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1 Introduction

Major urban rail transportation projects increase travel speeds in cities and thus facilitate

shorter commutes, labor market matching and consumer shopping and leisure opportuni-

ties. Land close to new transport nodes often increases in value as the demand to live close

to fast public transit increases local demand to live there. Real estate developers will seek

to build new housing units close to these new stations.

In recent decades, Asia’s major cities have made major investments in new subways

(Gonzalez-Navarro and Turner (2016)). Cities ranging from Beijing, to Shanghai to Singa-

pore have invested billions in subways. In this paper, we study how the real estate market

in Seoul has been affected by the construction of a major new subway. The line num-

ber 9 (hereafter LINE9) subway connects the Southern part of the city with the Gangnam

District. This is one of the richest parts of the city.

Our methodological approach builds on past hedonic studies that use panel estimation

strategies to recover estimates of the causal effects of new transit access (Kahn (2007),

Billings (2011), Zheng and Kahn (2013) and Gibbons and Machin (2005)). A distinguish-

ing feature of our study is to use machine learning to pare down the possible non-linearities

in the hedonic pricing function. Consider a hedonic regression that includes eleven ex-

planatory variables that each takes on at least two discrete values. For example, one of

such variables could be the apartment’s size or an indicator for whether the apartment unit

is located close to a new transit station. A researcher who seeks to flexibly estimate such

a hedonic pricing gradient would need to include more than 211 interaction terms. This

is clearly infeasible but if the researcher does not pursue this strategy then the underlying

pricing function may be misspecified.

Our solution to this challenge is to use the regression tree approach from machine

learning (ML) (e.g., Breiman et al. (1984) and Friedman et al. (2001)). Building on Athey
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and Imbens (2015), we apply ML methods in a difference-in-difference setting to estimate

conditional average treatment effects. This approach imposes only light computational

burdens. In our tree approach, we create dummy variables indicating whether the treatment

has occurred or not and whether the housing unit is in the treatment area (i.e close to the

new transit stations). The ML algorithm splits the sample on these attributes as well as on

the physical attributes of the housing unit. This approach allows us to test how housing

price appreciation differs for treated units versus control units while allowing these effects

to vary by housing unit and community attributes. Earlier ML research has focused on

predicting outcome variables using high-dimensional explanatory variables. A more recent

literature has sought to use ML methods to estimate causal effects. These studies include,

Zeileis et al. (2008), Beygelzimer and Langford (2009), Su et al. (2009), Foster et al.

(2010), Dudı́k et al. (2011), Imai et al. (2013), Athey and Imbens (2015), and Taddy et al.

(2016).

Based on our ML approach, we document that there is considerable variation in the

conditional average treatment effect (the CATE). Some types of apartments experience

greater price appreciation. For example, one ”winner” from the treatment is an apartment

in the upper 25% of the apartment size distribution featuring 3 rooms, 2 baths that is

less than five years old and is located within one kilometer of old transit in the Seocho

county. We contrast our ML estimates with the linear regression approach featuring a

triple interaction term between a dummy for whether the treatment has taken place, and

another dummy indicating whether the apartment is located in the treatment area. We then

interact this paif or dummies with indicators for the apartment’s physical attributes.

As a validation test of our estimates, we study whether developers of new apartments

are building units with the features that our ML estimates predict yield the highest marginal

revenue. We document a positive correlation between our estimates of the real estate price

appreciation gains from train network proximity and the specific type of new housing
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built by a developer. These findings support our claim that we have recovered key non-

linearities of the true underlying pricing gradient and how they change over time.

2 Background

2.1 The New Subway Construction and Financing

Seoul’s first subway line was built in 1974. Over the last four decades, the subway system

expanded to cover five lines. In a continuing effort to mitigate congestion and to reduce

commuting time, Seoul’s government has built three additional subway lines since 2000

(the line number 6, 7 and 8). This expansion of the subway lines has contributed to an

increase in the subway and rail utilization rates to 34.6% and 36.2% in 2002 and in 2010,

respectively. The last subway expansion plan is the introduction of the LINE9. LINE9

was first designed in 1997. The detailed blueprint was released in 2000, and the ground-

breaking construction ceremony took place in 2002. It began its service on July 24th in

2009. As of 2014, 39% of trips in Seoul use subways or railways. Baum-Snow and Kahn

(2000) study the effects of sixteen different U.S cities’ investments in new rail transit. The

largest ridership gains are achieved when the new train is fast and connects to a city center

where people want to go for work or consumption opportunities. Figure 1 and 2 display

the network of earlier lines and LINE9. Figure 3 provides a chronology of the construction

of this subway. A key assumption in a difference-in-difference approach is identifying the

treatment date. The LINE9 was announced in the year 2000 but it was only completed

years later. In section 5.1, we test and reject the hypothesis that the subway construction

plant had an ex-ante capitalization effect.

