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1. Introduction 

Prevention of chronic disease has become a key health policy initiative in 

recent years. For example, the World Health Organization (WHO) provides a 

road map and menu of policy options that aim to reduce premature deaths 

due to chronic non-communicable diseases such as cardiovascular disease, 

cancer, and diabetes (WHO 2013). An important part of prevention is 

monitoring an individual’s health condition and intervening early enough to 

make a difference in the course of a disease. Traditional approaches include 

routine health checkups, cancer screening, and disease management 

programs. More recently, wearable and portable devices are gaining 

popularity, allowing people to monitor their own health in real time. 

Advocates suggest that such real-time health signals will lead to appropriate 

preventive care and improve health outcomes at a lower cost compared to 

conventional approaches, although others recognize that such signals are no 

panacea.1  

While the importance of prevention is hard to deny, relatively little 

attention has been paid to whether preventive care along different margins 

is worth its cost. The aim of this paper is to investigate this issue in the 

context of mandatory health checkups in Japan, focusing on risk for diabetes 

mellitus (DM). We first graphically look at whether health signals about risk 

of developing DM embodied in health checkup reports affect individuals’ 

medical care utilization, health behaviors, and health outcomes. We then 

econometrically examine whether the additional care triggered by a health 

signal is worth the cost.  

To identify the cost effectiveness or net value of preventive care, we 

apply a regression discontinuity (RD) design. We exploit the fact that health 

checkup results just below and above a threshold, e.g., the level of fasting 

blood sugar (FBS), may be viewed as random. People with measured values 

just above the threshold may receive more preventive care – such as further 

diagnostic tests and diabetes-related physician visits – compared to those 

with values just below the threshold. This additional care may lead to better 

health outcomes for the individuals just above the threshold, compared to 

those just below the threshold. By comparing the cost of care and health 

outcomes of these people, we can assess the cost effectiveness of providing 

preventive care around the threshold. Our RD analysis is a “fuzzy” one, 

                                                   
1 See for example discussion in Patel, Asch, and Volpp (2015). 
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where we use the status of surpassing a threshold as an instrumental 

variable for medical care utilization. This alleviates the endogeneity concern 

that an omitted variable such as the person’s health status, rather than the 

preventive care, affects health outcomes.  

Using Japanese data provides several key advantages. First, we can 

construct unique individual-level panel data, which consist of medical claims 

data, health survey data, and health checkup data. These data sets can be 

linked by a patient ID. This rich longitudinal data set allows us to examine 

how health signals embodied in a checkup affect the individual’s medical 

care utilization and health outcomes after the checkup. Second, an annual 

health checkup is mandatory in Japan; this mitigates concern about sample 

selection bias. Typically, health-conscious people are more likely to obtain 

health information by, for example, participating in health checkups or by 

using wearable devices, and this sample selection is likely to bias estimation 

results. Health checkups are mandatory in Japan, which alleviates this 

concern. Third, we have health outcome variables suitable for examining 

prevention. We apply a Japan-specific risk prediction model, the JJ risk 

engine (Tanaka et al. 2013), to our data to predict the 5-year risk of mortality 

and significant DM complications for each individual. These measures allow 

us to examine directly whether additional preventive care promotes health 

as measured by medium- and longer-run health outcomes. This is an 

advantage compared to only examining intermediate health measures such 

as FBS, HbA1c, and BMI that are more easily available but are also more 

difficult to interpret (Lipska and Krumholz 2017). 

DM is an important case to study because it is a costly and incurable 

chronic disease of growing incidence and prevalence, and accordingly one of 

the primary targets for prevention (WHO 2013). DM is often called a “silent 

killer”: individuals at first are asymptomatic and often not aware of the 

condition, but in the long-run suffer from various serious complications, 

including problems of the eye, heart, kidney, nerves, and feet. Recent 

research underscores the economic and human cost of DM: in 2014, 

approximately 422 million adults have diabetes worldwide, incurring costs 

estimated to total $825 billion per year (NCD-RisC 2016). DM can generally 

be prevented by early intervention to reduce lifestyle risk factors (such as 

smoking, unhealthy diet, sedentary lifestyle, and obesity). DM and 

pre-diabetes can be detected by elevated blood sugar levels (i.e., as measured 
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by fasting blood sugar (FBS) or hemoglobin A1c (HbA1c)), a diagnostic test 

commonly included in regular health checkups. Indeed, in Japan, 

policymakers consider this so important that in 1972 they mandated that all 

employees receive annual screening for elevated blood sugar, as we describe 

below. 

We have three main findings. First, at a relatively low diagnosis 

threshold (i.e., FBS=110 mg/dl) that corresponds to “borderline type” DM in 

Japan (sometimes called “pre-diabetes”), we find strong evidence that 

surpassing the threshold significantly increases medical care utilization as 

measured by DM-related physician visits and DM-related outpatient 

expenditures, including on medications. This finding indicates that people do 

respond to health signals by undertaking follow-up visits with physicians, 

and thus health signals can potentially promote preventive care. However, 

the absolute impact of the signal is small: exceeding the threshold increases 

the probability of visiting a physician for DM treatment by only 5 percentage 

points (albeit representing a 50% increase, i.e. from 10% to 15%). This small 

magnitude indicates that health signals do not effectively translate into 

preventive care for the majority of individuals in the present circumstances. 

Indeed, we also find no evidence that individuals improve their 

health-related behaviors (whether on their own or in response to physician 

advice during preventive care). One of the reasons for this low response rate 

may be the lack of intervention: currently, after receiving a warning, whether 

or not to visit a physician is entirely up to the individual; no one monitors 

response or reminds individuals about the importance of a follow-up visit.  

Second, despite the significant increase in medical care utilization at the 

“borderline threshold”, we find no evidence that the additional care improves 

health outcomes. This is true both for intermediate health measures (such as 

FBS, BMI, and SBP) and for predicted risks of mortality and serious 

complications using the JJ Risk Engine. Thus, we conclude that there is no 

evidence that DM-related medical care is cost effective around this threshold. 

The results hold both in the short-run (one year after a checkup) as well as in 

the medium- to longer-run (three years after a checkup). These results 

suggest that the threshold may need to be reexamined from the perspective 

of cost-effectiveness.  

Third, at a higher diagnostic threshold (i.e., FBS=126 mg/dl) above 

which the person is a “diabetic type,” we do not find robust evidence that 
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crossing the threshold increases medical care utilization or improves health 

outcomes. At first glance, these results are surprising, because the results 

indicate that people are less responsive to a signal of higher risk. However, 

inspections of actual checkup reports revealed that employers rarely flag this 

threshold in their health reports, and thus most individuals do not receive a 

health signal when crossing that threshold. Since almost all employers focus 

on the lower threshold to signal a warning of pre-diabetes, and neglect the 

threshold signifying the higher risk category of diabetes, we interpret our 

empirical results as suggesting that policymakers should re-consider the 

importance of sending a separate signal at each threshold when multiple 

diagnosis thresholds are of independent clinical significance. 

Assessing the cost-effectiveness of health interventions has a venerable, 

if challenging, history (Garber 2000). Whereas randomized controlled trials 

(RCTs) are the recognized gold standard for judging cost-effectiveness of 

various medical interventions, including prevention, RCTs are not always 

possible and their results may have limited external validity for several 

policy-relevant questions.2 Economists have employed multiple techniques 

to assess cost-effectiveness outside the context of a RCT, including exploiting 

national experiments (e.g. Finkelstein et al. 2012) and instrumental 

variables.3 A notable pioneer in using clinical thresholds to further this line 

of research is Almond et al. (2010), estimating marginal returns to medical 

care for at-risk newborns. Focusing on the “very low birth weight” threshold 

for newborns, Almond et al. (2010) find that those whose birth weights are 

just below the threshold receive more medical care and experience lower 

one-year mortality rates, compared to newborns with birth weight just above 

the threshold. These discontinuities allow them to conclude that medical 

care for at-risk newborns is cost effective around the threshold.  

                                                   
2 There is a huge literature on the cost effectiveness of pharmaceuticals and devices based 

on RCTs. However, such studies are often limited to a single medication or device and very 

few are able to capture the heterogeneity of treatment effects in the general population. The 

recent widespread application of RCTs in development economics has also highlighted the 

strengths and limitations of this approach (see for example Duflo, Glennerster, and Kremer 

2007 and Deaton 2010).  
3 See Doyle, Graves, and Gruber (2015) for an interesting recent example using random 

ambulance assignment, and Cawley (2015) for an excellent review highlighting common and 

creative instruments such as relative distance to a medical care provider offering the 

treatment, the provider’s historic tendency to administer the treatment, day of week of 

admission, or randomization of treatment for reasons other than research. Soumerai and 

Koppel (2016) provide a cautionary view. 
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While inpatient mortality is a salient outcome for at-risk newborns, it is 

not a feasible metric for cost-effectiveness of many other health interventions 

such as routine outpatient care, including preventive care. The difficulty of 

obtaining an appropriate measure of health outcome is a major obstacle in 

calculating cost effectiveness. We circumvent this problem by calculating 

predicted risks of mortality and significant DM complications, using the JJ 

Risk Engine.  

