over the 400-year horizon. However, the shift from coal to
gas proceeds faster in the case with ε = 15. In both cases, the renewable resource’s share
increases at first before declining. In 100 (200) years, global temperature is nearly 3◦C (9◦C)
higher than it was in 1900, due to emissions from both gas and coal. Policy will be required
to avoid an environmental disaster. I now turn to an analysis of that policy.23

5.2 Policy

Now consider how a policymaker would steer the economy to maximize intertemporal wel-
fare.24 Begin by considering the case with ε = 15, plotted in Figure 4. The top panels
show that the policymaker would not use an emission tax to redirect the economy towards
renewable resources in the near future. A moderate first-period tax does shift some scien-
tists towards the renewable and gas sectors and does reduce first-period emissions, but the

the conditions on each Rj0, on p1,0, and on the growth rate of final good production. Given a vector of
guesses for these parameters, I solve for A2,0 and A3,0 by plugging s2,0 and s3,0 into equation (10). I then
find the AY that matches final good production at Rj0, sj0, and Aj0 to Y0, where ν2,0 and ν3,0 are solved
explicitly from substituting p2,0 and p3,0 into the final good producer’s first-order conditions (and of course
ν1,0 = 1− ν2,0 − ν3,0). I recalibrate the model when varying ε and σ.

21In contrast to standard climate-economy models, the cost of reducing emissions will then evolve endoge-
nously, responding to policy and to market forces.

22The marginal abatement cost curve is sensitive to σ. For instance, calibrations with σ > 1 shift out
the marginal abatement cost curve and increase mean squared error dramatically. It is not possible to
simultaneously have σ > 1, have a marginal abatement cost curve similar to Morris et al. (2012), and meet
the ten conditions given in the previous paragraph.

23The laissez-faire evolution of the calibrated economy is largely robust to the choice of σ over the 400-year
horizon.

24I refer to optimal policy, but I technically analyze constrained-optimal policy. The fully optimal policy
would correct all of the distortions in the economy. These distortions include market power in machine
production, externalities in innovation, externalities from emissions, intertemporal market failures in supply
of the depletable resource, and limited patent protections. Acemoglu et al. (2012) discuss the first four, and
Greaker et al. (2018) emphasize the last one.
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(a) Marginal Abatement Cost (b) Research Allocation

(c) Each Resource’s Share of Supply (ε = 3) (d) Each Resource’s Share of Supply (ε = 15)

Figure 3: The economy’s marginal abatement cost curve (top left), and the evolution of the
laissez-faire economy over the first 200 years. The plotted research allocation uses ε = 15,
but results are virtually identical for alternate ε.
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research allocation quickly reverts to its laissez-faire trajectory (top left) and so too does the
allocation of resource use (top right).

However, a policymaker who can subsidize research into renewables instead of taxing
emissions will choose to redirect the economy towards low-emission renewable resources. The
subsidy immediately and permanently shifts all scientists into the renewable sector (top left)
and achieves nearly complete decarbonization by the end of the century (top right). Without
the research subsidy, the policymaker would have required an emission tax of $570/tCO2 to
redirect all research effort to the renewable sector, which would have led renewables to supply
32% of resources in the first period.25 The policymaker does not find it optimal to distort
supply to that degree. As a result, a policymaker who can use only an emission tax does
little to bend the temperature trajectory, but a policymaker who can use a research subsidy
achieves a major reduction in total warming (bottom left).

The bottom right panel of Figure 4 compares the optimal emission tax when the pol-
icymaker uses the tax on its own (crosses) and when the policymaker can employ both
an emission tax and a research subsidy (squares). The availability of the research subsidy
dampens the initial tax because the policymaker instead uses the research subsidy to shift
scientists towards the renewable sector and thus away from the coal sector. The tax tra-
jectories are otherwise quite similar. Whether or not the tax instrument is available, the
research subsidy is nearly 14% in the first period and drops to 0 in subsequent periods. The
improvement in renewables’ technology from the first period of research is sufficient to keep
all scientists working in that sector in subsequent periods. The policymaker can permanently
redirect the economy with only a short-term research subsidy.

Table 1 describes results for several different values of ε. The top panel shows that
scientists are more responsive to the emission tax as ε increases and that long-run laissez-
faire use of renewables is not sensitive to ε. The second panel studies the case in which the
policymaker only has access to an emission tax. In all cases, the policymaker’s emission tax
shifts scientists towards renewables in the first period. Nonetheless, renewables’ share of
supply in 2100 is actually smaller than in the absence of policy because the initial emission
tax also shifts research towards gas and the policymaker does not subsequently use a large
emission tax that would shift resource use away from gas. The balanced growth equivalent
gain from optimal tax policy is small (less than 0.5%), reflecting the small role for tax policy.

The third panel allows the policymaker to subsidize research into renewables but not to
use an emission tax.26 The optimal research subsidy is qualitatively sensitive to ε: for the
smallest value of ε, the optimal research subsidy is negative for one period before dropping

25The distortion becomes more severe with ε = 3: an emission tax of $5000/tCO2 would have only 74%
of scientists working in the renewable sector even as it led renewables to supply 69% of resources in the first
period.

26The solutions in cases with only a research subsidy are sensitive to the initial guess for the allocation of
scientists: guessing a high (low) allocation leads to a corner solution with all (no) scientists working in the
renewable sector. I report the results for the corner solution that yields greater welfare.
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(a) Renewable Resource’s Share of Research (b) Renewable Resource’s Share of Supply

(c) Temperature (d) Emission Tax

Figure 4: The evolution of the economy when the policymaker has access to an emission
tax (solid) or to a subsidy for research into renewables (dashed). Also, the emission tax
chosen when that is the only instrument (crosses) and when it is combined with a subsidy
for research into renewables (squares). All plots use ε = 15.
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to 0, whereas the other cases have an optimal research subsidy that is sufficiently large to
immediately shift all scientists to the renewable sector. Scientists become less sensitive to
policy as ε falls, so the policymaker must use a larger subsidy to redirect scientists towards
renewables when ε is small. When ε = 3, the policymaker prefers to speed the transition
towards gas by redirecting scientists away from renewables. In the cases with larger ε, the ad-
ditional research into renewables leads them to dominate resource supply within the coming
century (in sharp contrast to the no-policy case), and the balanced growth equivalent gain
of 3–7% reflects the large benefits of keeping temperature much closer to its pre-industrial
value.

The bottom panel allows the policymaker to use both an emission tax and a subsidy
for research into renewables. The policymaker opts not to use an emission tax in the first
few decades, and the level of the initial research subsidy is virtually the same as in the
case without an emission tax. Even though the policymaker will use a nontrivial tax in the
second century (see the lower right panel of Figure 4), the balanced growth equivalent gain
from policy is virtually the same whether or not the policymaker also has access to the tax:
renewables dominate the resource mix by 2100 in either case.

Finally, consider a third type of policy instrument: a mandate that the renewable resource
comprise a minimum share of resource use. This mandate directly amplifies the market size
effect that draws scientists to the renewable sector. Figure 5 plots the evolution of the
renewable resource’s share of production for several different mandates and for the two
extreme values of ε.27 Mandates of at least 10% bind only for some number of initial periods
before eventually making themselves nonbinding. The calibrated no-policy path has only 23%
of scientists working in the renewable sector at first, but the 10% mandate increases this share
to 76% (83%) for ε = 3 (ε = 15) and larger mandates increase this share to 100%.28 This
redirection of research effort improves the renewable sector’s technology, which eventually
increases equilibrium extraction above the share enforced by the mandate. In contrast,
mandates that are too small to substantially shift initial research bind for a very long time.
For instance, the plotted 8% mandate increases the share of scientists initially working in
the renewable sector to around 40% for both values of ε, but no scientists remain in the
renewable sector once a few periods have passed, just as in the laissez-faire economy. A
mandate can make itself nonbinding only if it is large enough to shift research effort by a

27The intermediate-good producer’s first-order condition for resources will not hold under a binding man-
date. I solve for equilibrium under a binding mandate by analyzing each intermediate-good producer’s
first-order condition for Xjt: I substitute for pjt by using the final-good producer’s first-order condition, I
express each Yjt and Yt in terms of each Xjt, I substitute for each Xjt from equation (8), and I search for
the pjXt that solve these N first-order conditions for Xjt, given some allocation of resource extraction and
research effort. The equilibrium equates supply and demand for the coal and gas resources and has scientists
maximizing expected profit.

