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Abstract

We develop a fairly general and tractable model of investment when workers can

invest in multiple skills and different jobs put different weights on those skills. In

addition to expected findings such as that younger workers are more likely than older

workers to respond to a demand shock by investing in skills whose value unexpectedly

increases, we derive some less obvious results. Credit constraints may affect investment

even when they do not bind it equilibrium. If there are mobility costs, firms will

generally have an incentive to invest in some of their workers’skills even when there are

a large number of similar competitors, and, in equilibrium, there can be overinvestment

in all skills. Worker skill accumulation resembles learning by doing even in its absence.

We demonstrate how the model can be simulated to show the effect of a shock to the

price of individual skills.

1 Introduction

For roughly five decades, the Ben-Porath (1967) model has justifiably served as the workhorse

model of investment in homogeneous general human capital over the lifetime. But labor

economists increasingly rely on models of multiple skills and tasks to understand earnings

variation across individuals and over the lifetime. The Autor, Levy and Murnane (2003)

classification of skills as manual and cognitive and tasks as routine and non-routine plays a

key role in much of the literature on recent changes in the distribution of earnings. Similarly,
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the work of Heckman and coauthors (e.g. Cunha and Heckman 2008) focuses on the dynamics

of investment in cognitive and noncognitive skills, particularly prior to labor market entry.

Urzua and Prada (forthcoming) find that also accounting for mechanical ability greatly

affects how we should think about investment in education. Bowlus, Mori and Robinson

(forthcoming) explore how skill use evolves over the lifecycle. Altonji (2010), in particular,

emphasizes the need for a research agenda that recognizes that skill is multidimensional and

that jobs differ in their requirements.

This paper is intended to contribute to that agenda. It draws heavily on the insights of

Lazear (2009) in viewing jobs as putting linear weights on skills but drops the assumption

that the sum of the weights must be one. We make three main contributions:

1. We develop a relatively tractable model of post-labor market entry job choice and

investment in skills. In its most abstract form, it is very flexible; workers may generalize

or specialize over their lifetimes. But we parallel limited general results with an example

that permits stronger conclusions and could be used for calibration.

2. We show that the comparative statics of the model are consistent with what we expect

from such a model. Workers who have relatively more of one skill choose jobs that

put more weight on that skill. Workers with lower discount rates and longer remaining

lifetimes will tend to invest more heavily in skills that unexpectedly become more

valuable.

3. We also provide some results that are, at least to us, to varying degrees surprising:

(a) The process of skill investment and job choice generates persistence even if there

is no learning by doing; workers always continue to invest in any skill they already

have although not necessarily suffi ciently to offset depreciation.

(b) Credit constraints can influence investment even when in equilibrium they do not

appear to be binding.

(c) Even when all skills are completely general in the sense that there is an arbitrarily

large number of jobs requiring similar skills, in the presence of mobility costs and

firm bargaining power, firms generally have an incentive to invest in some, but

not all, skills used in the job.

(d) In equilibrium, between them, the worker and firm may overinvest in every skill.

This happens quite generally with only two skills and for a class of feasible job

sets regardless of the number of skills.

We begin with a simple two-skill example with two periods. We then generalize the two-

period model and derive a number of analytic results. We conclude by examining continuous

time where we generally rely on a specific functional form and numeric solutions. The

continuous-time example considers the case of individuals who enter the market with equal
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stocks of three skills. Initially it is optimal to invest most heavily in skill 2 and least in

skill 3. Workers are then hit with a shock which would be mildly positive for those workers

if it arrived just when they enter the market but which increases the value of skill 3 and

reduces the value of skill 2. Not surprisingly, older workers continue in jobs that weight skill

two heavily despite the adverse shock. Middle-aged workers partially adjust by gradually

increasing their stock of skill 1 and shift to skill 1-intensive jobs while relatively younger

workers shift to skill 3. Younger workers have a longer lifetime to exploit their skills over,

and so most investment is undertaken when young. Thus, it is (perhaps surprisingly) only

the very youngest workers who benefit from the shock.

2 A Simple Example

The worker begins period 0 endowed with skill levels S1 ≥ 0 and S2 ≥ 0.We treat premarket

investment as exogenous. We do, however, assume that the worker can arrive in the labor

market with something other than the skills that are optimal for her. This may be due

to uncertainty; the value of skills in the future may be unknown, and the worker or those

investing in her may wish to diversify against this uncertainty. Schooling may be insuffi ciently

individualized or premarket skill investment may reflect goals other than maximizing market

earnings.

A job J is a vector of non-negative weights on the worker’s skills. At job J , she produces

J1S1 + J2S2. The worker chooses from a set of jobs J given by

(a1J1)σ + (a2J2)σ ≤ 1 (1)

with a1 > 0, a2 > 0 and σ > 1. Optimal choice implies a job on the boundary of J where (1)

holds with equality. Such a job that only uses one skill puts a weight of 1/ai on it. When

σ = 2 and a1 = a2 = 1, the boundary is the unit quarter circle in the positive quadrant;

there, a job using both skills equally puts a weight of
√
.5 on each.

As σ → 1, the trade-off between the skills - given by the northeast boundary - tends to a

straight line. The limit is thus the (excluded) case where workers always choose to use only

one skill. As σ →∞, the job set becomes a square, and it is thus disadvantageous to move
away from using both skills equally; in effect there is only one skill.

2.1 Job Choice

In order for the model to be sensible and helpful, we need to allow for individual heterogeneity.

We would not want the optimal skill vector to be the same for everyone. At the same time, we
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do not wish to make the set of available jobs individual-specific. Consequently, we introduce

a weighting matrix which allows the value of skills within a job to vary both over time and

across individuals. Various basketball skills are less valuable for an unusually short worker

than for one who is unusually tall. Similarly, knowing how to shoe horses is a skill that has

declined in value even though the job persists.

A worker who chooses job J earns α1J1 + α2J2. She therefore maximizes

α1J1S1 + α2J2S2 − λ ((a1J1)σ + (a2J2)σ − 1) . (2)

This problem has the same solution as

A1J1S1 + A2J2S2 − λ (Jσ1 + Jσ2 − 1) (3)

where Ai = αi/ai and has the useful interpretation that Ai is the maximum weight on skill i

in any job. We will show a similar result holds in general and will focus on this formulation

throughout the paper. Changes in A can be thought of capturing changes over time in the

value of a skill or differences in quality of that skill across individuals.

Maximizing gives the first-order conditions

AiSi = λσJσ−1
i (4)

along with the constraint. Solving the first-order conditions, we have

Ji =
(AiSi)

1
σ−1(

(A1S1)
σ
σ−1 + (A2S2)

σ
σ−1

) 1
σ

. (5)

Note that dJi/dSi > 0; the higher a worker’s skill, the more weight the job she chooses puts

on it.

Finally, using (5), we get the value of the skill endowment

V (S) =
(

(A1S1)
σ
σ−1 + (A2S2)

σ
σ−1

)σ−1
σ
. (6)

Note that this resembles a CES production function except that the exterior exponent is

less than 1 rather than greater than or equal to 1. This is significant because it means that

the function is convex rather than concave - as a skill increases, production would increase

linearly if the job remained constant; however, the worker re-optimizes and increases the

weight on that skill.
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2.2 Investment

We now extend the example to two periods and allow the worker to invest in skills following

production in period 0, increasing them by I at cost

C(I) = Iρ1 + Iρ2 . (7)

Note that since skill typically has no natural scale, we can normalize the coeffi cients on

Ii rather than writing αiI
ρ
i . Of course, this normalization will affect Si and Ai, but this

simplifies the problem. Following the investment choice the worker again chooses a job, so

that the worker’s lifetime problem is to maximize the Lagrangian

A1J01S1 + A2J02S2 + β (A1J11 (∆1S1 + I1) + A2J12 (∆2S2 + I2))

− (Iρ1 + Iρ2 )− λ (Jσ01 + Jσ02 − 1)− µ (Jσ11 + Jσ12 − 1) (8)

where J0 and J1 are the jobs in periods 0 and 1, β is the discount factor and ∆i is the rate

at which skill i does not depreciate (1 minus the depreciation rate) between periods 0 and 1.

It should be apparent that the problem is separable. First period job choice and investment

do not depend on each other. Separating investment and second-period job choice and using

the formula for V from (6) to simplify it, we get the maximand

β
(

(A1 (∆1S1 + I1))
σ
σ−1 + (A2 (∆2S2 + I2))

σ
σ−1

)σ−1
σ − (Iρ1 + Iρ2 ) , (9)

which yields the first-order conditions for I:

β
A

σ
σ−1
i (∆iSi + Ii)

1
σ−1(

(A1 (∆1S1 + I1))
σ
σ−1 + (A2 (∆2S2 + I2))

σ
σ−1

) 1
σ

− ρIρ−1
i . = 0 (10)

Claim 1 Investment in skill i is increasing in the quantity of the skill carried forward from
the previous period. That is dIi/d (∆iSi) > 0.

