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1 Introduction

A crucial question in economic growth and development is why some countries are rich and oth-

ers poor. A consensus has emerged in the literature whereby the large differences in income per

capita across countries are mostly accounted for by differences in labor productivity and in partic-

ular total factor productivity (TFP) (Klenow and Rodriguez-Clare, 1997; Prescott, 1998; Hall and

Jones, 1999). A key question then is: what accounts for differences in TFP across countries? An

important channel that has been emphasized is the (mis)allocation of factors across heterogeneous

production units.1 We study misallocation in a model where establishment-level productivity is

determined endogenously by the investment decisions of firms. In particular, we focus on economies

with a constant distribution of (relative) establishment sizes and show that policy distortions sub-

stantially reduce aggregate productivity, by several fold factors compared to the model when the

size distribution is unrestricted.

A recent branch of the literature has emphasized the dynamic implications of misallocation by

considering variants of the growth model with establishment-level productivity dynamics.2 We

build on this literature by developing a general equilibrium model of establishments where the

distributions of establishment productivity and size are characterized in closed form as a function

of the economic environment which is affected by policy distortions.

A key insight of our work arises from exploiting two well-known properties of distorted economies,

that establishment size is proportional to distortions and productivity (Restuccia and Rogerson,

2008) and that the distribution of (relative) sizes across establishments is fairly similar across

countries (Hopenhayn, 2014b). It is also closely connected to evidence that the distribution of

firm size approximates Zipf’s law (Axtell, 2001; Gabaix, 2009; Luttmer, 2007), which in the limit

1See Banerjee and Duflo (2005), Restuccia and Rogerson (2008), Guner et al. (2008), and Hsieh and Klenow
(2009). See also the surveys of the literature in Restuccia and Rogerson (2013), Restuccia (2013a), Hopenhayn
(2014a), and Restuccia and Rogerson (2017).

2Some of the early contributions on the endogenous productivity distribution include Restuccia (2013b), Bello
et al. (2011), Acemoglu et al. (2018), Ranasinghe (2014), Bhattacharya et al. (2013), Gabler and Poschke (2013),
Rubini (2014), Hsieh and Klenow (2014), Bento and Restuccia (2017), Guner et al. (2018), Peters (2020), Buera and
Fattal Jaef (2018), among others. See also Restuccia and Rogerson (2017) for a discussion of this literature.
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makes the distribution of relative sizes constant across economies. The implication of these features

is that variations in policy distortions across economies are mostly reflected in differences in the

productivity distribution. We find that this effect is quantitatively important as distortions in

our framework reduce aggregate TFP by 57% compared with only 21% in the same economy that

does not restrict the size distribution of establishments (a 2.8-fold larger impact). Moreover, our

analytical solution of the distribution of productivity and how it is affected by distortions can

potentially be useful in empirical applications of dynamic misallocation across countries using panel

micro data, an essential issue in the misallocation literature (Restuccia and Rogerson, 2017).

We develop a general equilibrium framework with heterogeneous production units that builds on

Hopenhayn (1992) and Restuccia and Rogerson (2008). The framework is a standard neoclassical

growth model with production heterogeneity extended to incorporate the dynamic effect of dis-

tortions on productivity investment and hence the distribution of establishment-level productivity.

The key elements of the model are on the production side. In each period, there is a single good

produced in establishments. Establishments are heterogeneous with respect to total factor produc-

tivity and have access to a decreasing returns to scale technology with capital and labor as inputs.

Establishments are subject to an exogenous exit rate but differently from the standard framework,

the distribution of establishment-level productivity is not exogenous, rather it is determined by

establishment’s investment decisions. In other words, the productivity of establishments is deter-

mined endogenously in the model by the properties of the economic environment such as policy

distortions. Nevertheless, despite growth in establishment productivity, with exogenous exit, the

economy features a stationary distribution of establishments across productivity levels and hence

an invariant level of aggregate TFP.

Following the literature, the economy faces policy distortions which, for simplicity, take the form

of output taxes on individual producers. That is, each producer faces an idiosyncratic tax and it

is the properties of policy distortions that generate misallocation in the model. Revenues collected

from these taxes are rebated back to the households as a lump-sum transfer. We emphasize that the

output distortions we consider are abstract representations, a catch-all for the myriad of implicit
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and explicit distortions faced by individual producers. While the literature has made substantial

progress in identifying the specific policies and institutions that create misallocation, as discussed

in Restuccia and Rogerson (2017), the emphasis in our paper is on effect of distortions on the

productivity distribution in the economy. As a result, our paper represents a general assessment of

the broader consequences of misallocation.

We provide an analytical solution of this model in continuous time. In particular, we solve in closed

form for the stationary distributions of establishment sizes and productivities which are endogenous

objects that may vary across economies. We show that the equilibrium productivity distributions

are Double Pareto distributions with tail index that depends on policy distortions and on the

response of incumbent establishments to distortions when selecting the growth rate of productivity.

This allows us to characterize the behavior of aggregate output and TFP across distortionary policy

configurations as well as the size and productivity growth rate of establishments, the inequality of

the distributions of size and establishment-level productivity, among other statistics of interest.

To explore the quantitative properties of the model, we calibrate the model and provide a set of

relevant quantitative experiments. We consider a benchmark economy with distortions that is cal-

ibrated to data for the United States. We then perform quantitative analysis by exploring the

implications of increasing distortions for aggregate output and TFP under a variety of configura-

tions. Our main result is that in economies featuring constant (relative) size distributions, policy

distortions substantially reduce not only aggregate TFP, but also the average size of establishments,

establishment entry productivity, and establishment productivity growth; effects which are broadly

consistent with evidence on average establishment size (Bento and Restuccia, 2017), with evidence

that in more distorted economies the productivity and employment growth of establishments are

lower (Hsieh and Klenow, 2014), and with evidence that when distortions are lowered in economic

reforms, the productivity growth rate of establishments increases (Pavcnik, 2002; Bustos, 2011).

These effects are quantitatively much stronger compared with the model where the relative size

distribution is unrestricted.
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Our paper is related to a large literature on misallocation and productivity discussed earlier. The

literature has emphasized various separate channels such as life-cycle investment of plants, human

capital accumulation of managers, experimentation, step-by-step innovation, selection, among many

others; and different contexts such as trade and labor policies, financial frictions, and specific

sectors. We complement this literature by developing a general model of establishment growth

featuring a distribution of establishment productivity that can be characterized in closed form.

More importantly, our theoretical characterization can be useful in developing methods to estimate

the role of dynamic misallocation using panel data of firms, and hence we hope our analysis can

facilitate more empirical applications.

Two closely related papers to ours are Hsieh and Klenow (2014) and Bento and Restuccia (2017).

Hsieh and Klenow (2014) consider the model of establishment innovation in Atkeson and Burstein

(2010) to emphasize the life-cycle growth of establishments and its response to distortions, whereas

Bento and Restuccia (2017) emphasize both entry productivity and life-cycle growth. We em-

phasize two key distinctions with our work. First, in these papers entering establishments draw

their productivity from an exogenous and constant distribution across countries, whereas the en-

tire productivity distribution is a key equilibrium object in our framework that responds to policy

distortions. Second, we differ in the tools used to characterize the economy, in particular, we solve

analytically for the entire distribution of productivity using continuous time and Brownian motion

processes. These tools are increasingly popular in the growth literature allowing both a tighter

theoretical characterization and more efficient computation (e.g., Lucas and Moll, 2014; Benhabib

et al., 2014; Buera and Oberfield, 2014). More closely linked, these tools were prominently used in

the seminal work of Luttmer (2007) to study the size distribution of establishments in the United

States (see also Da-Rocha and Pujolas, 2011; Fattal Jaef, 2018; Gourio and Roys, 2014; Da-Rocha

et al., 2019).

