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1 Introduction

Expected return differentials have been at the center of open economy macro mod-

els at least since Mundell-Fleming, where cross-border capital flows are driven by

interest rate differentials. There is a variety of evidence that return differentials

play a critical role in global capital flows. A well-known example is the “carry

trade” that is based on interest differentials.1 The Mundell-Fleming model was

succeeded by portfolio balance models, where portfolios (stocks) rather than flows

depend on return differentials. Modern open economy macro models are more mi-

cro founded but share the feature of portfolio balance models in that it is portfolios

rather than changes in portfolios (portfolio flows) that depend on return differen-

tials. This has several implications. The immediate response of portfolios of all

investors to any return differential implies that in equilibrium return differentials

are often very small.2 Moreover, financial shocks, such as portfolio shifts resulting

from changes in risk, risk-aversion, liquidity trade, hedging or FX intervention,

have little effect on capital flows and asset prices. Due to the sensitivity of portfo-

lios to expected returns in these models, a portfolio shift towards a country’s assets

causes a very small (third-order) drop in its expected excess return that reverses

the flows and generates equilibrium.3

It is difficult to reconcile the behavior of international portfolio positions and

asset prices with these modern open economy models. First, expected return dif-

ferentials are not zero or close to zero. The forward discount puzzle is probably

the best known example of this. Second, there is suggestive evidence of gradual

international portfolio adjustment in the form of autocorrelated portfolio flows and

1Another well-documented example is capital flows to emerging markets associated with

changes in interest rates in creditor countries. See for example Calvo et al. (1996). Bruno

and Shin (2015) document the effect of interest rates on international banking flows. Didier and

Lowenkron (2012) show that net capital flows associated with expected returns in a model with

portfolio choice are significantly correlated with actual net capital flows.
2In some cases uncovered interest rate parity is assumed outright or follows from linearization

methods. Many models though do not adopt such approximations and put portfolio choice at

the center. Examples are Devereux and Sutherland (2007, 2010), Didier and Lowenkron (2012),

Evans and Hnatkovska (2014), Hnatkovska (2010), Kraay and Ventura (2000) and Tille and van

Wincoop (2010, 2014).
3Tille and van Wincoop (2014) show that first-order changes in portfolio shares are associated

with third-order changes in expected returns. This is because expected returns are divided by

second order moments (e.g. the variance of the excess return) in optimal portfolios.
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a positive linkage of flows with lagged returns (e.g., see Bohn and Tesar (1996),

Calderon et al. (2003) and Froot et al. (2001)).4 Third, financial shocks such as

those listed above do affect capital flows and asset prices. Gourio et al. (2014)

show that time-varying risk affects capital flows. Blanchard et al. (2016) pro-

vide evidence that large foreign exchange intervention has a significant effect on

exchange rates.5 Warnock and Warnock (2009) document the significant effect of

capital inflows on U.S. interest rates.

Gabaix and Maggiori (2015) have brought expected return differentials back

to the forefront in a model where all financial flows are intermediated by global

financiers with limited risk-bearing capacity. This has the same effect as making

agents more risk-averse, which weakens the portfolio response to changes in ex-

pected returns. Larger expected return differentials are then needed to generate

equilibrium in asset markets. Gabaix and Maggiori (2015) show that such a model

implies predictable deviations from uncovered interest rate parity and a significant

impact of exogenous portfolio flows and FX intervention on exchange rates and

the macro economy in general.

In this paper we take a different route, which aligns more closely with the orig-

inal Mundell-Fleming model. We consider the role of gradual portfolio adjustment

to changes in expected returns in the context of a two-country model. Like high

risk aversion, it weakens the immediate portfolio response to shocks and gives rise

to larger equilibrium expected return differentials as markets are thinner. There

is well-known evidence of infrequent portfolio adjustment by households.6 It is

also consistent with some of the open economy evidence on portfolio flows and

returns mentioned above. But to date no systematic analysis of gradual portfolio

adjustment in an open economy context has been conducted.

4Bohn and Tesar (1996) conclude “we suspect that investors may adjust their portfolios to new

information gradually over time, resulting in both autocorrelated net purchases and a positive

linkage with lagged returns. A full explanation for U.S. international investment behavior must

account for the slow adjustment in the foreign portfolio over time, as well as the bias toward

domestic equity.”
5See also the discussion in Gabaix and Maggiori (2015), who argue that the recent large FX

interventions in Switzerland and Israel have been effective and that evidence of a weaker impact

of FX intervention in the earlier literature is due to the small size of the interventions.
6See for example Ameriks and Zeldes (2004), Bilias et al. (2010), Brunnermeier and Nagel

(2008) and Mitchell et al. (2006). See Duffie (2010) for a broad range of evidence motivating

models of infrequent portfolio adjustment.
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Our approach differs from the related literature on infrequent portfolio adjust-

ment in two key respects.7 First, we use both international portfolio and asset

return data to evaluate a model with gradual portfolio adjustment. Second, we

model the gradual portfolio adjustment in the form of a probability of changing

the portfolio rather than staggered adjustment at fixed intervals.

The literature on infrequent portfolio adjustment often does not explicitly esti-

mate or calibrate models to confront to data. Papers that do focus mostly on asset

prices. Examples are Bacchetta and van Wincoop (2010), Bougasslovsky (2016),

Chien et al. (2012) and Hendershott et al. (2013). Bacchetta and van Wincoop

(2010) study the forward discount puzzle (predictability of exchange rates by in-

terest differentials). Bogousslavsky (2015) considers predictability patterns in the

time-series and cross-section of stock returns. Chien et al. (2012) focus on the

counter-cyclicality of the Sharpe ratio. Hendershott et al. (2013) consider stock

price behavior and analyze deviations from efficient prices.8 To date asset prices

and portfolios have not been used jointly to evaluate models of gradual portfolio

adjustment.

Analysis of international portfolio data has been made possible by the develop-

ment of a data set by Bertaut and Tryon (2007) and Bertaut and Judson (2014) of

monthly bilateral equity claims and liabilities of the United States. Together with

stock market capitalization data it allows us to compute the portfolio share of US

investors in the rest of the world and the portfolio share of the rest of the world in

the US. The portfolio data is consistent with the U.S. Treasury annual benchmark

surveys. The data are considered to be of good quality and have recently been

used by Curcuru et al. (2008, 2010) and Curcuru et al. (2011) to analyze return

differentials and the relationship between portfolio reallocations and past returns.

The second difference with respect to related literature on infrequent portfolio

adjustment is in the way we model such behavior. We assume that investors

have a probability p of adjusting their portfolio each period. The assumption of

a Poisson distribution has been used in numerous contexts, such as Blanchard-

7For recent contributions, see Abel et. al (2007), Bogousslavsky (2016), Chien et al. (2012),

Duffie (2010), Greenwood et al. (2015), Hendershott et al. (2013), Mitchell et al. (2007)

and Vayanos and Woolley (2012). Earlier papers examine the impact of infrequent portfolio

adjustments taking the process of asset returns as exogenous, e.g. see Lynch (1996) or Gabaix

and Laibson (2002).
8Hendershott et al. (2013) also consider the implications of their model for the equity trading

volume and individual’s net trades.
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Yaari perpetual youth models or Calvo price-setting models, but is new to the

literature on portfolio adjustment. The standard assumption is that agents adjust

their portfolios in a staggered way every T periods. In empirical applications

this has the drawback that it generates a significant discontinuity in the impulse

response to shocks that happens T periods after the shock. This occurs because

the initial group of infrequent traders who change their portfolio at the time of the

shock will change their portfolio again T periods later, with predictable certainty.

The anticipation of this by other traders significantly affects the equilibrium. The

constant probability setup that we adopt here implies more smoothness as the

agents who change their portfolio at the time of a shock will change their portfolio

again at varying dates in the future.

We show that this framework generates intuitive portfolios. Optimal portfolio

shares depend on expected future excess returns, with the weight on future ex-

pected returns declining at the rate β(1 − p), where β is the time discount rate.

Less frequent portfolio changes (lower p) therefore imply a longer investment hori-

zon that gives more weight to expected returns further into the future. Portfolio

shares are then less sensitive to short term expected excess returns. At any time a

fraction 1−p of the agents does not change their portfolio at all and those that do

have a longer horizon and therefore respond less to short term expected returns.

The model that we develop focuses on the global equity market. There are

two types of investors: frequent traders who change their portfolio each period

and infrequent traders who change their portfolio each period with a probability

p. We focus on relative equity prices, which affect the excess return, and on the

average portfolio share allocated to US equity. The model is driven by three types

of shocks: dividend shocks, wealth/supply shocks and financial shocks. The lat-

ter are exogenous portfolio shifts that are unrelated to expected returns. Some

parameters are calibrated, but parameters about which we have little direct ob-

servable information are estimated. We use the Simulated Method of Moments for

estimation, including 15 moments involving the excess return, average portfolio

share, relative earnings and the relative wealth/supply shock.

The remainder of the paper is organized as follows. In Section 2 we develop

a partial equilibrium model of portfolio choice when portfolio decisions are infre-

quent. In Section 3 we embed this in a general equilibrium model for the global

equity market. Section 4 describes the quantitative approach. The results are

presented in Section 5. Section 6 concludes.
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2 Portfolio Choice under Infrequent Adjustment

In this section, we present a partial equilibrium portfolio choice problem with

infrequent portfolio adjustment. This will be embedded in a general equilibrium

model for the equity market in the next section. To provide a better perspective

about the approach that we adopt, we start by making some general remarks

about modeling portfolio choice in an open economy DSGE setting with incomplete

markets.

2.1 Portfolio Choice under Incomplete Markets

Even in the absence of infrequent portfolio adjustment, solving DSGE models with

portfolio choice is not trivial. Under incomplete markets, there are three possible

approaches. The first is to write down all the first order conditions and solve

the model through a global solution method, like value function iteration on a

discretized state space. This is not the approach that we will follow here. One

drawback is that it is a bit of a black box approach in that there are no closed

form solutions of portfolios as a function of expected returns, which will be key to

our model. In addition, even under continuous portfolio adjustment, this approach

is numerically very challenging.9 The problem is that very small changes in state

variables that imply tiny asset prices changes can induce very large portfolio shifts.