Proof. Apply the implicit function theorem. Since V is convex, its second derivative with

respect to Si is positive while the second derivative of (10) with respect to Ii is negative by

the second-order conditions.

Thus skill builds on itself. A worker who has a high level of skill chooses a job that makes

greater use of that skill. Knowing that she will be in a similar job next period, the worker

chooses to invest more in the type of skill that the worker uses. In a manner somewhat

analogous to Lazear (2009), workers invest in skills that make them particularly good at the
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type of job they currently occupy even though there is no learning by doing.

Claim 1 also implies that workers invest less in skills that depreciate more rapidly. Note

that this occurs even though the investment itself does not depreciate. Instead, because the

skill depreciates, workers know they will choose a job that makes less use of it.

Somewhat informally, we can view workers with higher values of β as being ‘younger’in

the sense that they put more weight on the future. It is evident from (10) that investment

is increasing in β.

All of the results in this subsection carry over to the general two-period model.

2.3 Credit Constraints

For the remainder of the example, it is convenient to set ∆i = 1 = β, i.e. there is no

depreciation or discounting.

Heretofore we have assumed that the worker is free to invest as much as she wants. In

contrast, in Ben-Porath workers can only invest up to their current production. Restrictions

on the worker’s ability to invest can be used to make our model more closely resemble

Ben-Porath’s.

More significantly, in our model, such constraints can have important effects even when

they appear not to bind. Consider the following example. As σ → 1, the worker chooses

a job that specializes in whichever skill she has in greater supply. So she either maximizes

A1 (S1 + I1) − Iρ1 or its equivalent for I2. After maximizing and substituting, she compares

A1S1 + A
ρ
ρ−1
1

(
ρ−

1
ρ−1 − ρ−

ρ
ρ−1

)
with its equivalent for S2. Normalize A1 to 1 and let ρ = 2,

S1 = 2 and S2 = 0. She will be indifferent between investing in the two skills if A2 = 3. But

if she invests in skill 1, she will set I1 to .5 at a cost of .25. If she invests in skill 2, she will

choose I2 = 1.5 at a cost of 2.25, making a net wage of 2.25 in both cases. However, if she

is constrained to spend less than 2.25, she will strictly prefer to invest in skill 1. Provided

that the constraint exceeds .25, the constraint is not binding even though it eliminates her

indifference. By continuity, there are values of σ > 1, A2 > 3 and the constraint such that if

unconstrained, she would strictly prefer to invest in skill 2 but if constrained invests in skill

1 while spending less than the constraint.

That is, although production at individual jobs is linear, job choice produces a convex

skill value function, and thereby we can have a non-binding but choice-altering resource

constraint. In the general model, we provide suffi cient conditions for this to occur.
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2.4 Mobility Costs and Firm Investment in General Human Capital

Since Becker (1971) economists have understood that workers should pay for their general

training. Yet firms appear to pay for their workers to acquire general skills. Acemoglu and

Pischke (1999) argue convincingly that a fixed mobility cost is insuffi cient to overturn this

result. They argue that the firm must be able to capture some of the worker’s increased pro-

ductivity. In Lazear (2009), firms pay for general skills because they have some monopsony

power.

In the example here, we show that in our model a fixed mobility cost combined with some

firm bargaining power is suffi cient for the firm to invest in one of the two skills provided that

the mobility cost is suffi cient to prevent mobility in equilibrium. Furthermore, the worker

overinvests in one skill in order to improve her bargaining position while the firm overinvests

in the other in order to deter the worker from overinvesting quite so much.

To fix ideas, consider the case where S = [1, 0]T , A = [1, 2]T , σ = ρ = 2, ∆ = I2×2 and

β = 1. That is, the worker is initially endowed with only a unit of skill 1, but skill 2 is

potentially a more valuable investment since A2 is twice A1.

If there were no mobility cost, the worker would choose J0 = [1, 0]T , I = [1
3
,
√

5
3

]T

and J1 = [2
3
,
√

5
3

]T , for a total payoff of 7
3
. In other words, the worker starts in a job that uses

only skill 1, invests primarily in skill 2, and then chooses a period 1 job that puts slightly

more weight on skill 2 than skill 1.

With a mobility cost of m levied if the worker chooses to change jobs between periods,

the worker will either act as in the no-cost case and pay m, or take a single job solving

max
J,I

A1J1(S1 + (S1 + I1)) + A2J2(S2 + (S2 + I2))− I2
1 − I2

2 (11)

which, given the parameter assumptions above, reduces to

max
J,I

J1(2 + I1) + 2J2I2 − I2
1 − I2

2 (12)

subject to J2
1 + J2

2 = 1. This gives the corner solution I = [.5, 0], J = [1, 0], for a payoff of

2.25. Comparing the maxima under each scheme, we deduce the worker moves if m ≤ 1/12.

If the incumbent firm can extract some of the avoided mobility cost when the
worker does not move, things are quite different. Consider firms which, following production

and investment by the worker in the first period, can make a take it or leave it offer for

period 1 employment. Outside firms behave competitively and each offer the worker her

productivity, but the incumbent firm effectively has monopsony power. If such a deal leaves

the firm with positive surplus, the worker will stay at the incumbent firm and receive a wage
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equal to her outside option, which is simply the highest production her skills can achieve

elsewhere, minus m. But this perversely incentivizes the worker so that even when she

remains at the incumbent firm, she invests as though she was at a firm with different skill

weights. That is, the worker will invest I = [1
3
,
√

5
3

]T , as in the case without mobility costs,

despite the fact that she will not actually move to the job [2
3
,
√

5
3

]T . Since the market in

period 0 is competitive, firms make offers that foresee their monopsony power. Consequently,

the worker will get a total payoff equal to her lifetime production net of investment costs,

but subject to the incentive distortion.

In other words, the worker’s job choice will solve

max
J

J1

(
2 +

1

3

)
+ J2

(√
5

3

)

which yields J = [ 7√
69
, 2
√

5√
69

]. That is, the worker’s second-period distortionary incentive to

invest as though she were moving to the job [2
3
,
√

5
3

]T will also distort her original job choice.

In the end, the worker attains a reduced payoff of 2.102.

If the firm can commit to invest in the worker’s skills, this ineffi ciency can be
partially blunted. Suppose that firms can make period-0 offers that include some provision

of skill investment Ĩ. The firm incurs a cost for this investment C(Ĩ), and the worker can

invest further so that her total investment is I, by expending C(I) − C(Ĩ). As the worker

has an ineffi ciently high desired level of investment in skill 2, the firm will want to affect that

level by committing to a level of investment in skill 1 beyond what the worker would choose

on her own, 1
3
. By using the investment FOCs, we can show that the worker will respond to

a firm investment Ĩ1 >
1
3
, Ĩ2 = 0 by choosing

I2(Ĩ1) =

√
(1− I1)(3 + I1)

2
.

The offer from each firm in period 0 will therefore maximize total worker production subject

to this constraint, so that the worker chooses the offer maximizing her ex-ante payoff. The

job choice ends up being J ≈ [.9, .435]T and the total investment I = [.567, .621]T for a

total payoff of 2.144. Thus, firms’ability to commit to investing in the worker reduces the

ineffi ciency.

Notice that the investment in skill 1 offered by the firm, .567, is greater than the worker

would ever choose in the absence of the incentive problem. This is because investment in

skill 1 reduces the worker’s incentive to invest in skill 2. Suppose instead that the firm

merely committed to investment in skill 1 at the optimal level for production at the current
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job. Then, further skill investment in skill 1 would result in only a second-order loss of net

production at the incumbent firm, but the gain in net production by reducing incentives

to invest in skill 2 is first-order as the worker’s investment level in skill 2 is above that

which would satisfy the FOC of net production at the current firm. In other words, the

firm commits to an ineffi ciently high level of investment in skill 1 in order to dampen the

worker’s ineffi ciently high level of investment in skill 2, as the two are seen by the worker as

substitutes. The end result is overinvestment in both skills given the worker’s job, but for

different reasons.

3 The Two-Period Model

In this section we generalize the basic two-period model with no uncertainty. We reproduce

the principal results from the example. In section 4, we derive suffi cient conditions for the

credit constraint and overinvestment results. That section introduces the functional form

we rely on for the continuous time section. Readers who are not interested in the technical

details of the general two-period model can skip to section 4.