The paper proceeds as follows. In the next section, we present the details of the model and section

3 characterizes the equilibrium solution. In section 4, we characterize aggregate output and TFP

and provide a closed-form solution of the model. Section 5 provides a quantitative assessment of the
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impact of policy distortions on aggregate output, TFP, and other relevant statistics. We conclude

in Section 6.

2 Economic Environment

We consider a standard version of the neoclassical growth model with producer heterogeneity as

in Restuccia and Rogerson (2008). We extend this framework to allow establishments to invest in

their productivity. As as a result, with on-going entry and exit of establishments, the framework

generates an invariant distribution of productivity across establishments associated with the eco-

nomic environment that may differ across countries. Time is continuous and the horizon is infinite.

Establishments have access to a decreasing return to scale technology, pay a one-time fixed cost of

entry, and exit at an exogenous rate. Establishments hire labor and rent capital services in com-

petitive markets. New entrants enter with a level of productivity which is endogenous. We focus

on a stationary equilibrium of this model and study the effects of idiosyncratic policy distortions

on the allocation of factors across establishments. In what follows, we provide more details of the

economic environment.

2.1 Baseline Model

There is an infinity-lived representative household with preferences over consumption goods de-

scribed by the utility function,

max

∫ +∞

0

e−%tu(c)dt,

where c is consumption and % is the discount rate. The household is endowed with one unit of

productive time at each instant and k0 > 0 units of the capital stock at date 0.

The unit of production in the economy is the establishment. Each establishment is described by a

production function f(z, k, n) that combines establishment productivity z, capital services k, and
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labor services n to produce output. The function f is assumed to exhibit decreasing returns to scale

in capital and labor jointly and to satisfy the usual Inada conditions. The production function is

given by:

y = zθ(1−α−γ)kαnγ, α, γ ∈ (0, 1), 0 < γ + α < 1, θ > 1, (1)

where establishment productivity z is stochastic but establishments can invest in upgrading their

productivity at a cost and θ is a scaling parameter for establishment TFP. Note that establishment

TFP is zθ(1−α−γ) and hence θ influences the units in which establishment productivity z is measured.

Scaling productivity by θ is convenient for algebraic manipulations of the model as this parameter

also represents the curvature in the cost function of establishment productivity growth, but other

than the economics of productivity investment, this scaling of productivity is innocuous for the

analysis. Establishments also face an exogenous probability of exit λ.

New establishments can also be created. Entrants must pay an entry cost ce measured in units

of output and as in the literature the expected value of entry satisfies the zero profit condition in

equilibrium. Feasibility in the model requires:

C + I +Q = Y − E,

where C is aggregate consumption, I is aggregate investment in physical capital, Q is aggregate

cost of investing in establishment productivity, E is the aggregate cost of entry, and Y is aggregate

output.

2.2 Policy Distortions

We introduce policies that create idiosyncratic distortions to establishment-level decisions as in

Restuccia and Rogerson (2008). We model these distortions as idiosyncratic output taxes but

none of our results are critically dependent on the particular source of distortions. While the
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policies we consider are hypothetical, there is a large empirical literature documenting the extent of

idiosyncratic distortions across countries and our framework allows for a simple mapping between

distortions and empirical observations (Hsieh and Klenow, 2009; Bartelsman et al., 2013; Restuccia

and Rogerson, 2017).

In our framework, distortions not only affect the allocation of resources across existing production

units, but also the growth rate of establishment productivity, thereby affecting the distribution of

productive units in the economy. Specifically, we assume that each establishment faces its own

policy distortion (idiosyncratic distortions) reflected as an output tax rate τy. In what follows, for

convenience we rewrite distortions as τ = (1− τy)
1

θ(1−α−γ) . Note that this transformation implies

that an establishment with no distortions τy = 0 faces τ = 1, whereas a positive output tax τy > 0

implies τ < 1 and an output subsidy τy < 0 implies τ > 1.

In order to generate dispersion in distortions across productive units, we assume that τ follows a

standard stochastic process, a Geometric Brownian motion,

dτ = µττdt+ σττdwτ ,

where µτ is the drift, στ is the standard deviation and dwτ is the standard Wiener process of the

Brownian motion. In this specification στ controls the dispersion of distortions across producers

and hence the dispersion in marginal revenue products.

Establishment’s productivity z follows a Geometric Brownian motion and establishments can invest

in upgrading their productivity by choosing the drift of the Brownian motion µz, establishment

productivity follows:

dz = µzzdt+ σzzdwz,

where σz is the standard deviation and dwz is the standard Wiener process of the Brownian mo-

tion. We assume that the output tax and productivity can be correlated, that is E(dwτ , dwz) =

ρ ∈ (−1, 0]. Note that a negative value of ρ, corresponds to the notion of correlated distortions
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in Restuccia and Rogerson (2008), whereby distortions impact more heavily on more productive

establishments. This feature of the environment has been shown to be important in accounting for

misallocation (e.g., David and Venkateswaran, 2019).

At the time of entry, the entry distortion τe is known and establishments enter with a produc-

tivity ze that is determined in equilibrium and implies a value of entrants that satisfies the zero

profit condition. In this economy, the relevant information for establishment’s decisions is the joint

distribution over productivity and distortions. We denote this joint distribution by g(z, τ).

A given distribution of establishment-level distortion and productivity may not lead to a balanced

budget for the government. As a result, we assume that budget balance is achieved by either

lump-sum taxation or redistribution to the representative household, denoting the lump-sum tax

by T .

3 Equilibrium

We focus on a stationary equilibrium of this economy. The stationary equilibrium is characterized

by an invariant distribution of establishments g(z, τ) over productivity z and distortion τ , a constant

entry productivity ze, and constant allocation functions. In the stationary equilibrium, the rental

price for labor and capital services are also constant and we denote them by w and r. Before

defining the stationary equilibrium formally, it is useful to consider the decision problems faced by

incumbents, entrants, and consumers. We describe these problems in turn.