 Recently, the value of annual physicals has received renewed attention 

and our study also relates to this strand of research (e.g., Mehrotra and 

Prochzka, 2015; Goroll, 2015). For example, systematic reviews have found 

little evidence that annual physical checkups reduce morbidity or mortality, 

“though they may be associated with reduced patient worry and increased 

use of preventive care” (Mehrotra and Prochzka 2015, p. 1485).4  

Our study is also closely related to Zhao, Konishi and Glewwe (2013), 

Oster (2015), and Kim, Lee and Lim (2017). Using data from the China 

Health and Nutrition Survey (CHNS), Zhao, Konishi and Glewwe (2013) 

apply regression discontinuity analyses to estimate the causal effect of 

diagnosis with hypertension (in the 3-4 years since the previous wave of 

CHNS) on food consumption and use of anti-hypertensives. They find a 

significant increased use of anti-hypertensives, as well as reduced fat intake, 

particularly among the higher-income individuals told they had high blood 

pressure. Their results are indicative that health signals from check-ups can 

lead to behavioral change and preventive care, at least along some margins 

for some specific population groups.  

Evidence in higher-income contexts have generally been less 

encouraging about modifying long-term behavior with individual health 

signals. For example, studying consumers in the US, Oster (2015) finds that 

households with a newly diagnosed diabetic – inferred from household 

scanner data recording purchase of blood sugar testing strips –  exhibit 

little change in their food consumption behavior over the following months. 

She suggests that relatively modest “sin taxes” (e.g. on sugary sodas) or 

                                                   
4 Our study is also related to health technology assessment (Institute of Medicine 1985) and 

systematic review of preventive services (e.g. US Preventive Services Task Force 2009), as 

well as studies of the impact of health information on individuals’ health-related behavior 

such as smoking and healthy diets (Chern, Loehman and Yen 1995; Kim and Chern 1999), or 

response to diagnosis of hypertension (Neutel and Campbell 2008; Zhao, Konishi and 

Glewwe 2013).  
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subsidies of healthy fruits and vegetables might ultimately be more effective 

than individual health signals.  

In a recent working paper, Kim, Lee and Lim (2017) study the impact of 

screening for diabetes, obesity, and hyperlipidemia under the National 

Health Screening Program in Korea. They find that health checkup 

information combined with appropriate intervention (such as a follow-up 

consultation) can prompt positive behavioral change and improve physical 

measures such as BMI and waist circumference. Although closely related, 

our study differs from theirs in two important ways. First, we study whether 

preventive care is cost effective by taking into account the increase in 

medical expenditures triggered by health checkups, whereas the focus of 

Kim, Lee and Lim (2017) are the effects of health signals on health behaviors 

and health outcomes. Second, for the effects on health outcomes, we study 

not only intermediate physical measures (such as FBS and BMI) but also 

predicted risks of mortality or serious DM complications by utilizing risk 

prediction models. Studying the latter is important because it provides more 

direct evidence on whether health signals promote final health outcomes in 

addition to physical measures. 

The reminder of the paper is organized as follows. In Section 2, we 

briefly discuss mandatory health checkups in Japan and the key threshold 

values for DM diagnosis. Section 3 introduces our empirical model and 

Section 4 describes our data. In Sections 5 and 6, we report graphical and 

econometric results, respectively. Section 7 reports results from additional 

analysis, including long-run effects of preventive care. We conclude our study 

in Section 8. 

 

2. Background 

2.1.  Mandatory health checkups in Japan 

There are two types of mandatory health checkups in Japan. The first is 

the traditional mandatory health checkup based on the Industrial Safety and 

Health Act of 1972. Under this Act, employers must conduct a health 

checkup annually, and employees are also mandated to take one annually. A 

checkup must include a series of checkup items as listed in Appendix I, 

including fasting blood sugar (FBS) and hemoglobin A1c (HbA1c), both of 

which are commonly used to diagnose DM. The second mandatory health 
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checkup is the Specific Health Checkup introduced in 2008, which focuses on 

preventing metabolic syndrome (or lifestyle diseases). Insurers are 

mandated to conduct this checkup annually for the insured between age 40 

and 74. The checkup also monitors FBS and HbA1c levels. Usually, people 

receive only one of these two checkups each year. The former checkup fulfills 

the requirement of the latter if all required items are covered.  

In both checkups, people receive a report within one or two months after 

a checkup. Figure 1 shows an example of a report that an individual receives. 

If any checkup measure exceeds a threshold, the report typically gives a 

warning (such as “H” for high) for the item and recommends a visit to a 

physician for further consultation. Although conducting a health checkup 

with specific required screening items is mandatory, the government does 

not specify threshold values for each physical measure and employers and 

insurers that conduct a checkup determine their own thresholds. Also, after 

receiving a health warning, such as “H”, whether to visit a physician is up to 

the individual. The person has no obligation to make a visit, and the 

employer or the insurer is not obligated to monitor or enforce such a 

follow-up visit.  

If a person makes a physician visit after a checkup, fees for the visit are 

covered by health insurance, and we observe all the treatments made in our 

claims data. A physician has to record the name of the health condition for 

which the visit is made, and this information in the claims data allows us to 

identify DM-related physician visits. When the physician is not yet definitive 

about the diagnosis, the physician puts a “suspicion” flag on the diagnosis, 

which we also observe in our data. Because many physician visits triggered 

by health checkups may not have a confirmed diagnosis at the time of the 

initial physician visit, we include DM visits with or without a “suspicion” flag 

in our empirical analysis.  

 

2.2 Threshold values for DM diagnosis 

There are several thresholds that could trigger preventive care for DM. 

The Japan Diabetes Society (JDS), which issues treatment guidelines for DM, 

specifies FBS and HbA1c thresholds for DM diagnosis. Although DM can be 

diagnosed by alternative measures, such measures are rarely available in 
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regular checkups and thus we do not consider them in this study.5 FBS is the 

traditional measure used for DM diagnosis in many countries. The 

JDS-specified FBS threshold values for diabetes diagnosis and elevated risk 

of diabetes have remained unchanged since before our study period. 

Specifically, an individual with FBS greater than or equal to 126 mg/dl is 

considered a “diabetic type,” while an individual with FBS greater than or 

equal to 110 mg/dl but below 126 mg/dl is regarded as “borderline type.” 

People with borderline type have a high rate of developing DM (Seino et al. 

2010). A FBS value below 110 mg/dl is “normal type.”6 An alternative, newer 

measure used for DM diagnosis is HbA1c, which JDC adopted in July 2010. 

HbA1c greater than or equal to 6.5% signifies that an individual is “diabetic 

type.” 7  Additionally, HbA1c between 4.6% and 6.2% is considered the 

“standard value.”8 To summarize, the clinical thresholds for DM diagnosis 

are FBS=126 mg/dl or HbA1c=6.5%, and for pre-diabetes or “borderline type,” 

it is FBS=110 mg/dl. Additionally, HbA1c=6.3% is also considered a cutoff 

value. 

 

2.3 Empirical distribution of thresholds used in checkup reports 

As discussed in the previous section, there are four thresholds (i.e., 

FBS=126, 110 or HbA1c=6.5, 6.3) that are most relevant for diagnosing DM. 

However, employers do not have to adopt these values, because they are not 

legally bound to any specific signal to employees and can determine their 

own thresholds for reporting results of health checkups. Unfortunately, our 

data does not have information on the clinical threshold(s) that each 

employer adopts. As an alternative, we searched the Internet and 

investigated what thresholds are typically used in actual checkup reports. 

We found more than 50 checkup reports posted on the Internet that contain 

FBS and/or HbA1c thresholds. One of our first main findings is that in all 

reports, only one threshold (or standard range) is specified for each physical 

                                                   
5 For example, DM can be diagnosed by examining blood sugar two hours after 

ingesting 75 grams of glucose. Please see Seino et al. (2010) for more details. 
6 Starting in April 2013, JDS defines FBS value greater than or equal to 100 and less 

than 110 as “high normal.”  
7 In this paper, we express HbA1c values based on the National Glycohemoglobin 

Standardization Program (NGSP) values. 
8 Please see the following treatment guideline for DM: 

http://www.fa.kyorin.co.jp/jds/uploads/Treatment_Guide_for_Diabetes_2014-2015.pdf 
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exam measure. That is, no report defines two thresholds for one measure, 

such as both FBS=110 mg/dl and FBS=126 mg/dl.  

Figure 2 shows the “empirical” distribution of the thresholds obtained 

from our Internet search. It shows that for FBS, clinical thresholds at 110 

mg/dl and 100 mg/dl are both common. FBS=110 mg/dl corresponds to 

“borderline type,” as we discussed in Section 2.2. FBS=100 mg/dl is not a 

threshold for DM diagnosis, but corresponds to the threshold for metabolic 

syndrome screening. Understanding the effects of metabolic syndrome 

screening is also important, but it deserves a thorough investigation beyond 

the scope of this paper. Thus, we do not study the FBS=100 mg/dl threshold 

in this paper. FBS=126 mg/dl is the threshold that corresponds to “diabetic 

type.” However, as Figure 2 shows, almost no health checkup reports adopt 

this threshold. Thus, it appears that in Japan, individuals are not receiving 

independent signals from their required check-ups about both pre-diabetes 

and diagnosable diabetes FBS values. 