There exist N different skills. A worker is endowed with a skill vector S ≥ 01 so that

her level of ability in skill n is Sn. We will discuss investment shortly, but first consider a

worker with a fixed vector of skills.

The worker will choose a job from J ⊆ RN+ , the job set. The job set represents the
collection of production technologies at different jobs, in the form of the set of available skill

weight vectors from which the worker can choose. This set is nonempty, strictly convex,

compact and can be described in terms of a strictly convex, smooth function F : RN → R
and the positive orthant so that J ≡ {J ∈ RN+ |F (J) ≤ 0}.
A worker with skill vector S at job J receives a wage

W (J, S) = (AJ)T S (13)

where A is a diagonal matrix. It may be useful to think of A as allowing us to capture shifts

over time or across individuals in the value of a skill in all jobs. We can scale A and J so

that Ai can be interpreted as the maximum weight that any job puts on skill i.

We further assume that ∇2F (J) is positive definite when ∇F (J) >> 0. Finally, if some

Ji = 0 and F (J) = 0 then ∂F (J)/∂Ji ≤ 0. In other words, if there is a job that does not use

1Throughout this paper we use vector inequality notation as follows: x >> y ⇔ ∀i xi > yi; x > y ⇔
∀i xi ≥ yi and x 6= y; x ≥ y ⇔ ∀i xi ≥ yi. Vectors are columns unless otherwise noted and AT denotes the
transpose of A. ∇ denotes the gradient operator and ∇2 the Hessian operator. The identity matrix is I.
Finally, for a diagonal matrix A, Ai denotes the ith term on the main diagonal.
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a skill, then there are jobs that put some weight on that skill, without reducing the weight

on the other skills much. This will ensure the worker will choose a job that uses, at least

a little, every skill she possesses. The job set therefore tells us how different skills can be

combined to produce.

3.1 Single job selection

A worker who must choose a job from J to maximize her wage will solve the constrained

program

max
J∈J

W (J, S) = max
J∈J

(AJ)T S. (P0)

We can form the associated Lagrangian

L0 = (AJ)T S − λF (J). (14)

When S 6= 0, this has a unique (from strict convexity) solution satisfying

AS − λ∇F (J∗) = 0 (15)

F (J∗) = 0. (16)

That such a point is a maximizer also follows from the strict convexity of F . Furthermore,

since each job has linear skills weights, J∗(·) is homogeneous of degree 0; doubling all of a
worker’s skills does not change her choice of job.

3.1.1 Relation to skill endowment

As noted, when S >> 0, the first order condition and our assumptions guarantee that

J∗ >> 0: the worker puts at least some weight on all skills she possesses. We show now, as

is quite intuitive, that this is a general result; the worker puts more weight on a skill when

she has a higher endowment of that skill.

Proposition 1 The weight that the optimal job places on a skill is increasing in that skill:

∂J∗i
∂Si

> 0. (17)

Proof. see appendix for all remaining proofs.
Therefore, as a worker’s particular skill grows, she will choose a job that puts more weight

on it.
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The value the worker attains with skills S is V (S) = (AJ∗(S))TS. The Envelope Theorem

tells us that∇V (S) = AJ∗(S). From this and (17) we can see that the value is strictly convex

in any particular skill. As her ith skill improves, the worker not only gains by becoming

linearly better at her old job, but also gains by selecting jobs that increasingly involve this

improved skill.

3.2 Investment

We now assume the worker lives two periods, chooses a job from J for each (denoted J0 and

J1) and also has a chance to invest in the first period, with the investment increasing her

skills in the second period. She will discount payoffs in the second period to the first by a

factor of β.

Her skills will evolve between the two periods by way of an N × N diagonal, positive

definite non-depreciation matrix ∆ ≤ IN×N and an investment vector I.2 Starting with

skills S, the worker will have a skill vector S ′ = ∆S + I in the second period. That is, ∆i is

the part of the endowment in skill i that does not depreciate by period 1 due to aging. The

rate of depreciation may differ among skills.

On the other hand, the worker chooses the investment I and pays C(I) at the time of

the investment. We impose restrictions to ensure that workers always want to invest at least

a little in any skill used on the job they plan to choose, that investment is finite and that we

can use standard calculus. Formally, we assume that C : RN+ → R+ is twice-differentiable,

strictly increasing in each dimension of I, C(0) = 0,∇C(0) = 0, and ∇2C(I) is diagonal and

positive definite on RN++. We also assume that ∂C(I)/∂Ii is unbounded above.

The worker solves the problem

max
I∈RN+ , J0,J1∈J

JT0 AS + βJT1 A(∆S + I)− C(I) (P01)

For this problem, we form the Lagrangian

L01 = JT0 AS + βJT1 A(∆S + I)− C(I)− λF (J1)− µF (J0). (L01)

Note that Jt corresponds to the vector (Jt1, Jt2)T in the example in Section 2.

Clearly, the part related to J0 is entirely separable from the rest and follows the discussion

2Diagonality implies that depreciation of a skill depends only on the amount of that skill the worker
possesses and not on the level of other skills.
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of job choice with exogenous skills above. The rest of the problem becomes

max
I∈RN+ , J1∈J

βJT1 A(∆S + I)− C(I) (P1)

L1 = βJT1 A(∆S + I)− C(I)− λF (J1). (L1)

The Lagrangian (L1) is solved with the first order conditions3

βA(∆S + I∗)− λ∇F (J∗1 ) = 0 (18)

βJ∗1A−∇C(I∗) = 0 (19)

F (J∗1 ) = 0 (20)

and the negative semi-definite (non-bordered) Hessian, in blocks,

H(S, I∗, J∗1 ) =

[
−λ∇2F (J∗1 ) βA

βA −∇2C(I∗)

]
(21)

3.2.1 Investment and Skill Persistence

One of the striking implications of the model is that prior investment in skills tends to make

skills persistent. We show first that the worker will never completely abandon investment in

a skill that she has already. Then we show that investment in a skill is weakly increasing in

the level of that skill. In effect, we have a dynamic that looks very much like learning-by-

doing. A worker who has a high level of some skill knows that, despite some depreciation,

she will have a lot of it next period as well. And since she will have a lot next period, she

will choose a job that will put a lot of weight on that skill as well. But this makes it valuable

to invest even more in the skill.

Proposition 2 A worker always continues to invest in any skill she already possesses:

Si > 0⇒ Ii > 0. (22)

As all skills the worker has any initial ability with will be given weight in period 1, the

worker is incentivized to invest a positive amount in them as the marginal cost of doing so

is 0 at an investment of 0. This does not imply that all skills improve; depreciation can

dominate investment.
3Equation (19) has a solution as the additive separability of C(I) across its components as well as the

unboundedness above of each ∂
∂Ii
C(I) give us that ∇C is a bijection.
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We are not guaranteed a unique solution to the maximization problem, although we will

have it in most generic cases. We assume a unique solution for the remainder of the two-

period model and also that S >> 0 so that we have an interior solution, i.e. J∗1 >> 0, I∗ >>

0. Then we have

Proposition 3 Investment is weakly increasing in the existing endowment of a skill:

∂I∗i
∂Si
≥ 0. (23)

That is to say, workers invest in skills at which they are already good. This is produced by

the fact that costs to improve a skill do not depend on that skill’s previous level. This is an

expression of specialization persistence. Highly skilled, specialized workers will take a second-

period job that is largely determined by their endowment, and are therefore incentivized to

invest in a way that reflects their initial specialization.

Using (17) and the fact the J0-part of (P01) is identical to (P0), we also have

∂J∗0i
∂Si
≥ 0 (24)

In other words, both skill investment and the first job’s skill use are correlated with the

initial endowment. This occurs despite the fact that investment costs do not depend on the

first job. Therefore, what appears as learning-by-doing may instead simply be the product

of aligned incentives.4

3.3 Comparative Statics

3.3.1 Depreciation

Skill depreciation and initial skills S enter the problem multiplicatively and identically out-

side of first-period job choice which is in turn entirely separable from the rest of the problem.

As a consequence, the effects of∆i on investment and second period job choice are symmetric

to those of Si; we have ∂I∗i /∂∆i = (∂I∗i /∂Si)Si/∆i ≥ 0 and ∂J∗1i/∂∆i = (∂J∗1i/∂Si)Si/∆i >

0.

