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applies only to boys.
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Lead exposure in early childhood has been linked to diminished cognition, poor impulse 

control, inattention, and aggressive behavior (Wilson and Petersilia (1995), Needleman, Schell, 

Bellinger, et al. (1990), Needleman and Gatsonis (1991), Banks, Ferretti and Shucar (1997)).  

More recent studies seek to identify the effects of childhood lead exposure on crime by 

exploiting the de-leading of gasoline (Gronquist, Nilsson and Robling, 2014;  Mielke and 

Zahran, 2012;  Wolpaw Reyes, 2007 & 2015; Nevin, 2000 & 2007).1  These studies suggest that 

reductions in exposure to lead in early childhood could explain up to 90% of the sharp downward 

trend in crime in the U.S. that started in the mid-1990s.  However, there are many competing 

hypotheses for the large decreases in crime including abortion legalization (Donohue and Levitt, 

2001), the decline of the crack-cocaine epidemic, changes in the availability of handguns, 

demographic shifts, changes in the demand for unskilled labor, improvements in policing, and 

increases in the prison population (see Blumstein and Wallman, 2004 for a discussion).  Because 

so many of these factors co-vary, it can be difficult to distinguish the independent effect of any 

individual factor in a cohort analysis.2    

In this paper we shift away from an exclusive focus on crime, which is a rare child 

outcome (especially among girls).   We examine school disciplinary problems in addition to 

juvenile incarceration.  Disciplinary problems are of interest in their own right as a precursor to 

school failure and drop out, as an outcome that can be observed in even relatively young 

children, and as an indicator that may be predictive of future criminal behavior (Bernberg and 

1 Other work has exploited the addition of lead pipes to municipal water systems (Feigenbaum and Muller, 
forthcoming; Ferrie, Rolf and Troesken, 2012) as a source of variation in lead exposure to estimate the impact of 
lead exposure in early childhood on homicide rates and adult IQ, respectively.  See Rice (1992) for a summary of 
research on lead and aggression based on animal experiments. 
2 For example, California, in addition to de-leading gasoline ahead of the federal schedule, was also an early 
legalizer of abortion, and witnessed the early rise and decline of the crack-cocaine epidemic in Los Angeles.  
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Krohn, 2003; Mowen, 2016; Snyder and Sickmund, 2006).3  In our data, children who have been 

suspended from school are ten times more likely to be detained or incarcerated as adolescents or 

young adults.  Juvenile incarceration is one of the more extreme consequences of juvenile crime, 

and arguably has its own negative impact on the trajectories of affected adolescents.  Youth who 

are detained for even a short period are less likely to graduate from high school and more likely 

to recidivate as adults (Aizer and Doyle, 2015).  By examining school disciplinary problems as 

well as juvenile incarceration we provide a more nuanced picture of the effect of lead on anti-

social behavior. 

A second contribution is the use of unique individual-level data on all children born in 

Rhode Island between 1990 and 2004.  Preschool blood lead levels are linked to birth records, 

school disciplinary records, and data on juvenile incarcerations.  The relationship between lead 

exposure and juvenile anti-social behavior is likely to be confounded both by omitted variables 

and by measurement errors in blood lead levels.  Omitted variables might be expected to lead to 

overstatements of the effects of lead since disadvantaged children are more likely to be exposed 

to lead.  Measurement error could be expected to either attenuate or exaggerate the estimated 

effects of lead, depending on its form.   

A third contribution is to develop two distinct identification strategies.  Our first strategy 

exploits the fact that there are multiple measures of blood lead for the same child for 70-80% of 

our sample, or sometimes for multiple children in a family.  Hence it is possible to instrument 

one blood lead measure with another for either the same child or a sibling, while at the same time 

3 This relationship could reflect differences in underlying behavior, a causal relationship through a labeling effect, or 
an “incapacitation effect” of being in school.  Monahan et al. (2014) compares outcomes for the same child over 
time and finds that during periods when children are suspended from school, they are more likely to be arrested 
compared with periods during which they are in school.   
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controlling for child, family and neighborhood characteristics.  Under the null hypothesis that the 

errors are uncorrelated (as they would be, for example, if they originated mainly from common 

random laboratory measurement errors) this procedure provides an effective way to deal with 

attenuation bias due to measurement error in blood lead levels.   

Our second identification strategy can be used with all children (not just those with 

multiple measures or siblings), and focuses on the children most affected by exposure to residual 

lead from busy roads within a neighborhood.  Before the de-leading of gasoline, the lead in car 

exhaust fell within 25-50 meters of the road, such that the soil near roads was historically more 

contaminated with lead than soil further from roads (Milberg et al, 1980; Fu et al, 1989).  

Consistent with this observation, we show that for children born in the early 1990s, there is a 

strong relationship between child blood lead levels and traffic on roads within 25-50 meters of 

the child’s residence.  However, the amount of lead in soil has declined over time following the 

de-leading of gasoline between 1979 and 1986, and so too has the relationship between road 

proximity and child blood lead levels.  We find that for those born in 2004, lead levels vary little 

with proximity to traffic.   

We adopt an instrumental variable approach that exploits the greater decline over time in 

child lead levels for those with more exposure to traffic within a neighborhood.   Our instrument 

is an interaction between birth year and proximity to high traffic roads within a neighborhood.  

We show that over this time period there was little change in the background characteristics of 

children living near high traffic roads, providing some support for the assumed exogeneity of the 

instrument.  Nor do conditions appear to be improving more generally for those near busy roads: 

Birth weight, which is very sensitive to maternal conditions and air pollution, does not change 

over time with exposure to traffic.   
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We find that both school disciplinary infractions and juvenile incarceration rise with 

preschool blood lead levels.   Surprisingly, all our IV estimates indicate that simple ordinary 

least squares (OLS) estimates considerably understate the negative effects of lead.  Since lead 

exposure is associated with other measures of disadvantage that tend to predict worse child 

outcomes, one might have expected OLS estimates to overstate lead’s effects.  Thus, our results 

point to mismeasurement of lead exposure as an important source of bias that has been largely 

ignored in previous research.   

The IV estimates suggest that a one unit increase in blood lead levels (BLLs) increased 

the probability of suspension from school by 6.5 to 7% for boys and by 6.4 to 9.3% for girls, 

depending on the instrument and specification.  For incarceration, we find significant effects 

only for boys.  The estimates for incarceration are less precise (given low levels of detention in 

the sample) and vary from a 27% to a 74% increase for each one unit increase in BLLs.  

Nevertheless, our results are consistent with the large estimated effects of lead on crime in earlier 

cohort-based studies and support the hypothesis that reductions in blood lead levels may indeed 

have been responsible for a significant part of the observed decrease in anti-social behavior 

among youths and young adults in recent decades. 