HbA1c thresholds exhibit a different pattern. In contrast to the FBS 

values, many more thresholds are used for HbA1c and, more importantly, 

these values are in close proximity. This makes it difficult to implement an 

RD approach because there is not a large enough “window” to identify the 

impact of each threshold. For example, to empirically examine a 

discontinuity at HbA1c=6.3% that is part of the “standard range,” we need a 

large number of observations just below and above the threshold. However, 

because many employers also use the HbA1c=6.0% threshold, only three 

data points, i.e., HbA1=6.0, 6.1, and 6.2, can be used to represent the data 

just below the 6.3% threshold. For these reasons, we use FBS values for our 

RD analyses in this paper.  

 

3. Empirical Model 

3.1 Regression discontinuity design   

We attempt to identify the effect of preventive care on health outcomes 

using an RD design. We exploit the fact that health checkup results just 

below and above a threshold may be viewed as random. We believe this is a 

reasonable assumption because blood sugar levels can go up and down and it 

is difficult for individuals to precisely control those levels. Moreover, since we 

focus on non-DM patients in our analysis, these people are typically neither 
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aware of their blood sugar levels nor have any incentive to manipulate them. 

People with measured values just above the threshold may receive more 

preventive care than those with values just below the threshold, such as 

further diagnostic tests and diabetes-related physician visits. This additional 

care may lead to better health outcomes (e.g., lower likelihood of developing 

diabetes and lower medium-to long-term cardiovascular mortality risk) for 

the patients just above the threshold, compared to those just below the 

threshold.  

A concern for identifying the effects of medical care on health outcomes 

is endogeneity. An omitted variable, such as the person’s health condition, 

which may be correlated with the amount of medical care, may also affect 

health outcomes. If so, this will bias the results. We address this issue by 

implementing a “fuzzy” version of RD, where we use the status of surpassing 

a diagnosis threshold as an instrumental variable for medical care 

utilization. Specifically, in the case of the FBS=110 mg/dl threshold, we 

estimate the following RD model. The first stage regression is as follows:  

𝐶𝑎𝑟𝑒𝑖𝑡 = 𝛼0 + 𝛼1𝐹𝐵𝑆110𝑖𝑡 + 𝛼2𝑍𝑖𝑡 + 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) + 𝐴𝑡 + 𝜇𝑖𝑡 ,   (1) 

where 𝐶𝑎𝑟𝑒𝑖𝑡  is medical care utilization of person i in year t. 𝐶𝑎𝑟𝑒𝑖𝑡 

represents one of the following three variables: i) DM_diagnosis: a dummy 

variable that equals one if person i makes at least one DM-related visit 

within a year after a checkup in year t and zero otherwise; ii) DM_visits: the 

total number of DM-related visits for person i within a year after a checkup 

in year t; and iii) DM_spending: DM-related outpatient medical spending 

(including spending on DM medications) for person i within a year after a 

checkup in year t. We construct these variables by aggregating 12 months of 

claims data after a checkup. Appendix II defines all the variables used in this 

study. 

𝐹𝐵𝑆110𝑖𝑡  is a dummy variable that equals one if person i’s FBS is 

greater than or equal to 110 mg/dl in year t, and zero otherwise. We define 

the other threshold value, 𝐹𝐵𝑆126𝑖𝑡, in the same way. 𝑍𝑖𝑡 captures person i’s 

demographics, including age, age squared, and gender. 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) is a 

function that controls for the FBS level in year t. We experiment with both 

linear and quadratic functional forms with respect to (𝐹𝐵𝑆𝑖𝑡 − 110) and 

allow their effects to differ before and after the threshold. 𝐴𝑡 are year fixed 

effects and αs are parameters to be estimated. 𝜇𝑖𝑡 is the error term which 
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we allow to be correlated over time.9 

The second stage regression is given by the following: 

𝑦𝑖𝑡+1 = 𝛽0 + 𝛽1𝐶𝑎𝑟𝑒𝑖𝑡 + 𝛽2𝑍𝑖𝑡 + 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) + 𝐴𝑡 + 𝜖𝑖𝑡 , (2) 

where 𝑦𝑖𝑡+1 captures a health outcome of person i in year t+1. As we discuss 

below, 𝑦𝑖𝑡+1 represents three types of outcome variables. The remaining 

variables are the same as in Equation (1). 𝛽𝑠 are parameters to be estimated 

and 𝛽1 is the RD coefficient, our main interest in this paper. 

The fuzzy RD approach is valid if our excluded instrument, 𝐹𝐵𝑆110𝑖𝑡, 

satisfies the following conditions. First, it is correlated with 𝐶𝑎𝑟𝑒𝑖𝑡  and, 

second, it affects health outcomes, 𝑦𝑖𝑡+1 , only through 𝐶𝑎𝑟𝑒𝑖𝑡 . We will 

examine these conditions in more detail later, but the second condition 

requires special attention from the outset. In particular, one may be 

concerned that the health signal (e.g., “H” for FBS) may not only increase 

medical care utilization but also independently alter the person’s 

health-related behaviors such as smoking and exercise habits (without a 

warning from the physician to stop smoking or engage in more exercise), that 

could also affect health outcomes. If this is true, the second condition above 

will be violated. Moreover, we note that whether health signals affect health 

behaviors is in itself an important policy issue. For these reasons, we test 

this hypothesis in our data by examining changes in reported health-related 

behaviors the year after the checkup. As we discuss in Section 7.4, health 

signals appear to have little effect on health behaviors, which supports the 

assumption required for identification.  

 

3. 2 Dependent variables 

We use two types of health outcomes as our second-stage dependent 

variable. The first captures intermediate health measures, including blood 

sugar level (FBS and HbA1c), body mass index (BMI), and systolic blood 

pressure (SBP). These physical measures are taken from the annual checkup 

in year t+1. Although these measures are objective and relatively easily 

measured, these metrics alone cannot tell us whether preventive care 

significantly reduces the health risks of DM. Therefore, we apply a 

Japan-specific risk prediction model, the JJ Risk Engine (Tanaka et al. 2013) 

                                                   
9 This is because we sometimes observe the same individual in multiple years.  
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to predict medium- and longer-term health outcomes. We use risk factors in 

year t+1 to calculate the individual’s predicted risk of mortality and 

significant DM complications in the following five years, including (i) risk of 

having a stroke, (ii) risk of developing coronary heart disease (CHD), and (iii) 

risk of non-cardiovascular (CV) mortality. The JJ Risk Engine uses patient 

demographics (e.g. gender and age), physical measures (e.g., BMI, HbA1c, 

blood pressure, cholesterol level), and health behavior (e.g., exercise and 

smoking) as inputs for calculating risks.10 Appendix III describes how we 

implemented the JJ Risk Engine using our data.  

It should be noted that the JJ Risk Engine is designed to predict risks 

for individuals with diagnosed DM without complications, not for predicting 

risks for individuals without DM. Most individuals in our sample are pre-DM 

patients whose risk factors fall outside the range used to construct the 

prediction model. While the engine allows us to calculate the risks even for 

pre-DM patients, we should be careful about interpreting the results because 

predicted risks of mortality and significant complications for pre-DM 

patients are based on extrapolation. For this reason, we checked the 

robustness of our results using a risk prediction model for cardiovascular 

outcomes of individuals without diagnosed diabetes (developed by the WHO 
and International Society of Hypertension). The results do not change with this 

alternative risk measure. 

 

4. Data 

Our data consist of medical claims data, health checkup data, and health 

survey data. All of these data can be linked by a patient ID. The data come 

from several employer health insurance groups and are provided by the 

Japan Medical Data Center (JMDC). As of April 2014, the JMDC claims data 

base covers 1.6 million members.11  Our data cover the period between 

January 2005 and December 2014. The claims data are monthly and we can 

track the person’s medical record as long as the person works for the same 

employer. Individuals usually have a health checkup once annually; our data 

includes the year and month of the checkup. A health survey – asking 

                                                   
10 We are extremely grateful for Shiro Tanaka and co-authors for providing the 

computer code for this project. 
11 JMDC claims data have been used by a number of studies, including Iizuka (2012) 

and Fukushima et al. (2016).  
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respondents about their self-assessed health and health-related behaviors – 

is conducted as part of a checkup and thus is usually the same month as the 

checkup.  

In this study, we are interested in the effects of preventive care on 

health outcomes and thus we focus on those who are not being treated for 

DM at the time of a health checkup. We include a checkup in our analysis if 

it meets the following conditions: i) the patient was not diagnosed with DM 

during the 6 months before the checkup, ii) we have data for the patient at 

least 6 months before the checkup, iii) we have data for the patient at least 

12 months after the checkup, iv) the patient was 30～64 years old at the 

checkup, and v) the patient had a checkup only once in a given year.  

Table 1 provides summary statistics for the variables used in the 

analysis. We have more than 1.7 million observations in our data set. Figure 

3 looks at the distribution of FBS values. It shows a smooth distribution of 

measured FBS values, with no apparent discontinuity at either the FBS=110 

mg/dl or FBS=126 mg/dl thresholds. More than 287,000 observations are 

available around the “borderline type” signal, i.e., measured values which 

fall between FBS>=100 and FBS<=119. We have fewer observations around 

the “diabetic type” signal, but we still observe more than 40,000 observations 

for the same bandwidth. 

An underlying assumption of an RD approach is that covariates do not 

exhibit a discontinuity at the threshold. To check whether covariates are 

balanced just before and after the thresholds, we plot the average values of 

our covariates, i.e., female and age, for each FBS value. As shown in Figure 4, 

there is no apparent discontinuity at the two thresholds for these variables, 

indicating that our covariates are reasonably balanced.  