This is significant. Despite the fact that the new investment will not depreciate by the

time it is used in production, the fact that initial ability in that skill will have, means it is

less worthwhile to invest in it - no one wants to ‘run to stay in place’. This can simply be

4A learning-by-doing approach where it is cheaper to invest in skills used at the first job can explain
internships, apprenticeships and other cases where short-term productivity (not just income) is foregone in
order to facilitate learning. However, these make up a small part of total employment, so we will instead
proceed with the more parsimonious model.

13



understood by the fact that ∂2V (S)/(∂Si)
2 = ∂J∗i (S)/∂Si > 0; the second-period value of

skills is convex in each argument, so increasing depreciation reduces a skill’s marginal value.

3.3.2 Age

Although the model does not explicitly account for age, we can alter β to change the ‘length’

of the second period. This proportionately raises the value of both S and I. The total

expenditure on investment will increase with the remaining time.

Proposition 4 Let β > β′, I∗ be a solution to the problem with discount factor β and I∗′

be a solution to the problem with discount factor β′. Then C(I∗) > C(I∗′).

Therefore, younger workers spend more on investment, as is intuitive. However, this

result only addresses total investment costs. It does not necessarily mean that investment

in any particular individual skill will increase in age. This is illustrated by the following

example.

Convex example. TakeN = 2, ∆ = I with C(I) = 2
3
I

3/2
1 + 3

4
I

4/3
2 and F (J) = J2

1 +J2
2−1.

Suppose a worker has S = (0, 0)T . Then V (∆S + I) = V (I) =
√
I2

1 + I2
2 . Fixing C(I),

solving for I2 and taking a second derivative of the objective w.r.t. I1, the result is positive

for all I1 > 0. Therefore, for any fixed amount of spending, corner solutions are optimal;

thus, we need only examine corner solutions. For β = .5
√

3, the solution is I = (.75, 0) while

for β =
√

2, the solution is I = (0, 2
√

2); total investment costs are .25
√

3 and 3 respectively.

Therefore, in this example, the younger worker will spend more on skill investment overall,

but less on skill 1 in particular. The intuition here is as follows: investment costs are initially

lower for skill 1, but rise more sharply. A worker with insuffi cient time to exploit her skills

after investment will therefore want to make a small total investment, and skill 1 is better

suited for that; by contrast, a worker with a higher β will wish to invest more in total, and

skill 2 is better suited for large investments.

4 The Diagonal Form Case

We now work with a specific functional form both to address questions of specialization and

generalization, and to have a flexible but workable framework for continuous time. To do

this, we will assume F − 1 and C are diagonal forms. We will also derive conditions under

which there is overinvestment in all skills in this case and conditions under which ex ante a

credit constraint is binding even though it appears not to be ex post.
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4.1 Setup

We will be working with job sets which share the form

F (J) =
∑
i

Jσi − 1 (25)

with σ > 1. The job-choice problem with skills S is therefore maxJ∈RN+ JTS subject to (25).

Recall that we can always renormalize the job and that therefore the assumption that the

coeffi cient on Ji is 1 is without loss of generality.

A diagonal form for F + 1 implies a σ−spherical shape; this means that skills are inter-
related in the same ways, so that we can ignore questions of complementarity versus substi-

tutability and focus on questions of specialization versus generalization. The cost function

we will be using is simply a diagonal form with exponent ρ > 1 and unit coeffi cients.5

C(I) =
∑
i

Iρi . (26)

4.2 Solution

Solving for the first period job choice, we obtain

V (S) =

(∑
i

(AiSi)
σ
σ−1

)σ−1
σ

(27)

J∗i (S) =
A

1
σ−1
i S

1
σ−1
i(∑

j(AjSj)
σ
σ−1

) 1
σ

= A
1

σ−1
i S

1
σ−1
i V (S)−

1
σ−1 (28)

The investment problem is

max
J∈RN+ ,I∈RN+

βJTA(∆S + I) −
∑
i

Iρi (29)

s.t.
∑
i

Jσi − 1 ≤ 0. (30)

5Unit coeffi cients are used without loss of generality; using diagonal K as cost coeffi cients, endowment
S with productivity A would generate the same job choices, production and investment costs as unit cost
coeffi cients, endowment K

1
ρS and productivity K−

1
ρA. As we are not in the business of defining an absolute

notion of a unit of skill, we allow ourselves this normalization.
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Swapping S for ∆S + I we can use (27) to write (29) as

max
I∈RN+

β(∑
i

(Ai(∆iSi + Ii))
σ
σ−1

)σ−1
σ

−
∑
i

Iρi

 . (31)

From there, we can compute the first order condition with respect to Ii as

β
A

σ
σ−1
i (∆iSi + Ii)

1
σ−1(∑

j(Aj(∆jSj + Ij))
σ
σ−1

) 1
σ

= ρIρ−1
i (32)

and arrive at (
Ai
Aj

)σ
∆iSi + Ii
∆jSj + Ij

=

(
Ii
Ij

)(ρ−1)(σ−1)

. (33)

Corner solutions with Ii = 0 require Si = 0 as usual, but here it is also necessary that

(ρ− 1)(σ − 1) ≤ 1 for them to exist.6

4.3 Specialization and Generalization

So far we have analyzed period 1 job selection but, as that problem is separable from period

0 job selection, we have not examined the relation between the two. In this subsection, we

examine the conditions under which workers generalize or specialize in their skill set. We

restrict ourselves to the case where ∆ = δI for some δ < 1 so skills depreciate at the same

relative rate 1− δ.
In this case, a single measure of the problem’s convexity can deliver many results simul-

taneously.

∂ln


∂C(I)

∂Ii
∂C(I)

∂Ij


∂

(
Ii
Ij

) /

∂ln


∂V (S)

∂Si
∂V (S)

∂Sj


∂

(
Si
Sj

) = (ρ− 1)(σ − 1) (34)

The ratio of the elasticity of the relative marginal costs to the elasticity of the of the relative

marginal products, (ρ−1)(σ−1), tells us how fast costs grow as we move away from balanced

investment, relative to how production grows. If (ρ− 1)(σ − 1) > 1, costs grow too fast for

specialization to occur, and the worker generalizes. If, on the other hand, (ρ−1)(σ−1) < 1,

6To see this, notice that when Si = 0, the left hand side of (32) goes to 0 slower than the right hand side
as Ii ↓ 0 when (ρ− 1)(σ − 1) > 1.
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the costs grow too slow relative to the gains from job selection, so the worker will specialize.

We show the problem in the generalization case is unique.

Proposition 5 When (ρ− 1)(σ− 1) ≥ 1 and S 6= 0 the global maximizer of (31) is unique.

Now, we can examine the evolution of job choice in the generalization world. When

(ρ − 1)(σ − 1) > 1, the optimal second-period job when S = 0 defines an attractor for job

weight ratios. When the ratio of the weights assigned to two skills in the first period is

not the same as in the S=0 problem, the following period the ratios of skill weights will be

closer to those when S = 0. We regard this as generalization - regardless of their initial skill

endowments, all workers in such a model move towards a common, non-extreme skill set.

Proposition 6 If (ρ − 1)(σ − 1) > 1, ∃δ : ∆ = δI then for each i, j, if J∗0i(S)/J∗0j(S) >

J∗1i(0)/J∗1j(0) then J∗0i(S)/J∗0j(S) > J∗1i(S)/J∗1j(S).

4.4 Credit Constraints and Relation to the Ben-Porath Model

Other than addressing the multiplicity of skills, our model so far differs from the standard

Ben-Porath model in two ways. First, it is set in discrete time. This is unimportant. Later

in the paper, we explore the diagonal version of the model in continuous time. The second

is that the standard presentation of the Ben-Porath model assumes that investment takes

the form of foregone production. Workers devote a fraction of their time to investing. In

contrast, we treat investment as a cost. Workers can purchase skills.

For the most part this distinction is unimportant and largely a matter of convenience.

We can think of someone who is capable of earning $x and chooses to invest $y as foregoing

a proportion y/x of her income. Where it becomes important is when the optimal y > x. In

some ways this can be resolved by simply imposing the additional constraint that C (I∗) ≤
JT0 S which would only slightly complicate the model.

However, we show in this section that a constraint can work differently than it does in

the Ben-Porath model. In that model, when the constraint binds, the individual spends all

of her resources on investment, which is typically interpreted as being engaged in full-time

schooling. We show here that when there are multiple skills, this conclusion is no longer

valid. The skill value function V is weakly convex, with the convexity inequality strict for

all but parallel skill vectors. As a consequence, on RN
++, V (·) is strictly convex in each

component of S, despite the fact that any individual job’s production function is linear.