 

II. Background 

Lead mimics calcium in the body and interferes with all systems that require calcium to 

function effectively including the renal, cardiovascular, and nervous systems.  Children absorb 

lead via ingestion or inhalation and once absorbed, lead impairs brain development and disrupts 

neurotransmitter function in ways that negatively affect cognition, attention and short term 
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memory, and reduce impulse control.   Children are more susceptible to lead than adults: 

Whereas nearly all of the lead taken into an adult body will leave in waste within weeks, for 

children only a third of the lead taken in will leave in waste (US Dept. of Health and Human 

Services, 2007).  

Once lead is either ingested or inhaled, it enters the blood stream and is deposited in soft 

tissues and organs including the brain.  It does not remain in the blood for long (the half life of 

lead in blood is 36 days), suggesting that a single blood lead measure could fail to capture all but 

recent exposures.  Sampling or laboratory errors also add random noise to lead measurement that 

could lead to under-estimates of the effects of lead exposure, as discussed further below.  

Historically, the two main sources of lead in the environment were gasoline and 

household paint.4   Beginning in the mid-1920s, lead was added to gasoline in order to improve 

engine functioning.  With the increase in traffic over the 20th century, the amount of lead from 

automobile exhaust increased dramatically from 0.3 tons per 1000 people in 1937 to 1.3 tons by 

1974 (Nevin, 2000).  By 1971, mounting evidence of the negative health effects of lead 

culminated in the U.S. Surgeon General’s pronouncement that lead and childhood lead poisoning 

was a public health hazard (U.S. Surgeon General, 1971).  In response, the federal government 

banned the addition of lead to household paint starting in 1978 and required the phase-out of lead 

from gasoline over the period 1979 to 1986.5  As a result, the amount of new lead in the 

environment fell back to its 1937 level within a few years (Laidlow and Filipelli, 2008).   

 Lead in automobile exhaust, because of it’s weight, generally fell within 25-50 meters of 

the automobile/road.  As a result, because of the greater (historical) traffic in urban areas, 

4 A third historical source is lead smelters, with significant but localized exposure. The last lead smelter in the U.S. 
was closed in 2013.  
5Gasoline was mostly de-leaded by 1986 and completely de-leaded by 1996.  
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concentrations of lead in soil are highest in urban areas, and within urban areas, the soil is most 

contaminated near roadways (Batelle, 1998; Lejano and Ericson, 2005; Filipelli et al, 2005). 

Children absorb this residual lead from soil via inhalation and/or ingestion.  Sometimes 

children eat soil (pica) but inhalation through roadside soil resuspension is more common 

(Laidlaw and Filipelli, 2008).  Resuspension is positively related to the amount of turbulence 

generated by weather and by vehicles passing (Lough et al, 2005).  This resuspension of lead in 

the air outside of homes is responsible for roughly half of lead found inside homes.6  Open doors 

and windows are the primary ways in which lead bearing dust enters, but in old homes even 

closed, “leaky” doors and windows can represent a major pathway for lead dust (Sayre and 

Katzel, 1979).  Lead is also frequently tracked into homes via shoes and clothing (Hunt et al, 

2006).  

In a review of the literature on the sources of lead poisoning among urban children, 

Laidlaw and Filippelli (2008) conclude that “interior paint AND pb-enriched soils are both 

harmful sources of Pb to children, with paint the likely culprit in cases of acute Pb poisoning, 

and soil an important source of Pb in the myriad examples of chronic Pb poisoning of urban 

children” (page 2023).   As we will see, there are many cases of low level lead exposure in our 

data and relative few cases of what appears to be acute lead poisoning leading us to focus on lead 

deposited in soil in this analysis.  

Fortunately, the amount of lead in soil has been declining over time as a result of physical 

and geochemical transformations.  Over time, lead in the soil near roadways gets washed out, 

blown or tracked away, and/or complexed onto soil particles, posing less of a threat to children 

6 One study found that half of the lead in house dust in 10 homes in Jersey City came from sources outside of the 
home such as soil (Agate et al., 1998a). 
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(Ming et al, 2012; Datko-Williams, Wilkie and Richmond-Bryant, 2014).  The decline in 

bioavailable lead in soil over time has been greater in areas near roads than in areas far from 

roads, since the former started with much higher levels which then decayed over time.  This 

convergence in lead levels between areas near and far from busy roads provides one source of 

identifying variation that we will use to estimate the causal impact of lead on future behavior, as 

described below. 

Lead paint remains a threat in many older homes.  Aizer et al. (2017) examine the effect 

of a Rhode Island program that aimed to reduce children’s exposure to lead paint by requiring 

landlords to obtain lead-safe certificates in order to rent their homes beginning in 1997.  The 

younger cohorts in our study are likely to have benefitted both from the de-leading of gasoline 

and from the certificate program.  However, the certificate program targeted particular Census 

tracts, rather than distance to roads.  We show below that controlling for the number of 

certificates that had been issued in the Census tract where the child lived as of the time of their 

first lead test (a proxy for the intensity of the lead paint clean up efforts) has little impact on the 

estimates reported below which are identified by variation in lead in soil near roads.   

Disadvantaged children are more likely to live in urban settings which in turn have more 

lead as a result of greater traffic congestion and an older housing stock.  Even within urban 

settings, disadvantaged children have higher blood lead levels because they disproportionately 

reside in neighborhoods characterized by both greater road density and the oldest homes (Jacobs 

et al, 2002; Rowangould, 2013).  As we will show below, these patterns also hold in Rhode 

Island and hence OLS estimates may be biased by unobserved confounders that are correlated 

with both lead exposure and worse child outcomes.   
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While disadvantaged children are more likely to be exposed, it is also possible that the 

same lead burden has a greater effect on poor and minority children.  Billings and Schnepel 

(2015) show for example, that intensive intervention is helpful in reversing the effects of lead 

poisoning.  To the extent that more advantaged children are more likely to receive such 

interventions they may suffer less harm than other children.  Poor nutrition (especially iron and 

zinc deficiency) increases the absorption of lead in a child’s system (Landrigan et al, 1976), and 

poor children may be more likely to have such deficiencies.  In addition, recent research based 

on animal experiments suggests a strong interactive effect between stress (which is more 

prevalent among the disadvantaged) and exposure to lead.7  Hence, in what follows we will ask 

whether the estimated effect of a unit exposure to lead appears to be different for more 

disadvantaged children. 

However, it is possible that disadvantaged children who display the same behaviors as 

other more advantaged children are more severely punished via suspensions or juvenile 

incarceration (Rocque, 2010; Kinsler, 2011).  So while we can observe whether some children 

suffer a greater burden from lead exposure in terms of suspensions and incarcerations, we will 

not be able to directly attribute observed differences to differences in a child’s underlying 

behavior rather than to differential responses of society to the child’s behavior. 