The sensitivity of portfolios to expected returns emphasized in the introduction

therefore also poses numerical challenges.

The second approach is the one specifically developed for open economy DSGE

models with portfolio choice by Devereux and Sutherland (2007, 2010) and Tille

and van Wincoop (2010). It extends local approximation methods to models with

portfolio choice. A drawback here is that one needs to go to very high orders, at

least the third-order component of equations and variables, to get at the features

that we are interested in. This requires at least cubic Taylor expansions. The

reason is that many shocks, including two out of the three shocks in our model,

do not have a first-order effect on asset prices and portfolio shares. Third-order

is generally very small in models with continuous portfolio adjustment. It could

be of non-trivial size in a model with gradual portfolio adjustment, but cubic

9See for example Krusell and Smith (1997) for the difficulties of this approach in a closed

economy setting with continuous portfolio adjustment.
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approximations of all equations significantly complicates the analysis and even

more so under gradual portfolio adjustment.10

The approach that we take here involves first computing an explicit portfo-

lio expression by substituting the log-linearized intertemporal budget constraint

into the first-order conditions for optimal portfolio choice. This is similar to the

method in Campbell and Viceira (2002) to solve partial equilibrium portfolio prob-

lems. This in turn is influenced by the approach developed in Campbell (1993),

though portfolios are not explicit in the latter. This gives a portfolio expression

in which optimal portfolio shares are linear in expected future returns, which can

be combined with linearized equations for the rest of the model to solve for the

equilibrium.11

When applying this approach to a framework where agents adjust their port-

folios gradually, we will abstract from decisions other than portfolio choice. While

preferably one would simultaneously solve for optimal portfolio allocation and opti-

mal consumption, we will simply assume that agents consume a constant fraction

ζ of their wealth each period. Solving simultaneously for optimal consumption

and portfolios creates additional challenges that would deflect from our focus on

gradual portfolio adjustment. One would need to combine infrequent portfolio

decisions with either frequent or infrequent consumption decisions. In addition,

it would be necessary to separate risk-aversion from intertemporal elasticity of

substitution (Epstein-Zin). Finally, to linearize there would need to exist a deter-

ministic steady state for wealth and consumption, which requires features such as

finite lives (positive probability of death) or Uzawa preferences.

2.2 Assumptions Regarding Infrequent Portfolio Choice

We will assume that there are two assets, a Home asset and a Foreign asset with

returns of RH,t+1 and RF,t+1 from time t to t + 1. Agents need to choose the

10It gets even more complicated in that the method shows that we need to combine the fourth-

order component of the difference across countries in portfolio Euler equations with the third-

order component of other equations in order to solve for the second-order component of the

difference across countries in portfolio shares together with the third-order component of other

variables. This requires taking a fourth-order Taylor expansion of the portfolio Euler equations,

which is quite messy.
11Importantly, linear does not mean first-order as expected returns are divided by the variance

of the excess return.
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portfolio share to allocate to these assets. Some of the agents are “infrequent

traders” who make a new portfolio allocation decision with a probability p each

period.12 Others, the “frequent traders,” choose the optimal portfolio allocation

each period.

Analogous to Keynesian models with infrequent price setting by firms, one also

needs to make an ancillary assumption about how agents allocate their portfolio at

times when they do not make a new portfolio decision. In the case of price setting

by firms, such assumptions range from holding the price constant, to holding the

relative price constant (full indexation), to partial indexation, to following a price

schedule until the next price setting decision.13 Analogously, for portfolio choice

one could consider holding the portfolio share constant (rebalancing) until the

next portfolio decision, not rebalancing by simply re-investing the returns in the

two assets, partial rebalancing, or following a portfolio allocation schedule until

the next portfolio decision. These are only some of the possibilities. Here we

will assume that agents hold their portfolio share constant until the next portfolio

decision and leave an exploration of alternatives for future work.

We should also clarify that the terminology of infrequent versus frequent traders

does not refer to the frequency of trading itself, but rather to the frequency of

making new portfolio allocation decisions. Since we assume a constant portfolio

share between portfolio decisions, even the infrequent traders will generally trade

to rebalance their portfolio.

2.3 Wealth Accumulation

Consider Home agent j, whose time t portfolio share allocated to the Home asset

is denoted zjHt. The agent earns a portfolio return of

RpHj
t+1 = zjHtRH,t+1 + (1− zjHt)RF,t+1e

−τHt (1)

12The basic motive behind infrequent trading is the presence of information processing costs,

that we do not model explicitly. Abel et al. (2013) propose microfoundations for infrequent

portfolio decisions and show that time-dependent decisions are optimal when fixed transactions

costs are small. In our model, transactions costs are zero.
13In Mankiw and Reis (2002), firms adjust their pricing plans infrequently due to random

arrival of information. This implies a gradual response to shocks as in our framework. On the

other hand, firms’ prices may change every period.
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We introduce a fee τHt on the Foreign return. This is a commonly adopted feature

to introduce portfolio home bias.14

Allowing τHt to be time varying generates exogenous portfolio shifts, which we

will refer to as financial shocks. Per unit of wealth invested, the fee is TH,t+1 =

(1−zjHt)RF,t+1(1−e−τHt). We assume that the fee is paid to a broker, but returned

to investors. Per unit of wealth invested, the agent therefore receives a return of

R̂pHj
t+1 = RpHj

t+1 + TH,t+1 = zjHtRH,t+1 + (1− zjHt)RF,t+1 (2)

as if the fee did not exist. But from the perspective of portfolio choice we assume

that the investor takes the credit TH,t+1 as given, not under its control, for example

because it is based on an average of agents with the same portfolio. The fee

therefore affects the optimal portfolio, but not wealth accumulation. We assume

that the fee τHt applies to all Home investors that make a new portfolio decision

at time t and remains the same until agents choose a new portfolio.

Financial wealth changes because of portfolio returns, non-asset income and

consumption. Denote the wealth of this agent in period t as W j
Ht. This is after

portfolio returns and non-asset income, but before consumption. As discussed

above, we assume that agents consume a fraction ζ of their wealth each period.

The agent then invests (1− ζ)W j
Ht at the end of period t and wealth accumulates

according to

W j
H,t+1 = (1− ζ)

(
RpHj
t+1 + TH,t+1

)
W j
Ht +GH,t+1 (3)

where GH,t+1 is non-asset income, which is the same for all Home agents and follows

a given stochastic process.

Analogously, for a Foreign agent j we have

RpFj
t+1 = zjF tRH,t+1e

−τFt + (1− zjF t)RF,t+1 (4)

W j
F,t+1 = (1− ζ)

(
RpFj
t+1 + TF,t+1

)
W j
F t +GF,t+1 (5)

The portfolio share zjF t refers to the share by the Foreign agent j allocated to the

Home asset and TF,t+1 is the reimbursement of the fee per unit of wealth, such

that RpFj
t+1 + TF,t+1 = zjF tRH,t+1 + (1− zjF t)RF,t+1.

14Examples are Tille and van Wincoop (2010, 2014), Coeurdacier (2009), Coeurdacier et.al.

(2014) and Martin and Rey (2004).
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2.4 Optimal Portfolio Infrequent Traders

We will now consider the optimal portfolio choice of a Home agent j who makes a

new portfolio decision at time t. The agent is an infrequent trader and therefore

takes into account that the portfolio share zjHt will remain constant until the next

time a portfolio decision is made. To save notation, we will omit the j superscript

as the portfolio problem will be identical for all Home infrequent traders choosing

a new portfolio. We will add a tilde to indicate that it is a new portfolio, so

zjHt = z̃Ht for all Home infrequent traders that choose a new portfolio at time t.

The agent chooses her portfolio to maximize

∞∑
s=1

βsEt
C1−γ
H,t+s

1− γ
(6)

where CHt is consumption of the Home agent at time t. Since agents consume a

constant fraction of wealth, CH,t+s = ζWH,t+s. The agent therefore maximizes

∞∑
s=1

βsEt
W 1−γ
H,t+s

1− γ
(7)

subject to (5).

The agent faces uncertainty about future portfolio returns, non-asset income,

and the time of the next portfolio decision. The probability that the agent chooses

the next portfolio at time t+ i is pi = p(1− p)i−1. We can then write

EtW
1−γ
H,t+s =

s−1∑
i=1

piEtWH,t+s(i)
1−γ +

(
1−

s−1∑
m=1

pm

)
EtŴ

1−γ
H,t+s (8)

Here the expectations on the right hand side only depend on portfolio returns

and non-asset income. WH,t+s(i) denotes wealth at t + s conditional on the next

portfolio change taking place at t+ i < t+ s. This means that the portfolio share

z̃Ht is held constant until t+ i. ŴH,t+s denotes wealth at t+ s conditional on the

next portfolio change taking place at t+s or later. In that case the portfolio share

z̃Ht remains constant until at least t+ s.

The first-order condition for the optimal portfolio z̃Ht is then

∞∑
s=1

s−1∑
i=1

piβ
sEtWH,t+s(i)

−γ ∂WH,t+s(i)

∂z̃Ht
+

∞∑
s=1

(
1−

s−1∑
m=1

pm

)
βsEtŴ

−γ
H,t+s

∂ŴH,t+s

∂z̃Ht
= 0 (9)
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We have
∂WH,t+s(i)

∂z̃Ht
=
∂WH,t+i

∂z̃Ht

∂WH,t+s

∂WH,t+i

(10)

where

∂WH,t+s

∂WH,t+i

= (1− ζ)s−iR̂pH
t+i,t+s (11)

∂WH,t+i

∂z̃Ht
=

i∑
j=1

(1− ζ)i−j+1(RH,t+j −RF,t+je
−τHt)R̂pH

t+j,t+iWH,t+j−1 (12)

Here R̂pH
t+i,t+s =

∏s
j=i+1 R̂

pH
t+j is the cumulative portfolio return from t+ i to t+ s.