This can make the investment problem non-convex, and therefore produce solutions affected

by the constraint, but without the constraint binding with equality. We derive suffi cient

conditions for this to be true.
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In a world of specialization, when skill productivity varies suffi ciently, there are always

endowments and budget constraints such that the budget constraint does not bind with

equality but affects the optimum. Let I∗c (·) denote the function mapping the endowment S
into optimal investment when the constraint is c.

Proposition 7 If (ρ − 1)(σ − 1) < 1 and A1 < maxiAi =: A2 such that
(
A2
A1

) ρ
ρ−1

(1 −

ρ
δ(ρ−1)

(
A2
A1

) (σ−1)(ρ−1)−1
ρ−1

) > 1,7 then ∃S, c : C(I∗c (S)) < c and C(I∗(S)) > c.

The basic intuition can be seen in Figure 1 which shows, in an example, how the budget

constraint affects both total investment and the particular skills invested in. As the worker

is endowed with much skill 1, for low values of the constraint he simply continues investing

in that skill. It’s not worth investing in skill 1 for long, as it’s productivity is mediocre, so

investment is constant when c ∈ [.25, 1]. However, once the constraint is greater than 1 the

worker specializes heavily in skill 2, and the constraint once again binds until c = 4. Beyond

that, further investment is ineffi cient, and relaxing the constraint further has no effect on

net output.

Figure 1: Investment expenditure in skill 1 (solid line) and 2 (dotted line) as a function of
the budget constraint c when A1 = 1, A2 = 4, S1 = 2.75, S2 = 0, ρ = 2, σ ≈ 1.

7Notice that since (σ − 1)(ρ− 1) < 1, for large enough A2/A1 this holds.
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4.5 Mobility Costs and Overinvestment

Consider again the problem that arises when firms can offer wages to the worker and mobility

costs give the incumbent firm local monopsony power. Once again, suppose that to coun-

teract the worker’s ineffi cient investment incentives, the firm may commit to provide some

skill investment as part of the period 0 job offer. We now derive a suffi cient condition for

overinvestment in all skills if mobility costs are suffi cient to prevent mobility in equilibrium.

It turns out that this is always true provided that the worker would move in the absence

of the mobility cost and that the condition for workers to generalize over their lifetime is

satisfied.8

Let the mobility cost be m. Denote the worker’s investment best response function

mapping the firm’s investment commitment to total investment by IW (·). Note that IW

refers to the combined investment regardless of whether carried out by the firm or worker.

Proposition 8 Let C and F + 1 be diagonal forms with (σ − 1)(ρ − 1) > 1. Suppose the

worker with skill endowment S >> 0 does not move in period 1, but would absent the mobility

cost. Then the optimal contract (J, IF , w0) satisfies IW (IF ) >> I∗(J).

The intuition for this result is simple: to the worker, investments in different skills are

substitutes. The worker’s incentives are to overinvest in certain skills relative to the current

job’s weights in order to improve the outside option for bargaining purposes. Then, by

increasing investment in other skills - those not overinvested in - the firm can dampen the

worker’s incentives. The firm wants to commit to overinvest in these counterweight-skills, as

at the appropriate level of investment for the current job, the direct effect on net production

has a zero FOC (by definition), but the effi ciency gain from reducing excessive investment

elsewhere is a first-order effect.

5 Continuous Time

We now wish to move the model to continuous time. We will keep the Diagonal Form

structure in doing so, and retain much of the relevant intuition.

5.1 Setup

The problem is now defined over an interval in continuous time [0, T ], which is discounted

at a rate r. The worker possesses skills S(t) at time t; the productivity matrix is A and

8It additionally holds in the two-skill case in a more general setting, provided that the worker’s investment
is a continuous function of the firm’s commitment.
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the worker chooses jobs J(t) from the job set J = {J ∈ RN+ |
∑

i J
σ
i ≤ 1} so that her time-

t instantaneous production is J(t)TAS(t). Skills depreciate at relative rates given by the

diagonal matrix D := I−∆, counterbalanced by investment I(t), so that

d

dt
S(t) = −DS(t) + I(t). (35)

However, investment is costly, with time-t instantaneous cost C(I(t)) =
∑

i Ii(t)
ρ - the

diagonal form. Endowed with initial skills S0, the worker therefore seeks to maximize her

lifetime utility by solving

max
J :[0,T ]→J , I:[0,T ]→RN++

∫ ∞
0

e−rt

[
J(t)TAS(t)−

∑
i

Ii(t)
ρ

]
dt (36)

s.t.
d

dt
S(t) = −DS(t) + I(t) (37)

S(0) = S0 (38)

The worker chooses I(t) and J(t) optimally. However, as J does not influence the state

variable, it is chosen according to (27). Thus, we can bypass job selection for the moment

and reduce the problem to

max
I:[0,T ]→RN++

∫ ∞
0

e−rt

(∑
i

(AiSi(t))
σ
σ−1

)σ−1
σ

−
∑
i

Ii(t)
ρ

 dt (39)

s.t.
d

dt
S(t) = −DS(t) + I(t) (40)

S(0) = S0. (41)

We therefore construct the Hamiltonian

H = e−rt

(∑
i

(AiSi(t))
σ
σ−1

)σ−1
σ

−
∑
i

Ii(t)
ρ

+
∑
i

µi(−DiSi(t) + Ii(t)). (42)

The solution is given by the i equations

A
σ
σ−1
i (Si(t))

1
σ−1(∑

i(AiSi(t))
σ
σ−1

) 1
σ

+ ρ(ρ− 1)Ii(t)
ρ−2dIi(t)

dt
− (r +Di)ρIi(t)

ρ−1 = 0 (43)
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along with the motion equations for skills

d

dt
S(t) = −DS(t) + I(t), (44)

the initial condition S(0) = S0, and the transversality condition I(T ) = 0.

5.2 Ben-Porath Case

In the special case where all skills grow at the same rate, the first term in (43) can be replaced

with Ki, a skill-specific term that is constant over time. In this case the solution to (43)

becomes

Ii (t) =

(
Ki

1− e(r+Di)(t−T )

ρ (r +Di)

) 1
ρ−1

. (45)

Note that, as required for constant Ki, the ratio of investment in any two skills is constant.

Figure 2 graphs an example of this ‘Ben-Porath case’. The worker enters the market

with twice as many units of skill 1 as of skill 2. Although the values of σ and ρ are chosen

so that there is a tendency to generalize skills, this is exactly offset by the greater initial

endowment of skill 1 and the higher productivity of skill 1 for the worker so that the worker’s

investment maintains the 2 : 1 ratio of skill 1 to skill 2. Net output (the wage) shows the

classic hump-shaped pattern of the Ben-Porath model and peaks later than gross output.

Since investment reaches 0 at exactly time T , this is the point at which the two are equal.

Unlike in the Ben-Porath model, we allow for investment in excess of production. In this

and the other examples given, production net of investment starts out negative, meaning the

worker is borrowing to finance the early stages of her skill investment.

5.3 Jobs and Skills Over the Lifecycle

It is generally not possible to obtain a closed form solution for (43). We can, however, solve

the system numerically for given values of A, D, r and S0. To demonstrate the potential

usefulness of this approach, we present a scenario that we find particularly interesting.

The scenario has three skills which we refer to as skills 1, 2 and 3, but the reader may

think of them as nonroutine manual, routine cognitive and nonroutine cognitive. Our chief

example considers a worker subject to an unanticipated shock that increases the value of

nonroutine cognitive skills while also decreasing the value of routine cognitive tasks. In reality,

combinations of skills may have differing degrees of synergy. Nevertheless, we think even

the simple example using diagonal form, which treats skills complementarity symmetrically,

provides some useful insights.
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Figure 2: The case of proportional skill evolution.

We consider an individual who arrives in the labor market with 10 units of each skill.

Initially the second skill is the most valuable (A2 = 1.2); the first lies in the middle (A1 =

1.13) and the third skill is the least valuable (A3 = .8) to the worker. The worker is assumed

to be in the labor force for forty years. We consider an unanticipated shock that occurs

in either the worker’s 10th, 20th or 30th year (and for some purposes the 35th year) in

the market. The shock reduces A2 to .8 and increases A3 to 1.25 while leaving A1 at 1.13.

If workers typically arrive in the market with similar amounts of skills 2 and 3, the shock

represents a mild form of positive shock for the youngest workers.

Figure 3 shows the path of the three skill weights for the individual if she experiences no

shock and at 10, 20 or 30 years of experience. The top left corner shows the baseline with

no shock. Absent the shock, the worker specializes in skill 2.