 

III. Data 

A. Lead and Child Outcomes in Rhode Island 

7 Two animal experiments include Amos-Koohs et al, 2016 and Cory-Slechta et al, 2010. 
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In order to estimate the relationship between preschool child blood lead levels and later 

problem behavior, we have created a unique data set for Rhode Island children born between 

1990 and 2004.  Data on each child’s preschool blood lead levels from the state Department of 

Health’s (RIDOH) screening program (1994-2010) is linked with information from the Rhode 

Island Department of Education (RIDE) on in-school disciplinary infractions resulting in 

suspension from school for school years 2007-2008 through 2013-2014.  This data is then linked 

to information from the Rhode Island Training School, the state’s juvenile detention facility 

(which houses juveniles up to age 17) as well as to data from all state correctional institutions 

(which house individuals age 18 and older).  Data on detentions is available for 2004-2014.8 

The state of RI is an ideal place to study the effects of lead on future outcomes because of 

the state’s aggressive lead screening program.  Reports from 2001 to 2011 indicate that over 70 

percent of all children had at least one lead screen by 18 months and the screening rate was 

roughly constant over this time period, ranging from 71 to 75 percent (RIDOH, 2011).  Children 

on Medicaid and children living in Providence have slightly higher screening rates.9  

In contrast, the national screening rate ranged from 22 (in 2002) to 30 percent (in 2010) 

(Raymond, Wheler and Brown, 2014).  In many jurisdictions children are screened only if there 

is some reason to suspect lead poisoning, so that the sample of children who are tested is not 

representative of all children in the jurisdiction.  Given the high screening rates in RI, the sample 

with lead tests is much more similar to the state-wide population of children.  Moreover, because 

8 The number of years for which we have outcome data for individuals in our sample varies. Year of birth is strongly 
predictive of years of outcome data available and therefore including year of birth fixed effects in our analysis 
implicitly controls for the number of years of outcomes data.  However some children might leave the state or repeat 
a year in school and this would change the number of years for which we have outcome data. In our analyses, we 
also control for the number of years of suspension data that we have for each individual.  
9 In Providence, nearly 90% of all children have a BLL by kindergarten entry (McClaine et al, 2013) and 80% of 
children on Medicaid in the state had been screened for lead by 36 months (Vivier et al, 2001). 
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children without obvious symptoms were tested, we have a large sample of children with 

relatively low lead levels and can examine the effects of these low lead levels on outcomes. 

 Blood lead levels (BLLs) were measured multiple times for most RI children between 

birth and the age of 6.  Seventy-three percent of children with at least one BLL have more than 

one BLL.  The data for each test include the BLL, the age of the child in months, method of 

collection (capillary vs. venous), and the child’s address at date of measurement. Blood lead is 

not normally measured for children over 6 years old so in all cases we are examining the 

relationship between preschool BLLs and later juvenile or young adult outcomes.  

There is significant measurement error in blood lead levels that derives from three 

sources.  The first two concern mismeasurement in each individual blood test.  The CDC sets an 

acceptable range for measurement error at 4 ug/dL or 10 percent, whichever is greater (Parsons 

and Chisolm, 1997).  At BLLs below 10 ug/dL, this margin represents a considerable amount of 

noise.  Moreover, the sample can be contaminated, though this is less common.  Contamination, 

if it occurs, is more likely in blood drawn via a finger prick (capillary method) than a needle 

(venous method).  For this reason, venous measures are typically considered more accurate 

measures of child BLLs.10   The third source of measurement error relates to the fact that the half 

life of lead in blood is approximately 36 days.  As such, lead levels in whole blood indicate 

mainly recent exposure, although “there can be variable (but not dominant) input to total blood 

lead concentration from past exposure” (National Research Council,1993).  

10 A review of the research comparing measures of BLL from capillary and venous sampled drawn on the same day 
suggest a strong correlation between capillary and venous measures, and while capillary measures tend on average 
to be slightly higher, it does happen that venous measures can be higher than capillary measures (Parsons, Reilly and 
Essernio-Jensen, 1997). 
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These sources of noise or error in measures of blood lead levels can lead to either over or 

under estimates of a child’s true lead burden in OLS regression.  Random errors of the type 

implied by the CDCs margins of error would tend to cause understatement of the estimated 

effects of lead.  The short half life of lead in blood would tend to lead to understating the extent 

of lead exposure, and thus overstating the estimated effect of lead on outcomes in OLS 

regressions.  As we will show below, the evidence suggests that in practice measurement error 

leads to considerable understatement of the effects of lead. 

Because we have on average 3 tests per child, we will have a noisy measure of lead 

burden over the child’s first 72 months of life, but one that we will show is considerably more 

informative than a single measure of blood lead would be.  To generate a summary measure of 

blood lead levels for each child, we calculate the geometric mean over all tests, a procedure that 

minimizes the influence of outliers and is consistent with the existing literature.   

The data on disciplinary infractions includes the reason for the disciplinary infraction, the 

type of discipline, a scrambled school ID, year of infraction, student race, gender, ethnicity and 

free lunch status for school years 2007/8 to 2013/14.11  For each child we have, on average, five 

years of infractions data.  With these data we construct a single summary outcome measure: 

Whether the child was ever suspended.  Roughly 20% of children in our sample were ever 

suspended compared to 24% who ever had any sort of disciplinary infraction suggesting that 

most students who ran afoul of school authorities were eventually suspended.  Our second 

outcome is whether the child was ever detained in the state’s juvenile detention center or state 

11 For all infractions: 37% are for disorderly conduct or disrespectful behavior, 10% for fighting/assault, 28% for 
skipping school or detention, 4% for threats/harassment and 1% for drugs.  For infractions leading to suspension, 
36% are for disorderly conduct/disrespectful behavior, 15% for fighting/assault, 21% for skipping school/detention,  
6% for threats/harassment, and 2% for drugs. Fifty-five percent of infractions resulted in suspension.  
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correctional facility.  In our sample, 1.1% of all children were ever detained or incarcerated 

(1.8% of boys).  When we examine this measure, we limit our data to children born between 

1991 and 1999 because few younger children are detained or incarcerated.   

For a subset of these records, those born in the state of RI after 1996, we also have linked 

vital statistics natality data (birth certificates).  The natality data include child birth weight, birth 

order, maternal marital status, age and education at time of birth.  They also include a maternal 

identifier that allows us to identify siblings in the data.  

Table 1 provides an overview of our data.  There are significant disparities in blood lead 

levels by race and income, just as one sees in national data (Raymond, Wheeler and Brown, 

2014).  For all children, the average preschool BLL of children in our sample is 3.8 micrograms 

per deciliter (ug/dl); for white children, the average is 3.4 ug/dl, while Black and Hispanic 

children have levels of 5.3 ug/dl and 4.5 ug/dl respectively.  If we categorize the sample by free 

lunch status (i.e. children who were ever observed to receive free school lunch), the average BLL 

of free lunch children is 4.5 ug/dl compared with an average BLL of 3.0 ug/dl among students 

who always paid for their lunch.  Note that BLLs of less than 5 ug/dl (10 in the earlier years of 

our data) were unlikely to be treated in any way over most of our sample period.  Treatment 

consists of chelation, which involves removing circulating lead from blood, but does not remove 

lead that has already been deposited to organs such as the brain. 