In our data, we observe individuals only if they are working at the same 

company and while the health insurance group provides data to JMDC. To 

address a potential selection issue, in Figure 5 we plot whether attrition is 

related with the threshold values, where Attrition equals one if the person 

disappears from our data in the month after a checkup and zero otherwise. 

As shown in Figure 5, there is no apparent discontinuity at the thresholds, 

indicating that attrition is unrelated to cutoff values. 

 

5. Graphical analysis 
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We first graphically examine how people respond to health signals. In 

particular, we look at the two diagnosis thresholds for DM diagnosis, i.e., 

FBS=110 mg/dl or 126 mg/dl, and how people’s (i) health behavior, (ii) 

medical care utilization, and (iii) health outcomes change at the thresholds. 

 

5.1  Effects of “borderline type” signal 

Figures 6-9 present graphical analysis for the effects of the FBS>=110 

signal, above which the person is considered a “borderline type.” Figure 6 

clearly shows that all types of medical utilization significantly increase at 

the threshold. In particular, the probability of visiting a physician for DM 

increases about 5 percentage points (from 10% to 15%) at the threshold, and 

the total number of DM-related visits increases by approximately 0.2 per 

year. Similarly, the use of an oral glucose tolerance test (OGTT), an 

additional test to diagnose DM, significantly increases at the threshold. 

DM-related outpatient medical spending also increases by around 2,000 JPY 

(approximately US $20) per year. 

Whereas we observe a clear jump at the threshold, its absolute impact 

seems limited. For example, the probability of visiting a physician for DM 

increases about 5 percentage points at the threshold. Although this 

represents a 50% increase, it does not seem to be a large absolute magnitude, 

given that nearly 90% of people could potentially respond to the signal at the 

threshold (please see Figure 6). One reason for the low response rate may be 

that only half of those who exceed the threshold receive a warning signal of 

“borderline type,” as Figure 2 indicates. Moreover, people may discount the 

clinical importance of the “borderline type” signal even when they receive it.  

In contrast to Figure 6, we observe little change in health behavior 

(Figure 7) and health outcomes (Figures 8 and 9) at the threshold. In Figure 

7, the probability of “walking or exercising” appears to somewhat increase at 

the threshold, but other health behaviors exhibit little change. In Figures 8 

and 9, we observe virtually no discontinuities in health outcomes at the 

threshold, whether measured by intermediate health outcomes (Figure 8) or 

predicted 5-year risks of mortality and significant DM complications (Figure 

9).  

 

5.2  Effects of “diabetic type” signal 
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Figures 10-13 present the results for the FBS>=126 mg/dl threshold, 

above which the person is considered a “diabetic type.” Although this 

threshold represents a more serious signal of DM, responses are weaker than 

are those at the FBS>=110 mg/dl threshold. First, as shown in Figure 10, 

medical care utilization somewhat increases, but the impacts are smaller 

and less clear compared to those found for FBS>=110 mg/dl. For example, 

the probability of having a DM diagnosis increases only around 4 percentage 

points. This is smaller the impact found at the FBS=110 threshold. The 

result for DM-related outpatient medical expenditure now appears 

insignificant. Second, Figure 11 indicates that the signal has little effect on 

health behaviors, similar to the case of the FBS>=110 mg/dl threshold. Third, 

as shown in Figures 12 and 13, there is no clear evidence that the FBS>=126 

mg/dl signal improves health outcomes.12 

At first glance, it is surprising to find weaker responses at FBS>=126 

mg/dl than at FBS>=110 mg/dl, because individuals presumably would be 

more concerned about a signal of diabetes than pre-diabetes. However, the 

results are not surprising in light of what was revealed by Figure 2 – namely, 

that individuals rarely receive the diabetes signal because very few checkup 

reports adopt FBS=126 mg/dl as a threshold. Because people do not appear 

to receive a signal that they are a “diabetic type,” it is not surprising that 

they do not respond at the FBS>=126 mg/dl threshold. Of course, it is a 

serious concern if, as we suspect, high-risk people are not alerted that they 

are actually high risk. Such “false reassurance” could offset any health 

benefits of (possibly repeated) signals at lower thresholds. One implication of 

these results is that if multiple threshold values exist for a physical measure, 

it is important that separate signals be considered at each risk level, 

calibrated to the strength of the evidence and seriousness of the risk.  

 

6. Results from a fuzzy RD regression  

6. 1. First-stage results 

This section reports the results from the first-stage regression of the 

                                                   
12 In Figure 13, “risk for stroke” and “risk for non-CV mortality” appear to decrease 

somewhat at the threshold. However, if we estimate a regression as specified in 

Equation (1) using these health outcomes as the dependent variables, the coefficients 

for 𝐹𝐵𝑆126 dummies are not statistically significant in either case even at the 10 

percent confidence level (not reported).  
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fuzzy RD analysis, Equation (1). We estimate the model by using a window 

width of 5 mg/dl and 10 mg/dl. The 10 mg/dl width is the widest possible one 

in the case of FBS=110 mg/dl, as there is another cutoff at 100 mg/dl as 

shown in Figure 2. For the dependent variable 𝐶𝑎𝑟𝑒𝑖𝑡 , we employ two 

variables, i) total number of DM visits and ii) DM-related outpatient medical 

expenditure. To save space, we only report the coefficients for 𝐹𝐵𝑆110𝑖𝑡 and 

𝐹𝐵𝑆126𝑖𝑡.  

The results are reported in Table 2. For the FBS>=110 mg/dl threshold, 

the results clearly indicate that DM-related medical care utilization 

increases at the threshold (please see Panel A). These results are consistent 

with the graphical results presented in Figure 6. Specifically, the number of 

DM-related visits increases by 0.2 per year and this estimate is stable 

regardless of the window width (i.e., 5 mg/dl or 10 mg/dl) and the functional 

form (i.e., linear or quadratic). All of these estimates are significant at the 

one percent level. We also find that DM-related outpatient medical spending 

significantly increases at the threshold. Again, the coefficient for the 

threshold is significant at the one percent level in all models. The point 

estimates vary somewhat and indicate that spending increases between 

1,200 and 2,000 JPY (approximately US$ 12-20) per year, depending on the 

model. These results indicate that the FBS>=110 mg/dl threshold dummy 

variable is highly correlated with the amount of DM-related medical care 

and satisfies the condition for use as an excluded instrument.  

The results for the FBS>=126 mg/dl threshold are in stark contrast. As 

reported in Panel B of Table 2, only one coefficient for the threshold dummy 

variable is statistically significant. Consistent with the graphical analysis 

reported in Figure 10, there is no robust evidence that crossing the “diabetic 

type” threshold increases DM-related medical care, perhaps because 

individuals are not receiving a health signal at that threshold. 

 

6.2. Second-stage results 

Table 3 reports the results from the second-stage regression. As we 

discussed in Section 3, we use two types of health outcomes as our dependent 

variables, namely (i) intermediate health outcomes and (ii) predicted risks of 

mortality and significant DM complications. For the endogenous variable in 

Equation (2), we experiment with two variables, i.e., DM_visits (Panel A) and 
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DM_spending (Panel B), both of which are assumed to be sufficient statistics 

for DM-related medical care. We only report the results for the “borderline 

type” threshold because in Section 6.1 we did not find that medical care 

utilization increases at the “diabetic type” threshold.13  

The table shows that none of the coefficients are negative and 

statistically significant. Thus, there is no empirical evidence that the 

significant increase in DM-related medical care around the threshold 

improves health outcomes. While we only look at short-run effects in this 

section, as we report later in Section 7.2., we also do not find evidence of 

improvements in long-run health outcomes. Therefore the medical care 

triggered by the FBS>=110 mg/dl threshold does not appear to be cost 

effective. 

Please note that we have at least 54,000 observations in our regressions 

even when we use a narrow window width of 5 mg/dl. Moreover, the 

first-stage F-statistics are usually bigger than 20 except for some cases 

where we use the quadratic functional form with a narrow window width of 5 

mg/dl (not reported), indicating that the excluded instrument is strongly 

correlated with DM care, as anticipated by Figure 6. Thus the insignificant 

second-stage results are not because of the weak instrument problem. 

 

7. Additional analysis  

7.1. Longer-run effects on health outcomes  

So far, we have looked at short-run effects of health signals and found 

no evidence that additional care triggered by health signals improves health 

outcomes. However, medical care can have cumulative effects and thus we 

might observe stronger effects in the long-run.  

To assess this possibility, we graphically examine the effects on health 

outcomes three and five years after a checkup, focusing on the “borderline 

threshold” where we found significant short-run increases in medical care 

utilization. Figure 14 shows the effects on intermediate health outcomes: we 

find no apparent discontinuity at the threshold. The results for predicted 

risks of mortality and significant complications are similar, as shown in 

                                                   
13 Nonetheless, we also estimated the regressions for FBS>=126 mg/dl and found that 

the first-stage F-stats are less than 5 in all cases. This invalidates the instrumental 

variable approach, as we expected.  



pg. 19 
 

Figure 15. The results for five years after a checkup are similar, as reported 

in Figures A1 and A2 in the Appendix. Note that for these predicted risks of 

mortality and complications, we are in effect examining 10-year outcomes, 

since we use risk factors 5 years after the checkup to predicted outcomes for 

the next 5 years. In other words, for a 2009 checkup, we use blood pressure 

and other risk factors as measured in 2014 to predict probabilities of 

suffering a stroke, developing CHD, or non-cardiovascular mortality between 

2014 and 2019. Thus, even in the long-run, there is no evidence that 

additional care for DM (around the margin of “borderline type”) improves 

health outcomes. 