3.1 Incumbent establishments

Incumbent establishments maximize the present value of profits by making static and dynamic

decisions. The static problem is to choose the amount of capital and labor services, whereas the

dynamic problem involves solving for the establishment productivity drift. We now describe these

problems in detail.
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Static problem At any instant of time an establishment chooses how much capital to rent k and

how much labor to hire n. These decisions are static and depend on the establishment’s productivity

z, the establishment’s distortion τ , the rental rate of capital r, and the wage rate w. Formally, the

instant profit function π(z, τ) is defined by:

π(z, τ) = max
k,n

(τz)θ(1−α−γ)kαnγ − wn− rk, (2)

from which we obtain the optimal demand for labor and capital:

n(z, τ) =

[(α
r

)α ( γ
w

)1−α
] 1

1−α−γ

zθτ θ, (3)

k(z, τ) =

[(α
r

)1−γ ( γ
w

)γ] 1
1−α−γ

zθτ θ. (4)

For future reference, we redefine instant profits as a function of the optimal demand for factors:

π(z, τ) = m(w, r)zθτ θ, (5)

where m(w, r) = (1 − α − γ)
[(

α
r

)α ( γ
w

)γ] 1
1−α−γ is a constant across establishments that depends

on equilibrium prices. Note that since factor demands are linear in (zτ)θ, we find it convenient

to define size s as s ≡ (zτ)θ so that factor demands are proportional to size s. A key insight of

the misallocation literature is that the relationship between size and productivity is fundamentally

affected by distortions. In this setting, distortions put a wedge between factor demands (and

revenue) and physical output. Unlike factor demands (as well as revenue and profits), establishment

output y = zθ(1−α−γ)kαnγ is not a linear function of size. We explicitly derive the relationship

between output, distortions, and productivity below.

Dynamic problem Incumbent establishments choose the drift of their productivity µz. The cost

of investing in productivity is expressed in units of output, described by a cost function q(µz) that is
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increasing and convex in the productivity drift. We follow a large literature in innovation and growth

by specifying the cost function in units that are proportional to firm’s relative revenue (Atkeson

and Burstein, 2010; Buera and Fattal Jaef, 2018), but in our framework, revenue is proportional

to productivity and distortions which is natural in this context. Specifically, we assume q(µz) =(
cµµθz
θ

)
zθτθ

s̄
, where θ controls the convexity of the cost function and cµ is a common scale parameter.

The cost function is proportional to (relative) establishment size and revenue by a factor
(
cµµθz
θ

)
.

The optimal decision of productivity improvement is characterized by maximizing the present value

of profits subject to the Brownian motion governing the evolution of productivity and the Brow-

nian motion governing the evolution of distortions. Formally, incumbent establishments solve the

following dynamic problem:

W (z, τ) = max
µz

{
m(w, r)zθτ θ − q(µz) +

1

1 + (λ+R)dt
Ez,τW (z + dz, τ + dτ)

}
,

s.t. dz = µzzdt+ σzzdwz,

dτ = µττdt+ σττdwτ,

(6)

where λ is the exogenous exit probability of establishments and R is the stationary equilibrium real

interest rate. Next, we define the Hamilton-Jacobi-Bellman of the stationary solution,

(λ+R)W (z, τ) = max
µz

{
m(w, r)zθτ θ − cµ

s̄

µθz
θ
zθτ θ

+µzzW
′
z +

σ2
z

2
z2W ′′

zz + µττW
′
τ +

σ2
τ

2
τ 2W ′′

ττ + σzστρzτW
′′
zτ

}
. (7)

In the following Lemma 1 we characterize formally the endogenous productivity drift.

Lemma 1. Given distortion τ , productivity z, and operating profits m(w, r), the value function that

solves the establishment dynamic problem is given by W (z, τ) = A(w, r)τ θzθ where

A(w, r) =
m(w, r)

λ+R + µz −
[
θ(µτ + µz) + θ2σzστρ+ θ(θ−1)

2
(σ2

z + σ2
τ )
] ,
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and the productivity drift

µz =

[
θA(w, r)s̄

cµ

] 1
θ−1

.

Proof See Appendix A.1.

The implication of Lemma 1 is that the growth rate of productivity of individual establishments is

constant and common across establishments, that is, it does not depend on the intrinsic character-

istics of the establishment such as productivity z or distortion τ , as a result Gibrat’s law holds. We

recognize that there is some debate as to whether Gibrat’s law holds empirically in developed or

less developed countries, however, we note that this implication of the model is more neutral with

regards to amplification, that is it implies a more muted negative effect of distortions on output,

making our quantitative results conservative in this context. Atkeson and Burstein (2010) develop

a model of firm-level innovation with the same property, whereas in Bhattacharya et al. (2013) and

Hsieh and Klenow (2014) it holds for undistorted economies but not for distorted economies. While

Lemma 1 implies that the endogenous productivity drift is constant across establishments, the

drift can differ across economies with different policy distortions when distortions affect equilibrium

wages, and this is a key element in our quantitative analysis.

Employment, which is proportional to size n ∝ s = (zτ)θ, also follows Gibrat’s law, and the resulting

Brownian motion of size implies the following drift:

µs = θ (µz + µτ + θσzστρ) + θ(θ − 1)(σ2
z + σ2

τ )/2. (8)

In this environment, policy distortions affect productivity growth and employment growth differ-

ently. Employment is impacted by distortions directly through the dispersion of distortions στ and

its correlation with productivity ρ, and indirectly through changes in productivity growth µz(w, r).

Not only size is not the same as productivity in distorted economies in this framework, but also

growth in size is not the same as growth in productivity.
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3.2 Entering establishments

Potential entering establishments face an entry cost ce in units of output and make their entry

decision knowing the entry distortion τe. For tractability, we assume that entrants start with the

same level of productivity, denoted by ze. The initial level of productivity is such that the value of

entering establishments satisfies the zero profit condition:

We = A(w, r)(τeze)
θ − ce = A(w, r)se − ce = 0. (9)

Note that such a value of productivity ze exists and is unique which follows from the fact that

the value of entry We inherits the properties of the value of incumbent establishments which is

increasing in productivity ze. In addition, in the special case where the model is deterministic, the

value of entry is the same as in Restuccia and Rogerson (2008), which is the discounted value of

establishments’ profit.

For simplicity, we assume that the mass of establishments is exogenous and normalized to one. We

have extended the model to allow for an endogenous mass of establishments in Appendix B and

show that the qualitative and quantitative implications are robust to this extension, in particular,

an endogenous mass of establishments further amplifies the impact of policy distortions on aggregate

TFP.

3.3 Stationary distribution of establishments

Given the optimal decisions of incumbents and entering establishments, we are now ready to char-

acterize the stationary distribution g(z, τ) over productivity z and distortion τ . The first step to

characterize this distribution is to rewrite the Brownian motions of productivity z and distortion τ

as a function of size s. In order to characterize the stationary distribution over size, it is useful to

rewrite the model in logarithms. Let x denote the logarithm of relative size, that is x = log(s/se),

where se = (τeze)
θ is the size in which establishments enter. Now we can rewrite the Geometric

13



Brownian motion of x as

dx = µxdt+ σxdwx,

where

µx = θ(µz + µτ ) +
θ(θ − 1)

2
(σ2

z + σ2
τ )−

θ2

2
(σ2

z + σ2
z),

and

σ2
x = θ2

(
σ2
z + σ2

τ + 2σzστρ
)
. (10)

We use the Kolmogorov-Fokker-Planck (KFP) equation to characterize the stationary distribution

of x:

∂f(x, t)

∂t
= −µx

∂f(x, t)

∂x
+
σ2
x

2

∂2f(x, t)

∂x2
− λf(x, t) + b(0, t), (11)

where λ is the exogenous exit rate of establishments, b(0, t) is the measure of establishments that

enter at time t and have size 0, after the normalization. The solution of this problem is discussed

in Gabaix (2009). We are interested in solving for the steady state where f(x, t) = f(x) and

b(0, t) = b(0). Therefore, we can rewrite the KFP equation (11) as:

f ′(x) = −µxf ′(x) +
σ2
x

2
f ′′(x)− λf(x) + bδ(x− 0) = 0, (12)

and we assume four boundary conditions:

lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = 0, (13)

lim
x→−∞

f ′(x) = 0, lim
x→+∞

f ′(x) = 0, (14)

and that f(·) is a p.d.f, i.e. f(x) ≥ 0 and
∫ +∞
−∞ f(x)dx = 1. The first two boundary conditions (13)

guarantee that the stationary distribution is bounded, whereas the next two boundary conditions

(14) imply that b is equal to λ, that is, the stationary equilibrium entry rate is equal to the exogenous
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exit rate.3 We can now characterize the stationary (log) size distribution, which is a double Pareto.