∂ŴH,t+s/∂z̃Ht is equal to ∂WH,t+i/∂z̃Ht for i = s.

The next steps are similar to Campbell (1993) and involve a significant amount

of algebra that we leave for the Technical Appendix. After substituting the expres-

sions in the last three equations into the first-order condition (9), we write the first

order condition in terms of expectations of the exponential of terms involving log

portfolio returns and log wealth at future dates. We then substitute expressions

for log-linearized portfolio returns and wealth. Assuming normality of log returns,

we then compute the expectation. We finally linearize the resulting exponential

expression. In what follows the excess return is equal to

ert+1 = rH,t+1 − rF,t+1 (13)

where rH,t+1 is the log of the Home return RH,t+1 and rF,t+1 is the log Foreign

return.

Leaving the algebraic details to the Technical Appendix, we obtain the following

optimal portfolio z̃Ht:

z̃Ht = 0.5 +
1

D

∞∑
s=1

[β(1− p)]s−1Etert+s + hiHt (14)

where

D =
∞∑
s=1

[β(1− p)]s−1
[
γ̃vart(ert+s) + 2(γ̃ − 1)

∑
i<s

θs−icovt(ert+s, ert+i)

]
(15)

and

γ̃ = θ
1− βθ
1− βθ2

γ (16)

and θ = (1− ζ)R̄ < 1, with R̄ the steady state of asset returns.
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The optimal portfolio has two components. The first and most important part

depends on future expected excess returns. A lower p implies less frequent portfolio

decisions are therefore a longer effective horizon. The expected length of time until

the next portfolio decision is 1/p. The optimal portfolio depends on expectations

of all future excess returns, with the weight declining at the rate β(1 − p). A

lower value of p therefore leads to a higher weight on expected excess returns

further into the future. As usual with optimal portfolios, the response to changes

in expected returns is lower the higher the rate of risk aversion and the higher the

risk associated with future excess returns. This is captured by the denominator D

of the optimal portfolio. The adjusted risk-aversion parameter γ̃ differs from γ as

a result of non-asset income.

The second part of the optimal portfolio is hiHt. This is the part of the portfolio

that does not depend on expectations of future excess returns. The full expression

for hiHt is lengthy and reported in Appendix B. It is made up of three types of terms,

capturing a hedge against future non-asset income GH,t+1, a hedge against changes

in future portfolio returns (changing investment opportunity set) and the cost τHt

of investing abroad. We will refer to this as the hedge term of the portfolio, even

though the part involving τHt is not technically a hedge. The optimal portfolio of

Foreign infrequent traders z̃Ft is the same, except for a different hedge term hiF t.
15

There is a close analogy between this optimal portfolio of infrequent traders

and the optimal price under Calvo price setting. The latter assumes that there

is a probability p of firms setting a new price each period. The expression for

the optimal price (e.g. page 45 of Gali (2008)) depends on a weighted average of

future marginal costs, with the weight declining at the same rate β(1 − p) as in

the optimal portfolio expression (14). In the portfolio expression, the expected

marginal cost at future dates is replaced by expected excess returns, scaled by D,

and the markup is replaced by the hedge term.

This way of modeling infrequent traders is new to the literature. It is usually

assumed that infrequent traders make a new portfolio decision every T periods.16

In that case the optimal portfolio of infrequent traders that make a new portfolio

15To make expected returns different for Home and Foreign investors, we would have to intro-

duce information asymmetries, as in Albuquerque et al (2007, 2009), Brennan and Cao (1997)

and Tille and van Wincoop (2014). We abstract from that here.
16See for example Duffie (2010), Bacchetta and van Wincoop (2010), Lynch (1996) and Gabaix

an Laibson (2001) and other references listed in footnote 5.
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decision depends on the expected excess return over the next T periods. Drawing

again on the analogy to price setting, this is like Taylor price setting, where firms

choose a new optimal price every T periods. We initially experimented with a

similar framework here. But it has an important drawback in quantitative imple-

mentation. There is a significant discontinuity in the impulse response to shocks

that happens T periods after the shock. This occurs because the initial group of

infrequent traders that change their portfolio at the time of the shock will change

their portfolio again T periods later, with predictable certainty. Other traders

know this, which significantly affects their behavior as well. The Calvo-type setup

that we adopt here implies more smoothness as the agents that change their port-

folio at the time of a shock will change their portfolio again at varying dates in

the future.

2.5 Frequent Traders

For frequent traders the optimal portfolio can be obtained by letting p→ 1, which

gives

zfHt = 0.5 +
Etert+1

γ̃vart(ert+1)
+ hfHt (17)

The portfolio share chosen by the frequent traders only depends on the expected

excess return over the next period. The hedge term hfHt again captures terms

unrelated to the expected excess return. The optimal portfolio share zfF t for Foreign

frequent traders is the same, again with a different hedge term hfF t.

2.6 Average Portfolio Share

When integrating this model of portfolio choice into a general equilibrium model

in the next section, the average portfolio share allocated to the Home asset will be

a key variable. Define zHt and zFt as the average portfolio share allocated to the

Home asset by respectively Home and Foreign agents and zAt = 0.5(zHt + zFt) as

the average across all agents.

We assume that a fraction f of agents are frequent traders, so that

zHt = fzfHt + (1− f)zinHt (18)

where the average portfolio share of the infrequent traders evolves according to

zinHt = (1− p)zinH,t−1 + pz̃Ht (19)
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Analogously, for the Foreign country

zFt = fzfF t + (1− f)zinF t (20)

zinF t = (1− p)zinF,t−1 + pz̃Ft (21)

Putting all results of this section together, we obtain the following expression

for the average portfolio share zAt :

zAt = 0.5 + f
Etert+1

γ̃vart(ert+1)
+ (1− f)zt + nt (22)

where

zt ≡ (1− p)zt−1 +
p

D

∞∑
s=1

[β(1− p)]s−1Etert+s (23)

and

nt ≡ fhA,ft + (1− f)
∞∑
i=0

(1− p)iphA,int−i (24)

Here zt is the component of the average portfolio share of infrequent traders that

is associated with expected returns and hA,ft and hA,int are the average of the Home

and Foreign hedge terms of respectively frequent and infrequent traders.

The average hedge terms, derived in the Technical Appendix and discussed in

Appendix B, are

hA,int =
0.5

D(1− β(1− p))
τDt

hA,ft =
0.5

γ̃vart(ert+1)
τDt

where τDt = τHt− τFt. An increase in τDt implies a relative portfolio shift from the

Foreign asset to the Home asset. We interpret nt as exogenous portfolio shifts and

its innovations as financial shocks. While we have modeled them here through τDt ,

this was mainly a matter of convenience. We interpret these portfolio shifts more

broadly as resulting from such factors as time varying risk, noise trade (expecta-

tional errors), liquidity trade, time varying risk-aversion, time-varying risk-bearing

capacity (Gabaix and Maggiori (2015)) or changes in other investment opportuni-

ties.
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2.7 Impact of Infrequent Portfolio Choice

Equation (22) captures the key features of our model of gradual portfolio adjust-

ment. It impacts the way the average portfolio share depends on expected future

returns. There are at least four interrelated ways that gradual portfolio adjustment

(f < 1) leads to a fundamentally different response to expected excess returns than

in a model where all agents choose an optimal portfolio at all times (f = 1).

First, infrequent traders who change their portfolio have a longer horizon than

frequent traders and therefore base their portfolio decision on expected returns

much further into the future: zt depends on
∑∞

s=1[β(1− p)]s−1Etert+s rather than

on Etert+1. Second, and related to the first point, infrequent traders are much

less responsive to expected excess returns in the near future than frequent traders.

This is because the denominator D of the portfolio of infrequent traders is much

larger than that of frequent traders. Third, only a fraction p of infrequent traders

make a portfolio decision at any point in time. This further weakens the portfolio

response to changes in expected returns. This can be seen in the expression for zt,

where the expected portfolio returns are multiplied by the fraction p that make a

new portfolio decision.

Finally, in addition to a weaker portfolio response to expected returns in the

near future, there is also a more gradual portfolio response. As can be seen in (23),

the average portfolio share of infrequent traders has significant persistence. Past

portfolio decisions affect the average portfolio share of infrequent traders today.

Even if expected future returns today were entirely uncorrelated with expected

future returns yesterday, so that the portfolio of frequent traders is iid, zt would

still have an autocorrelation of 1− p.

3 Global Equity Market Model

We now integrate the portfolio choice framework from the previous section into a

general equilibrium market of the global equity market.
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3.1 Assets and Equilibrium

Home and Foreign equity prices and dividends at time t are Qi,t and Di,t. The

return on equity of country i is

Ri,t+1 =
Di,t+1 +Qi,t+1

Qi,t

(25)

The asset supply Kit (i = H,F ) evolves according to

Ki,t+1 = (1− ψ)Kit + Iit (26)

where ψ is the rate of depreciation. We take investment Iit exogenous: Iit = Īeuit ,

where Ī is steady state investment and uit is stochastic with mean zero.

There is a continuum of agents on the interval [0,1] in both countries, including

both frequent and infrequent traders. The market equilibrium conditions are

QHtKHt =

∫ 1

0

zjHtW
j
Htdj +

∫ 1

0

zjF tW
j
F tdj (27)

QFtKFt =

∫ 1

0

(
1− zjHt

)
W j
Htdj +

∫ 1

0

(
1− zjF t

)
W j
F tdj (28)

3.2 Linearization

We log-linearize the model, which requires first computing the steady state. Denote

the steady state portfolio share zjHt of all Home agents as z̄. It is equal to 0.5 plus

the steady state of the hedge term. We can set the steady state of τHt to get any

z̄.17 By symmetry, the steady state of the portfolio share zjF t of Foreign agents is

1− z̄. Denoting steady state variables with a bar, steady state values Q̄, R̄, K̄ and

W̄ can be derived from (3), (25), (26) and (27):

R̄ = 1 +
D̄

Q̄
(29)

K̄ = Ī/ψ (30)

W̄ =
Ḡ

1− (1− ζ)R̄
(31)

Q̄K̄ = W̄ (32)

where Ī, D̄ and Ḡ are given.