28For a 10% mandate, the renewable resource’s share of supply follows a notably lower trajectory when
ε = 3 because scientists move towards the renewable sector only over a period of 50 years (rather than fully
shifting within 10 years as in the case with ε = 15).
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Table 1: The sensitivity of business-as-usual outcomes and optimal policy to the elasticity
of substitution between types of energy (ε).

ε

3 6 9 12 15

No-Policy
Tax-elasticity of clean scientists around $20/tCO2 0.05 0.11 0.15 0.19 0.23
Tax-elasticity of clean scientists around $100/tCO2 0.17 0.17 0.23 0.28 0.32
Renewables’ share of supply in 2100 (%) 7.2 7.2 7.2 7.2 7.2

Emission Tax Only
Initial tax ($/tCO2) 31 52 42 31 26
Initial share of scientists in renewables (%) 25.2 30.5 32.3 32.2 32.2
Renewables’ share of supply in 2100 (%) 5.5 3.2 2.6 2.3 2.2
Balanced growth equivalent gain (%) 0.041 0.22 0.33 0.37 0.39

Research Subsidy Only
Initial subsidy (%) -11 29 20 16 14
Initial share of scientists in renewables (%) 0 100 100 100 100
Renewables’ share of supply in 2100 (%) 4.8 77 82 84 86
Balanced growth equivalent gain (%) 1.6 3.2 4.9 5.7 6.2

Emission Tax and Research Subsidy
Initial tax ($/tCO2) 101 2 0 0 0
Initial subsidy (%) -14 29 20 16 14
Initial share of scientists in renewables (%) 0 100 100 100 100
Renewables’ share of supply in 2100 (%) 4.8 77 82 89 90
Balanced growth equivalent gain (%) 1.9 3.2 4.9 5.7 6.2

In the no-policy case, the calibration ensures, for each ε, that 23% of scientists initially
work in renewables. The balanced growth equivalent gain (Mirrlees and Stern, 1972) is
the constant relative difference in consumption between two counterfactual consump-
tion trajectories that grow at the same constant rate and also yield the exact same
welfare as in the given model of policy and in the no-policy model.
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(a) ε = 3 (b) ε = 15

Figure 5: The evolution of the economy when subject to a mandate that the renewable
resource have at least a given share of extraction. The dotted line plots the evolution of the
laissez-faire economy.

sufficiently large amount.
Table 2 reports the balanced growth equivalent gain for several mandates. We see that

mandates of 10–30% can improve welfare relative to a no-policy case when ε = 15, though the
optimal research subsidies studied in Table 1 improved welfare by more. Smaller mandates
are costly because they distort supply without kickstarting a transition to renewables, larger
mandates are costly because they distort near-term resource use to a large degree, and all
mandates are costly when ε = 3 because the research allocation shifts towards renewables
only slowly. Table 2 also reports the balanced growth equivalent gain if the research allocation
were constrained to follow the laissez-faire path. These numbers show that endogenous
innovation is critical to the evaluation of mandates. A mandate of 8% redirects the research
allocation only temporarily. Because that mandate is too small to kickstart a full transition
to renewables, it would actually be more valuable (even welfare-improving) if the research
allocation did not respond to it. In contrast, larger mandates eventually redirect all research
effort to the renewable sector. Accounting for this effect on research activity can make these
mandates welfare-improving if ε = 15 and can substantially reduce their costs if ε = 3.

6 Conclusion

We have seen that complementarities between inputs are critical to the possibility of innovation-
led transitions in factor use. In particular, complementarities between resources and ma-
chines are critical to the types of transitions seen in the history of energy supply. These
complementarities eventually push scientists away from the more advanced sector, and the
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Table 2: The balanced growth equivalent gain (%) from imposing a minimum share of
renewable resource use, relative to the no-policy case. The “fixed research” simulations force
the research allocation to follow the no-policy path.

Mandate for Renewable Resource Use

8% 10% 20% 30% 40% 50%

ε = 3
Endogenous research -1.7 -5.5 -1.4 -5.4 -15.3 -38.5
Fixed research 0.05 0.2 -2.4 -10.1 -24.6 -52.8

ε = 15
Endogenous research -2.5 4.3 5.9 2.8 -5.3 -24.7
Fixed research 0.07 0.2 -2.8 -10.6 -24.7 -51.4

redirection of scientific effort eventually redirects factor use away from the dominant sector.
A calibrated numerical simulation finds that, in the absence of policy, a transition from coal
and, especially, gas resource use to renewable resource use would occur far too slowly to
limit climate change to levels consistent with recent international agreements. A welfare-
maximizing policymaker would use a temporary research subsidy to permanently redirect
the economy away from fossil fuels. However, a policymaker who cannot use a research
subsidy would accept a high degree of climate change because kickstarting a transition to
renewables would require a very high emission tax. Further, the elasticity of substitution be-
tween different types of energy is critical to the policymaker’s choices because it determines
the responsiveness of the research allocation to policy. If improved batteries were to make
renewable energy a better substitute for energy from gas and coal, then the policymaker
would find it increasingly attractive to kickstart a transition to renewable energy.
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Grübler, Arnulf (2004) “Transitions in energy use,” in C. G. Cleveland ed. Encyclopedia of
Energy, Vol. 6, pp. 163–177.

Hart, Rob (2012) “Directed technological change: It’s all about knowledge,” Working Paper
03/2012, Department Economics, Swedish University of Agricultural Sciences.

(2015) “Crowding in clean investment: Climate policy and the long-run returns to
factor-specific investment.”

Herfindahl, Orris C. (1967) “Depletion and economic theory,” in Mason Gaffney ed. Extrac-
tive Resources and Taxation, Madison, WI: University of Wisconsin Press, pp. 63–90.

Jevons, William Stanley (1865) The Coal Question: An Inquiry Concerning the Progress
of the Nation, and the Probable Exhaustion of Our Coal-Mines, New York: A.M. Kelley
(1965), third (revised) edition.

Johnson, Nils, Manfred Strubegger, Madeleine McPherson, Simon C. Parkinson, Volker Krey,
and Patrick Sullivan (2017) “A reduced-form approach for representing the impacts of wind
and solar PV deployment on the structure and operation of the electricity system,” Energy
Economics, Vol. 64, pp. 651–664.

Johnstone, Nick, Ivan Hai, and David Popp (2010) “Renewable energy policies and tech-
nological innovation: Evidence based on patent counts,” Environmental and Resource
Economics, Vol. 45, No. 1, pp. 133–155.

Kalkuhl, Matthias, Ottmar Edenhofer, and Kai Lessmann (2012) “Learning or lock-in: Op-
timal technology policies to support mitigation,” Resource and Energy Economics, Vol.
34, No. 1, pp. 1–23.

Lehmann, Paul and Erik Gawel (2013) “Why should support schemes for renewable electric-
ity complement the EU emissions trading scheme?” Energy Policy, Vol. 52, pp. 597–607.

Madureira, Nuno Luis (2012) “The anxiety of abundance: William Stanley Jevons and coal
scarcity in the nineteenth century,” Environment and History, Vol. 18, No. 3, pp. 395–421.

Marchetti, C. (1977) “Primary energy substitution models: On the interaction between
energy and society,” Technological Forecasting and Social Change, Vol. 10, No. 4, pp.
345–356.

34 of 36



Lemoine Energy Transitions October 2018

Marchetti, C. and N. Nakicenovic (1979) “The dynamics of energy systems and the logis-
tic substitution model,” Research Report RR-79-013, International Institute for Applied
Systems Analysis, Laxenburg, Austria.

Matsuyama, Kiminori (1995) “Complementarities and cumulative processes in models of
monopolistic competition,” Journal of Economic Literature, Vol. 33, No. 2, pp. 701–729.

(1999) “Growing through cycles,” Econometrica, Vol. 67, No. 2, pp. 335–347.

McCollum, David, Nico Bauer, Katherine Calvin, Alban Kitous, and Keywan Riahi (2014)
“Fossil resource and energy security dynamics in conventional and carbon-constrained
worlds,” Climatic Change, Vol. 123, No. 3, pp. 413–426.