Formally, Lemma 2 characterizes the stationary distribution.

Lemma 2. Given wages w, rental rate of capital r, and a policy (τe, µτ , στ , ρ) the stationary size

distribution is a double Pareto:

g(s) =


C

(
s

se

)−(ξ−+1)

for s < se.

C

(
s

se

)−(ξ++1)

for s ≥ se.

(15)

where the tail index ξ+ is the positive root and the tail index ξ− is the negative root that solves the

characteristic equation

σ2
x

2
ξ2 +

(
µs −

σ2
x

2

)
ξ − λ = 0 (16)

and C = −ξ−ξ+
se(ξ+−ξ−)

. Moreover, average establishments size s̄ is given by:

s̄ =

(
λ

λ− µs

)
se.

Proof See Appendix A.2.

We leave the poof of Lemma 2 to the Appendix. Lemma 2 characterizes the endogenous distri-

bution as a function of establishments’ size drift µs and entry size se, which in turn are affected

by distortions. Using the same methodology as in Lemma 2, we can solve for the distributions of

productivity and distortions (the equilibrium values of ξz and ξτ ). The boundary conditions on

3Integrating (12) we obtain:∫ +∞

∞

f ′(x)dx =

(
−µxf(x) +

σ2
x

2
f ′(x)

)∣∣∣∣+∞
−∞
− λ

∫ +∞

−∞
f(x)dx+

∫ +∞

−∞
bδ(x− 0)dx = 0,

and applying the boundary conditions and using the Dirac delta function,

∫ +∞

−∞
δ(x− 0)dx = 1, results in b = λ.
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these distributions prevent establishments with negative values of productivity z and distortions τ .

3.4 Household’s problem

The household problem essentially help us pin down the stationary real interest rate R. As such,

the process for capital accumulation in this model follows the standard neoclassical growth model.

The stand-in household seeks to maximize lifetime utility subject to the law of motion of wealth

given by:

(RK + w + T + Π− bce − c) dt,

where w is the wage rate, R is the interest rate which in equilibrium is the rental price of capital

minus capital depreciation (R = r− δk), T is the lump-sum tax levied by the government, Π is the

total profit from the operation of all establishments, bce is the total entry cost of establishments

and c is consumption.

We assume that households have log utility, u(c) = log(c). The solution of this problem is standard

and implies that R = %. In the stationary equilibrium, aggregate consumption C and physical

capital K are constants.

3.5 Stationary equilibrium

Definition Given a policy {µτ , στ , ρ, τe}, a stationary equilibrium is an invariant size distribution

g(s), value and policy functions of incumbent establishments W (s), k(s), n(s), establishment pro-

ductivity growth µz, value of entrants We, entrants’ productivity ze, entry rate b, prices (r, w),

transfer T , profits Π, capital K, and consumption C, such that:

i) Consumer optimization implies that R = r − δk = % and aggregates C and K.

ii) Given prices, the incumbents’ policy functions {k(s), n(s)} solve the incumbents’ static prob-

lem (2).
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iii) Given prices, the incumbents’ value function W (s) solves the incumbents’ dynamic problem

(6), µz is optimal from this problem.

iv) Given prices, the value of entrants satisfy the zero profit condition in (9) and entry productivity

ze is determined by this condition.

v) The stationary distribution g(s) and entry rate of establishments b solve the Kolmogorov-

Fokker-Planck equation (11).

vi) Markets for capital and labor clear (market clearing in the goods market is satisfied by Walras’

law):

a) capital: K =

∫ +∞

0

k(s)g(s)ds,

b) labor: 1 =

∫ +∞

0

n(s)g(s)ds.

vii) Transfers T guarantee that the government’s budget constraint is satisfied.

4 Aggregate Output and Productivity

Aggregate output Y is obtained by integrating over the distribution of establishment’s output.

From the establishment production function in equation (1), we substitute the demand for labor

and capital in equations (3) and (4), and use the labor market clearing condition to substitute for

the wage to obtain:

y(z, τ) =
(α
r

) α
1−α
(

1

s̄

) γ
1−α

τ θ(α+γ)zθ. (17)

Given that y ∝ τ θ(α+γ)zθ is a Brownian motion, the output drift is equal to

µy = µτθ(α+γ)zθ = θµz + θ(θ − 1)σ2
z/2 + (α + γ)

{
θµτ + θ2ρσzστ +

[
θ2(α + γ)− θ

]
σ2
τ/2
}
.

After integrating, using the same methodology as in Lemma 2, and rearranging terms we write
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aggregate output Y and total factor productivity Y/Kα as:4

Y =
(α
r

) α
1−α
(
λ− µs
λ− µy

)
s̄

1−α−γ
1−α

(
1

τ
θ(1−α−γ)
e

)
,

TFP =

(
λ− µs
λ− µy

)
s̄1−α−γ

(
1

τ
θ(1−α−γ)
e

)
.

Recalling that in undistorted economies the productivity, size and output drifts are all the same,

these equations highlight the relevance of distortions in driving a wedge between the output and size

drifts in distorted economies which lowers aggregate TFP. In particular, note that in this framework

aggregate output and productivity may be lower with policy distortions not only through their effects

on average establishment size s̄, but also by the wedge between size and output drifts. These drifts

determine average size and output relative to entry and their underlined distributions.

Model solution. We can easily solve for the stationary equilibrium. First, the stationary rental

rate of capital r is pin down by % and δk from the household problem in steady state. Second, we

solve a non-linear system of five equations in five unknowns {ze, µz, µs, s̄, A} as follows:

(1) The free entry condition:

A(τeze)
θ = ce. (18)

(2) The productivity growth rate µz:

µz =

[
θAs̄

cµ

] 1

θ − 1
. (19)

4Aggregate capital is given by integrating equation (4) over size,

K =
(α
r

) 1
1−α

s̄
1−α−γ
1−α =

(α
r

) 1
1−α

[(
λ

λ− µs

)(
τθe z

θ
e

)] 1−α−γ
1−α

.
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(3) The size growth rate,

µs = θµz + θ(θ − 1)σ2
z/2 + θµτ + θ(θ − 1)σ2

τ/2 + θ2ρσzστ . (20)

(4) The relative incumbent to entry size:

s̄

(τeze)θ
=

(
λ

λ− µs

)
, (21)

which given the labor market clearing condition implies the wage rate w = γ
(
α
r

) α
1−α s̄

1−α−γ
1−α .