These overall means mask important trends in both lead levels and disparities over time. 

Over time, both average lead levels and disparities by race and income have declined 

considerably (see Appendix Figures 1 and 2).  Among children born in 2004, the average lead 
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level had declined by 3.2 ug/dl, the black-white gap had shrunk from 3.6 to 0.8 ug/dl and the 

income gap (free lunch vs paid) had shrunk from 2.7 to 0.9 ug/dl.   

The dramatic declines in lead levels were accompanied by large declines in disciplinary 

infractions that were likewise greater for African-American children and free lunch children.  

Table 1 shows that overall, about 24 percent of children had a disciplinary infraction over the 

time period that we observe them, and 20 percent were suspended.  These rates are more than 

double for African-American compared to white children.  Appendix Figures 3A and 3B show 

that rates of infractions were falling over the time period, though they are quite different for 

different grade levels.  Interestingly, middle school students have the highest rates of disciplinary 

infractions, though this may reflect high rates of drop out in higher grades (assuming that the 

most disruptive students drop out).  Rates of juvenile detention are very low in the full sample at 

only 1.1 percent, but rise to 3.5 percent among African-Americans, and 5.9 percent among 

African-American males.   One sees similar gaps in juvenile detention between free lunch and 

paid lunch children with rates of 3.2 percent vs. .3 percent among males in these two groups, 

respectively. 

The rest of Table 1 traces out the familiar pattern of disadvantage that one might expect.  

In addition to higher lead levels, African-American and free lunch children tend to have less 

educated mothers, younger mothers, single mothers, lower birth weight, and more siblings as 

reflected in a higher birth order.  These differences highlight the challenges involved in 

separating the effects of lead from the effects of other disadvantages. 
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B. Lead and Exposure to Traffic 

In order to measure a child’s potential exposure to residual lead in soil near roads, the 

data on child blood levels were matched, based on the child’s geocoded address at the time of 

each test, to data on Rhode Island roads from the RIGIS E-911 data for the period 2001-2014.12  

For each child and blood test, we measure the number of meters of road by road type within a 

radius of 25 and 50 meters of the child’s home.  We multiply the number of meters of each road 

type with measures of average traffic per road type based on 1980 national traffic data.  We then 

calculate a measure of “average traffic” over the child’s multiple addresses. The appendix 

describes the construction of this measure in greater detail. 

To address changes in the road network over time, we compared satellite images from the 

1980s with current data.  Few differences can be seen with one exception: the expansion of roads 

in suburban subdivisions.  In the robustness section we describe analyses that remove these areas 

with newer roads from our sample in order to test the sensitivity of our results to this source of 

mismeasurement of road density.  

There is considerable variation in road density and traffic volume across the state even 

within a neighborhood. The median coefficient of variation in traffic within a census block group 

is 0.64 and ranges from 0.29 to 2.3.  Figure 1 shows a map of a single RI census tract made up of 

five census block groups to illustrate how this measure of traffic exposure varies even across 

homes within a census block group.  In the figure, each circle represents a home with a child.  

Circle radius indicates traffic volume within a 50 meter radius of the home, with larger radii 

indicating greater traffic volume.  The traffic volume for each home is a function of the number 

12 Because the matching process required access to address, the match was performed by the Providence Plan which 
created and maintained the linked dataset.  
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of meters of road within 50 meters and the type of road, with highways generating the most 

traffic, town streets the least, and state and county roads somewhere in between.   

Table 2 shows that disadvantaged children are more likely to live in high traffic 

neighborhoods.  When we compare the race and free lunch status of children who live in high 

traffic (top quartile) vs. low traffic (bottom quartile), we find that high traffic areas are 59% 

white and 33% paid lunch relative to low traffic areas which are 87% white and 64% paid lunch, 

a difference of 28 (white) and 31 (paid lunch) percentage points (Table 2, column 1).  Much of 

this difference is due to the fact that disadvantaged children live in more urban parts of the state:  

When we condition on municipality, the difference in racial and income composition by traffic 

exposure declines from 28 and 31 percentage points, respectively, to 6 and 13 percentage points 

(Table 3, Column 2).13  If we condition on census tract or census block group, the differences 

decline further still to 3 and 9 percentage points, respectively, as shown in columns 3 and 4.  

Clearly conditioning on neighborhood significantly reduces differences in child characteristics 

across high and low road dense areas, though it does not entirely eliminate the differences. 

Because conditioning on neighborhood doesn’t eliminate average differences in child 

characteristics between high and low traffic exposure homes, we do not simply use spatial 

variation in traffic exposure within neighborhoods for identification.  Rather, we exploit changes 

over time in high vs. low traffic areas within a neighborhood.   More specifically, the identifying 

assumption is that traffic exposure is more predictive of a child’s blood lead levels early in the 

sample (i.e., for those born in the early 1990s), than for those born later in the sample (in the 

early 2000s).   

13 There are 39 cities. 
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Figure 2 shows the relationship between traffic exposure (measured in percentiles) and child 

preschool blood lead levels for children born in 1990 and children born in 2004.  In order to 

focus on differences in traffic exposure within a neighborhood (defined as a census block group) 

we first regress lead levels and traffic measures on neighborhood fixed effects and then plot the 

residuals from these two regressions in Figure 2. The residuals capture variation in both lead 

levels and traffic within a neighborhood.  The relationship between within-neighborhood traffic 

volume and child preschool BLLs (the slope) is steeper for the older children than the younger 

children in our sample. 

For this identification strategy to be valid (that is, for the exclusion restriction to hold), it 

must be the case that the variation in lead exposure over time within high traffic areas is 

uncorrelated with underlying changes in the characteristics of children living in these areas that 

might also affect outcomes. In other words, the declines in children’s blood lead levels cannot be 

correlated with changes in the underlying composition of the children that would predict 

probabilities of suspension or incarceration.   

To provide evidence on this point, Figure 3 plots time trends in lead levels and child 

characteristics by birth cohort and traffic volume (top quartile vs. bottom quartile of traffic 

volume).  The difference in the average lead levels of children with the highest vs. lowest traffic 

exposure are initially large, but converge over time (top left panel of Figure 3).  In contrast, 

while the underlying characteristics of children (race, income and maternal education) differ in 

high traffic areas relative to low traffic areas, both the levels and the differences between high 

and low traffic areas are fairly constant over time (top right and bottom panels of Figure 3).  We 

conclude that the convergence in lead levels for children living in high vs. low traffic areas is not 

driven by changes in the underlying characteristics of the children living in these areas.  
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Another possible explanation for the steeper declines in lead levels among children living in 

high traffic areas is that conditions are simply improving generally for disadvantaged children, 

who happen to live in high traffic areas of the state.   To explore this possibility, we examine 

time trends in lead levels for advantaged children living near vs. far from traffic.  If the declining 

lead levels are attributable to reductions in lead in soil and not to overall improvements in 

conditions among the most disadvantaged, then we should see that even among children from 

advantaged families, traffic exposure predicts child lead levels.   