The total cost of this project is US$818 millions1. 46.7% percent of the total costs are

1The construction costs are based on an exchange rate of 1100won/ US$1.
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subsidized by the Seoul metropolitan government, and the METRO9, a private company,

covered the rest. The METRO9 will operate the number 9 for three decades without paying

any rental fees while the Seoul metropolitan government owns it. The Seoul metropolitan

government guarantees a minimum profit levels for the first fifteen years of the project.2 In

2005, the Korea Transport Institute predicted that 243,196 riders per a day in 2014 would

use LINE9. However, the actual ridership has been 384,423 riders a day. This prediction

stands in contrast to the U.S literature that argues that transit agencies routinely over-state

the ridership of a new subway before it is built (Kain (1990)). Such strategic predictions

increase the likelihood that the project is funded.

2.2 The Demand for Housing Close to Transit

Seoul’s residents rely on public transit. In 2014, cars accounted for 22.8% and buses

accounted for 27%, while subway and light rail take 39%. The share of trips by taxi is

6.8%.

Standard network logic suggests that the value of subway access increases in the set of

potential destinations one can reach in a short time. A fast train that connects to a desirable

city sub-center should lead to gentrification along its nodes, and transit improvements

(McMillen and McDonald (1998),Glaeser and Kahn (2001) and Baum-Snow et al. (2005)).

If such a train is fast enough then it could reduce the demand to live very close to the

destination because people can decentralize while still having access to the destination

area. Glaeser et al. (2008) documents that poor people live close to slow public transit,

while rich people are attracted to fast public transit in centralized cities such as Boston

and New York City.

LINE9 significantly reduces travel times within Seoul. To document this fact, we

2The Seoul metropolitan government promised this private company 90 percent of the expected profits
for the first five years, 80 percent for the next five years, and 70 percent for the last five years.
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calculate the travel time between each apartment unit to twenty major destinations before

and after it is built, based on the average train’s speed of 50km/hour and a walking speed

of 4km/hour. Table 1 presents the one way reduction in travel time (measured in hours) to

20 major destinations in Seoul.3 For example, across our sample, the average apartment

resident experienced a reduction in travel time to Gangnam by roughly 5 minutes each way.

Those living within a 1 kilometer radius of new transit enjoyed a 14.4 minute reduction in

one way travel time to Gangnam. This is a 35% reduction.

While the new train reduces commute times, we do not believe that its effects are large

enough to cause important general equilibrium shifts in the entire Seoul housing market.

Starting with the work of Sieg et al. (2004) there has been a growing appreciation that

local public goods improvements can have general equilibrium effects on a given city.

They studied how Clean Air Act regulations sharply reduced pollution in major sections

of Los Angeles and this caused a reshuffling of the population such that richer people

moved to previously poorer polluted areas of the city. A hedonic researcher who ignores

this migration effect would likely over-state the role of clean air improvements as the sole

cause of real estate price appreciation. In our setting, we believe that such GE effects are

a second order concern. As we discuss in the next section, the new train’s treatment area

is only a small portion of Seoul.

2.3 The Supply of Housing Close to the New Transit Stations

When the LINE9 was completed, there were 322 residential apartment complexes within

a kilometer of the new transit stations. Since the LINE9 opened the owners of these prop-

erties began enjoying a capitalization effect that we will estimate below. As we will doc-

ument in section 5.1, we do not find evidence of a capitalization effect caused by the

3Estimated traveling time is based on the assumption that travelers walk to the closest subway station
and take a subway. We assume that the walking speed is 4km/hour and the subway speed is 50km/hour.
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announcement of the LINE9 construction. Once the new subway opens, nearby land be-

comes more valuable in these “treated” areas. Thus, real estate developers have incentives

to upgrade existing structures and to build new structures. But, Seoul features stringent

construction regulation. It takes an average of 33.3 months to build a new apartment com-

plex (Jeon et al, 2010). Redeveloping existing housing entails overcoming many regula-

tory burdens. For example, each urban housing redevelopment project proposal in Seoul

undergoes a nine stage process that includes a strict safety investigation. For the typical

redevelopment project completed between the years 2000 and 2015, it took an average of

8.7 years to complete the reconstruction process. Seoul’s regulations also require devel-

opers to supply a certain proportion of small apartment types. A U.S literature has studied

how regulations limits housing supply (see Glaeser et al. (2005)). The same issues arise in

South Korea.