Continuing clockwise, we see that if the shock arrives when she has thirty years experi-

ence, she immediately mechanically (since A2 falls) finds herself a job that puts less weight

on skill 2. Comparing the two panels, it is also evident that she increases her net investment

in skills 1 and 3 relative to her net investment in skill 2 once the shock hits since the weights
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Figure 3: Job Weights by Experience by Timing of Shock

on the former now grow rather than shrink. In fact, most of the adjustment can be shown to

come from reduced investment in skill 2 rather than increased investment in the other skills.

This can be seen most clearly in Figure 4 which shows the stocks of skills at each point in

time. In the end, she adjusts very little. She continues to work in jobs that focus on the skill

in which she has accumulated a large stock even though the value of that stock has fallen

by about one third.

A shock at twenty years of experience has a more noticeable effect on shifting the job

weights. But because her stock of skill 3 has depreciated so much over twenty years, by the

end of her career, she shifts towards a job that places the most weight on skill 1. Much, but

not all, of the increased weight on skill 3 reflects the greatly increased value of that skill in

all jobs rather than a very large shift towards investment in skill 3.

Only when the shock arrives suffi ciently early in her career does she adjust by investing

much more heavily in skill 3 and somewhat more in skill 1 so that ten years after the shock,

she works in a job that places the greatest weight on skill 3.

Figure 5 shows net output over time. As the worker has invested most heavily in a skill
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Figure 4: Skill Levels by Experience by Timing of Shock

whose value is reduced, the worker suffers an immediate adverse shock to net output. The

magnitude of the shock will depend largely on how much of skill 2 she has accumulated

relative to skill 3. As a consequence, the individual shocked at 10 years of experience suffers

an earlier but smaller output shock. Compared to a similar person suffering a shock at 20

years of experience, she has higher output at nearly every later experience level. When the

shock hits the similar person at 30 years, the one shocked at 10 years has already recovered

suffi ciently to have higher net output. The person shocked at 20 years of experience fares

almost as badly in the last 30 years of work as the person shocked at 30 years.

More generally, in this example in which the shock is in a sense positive, a worker who

begins her career just as the shock hits will benefit. One who ends her career just as the

shock hits will be unaffected. By continuity there will be a range of low experience levels

at which the effect of the shock will be positive. We expect, but have not shown, that the

effect of the shock is U-shaped.

We can broaden this discussion to ask who is most adversely affected by the shock. The

easiest way to answer this question is by comparing the present value of net output. In
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Figure 5: Net Output and Experience by Timing of Shock

our example, this value is highest for the person who is never shocked and decreases as the

timing of the shock moves to 35 to 30 to 20 to 10 years of experience. Since we know that

a shock at 0 years of experience would have a positive effect, the significant point is that a

positive shock can have a negative effect for a very long time. In 5, the individual shocked

at 10 years of experience never returns to the net output level that she would have reached

in the absence of a shock.

At the same time, the PDV of net output may be a misleading measure of how adversely

the worker is affected. It requires that utility be linear in income. If workers are risk averse

and smooth consumption over their lifetimes, then a worker subjected to an unanticipated

negative shock will have lower lifetime utility than one with the same PDV of net output

but who does not experience an unanticipated shock, since the latter, but not the former,

can fully smooth consumption.

If the workers in our sample smooth consumption over their lifetimes, very young workers

will have accumulated less debt than somewhat older workers while workers nearing retire-

ment will have accumulated more retirement savings than those somewhat further from
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retirement. Therefore, very young workers and those nearing retirement do not need to re-

duce the flow of consumption by as much as someone in between. We continue our example

by assuming that people live for another 20 years following retirement and smooth their

consumption perfectly except for the effect of the unanticipated shock. Here we find that a

worker shocked at 20 years of experience must reduce her consumption by almost half (47

percent) relative to what she had anticipated. In contrast, workers shocked at 10 and 30

years of experience must reduce their consumption by 35 percent and 36 percent.

Perhaps the most striking aspect of the example is the length of time for which an

ultimately positive shock can be negative. The same worker who spends her entire career

after the shock will earn 6.3 percent more over her lifetime than if she finished her career

before the shock hit. Yet even a worker who was only five years into her career never

recovers from the shock and suffers a decline of about one-third in future consumption. This

is because skill investment is extremely front-loaded to allow for longer exploitation time, so

the loss is great even when the shock hits early. While ours is an example, not a calibration

exercise, we find this duration and magnitude of the effect striking.

6 Discussion and Conclusion

We believe that our model provides both qualitative and quantitative insights. It provides as

explanation for firm investments in general skills that draws on the insight of Lazear (2009)

and is complementary to the story told there. It also suggests that nonconvexities arise

naturally in a model of multiple skills and that these nonconvexities can create settings in

which credit constraints affect behavior even though they are not binding in equilibrium.

When extended to a continuous time setting, our model is tractable and suggests that

large shocks, even if positive on net, can have long-lasting adverse effects on even relatively

young workers. While a full treatment of the effect of trade deals which raise the price of

some skills and lower others would require us to model complementarities among skills more

fully and to consider building mobility costs into the simulation, our example should make

us think very carefully about the winners and losers and perhaps even the political economy

issues.

Since Ricardo, arguments for trade and technological innovation have relied on compen-

sating transfers. But our model suggests two additional considerations. First, losers may be

diffi cult to detect. Losers include a) workers who continue using similar skills but the value

of those skills has declined, b) workers who are able to shift to jobs whose value has not

been greatly altered but whose value is less than that of the job the worker would otherwise

have held, and c) even some workers who eventually shift to jobs that place a relatively
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high weight on the skills that have increased in value. Moreover, our analysis suggests that

the importance of credit constraints for limiting transitions to better jobs may be hidden

because workers may be unable to afford to acquire the optimal set of new skills even though

they do not appear to be credit constrained. While it may be optimal for some workers to

continue to work in jobs that have declined in value, other workers may cling to such jobs

because they cannot afford retraining. For workers to adjust more adequately to skill-biased

technical and trade shocks, transfer and retraining policies may have to start as soon as

foresight permits.
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A Proofs

A.1 Proof of Proposition 1

From Fiacco (1976), we have that J∗ is differentiable with respect to S. Taking a derivative

of (15) with respect to Si, we have

[0, ...0, Ai, 0, ..., 0]T − ∂λ

∂Si
∇F (J∗)− λ∇2F (J∗)

∂J∗

∂Si
= 0. (46)

Differentiating (16) with respect to Si, we obtain ∂J∗

∂Si

T∇F (J∗) = 0. Premultiplying (46)

with ∂J∗

∂Si

T
and using that fact, we have

Ai
∂J∗i
∂Si
− ∂λ

∂Si

∂J∗

∂Si

T

∇F (J∗) = λ
∂J∗

∂Si

T

∇2F (J∗)
∂J∗

∂Si
(47)

λ−1Ai
∂J∗i
∂Si

=
∂J∗

∂Si

T

∇2F (J∗)
∂J∗

∂Si
(48)

As S >> 0, ∇F (J∗) > 0 and therefore by assumption ∇2F (J∗) is positive definite; thus,

the right hand side term is positive as a quadratic form on a positive definite matrix and we

have ∂J∗i
∂Si

> 0 as required.

A.2 Proof of Proposition 2

Substituting for J∗1 using (19) in (18) and (20) we have

βA(∆S + I∗)− λ∇F (β−1A−1∇C(I∗)) = 0 (49)

F (β−1A−1∇C(I∗)) = 0 (50)

and also, substituting in the block Hessian:

H(S, I∗, β−1A−1∇C(I∗)) =

[
−λ∇2F (β−1A−1∇C(I∗)) βA

βA −∇2C(I∗)

]
(51)

From (49), Si > 0 implies that ∂
∂Ji
F (J) > 0. From this and the assumption that Ji = 0 ⇒

∂
∂Ji
F (J) ≤ 0, we have that ∂

∂Ii
C(I∗) > 0; but as we’ve assumed that ∇C(0) = 0 and that C

is additively separable , it must be that I∗i > 0 to satisfy ∂
∂Ii
C(I∗) > 0.
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A.3 Proof of Proposition 3

Differentiating (49) and (50) with respect to Si, recalling that ∆ and A are diagonal and

suppressing functional arguments, we have

[0, .., 0, βAi∆i, 0, .., 0]T + βA
∂I∗

∂Si
− ∂λ

∂Si
∇F − λβ−1∇2FA−1∇2C

∂I∗

∂Si
= 0 (52)

(∇F )TA−1∇2C
∂I∗

∂Si
= 0. (53)

Premultiplying (52) with (∂I
∗

∂Si
)T∇2C(I∗)A−1 and recalling ∇2C is diagonal, we get

β∆i
∂I∗i
∂Si

∂2C

∂I∗i
2 + β

(
∂I∗

∂Si

)T
∇2C

∂I∗

∂Si
= λβ−1

(
∂I∗

∂Si

)T
∇2CA−1∇2FA−1∇2C

∂I∗

∂Si
(54)

∆ii
∂I∗i
∂Si

∂2C

∂I∗i
2 = −β−2

(
∂I∗

∂Si

)T
∇2CA−1

[
− λ∇2F + β2A(∇2C)−1A

]
A−1∇2C

∂I∗

∂Si
(55)

As −λ∇2F + (βA)(∇2C)−1(βA) is the Schur complement of the (negative semi-definite)

Hessian with respect to the (negative definite) block −∇2C, it is negative semi-definite.