 We explore this idea in Figure 4.  In order to generate this figure we calculated a summary 

measure of child disadvantage:  The predicted lead level of the child based on coefficients 

obtained from a regression of lead levels on child race, ethnicity, free lunch status, and 

neighborhood fixed effects using data from the 1990 and 1991 birth cohorts.  Children with 

higher predicted lead levels are more disadvantaged and would have higher BLLs in 1990.  We 

define the advantaged population of children as those with the lowest predicted lead (the bottom 

quartile).  We plot the trends in lead levels for the most advantaged children in our sample 

separately for high traffic and low traffic areas.  Figure 4 shows that even among the advantaged 

children, those in high traffic areas start with higher levels of blood lead which converge over 

time to the BLLs of advantaged children in low traffic areas.  Thus, our results are not driven by 

contemporaneous policies mainly benefitting disadvantaged children.   

Finally, could the declines in lead levels that we observe simply reflect more general 

improvements in environmental conditions over this period? To rule out this possibility, we show 

below that birthweight, an indicator of child health that is sensitive to pollution (Aizer and 

Currie, 2014) does not differentially improve over time for children near roads.  
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IV. Estimation  

We first present estimates of the relationship between preschool BLLs and the probability 

of school disciplinary infractions and juvenile detentions based on the following OLS equation: 

(1)  𝑌𝑌𝑖𝑖 = β0 + β1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 +  β2𝑋𝑋𝑖𝑖1 + β3𝑋𝑋𝑖𝑖2 +  β4𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

+ β5𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + β6𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

+ β7𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖𝑖𝑖 + β8𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2 ∗  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑛𝑛

+ 𝜏𝜏𝑡𝑡 +  𝜀𝜀𝑖𝑖 

Each observation is a child, and Y is an indicator for ever suspended or juvenile 

detention/incarceration; Lead is the geometric mean of the child’s multiple BLLs measured 

before the start of school, X1 is a vector of child characteristics that we have for all children 

(gender, race, ethnicity and free lunch status); X2 is a vector of child characteristics that we have 

only for children born in RI after 1996 (maternal education, birth weight, birth order, maternal 

age and marital status at birth); Years of infraction data is a vector of indicator variables for the 

number of years for which we have infraction data for the child which ranges from 1 to 8, with 

an average of 5.  We also include a vector of neighborhood fixed effects, τn, year of birth fixed 

effects, τt, and race and free lunch specific quadratic time trends to address the concern that any 

improvements in outcomes could simply reflect improving circumstances over time for the most 

disadvantaged children generally.  

As discussed above, OLS estimates may be biased by confounding, and are likely to be 

attenuated by random measurement error.  Hence, we estimate two types of instrumental variable 

models.  The first takes advantage of the fact that we have multiple measures for most of the 
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children in our sample.14  Thus, we can estimate the impact of a single, randomly drawn measure 

of a child’s BLL (a noisy measure) on behavior in an OLS setting and compare it with an 

estimate based on a less noisy measure of child lead that’s based on the average of all the other 

lead measures.  Not only should the noisier measure of lead result in a smaller estimated 

relationship between lead and suspensions, but once we instrument for the single measure with 

the average measure, the IV estimate should be considerably larger than the OLS.  

For the subset of the data for which we also have sibling lead levels, we can use a sibling’s 

average lead level as an instrument for the child’s own average lead level. The rationale for using 

sibling lead levels as an instrument for own lead levels is that preschool lead levels are mostly a 

function of one’s residence.  Given that siblings usually co-reside, a sibling’s lead level should 

reflect the same (or at least very similar) lead exposure.  Note that we can only perform this last 

exercise for the school suspension outcome, not the detention/incarceration outcome due to data 

limitations—there are too few sibling pairs with incarceration data, given that sibling 

information is not available until 1997. 

Our second instrumental variables strategy exploits declines in the residual lead in soil near 

roads to identify the estimated impact of preschool child BLLs on future behavior.  Our 

instruments are interactions between quartiles of traffic volume and a linear time trend.  The 

main terms (quartiles of traffic volume and year of birth) are included as controls in both the first 

and second stage.  We use quartiles of traffic volume in order to allow for any non-linearity in 

the relationship between traffic volume and BLLs. The first stage equation is: 

14 Other papers that discuss this type of approach include Bound et al. (1994), Bound and Krueger (1991), and 
Ashenfelter and Krueger (1994). 
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(2)  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = α0 + 𝛼𝛼1𝑋𝑋𝑖𝑖1 +  α2𝑋𝑋𝑖𝑖2 + α3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖

+ 𝛼𝛼4𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖 + α5𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

+ α6𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛼𝛼7𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

+ α8𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖𝑖𝑖 + α9𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2 ∗  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑛𝑛

+ 𝜏𝜏𝑡𝑡 +  𝜇𝜇𝑖𝑖 

where Lead is the child’s average BLL, X1 includes child gender, race, ethnicity and free lunch 

status, X2 includes maternal education, birth weight, birth order, maternal age and marital status 

at birth.  Traffic volume is a vector of three indicator variables for the top three quartiles of road 

density (the lowest quartile is omitted), Traffic volume*Year of Birth is the interaction between 

each quartile of road density and a linear year of birth term. In the robustness section, we allow 

for a non-linear time trend for traffic volume by including quadratic terms as well (Traffic 

volume* year of birth2).  We include race and free lunch specific quadratic time trends as well as 

indicators for the number of years for which we have infractions data for each child, year of birth 

FE (τt ) and census block group fixed effects (τn). 

     The second stage model is given by the following equation: 

(3)  𝑌𝑌𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 +  𝛾𝛾2𝑋𝑋𝑖𝑖1 + 𝛾𝛾3𝑋𝑋𝑖𝑖2 + γ4𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

+ 𝛾𝛾5𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛾𝛾6𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

+ 𝛾𝛾5𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖𝑖𝑖 + 𝛾𝛾6𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ2

∗  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛ℎ 𝑖𝑖𝑖𝑖 + γ7𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 + 𝜏𝜏𝑛𝑛 + 𝜏𝜏𝑡𝑡 + 𝜗𝜗𝑖𝑖 
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where all the terms are as defined above except Predicted Lead which is the prediction created 

from equation (2).  

V. Results

A. OLS Results

Table 3 shows OLS estimates of equation (1) with increasing numbers of controls as one 

moves across the columns.   Comparing columns 1 and 2 shows that once we control for town or 

municipality, adding Census block group fixed effects has almost no impact on the estimated 

effect of lead on the probability of a suspension.  The estimate of 0.0095 implies that each 1unit 

increase in average blood lead increases the probability of a suspension by about one percentage 

point on a baseline of 20 percent.   Column 3 adds fixed effects for Census block groups and 

schools.  This addition reduces the estimated effect of lead slightly.  Finally, column 4 shows the 

effect of adding additional controls for family background and birth weight.  This model is 

estimated using the sub-sample for whom we have this information.  The estimate of 0.0089 is 

very little reduced from the column 1 model, suggesting that adding further demographic 

controls would not be likely to have much effect. 