(5) The establishment’s value to size ratio A is:

A =
(1− α− γ)

(λ+R + µz − µs)

(α
r

) α
(1−α)

(
1

s̄

) γ
1−α

. (22)

Note that this system has a closed-form solution. From the free entry condition in equation (18),

we substitute A in equation (19) and use the relative incumbent to entry size condition in equation

(21) to substitute for s̄/(τeze)
θ and obtain the equilibrium condition between productivity and size

growth rates:

µz =

[
θce
cµ

(
λ

λ− µs

)] 1

θ − 1
. (23)

Using µs from equation (20), we obtain the solution for the productivity growth rate:

θµθz − µθ−1
z

[
λ− θ(θ − 1)σ2

z/2− θµτ − θ(θ − 1)σ2
τ/2− θ2ρσzστ

]
+ λθ

ce
cµ

= 0. (24)
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Given the solution for µz we can solve sequentially for all the other equilibrium variables as follows:

µs = θµz + θ(θ − 1)σ2
z/2 + θµτ + θ(θ − 1)σ2

τ/2 + θ2ρσzστ (25)

s̄
1−α−γ
1−α =

(
λce
m̄(r)

)[
λ+R− µs + µz

λ− µs

]
, (26)

se =
(

1− µs
λ

)
s̄, (27)

ze = s1/θ
e /τe. (28)

We emphasize that the equilibrium values of µs and se can be used to solve for the size distribution

in the economy using Lemma 2, in particular, the tail index ξ+ is the positive root solution from

the characteristic equation (16).

Restricting the (relative) size distribution. Our objective is to characterize the impact of

distortions on the productivity distribution and hence aggregate TFP. To illustrate the effects, we

exploit our analytical characterization under some simplifying assumptions. Nevertheless, in the

next section, we quantify the impact of distortions under more general conditions. Following Axtell

(2001) and Gabaix (2009), we characterize analytically the impact of distortions on the productivity

drift by focusing on economies satisfying Zipf’s law (for a more general discussion of power laws in

economics, see Gabaix, 2016). Recall that the distribution of relative sizes (equation 15), satisfies

the characteristic equation (16). Using equations (8) and (10), we rewrite the characteristic equation

(16) as:

λ = θξ
{
µz + µτ + (ξθ − 1)(σ2

z + σ2
τ )/2 + θξρσzστ

}
. (29)

Given µz in equation (24), we use equation (29) to substitute for λ, and taking the limit ξ+ → 1

(Zipf’s law) we have θ
ce
cµ
→ 0. In this context, Zipf’s law implies λ → 0 (see also Gabaix, 2016)

20



and the associated productivity drift is given by:

µz = −[µτ + (θ − 1)σ2
τ/2]− [θρστσz + (θ − 1)σ2

z/2].

We use this expression to derive the change in the productivity drift µz from changes in distortions

(στ , ρ):

dµz
dστ

= −[(θ − 1)στ + θρσz]. (30)

Given that θ > 1, the main insight from this expression is that productivity growth is lower with

higher distortions (higher στ ). We also note that with negative correlation (ρ < 1), dispersion in

τ and z have opposite effects on productivity growth. An implication of this result is that ρ = −1

provides the lowest impact of distortions on productivity growth. This is relevant in the context

of the misallocation literature since assuming that τ = z−ν (e.g., Hsieh and Klenow, 2014; Bento

and Restuccia, 2017; Buera and Fattal Jaef, 2018), implies in our model that ρ = −1 and that the

dispersion in distortions is affected by changes in ν (σ2
τ = ν2σ2

z).

What is the quantitative impact of stochastic growth on aggregate productivity in this framework?

We answer this question in the next section using a calibrated benchmark economy that does not

rely on the stylized characterization under power laws.

5 Quantitative analysis

We assess the quantitative impact of policy distortions on aggregate output and productivity. An

important feature of our results is to highlight the much larger amplification effect of policy dis-

tortions on aggregate productivity when the distribution of relative sizes is approximately constant

across economies as suggested by the evidence discussed below.
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Calibration. We calibrate a benchmark economy with distortions to U.S. data and then study the

impact of alternative hypothetical policy distortions in the same spirit of Restuccia and Rogerson

(2008). We start by selecting a set of parameters that are standard in the literature. These

parameters have either well-known targets, which we match, or the values have been well discussed

in the literature. Following the literature, we assume decreasing returns in the establishment-level

production function and set α+γ = 0.85 (Restuccia and Rogerson, 2008). Then we split it between

α and γ by assigning 1/3 to capital and 2/3 to labor, implying α = 0.283 and γ = 0.567. We set

the discount rate % to match a real interest rate of 4 percent and the depreciation rate of capital

δ to 7 percent to match a capital to output ratio of 2.5. We normalize τe = 1 (τy,e = 0) and

keep it constant across all economies. For the benchmark economy we set ρ = −0.09 based on the

near zero elasticity between distortions and productivity in U.S. manufacturing (Hsieh and Klenow,

2009, 2014).

We then solve the stationary equilibrium and select the following 6 parameters to match 6 moments

from the data. We select cµ to match an establishment productivity growth rate of 4% (µz = 0.04);

θ to match an establishment output growth rate of 5% (µy = 0.05); σ2
z and λ are selected to match

an exit rate of 10% in line with estimates in the literature (Davis et al., 1998) and the positive root

of the size distribution of 1.056 from Axtell (2001) (ξ+ = 1.056); σ2
τ to match the standard deviation

of the log of TFPR (see Appendix A.3) of 0.49 (Hsieh and Klenow, 2009); µτ to normalize mean

distortions to 1 (mean τ θ = 1); and ce to match an average establishment size s̄ = 21.85 (Hsieh and

Klenow, 2009). Parameter values and moments are summarized in Table 1.

Experiments. We study the impact of policy distortions on establishment-level productivity,

aggregate output and TFP, and other relevant variables by comparing statistics in more distorted

economies than the benchmark economy. We highlight the impact of policy distortions in our

model with effects on establishment-level productivity contrasting the results in two alternative

cases where the distribution of (relative) sizes ξ+ is constant or not across distorted economies. To

make the endogenous relative size distribution ξ+ constant to the level calibrated in the benchmark
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Table 1: Calibration of Benchmark Economy

Parameter Value Target Value

cµ 95.06 establishment productivity growth rate 0.04
θ 1.80 establishment output growth rate 0.05
σ2
z 0.0390 Exit rate 0.10
λ 0.10 Positive root size distribution (ξ+) 1.056
σ2
τ 0.1492 SD log TFPR 0.49
µτ -0.0597 Normalized, mean τ θ 1.00
ce 0.8937 Average size (s̄) 21.85

economy, we adjust the exit rate of establishments λ using the detailed characteristic equation (29).

We find that a lower λ is required in more distorted economies.

We consider constant relative size distributions as motivated by two pieces of evidence. First,

Hopenhayn (2014b) emphasizes that when conditioning on average size, there are no substantial

differences in the size distributions of China and India relative to the United States. Second,

there is some evidence that the death rate of firms is lower in developing countries as documented

in McKenzie and Paffhausen (2019). Our two extreme scenarios bracket the possible outcomes

in more distorted economies, with the evidence indicating that somewhat constant relative size

distributions is the more likely case.