 

7.2 Effects on individuals who did not receive a signal in the previous year 

One might expect that some people are not health conscious and they 

may routinely ignore health warning signals even if they receive them. If we 

exclude these individuals, the effects of health signals on health outcomes 

and medical expenditures might be substantially larger. To explore such a 

possibility, we redo the analysis by focusing on individuals who did not get 

the “borderline type” signal in the previous year because their FBS values 

were below the threshold.  

In Figure A3, we report the results for medical care utilization. As 

before, the “borderline type” signal clearly increases medical care utilization. 

In fact, as expected, the impacts of the signal are slightly larger than what 

we reported in Figure 6. For example, as shown in Figure A3, the probability 

of visiting a doctor for DM increases by approximately 6 percentage points, 

as opposed to the 5-percentage-point increase found in Figure 6.  

In contrast, as reported in Figure A4, the effect of the health signal on 

health outcomes does not appear to be different. Similar to our previous 

result reported in Figures 8 and 9, there is no clear evidence that the 

“borderline type” health signal affects health outcomes. Our regression 

results confirm this finding (not reported). Thus, although individuals who 

did not receive the warning last year respond more to the signal as expected, 

additional medical care utilization still does not seem to improve health 

outcomes. Again, we find no evidence that preventive DM care around the 

“borderline threshold” of FBS=110 mg/dl is cost effective. 
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7.3 Alternative health outcome measure 

As an alternative to the predicted risks of mortality and significant 

complications using the JJRE, we also experimented with a risk measure 

calculated by the WHO risk prediction model (please see Appendix IV for 

how we implemented the risk model.) Unlike the JJRE, the WHO risk 

measure is based on individuals without diagnosed diabetes and thus 

complements the JJRE measures. As shown in Figure A5, there is no clear 

evidence that the “borderline type” and “diabetic type” signals affect the 

WHO risk measure. We also run the same regression models as before and 

found that the coefficients for the thresholds are not statistically different 

from zero (not reported). These results provide additional support for our 

finding that the health signals have little effect on health outcomes.  

 

7.4  Effects of health signals on health behaviors 

As discussed in Section 3.1, one concern for our identification approach 

is that after receiving a health signal, individuals may alter health behavior, 

which in turn may also affect health outcomes. If so, this makes it difficult to 

identify the impact of medical care utilization on health outcomes. Although 

we did not find evidence that medical care utilization affects health outcomes, 

in this section, we empirically examine the relationship between health 

signals and health behaviors by estimating Equation (1), using health 

behavior variables as the dependent variables. Specifically, we create 

dummy variables for (i) exercise or walk regularly, (ii) smoke, (iii) drink 

every day, and (iv) eat after dinner, and use them as the dependent variables. 

We perform this analysis for the “borderline type” threshold where the signal 

can potentially work as an instrument for medical care utilization.  

Table 4 reports the results. To save space, we only report the coefficients 

for the threshold dummy variables. As shown in the table, only one out of 32 

coefficients is statistically significant at the five percent confidence level. 

These results are in stark contrast to the results for medical care utilization, 

where we found all coefficients are significant at the one percent confidence 

level. Thus, we have no evidence that health signals affect health behaviors, 

and this result provides support for our instrumental variable approach. To 

the extent that preventive visits to physicians might also involve counseling 

to reduce lifestyle risk factors such as smoking and sedentary lifestyle, this 
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non-response along margins of health-related behavior could also be 

interpreted as further evidence of the lack of cost-effectiveness of preventive 

care at this margin. 

The result that people do not alter health behaviors after receiving a 

health warning is not surprising in the current context. As previously 

mentioned, when a physical health measure exceeds a DM diagnosis 

threshold such as FBS>=110 mg/dl, a checkup report usually recommends a 

visit to a physician, but typically does not recommend or provide programs 

for lifestyle changes. Moreover, lifestyle changes such as quitting smoking 

are notoriously challenging. These factors may help to explain why health 

behaviors change little after surpassing a diagnosis threshold for DM. At the 

same time, the result is worrisome from the perspective of preventing DM. 

 

7.5  Heterogeneous responses to health signals 

In Section 5.1, we found that, on average, the “borderline type” signal 

increases DM-related medical care utilization. This suggests that health 

signals can potentially help prevent DM by triggering physician visits. 

Responses to health signals may differ, however, depending on individuals’ 

characteristics. For example, health-conscious people may respond more to 

health signals, while those who have a present bias may be less responsive. 

Information on heterogeneous responses to health signals could potentially 

help inform the design of effective prevention programs. The aim of this 

section is to investigate heterogeneous responses to health signals.  

To investigate heterogeneous effects, we add two terms to Equation (1). 

The first is an individual characteristic of our interest, such as whether the 

person has a “poor eating habit,” and the second is its interaction with the 

threshold dummy variable, e.g., 𝐹𝐵𝑆110𝑖𝑡 . The coefficient for the latter 

indicates heterogeneity and is the main interest of this section.  

We look at three individual characteristics. First, we test the hypothesis 

that health-conscious individuals are more responsive to health signals, 

using “poor eating habit” as a proxy for being not health-conscious. A dummy 

variable, PoorEat, equals one if the person reports either eating before sleep 

or skipping breakfast.14  Second, we examine whether smokers are less 

                                                   
14 To be more specific, the dummy variable equals one if one “eats dinner within two 

hours of before sleeping three times or more a week” or “skips breakfast three times or 

more a week.” 
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responsive to health signals. Studies in behavioral economics (Laibson 1997, 

Chaloupka and Warner 2000, Gruber 2001, Volpp et al. 2009, Giné, Karlan, 

and Zinman 2010) have found that smokers have a present bias and tend to 

discount the future more than their non-smoking counterparts. These people 

may respond less to health signals, because they discount the benefits of 

good health in the future, which may result from today’s visit to a physician. 

Third, similarly, we also examine whether those who drink alcohol respond 

more to health signals.15 

Table 5 reports the results. We focus on the “borderline threshold” where 

DM-related medical care clearly increased. We use diagnosis of DM as the 

dependent variable and only report the coefficients for the FBS threshold 

dummy variable, individual characteristics, and their interaction term. Also, 

to save space, we focus on the quadratic specification.16 We find that as 

shown in columns (1) and (2), those who have a “poor eating habit” respond 

less to the health signal by 1.5-1.6 percentage points relative to all others. 

This effect is statistically significant at the one percent confidence level. We 

also find that smokers and drinkers are less responsive to the health signal 

relative to non-smokers and rare drinkers by 1.3 and 1.5-1.8 percentage 

points, respectively (please see columns (3)-(6)). In columns (7) and (8), we 

show the results that include all of the three variables at the same time. The 

coefficients for the interaction terms become somewhat smaller in this model 

but are still statistically significant in most cases. A simple summation of the 

three coefficients in column (8) reveals that the impact of the “borderline 

type” signal is reduced by half -- from 0.065 to 0.031 -- if the person has all 

three of these negative health habits.  

These results provide suggestive evidence that people respond to health 

signals differently and those who smoke, drink, and have unhealthy 

lifestyles (in term of eating habits) respond less to health signals. Note that 

these people are the primary targets of disease prevention and our results 

indicate that extra efforts are necessary to induce them to visit a physician. 

A caveat of this analysis is that our approach only suggests an association 

but not causation because some confounding factors may be correlated with 

the characteristics of our interest. A further analysis would be necessary to 

                                                   
15 Drinkers are those who drink alcohol “everyday” or “sometimes” as oppose to “rarely.”  
16 The results are similar for the linear specification and they are available from the 

authors. 
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more rigorously identify heterogeneous effects.   

 

8. Conclusions 

While the importance of preventive care is hard to refute, it is also true 

that not all preventive care can improve welfare. Using unique 

individual-level panel data, we investigated whether people respond to 

health signals and if so, whether medical care triggered by health signals is 

worth the cost. We did so in the context of mandatory health checkups in 

Japan, focusing on preventive medical care for DM. 

We find that, first, people respond to health signals and increase their 

probability of visiting a physician. This result confirms that health signals 

can potentially help prevent chronic diseases by bringing people to 

physicians’ offices. The result also implies that the thresholds adopted in 

health checkups or wearable devices should reflect the cost-effectiveness of 

preventive care. If, on the other hand, employers or device makers can freely 

determine the thresholds on their own, the result may exacerbate rather 

than mitigate wasteful over-use of some kinds of care while not effectively 

promoting use of medical resources that are under-used relative to their 

cost-effectiveness (Baicker, Mullainathan, and Schwartzstein 2015).  

 Second, our results also indicate that only a small fraction of people 

respond to health signals along the margins that we study, and thus that the 

absolute impact of health signals may be limited. We can think of at least 

two reasons for this low response. First, although employers notify 

employees about their physical measures from the health checkup, 

employers may not specifically communicate that the employee belongs to a 

higher-risk group such as “borderline type” or “diabetic type.” That is, the 

lack of a clear alert may explain the lack of response. Second, even when an 

individual receives a signal that he/she is a “borderline type,” currently, 

whether to respond by visiting a physician is entirely up to the individual: 

neither is there a mandate for the individual in question to visit a physician, 

nor are employers obligated to follow up with employees about the potential 

benefits of a visit. In this case, if preventive care is indeed cost-effective, then 

to make prevention work, a more interventionist approach may be necessary. 