Milgrom, Paul, Yingyi Qian, and John Roberts (1991) “Complementarities, momentum,
and the evolution of modern manufacturing,” The American Economic Review: Papers &
Proceedings, Vol. 81, No. 2, pp. 84–88.

Mirrlees, J. A and N. H Stern (1972) “Fairly good plans,” Journal of Economic Theory, Vol.
4, No. 2, pp. 268–288.

Morris, Jennifer, Sergey Paltsev, and John Reilly (2012) “Marginal abatement costs and
marginal welfare costs for greenhouse gas emissions reductions: Results from the EPPA
model,” Environmental Modeling & Assessment, Vol. 17, No. 4, pp. 325–336.

Nordhaus, William D. (1973) “The allocation of energy resources,” Brookings Papers on
Economic Activity, Vol. 1973, No. 3, pp. 529–576.

(2008) A Question of Balance: Weighing the Options on Global Warming Policies,
New Haven: Yale University Press.

Papageorgiou, Chris, Marianne Saam, and Patrick Schulte (2017) “Substitution between
clean and dirty energy inputs: A macroeconomic perspective,” Review of Economics and
Statistics, Vol. 99, No. 2, pp. 281–290.

Pittel, Karen and Lucas Bretschger (2010) “The implications of heterogeneous resource in-
tensities on technical change and growth,” Canadian Journal of Economics, Vol. 43, No.
4, pp. 1173–1197.

Rosenberg, Nathan (1976) Perspectives on Technology: Cambridge University Press.

(1983) Inside the Black Box: Technology and Economics: Cambridge University
Press.

(1994) Exploring the Black Box: Technology, Economics, and History, Cambridge;
New York: Cambridge University Press.

35 of 36



Lemoine Energy Transitions October 2018

Smil, Vaclav (2010) Energy Transitions: History, Requirements, Prospects, Santa Barbara,
California: Praeger.

(2017) Energy and Civilization: A History, Cambridge, Massachusetts: The MIT
Press.

Smulders, Sjak and Michiel de Nooij (2003) “The impact of energy conservation on technol-
ogy and economic growth,” Resource and Energy Economics, Vol. 25, No. 1, pp. 59–79.

Wilson, Charlie and Arnulf Grubler (2011) “Lessons from the history of technological change
for clean energy scenarios and policies,” Natural Resources Forum, Vol. 35, No. 3, pp. 165–
184.

36 of 36



Lemoine Energy Transitions October 2018

Appendices

The first appendix considers the stability of each period’s equilibrium. The second appendix
reports numerical results for a lower utility discount rate. The third appendix contains proofs
and derivations.

First Appendix: Tâtonnement Stability

One may be concerned that interior equilibria are not “natural” equilibria in the presence of
positive feedbacks from resource extraction to innovation and of potential complementarities.
Indeed, Acemoglu (2002) and Hart (2012) have emphasized the role of knowledge spillovers
in allowing interior research allocations to be stable in the long run. This appendix shows
that interior equilibria are in fact “natural” equilibria in the present setting.

Assume N = 2 and label the two sectors j and k. Rearranging equation (10) and using
sjt + skt = 1, we obtain sjt as an explicit function of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an
interior allocation.29 Substituting into equations (12) and (13) then gives us two equations
in two unknowns. This system defines the equilibrium Rjt and Rkt that clear the markets
for each resource.

Define the tâtonnement adjustment process and stability as follows:

Definition A-1. A tâtonnement adjustment process increases Rjt if equation (12) is not
satisfied and its right-hand side is greater, decreases Rjt if equation (12) is not satisfied and
its left-hand side is greater, and obeys analogous rules for Rkt using equation (13). I say that
an equilibrium (R∗jt, R

∗
kt) is tâtonnement-stable if and only if the tâtonnement adjustment

process leads to (R∗jt, R
∗
kt) from (Rjt, Rkt) sufficiently close to (R∗jt, R

∗
kt).

The tâtonnement process changes Rjt and Rkt so as to eliminate excess supply or demand,
and tâtonnement stability requires that this adjustment process converge to an equilibrium
point from values close to the equilibrium. The following proposition shows that our equi-
librium is tâtonnement-stable:

Proposition A-1. The equilibrium is tâtonnement-stable.

Proof. See third appendix.

A Walrasian auctioneer would find our equilibrium at any time t.

29Technically, this function should be written to allow for corner solutions in the research allocation. The
proof of stability will account for corner solutions.
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Now use equations (12) and (13) to define Rjt and Rkt as functions of sjt,
30 and then

restate equation (10) as a function only of sjt:

Πjt

Πkt

=
Aj(t−1)

Ak(t−1)

(
Aj(t−1) + ηγsjtAj(t−1)

Ak(t−1) + ηγ(1− sjt)Ak(t−1)

) −1
σ+α(1−σ)

(
Rjt(sjt)

Rkt(sjt)

) 1+σ/ψ
σ+α(1−σ)

[
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

.

(A-1)

The following corollary gives us the total derivative of Πjt/Πkt with respect to sjt:

Corollary A-2. The right-hand side of equation (A-1) strictly decreases in sjt.

Proof. See third appendix.

The supply expansion effect makes the relative incentive to research in sector j decline in
the number of scientists working in sector j. However, when sector j’s share of resource
extraction increases in the relative quality of its technology, a positive feedback between
research and extraction maintains sector j’s research incentives even as more scientists move
to sector j. The proof shows, as is intuitive, that whether the relative incentive to research
in sector j declines in the number of scientists working in sector j is identical to whether
the equilibrium is tâtonnement-stable: tâtonnement-stability is not consistent with positive
feedbacks that are strong enough to overwhelm the supply expansion effect. And we have
already seen that interior equilibria are in fact tâtonnement-stable.

Second Appendix: Additional Numerical Results

Table A-1 presents simulations with a lower utility discount rate of 0.01%. The qualitative
results are unchanged. The main difference is that optimal policy now generates larger
welfare gains because welfare is more sensitive to longer-run climate impacts when agents
are more patient.

Third Appendix: Proofs and Derivations

This appendix derives useful intermediate results before providing proofs and derivations
omitted from the main text.

30Rearrange equations (12) and (13) to put all terms on the right-hand side. For given sjt, the Jacobian
of this system in Rjt and Rkt is negative definite.
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Table A-1: The sensitivity of business-as-usual outcomes and optimal policy to the elasticity
of substitution between types of energy (ε), using a lower utility discount rate of 0.01%.

ε

3 6 9 12 15

Emission Tax Only
Initial tax ($/tCO2) 52 52 42 31 26
Initial share of scientists in renewables (%) 26.4 30.5 32.3 32.2 32.2
Renewables’ share of supply in 2100 (%) 5.5 3.2 2.6 2.3 2.1
Balanced growth equivalent gain (%) 0.09 0.36 0.46 0.51 0.52

Research Subsidy Only
Initial subsidy (%) -11 29 20 16 14
Initial share of scientists in renewables (%) 0 100 100 100 100
Renewables’ share of supply in 2100 (%) 4.8 77 82 84 86
Balanced growth equivalent gain (%) 2.4 5.2 7.2 8.2 8.8

Emission Tax and Research Subsidy
Initial tax ($/tCO2) 215 14 11 10 9
Initial subsidy (%) -16 28 20 16 14
Initial share of scientists in renewables (%) 0 100 100 100 100
Renewables’ share of supply in 2100 (%) 4.8 77 82 89 90
Balanced growth equivalent gain (%) 3.1 5.2 7.2 8.2 8.8

In the no-policy case, the calibration ensures, for each ε, that 23% of scientists
initially work in renewables. The balanced growth equivalent gain (Mirrlees
and Stern, 1972) is the constant relative difference in consumption between
two counterfactual consumption trajectories that grow at the same constant
rate and also yield the exact same welfare as in the given model of policy and
in the no-policy model.

Useful Lemmas

First, note that equations (8) and (9) imply

Xjt =

[
1− κ
κ

pjRt

] ασ
σ(1−α)+α

[
Rjt

Ajt

] α
σ(1−α)+α

Ajt. (A-2)

Rearranging equation (10) and using sjt + skt = 1, we obtain sjt as an explicit function
of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an interior allocation:

sjt

(
Rjt

Rkt

,
Aj(t−1)

Ak(t−1)

)
=

(1 + ηγ)
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
− 1

ηγ + ηγ
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ . (A-3)
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Let Σx,y represent the elasticity of x with respect to y, and let Σx,y|z represent the
elasticity of x with respect to y holding z constant. The following lemma establishes signs
and bounds for elasticities that will prove useful:

Lemma A-3. The following hold, with analogous results for sector k:

1. ΣYt,Yjt ,ΣYt,Ykt ∈ [0, 1] and ΣYt,Yjt + ΣYt,Ykt = 1.