17A technicality is that the steady state cost of investment abroad may have to be slightly

different for frequent traders to deliver the same steady state portfolio share z̄.
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We can now log-linearize the model around these steady state values. We keep

the portfolio shares in levels, while for all other variables lower case letters refer to

logs. Below all variables are in deviation from their steady state. Denoting zHt =∫ 1

0
zjHtdj, wHt =

∫ 1

0
wjHtdj and analogous for the Foreign country, the (aggregated)

wealth accumulation and market clearing conditions become

wH,t+1 = θwHt + θ (z̄rH,t+1 + (1− z̄)rF,t+1) + (1− θ)gH,t+1 (33)

wF,t+1 = θwFt + θ ((1− z̄)rH,t+1 + z̄rF,t+1) + (1− θ)gF,t+1 (34)

kHt + qHt = zHt + zFt + z̄wHt + (1− z̄)wFt (35)

kFt + qFt = −zHt − zFt + (1− z̄)wHt + z̄wFt (36)

where θ = (1− ζ)R̄ < 1.18

We can take the sum and the difference of these equations across countries.

When we take the sum, we can compute the average equity price and average

wealth. Portfolio allocation does not affect these variables other than through

steady state portfolios. We will focus on the difference of the equations across

countries, which depends on the portfolio shares in deviation from steady state

that is critical to our analysis. Denoting the difference between the Home and

Foreign variables with a superscript D, we then have

wDt+1 = θwDt + θ(2z̄ − 1)ert+1 + (1− θ)gDt+1 (37)

kDt + qDt = 4zAt + (2z̄ − 1)wDt (38)

where zAt+1 = 0.5(zH,t + zF,t) and an expression for the excess return ert+1 =

rH,t+1 − rF,t+1 can be derived by log-linearizing Home and Foreign returns:

ert+1 = (1− δ)qDt+1 − qDt + δdDt+1 (39)

where δ = D̄/(Q̄+ D̄) = (R̄− 1)/R̄.

Given the exogenous investment specification, we also have

kDt = (1− ψ)kDt−1 + ψuDt (40)

In what follows we will set ψ = 1−θ. This simplifies the model and is a reasonable

approximation.19 Define w̃Dt = wDt − kDt /(2z̄ − 1). This combines relative wealth

18Using (29)-(32), in steady state θ =
[
(1− ζ)Ḡ+ (1− ζ)D̄K̄

]
/
[
Ḡ+ (1− ζ)D̄K̄

]
< 1.

19Our estimate of θ for monthly data, discussed in Section 4.2, is 0.99, so that ψ = 1−θ = 0.01

implies an annual depreciation rate of 12%, which accords well with the 10% that is generally

used in calibration.
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and relative asset supply. Also define aDt = (1 − θ)(gDt − uDt /(2z̄ − 1)), which

combines relative wealth shocks (through non-asset income) with relative supply

shocks. Then we can write the system as

w̃Dt+1 = θw̃Dt + θ(2z̄ − 1)ert+1 + aDt+1 (41)

qDt = 4zAt + (2z̄ − 1)w̃Dt (42)

3.3 Shocks

The model will be driven by three types of shocks: dividend shocks, wealth/supply

shocks and financial shocks. Dividend shocks apply to relative dividends dDt =

dHt − dFt. Wealth/supply shocks apply to the variable aDt , while financial shocks

apply to the exogenous portfolio shifter nt. We assume that they all follow an

AR(2) process:

dDt = ρd1d
D
t−1 + ρd2d

D
t−2 + εdt (43)

aDt = ρa1a
D
t−1 + ρa2a

D
t−2 + εat (44)

nt = ρ1nt−1 + ρ2nt−2 + εnt (45)

The innovations are all normally distributed with mean 0 and variance respectively

σ2
d, σ

2
a and σ2

n.

3.4 Model Summary

It is useful to summarize the full set of equations that make up the model:

qDt = 4zAt + (2z̄ − 1)w̃Dt (46)

w̃Dt = θw̃Dt−1 + θ(2z̄ − 1)ert + aDt (47)

zAt = f
Etert+1

γ̃vart(ert+1)
+ (1− f)zt + nt (48)

zt = (1− p)zt−1 +
p

D

∞∑
s=1

[β(1− p)]s−1Etert+s (49)

ert+1 = (1− δ)qDt+1 − qDt + δdDt+1 (50)

dDt = ρd1d
D
t−1 + ρd2d

D
t−2 + εdt (51)

aDt = ρa1a
D
t−1 + ρa2a

D
t−2 + εat (52)

nt = ρ1nt−1 + ρ2nt−2 + εnt (53)

with D as in (15).
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3.5 Solution

Details regarding the solution can be found in the Technical Appendix. For given

variances and covariances in the denominator of the portfolio expressions, we have

a system of linear equations that can be solved with standard linear solution meth-

ods. We only need to truncate the infinite sum in (49). We truncate at the horizon

T , so that

zt = (1− p)zt−1 +
p

D

T∑
s=1

[β(1− p)]s−1Etert+s (54)

In practice we set T = 60 months, so 5 years. Setting it longer does not affect the

results.

While the variances and covariances that enter D, and in the portfolio of the

frequent traders, are endogenous, we at first set all covariances in D equal to 0 and

set the variance of excess returns equal to 0.0262. We then solve the model. We use

this model solution when estimating the parameters with the Simulated Method

of Moments, discussed in Section 4.3. When we have our parameter estimates, we

compute the corresponding second moments that enter the portfolio expressions.

We then slightly rescale f and γ̃ such that f/[γ̃vart(ert+1)] and (1− f)/D remain

exactly the same as based on the estimated f and γ̃ with the exogenously imposed

second moments. The Technical Appendix discusses the details of the rescaling.

By keeping these two ratios unchanged, the solution remains unchanged.20 When

the rescaled value of γ̃ reaches an upper bound that we have set, we simply impose

that the rescaled value γ̃ must be equal to this upper bound.

We find numerically that in the case where all traders are frequent traders

there is either one unique equilibrium or there are 3 equilibria. As described

above, the model can be solved for a given variance of the excess return, which

then maps into a new variance of the excess return implied by the solution. One

can check for multiple equilibria by inspecting this mapping. Intuitively, when

the variance of the excess return is low (high), portfolios respond more (less) to

expected returns, leading to a smaller (larger) asset price response to financial

20As described in the Technical Appendix, one can also follow an iterative procedure for a

given set of parameters. One can solve the model for given second moments, then compute the

implied second moments, then solve the model for this new set of second moments, and repeat

this until the second moments no longer change. This gives exactly the same results, but is far

more computationally intensive.
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shocks to clear markets, justifying the low (high) variance.21 We do not find

multiple equilibria in the estimated model with infrequent traders. The difference

is that infrequent traders always have a more muted portfolio response as only a

limited fraction of these agents make a new portfolio decision and they have longer

horizons. Even for frequent traders though, the presence of multiple equilibria does

not pose a problem as the estimation will search for the solution where the variance

of the excess return is close to that in the data.

3.6 Impulse Responses

Before getting into the details of the data and calibration/estimation of parameters,

it is useful to get a better understanding of how the model works by considering

the impulse responses. Figure 1 shows impulse responses for positive dividend and

wealth shocks in three cases.22 These cases are based on parameter estimates that

will be discussed in the next two sections. We refer to these cases as IN, FRH

and FRL. Case IN, labeled infrequent traders in Figure 1, is one where almost

all traders are infrequent traders (f = 0.004) who change their portfolio quite

infrequently (p = 0.01) and have a risk aversion of γ̃ = 13.9. In cases FRL and

FRH all traders are frequent traders (f = 1). In case FRL the rate of risk aversion

is relatively low (γ̃ = 10), while in case FRH the rate of risk aversion is very high

(γ̃ = 485).

In all cases the direction of the change in qD and zA at the time of the shock is

the same. A positive dividend shock increases the expected excess return on the

Home asset, which raises the average portfolio share zA and the relative price qD.

A positive relative Home wealth shock raises the relative demand for Home equity,

which raises the relative price qD. The higher relative price reduces the expected

excess return on the Home asset, which lowers zA. What differs across the three

cases is the magnitude of the immediate response and the subsequent dynamics.

There are two key distinctions between the three cases. First, portfolios are

21McCafferty and Driskill (1980) argue that such multiple equilibria are a general feature of

rational expectations models where behavior depends on a forecast variance. It also occurs in

portfolio models with limited participation, such as Pagano (1989), Allen and Gale (1994) and

Jeanne and Rose (2002), where a high variance leads agents to exit the market, making portfolios

less responsive to prices and generating a high variance.
22We will discuss the impulse response to financial shocks in Section 5 as it is an unobserved

variable for which the estimated process is different for each parameterization.
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Figure 1: Impulse Responses*
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much more sensitive to expected returns in the FRL case than in the FRH and

IN cases. In the FRH case all agents respond right away to a change in expected

returns, but they all take limited positions because of the very high risk aversion. In

the IN case only a limited fraction of agents respond to a change in expected returns

and even those agents have a limited response because of longer horizons. While for

different reasons, both in the FRH and IN cases the immediate portfolio response

will be significantly more muted than in the FRL case. The second difference

is in the subsequent dynamics. In the IN case portfolios respond gradually to a

shock, while in the FRL and FRH cases portfolios respond immediately and then

gradually return to steady state.

These distinctions are evident in Figure 1. First consider the immediate re-

sponse at the time of the shock. For both dividend and wealth shocks, zA changes

much more in the FRL case than in the FRH and IN cases. The weaker portfolio

response also translates into a much smaller change in the relative price qD under
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dividend shocks in the FRH and IN cases than in the FRL case. The exact op-

posite happens under wealth shocks. A positive relative Home wealth shock leads

to an excess demand for the Home asset. In the FRL case, where portfolios are

very sensitive to expected returns, a very small increase in qD leads to a significant

portfolio response that clears the market. The weak portfolio response in the FRH

and IN cases implies that the expected excess return, and therefore qD, needs to

rise much more to clear the market.