Further analysis is needed to distinguish these explanations.17  

                                                   
17 Results from the National Health Screening Program in Korea suggest that clear 
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Third, most importantly, we do not find evidence that additional 

medical care triggered by health signals is cost effective. For the “borderline 

type” threshold, we find substantial increases in DM-related medical care 

utilization. However, health outcomes did not improve, either for physical 

measures (risk biomarkers) or for predicted risks of mortality or serious DM 

complications. Thus, there is no evidence that additional medical care is 

worth the cost around this threshold, and the current threshold may need to 

be reexamined. For the higher threshold value that corresponds to “diabetic 

type,” few people respond to this signal and thus we were unable to assess 

cost effectiveness at that margin.  

There are a large number of diagnosis thresholds that could trigger 

additional preventive care – primary, secondary, and tertiary prevention – 

and little is known about their cost effectiveness. While we focus on DM in 

our analysis, our approach can easily be applied to many other health 

conditions and clinically-relevant diagnostic criteria. Such analyses could be 

useful inputs for establishing appropriate diagnosis thresholds and 

conveying their significance to patients, leading to more efficient use of 

medical resources. 

 

  

                                                                                                                                                     
information combined with prompting for a follow-up consultation can lead to a higher 

response rate, with between 16% and 19% of individuals above the 126 threshold in the 

baseline check-up subsequently receiving a diagnosis of DM (Kim, Lee and Lim 2017). 
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Appendix I: Required checkup items (as of April 2008) 

 

1. Physician's health interview 

2. Height, body weight, abdominal girth, visual acuity, auditory acuity, 

subjective/objective symptom, blood pressure 

3. Chest X-ray 

4. Anemic analysis (hemoglobin content, erythrocyte count) 

5. Liver function (GOT, GPT, gamma-GTP) 

6. Blood lipid (TG, HDL-C, LDL-C) 

7. Blood Sugar (FBS or HbA1c) 

8. Urianalysis (Protein, Sugar) 

9. Electrocardiogram 

 

Source: Ministry of Health, Labour and Welfare (2008) 

http://www.mhlw.go.jp/new-info/kobetu/roudou/gyousei/anzen/dl/080123-3a.p

df (accessed 2016.12.29). 

  

http://www.mhlw.go.jp/new-info/kobetu/roudou/gyousei/anzen/dl/080123-3a.pdf
http://www.mhlw.go.jp/new-info/kobetu/roudou/gyousei/anzen/dl/080123-3a.pdf
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Appendix II: Definitions of variables (Do we have more variables to discuss?) 

Outcome variables  Definition  

DM-related 

outpatient medical 

spending  

･Total expenditures within 1 year of the checkup of all 

outpatient claims which include DM as one of the 

reported conditions being diagnosed or treated;  

・“Expenditures” are calculated from points as follows: 

(Total points of all outpatient claims which include “DM” 

as one of the conditions + Total points of pharmacy 

claims which include an anti-diabetic medication as one 

of drugs) 

・“DM drugs” are drugs categorized as A10 in ATC code 

Note:1 point = 10 YEN  

FBS / HbA1c / BMI / 

SBP  

・The values of FBS / HbA1c / BMI/SBP measured at the 

checkup a year after the index checkup  

Risk of Stroke / CHD 

/ non-CV mortality   

・The predicted 5-year risk of developing macro- and 

micro-vascular complications from Type 2 Diabetes, 

based on the risk factors (e.g. age, blood pressure, 

HbA1c) measured at the checkup a year after the index 

checkup. 

・These predicted risks are calculated from the JJRE 

equations as developed by Tanaka et al. (Diabetes Care 

2013)  

walking or exercising 

/ drinking everyday / 

smoking / eating 

after dinner / poor 

eating 

・Self-report of health habits (walking or exercising / 

drinking frequency) as measured in the health survey 

associated with the checkup a year after the index 

check-up 

・“walking or exercising” = 1 if  the individual reports 

exercising enough to work up a sweat for 30 minutes or 

more per day & 2~7 days per week. (“walking or 

exercising” = 0 otherwise.) 

・“drinking everyday” = 1 if he/she drinks every day. 

(“drinking everyday” = 0 otherwise.) 

 “smoking” = 1 if he/she has a habit of smoking. 
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(“smoking” = 0 otherwise.) 

 “eating after dinner” = 1 if he/she eats a midnight 

snack 3 days or more per week. (“eating after dinner” 

= 0 otherwise.) 

 “poor eating” = 1 if he/she has dinner within 2 hours 

of sleep or skip breakfast 3 days or more per week. 

(“poor eating” = 0 otherwise.)  

DM diagnosis 

(DMDX)  

・The rate of a diagnosis of diabetes (or at least rule-out 

diagnostic testing for diabetes) within 1 year of the index 

checkup 

・“diagnosis” is defined by the following 2 conditions: 

1. The individual has a claim that includes DM as one of 

the conditions; and 

2. Consultation days > 0. 

・“DM” are diseases categorized as E10~E14 in ICD10 

code.  

DM visits(DMDAY)  ・Consultation days for DM within 1 year of the checkup 

OGTT  ・Rate of conducting  an oral glucose tolerance test 

(OGTT) within 1 year of the checkup 
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Appendix III: Implementing the JJRE 

 

Measurement of medium and long-run health outcomes utilizes 5-year risk 

of developing CHD, stroke, or non-cardiovascular mortality as predicted by 

the Japan Diabetes Complications Study/the Japanese Elderly Diabetes 

Intervention Trial risk engine (JJRE) (Tanaka et al. 2013). The JJRE risk 

prediction model is similar to many other risk prediction models, such as the 

well-known Framingham cardiovascular disease risk model or the UK 

Prospective Diabetes Study (UKPDS) risk prediction model often used for 

estimating medium- and longer-term risks for individuals with diabetes. 

Such risk models use data from research studies to model how “risk factors” 

(or predictor variables), such as age, sex, and blood pressure, can predict 

specific health outcomes in the next 5 or 10 years. Most such models have 

been calibrated for non-Asian populations, and thus are not appropriate for 

our sample. The JJRE is specifically designed for predicting risks for a 

Japanese population. We are grateful to the JJRE authors for sharing their 

SAS program code with us.  

 

The JJRE incorporates 11 risk factors  to predict macro- and microvascular 

complications among Japanese patients with diabetes (without diabetes 

complications except mild retinopathy):  sex, age, HbA1c, years after 

diagnosis, BMI, systolic blood pressure, non-HDL cholesterol, 

albumin-to-creatinine ratio, atrial fibrillation, current smoker, and 

leisure-time physical activity. The model was developed based on data from 

1,748 Japanese type 2 diabetic patients pooled from two clinical trials. The 

JJRE “separately calculates each risk of the first occurrence for five events: 

fatal and nonfatal CHD, fatal and nonfatal stroke, noncardiovascular 

mortality, overt nephropathy, and progression of retinopathy” (Tanaka et al. 

2013, p.1194). 

 

We have used the JJRE code to calculate the risk of CHD, stroke, and 

noncardiovascular mortality in our data. We do not estimate risk of overt 

nephropathy or progression of retinopathy for Iizuka et al (2016), because 

our sample includes patients not diagnosed with diabetes and therefore the 

default (diabetic) values from the risk engine are not necessarily appropriate 
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for determining their 5-year risks of these diabetes complications.18  

 

Defining JJRE input variables 

We must use the JJRE default values for those values that we lack for our 

sample. For each risk factor used in one of the JJRE risk prediction 

equations, we code the risk factor as follows. 

 

LTPA (Leisure Time Physical Activity) 

 

LTPA is defined from two questions asked at the health check-up: 

EXERCISE==1 if the patient answers yes to the question “Have you been 

exercising at least twice a week (at least 30 minutes per session of light 

sweating) for over one year?” and 2 otherwise; WALK==1 if answer yes to the 

question “Do you walk or exercise to a similar degree daily for at least one 

hour?” and 2 otherwise). The amount of LTPA fits at least the JJRE 

categories if the self-reported answer to either of these questions is “Yes.”  

 

Then the variable LTPA is coded as follows: 

gen LTPA = . 

replace LTPA = 1 if EXERCISE == 1 | WALKING == 1 

replace LTPA = 0 if EXERCISE == 2 & WALKING == 2 

 

Duration of DM Diagnosis: 

 

Duration of diagnosis is defined as follows: In the JMDC dataset 

(4_diseases_x., where x signifies a year such as 2014), a variable named 

“FIRSTDX” (first diagnosis date) associated with each diagnosis code exists. 

We identified the first diagnosis year associated with diabetes for each 

patient in the cohort using data from 2005 to 2014. In the great majority of 

cases, this first diagnosis date remains constant throughout all 

diabetes-related visits in the data. However, where there are different values 

for FIRSTDX for a given patient over multiple visits, we took the earliest of 

the FIRSTDX variable. Duration of diabetes diagnosis in a given year is 

                                                   
18 However, to run the JJRE SAS model requires inputting values for all risk factors and 
outputting all five predicted risks; therefore, we utilize the JJRE default values for the risk 
factors that are missing in the JMDC data. 
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calculated as current year – min(FIRSTDX). Patients without two separate 

non-suspect (i.e. suspicion flag19=0) diagnoses of diabetes in two or more 

years are assigned a duration of diagnosis of 0 in all years. 