2. ΣYjt,Rjt|Xjt ,ΣYjt,Xjt ∈ [0, 1] and ΣYjt,Rjt|Xjt + ΣYjt,Xjt = 1.

3. If σ < 1, then ΣYjt,Xjt → 0 as Aj(t−1) →∞ and ΣYkt,Xkt → 0 as Ak(t−1) →∞.

4. ΣXjt,Ajt = σ(1−α)
σ(1−α)+α

∈ (0, 1)

5. ΣXjt,Rjt = ασ/ψ+α
σ(1−α)+α

∈ (0, 1]

6. ΣAjt,sjt =
ηγsjt

1+ηγsjt
∈ [0, 1)

7. Σsjt,Rjt = ψ+σ
ψ

2+ηγ
ηγsjt

Zt > 0, where Zt ∈
[

1+ηγ
(2+ηγ)2

, 1
4

]
. Σsjt,Rkt = −Σsjt,Rjt.

8. Σsjt,Aj(t−1)
= − (1−σ)(1−α)

Aj(t−1)

(2+ηγ)
ηγ

Zt, which is < 0 if and only if σ < 1. Zt is as above.

Σsjt,Ak(t−1)
= −Σsjt,Aj(t−1)

.

9. Σsjt,skt = −skt/sjt ≤ 0

Proof. Most of the results follow by differentiation and the definition of an elasticity. #1
follows from differentiating the final-good production function Yt(Yjt, Ykt); #2 follows from
differentiating the intermediate-good production function Yjt(Rjt, Xjt); #4 follows from dif-
ferentiating equation (A-2); #5 follows from differentiating equation (A-2) after using equa-
tion (2) to substitute for pjRt and using ψ ≥ α/(1 − α); #6 follows from differentiating
equation (5); #7 and #8 follow from differentiating equation (A-3); and #9 follows from the
research constraint.

To derive #3, note that

ΣYjt,Xjt =
(1− κ)X

σ−1
σ

jt

κR
σ−1
σ

jt + (1− κ)X
σ−1
σ

jt

.

From (7), (8), and (2), we have:

Xjt =Ajt

(
1− κ
κ

[
Rjt

Xjt

]1/σ

Ψ
−1/ψ
j R

1/ψ
jt

) α
1−α

=Ajt

(
1− κ
κ

Ψ
−1/ψ
j R

1
ψ

+ 1
σ

jt

) σα
σ(1−α)+α

.
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Xjt → ∞ as Aj(t−1) → ∞, which implies with σ < 1 that ΣYjt,Xjt → 0 as Aj(t−1) → ∞.
Analogous results hold for sector k.

To derive #7 and #8, define

Zt ,

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
[
1 +

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ ]2

and recognize that sjt ∈ (0, 1) implies(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt

Rkt

[
[Rjt/Ψj]

1/ψ

[Rkt/Ψk]1/ψ

]σ
∈
(

1

1 + ηγ
, 1 + ηγ

)
from equation (10).

Note that ΣX,A and ΣX,R are the same in each sector. I therefore often omit the sector
subscripts on these terms.

Using sjt

(
Rjt
Rkt
,
Aj(t−1)

Ak(t−1)

)
, the equilibrium is defined by equations (12) and (13), which are

functions only of Rjt and Rkt. Rewrite these equations as (suppressing the predetermined
technology arguments in sjt):

1 = κ νjA
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Yjt (Rjt, sjt (Rjt/Rkt))

]1/ε [
Yjt (Rjt, sjt (Rjt/Rkt))

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Gj(Rjt, Rkt),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Ykt (Rkt, sjt (Rjt/Rkt))

]1/ε [
Ykt (Rkt, sjt (Rjt/Rkt))

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Gk(Rjt, Rkt).

We have:

Lemma A-4. ∂Gj(Rjt, Rkt)/∂Rjt < 0 and ∂Gk(Rjt, Rkt)/∂Rkt < 0.

Proof. Differentiating yields:

∂Gj(Rjt, Rkt)

∂Rjt

=Gj

{
−
(

1

ψ
+

1

σ

)
1

Rjt

+

(
1

σ
− 1

ε

)
1

Yjt

[
∂Yjt
∂Rjt

+
∂Yjt
∂sjt

∂sjt
∂Rjt

]
+

1

ε

1

Yt

[
∂Yt
∂Yjt

∂Yjt
∂Rjt

+
∂Yt
∂Yjt

∂Yjt
∂sjt

∂sjt
∂Rjt

+
∂Yt
∂Ykt

∂Ykt
∂skt

∂skt
∂sjt

∂sjt
∂Rjt

]}
=
Gj

Rjt

{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
− 1

ε

[(
1− ΣYt,Yjt

)(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
.
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If the economy is at a corner in sjt, then Σsjt,Rjt = 0 and, using Lemma A-3, the above
expression is clearly negative. So consider a case with interior sjt. The final two lines are
negative. So the overall expression is negative if the third-to-last line is negative, which is
the case if and only if

0 ≥− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
=− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

)]
=− 1

ψ
+

1

σ
ΣYjt,Xjt

[
− 1 +

σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

]
, (A-4)

where I use results from Lemma A-3. Note that 2+ηγ
1+ηγsjt

Zt ≤ 3/4, which implies that

ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

σ(1−α)+α
< 1. Using this, inequality (A-4) holds if and only if

σ

ψ
≥ΣYjt,Xjt

−1 +
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)

1− ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

α+σ(1−α)

. (A-5)

2+ηγ
1+ηγsjt

Zt ≤ 3/4 implies that
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)
< 1, which implies that the right-hand side of

inequality (A-5) is negative. Thus, inequality (A-5) always holds and ∂Gj(Rjt, Rkt)/∂Rjt <
0.

The analysis of ∂Gk(Rjt, Rkt)/∂Rkt is virtually identical.

Now define the matrix G:

G ,

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

]
.

We have:

Lemma A-5. The determinant of G is positive.
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Proof. Analyze det(G):

det(G) ∝
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
{

1

ε

[
ΣYt,Ykt

(
ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYt,YjtΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
{

1

ε

[
ΣYt,Yjt

(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
−
(

1

σ
− 1

ε

)2

ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,RktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt ,

where I factored GjGk/RjtRkt. Use ΣYt,Y jt + ΣYt,Ykt = 1 from Lemma A-3 and cancel terms
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with 1/ε2 to obtain:

det(G) ∝
{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
− 1

σ

(
1

σ
− 1

ε

)(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Yjt[

−
(

ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Ykt[

−
(

ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]
. (A-6)

All lines after the first three are positive by results from Lemma A-3. Expanding the products
in those first three lines and rearranging, those first three lines become:

1

ψ2

+
1

σ2

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

(
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+

1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
, (A-7)
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where I write ΣX,R because this elasticity is the same in each sector. At corner allocations
of research, Σsjt,Rjt = Σsjt,Rkt = 0. In this case, (A-7) is clearly positive. Now assume an
interior allocation of research, so that Πjt = Πkt. Note that

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

=
1

ψ

σ

σ(1− α) + α

{
ψ[1− α]− α− (1− α)[σ + ψ]

(2 + ηγ)2

(1 + ηγsjt)(1 + ηγskt)
Zt

}
. (A-8)

Substituting for Zt and using equation (10) at Πjt/Πkt = 1, we have

Zt
(1 + ηγsjt)(1 + ηγskt)

=
1

[2 + ηγ]2
.

Equation (A-8) then becomes

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt =− σ

ψ
.