With regards to the dynamics subsequent to the shock, the response is quite

different with infrequent traders (IN) than frequent traders (FRH, FRL). In the

case of infrequent traders the portfolio share zA continues to change for quite some

time in the same direction as the initial change after the shock. This is because

agents gradually adjust portfolios in response to expected return changes. This

happens even though expected future excess returns are slowly falling (in absolute

value). By contrast, in the two cases with frequent traders the average portfolio

share moves in the direction opposite to its initial change, gradually returning to

its steady state due to expected excess returns that are declining in absolute value.

For dividend shocks the continued increase in the average portfolio share zA in

the IN case also implies a continued increases in qD for a significant length of time.

This is consistent with the phenomenon known as post earnings announcement

drift, where equity prices continue to drift in the same direction as the initial

change after an earnings announcement.23 By contrast, in the cases with only

frequent traders the relative equity price gradually falls after the initial increase.

With wealth shocks the relative price qD declines in all three cases subsequent to

the initial increase, but much faster in the case of infrequent traders who continue

to reallocate their portfolios away from the Home asset after the shock.

The chart on the right hand side shows the expected excess return, which

changes much more in the case of infrequent traders than in both cases with fre-

quent traders. The case of the dividend shock has a close analogy to the forward

discount puzzle, which considers another income component of asset returns (inter-

est differentials). As Bacchetta and van Wincoop (2010) have shown, the forward

discount puzzle can be explained by gradual portfolio adjustment. A rise in the in-

terest rate of one currency leads to a gradual portfolio shift towards that currency,

which leads to continued appreciation and a positive excess return. Analogously,

23See Hong and Stein (1999) and references therein.
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here the higher relative Home dividend implies a gradual shift to Home equity,

which continues to raise the relative price of Home equity and therefore gives rise

to a high expected excess return on Home equity. This is not arbitraged away as

only a small subset of agents makes new portfolio decisions and they are responsive

to expected returns over longer horizons. The same phenomenon also explains the

much larger change in the expected excess return under wealth shocks. This is

an important way that the IN case sets itself apart from both the FRL and FRH

cases.

4 Quantitative Analysis

We now turn to the quantitative analysis. We first discuss the data. After that we

describe the calibration of a subset of parameters and the estimation of the remain-

ing parameters with the Simulated Method of Moments. The estimation minimizes

the distance between 15 data moments and corresponding model moments.

4.1 Data

Details regarding data construction and data sources are discussed in Appendix

A. We use four series to confront the model to the data: zAt , ert, d
D
t and aDt . The

sample consists of 230 months from November 1995 to December 2014. The Home

country is the US and the Foreign country is the rest of the world (ROW).

Portfolio data are obtained from Bertaut and Tryon (2007) and Bertaut and

Judson (2014).24 We compute zAt = (zHt+zFt)/2, where zHt = US external claims

on ROW/(US market capitalization - US external liabilities + US external claims

on ROW) and zFt = ROW external claims on US/(ROW market capitalization -

US external claims + ROW external claims on US). Market capitalization data are

from MSCI.25 We also compute z̄ as the mean of the average domestic portfolio

share (zHt + (1− zFt))/2. We find that z̄ = 0.7634.

The data for dDt and ert are obtained from MSCI. Return data for the US and

the aggregate of the other countries are based on the total return index. We use the

24Bertaut and Tryon (2007) and Bertaut and Judson (2014) correct TIC data to adjust for

various biases. This data is used in several other studies, e.g., Curcuru et al. (2011).
25The MSCI market capitalization data is for an aggregate of 44 foreign countries, including

21 developed and 23 emerging market economies.
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difference in log earnings to compute dDt . We use earnings rather than dividends

as dividends do not include share repurchases, which have become a preferred

method of shareholder payments. One drawback of earnings is that the MSCI

only provides the 12-month trailing average rather than the monthly earnings.

Firms do not report monthly earnings. Moreover, even if we did have monthly or

quarterly earnings, it would have a significant seasonal component and would be

very volatile. Our measure is reasonable if payouts (dividends and repurchases)

keep up with the 12-month trailing average of earnings. One comforting finding

is that dD computed this way based on relative earnings has a correlation of 0.81

with the same series computed based on relative dividends, which is quite large in

light of the absence of repurchases from dividends.26

Finally, from (46)-(47) we have

aDt =
qDt − 4zAt − θ(qDt−1 − 4zAt−1)

2z̄ − 1
− θ(2z̄ − 1)ert (55)

We can therefore compute aDt from the data on qDt , zAt and ert. This does require

an estimate of θ, which we discuss below.

4.2 Calibrated Parameters

We estimate the parameters p, f , γ̃ and the parameters associated with the finan-

cial shock process nt. All other parameters are calibrated and reported in Table

1. For the dividend process there are three parameters, ρd1, ρ
d
2 and σd. It is well-

known that estimation of these parameters through a simple regression leads to

small sample bias. We therefore produce 10,000 simulations of the AR(2) pro-

cess of dDt over 230 months and choose the parameters of the process such that

the average variance and first and second-order autocovariance of dDt match the

corresponding moments in the data.

In order to compute aD we first need an estimate of θ. For this we use an

orthogonality condition based on the wealth accumulation equation (47). Since it

is a bit technical, we leave a discussion of our estimate of θ = 0.99 to Appendix

C. We find that aD is essentially i.i.d., with an autocorrelation of only 0.02. We

therefore set ρa1 = ρa2 = 0 and set σa equal to the standard deviation of aDt .

26They also have comparable standard deviations, 0.22 for relative log earnings versus 0.17 for

relative log dividends.
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Table 1: Calibrated Parameters

Parameter Description

ρd1 = 0.90706 autoregressive coefficient dividend process

ρd2 = 0.089257 autoregressive coefficient dividend process

σd = 0.045377 standard deviation dividend innovations

ρa1 = 0 autoregressive coefficient aDt
ρa2 = 0 autoregressive coefficient aDt
σa = 0.014 standard deviation wealth shock (aDt )

R̄− 1 = 0.01/3 steady state rate of return

β = 1/R̄ = 0.9967 time discount rate

δ = (R̄− 1)/R̄ = 0.0033 steady state ratio of dividend/(price+dividend)

z̄ = 0.7634 steady state fraction invested domestically

θ = 0.99 persistence parameter in wealth accumulation

We set R̄ − 1 = 0.01/3, which implies an annualized return of 4%. δ is equal

to (R̄− 1)/R̄. We set β = 1/R̄. We have already discussed z̄ above.

4.3 Estimation

When estimating the remaining parameters with the Simulated Method of Mo-

ments, we minimize(
mdata −mmodel(ν)

)′
Σ−1

(
mdata −mmodel(ν)

)
(56)

Here mdata is a vector of data moments and mmodel(ν) are the corresponding mo-

ments in the model as a function of the vector ν of model parameters. Σ−1 is a

weighting matrix, where Σ corresponds to the variance of the vector of moments.

The average model moments and the variance of the moments are computed based

on 1000 simulations of the model over 230 months for which we have data. We

adopt the common practice of only using the diagonal elements of the weighting

matrix as the full matrix can lead to finite sample bias (e.g. Altonji and Segal

(1996)). The objective function is therefore

M∑
i=1

(
mdata(i)−mmodel(i)

Σ0.5
ii

)2

(57)
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where M is the number of moments. We therefore minimize the sum of the squared

t-values of the moments. We obtain parameter estimates for a given weighting

matrix, then use these parameter estimates to compute a new weighting matrix.

We iterate a couple of times this way until the weighting matrix and parameter

estimates no longer change. Under the null that the model is correct, the objective

function has a χ2 distribution with degrees of freedom equal to the number of

moments minus the number of estimated prameters.

The variance covariance matrix of parameter estimates is given by

1

S

[(
∂mmodel

∂ν

)′
Σ−1

(
∂mmodel

∂ν

)]−1
(58)

where S is the sample length and the derivatives ∂mmodel/∂ν are evaluated at the

estimated parameter vector ν̂.

4.4 Data Moments

We use 15 data moments for the estimation, which are shown in the first column of

Table 2. We include the standard deviations of the excess return and the average

portfolio share, as well as the change in the average portfolio share. We also

consider the standard deviation of the expected excess return. Since the expected

excess return is unobservable, we compute an estimate of it through a regression

of the excess return on three lags of the excess return and three lags of portfolio

share changes: ert−i, z
A
t−i − zAt−i−1, for i = 1, 2, 3.

We include the autocorrelation of these same variables as well as the autocor-

relation of the excess return over 3 quarters, ert,t+3 and the portfolio share change

over 3 quarters, zAt − zAt−3. Note that the average portfolio share is very persistent,

with an autocorrelation of 0.976. Both excess returns and changes in portfolio

shares are also positively autocorrelated.

The final set of moments is a set of contemporaneous correlations. We focus

on the contemporaneous correlations between endogenous variables and observable

shocks. The endogenous variables are the excess return ert and the change zAt −zAt−1
in the average portfolio share. The observable shocks are the wealth/supply shocks

aDt and dividend shocks dDt −dDt−1. We also consider the correlation between the two

endogenous variables. One could include correlations between levels of variables

as well, such as dDt and qDt or zAt and dDt . But since these levels tend to drift
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during the sample, these correlations vary significantly across simulations and are

therefore not very helpful for estimation purposes.

5 Results

5.1 Two Key Findings

It is useful to start by summarizing the key overall results first.

Result 1 With an unconstrained rate of risk aversion, the model cannot be re-

jected, no matter the frequency of portfolio changes p. Estimates of risk aversion

become extremely large as we raise p above small levels.

Result 2 When constraining risk aversion to reasonable levels, the model is not

rejected only when p < p̄ with p̄ small. In that case most traders are infrequent

traders and the frequency of portfolio adjustment is low.

In the remainder of this section we will document these results and explain

what drives these findings.