 

ACR 

 

JMDC does not report ACR values. We therefore assigned ACR a value of 60 

(the default value for a diagnosed diabetic in the JJRE) if a patient has two 

or more confirmed (non-suspect) diagnoses of diabetes in two separate years. 

Otherwise, a patient is assigned an ACR value of 30. 

 

NHDL-C (Non-High Density Lipoprotein Cholesterol) 

 

We estimated NHDL-C from the JMDC checkup data on HDL, LDL, and 

triglycerides, using the Friedewald formula: If TG<400, NHDL=LDL+(TG/5); 

otherwise if TG>=400, NHDL is set to missing. 

 

AF (Atrial Fibrillation) and DR (Diabetic Retinopathy) 

 

We used JMDC’s disease data files to determine whether an individual had a 

prior history of AF or DR. For each individual, we identified the earliest year 

he or she had a non-suspect diagnosis of AF (I48 Atrial fibrillation and 

flutter) and the earliest year the individual had a non-suspect diagnosis of 

DR (H36, E103, E113, E123, E133 or E143). Then, for each observation for 

which a JJRE risk calculation was conducted, we identified whether the 

earliest year of AF or DR is prior to the current year. If so, we set the dummy 

variables AF and/or DR to 1, and 0 otherwise. 

 

BMI (Body Mass Index) 

 

Height and weight are available in the JDMC checkup data and are reported 

in centimeter and kilograms. We calculated the BMI using the standard 

                                                   
19 The JMDC claims data includes a “suspicion flag” to demarcate claims in which the 
physician may suspect a given condition but has not definitively diagnosed it, such as a 
diagnostic rule-out test for a given medical condition like diabetes. We use “non-suspect” to 
describe claims lacking this suspicion flag (i.e. SUSPECT==0). 
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formula, weight (kg) / [height (m)]2 after converting height in centimeters to 

meters. 

 

All other variables (age, female, systolic blood pressure, smoking status, and 

HbA1c) were taken directly from the patient demographic file or the checkup 

file. 

 

We confirmed, for a random sample of PIDs with check-up data, perfect 

congruence between our JJRE predicted risks (from applying the SAS code to 

our JMDC data) and the JJRE predicted risks output from the web engine of 

JJRE (www.biostatistics.jp/prediction/jjre).  
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Appendix IV.  WHO Risk Prediction Model 
 
As an alternative risk prediction measure, we used the risk charts prepared by the World 
Health Organization (WHO) and International Society of Hypertension (ISH) to estimate 
10-year risk of a fatal or non-fatal cardiovascular event. Specifically, we use Figure 25 
Western Pacific region A which includes Japan (WPR A). This risk prediction chart, 
summarizing the WHO/ISH prediction model for 10-year risk of a fatal or non-fatal 
cardiovascular event by gender, age, systolic blood pressure, total blood cholesterol, 
smoking status and presence or absence of diabetes mellitus, is available at 
http://ish-world.com/downloads/activities/colour_charts_24_Aug_07.pdf.  
 

The WHO/ISH predicted risks summarized in the charts are in categories or ranges (not a 
continuous variable based on the continuous risk factors of each patient, such as the JJRE 
model). Therefore we produced the output variable “whorisk” as categorical variables, 
defined as follows: 
0 is a ten year risk of cardiovascular event of <10%; 
1 is 10% - < 20% 
2 is 20% - < 30% 
3 is 30% - < 40% 
4 is >= 40% 
 
The WHO/ISH chart lists age as 70, 60, 50 and 40.We classified patients into the 
WHO/ISH age categories as follows:  
a person falls in the 40 category if he/she is < 50; 
a person falls in the 50 category if (s)he is 50 to < 60; 
a person falls in the 60 category if (s)he is 60 to < 70; 
a person falls in the 70 category if (s)he is 70+. 
 
Systolic blood pressure (SBP) categories in the WHO/ISH chart are 180, 160, 140 and 
120 only; we classified an individual’s SBP as follows: 
if a person’s SBP is >= 180, he falls in the 180 category; 
if a person’s SBP is 160 to < 180, then he falls in 160; 
if a person’s SBP is 140 to < 160, then he falls in 140; 
if a person’s SBP is < 140, then he falls in 120. 
 
Total cholesterol is designated as 4, 5, 6, 7, and 8 mmol/l in the WHO/ISH model. 

http://ish-world.com/downloads/activities/colour_charts_24_Aug_07.pdf
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We calculated total cholesterol as TC = triglycerides * 0.2 + HDL + LDL in mg/dl; we 
multiplied this result by 0.02586 to convert mg/dl to mmol/l. Then individuals’ total 
cholesterol is classified into the following categories: 
< 5 —> 4 
>=5 to < 6 —> 5 
>= 6 to < 7 —> 6 
>= 7 to < 8 —> 7 
>= 8 —> 8 
 
The unit of observation is the checkup. Each individual has a predicted risk estimated for 
each checkup observed in the data. 
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Figure 1. An example of a checkup report 
CERTIFICATE OF HEALTH 

 

Name  Date of birth  

Under Medical Treatment None 

Medical History None 

Subjective Symptoms None 

Objective Symptoms No findings 

 
 2012/4/20 2011/4/10 2010/4/15 2009/4/18 Reference(or Normal) 

Age 47 46 45 44  
Physical 
Examination 

Height(cm) 171.8 171.9 171.8 171.8  
Weight(kg) 65.5 66.7 65.2 60.1  
BMI 22.2 22.6 22.1 20.4  
Waist Circumference 72.4 72.8 71.3 70.5  

Eye sight Without glasses(R/L) - - - -  
With glasses(R/L) 0.9¥1.0 0.8/0.7 0.9/0.9 1.0/1.0  

Hearing Right 1000Hz normal normal normal normal  
Right 4000Hz normal normal normal normal  
Left 1000Hz normal Impaired normal normal  
Left 4000Hz normal Normal normal impaired  
Method audiometer audiometer audiometer audiometer  

Chest X-ray Findings no findings no findings no findings no findings  
Method Direct direct Direct direct  
Film No. No.314 No.201 No.55 No.308  

Sputum examination normal normal normal normal  
Electrocardiogram examination normal normal normal normal  
Liver function ASL(GOT) 29 33 30 28 ≦35(U/L) 

ALT(GPT) 27 42 28 26 ≦35(U/L) 
γ-GTP 44 49 42 38 ≦55(U/L) 

Serum lipid 
concentration 

HDL cholesterol 45 41 43 44 ≧40(mg/dL) 
LDL cholesterol 110 113 103 99 <120(mg/dL) 

Neutral Fats 107 119 110 100 <150(mg/dL) 
Glucose 
metabolism 

FBS 108 H  112 104 H  115 ≦109(mg/dL) 
HbA1c(NGSP) 5.5 H  5.9 5.2 H  6.0 ≦5.8(%) 

Anemia test RBC 470 465 480 472 ≧400,≦539(10^4/μL) 
Hemoglobin 15.9 16.2 14.6 16.7 ≧13,≦16.6(g/dL) 

Blood pressure SBP 102 108 102 98 ≦130mmHg 
DBP 70 72 70 65 ≦85mmHg 

Uric acid Glucose (－) （－） （－） （－）  
Protein (－) （－） （－） （－）  

 
Figure 2. Empirical distribution of clinical threshold values 
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Figure 3. Distribution of FBS values 

 

 

Figure 4. Distribution of Covariates 

 

 

Figure 5. Attrition rate 
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Figure 6. Effects of FBS>=110 signal on medical care utilization     

 

 
 
Figure 7. Effects of FBS>=110 signal on health behavior 
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Figure 8. Effects of FBS>=110 signal on intermediate health outcomes  

 

 

 
 
Figure 9. Effects of FBS>=110 signal on predicted risks of DM complications 
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Figure 10. Effects of FBS>=126 signal on medical care utilization   

 

 
 
Figure 11. Effects of FBS>=126 signal on health behavior 
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Figure 12. Effects of FBS>=126 signal on intermediate health outcomes 

 
 
Figure 13. Effects of FBS>=126 signal on predicted risks of DM complications 
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Figure 14. Longer-run effects of additional DM care on intermediate health outcomes (FBS>=110 
mg/dl, 3 years after a checkup)  

 
Figure 15. Longer-run effects of additional DM care on predicted risks and complications 
(FBS>=110 mg/dl, 3 years after a checkup) 
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Figure A1. Longer-run effects of additional DM care on intermediate health outcomes (FBS>=110 
mg/dl, 5 years after a checkup) 

 
Figure A2. Longer-run effects of additional DM care on predicted risks of DM complications 
(FBS>=110 mg/dl, 5 years after a checkup) 
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Figure A3. Effects of “borderline type” signal on medical care utilization (for those who did not 
exceed the threshold in the previous year) 

 

Figure A4. Effects of “borderline type” signal on selected health outcomes (for those who did not 
exceed the threshold in the previous year) 
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Figure A5. Effects of “borderline type” and “diabetic type” signals on WHO risk 
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Table 1. Summary statistics 