Substituting into (A-7), the first three lines of (A-6) are equal to

1

ψ2

− 1

ψ

1

σ

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

+
1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
. (A-9)

The final line is positive. Factoring 1/ψ, the first four lines are jointly positive if and only if:

0 ≤ 1

ψ
+

1

σ

[
(1− ΣX,R)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt − ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
=

1

ψ
+

1

σ

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− 1

σ

σ + ψ

ψ

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]
,

(A-10)

A-9



Lemoine Energy Transitions October 2018

where we use Zt
(1+ηγsjt)(1+ηγskt)

= 1
[2+ηγ]2

. Note that ΣYjt,Xjt+ΣYkt,Xkt−ΣYjt,XjtΣYkt,Xkt increases

in ΣYjt,Xjt and thus reaches a maximum at ΣYjt,Xjt = 1. Therefore,

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt ≤ 1 + ΣYkt,Xkt − ΣYkt,Xkt = 1.

Also note that ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) increases in each elasticity, and each
elasticity is ≤ 1. Thus,

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) ≤ (1 + ηγskt) + (1 + ηγsjt) = 2 + ηγ,

which implies (
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
≤ 1.

These results together imply that

α + σ(1− α)

≥α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
.

(A-11)

Using this, we have that inequality (A-10) holds if and only if

σ

ψ
≥
{
−
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}
{

1− 1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}−1

.

(A-12)

The denominator on the right-hand side is positive via inequality (A-11). The numerator on
the right-hand side is equal to:(

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)−1 +
1

σ(1− α) + α

α + σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
(2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)

 .

(A-13)
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Consider the fraction in brackets. If that fraction is ≤ 1, then the whole expression is
negative and we are done. I will now prove that the fraction cannot be > 1. Assume that
the fraction is > 1. Then:(

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
> (2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
⇔ηγsktΣYjt,Xjt + ηγsjtΣYkt,Xkt ≥ (1 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt

)
− (2 + ηγ)ΣYjt,XjtΣYkt,Xkt .

Assume without loss of generality that ΣYjt,Xjt > ΣYkt,Xkt . Then the left-hand side of the
last line attains its largest possible value when skt = 1. The inequality on the last line is
then satisfied only if

0 > ΣYjt,Xjt + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYjt,XjtΣYkt,Xkt . (A-14)

The right-hand side is monotonic in ΣYjt,Xjt . At ΣYjt,Xjt = 1, the right-hand side is

1 + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYkt,Xkt = 1− ΣYkt,Xkt ≥ 0.

But this contradicts inequality (A-14). Now consider the other extremum: ΣYjt,Xjt = 0. The
right-hand side of inequality (A-14) becomes:

(1 + ηγ)ΣYkt,Xkt ≥ 0,

which again contradicts inequality (A-14). Because the right-hand side of inequality (A-14)
was monotonic in ΣYjt,Xjt and was not satisfied for either the greatest or smallest possible
values for ΣYjt,Xjt , the inequality is not satisfied for any values of ΣYjt,Xjt . Thus, the fraction
in brackets in (A-13) is ≤ 1, which means that the right-hand side of inequality (A-12) is
≤ 0 and inequality (A-12) is satisfied. As a result, the first three lines of (A-6) are positive,
which means that det(G) > 0.

The next two lemmas establish how relative extraction and relative profit change with
the average quality of technology in sector j:

Lemma A-6. Define R(Ajt, Akt) , [Rjt(Ajt, Akt)/Rkt(Ajt, Akt)]. Then (i) ∂R/∂Ajt > 0
and (ii) ∂R/∂Ajt → 0 as Ajt →∞.

Proof. I begin by using the implicit function theorem on the two-dimensional system ob-
tained from equations (12) and (13). Rewriting previous expressions for Gj and Gk to hold
sjt fixed at some value s, the two-dimensional system becomes:

1 = κ νjA
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt = s)

Yjt (Rjt, sjt = s)

]1/ε [
Yjt (Rjt, sjt = s)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Hj(Rjt, Rkt; sjt = s),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt = s)

Ykt (Rkt, sjt = s)

]1/ε [
Ykt (Rkt, sjt = s)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Hk(Rjt, Rkt; sjt = s).
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Fixing sjt = s makes Ajt a parameter. I analyze the following:

∂R(Ajt, Akt)

∂Ajt
=
Rjt

Rkt

{
∂Rjt

∂Ajt

1

Rjt

− ∂Rkt

∂Ajt

1

Rkt

}
=
Rjt

Rkt

{
1

Rjt

− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)
− 1

Rkt

− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

}
=
Rjt

Rkt

1

det(H)

{
− ∂Hj

∂Ajt

[
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+
∂Hk

∂Ajt

[
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]}
.

(A-15)

Differentiation and algebraic manipulations (including applying relationships from Lemma A-
3) yield:

− ∂Hj

∂Ajt
=−Hj

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,XjtΣXjt,Ajt

1

Ajt
,

∂Hk

∂Ajt
=Hk

1

ε
ΣYt,YjtΣYjt,XjtΣXjt,Ajt

1

Ajt
,

1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

=
Hk

RjtRkt

{
− 1

ψ
− 1

σ
ΣYkt,Xkt

[
1− ΣX,R

]
+

1

ε
ΣYt,Yjt

[
ΣX,R − 1

][
ΣYjt,Xjt − ΣYkt,Xkt

]}
,

1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

=
Hj

RjtRkt

{
− 1

ψ
− 1

σ
ΣYjt,Xjt

[
1− ΣX,R

]
+

1

ε
ΣYt,Ykt

[
ΣX,R − 1

][
ΣYkt,Xkt − ΣYjt,Xjt

]}
.

Using these in equation (A-15), we obtain:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

1

det(H)

Rjt

Rkt

HjHk

RjtRkt

ΣX,A

(
1

σ
− 1

ε

)
ΣYjt,Xjt

(
1

ψ
+

1

σ
ΣYkt,Xkt [1− ΣX,R]

)
.

(A-16)

Now consider det(H). It follows from our analysis of det(G) with Σs,R = 0. Make this
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change in equation (A-6):

det(H) =
HjHk

RjtRkt

({
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,XjtΣXjt,Rjt

]}
{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,XktΣXkt,Rkt

]}
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Yjt

[
−
(

ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt

)]
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Ykt

[
−
(

ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt

)]
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt

][
ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt

])
.

Now analyze, using relations in Lemma A-3:

det(H) =
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

(
ΣYkt,Rkt|Xkt + ΣYkt,XktΣX,R

)
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣX,R

)
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣX,R

][
ΣYkt,Rkt|Xkt + ΣYkt,XktΣX,R

])

=
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

[
1− ΣYkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

[
1− ΣYjt,Xjt(1− ΣX,R)

]
+

1

ε

1

σ

[
1− ΣYjt,Xjt(1− ΣX,R)

][
1− ΣYkt,Xkt(1− ΣX,R)

])
.

From Lemma A-3, 1 − ΣX,R = σ
ψ
ψ[1−α]−α
σ(1−α)+α

. Substituting det(H) into equation (A-16), we

A-13



Lemoine Energy Transitions October 2018

have:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

Rjt

Rkt

ΣX,A

(
1

σ
− 1

ε

)
ΣYjt,Xjt

(
1

ψ
+

1

σ
ΣYkt,Xkt [1− ΣX,R]

)
({

1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

[
1− ΣYkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

[
1− ΣYjt,Xjt(1− ΣX,R)

]
+

1

ε

1

σ

[
1− ΣYjt,Xjt(1− ΣX,R)

][
1− ΣYkt,Xkt(1− ΣX,R)

])−1

(A-17)

>0.

We have established the first part of the lemma. To establish the second part, use Lemma A-3
in equation (A-17).

Lemma A-7. Fix sjt = s. If σ > 1 or σ is not too much smaller than 1, then Πjt/Πkt

increases in Aj(t−1). As Aj(t−1) →∞, Πjt/Πkt decreases in Aj(t−1) for all σ < 1.

Proof. To a first-order approximation, we have, with sjt fixed at s,

d ln[Πjt/Πkt]

dAj(t−1)

≈ 1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1 + σ/ψ

σ + α(1− σ)

∂Ajt
∂Aj(t−1)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

(1− α)(σ − 1)

σ + α(1− σ)
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

.

The first term is positive if and only if σ > 1 and, using Lemma A-6, the second term is
positive. Therefore the whole expression is positive if σ > 1. The first term becomes small
for σ close to 1. Therefore the second term dominates (and the whole expression is positive)
for σ not too much smaller than 1. Finally, Lemma A-6 shows that the second term goes
to 0 as Aj(t−1) → ∞ if σ < 1. Therefore the whole expression is negative if σ < 1 and
Aj(t−1) →∞.
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Finally, consider the evolution of relative extraction and thus of market size effects. From
equation (14), Rjt/Rkt increases in sjt. Define ŝt+1 as the unique value of sj(t+1) such that
sector j’s share of resource extraction increases from time t to t+1 if and only if sj(t+1) ≥ ŝt+1.
Lemma A-6 implies that ŝt+1 ∈ (0, 1).