Figure 2 documents both results. The top two charts and bottom left chart

show respectively the value of the objective function, estimate of γ̃ and estimate

of f when we vary p from 0 to 1, for each value of p re-estimating all the other

parameters (γ̃, f , ρ1, ρ2 and σn). Remarkably, the objective function varies very

little with p. The objective function has a χ2 distribution with 10 degrees of

freedom (upper left panel). At the 5 percent significance level we cannot reject

the model when the objective function is less than 18.3, which is the case for all

values of p from 0 to 1. No conclusion can therefore be drawn about the frequency

of portfolio changes, which is Result 1.

The chart in the upper right of Figure 2 provides insight into what is going on.

When p is small, most traders are infrequent traders as estimates of f are small

(bottom left chart). As we raise p, at some point the estimate of f drops to 0, but

this makes little difference as the infrequent traders become like frequent traders

when they change portfolios very frequently. The key point is that the estimate

of γ̃ rises monotonically as we raise p and reaches the astronomical number of 485

when p = 1. This is the same case as f = 1. As we will discuss further below, the

data is telling us that the portfolio response to expected returns must be weak. As
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Figure 2: Impact of Varying p*
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*The top two charts and bottom left chart show the objective function, estimate of γ̃, and

estimate of f when varying p from 0 to 1 while re-estimating all the other parameters. The

bottom right chart shows the objective function when varying p, while re-estimating the other

parameters under the constraint γ̃ ≤ 50. The 5 percent confidence level is the value of the

objective function below which we cannot reject the model.

we have seen in Section 3.6, this can happen either through infrequent portfolio

adjustment (low p) or through a high risk aversion γ̃.

The results in Figure 2 suggests that the data is not able to distinguish between

weakening the portfolio response by raising γ̃ and lowering p. They are essentially

substitutes. As we raise p from 0 to 1, making portfolios more responsive to

expected returns, the estimate of γ̃ rises, making portfolios less responsive. This is

not to say that the response to shocks is very similar in cases with low p and γ̃ as

in cases with high p and γ̃. We saw in the impulse responses in Figure 1 that the

dynamic response to dividend and wealth shocks is remarkably different in the IN
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case (mostly infrequent traders with low p) to the FRH case (only frequent traders

with high risk aversion). The estimation is nonetheless unable to separate the IN

case from the FRH case. The reasons for this will be further explored in Section

5.3. But before we do so, we first discuss Result 2.

The bottom right chart of Figure 2 shows the objective function when we

restrict γ̃ to be no larger than 50. This becomes binding when p > 0.03, as can

be seen from the upper right chart. When p = 0.01, risk aversion γ̃ is estimated

to be 13.9, but then quickly rises as p rises. The bottom right chart shows that

restricting γ̃ to be no larger than 50 leads to a sharp rise in the objective function

the moment this becomes binding. The chart also shows the level of the objective

function where we are unable to reject the model at a 5 percent significance level.

This will be the case as long as p < 0.065, with the upper bound representing an

expected length between portfolio changes of 15 months. As we increase p further,

without raising γ̃ further, portfolios become too responsive to expected returns to

be consistent with the data. The features of the data that lead to this are discussed

below. First though we need to make some comments on the logic of restricting

risk aversion.

The adjusted risk-aversion parameter γ̃ differs from the curvature γ of the

utility function, but connects more closely to estimates of risk aversion in the

literature based on portfolio data and the price individuals are willing to pay to

avoid risky gambles. Most estimates of risk aversion are less than 10, and tend

to be closer to 1 than 10. Mehra and Prescott (1985) famously showed that such

risk-aversion parameters are insufficient to match the observed equity premium.27

Mehra (2003) finds that risk-aversion just below 50 is needed to match the equity

premium. Kocherlakota (2001) finds that a risk-aversion of 18 is sufficient. While

such higher rates of risk aversion are inconsistent with a lot of micro studies, Kandel

and Stambaugh (1991) argue that these are often based on very large risky bets.

For smaller risky bets as a fraction of an investor’s wealth, a higher rate of risk

aversion of 30 implies more reasonable bets. To accommodate such considerations,

we allow for a risk-aversion γ̃ up to 50. Clearly though, extreme risk-aversion of

485 that we estimate when there are only frequent traders is well beyond anything

that is reasonable.

27Our model has no implications for the equity premium as we have focused on differences of

the equations (33)-(36), which allow us to solve the expected equity return of the Home country

relative to the Foreign country as opposed the expected excess return of equity over bonds.
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As long as we are willing to constrain risk aversion to such “reasonable” levels,

the conclusion is that the data implies values of p no larger than 0.065. This is

Result 2.

5.2 Model Moments

We will now further explore what features of the data give rise to Result 2 by

considering the 15 model moments used to estimate model parameters. In Table 2

we report the model moments for two values of p less than 0.065: p = 0.01 and p =

0.04. The objective function is a bit lower for p = 0.01 than p = 0.04 (respectively

12.8 and 15.5), but we cannot reject the model in either case.28 p = 0.01 implies

an average length of 8 years between portfolio adjustments, while p = 0.04 implies

a more plausible average period of 2 years between portfolio changes.29

Table 2 reports both data and model moments, as well as the t-value, which

is the difference between the model moment and the data moment divided by the

standard deviation of the model moment. For p = 0.01 the t-value is always less

than 2, so that all model moments are consistent with the data. For p = 0.04, only

two moments have t-values just slightly above 2. Clearly, the fit of the model is

very strong in both cases.

Table 3 reports results when there are only frequent traders (p = 1 or f = 1).

Results are reported for three levels of risk aversion: γ̃ = 10, γ̃ = 50 and γ̃ = 485.

The latter is the level of risk aversion we estimate without imposing constraints of

γ̃. The objective function is respectively 184, 70.7 and 16.5 in these three cases. As

discussed above, only for extreme risk aversion are we unable to reject the model

with only frequent traders.

Table 3 identifies the moments that lead to the weak performance of the model

with frequent traders only for reasonable rates of risk aversion. The standard

deviation of the change in the portfolio share, zAt − zAt−1 is too high relative to the

28When we estimate p without any constraint we find implausible values of both p and γ̃ very

close to 0, which is why we do not report these. As can be seen from the upper left chart of

Figure 2, the objective function is just a little bit higher for extremely low values of p.
29This is the same frequency of price changes that Bacchetta and van Wincoop (2010) use

to explain the forward discount puzzle, though they assume a constant rather than stochastic

time interval between portfolio changes for individual agents. They argue that this frequency

is reasonable based on both direct evidence of the frequency of portfolio changes and evidence

based on portfolio Euler equations, which fit better with 1-3 year horizons.
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Table 2: Data and Model Moments with Gradual Portfolio Adjust-

ment

p = 0.01 p = 0.04

DATA Model t-value Model t-value

STANDARD DEVIATIONS

ert 0.0271 0.0263 0.65 0.0262 0.66

zAt 0.0261 0.0254 0.09 0.0285 0.23

zAt − zAt−1 0.0045 0.0046 0.17 0.0046 0.35

Etert+1 − estimate 0.0067 0.0058 0.54 0.0062 0.31

AUTOCORRELATIONS

ert 0.086 0.143 0.81 0.161 1.07

ert,t+3 0.191 0.092 1.05 0.091 1.07

zAt 0.976 0.978 0.18 0.982 0.43

zAt − zAt−1 0.155 0.161 0.09 0.182 0.39

zAt − zAt−3 0.059 0.110 0.53 0.112 0.56

Etert+1 − estimate 0.231 0.289 0.23 0.308 0.34

CONTEMPORANEOUS CORRELATIONS

corr(aDt , ert) 0.401 0.295 1.89 0.274 2.21

corr(aDt , z
A
t − zAt−1) 0.024 -0.094 1.90 -0.116 2.24

corr(dDt − dDt−1, ert) 0.177 0.146 0.50 0.163 0.21

corr(dDt − dDt−1, zAt − zAt−1) 0.248 0.146 1.60 0.163 1.34

corr(ert, z
A
t − zAt−1) 0.922 0.922 0.02 0.922 0.03

Objective 12.8 15.5

Parameter Estimates s.e. s.e.

γ̃ 13.9 1.73 50

ρ1 1.6180 0.071 1.6606 0.017

ρ2 -0.6182 0.072 -0.6611 0.017

σn 0.0029 0.0004 0.0029 0.0001

f 0.0039 0.0014 0.0146 0.0006

*The Table shows results for 2 cases: (i) p = 0.01, (ii) p = 0.04. The estimated parameters of γ̃ ≤ 50,

the noise process (ρ1, ρ2, and σn) and f , and standard errors, are at the bottom of the table. The table

reports the average model moments over 1000 simulations (under Model) and the t-value of each moment.

The latter is the difference between the average model moment and data moment, divided by the standard

deviation of the model moment based on the 1000 simulations. The objective function is shown right below

the moments, which corresponds to the sum of the squared t-values of the moments.
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Table 3: Data and Model Moments when p = 1

γ̃ = 10 γ̃ = 50 γ̃ = 485

DATA Model t-value Model t-value Model t-value

STANDARD DEVIATIONS

ert 0.0271 0.0313 2.68 0.0286 1.01 0.0263 0.62

zAt 0.0261 0.0275 0.21 0.0235 0.47 0.0241 0.33

zAt − zAt−1 0.0045 0.0059 4.80 0.0053 2.92 0.0046 0.21

Etert+1 − estimate 0.0067 0.0057 0.51 0.0055 0.64 0.0053 0.79

AUTOCORRELATIONS

ert 0.086 0.056 0.38 0.069 0.22 0.085 0.01

ert,t+3 0.191 0.123 0.56 0.148 0.34 0.177 0.12

zAt 0.976 0.973 0.24 0.970 0.39 0.979 0.24

zAt − zAt−1 0.155 0.054 1.33 0.068 1.11 0.096 0.75

zAt − zAt−3 0.059 0.119 0.49 0.147 0.69 0.197 1.16

Etert+1 − estimate 0.231 0.185 0.15 0.229 0.01 0.294 0.20

CONTEMPORANEOUS CORRELATIONS

corr(aDt , ert) 0.401 0.035 6.01 0.112 4.83 0.297 1.86

corr(aDt , z
A
t − zAt−1) 0.024 -0.277 5.15 -0.237 4.35 -0.093 1.85

corr(dDt − dDt−1, ert) 0.177 0.514 6.95 0.357 3.19 0.104 1.16

corr(dDt − dDt−1, zAt − zAt−1) 0.248 0.491 4.84 0.345 1.68 0.103 2.25

corr(ert, z
A
t − zAt−1) 0.922 0.949 4.08 0.937 1.81 0.921 0.09

Objective 184.0 70.7 16.5

Parameter Estimates s.e. s.e. s.e.