We study the impact of changes in policy distortions by considering economies that are relatively

more distorted than the benchmark economy via changes in the dispersion of distortions στ . Specif-

ically, we increase σ2
τ while holding constant mean distortions. Note that mean τ θ = 1 implies that

θµτ + θ(θ− 1)σ2
τ/2 = 0. We consider variations in στ within the range of estimates in the empirical

literature (Hsieh and Klenow, 2009; Buera et al., 2013; Bento and Restuccia, 2017; Cirera et al.,

2020; Restuccia and Rogerson, 2017). While we have witnessed a tremendous increase in firm-level

data availability around the world, access to firm-level data and comparisons of samples across

countries remain a challenge. For this reason, we find it useful to consider hypothetical economies

to study the dynamic effects of misallocation. These experiments are not meant to represent any in-
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dividual country but instead provide an assessment of the role of distortions on establishment-level

productivity and aggregate output in our model relative to the existing literature.

We document our quantitative results in Figure 1 by reporting equilibrium values of the productivity

drift µz, average size s̄, entry size se, aggregate TFP, power laws relating to the distribution of

distortions, TFP, and size; among other relevant statistics.

Figure 1: Effects of Changes in Policy Distortions σ2
τ
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Notes: The blue-solid line represents the benchmark economy with changes in σ2
τ and constant ξs (λ varies). The

red-dashed line represents the same economies without restricting ξs (λ constant). In all economies, µτ is adjusted

to normalize mean distortions to one, i.e., mean τθ = 1.

Figure 1, blue-solid line, reports the results of increases in distortions in the benchmark economy

when ξ+ is constant. Establishment productivity growth declines substantially as does average es-

tablishment size. The establishment size inequality (measured by ξs = ξ+ in the figure) bounds the

inequality in the establishment productivity distribution. The same (relative) establishment size

distribution is compatible with a more unequal establishment productivity distribution if the estab-

lishment expects a higher lifespan (lower λ) that increases the disincentive to invest in productivity

generated by the distortion. The effect of policy distortions on aggregate productivity is substantial
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when the relative size distribution is constant across economies, a reduction of 57 percent. We also

note that the value for the left tail index of the relative size distribution in the benchmark economy

is ξ− = −0.3341 and the number of “small firms” (the density of s < se) increases in more distorted

economies.

Figure 1, red-dashed line, reports the results of increases in distortions when λ is constant. An

increase in policy distortions increases µz and generates a more unequal establishment distribution

(lower ξs than in the benchmark economy). These effects arise from the fact that with correlated

distortions, ρ < 0, an increase in policy distortions decreases stochastic growth, cov(zθ, τ θ) =

ρθ2σzστ , and reduce (all other things equal) size growth µs = µzθ +cov(zθ, τ θ). Establishments react

by investing in productivity.5 And when ρ → 0, the endogenous investment effect on productivity

dominates the stochastic effect (note that when ρ→ −1 the opposite holds). Therefore, an increase

in policy distortions increases µs and generates a more unequal establishment size distribution

(lower se/s̄). The effect of policy distortions on aggregate TFP is a reduction of 21 percent when

the relative size distribution varies compared with 57 percent when the relative size distribution is

constant (a 2.8-fold larger impact with constant relative size distribution).

Motivated by our analytical results, we now contrast our experiments with constant relative size

distribution, the solid-blue line reproduced in Figure 2, with economies featuring ρ = −1 (red-

dashed line) as in much of the existing literature. In this case, we recalibrate cµ to match the

establishment productivity growth rate of the benchmark economy. Note that in economies where

ρ → −1 the impact of misallocation on stochastic growth reaches its maximum (negative) value,

whereby we expect a negative impact of policy distortions on µs.

Consistent with the literature, an increase in policy distortions decreases productivity growth, aver-

age size, entry productivity, and aggregate TFP. But the decline in aggregate TFP is substantially

larger in our baseline case, of more than 57 percent, compared to the case when ρ = −1 where

5Note that θµθz − µθ−1z

[
λ− θ(θ − 1)σ2

z/2− cov(zθ, τθ)
]

+ λθ
ce
cµ

= 0. Given that µz > 0 and dµz
dcµz

< 0, we have

that dµz
dcov(zθ,τθ)

> 0.
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Figure 2: The Role of Correlation between Distortions and Productivity
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Notes: The blue-solid line represents the benchmark economy with changes in σ2
τ and constant ξs as in Figure 1.

The red-dashed line represents alternative economies with ρ = −1 and without restricting ξs. In all economies, µτ is

adjusted to normalize mean distortions to one, i.e., mean τθ = 1.

the decline in TFP is around 9 percent (a 6.9-fold larger impact). We emphasize that these results

arise with only modest increases in the dispersion in revenue productivity, well within the ranges

reported in the literature.

6 Conclusions

We develop a tractable dynamic model of heterogeneous producers to study the effect of distortions

on the distribution of establishment-level productivity across economies. The model tractability

allows us to obtain closed-form solutions that are useful in identifying the response of distortions on

aggregate output. We show that policy distortions have substantial negative effects on aggregate

output and TFP in this economy compared to the existing literature.

It would be interesting to explore specific policies and institutions—such as size-dependent policies,
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firing taxes, financial frictions—in the context of our framework with dynamic effects of distortions

(see for example, Da-Rocha et al., 2019; Aghion et al., 2021). These explorations of specific policies

in our framework may help reconcile the empirically large effects found in the literature. As a result,

further progress aimed at broadening the empirical mapping of the model to the data may provide

useful insights. Our analytical solution of the productivity distribution as a function of distortions

is a critical first step in this mapping. But the mapping requires reliable and comparable panel

data of producers across countries. While these data are increasingly available for some countries,

comparability across countries remains an important limitation. We leave these interesting and

important explorations for future work.
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A Appendix: Proofs

This appendix presents the proofs of Lemma 1 and Lemma 2, and the characterization of the

distribution of TFPR.

A.1 Proof Lemma 1

From the first order condition for the productivity drift in equation (7), we can solve for the

productivity drift µz as a function of the determinants of costs and benefits such as distortions τ ,

cost scale cµ, and the marginal present value profits W ′
z. In particular, equating the marginal cost

and benefit from productivity growth implies,

cµ
s̄

(zτ)θµθ−1
z = zW ′

z.

By guessing and verifying, we find that the optimal Hamilton-Jacobi-Bellman equation is given by

W (z, τ) = A(w, r)zθτ θ, where the constant A(w, r) is the solution of the polynomial:

[
(λ+R)

(θ − 1)
− θµτ

(θ − 1)
− θ2σzστρ

(θ − 1)
− θ(σ2

z + σ2
τ )

2

]
A(w, r)

−
[
θs̄

cµ

] 1

θ − 1
A(w, r)

θ

θ − 1 =
m(w, r)

(θ − 1)
. (A.1)

After this simplification, we rewrite equation (A.1) finding the following expression for A(w, r):

A(w, r) =
m(w, r)

λ+R− θµτ − θ2σzστρ−
θ(θ − 1)

2
(σ2

z + σ2
τ )− (θ − 1)µz

, (A.2)

where µz depends on A(w, r). Given the solution to this polynomial, the optimal productivity drift

µz is independent of establishment characteristics τ and z:

µz =

[
θA(w, r)s̄

cµ

] 1

θ − 1
.
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A.2 Proof Lemma 2

After some algebraic manipulation from equation (12), we find that the stationary distribution must

satisfy the following differential equation:

f ′′(x)− 2µx
σ2
x

f ′(x)− 2λ

σ2
x

f(x) = −2b

σ2
x

δ(x− 0),

subject to the boundary conditions and f(·) being a pdf. Therefore, the stationary pdf is the

solution of the boundary-value problem that consists of solving

f ′′(x)− γ1f
′(x)− γ2f(x) = 0 if x 6= 0,

f ′′(x)− γ1f
′(x)− γ2f(x) = −γ3δ(x− 0) if x = 0,

where the constants γ1, γ2, and γ3 are given by

γ1 =
2µx
σ2
x

< 0, γ2 =
2λ

σ2
x

> 0, γ3 =
2b̂

σ2
x

> 0.