Lemma A-8. If σ < 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≥ [Ψj/Ψk]
1/[(1−α)(1+ψ)].

If σ > 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≤ [Ψj/Ψk]
1/[(1−α)(1+ψ)].

Proof. The change in Rjt/Rkt from time t to t+ 1 is

Rj(t+1)

Rk(t+1)

− Rjt

Rkt

=
(Rj(t+1) −Rjt)Rkt − (Rk(t+1) −Rkt)Rjt

Rk(t+1)Rkt

∝
Rj(t+1) −Rjt

Rjt

−
Rk(t+1) −Rkt

Rkt

,

where the first equality adds and subtracts RjtRkt in the numerator and the second line
factors Rjt/Rk(t+1). To a first-order approximation, this is proportional to

1

Rjt

(
dRjt

dAjt

[
Aj(t+1) − Ajt

]
+

dRjt

dAkt

[
Ak(t+1) − Akt

])
− 1

Rkt

(
dRkt

dAjt

[
Aj(t+1) − Ajt

]
+

dRkt

dAkt

[
Ak(t+1) − Akt

])
,

with the derivatives evaluated at the time t allocation. Note that sjt is included in Ajt when
differentiating with respect to Ajt, which reflects that we will seek the allocation of scientists
that holds Rjt/Rkt constant. Defining Hj(Rjt, Rkt; sjt = s) and Hk(Rjt, Rkt; sjt = s) as in
the proof of Lemma A-6 and using the implicit function theorem, the previous expression
becomes:

1

Rjt

(
− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+
− ∂Hj
∂Akt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Akt

det(H)

[
Ak(t+1) − Akt

])

− 1

Rkt

(
− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+
− ∂Hk
∂Akt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Akt

det(H)

[
Ak(t+1) − Akt

])

∝
[
− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+

[
∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]
, (A-18)

where the second expression factors ηγ/det(H), which is readily seen to be positive by
altering the proof of Lemma A-5 to set the Σs,R terms to zero. Differentiation and algebraic
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manipulations (including applying relationships from Lemma A-3) yield:

− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt =−Hj

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,XjtΣXjt,Ajtsj(t+1)

−Hj
1

ε
ΣYt,YktΣYkt,XktΣXkt,Akt(1− sj(t+1)),

∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt =Hk

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,XktΣXkt,Akt(1− sj(t+1))

+Hk
1

ε
ΣYt,YjtΣYjt,XjtΣXjt,Ajtsj(t+1).

Substitute these and expressions derived in the proof of Lemma A-6 into (A-18) and factor
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ΣX,AHjHk/[RjtRkt]:{
− sj(t+1)

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,Xjt − (1− sj(t+1))

1

ε
ΣYt,YktΣYkt,Xkt

}
{
− 1

ψ
− 1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
(1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,Xkt + sj(t+1)

1

ε
ΣYt,YjtΣYjt,Xjt

}
{
− 1

ψ
− 1

σ
ΣYjt,Xjt

(
1− ΣX,R

)}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

}
− 1

ε2
ΣYt,YjtΣYt,Ykt

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]{
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

}
=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Ykt −

1

ε
ΣYt,Yjt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYkt,Xkt −

1

ε
ΣYt,YktΣYkt,Xkt −

1

ε
ΣYt,YjtΣYjt,Xjt

]}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Yjt −

1

ε
ΣYt,Ykt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYjt,Xjt −

1

ε
ΣYt,YjtΣYjt,Xjt −

1

ε
ΣYt,YktΣYkt,Xkt

]}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

− 1

ε
ΣYt,YjtΣYt,Ykt

[
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

]}
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=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYkt,Xkt

}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Yjt

]
ΣYjt,Xjt

}
− sj(t+1)

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YjtΣYjt,XjtΣYkt,Xkt + (1− sj(t+1))

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YktΣYkt,XktΣYjt,Xjt

=
1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ2

(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
− 1

σ

1

ε

(
1− ΣX,R

)
ΣYjt,XjtΣYkt,Xkt

(
2sj(t+1) − 1

)
=

1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ

(
1

σ
− 1

ε

)(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
.

Substituting for ΣX,R and rearranging, we obtain

1

ψ

(
1

σ
− 1

ε

)[
sj(t+1)ΣYjt,Xjt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYkt,Xkt

)
− (1− sj(t+1))ΣYkt,Xkt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYjt,Xjt

)]
. (A-19)

This expression is positive if and only if the term in brackets is positive. Define ŝt+1 as the
sj(t+1) such that Rjt/Rkt = Rj(t+1)/Rk(t+1). Then ŝt+1 is the root of the term in brackets.
Solving for that root, we have:

ŝt+1 =
ΣYkt,XktCjt

ΣYjt,XjtCkt + ΣYkt,XktCjt
, (A-20)

where Σw,z is the elasticity of w with respect to z and where

Cjt ,1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣYjt,Xjt > 0,

Ckt ,1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣYkt,Xkt > 0.

Thus, {
ŝt+1 ≥

1

2

}
⇔
{

ΣYkt,Xkt ≥ ΣYjt,Xjt

}
,
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where the right-hand side is evaluated at ŝt+1. Using the explicit expressions for the elas-
ticities, for intermediate-good production, and for Xjt and Xkt (see equation (A-2)), we
have:

ΣYkt,Xkt ≥ΣYjt,Xjt

⇔ 0 ≤
(1− κ)X

σ−1
σ

kt Y
σ−1
σ

jt − (1− κ)X
σ−1
σ

jt Y
σ−1
σ

kt

Y
σ−1
σ

kt Y
σ−1
σ

jt

(A-21)

⇔ 0 ≤X
σ−1
σ

kt Y
σ−1
σ

jt −X
σ−1
σ

jt Y
σ−1
σ

kt

⇔ 0 ≤κR
σ−1
σ

jt X
σ−1
σ

kt + (1− κ)X
σ−1
σ

jt X
σ−1
σ

kt − κR
σ−1
σ

kt X
σ−1
σ

jt − (1− κ)X
σ−1
σ

kt X
σ−1
σ

jt

⇔ 1 ≤


Rjt

[
1−κ
κ

(
Rkt
Ψk

)1/ψ
] ασ
σ(1−α)+α [

Rkt
Akt

] α
σ(1−α)+α

Akt

Rkt

[
1−κ
κ

(
Rjt
Ψj

)1/ψ
] ασ
σ(1−α)+α [

Rjt
Ajt

] α
σ(1−α)+α

Ajt


σ−1
σ

⇔ 1 ≤

[(
Ψj

Ψk

) ασ/ψ
σ(1−α)+α

(
Rjt

Rkt

)σ(1−α−α/ψ)
σ(1−α)+α

(
Akt
Ajt

) σ(1−α)
σ(1−α)+α

]σ−1
σ

⇔ 1 ≤
(

Ψj

Ψk

)χ 1
ψ

[α+σ(1−α)](
1 + ηγsjt
1 + ηγskt

)−χ 1
ψ

[α+σ(1−α)](Aj(t−1)

Ak(t−1)

)χ(1−α)[(1−σ)(1−α−α/ψ)−(1+σ/ψ)]

,

(A-22)

where the final line substitutes for Rjt/Rkt from equation (10) (which must hold for ŝt+1

interior) and where

χ ,
σ − 1

[σ(1− α) + α][1 + σ/ψ]
< 0 iff σ < 1.

The right-hand side of inequality (A-22) is increasing in sjt if and only if σ < 1. Therefore,
if σ < 1, then ŝt+1 ≥ 0.5 if and only if the strict version of the inequality does not hold at
sjt = 0.5, and if σ > 1, then ŝt+1 ≥ 0.5 if and only if the inequality holds at sjt = 0.5. If
σ < 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≥
[

Ψj

Ψk

]θ
,

and if σ > 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≤
[

Ψj

Ψk

]θ
,
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where

θ ,
− 1
ψ

[α + σ(1− α)]

(1− α)[(1− σ)(1− α− α/ψ)− (1 + σ/ψ)]
=

1

(1− α)(1 + ψ)
> 0.