Columns 5 to 7 of Table 3 perform the same exercise for detentions and incarcerations on the 

smaller sample for whom we have this outcome.  Once again, the results are quite stable when 

additional sets of controls are added suggesting that a fairly basic set of background controls may 

be sufficient to control for potential confounding.  The point estimate here of 0.0014 on a 

baseline of 0.01 suggests that an increase of one unit in average blood lead levels increases the 

probability of detention or incarceration by about 10 percent. 
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A second way to test for the importance of omitted variable bias in the OLS estimates 

exploits the decline in negative selection into lead witnessed over this period.  Assuming that 

observables and unobservables are positively correlated, as negative selection on observables 

declines over time, so too should negative selection on unobservables.   If negative selection on 

unobservables is driving OLS estimates of the relationship between lead and suspensions, then 

the negative estimated relationship between lead and suspensions in OLS should likewise decline 

over time.   We explore this conjecture in Appendix Table 1. We first present evidence of the 

decline in negative selection over time in elevated BLLs.  This sample is limited to children born 

1993-1998 so that we can examine a single uniform outcome for all: the number of infractions in 

9th grade. We regress lead levels on race, free lunch, gender, year of birth (linear), and census 

block group FE, as well as interactions between free lunch and year of birth and race (African 

American) and year of birth.  The interaction terms are intended to capture any changes over 

time in selection on race and income into elevated lead.  The results (column 1) show that being 

poor and African American is strongly predictive of elevated BLLs, but this relationship has 

been declining over time, as evidenced by the negative and significant interaction terms.  

 Next, we present estimates of a regression of the number of ninth grade infractions on 

child lead levels, lead interacted with year of birth and all demographic controls.  While the 

coefficient on lead is positive and significant, the coefficient on the interaction between lead and 

year of birth is small and imprecise (column 2).   Column (3) shows similar results for a 

specification that includes race and free lunch-specific time trends.  This table suggests that 

although disparities in lead exposure are falling the relationship between a unit of blood lead and 

behavior is not changing over time which is inconsistent with the estimated effect being driven 

by omitted variables bias.   
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B. Heterogeneous Effects 

As discussed above, there is considerable heterogeneity in exposure to lead, and there may 

also be heterogeneous effects of similar lead exposure by socioeconomic status.  Heterogeneity 

in the effects of lead is explored further in Table 4.  Panel A examines the effects of lead on the 

probability of any suspension.  The specification is similar to that in column 2 of Table 3 except 

that lead is also interacted with an indicator for male.  Column (1) shows that overall, the effect 

of lead on girls (0.0059) is roughly half the size of the effect on boys (0.0059+0.0056=0.012).   

But this smaller effect for girls is driven largely by white and paid lunch students (columns 2 and 

5).  Among whites the gender difference in the effect of lead on suspensions is even more 

pronounced with a point estimate of 0.0033 for girls compared to 0.0099 for boys.  Among 

children who pay for their lunch, lead is only estimated to affect suspensions among boys.   

In contrast, among African-American, Hispanic, and free lunch students, lead is estimated to 

have equal effects on boys and girls, that is, the interaction with male is not statistically 

significant.   Among boys, the estimated effect of a unit of blood lead on the probability of 

suspension is actually rather similar for whites, African-Americans, or Hispanics.  These results 

could be easily explained in terms of, for example, preferential treatment for white and higher 

income girls.15  That is, the differences do not necessarily reflect any differences in the 

underlying behavior problems caused by a one unit increase in blood lead levels. 

15 Existing national data on racial differences in school suspensions shows that boys receive two thirds of all 
suspensions but black girls are suspended at higher rates than girls of any race and most boys (USDOE Office of 
Civil Rights, 2014).  
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Panel B shows a similar breakdown for detention/incarceration.  This panel makes it clear 

that lead only appears to affect detention/incarceration among boys, with a clear gradient by 

socioeconomic status.  Among boys, whites and children who pay for their lunch have much 

lower estimates than African-Americans, Hispanics, and children on free lunch.  Again it is not 

entirely clear that these differences reflect differences in behavior vs. differences in punishments 

conditional on behavior.  It should be noted that while the point estimates are larger for African 

American, Hispanic and free lunch children, relative to the baseline rates of detention for these 

groups, the effects are actually smaller.  For example, a unit of lead increases the probability of 

incarceration for black males by only 6.6 percent compared to 16.6 percent for white males.  

In what follows we will allow estimated effects to vary for males, which seems very 

important at least in the case of incarceration.    We will also show separate estimates for the free 

lunch sample, as it is the group most vulnerable to suspensions and incarceration.   

 

C. Instrumental Variables Estimates Based on Multiple Measures of Lead 

The estimates in Tables 3 and in Appendix Table 1 suggest that given the rich controls 

available in our data, perhaps residual confounding is not a large source of bias in our estimates.  

However, as we will show below, there is good reason to believe that measurement error remains 

a problem, biasing the estimated effects of lead shown in Tables 3 and 4 towards zero.  The fact 

that there are multiple lead measures for each child, and in some cases for each family, suggests 

several possible instrumental variables estimates based on using one measure as an instrument 

for another noisy measure of the child’s underlying level of lead exposure.  Table 5a shows three 

different ways in which we have implemented this idea.   
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In columns 1 to 4, we focus on the subset of children who have both a capillary and a venous 

BLL measure.  Since capillary measures are less accurate, we would expect the use of a capillary 

measure to result in an estimate that is smaller than one based on a venous measure.  A 

comparison of columns 1 and 2 shows that this is indeed the case.  In column 3 we use the 

average of the venous tests as instruments for the average of the capillary test measures, and in 

column 4 we do the reverse.  Both instrumental variables estimates are considerably larger than 

the corresponding OLS estimates, consistent with measurement error in these tests.  Column 4 

suggests, for example, that the probability of having ever been suspended increases by 1.2 

percentage points for girls and 1.6 percentage points for boys for each one unit increase in BLLs 

(on a baseline of 20 percent of children who have any suspension).  A drawback of this approach 

is that relatively few children in our sample (24,509) have both types of measures and they are 

unlikely to be a random sample of all children. 

In columns 5 through 8 we therefore experiment with taking a random draw and 

instrumenting for it using the average of all the other available measures, and vice versa.  This 

procedure is possible for any child who has more than one BLL.  Columns 7 and 8 show that 

these IV estimates are again much larger than the corresponding OLS estimates shown in 

columns 5 and 6.   For example, column 8 suggests that based on the instrumented estimate, a 

one unit increase in the average BLL increases the probability of any suspension by .96 

percentage points for girls, and by 1.7 percentage points for boys, compared with .49 and .96, 

respectively, for the OLS.   