N mean sd
【Explanatory variables】
age 1695412 45 8.26
FEMALE(0/1) 1695412 0.36 0.48
FBS 1695412 93 14.16
【health behavior】
SMOKING 1 year later(0/1) 1116472 0.30 0.46
EATAFTDN 1 year later(0/1) 923000 0.18 0.39
ALCHLFRQ 1 year later(0/1) 1045576 0.27 0.44
EXER_WALK 1 year later(0/1) 950440 0.44 0.50
SMOKING 3 years later(0/1) 473226 0.29 0.45
EATAFTDN 3 years later(0/1) 397252 0.19 0.39
ALCHLFRQ 3 years later(0/1) 444334 0.27 0.44
EXER_WALK 3 years later(0/1) 400492 0.44 0.50
SMOKING 5 years later(0/1) 134999 0.27 0.45
EATAFTDN 5 years later(0/1) 112409 0.20 0.40
ALCHLFRQ 5 years later(0/1) 127530 0.27 0.44
EXER_WALK 5 years later(0/1) 110795 0.51 0.50
【medical utilization】
DMDX(0/1) 1695412 0.06 0.24
DMDAY 1695412 0.24 1.81
GTTEXAM 1695412 0.00 0.02
DMOUTEXP 1695412 2621 25654.89
【health outcomes】
FBS 1 year later 1116568 93 14.03
HbA1c 1 year later 986728 5.46 0.49
SBP 1 year later 1178393 120 15.47
BMI 1 year later 1178514 22.8 3.43
CHD_R 1 year later 486752 0.02 0.02
STROKE_R 1 year later 486752 0.02 0.03
NonCV_R 1 year later 486752 0.01 0.01
whorisk 1 year later 704229 0.03 0.24
FBS 3 years later 444914 94 14.40
HbA1c 3 years later 393387 5.51 0.52
SBP 3 years later 481284 121 15.39
BMI 3 years later 481385 22.9 3.44
CHD_R 3 years later 217487 0.02 0.02
STROKE_R 3 years later 217487 0.03 0.03
NonCV_R 3 years later 217487 0.01 0.01
whorisk 3 years later 325040 0.03 0.23
FBS 5 years later 120206 96 15.34
HbA1c 5 years later 102694 5.58 0.55
SBP 5 years later 135803 122 15.15
BMI 5 years later 135807 23.0 3.46
CHD_R 5 years later 59579 0.02 0.02
STROKE_R 5 years later 59579 0.03 0.03
NonCV_R 5 years later 59579 0.01 0.01
whorisk 5 years later 100794 0.03 0.23  
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Table 2. Results from first-stage regressions 

 
 
Note: This table shows the results from Equation (1). Only the coefficients for the FBS>=110 mg/dl 
and 126 mg/dl thresholds are reported. Standard errors, corrected for clustering at the person level, 
are in parentheses. DM outpatient spending includes expenditures on DM drugs. “Dependent 
variable mean” reports the mean of dependent variable below the threshold. 
***: 1 % confidence level, **: 5 % confidence level, *: 10 % confidence level. 
 
  

Window=5 mg/dl Window=10 mg/dl
Linear Quad Dep.var. mean Obs. Linear Quad Dep.var. mean Obs. 

Panel A: FBS>=110 mg/dl
Dependent variable
  DM visits 0.191*** 0.182*** 0.336 116,725 0.154*** 0.185*** 0.271 287,594

(0.027) (0.042) (0.020) (0.028)
  DM outpatient spending 1,968*** 1,601*** 3573 116,725 1,249*** 1,902*** 2857 287,594

(340) (534) (263) (346)

Panel B: FBS>=126 mg/dl
Dependent variable
  DM visits 0.230 (0.150) 1.146 18,463 0.232** 0.222 0.981 42,292

0.046 (0.256) (0.103) (0.157)
  DM outpatient spending 1,022 2,295 11436 18,463 1,492 906 9684 42,292

(1,251) (2,246) (926) (1,415)
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Table 3 Results from second-stage regressions  

 
Note: This table shows the results from Equation (2). Only the coefficients for the endogenous 
explanatory variables are reported. Standard errors, corrected for clustering at the person level, are in 
parentheses. 
***: 1 % confidence level, **: 5 % confidence level, *: 10 % confidence level. 
 
  

Window=5 mg/dl Window=10 mg/dl
FBS>=110 mg/dl Linear Quad Obs. Linear Quad Obs. 
Panel A: Endogeneous variable = DM_visits
Dependent variables
  FBS (next year) 0.798 4.016** 77,755 1.271 0.963 191,992

(0.870) (1.878) (0.774) (0.930)
  HbA1c (next year) -0.011 0.000 71,185 0.015 -0.031 170,223

(0.034) (0.062) (0.027) (0.038)
  BMI (next year) -0.173 0.004 82,446 -0.101 -0.201 203,189

(0.240) (0.414) (0.200) (0.256)
  SBP (next year) 1.064 -0.351 82,428 0.663 0.326 203,161

(1.001) (1.744) (0.835) (1.063)
  Risk for stroke (next year) -0.001 -0.003 54,157 -0.001 -0.001 130,207

(0.002) (0.006) (0.002) (0.003)
  Risk for CHD (next year) -0.001 -0.003 54,157 0.000 -0.001 130,207

(0.001) (0.003) (0.001) (0.001)
  Non-CV mortality (next year) 0.000 -0.000 54,157 -0.000 -0.001 130,207

(0.001) (0.002) (0.001) (0.001)

Panel B: Endogeneous variable = DM_spending
Dependent variables
  FBS (next year) 0.065 0.390** 77,755 0.123 0.077 191,992

(0.071) (0.195) (0.076) (0.075)
  HbA1c (next year) -0.001 0.000 71,185 0.001 -0.003 170,223

(0.003) (0.006) (0.003) (0.003)
  BMI (next year) -0.015 0.000 82,446 -0.010 -0.018 203,189

(0.021) (0.041) (0.020) (0.022)
  SBP (next year) 0.095 -0.035 82,428 0.067 0.029 203,161

(0.090) (0.175) (0.085) (0.093)
  Risk for stroke (next year) -0.000 -0.000 54,157 -0.000 -0.000 130,207

(0.000) (0.000) (0.000) (0.000)
  Risk for CHD (next year) -0.000 -0.000 54,157 0.000 -0.000 130,207

(0.000) (0.000) (0.000) (0.000)
  Non-CV mortality (next year) 0.000 -0.000 54,157 -0.000 -0.000 130,207

(0.000) (0.000) (0.000) (0.000)
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Table 4. Effects of health signals on health behaviors 
Window=5 mg/dl Window=10 mg/dl

FBS>=110 mg/dl Linear Quad Obs. Linear Quad Obs. 

  Exercise or walk 0.005 0.007 64,751 0.008** 0.004 160,850
(0.006) (0.010) (0.004) (0.006)

  Smoking -0.005 -0.011 77,857 0.000 -0.009 192,176
(0.007) (0.012) (0.005) (0.007)

  Drink everyday -0.010 0.008 72,511 -0.010* -0.008 179,275
(0.007) (0.013) (0.005) (0.008)

  Eat after dinner 0.002 0.003 63,476 0.000 0.002 157,121
(0.006) (0.011) (0.004) (0.006)  

Note: This table shows the results from Equation (1). Only the coefficients for the FBS>=110 mg/dl 
and 126 mg/dl thresholds are reported. Standard errors, corrected for clustering at the person level, 
are in parentheses. 
***: 1 % confidence level, **: 5 % confidence level, *: 10 % confidence level. 
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Table 5: Heterogeneous responses to health signals 
(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES

Quadratic
Window=

5mg/dl

Quadratic
Window=
10mg/dl

Quadratic
Window=

5mg/dl

Quadratic
Window=
10mg/dl

Quadratic
Window=

5mg/dl

Quadratic
Window=
10mg/dl

Quadratic
Window=

5mg/dl

Quadratic
Window=
10mg/dl

FBS110 0.056*** 0.054*** 0.047*** 0.047*** 0.057*** 0.055*** 0.068*** 0.065***
(0.008) (0.005) (0.007) (0.004) (0.008) (0.005) (0.008) (0.006)

BADEAT -0.004 -0.001 -0.003 -0.000
(0.002) (0.001) (0.002) (0.001)

BADEAT*FBS110 -0.016*** -0.015*** -0.014*** -0.012***
(0.005) (0.004) (0.005) (0.004)

SMOKE -0.005** -0.005*** -0.004 -0.005***
(0.002) (0.001) (0.003) (0.001)

SMOKE*FBS110 -0.013*** -0.013*** -0.009* -0.008**
(0.005) (0.004) (0.005) (0.004)

DRINK -0.012*** -0.013*** -0.013*** -0.014***
(0.003) (0.001) (0.003) (0.001)

DRINK*FBS110 -0.018*** -0.015*** -0.015*** -0.014***
(0.005) (0.004) (0.005) (0.004)

Constant -0.150*** -0.059** -0.169*** -0.081*** -0.177*** -0.056*** -0.102*** -0.062**
(0.039) (0.024) (0.031) (0.019) (0.035) (0.017) (0.031) (0.024)

Observations 94,011 232,871 104,674 258,492 98,304 243,111 93,462 231,479
R-squared 0.018 0.025 0.017 0.024 0.018 0.025 0.019 0.026

 
Note: This table shows the results from Equation (1). The dependent variable is “DM diagnosis.” 
Only the coefficients for the FBS threshold dummy variable, individual characteristics, and their 
interaction term (our main interest) are reported. Standard errors, corrected for clustering at the 
person level, are in parentheses. 
***: 1 % confidence level, **: 5 % confidence level, *: 10 % confidence level. 
 