We solve the boundary-value problem using Laplace transforms. Laplace transforms are given by

L [f ′(x)] = sL [f(x)]− f(0),

L [f ′′(x)] = s2L [f(x)]− sf(0)− f ′(0).

By applying Laplace transforms in equation (12), we obtain:

(s2 − γ1s− γ2)L [f(x)]− (s− γ1)f(0)− f ′(0) = −γ3L [δ(x− 0)].

Using the boundary condition f(0) ≥ 0 and L [δ(x− 0)] = 1 we find:

(s2 − γ1s− γ2)Y (s) = f ′(0) + (s− γ1)f(0)− γ3,
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where

Y (s) =
f ′(0)− γ3 + (s− γ1)f(0)

(s2 − γ1s− γ2)
.

We obtain the solution by solving the Laplace inverses when x 6= 0 given by:

L −1

[
1

(s− r1)(s− r2)

]
=

1

(r1 − r2)
(er1x − er2x) ,

L −1

[
(s− γ1)

(s− r1)(s− r2)

]
=

1

(r1 − r2)
[(r1 − γ1)er1x − (r2 − γ1)er2x] ,

where the two roots (one positive and one negative) are given by r =
γ1 ±

√
γ2

1 + 4γ2

2
. We can

rewrite the final solution for this case as:

f(x) = f ′(0)
(r1−r2)

(er1x − er2x) + f(0)
(r1−r2)

[(r1 − γ1)er1x − (r2 − γ1)er2x] if x 6= 0,

f(x) = f ′(0)−γ3
(r1−r2)

(er1x − er2x) + f(0)
(r1−r2)

[(r1 − γ1)er1x − (r2 − γ1)er2x] if x = 0.

When x 6= 0 (that is ∀x ∈ (−∞, 0) ∪ (0,∞)), we have

f(x) =


C1e

r1x + C2e
r2x, if x < 0,

C1e
r1x + C2e

r2x, if x > 0,

where

C1 =
1

(r1 − r2)
[f ′(0) + f(0)(r1 − γ1)] ,

C2 =
−1

(r1 − r2)
[f ′(0) + f(0)(r2 − γ1)] ,

and r1 > 0 and r2 < 0. When x > 0 in order to f(·) be a pdf, it is necessary that C1 = 0 and

f ′(0) = −f(0)(r1 − γ1)⇒ C2 =
−1

(r1 − r2)
[f(0)(γ1 − r1) + f(0)(r2 − γ1)] = f(0).
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Symmetrically when x < 0 we need C2 = 0. Therefore,

f ′(0) = −f(0)(r2 − γ1)⇒ C1 =
1

(r1 − r2)
[f(0)(γ1 − r2) + f(0)(r1 − γ1)] = f(0),

and

f(x) =


f(0)er1x if x < 0,

f(0)er2x if x ≥ 0,

where f(0) =
(

r1r2
r2−r1

)
. Finally we need to prove that: 1) for x > 0, f ′(0) = −f(0)(r1 − γ1)

(i.e. C1 = 0), and 2) for x < 0, f ′(0) = −f(0)(r2 − γ1) (i.e. C2 = 0); Given that when x > 0

f ′(0) = r2f(0) (and when x < 0 f ′(0) = r1f(0)) this is equivalent to show that

(r2 + r1)f(0) =

(
γ1 −

√
γ2

1 + 4γ2

2
+
γ1 +

√
γ2

1 + 4γ2

2

)
f(0) = f(0)γ1.

When x = 0 we have

f(x) = C1e
r1x + C2e

r2x,

where

C1 =
1

(r1 − r2)
[f ′(0)− γ3 + f(0)(r1 − γ1)] ,

C2 =
−1

(r1 − r2)
[f ′(0)− γ3 + f(0)(r2 − γ1)] .

Therefore

f(0) = C1 + C2 =
1

(r1 − r2)
[r1f(0)− r2f(0)] = f(0).
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Using s = see
x, we can recover the size distribution g(s). That is

g(s) =
1

s
f(ln(s/se)) =


f(0)

sr1−1

sr1e
if s < se,

f(0)
sr2−1

sr2e
if s ≥ se.

Note that this solution is equivalent to the guess and verify solution obtained by solving the char-

acteristic equation
σ2
x

2
ξ2 +

(
µs −

σ2
x

2

)
ξ − λ = 0 with r1 = −ξ− and r2 = −ξ+.

Finally, average establishment size s̄ is given by

s̄ = se
−ξ−ξ+

(ξ+ − 1)(1− ξ−)
= se

(
λ

λ− µs

)
.�

A.3 TFPR

In our model, an establishment’s TFPR is given by:

TFPR =
y

kα/(α+γ)nγ/(α+γ)
∝ 1

τ θ(1−α−γ)
=

1

(1− τy)
,

which is equated across all establishments in the undistorted economy. In this context, misallocation

arises from dispersion in TFPR across establishments. In our environment, the distribution of

distortions gτ (τ) is a Double Pareto. Therefore, log TFPR follows a Double Exponential with roots

ξTFPR,− and ξTFPR,+ that solve the characteristic equation:

σ2
TFPR

2
ξ2 +

(
µTFPR −

σ2
TFPR

2

)
ξ − λ = 0,

where µTFPR = −θ(1−α−γ)µτ −θ(1−α−γ)(−θ(1−α−γ)−1)σ
2
τ

2
and σ2

TFPR = θ2(1−α−γ)2σ2
τ .

Standard deviation of log revenue total factor productivity (TFPR):

SD log TFPR =

√
1

ξ2
TFPR,−

+
1

ξ2
TFPR,+

.
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B Appendix: Extension

We extend the model to allow for the mass of establishments to be determined in equilibrium and

assess how our main results change in this case. We first highlight changes in the solution of the

model with endogenous mass of establishments, and then we show quantitatively how the results

change in this extended model.

B.1 Theory

We start by introducing the mass of entrants M in our model which is given by:

M =

∫ +∞

se

g(s)ds

The mass depends on the distribution of firms g(·) and entrants’ minimum size se that are endoge-

nous. We assume, as in Bento and Restuccia (2017), that firms draw their initial productivity from

the distribution g(·) and all firms with productivity above ze enter. These firms enter with the

minimum productivity requirement ze.

B.1.1 Stationary Distribution

To find the stationary distribution, we proceed by following a similar methodology as in the main

text. Given the optimal decisions of incumbents and entering establishments, we characterize the

stationary distribution g(z, τ) over productivity z and distortion τ .

Let M(x, t) denote the number density function of establishments, i.e. the mass of size x establish-

ments at time t. At time t, the total number of establishments is equal to M(t) =

∫ +∞

−∞
M(x, t)dx.