Finally, in column 9 we show estimates where one child in the household’s average BLL is 

instrumented using a sibling’s BLL (if there are multiple siblings, we use the average of the 

siblings’ BLLs).  This estimation can only be done on the subset of children (34,252) who have a 
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sibling with a BLL.  The estimates of 1.2 for girls and 2.98 for boys are somewhat larger than 

those discussed above. 

Panel B of Table 5a performs the same estimations for detention/incarceration, with the 

exception of the sibling IV.  The latter is infeasible because the sibling subsample was born in 

1997 or later so that they are too young for the incarceration outcome.  Again these estimates 

suggest that OLS estimates are biased towards zero due to considerable measurement error in 

BLLs.  For example, column 6 shows the OLS estimate of lead on suspension using the average 

of all other tests as the measure of lead.  The estimated effect of a one-unit increase in BLL for 

males is .35 percentage points.  Column 8 shows the IV estimate, where the instrument is a 

randomly drawn BLL.  The estimated effect increases to .56 percentage points, on a baseline of 

2.04 percent for males, suggesting a very large effect of lead on the probability of incarceration. 

Table 5b repeats these estimations using the sample of children with a much higher baseline 

rate of suspensions and incarceration: children who ever participated in the free school lunch 

program (Table 1).  These results suggest larger effects for girls in this sample, but similar 

effects for boys (Panel A).   However, given the different baseline probabilities of suspensions in 

this sample, the estimates for boys, for example, translate into a 4.3% increase in the probability 

of suspension per one-unit increase in BLL in the free lunch sample compared to a 6.5% increase 

in the full sample. 

For the incarceration outcome, Panel B of Table 5b shows that the point estimates of the 

effects of lead are remarkably similar in the full and free lunch samples. Comparing the IV 

coefficients in column 8, panel B of Tables 5a and 5b suggests that a unit increase in BLL 

increases the probability of male incarceration by .56pp in the full sample and by .55pp in the 
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free lunch sample.  Given the baseline differences in the probability of incarceration, these 

estimates translate into increases of 27% and 16.9% for the full sample and the free lunch sample 

respectively. 

Overall, these IV estimates suggest that the true effect of lead on suspensions is considerably 

understated by OLS estimates, consistent with a large amount of measurement error in BLLs.  

The estimates also suggest that the underlying effects of lead may be quite similar in more and 

less disadvantaged samples, although a given increase in disruptive behavior results in larger 

percentage increases in negative outcomes among more advantaged children given their lower 

baseline probabilities of suffering either suspensions or incarcerations. 

 

  D. Instrumental Variables Estimates Based on Exposure to Traffic 

In this section, we present estimates based on our traffic IV.  These estimates measure the 

effect of lead on the children who were “treated” by a reduction in ambient lead from roadways 

near their homes.   Regression models linking traffic volume with child BLLs from equation (2) 

are shown in Appendix Table 2.  Exposure to traffic is a highly statistically significant 

determinant of child BLLs (see the coefficients on the indicators for Traffic volume quartile 2 to 

Traffic volume quartile 4).  The relationship is strongest for children in the top quartile of traffic 

exposure.  As discussed above, our instrument is not traffic volume, but the interaction between 

the traffic volume indicators and a linear time trend.  The identifying assumption is that places 

with higher traffic volumes saw larger reductions in blood lead levels, due to the reduction over 

time in the amount of residual lead near roadways, and not some other factor that also affected 

children’s probability of being suspended or incarcerated.  Recall earlier evidence that changes in 
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the composition of children are not driving the decline near roadways (Figure 3), nor are general 

improvements in the outcomes of disadvantaged children over this period (Figure 4).  

Because we are allowing the effects to differ for males, by including the interaction term 

lead*male, we use the predicted lead level from column 1 of Appendix Table 2 to predict lead 

levels for all children, and then interact this variable with an indicator for male to form an 

instrument for lead*male (Wooldridge, 2010).  Table 6 presents the first stages for the two 

endogenous variables: lead (column 1) and lead*male (column 2).  Column 1 of Table 6 is 

similar to Appendix Table 2 and like Appendix Table 2, shows a strong relationship between 

traffic and lead that declines over time.  However, this first stage differs slightly from the 

Appendix regression because it also includes the instrument for lead*male.  In column 2 of Table 

6, the instrument, predicted lead*male, is highly statistically significant.  

Estimates of the second stage regression (equation 3), including the lead*male interaction 

and using the traffic instrument, are shown in columns 2 and 4 of Table 7 along with the 

corresponding OLS estimates from column 1 of Table 4 (reproduced in columns 1 and 3 of Table 

7 for convenience).   The estimates in column 2 Panel A suggest that a one unit increase in her 

average BLL raises a girl’s probability of being suspended by 1.3 percentage points on a baseline 

of 14 percent.  The corresponding estimate for boys is 2.7 percentage points on a baseline of 25 

percent.  In percent terms, the effects are not very different, suggesting a 9.3% increase in the 

probability of suspension for girls and a 10.8% increase in the probability of suspension for boys.    

These results can be compared to the IV estimated based on multiple measures of lead presented 

in Table 5a which implied that a one unit increase in BLL would increase the probability of 

suspension among boys and girls by 6.4% and 6.5% respectively. 
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Column 4 in Panel A of Table 7 shows the traffic IV estimates of the effect of lead on the 

probability of incarceration in the full sample.  As with the IV estimates based on alternative lead 

measures (Table 5a), there is no statistically significant effect for girls.  For boys, the estimate 

implies that a one unit increase in average blood lead increases the probability of incarceration 

by 1.3 percentage points, on an overall baseline incarceration rate of 1.8 percent.  This is a large 

percent effect, in part because the baseline incarceration rate in the overall population is so small.    

We also present these results for the free lunch sample, given that this is the population 

most at risk for these outcomes.  In terms of the estimated effects of BLLs on suspension, the 

estimates suggest once again that in the free lunch sample, lead increases the probability of 

suspension for both boys and girls, whereas in the full sample, the effect was only statistically 

significant for males.   The point estimates suggest that a one unit increase in BLL increases the 

probably of suspension by 24% for boys and 39% for girls in the free lunch sample.  

The estimated effects of lead on incarceration are also larger in the IV setting, and once 

again found only for boys.  A one unit increase in BLL is estimated to increase the probability of 

incarceration by 1.8 percentage points.  However, given the much higher incidence of 

incarceration in free lunch group, the percentage increase is smaller than in the full sample, at 

57%. 

Clearly, the percent changes in incarceration are very sensitive to the baseline level 

chosen for comparison, given the small incidence of incarceration in the population.  However, 

regardless of the correct baseline for computing percentage effects, the traffic IV point estimates 

for incarceration in Table 7 are much larger than the multiple measures IV estimates in Table 5, 
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which is in line with the idea that the traffic IV is picking up the effect of lead in the most 

vulnerable population.  