Proof of Proposition A-1

The tâtonnement adjustment process generates, to constants of proportionality, the following
system for finding the equilibrium within period t:

Ṙjt =h

(
Gj(Rjt, Rkt)− 1

)
,

Ṙkt =h

(
Gk(Rjt, Rkt)− 1

)
,

where dots indicate time derivatives (with the fictional time for finding an equilibrium here
flowing within a period t), h(0) = 0, and h′(·) > 0. The system’s steady state occurs at the
equilibrium values, which I denote with stars. Linearizing around the steady state, we have[

Ṙjt

Ṙkt

]
≈h′(0)

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

] [
Rjt −R∗jt
Rkt −R∗kt

]
= h′(0)G

[
Rjt −R∗jt
Rkt −R∗kt

]
,

where G is the 2×2 matrix of derivatives, each evaluated at (R∗jt, R
∗
kt). Lemma A-4 implies

that the trace of G is strictly negative, in which case at least one of the two eigenvalues
must be strictly negative. Lemma A-5 shows that det(G) > 0, which means that both
eigenvalues must have the same sign. Therefore both eigenvalues are strictly negative. The
linearized system is therefore globally asymptotically stable, and, by Lyapunov’s Theorem
of the First Approximation, the full nonlinear system is locally asymptotically stable around
the equilibrium.

Proof of Corollary A-2

Now treat equations (12) and (13) as functions of Rjt, Rkt, and sjt (recognizing that skt =
1− sjt):

1 = κ νjA
ε−1
ε

Y

[
Yt(Rjt, Rkt, sjt)

Yjt(Rjt, sjt)

]1/ε [
Yjt(Rjt, sjt)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Ĝj(Rjt, Rkt; sjt),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt(Rjt, Rkt, sjt)

Ykt(Rkt, sjt)

]1/ε [
Ykt(Rkt, sjt)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Ĝk(Rjt, Rkt; sjt).
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This system of equations implicitly defines Rjt and Rkt as functions of the parameter sjt.

Define the matrix Ĝ analogously to the matrix G. Using the implicit function theorem, we
have

∂Rjt

∂sjt
=
−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
and

∂Rkt

∂sjt
=
−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)
.

Interpreting equation (10) as implicitly defining sjt as a function of Rjt and Rkt, we have:

∂sjt
∂Rjt

= −
∂[Πjt/Πkt]

∂Rjt

∂[Πjt/Πkt]

∂sjt

and
∂sjt
∂Rkt

= −
∂[Πjt/Πkt]

∂Rkt
∂[Πjt/Πkt]

∂sjt

,

and thus

∂[Πjt/Πkt]

∂Rjt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

and
∂[Πjt/Πkt]

∂Rkt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

.

Using these expressions, consider how the right-hand side of equation (A-1) changes in sjt:

d[Πjt/Πkt]

dsjt
=
∂[Πjt/Πkt]

∂sjt
+
∂[Πjt/Πkt]

∂Rjt

∂Rjt

∂sjt
+
∂[Πjt/Πkt]

∂Rkt

∂Rkt

∂sjt

=
∂[Πjt/Πkt]

∂sjt

− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)

∝− ∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

− ∂sjt
∂Rjt

∂Ĝj

∂sjt

∂Ĝk

∂Rkt

+
∂sjt
∂Rjt

∂Ĝj

∂Rkt

∂Ĝk

∂sjt
− ∂sjt
∂Rkt

∂Ĝk

∂sjt

∂Ĝj

∂Rjt

+
∂sjt
∂Rkt

∂Ĝk

∂Rjt

∂Ĝj

∂sjt

=−
(
∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂sjt

∂sjt
∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rjt

∂Ĝk

∂sjt

∂sjt
∂Rkt

)
+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂sjt

∂sjt
∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂Rkt

∂Ĝk

∂sjt

∂sjt
∂Rjt

=− det(G).

The third expression factored det(Ĝ), which is positive by the proof of Proposition A-1
for a corner solution in sjt, and it also factored ∂[Πjt/Πkt]/∂sjt, which is negative. The
final equality recognizes that the only difference between the equations with a hat and the
equations without a hat are that the equations without a hat allow sjt to vary with Rjt

and Rkt. Lemma A-5 showed that det(G) > 0. Thus the right-hand side of equation (A-1)
strictly decreases in sjt.
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Proof of Lemma 1

Under the given assumption that ν = 0.5 and Ψj = Ψk, we have Rjt = Rkt when Aj(t−1) =
Ak(t−1) and sjt = 0.5. Therefore, it is easy to see that Πjt/Πkt = 1 at sjt = 0.5 when
Aj(t−1) = Ak(t−1). By Lemma A-7, increasing Aj(t−1) increases Πjt/Πkt if either σ > 1 or σ
is not too much smaller than 1. In those cases, Corollary A-2 gives us that Aj(t−1) > Ak(t−1)

implies s∗jt > 0.5. The lemma follows from observing that Aj(t−1) > Ak(t−1) and Ψj = Ψk

imply that Aj(t−1)/Ak(t−1) > (Ψj/Ψk)
1/[(1−α)(1+ψ)].

Proof of Proposition 2

First, consider a case in which σ > 1 and in which Assumption 1 holds. From Lemma A-
8, ŝt+1 < 0.5. Therefore sjt0 > ŝt+1. Assume that sj(t0+1) < sjt0 . From equation (10),
Πj(t0+1)/Πk(t0+1) increases in Ajt0/Akt0 for any given sj(t0+1) if σ > 1. Therefore, for the
equilibrium to have sj(t0+1) < sjt0 , it must be true that Rjt0/Rkt0 > Rj(t0+1)/Rk(t0+1) and thus
sj(t0+1) < ŝt0+1. From Corollary A-2 and sjt0 > ŝt0+1, it must be true that Πjt0/Πkt0 > 1 when
evaluated at ŝt0+1. Because Rjt0/Rkt0 = Rj(t0+1)/Rk(t0+1) if sj(t0+1) = ŝt0+1 and Ajt0/Akt0 >
Aj(t0−1)/Ak(t0−1) by sjt0 > 0.5, it therefore must be true that Πj(t0+1)/Πk(t0+1) > 1 when
evaluated at ŝt0+1. By Corollary A-2, it then must be true that sj(t0+1) > ŝt0+1. We have a
contradiction. It must be true that sj(t0+1) ≥ sjt0 .

Because sj(t0+1) ≥ sjt0 > 0.5 > ŝt+1, it follows that Rjt0/Rkt0 ≤ Rj(t0+1)/Rk(t0+1) and
Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Therefore Assumption 1 still holds at time t0 + 1. Proceeding
by induction, sector j’s shares of research and extraction increase forever: resource j is
locked-in from time t0 if σ > 1 and Assumption 1 holds at time t0. We have established the
first part of the proposition.

Next, consider a case in which σ < 1 and in which Assumption 1 holds. Let time w ≥ t0
be the first time after t0 at which sector j’s share of extraction begins decreasing, so that
Rjx/Rkx ≤ Rj(x+1)/Rk(x+1) for all x ∈ [t0, w − 1] and Rjw/Rkw > Rj(w+1)/Rk(w+1), which in
turn requires sjx ≥ ŝx for all x ∈ [t0 + 1, w] and sj(w+1) < ŝw+1. Note that sjt0 > 0.5 implies
that Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Assume that sector j’s share of research begins declining
sometime after its share of extraction does, so that sjx ≤ sj(x+1) for all x ∈ [t0, w]. Then
we have Ajx/Akx > Aj(x−1)/Ak(x−1) for all x ∈ [t0, w + 1], and thus Ajx/Akx > [Ψj/Ψk]

θ for
all x ∈ [t0, w + 1]. Using this with Lemma A-8 and σ < 1 then implies ŝx+1 ≥ 0.5 for all
x ∈ [t0, w+2]. Combining this with the requirement that sjw ≥ ŝw, we have sjw ≥ 0.5. From
equation (10) and σ < 1, we then have sj(w+1) ≥ sjw only if Rjw/Rkw ≤ Rj(w+1)/Rk(w+1).
But that contradicts the definition of w, which required Rjw/Rkw > Rj(w+1)/Rk(w+1). Sector
j’s share of research must have begun declining no later than time w. We have shown that
a transition in extraction occurs only after a transition in research.