γ̃ 10 50 484.6 13.9

ρ1 1.9741 0.002 1.9707 0.001 1.9409 0.004

ρ2 -0.9790 0.002 -0.9759 0.001 -0.9448 0.004

σn 0.0140 0.0001 0.00377 0.0002 0.00086 0.00002

*The Table assumes p = 1 and reports results for 3 cases: (i) γ̃ = 10, (ii) γ̃ = 50 and (iii) γ̃ estimated without

restriction. The estimated parameters of the noise process (ρ1, ρ2 and σn) and γ̃, and standard errors, are

at the bottom of the table. The table reports the average model moments over 1000 simulations (under

Model) and the t-value of each moment. The latter is the difference between the average model moment and

data moment, divided by the standard deviation of the model moment based on the 1000 simulations. The

objective function is shown right below the moments, which corresponds to the sum of the squared t-values

of the moments.
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data, while the contemporaneous correlations are even more inconsistent with the

data. To understand this, it is useful to go back to the impulse responses in Figure

1. The case of infrequent traders (IN) corresponds to the parameterization with

p = 0.01 in Table 2. The two cases with only frequent traders, FRH and FRL,

correspond to respectively the case of γ̃ = 485 and γ̃ = 10 in Table 3.

In the FRL case, the immediate portfolio response to both dividend and wealth

shocks is very large. Although there are also financial shocks, which we will discuss

below, this contributes to the finding that zAt − zAt−1 is too volatile. Next consider

the contemporaneous correlations. The first four of them relate to the contem-

poraneous correlation between dividend and wealth changes on the one hand and

the excess return and change in average portfolio share on the other hand. This

relates closely to the contemporaneous response of qD and zA to dividend and

wealth shocks reported in Figure 1.

First consider wealth shocks aDt . A positive relative Home wealth shock implies

an increased relative demand for the Home assets and therefore a rise in qDt and

ert. This leads to a positive correlation between aDt and ert, which is 0.4 in the

data. But in the FRL case there is a sharp drop in the average portfolio share zA

as the increase in qD lowers the expected excess return. This significantly dampens

the rise in qD, leading to a correlation between the excess return and the wealth

shock that is much lower than in the data. The sharp drop in zA also leads to

a strongly counterfactual negative correlation between the change in zA and the

wealth shock. The model performs better when the portfolio response is much

weaker, either due to infrequent traders with low p or a very large γ̃. This is also

illustrated in Figure 1, where we see that in the IN and FRH cases qD rises much

more and zA drops much less in response to the shock.

The next two contemporaneous correlations are between the change in the

log dividend dDt − dDt−1 and respectively zAt − zAt−1 and ert. As we see in the

impulse responses in Figure 1, in the FRL case where portfolios are very sensitive

to expected returns both the average portfolio share and the relative price are very

responsive to changes in dividends. This is because higher Home dividends, which

are persistent, imply a higher expected return on Home equity that leads to a large

portfolio shift to Home equity. The correlation between the change in dividends

and both the excess return and portfolio share change are higher in the model than

in the data. This problem is again resolved by weakening the portfolio response

to expected returns, either through a low p or high γ̃, as can be seen in Figure 1.
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So far we have not discussed the financial shocks. Figure 3 reports the impulse

response to financial shocks (increase in nt) for the same three parameter combina-

tions as for dividend and wealth shocks in Figure 1: p = 0.01 (IN), f = 1, γ̃ = 10

(FRL) and f = 1, γ̃ = 485 (FRH). A key difference with the dividend and wealth

shocks is that the financial shocks cannot be directly measured. The parameters

of the AR(2) process for nt, reported in Tables 2 and 3, are such that the model

moments fit the data as well as possible. In all three cases the financial shock is

therefore different, while wealth and dividend shocks are always the same.

Figure 3: Impulse Response, Financial Shocks*
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*Infrequent traders (IN): p = 0.01, f = 0.004, γ̃ = 13.9; frequent traders, low γ̃ (FRL): f = 1, γ̃ =

10; frequent traders, high γ̃ (FRH): f = 1, γ̃ = 485. Others parameters as in Tables 1-3.

The bottom right chart in Figure 3 shows nt over time in response to a one

standard deviation financial shock. The magnitude of the financial shock in the
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FRL case is massive compared to the IN and FRH cases. The reason for this is

that financial shocks have very little effect when portfolios are very sensitive to

expected returns. A small change in the asset price that leads to a small change

in the expected excess return can generate a very large portfolio shift that clears

markets in response to the exogenous portfolio shift nt. As a result the financial

shock needs to be made extremely big in order to make it matter.

In the FRL case the increase in nt peaks at 0.16 after just a one standard

deviation financial innovation in a particular month. This translates into a change

in the average allocation to Home equity from 0.5 to 0.66 with a one standard

deviation shock and 0.82 with a two standard deviation shock. Such massive shocks

are highly implausible. The same is the case as well when γ̃ = 50. This further

reinforces that the model with frequent traders and plausible risk aversion is not

a good description of the data. For reasonable levels of risk aversion the model is

only consistent with the data when agents change their portfolios infrequently.

5.3 Infrequent Trading versus Frequent Trading with Ex-

treme Risk Aversion

A remaining question is why it is so hard to distinguish the IN and FRH cases.

Even if we set aside the extreme risk aversion of 485 in the FRH case, should we

not be able to separate the IN and FRH cases based on features of the data? If

we look at the impulse response to the observed dividend and wealth shocks in

Figure 1, we see that the instantaneous response of qD and zA is quite similar in

the IN and FRH cases. It is for this reason that the contemporaneous correlations

in the FRH case (last two columns of Table 3) and IN case (p = 0.01 in Table 2)

are similar, both consistent with the data. But we also see in Figure 1 that the

subsequent dynamics is quite different.

This difference in dynamics subsequent to the shock can be captured by various

correlations that measure predictability. These are correlations between variables

at time t and excess returns or portfolio share changes over the next 1, 3 and 12

months. We report the results for these correlations in Table 4. The variables at

time t include the change in the relative dividend dDt − dDt−1, the level dDt of the

relative dividend, the wealth shock aDt , the portfolio share change zAt − zAt−1 and

the excess return ert. Results are reported for both the IN case (p = 0.01) and the

FRH case (f = 1, γ̃ = 485).
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Table 4: Correlations Capturing Predictability

p = 0.01 p = 1, γ̃ = 485

DATA Model t-value Model t-value

ONE-MONTH FORWARD CORRELATIONS

corr(dDt − dDt−1, zAt+1 − zAt ) -0.059 0.027 1.29 0.000 0.88

corr(dDt − dDt−1, ert+1) -0.036 0.030 0.99 0.003 0.59

corr(dDt , z
A
t+1 − zAt ) -0.027 0.030 0.84 -0.006 0.26

corr(dDt , ert+1) -0.001 0.044 0.72 0.022 0.29

corr(aDt , z
A
t+1 − zAt ) -0.105 -0.019 1.34 -0.001 1.61

corr(aDt , ert+1) -0.088 -0.025 0.98 -0.008 1.24

corr(zAt − zAt−1, ert+1) 0.127 0.163 0.50 0.093 0.43

corr(ert, z
A
t+1 − zAt ) 0.100 0.162 0.87 0.099 0.01

THREE-MONTH FORWARD CORRELATIONS

corr(dDt − dDt−1, zAt+3 − zAt ) -0.046 0.036 1.32 -0.002 0.72

corr(dDt − dDt−1, ert,t+3) -0.056 0.040 1.55 0.003 0.96

corr(dDt , z
A
t+3 − zAt ) -0.032 0.036 0.67 -0.009 0.18

corr(dDt , ert,t+3) 0.011 0.058 0.49 0.034 0.19

corr(aDt , z
A
t+3 − zAt ) 0.002 -0.025 0.39 0.001 0.01

corr(aDt , ert,t+3) 0.050 -0.035 1.27 -0.010 0.89

corr(zAt − zAt−1, ert,t+3) 0.120 0.141 0.30 0.132 0.14

corr(ert, z
A
t+3 − zAt ) 0.097 0.142 0.64 0.144 0.56

12-MONTH FORWARD CORRELATIONS

corr(dDt − dDt−1, zAt+12 − zAt ) -0.076 0.050 2.03 -0.000 1.21

corr(dDt − dDt−1, ert,t+12) -0.023 0.058 1.32 0.008 0.51

corr(dDt , z
A
t+12 − zAt ) 0.010 0.012 0.02 -0.012 0.11

corr(dDt , ert,t+12) 0.053 0.045 0.05 0.048 0.03

corr(aDt , z
A
t+12 − zAt ) 0.005 -0.029 0.49 0.003 0.03

corr(aDt , ert,t+12) 0.103 -0.048 2.20 -0.016 1.73

corr(zAt − zAt−1, ert,t+12) 0.031 0.010 0.30 0.115 0.96

corr(ert, z
A
t+12 − zAt ) 0.049 0.023 0.37 0.147 1.08

*The Table shows results for one-month, 3-month and 12-month predictive correlations in two cases: (i)

p = 0.01 (Table 2), (ii) p = 1 and γ̃ = 485 (Table 3). T-values are computed analogously to Tables 2 and 3.
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The key takeaway from Table 4 is that for both the IN and FRH case the

model is consistent with the data. Almost all t-values are less than 2. Correlations

capturing the predictability of excess returns and portfolio shares therefore provide

little guidance. The moments vary significantly across model simulations. For

example, the correlation between the relative dividend dDt and the subsequent

excess return ert+1 is 0.044 in the infrequent trading model, but the 95 percent

confidence interval in the model is [-0.08,0.17]. This is consistent with the data

moment of -0.001, but if the model is correct the data moment could also have

been a substantial positive number.