The establishments relative size process can be modeled by a modified Kolmogorov-Fokker-Planck

equation of the form:

∂M(x, t)

∂t
= −µx

∂M(x, t)

∂x
+
σ2
x

2

∂2M(x, t)

∂x2
− λM(x, t) +B(0, t), (B.3)

where λ is the exit rate of establishments and the function B(0, t) is new establishments that enter
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at t and have (normalized) size 0.

The solution of this problem is discussed in Gabaix (2009). We are interested in a stationary

distribution for the number density function, i.e. solutions that are separable in time t and are

of the form M(x, t) = M(t)f(x) and B(0, t) = M(t)bδ(x − 0), where b is the establishment entry

rate at point x = 0 and δ(·) is a Dirac delta function. Therefore, we can rewrite the modified

Kolmogorov-Fokker-Planck equation equation (B.3) as:

M ′(t)

M(t)
f(x) = ηf(x) = −µxf ′(x) +

σ2
x

2
f ′′(x)− λf(x) + bδ(x− 0), (B.4)

where M ′(t)
M(t)

is the mass growth rate denoted by η and M(t) = eηtM(0) in the balanced growth path.

We normalize M(0) = 1. We assume four boundary conditions:

lim
x→+∞

f(x) = 0, lim
x→+∞

f ′(x) = 0, (B.5)

lim
x→−∞

f(x) = 0, lim
x→−∞

f ′(x) = 0, (B.6)

and

f(x) ≥ 0,

∫ +∞

−∞
f(x)dx = 1. (B.7)

The first four boundary conditions (B.5) and (B.6) guarantee that the stationary distribution is

bounded, and equations (B.7) guarantee that f is a pdf. The boundary constraints restricts the

growth rate η, by integrating (B.4) we find:

η

∫ +∞

∞

f(x)dx =

(
−µxf(x) +

σ2
x

2
f ′(x)

)∣∣∣∣+∞
−∞
− λ

∫ +∞

−∞
f(x)dx+

∫ +∞

−∞
bδ(x− 0)dx

and applying the boundary conditions and using the Dirac delta function, we find that the mass of

establishments growth rate η is equal to:

η = b− λ.

The expression for η has a very intuitive interpretation, it states that the mass growth rate is equal
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to the net entry rate (b− λ). After some algebraic manipulation from equation (B.4), we find that

the stationary distribution must satisfy the following differential equation:

f ′′(x)− 2µx
σ2
x

f ′(x)− 2(λ+ η)

σ2
x

f(x) = −2b

σ2
x

δ(x− 0), (B.8)

subject to the boundary conditions and to f(·) be a pdf. We can now characterize the stationary

(log) size distribution, which is a double Pareto, with endogenous tail index, ξ, and endogenous net

entry rate, b− λ at x = 0. Formally, Lemma 2 characterizes the stationary distribution.

Lemma 3. Given wages w and rental rate of capital r, the stationary size distribution associated

with the output tax rate Geometric Brownian Motion is an double Pareto:

g(s) =


C
(
s
se

)−(ξ−+1)

for s < se.

C
(
s
se

)−(ξ++1)

for s ≥ se.

where the tail indexes ξ+ is the positive root and ξ− is the negative root that solves the characteristic

equation
σ2
x

2
ξ2 +

(
µs −

σ2
x

2

)
ξ− (λ+η) = 0 and C = −ξ−ξ+

se(ξ+−ξ−)
. Moreover, the average size s is given

by:

s

se
=

η + λ

η + λ− µs
.

The poof of Lemma 3 is similar to the proof of Lemma 2 in the main text. The only difference

between the endogenous distribution with and without the mass is the parameter η that governs

the mass growth rate. Since we are looking for the stationary solution, we assume that η = 0, and

consequently, the mass of firms is stationary. An important implication of this assumption is that

the stationary distribution solution is the same when the mass is endogenous or exogenous. As a

result, the only new variable we need to pin down to find the stationary equilibrium is the mass of

firms M which adds a new equation to the stationary equilibrium defined below.
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B.1.2 Stationary equilibrium

Definition Given a policy {µτ , στ , ρ, τe}, a stationary equilibrium is an invariant size distribution

g(s), a mass of establishments M , value and policy functions of incumbent establishments {W (s),

k(s), n(s)}, establishment productivity growth µz, value of entrants We, entrants’ productivity ze,

entry rate b, prices {r, w}, transfer T , profits Π, capital K, and consumption C, such that:

i) Consumer optimization implies that R = r − δk = % and aggregates C and K.

ii) Given prices, the incumbents’ policy functions {k(s), n(s)} solve the incumbents’ static prob-

lem (2).

iii) Given prices, the incumbents’ value function W (s) solves the incumbents’ dynamic problem

(6), µz is optimal from this problem.

iv) Given prices, the value of entrants satisfy the zero profit condition in (9) and entry productivity

ze is determined by this condition.

v) The stationary distribution g(s) and entry rate of establishments b solve the Kolmogorov-

Fokker-Planck equation (B.3).

vi) The mass of establishments’ M is given by

M =

∫ +∞

se

g(s)ds

vii) Markets for capital and labor clear (market clearing in the goods market is satisfied by Walras’

law):

a) capital: K = M

∫ +∞

0

k(s)g(s)ds,

b) labor: 1 = M

∫ +∞

0

n(s)g(s)ds.

viii) Transfers T guarantee that the government’s budget constraint is satisfied.

The inclusion of an endogenous mass of establishments has led to two changes to the stationary

equilibrium. First, the mass enters the market clearing conditions for capital and labor. Second, a
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new equation characterizes the mass of establishments as a function of the stationary distribution

and the productivity entry point.

B.1.3 Aggregate

We can follow the same methodology as in the main text to find the model main aggregates in

closed form taking into consideration the mass of establishments. The key equation that changes

is the labor market clearing condition that we use to pin down wages. Aggregate output Y and

total factor productivity TFP explicitly depend on the mass of establishments M as shown in the

equations below:

Y =
(α
r

) α
1−α
(
λ− µs
λ− µy

)
(Ms̄)

1−α−γ
1−α

(
1

τ
θ(1−α−γ)
e

)
,

TFP =

(
λ− µs
λ− µy

)
(Ms̄)1−α−γ

(
1

τ
θ(1−α−γ)
e

)
.

B.2 Quantitative

We can now assess quantitatively how the model predictions change when we introduce the mass

of establishments endogenously. We depart from our calibrated economy, where the mass is exoge-

nous and normalized to one, and compute the impact on TFP in the model with and without an

endogenous mass of establishments. We perform this experiment using our benchmark economy

when ρ = −0.09 and cases with constant relative size distribution (constant ξs).

We find that the mass introduction amplifies the impact of policy distortions on TFP and the

impact is more significant when distortions are larger. In an economy where distortions are 50

percent larger than in the benchmark economy σ2
τ = 1.5, TFP drops by 57 percentage points in

an economy without an endogenous mass and 62 percentage points when the mass is endogenous.

Our results point out that the mass can amplify the impact of policy distortions, particularly when

distortions are more significant.
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Figure 3: The Role of the Mass on TFP

Notes: The blue-dashed line represents the benchmark economy with changes in σ2
τ and constant ξs. The blue-solid

line represents the same economies with an endogenous mass. In all economies, µτ is adjusted to normalize mean

distortions to one, i.e., mean τθ = 1.
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