Therefore, as the negative of a quadratic form on a negative semi-definite matrix, the right

hand side of (55) a whole is nonnegative; thus proving the proposition.

A.4 Proof of Proposition 4

Suppose I∗ is a solution to the problem with discount β and I∗′ is one with β′. Then,

optimality implies

βV (∆S + I∗)− C(I∗) ≥ βV (∆S + I∗′)− C(I∗′) (56)

β′V (∆S + I∗′)− C(I∗′) ≥ β′V (∆S + I∗)− C(I∗) (57)

so that, after some manipulation

(C(I∗′)− C(I∗))(β′ − β) ≥ 0 (58)

C(I∗) ≥ C(I∗′) (59)

Now, supposing C(I∗) = C(I∗′) for contradiction, we have V (∆S+I∗) = V (∆S+I∗′) or else

one of the objective functions is improvable. Then, from the first order condition for I∗′ we

have β′∇V (∆S + I∗′) = ∇C(I∗′) and thus β∇V (∆S + I∗′) >> ∇C(I∗′). This means that
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I∗′ also achieves the supposed maximum in the β problem, but with positive first derivatives

in the maximizers and therefore I∗ is not a maximizer. Hence, it must be the case that

C(I∗) > C(I∗′).

A.5 Proof of Proposition 5

Proof. From (32) and (27) we have that global maximizers must satisfy

βA
σ
σ−1
ii (∆iiSi + I∗i )

1
σ−1 (V (∆S + I∗))−

1
σ−1 = ρI∗ρ−1

i (60)

⇔ βσρ1−σAσii
(∆iiSi + I∗i )

I
∗(ρ−1)(σ−1)
i

= βV (∆S + I∗)) (61)

Suppose the global maximum is Π; then for any global maximizer I∗,

βV (∆S + I∗
′
))−

∑
j

I∗ρj = Π, (62)

and thus from (61)

βσρ1−σAσii
(∆iiSi + I∗i )

I
∗(ρ−1)(σ−1)
i

−
∑
j

I∗ρj = Π. (63)

As (ρ − 1)(σ − 1) ≥ 1, the leftmost component is strictly decreasing in I∗i for each i and

therefore injective. Thus two global maximizers with the same total investment costs
∑

j I
∗ρ
j

are identical. Suppose now that two global maximizers I∗ and I∗
′
exist, and

∑
j I
∗ρ
j <

∑
j I
∗′ρ
j ;

then from the strict decreasing nature of the left-most term, for each i we have I∗i > I∗
′
i . But

this contradicts
∑

j I
∗ρ
j <

∑
j I
∗′ρ
j . Therefore the global maximizer I∗ is unique.

A.6 Proof of Proposition 6

Proof. Suppose (ρ − 1)(σ − 1) > 1, ∆ = δI and J∗0i(S)/J∗0j(S) > J∗1i(0)/J∗1j(0). First, we

find J∗1 (0) from the FOC:

I∗i (0) =

(
β

ρ

) 1
ρ−1 A

σ
(σ−1)(ρ−1)−1
i(∑

j A
ρσ

(σ−1)(ρ−1)−1
j

) 1
(ρ−1)σ

(64)

and then

J∗1i(0) =
A

ρ
(ρ−1)(σ−1)−1
i(∑

j A
σρ

(ρ−1)(σ−1)−1
j

) 1
σ

. (65)
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From this, J∗0i(S)/J∗0j(S) > J∗1i(0)/J∗1j(0) and the job FOC we have

A
1

σ−1
ii S

1
σ−1
i

A
1

σ−1
jj S

1
σ−1
j

>
A

ρ
(ρ−1)(σ−1)−1
ii

A
ρ

(ρ−1)(σ−1)−1
jj

⇔
(
Ai
Aj

)σ
<

(
Si
Sj

)(ρ−1)(σ−1)−1

. (66)

Now, as the solution for S >> 0 is interior, recall from (32)(
Ai
Aj

)σ (
δSi + Ii
δSj + Ij

)
=

(
Ii
Ij

)(ρ−1)(σ−1)

.

so that using (66) we obtain(
Si
Sj

)(ρ−1)(σ−1)−1
δSi + Ii
δSj + Ij

>

(
Ii
Ij

)(ρ−1)(σ−1)

(67)

δ + Ii
Si

δ +
Ij
Sj

>

(
Ii
Si
Ij
Sj

)(ρ−1)(σ−1)

(68)

δ

(
Ii
Si

)−(ρ−1)(σ−1)

+

(
Ii
Si

)1−(ρ−1)(σ−1)

> δ

(
Ij
Sj

)−(ρ−1)(σ−1)

+

(
Ij
Sj

)1−(ρ−1)(σ−1)

(69)

But given that (ρ− 1)(σ − 1) > 1, the expression δx−(ρ−1)(σ−1) + x1−(ρ−1)(σ−1) is necessarily

strictly decreasing in x; therefore (69) implies Ii
Si
<

Ij
Sj
. This in turn implies

Si
Sj

>
δSi + Ii
δSj + Ij

(70)

and from this and (28) we have

J∗0i(S)

J∗0j(S)
=
A

1
σ−1
ii S

1
σ−1
i

A
1

σ−1
jj S

1
σ−1
j

>
A

1
σ−1
ii (δSi + Ii)

1
σ−1

A
1

σ−1
jj (δSj + Ij)

1
σ−1

=
J∗1i(S)

J∗1j(S)
(71)

as required.

A.7 Proof of Proposition 7

Proof. Fix k > 1 such that
(
A2
A1

) ρ
ρ−1

(1−k ρ
δ(ρ−1)

(
A2
A1

) (σ−1)(ρ−1)−1
ρ−1

) > 1, possible ex hypothesi.

Set c =
(
δA1
ρ

) ρ
ρ−1

kρ and S =
((

A2
A1

)σ
c
1
ρ , 0, 0...

)T
, First, suppose that the constraint c binds.

Consider the problem of allocating c across the different skills; each i > 1 is allocated Ii and
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the remainder goes to skill 1.

max Πbind = max

(
[A1(S1 + (c−

∑
j>1

Iρj )
1
ρ )]

σ
σ−1 +

∑
j>1

(AjIj)
σ
σ−1

)σ−1
σ

then (ignoring the outer power) the first order condition with respect to Ii is

∂Πbind

∂Ii
=

σ

σ − 1

(
A

σ
σ−1
i I

1
σ−1
i − A

σ
σ−1
1 [S1 + (c−

∑
j>1

Iρj )
1
ρ ]

1
σ−1 (c−

∑
j>1

Iρj )
1−ρ
ρ Iρ−1

i

)

which is 0 for Ii = 0. For Ii > 0, recalling (ρ− 1)(σ − 1) < 1,

∂Πbind

∂Ii
=

σ

σ − 1
I

1
σ−1
i

(
A

σ
σ−1
i − A

σ
σ−1
1 [S1 + (c−

∑
j>1

Iρj )
1
ρ ]

1
σ−1 (c−

∑
j>1

Iρj )
1−ρ
ρ I

(ρ−1)(σ−1)−1
σ−1

i

)

<
σ

σ − 1
I

1
σ−1
i

(
A

σ
σ−1
i − A

σ
σ−1
1 S

1
σ−1
1 c

1−ρ
ρ c

(ρ−1)(σ−1)−1
σ−1

)
=

σ

σ − 1
I

1
σ−1
i

(
A

σ
σ−1
i − A

σ
σ−1
1 S

1
σ−1
1 c

−1
ρ(σ−1)

)
=

σ

σ − 1
I

1
σ−1
i

(
A

σ
σ−1
i − A

σ
σ−1
2

)
≤ 0.