We now have two possibilities. We will see that the first one implies that sjx ≥ 0.5 at all
times x ∈ [t+ 1, w] and the second one generates a contradiction.
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First, we could have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ at all times x ∈ [t0 + 1, w]. Then by

Lemma A-8, ŝx ≥ 0.5 at all times x ∈ [t0 + 1, w]. The definition of time w then requires
sjx ≥ 0.5 at all times x ∈ [t0 + 1, w].

Second, we could have Aj(x−2)/Ak(x−2) < [Ψj/Ψk]
θ at some time x ∈ [t0 + 1, w]. In order

for this to happen, it must be true that sjx < 0.5 at some times x ∈ [t0 + 2, w].31 Let
z be the first time at which sjx < 0.5. Aj(t0−1)/Ak(t0−1) > [Ψj/Ψk]

θ and sjx ≥ 0.5 for all
x ∈ [t0, z−1] imply that Aj(z−2)/Ak(z−2) > [Ψj/Ψk]

θ, which implies by Lemma A-8 and σ < 1
that ŝz ≥ 0.5. So we have sjz < ŝz, which means that Rj(z−1)/Rk(z−1) > Rjz/Rkz. But this
contradicts the definition of time w as the first time at which sector j’s share of extraction
begins decreasing.

Therefore, we must have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ and sjx ≥ 0.5 at all times x ∈

[t0 + 1, w]. Observe that sjx ≥ 0.5 at all times x ∈ [t0, w] implies Ajx/Akx ≥ Aj(x−1)/Ak(x−1)

at all times x ∈ [t0, w]. We have shown that a transition in technology happens only after a
transition in extraction.

Finally, consider the first time z > t0 at which Rjz < Rkz. Assume that Ψj ≥ Ψk and
that sjx ≥ 0.5 for x ∈ [t0, z]. Assumption 1, Ψj ≥ Ψk, and sjx ≥ 0.5 imply Ajx ≥ Akx for
x ∈ [t0, z]. Using σ < 1, we see that Aj(z−1) ≥ Ak(z−1), Ψj ≥ Ψk, and Rjz < Rkz imply that
the right-hand side of equation (A-1) is < 1 when evaluated at sjz = 0.5. So by Corollary A-
2, time z equilibrium scientists must be less than 0.5. But sjz < 0.5 contradicts sjx ≥ 0.5
for x ∈ [t0, z]. Therefore, if Ψj ≥ Ψk, then there must be some time x ∈ [t0, z] at which
sjx < 0.5. We have shown that if Ψj ≥ Ψk, then sector k must begin dominating research
before it begins dominating extraction.

Proof of Proposition 3

First consider σ > 1. When s∗jt = 1, only Aj(t−1) changes over time, increasing by ηγAj(t−1)

at each time t. By Lemma A-7, Πj(t0+1)/Πk(t0+1) > Πjt0/Πkt0 if sj(t0+1) ≥ sjt0 . If sjt0 = 1,
then Πjt0 > Πkt0 , in which case Πj(t0+1) > Πk(t0+1) if sj(t0+1) = sjt0 . It is then an equilibrium
for s∗jt to equal 1 for all t ≥ t0. An analogous proof covers the case where s∗jt = 0.

Now consider σ < 1. If s∗jt = 1 for all t ≥ t0, then Aj(t−1) → ∞ as t → ∞ and, by
Lemma A-6, Rjt/Rkt goes to a constant. In that case, from equation (10), Πjt/Πkt goes
to zero for all sjt. But Πjt/Πkt cannot be zero if s∗jt = 1 because s∗jt = 1 implies that
Πjt/Πkt ≥ 1. We have contradicted the assumption that s∗jt = 1 for all t ≥ t0. Analogous
arguments show that it cannot be true that s∗kt = 1 for all t ≥ t0. It therefore must be true
that, for all t0, there exists some t > t0 such that s∗jt ∈ (0, 1).

31Recall that sjt ≥ 0.5 and sj(t+1) ≥ sjt imply sj(t+1) ≥ 0.5.
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Proof of Proposition 4

We know that Π∗jt/Π
∗
kt = 1 when s∗jt ∈ (0, 1). Assume that s∗jt ∈ (0.5, 1). By Lemma A-

7, Πj(t+1)/Πk(t+1) > 1 when evaluated at s∗jt. Therefore, by Corollary A-2, s∗j(t+1) > s∗jt.

Analogous arguments apply when s∗jt ∈ (0, 0.5).

Proof of Proposition 5

Assume σ < 1. We know from Proposition 3 that a corner research allocation cannot persist
indefinitely. Therefore, Ajt and Akt both become arbitrarily large as t becomes large. From
equations (8), (9), and (2), we have

Xjt =


[(

Rjt

Ψj

)1/ψ
1− κ
κ

] σ(1−α)
σ(1−α)+α [

Rjt

Ajt

] 1−α
σ(1−α)+α


α

1−α

Ajt

=

[
Ψ
−1/ψ
j

1− κ
κ

] σα
σ(1−α)+α

A
σ(1−α)

σ(1−α)+α
jt R

α(1+σ/ψ)
σ(1−α)+α
jt .

Xjt and Xkt thus also become arbitrarily large as t becomes large. This in turn implies that
Yjt → κ

σ
σ−1Rjt and Ykt → κ

σ
σ−1Rkt as t becomes large. From equation (14), we have:[
Rjt

Rkt

] 1
σ

+ 1
ψ

→ ν

1− ν

[
Ψj

Ψk

]1/ψ [
Rjt

Rkt

] 1
σ
− 1
ε

as t becomes large. Therefore, as t→∞,

Rjt

Rkt

→

{
ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

. (A-23)

Define Ωt , Ajt/Akt, so that

Ωt =
1 + ηγsjt

1 + ηγ(1− sjt)
Ωt−1. (A-24)

From Proposition 3, Π∗jt/Π
∗
kt = 1 for some t sufficiently large. Using this and equation (A-23)

in equation (10), we have:

1 + ηγs∗jt
1 + ηγ(1− s∗jt)

=Ω
−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.
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Therefore, from equation (A-24),

Ωt = Ω
1−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.

Define Ω̃t , ln[Ωt]. We then have:

Ω̃t = [1− (1− σ)(1− α)]Ω̃t−1 + ln


{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ .
This is a linear difference equation. For σ < 1, the coefficient on Ω̃t−1 is strictly between 0
and 1. The linear difference equation is therefore stable. The system approaches a steady
state in Ω̃t and therefore in Ωt. From equation (A-24), any steady state in Ωt must have
s∗jt = 0.5. Therefore as t→∞, s∗jt → 0.5. We have established the first result.

Equation (A-23) implies that if νj = 0.5 and Ψj = Ψk then R∗jt = R∗kt. Further, if νj ≥ 0.5
and Ψj ≥ Ψk with at least one inequality being strict, then R∗jt > R∗kt. Now substitute into
equation (10) and use sjt = 0.5:

Πjt

Πkt

→
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ


1+σ/ψ

σ+α(1−σ) [
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

=

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

(
νj

1− νj

) σ+ψ
σ+α(1−σ)

ε
ε+ψ
(

Ψj

Ψk

) ε−σ
σ+α(1−σ)

1
ε+ψ

,

and this must equal 1 because s∗jt = 0.5. Therefore, if νj = 0.5 and Ψj = Ψk then Ajt = Akt,
and if νj ≥ 0.5 and Ψj ≥ Ψk with at least one inequality being strict, then Ajt > Akt. We
have established the second and third results.

Finally, as t becomes large along a path with s∗jt = 0.5, using previous results in equa-
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tion (12) yields:[
Rjt

Ψj

]1/ψ

→κ νjA
ε−1
ε

Y

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

=κ νjA
ε−1
ε

Y

[
κ

σ
σ−1Rjt

Yt

]−1/ε [
κ

σ
σ−1

]1/σ

=κ νjA
ε−1
ε

Y

 κ
σ
σ−1Rjt

AY Yjt

(
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From equation (A-23), R∗jt/R
∗
kt becomes constant as t becomes large. Then from (A-25), R∗jt

approaches a constant. An analogous derivation establishes that R∗kt approaches a constant.
We have established the final result.
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