 

E. Robustness 

We conducted four robustness checks (Table 8).  First we include a control for the 

average number of infractions per year in the child’s school*birth cohort to account for any 

changes in policy at the school*cohort level that might also influence the number of disciplinary 

infractions (column 2).16  Second, we add controls to account for the Rhode Island Lead-Safe 

certificate program analyzed by Aizer et al. (2017).  This program aimed to encourage landlords 

to mitigate lead hazards in homes for rent.  Specifically, in column 3 we add controls for the 

number of certificates that had been issued in the census tract where the child lived as of the time 

of their first lead test (a proxy for the intensity of the lead paint clean up efforts).   

As a third robustness check, we drop all census tracks for which we observe substantial 

changes (increases) in roads over this period.  Sixty-six percent of our sample live in tracts that 

gain no new roads between 1980 and today. Eight percent of our sample live in tracts that gain a 

substantial number of new roads.  These are mostly suburban subdivisions.  No one lives in a 

tract that loses roads over this period. When we drop the sample that gain a substantial number of 

new roads, the sample size falls to 114,512 from approximately 125,000, and the estimates 

remain largely unchanged (column 4).  Finally, we include quadratic trends for traffic*birth 

16 Construction of this control proceeds as follow: for all children in the RI schools in 6th grade, we include the 
average number of infractions in that child’s school for 6th graders.  For children missing information on 6th grade 
(because they were born early or late in the period), we include either 3rd grade averages (for those born later), or 9th 
grade averages for those born earlier.  
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cohort in the IV regressions (column 5, panel B).  The results suggest that the estimates are 

robust to all these modifications.  

Could traffic volume and the interaction between traffic volume and birth cohort simply 

reflect changes in housing or air quality more generally over this period?  If so, one might expect 

to estimate a significant relationship between traffic volume and birth weight, a measure of 

newborn health that is very responsive to both maternal circumstances and air pollution (Aizer 

and Currie, 2015).  To consider this possibility, we present reduced form estimates of the impact 

of traffic volume and its interaction with year of birth on birth weight as well as neighborhood 

fixed effects and IV estimates of the impact of lead levels on birth weight in Table 9.    

There appears to be no relationship between traffic volume or its interaction with birth 

cohort, and birth weight (Table 9, column 1).  Moreover, there does not appear to be any 

meaningful or significant relationship between lead and birth weight (columns 2 and 3): The 

OLS estimate of -.00291 would suggest that a 3.5 unit decline in lead (the decline witnessed over 

the 14 year period studied here) is associated with a 10 gram decline in birth weight (relative to a 

mean birth weight of 3,300 grams) and the IV estimate is similarly small in magnitude though 

positive and statistically insignificant.  We interpret these estimates as suggestive evidence that 

the decline in lead levels over time in high traffic areas does not reflect improving conditions 

more generally as these might also be expected to affect birth weight. 

 

VI. Conclusions 

This paper makes several contributions to the literature examining the link between lead 

poisoning and anti-social behavior among juveniles.  First, we broaden our study away from the 
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exclusive focus on crime, to consider school disciplinary problems.  Disciplinary problems 

predict school failure and drop out, are much more common, and can be observed in both boys 

and girls. Suspensions are also highly predictive of future criminal activity: in our data, children 

who have been suspended are ten times more likely to be involved in criminal activity.  We also 

look at juvenile detention/incarceration, which is an indicator of crime but also has its own 

negative impacts on juveniles. 

A second contribution is to add to a literature that has relied on variation in exposure to 

lead at the state-cohort level by constructing and examining rich individual-level data from 

linked administrative records for all children born in Rhode Island between 1990 and 2004 and 

exploiting very local variation in exposure to lead.  This long time span allows us to link 

preschool BLLs to the outcomes of children in middle school and beyond.  By including 

individual-level controls and also controlling for neighborhoods at the level of the Census block 

group, we are able to alleviate concerns about confounding due to omitted variables. 

A third contribution is to develop two identification strategies which rely on different 

assumptions.  Both identification strategies indicate that OLS estimates are considerably 

attenuated by measurement error in BLLs, an important result given that attenuation due to 

measurement error has been largely ignored in the previous literature.   

We find that a one unit increase in BLLs increased the probability of suspension from 

school by 6.5 to 7% for boys and by 6.4 to 9.3% for girls.  For incarceration, we only find 

statistically significant effects for boys.  The estimates are less precise and suggest that a one unit 

increase in BLL increases the probability of incarceration by between 27% to a 74% increase for 

each one unit increase in BLLs.   Given low baseline levels of incarceration, the estimated 
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probabilities are quite sensitive to the exact baseline level chosen.  Still, our results support the 

hypothesis that reductions in blood lead levels may have been responsible for a significant part 

of the observed decrease in anti-social behavior among youths and young adults in recent 

decades.   
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Appendix – Construction of the measure of traffic volume 

Steps in the construction of the traffic measure: 

1) For each household, we measure the number of meters of road within 25 and 50 meters
by functional class (primary, secondary and tertiary roads) and urban/rural status.
Primary roads refer to highways, secondary roads to state routes, and tertiary roads to
streets.  In total, there are 6 road types: primary-urban, secondary-urban, tertiary-urban,
primary –rural, secondary-rural, tertiary-rural. See below for a more detailed description
of the road types.   These data come from the RIGIS Roads-E-911 data. A description of
the data and a link to the data can be found here: http://www.rigis.org/data/e911Roads.
“These data contain street center lines and address ranges for all highways, roads, and
streets for the entire state of Rhode Island. AK Associates conflated this data from the
existing road data developed by MicroDATA GIS, RI DOT, 2008 Pictometry and data
provided by Municipal Agencies for Rhode Island Enhanced 9-1-1 (RI E-911). Portions
of this data set were collected as early as 2001.”

2) Using data from the Bureau of Transportation Statistics on traffic patterns by road type
for 1980 we then generate a measure of traffic volume by multiplying each meter of road
by functional class and urban/rural status with measures of vehicles miles travelled per
lane-mile by functional class and urban/rural status in 1980.1

3) Finally, we sum up the traffic measures generated in step 2.  Roads within 25 meters are
given full weight, roads between 25 and 50 meters are given ¼ weight to reflect the
highly localized nature of lead contamination.

4) For each child, we may have multiple addresses and therefore multiple measures of
traffic exposure.  Since we are estimating the impact of an average measure of lead on
outcomes, we calculate an average measure of traffic exposure over the preschool years
and use that measure in our analysis.

Description of road types: Primary roads are generally divided limited-access highways within 
the interstate highway system or under State management, and are distinguished by the presence 
of interchanges. These highways are accessible by ramps and may include some toll highways. 
Secondary roads are main arteries, usually in the U.S. Highway, State Highway, and/or County 
Highway system. These roads have one or more lanes of traffic in each direction, may or may 
not be divided, and usually have at-grade intersections with many other roads and driveways. 
They usually have both a local name and a route number. Tertiary roads consist of paved non-
arterial streets, roads, or byways that usually have a single lane of traffic in each direction.  

1These data are found here: 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_st
atistics/html/table_01_36.html 
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