There are two reasons for this result. The first is the large role of the unobserved

financial shocks. A comparison of the scales in Figures 1 and 3 shows that financial

shocks have an immediate impact on qD and zA that is 3-10 times larger as for

dividend and wealth shocks. The dominant role of the unobserved financial shocks

makes it harder to observe predictability of excess returns and portfolio changes.

The role of these shocks can be determined by removing them in the model. We

find that financial shocks increase the standard deviation of the model moments

across simulations. Even more important, they significantly reduce the size of the

correlations in Table 4, sometimes by a factor 3 or 4.

The second factor that plays a role in making predictability harder to identify

is associated with the magnitude of the dividends shocks. This relates to the point

above as it would be easier to identify predictability the larger the dividend shocks

relative to financial shocks. One can draw a comparison to the foreign exchange

market, where Bacchetta and van Wincoop (2010) find that a model with gradual

portfolio adjustment is consistent with excess return predictability in the data.

In the foreign exchange market exchange rate fluctuations are also dominated by

financial shocks and the standard deviation of quarterly excess returns is similar

to the quarterly excess returns in our data for equity.30 However, the volatility of

the income component of the excess return is much higher in the foreign exchange

market. The interest differential is about three times as volatile as the income

component of the excess return in the equity market, δdDt .

With a higher standard deviation of dividends σd, the correlations in the data in

Table 4 would likely have been higher and it might have been easier to separate the

IN and FRH cases. As an experiment we triple σd to make the income component

30See also Itskhoki and Mukhin (2017) for the importance of financial shocks for exchange rate

determination.
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equally volatile as in the foreign exchange market. We find that the correlations

between dDt and the subsequent excess return and portfolio share change rise sig-

nificantly in the IN case. Both correlations also increase relative to the FRH case,

where correlations with subsequent portfolio share changes actually become more

negative.31

6 Conclusion

Even though there is a growing body of evidence consistent with gradual portfolio

adjustment, modern open economy macro models assume the exact opposite: the

continuous adjustment of international portfolio allocation by all investors. This

paper introduces gradual portfolio adjustment to an open economy model of the

equity market and confronts it with data on international portfolio shares and

equity prices.

Apart from a focus on open economy aspects, we have contributed along two

dimensions to the literature on gradual portfolio adjustment. First, we have de-

veloped a theory of infrequent portfolio adjustment where the timing of portfolio

changes is stochastic, following a Poisson distribution instead of taking place at

predictable intervals of constant length. This leads to a smoother response of en-

dogenous variables to shocks than in models where the length of time between

portfolio decisions is fixed. Second, we have used both asset price data and portfo-

lio data to evaluate the implications of the model empirically. This contrasts with

work to date that has focused mostly on data features involving asset prices only.

It is natural to consider evidence on portfolios since after all this is a theory of

gradual portfolio adjustment.

Our findings can be summarized with two key results. Conditional on a rea-

sonable rate of risk aversion, we find that the data is consistent with infrequent

portfolio decisions, with an average frequency of at most once in 15 months. We

find that the model where all agents adjust portfolios continuously, when combined

with plausible rates of risk aversion, leads to an excessive response of portfolios

to expected returns that generates inconsistencies with the data. At the same

time we are unable to distinguish the model with infrequent portfolio decisions

31Another factor that may play a role in predictability is that there are larger measurement

errors associated with dDt than with the interest differential. We have also used relative dividends

instead of relative earnings for dDt , but this does not improve predictability.
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from one where all agents choose an optimal portfolio at all times and the rate

of risk aversion is extremely large, well above what is plausible. The latter also

leads to a weak portfolio response to expected returns. While these imply different

dynamics with different predictability of excess returns and portfolios shares, the

relatively large role of unobserved financial shocks makes it hard to separate them

empirically.

Looking to future work, several directions should be considered. First, on the

modeling front we have made the assumption that agents hold portfolio shares

constant when they do not make a new portfolio decision. This implies complete

rebalancing. We need to consider the implications under the alternative of not

rebalancing at all, as well as partial rebalancing. In addition, instead of assum-

ing a constant consumption/wealth ratio it would be attractive to model the joint

consumption and portfolio decision, even though this will generate additional com-

putational challenges. Second, on the empirical front we need to consider extending

the approach to other markets where both asset returns and portfolio shares are

available. While we have discussed a two-country model for the global equity mar-

ket (US versus rest of world), one could consider a multi-country model, using

data on portfolio shares allocated to individual foreign countries. The Bertaut and

Tryon (2007) and Bertaut and Judson (2014) data are also available for the bond

market, which is another natural application. The framework can be applied to

closed economy setting as well, for example considering the portfolio allocation

between stocks and bonds within the United States.
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Appendix

Appendix A. Data Description

Using MSCI data notation, the precise data definition for excess returns is:

ert = ln (msci us TRt/msci us TRt−1)

− ln (msci acwi exus TRt/msci acwi exus TRt−1)

where msci us TR is ”MSCI US Total Return Index” and msci acwi exus TR is

”MSCI ACWI ex US Total Return Index” (ACWI stands for ”All Country World”).

dDt is computed as relative earnings and earnings are derived by dividing the

price index (PI) by the price earnings ratio (PER):

dDt = ln (msci us PI/msci us PER)- ln (msci acwi us PI/msci acwi us PER)

For portfolio shares, we use:

zHt =
US external claims on ROW

US market capitalization-US external liabilities + US external claims on ROW

zFt =
ROW external claims on US

ROW market capitalization - US external claims + ROW external claims on US

US market capitalization: msci us MV; ROW market capitalization: msci acwi exus MV.

US external claims on ROW : us stk est pos derived bertaut tryon claims thru2011.csv

and bertaut judson positions claims 2015.csv.

ROW external claims on US: ftot stk est pos derived from ticdata.liabilities.ftot.txt

and bertaut judson positions liabs 2015.csv. Both are for all countries, item 69995.

We use all countries for ROW rather than using bilateral data for the 44 countries

in MSCI data. Bilateral country data may be biased because it does not always

capture the true destination or source country (e.g., portfolios with financial cen-

ters).

Appendix B. Hedge Terms Optimal Portfolio

For a variable x, define

x̃t,t+i =
i∑

j=1

θ1−jxt+j (59)
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As shown in the Technical Appendix, where we derive the optimal portfolio of

infrequent traders, the hedge term for Home infrequent investors is

hinHt =
1− βθ
βθ

NHt

D
(60)

where

NHt = −
∞∑
s=1

s−1∑
i=1

(βθ)spiγθ
s−icov(ẽrt,t+i, r̃

pH
t+i,t+s)

−
∞∑
s=1

s−1∑
i=1

(βθ)spiγ
1− θ
θ

θscov(ẽrt,t+i, g̃H,t,t+s)

+
∞∑
s=1

s−1∑
i=1

(βθ)spi
1− θ
θ

i∑
j=1

cov(g̃H,t,t+j−1, ert+j)

+
∞∑
s=1

s−1∑
i=1

(βθ)spicov(ẽrt,t+i, r̂
pH
t+i,t+s)

−
∞∑
s=1

(βθ)s

(
1−

s−1∑
m=1

pm

)
γ

1− θ
θ

θscov(ẽrt,t+s, g̃H,t,t+s)

+
∞∑
s=1

(βθ)s

(
1−

s−1∑
m=1

pm

)
1− θ
θ

s∑
j=1

cov(g̃H,t,t+j−1, ert+j)

+
∞∑
s=1

s−1∑
i=1

i∑
j=1

(βθ)spiθ
1−jτHt

+
∞∑
s=1

s∑
j=1

(βθ)sθ1−j

(
1−

s−1∑
m=1

pm

)
τHt (61)

The terms involve a hedge against future portfolio returns and non-asset income,

as well as fee τHt of investing abroad.

For Foreign investors the hedge term is the same, with NHt replaced by NFt.

Superscripts and subscripts H are placed with F and τHt is replaced with −τFt.
The average hedge term hA,int = (hinHt + hinF t)/2 is much simpler as all terms other

than those involving the fees τHt and τFt drop out. The reason for this is that when

we add up the Home and Foreign hedge terms, the covariances in all cases can be

written as a covariance between the excess return and the average of variables

across countries. This covariance is zero as the Home and Foreign returns by

symmetry have the same covariance with variables that are an average across
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countries. As shown in the Technical Appendix, we have

hA,int =
0.5

D(1− β(1− p))
τDt (62)

Analogously, for frequent traders

hA,ft =
0.5

γ̃vart(ert+1)
τDt (63)

Appendix C. Estimate of θ

It is useful to repeat (47) here:

w̃Dt = θw̃Dt−1 + θ(2z̄ − 1)ert + aDt (64)

We find that aDt is essentially iid for any reasonable value of θ. One could then set

θ from (64) by using that cov(aDt , w
D
t−1) = 0. But in finite samples this covariance

is not zero. We therefore proceed as follows. We first write ert = η1a
D
t + e1t , where

e1t is by construction orthogonal to aDt . We then write e1t = η2w
D
t−1 + e2t , where e2t

is by construction orthogonal to wDt−1. This implies

w̃Dt = ξ1w̃
D
t−1 + et (65)

where ξ1 = θ + θ(2z̄ − 1)η2 and et = θ(2z̄ − 1)e2t + (1 + θ(2z̄ − 1)η1)a
D
t . By

construction et is orthogonal to wDt−1. For a range of values of θ we then simulate

(65) 1000 times, using the standard deviations of e2t and aDt , and compute the

average of cov(aDt , w
D
t−1). We set θ such that this average covariance corresponds

to the actual covariance. This gives θ = 0.988, which we round to 0.99.
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