Therefore, if the budget constraint is to bind, it must be that it is spent only on skill 1. If

the worker invests only in skill 1, she solves

max
I1

[
δ
(

(A1(S1 + I1))
σ
σ−1

)σ−1
σ − Iρ1

]

so that I∗1 =
(
δA1
ρ

) 1
ρ−1

for an expenditure of
(
δA1
ρ

) ρ
ρ−1

< c. As a consequence of these

two points, the budget constraint c does not bind. To construct a lower bound for the

unconstrained worker’s payoff, we suppose the worker only invests in skill 2 and suppose

the job that only puts weight on skill 2 is chosen. This results in a payoff of A2I
∗
2 − I

∗ρ
2 =(

δA2
ρ

) ρ
ρ−1

(ρ− 1). We want to show this is greater than the constrained payoff, that is,

(
δA2

ρ

) ρ
ρ−1

(ρ− 1) > A1S1 +

(
δA1

ρ

) ρ
ρ−1

(ρ− 1)
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which, after rearrangement and division by ( δA1
ρ

)
ρ
ρ−1 (ρ− 1) becomes

(
A2

A1

) ρ
ρ−1
(

1− k ρ

δ(ρ− 1)

(
A2

A1

) (σ−1)(ρ−1)−1
ρ−1

)
> 1

which we know to be true; therefore, the unconstrained problem yields strictly higher utility.

A.8 Proof of Proposition 8

Step 1: J is not optimal in period 1 in the absence of a mobility cost.
The contract maximizes

max{max
Ĵ

[ĴTA(S + δ∆S + δIW (IF ))],max
Ĵ

[ĴTAS] + δmax
Ĵ

[ĴTA(∆S + IW (IF )]−m}. (72)

As the worker does not move, we have

J = arg max
Ĵ

ĴTA(S + δ∆S + δIW (IF )) (73)

From the fact the worker would move absent the mobility cost, we have

max
Ĵ

ĴTA(S + δ∆S + δIW (IF )) < max
Ĵ

[ĴTAS] + δmax
Ĵ

[ĴTA(∆S + IW (IF ))] (74)

Thus S and ∆S + IW (IF ) are not parallel. Then from J solving ∇F (J) ‖ A(S + δ∆S +

δIW (IF )) uniquely on F (J) = 0, we have that ∇F (J) 6‖ A(∆S + IW (IF )). And therefore

J 6= arg maxĴ [ĴTA(∆S + IW (IF )].

Step 2: No skill is underinvested in, and at least one is overinvested in. Given IF ,
the worker chooses IW to maximize

max
IW

δV (∆S + IW )− c(IW ) + c(IF ) s.t. IW ≥ IF (75)

which given the diagonal forms assumption and the exogeneity of IF is the same problem as

max
IW

δ(∑
i

(Ai(∆iSi + IWi ))
σ
σ−1

)σ−1
σ

−∑
i

IWρ
i s.t. IW ≥ IF (76)

The first order condition for IWi (when the i’th constraint does not bind and thus IWi >
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IFi ) is

δA
σ
σ−1
i (∆iSi + IWi )

1
σ−1

(∑
j

(Aj(∆jSi + IWj ))
σ
σ−1

)−1
σ

− ρIW ρ−1
i = 0 (77)

which can be rewritten as

δAσi
∆iSi + IWi

I
W (ρ−1)(σ−1)
i

= ρV (∆S + IW ) (78)

As (ρ− 1)(σ− 1) > 1 by hypothesis, the left hand side is decreasing in IWi . Therefore I
W
i is

decreasing in V .

If dV (∆S+IW )

dIFj
≤ 0 then for any i such that IWi (IF ) > IFi , we would have

dIWi (IF )

dIFi
> 0 and

thus as V (∆S+IW ) = (
∑

k(Ak(∆S+IW ))
σ
σ−1 )

σ−1
σ , V would have to increase, a contradiction.

Thus, we have shown that if IWi (IF ) > IFi and I
W
j (IF ) = IFj then dI

W
i (IF )/dIFj < 0 (?) .

Ex ante, the contract maximizes

max
IF

δJTA(∆S + IW (IF ))− C(IW (IF )) (79)

If for all i we have IWi (IF ) ≤ I∗i (J) then J∗(∆S + I∗(J)) ≤ J and therefore either J is

in the interior of J and therefore a job where the worker is more productive both periods

exists (a contradiction) or J is optimal in the second period in the absence of a moving cost,

not the case by Step 1. Therefore there is an i for which IWi (IF ) > I∗i (J).

Suppose there is an i for which IWi (IF ) < I∗i (J). Then setting ∀j, IF ′j := max{IWj , I∗j (J)},
from ? we have that IW (IF ′) = IF ′. Therefore, IF ′ improves the objective (79), a contradic-

tion. So IW (IF ) 	 I∗(J).

Step 3: Every skill is overinvested in.
Now suppose ∃i : IWi (IF ) = I∗i (J). As IW 	 I∗(J), there must be a j such that

IWj (IF ) > I∗j (J). Two cases are of interest.

Case 1. Suppose (78) holds for IWj . Then, define Ī
F = IW (IF ); we have IW (ĪF ) = IW (IF )

and, as IF is part of an optimal contract, so is ĪF (albeit with a compensating period-0 wage).

We will consider increasing ÎFi to effect an increase in V and through it will implement a

decrease in ÎFj without affecting (Īk)k 6∈{i,j}.
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We define the auxiliary function ÎFj (ÎFi ) implicitly by

δAσj
∆jSj + ÎFj

Î
F (ρ−1)(σ−1)
j

= ρV
(

(∆iSi + ÎFi ), (∆jSj + ÎFj ), (∆kSk + ĪFk )k 6∈{i,j}

)
(80)

As S >> 0, we have ∂V/∂ÎFi > 0 and ∂V/∂ÎFj > 0; furthermore, the left hand side is

decreasing in ÎFj as (ρ− 1)(σ − 1) > 1. Therefore, we have dÎFj (ÎFi )/dÎFi < 0.

Consider now perturbing the optimal contract ĪF by increasing ĪFi and lowering Ī
F
j along

ÎFj (·). As V
(

(∆iSi + ÎFi ), (∆jSj + ÎFj ), (∆kSk + ĪFk )k 6∈{i,j}

)
≥ V (ĪF ) when ÎFi ≥ ĪFi , we

have that IW (ÎFi , Î
F
j (ÎFi ), (Īk)k 6∈{i,j}) = (ÎFi , Î

F
j (ÎFi ), (Īk)k 6∈{i,j}).

Written solely in terms of ÎFi (and keeping constant in skills other than i and j), the

objective function is

δJTA((∆iSi + ÎFi ), (∆jSj + ĪFj (ÎFi )), (∆kSk + ĪFk )k 6∈{i,j})− C((ÎFi , Î
F
j (ÎFi ), (Īk)k 6∈{i,j})) (81)

and is ex hypothesi maximized at ÎFi = ĪFi . Taking a right derivative of the objective

with respect to ÎFi we get

δAiJi + δAjJj
dÎFj (ÎFi )

dÎFi
)− ρÎFρ−1

i −
dÎFj (ÎFi )

dÎFi
ρ(ÎFj (ÎFi ))ρ−1 (82)

= (δAiJi − ρĪFρ−1
i ) +

dÎFj (ÎFi )

dÎFi
(δAjJj − ρÎFj (ĪFi )ρ−1) (83)

But by assumption ĪFi = I∗i (J), so that δAiJi − ρĪFρ−1
i = 0 and ÎFj (ĪFi ) = ĪFj > I∗j (J) so

that δAjJj − ρÎFj (ĪFi )ρ−1 < 0. Furthermore, we have that
dÎFj (ÎFi )

dÎFi
< 0. Therefore evaluated

at ĪFi , the restricted objective function’s right derivative is positive. As a result, there exists

a ÎFi > ĪFi so that (ÎFi , Î
F
j (ÎFi ), (Īk)k 6∈{i,j}) improves the objective function over the assumed

maximizer IF , a contradiction.

Case 2. Now suppose instead that (78) does not hold for any IWj . Consider again Ī
F =

IW (IF ), which is again optimal under the hypothesis that IF is. Define ÎFj (ÎFi ) by

V
(

(∆iSi + ÎFi ), (∆jSj + ÎFj ), (∆kSk + ĪFk )k 6∈{i,j}

)
= V (∆S + ĪF ) when ÎFi ≥ ĪFi is small

enough for a solution to exist. In other words, ÎFj adjusts to Î
F
i so as to keep production at

the outside option job constant.

Then as V is constant along (ÎFi , I
F
j (ÎFi )) for ÎFi > ĪFi , skills k 6∈ {i, j} stay constant. As
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V has strictly positive (as S >> 0) and continuous partials, dÎFj (ÎFi )/dÎFi > 0; the rest of

the argument follows as in Case 1.
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