While developers face many restrictions in building, they will have a greater incentive

to do so if the marginal revenue from building an apartment is higher. The total revenue

a developer collects from producing apartments of certain type in a given location is the

price per unit multiplied by the units sold. Our ML estimates will provide an estimate of

the former. If each developer is a price taker, then facing the non-linear hedonic pricing

function (their revenue curve) they will have an incentive to supply new housing that of-

fers greater revenue. Below, we will use data on the new housing supply by developers

combined with our CATE estimates to study this.
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3 The Empirical Approach

3.1 The OLS Model

Following Kahn (2007), Billings (2011), Zheng and Kahn (2013) and Gibbons and Machin

(2005), we begin by estimating average treatment effects of the number 9 on apartment

prices using the difference-in-difference framework. For the apartment type i in district j

at time t, its price is expressed as follows:

Log(Priceijt) = β1Line9i + β2Line9i × AFTERt + β3Xijt + µj + λt + εijt, (1)

where Line9i is distance between the apartment type i and the closest LINE9 station and

AFTERt takes one if time period is after the number 9 opened, and 0 otherwise. Xijt

is a set of the apartment characteristics except proximity to the number 9, and µj and λt

are the district fixed effect and the quarter fixed effect, respectively. εijt is unobservable

disturbance.

To specify the treatment area we split the area with G groups, G = {1, ..., G}, based

on the distance between the LINE9 station and the apartment. For apartment i in district j

at time t, its price is expressed as follows:

Log(Priceijt) =
G∑
g=1

αgI{Groupi = g}+
G∑
g=1

βgI{Groupi = g} × AFTERt

+ γXijt + µj + λt + εijt, (2)

where Groupi is the group dummy of apartment i that takes a value in G = {1, ..., G}. In

the empirical analysis in Section 5, we consider three groups (G = 3), where the first group

includes the apartments within 1km of transit stations, the second group includes between
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1km and 2km from a transit station, and the third group includes all other apartments. For

both econometric specifications, we allow serial correlation in εijt within the district of

“Dong”.

For OLS to yield consistent estimates of the average treatment effects, the unobserved

error term (εij1, ..., εijT ) must be uncorrelated with the ”treatment” variables even after

we control the observed apartment characteristics and the two sets of fixed effects. If

β2 measured the ”average” benefit (in terms of the apartment price) of the travel time

reduction by LINE9, this exogeneity assumption would be problematic in the case where

the development within the district changes because of LINE9. For example, suppose

that as the new stations open, this triggers the opening of new restaurants and stores close

to the new stations. In this case, the LINE9 causes both a reduction of commute times,

say, to Gangnam and an improvement in local restaurants. Hence, the OLS estimates

recovers a total effect, not the partial effect - the local price appreciation associated with

the new transit line that is due to the reduction in travel times. We will return to this

point and explore suggestive mechanisms under which the new transit stations occur price

appreciation in Section 5.5.

We recognize that home prices reflect future expectations of local amenity changes.

If home buyers anticipated that the new train would raise future rents, then they may bid

more aggressively for houses before the LINE9 opens. In section 5.1 below, we will

study trends in real estate prices in the treatment areas and the control areas before the

actual opening of the line. We will show that there is little evidence of an anticipation

effect in the treated areas 4. Given that our main interest is in the local amenity value of

improved transit, in the Appendix we will present rent regressions that mirror our main

4McDonald and Osuji (1995) and Knaap et al. (2001) provide empirical evidences that housing or land
price started reacting in advance of when new transit lines opened. However, Gibbons and Machin (2008) ar-
gue that impacts of transport improvements are heavily dependent on economic contexts, and that if housing
is treated as consumption goods rather than assets, then anticipation effects can be marginal.
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parametric specifications. These rent regressions allow us to focus on the annual service

flow generated by the LINE9.

3.2 The Machine Learning Approach

Our Machine Learning approach has important economic content. It allows us to disag-

gregate the average treatment effect associated with new transit access along a high di-

mensional set of observed attributes. In the presence of significant heterogeneity, the ML

approach offers a much more nuanced approach than the conventional hedonic. For those

interested in the economic incidence of public policies, this ML approach provides more

precise estimates of exactly which incumbent apartment owners are the biggest winners

from the city’s public goods investment.

Following Rubin (1974), Heckman (1990) and Abadie (2005), we define Y 0(i, t) as

the potential outcome that apartment i attains in period t if untreated, and define Y 1(i, t)

as the potential outcome that apartment i attains in period t if treated. The treatment effect

is Y 1(i, t) − Y 0(i, t). The fundamental problem is that econometrician cannot observe

Y 1(i, t) and Y 0(i, t) at the same time. Econometricians observe the realized outcome,

Y (i, t) = Y 0(i, t) · (1 − D(i, t)) + Y 1(i, t) · D(i, t), where D(i, t) takes one if treated,

and zero otherwise. Due to the missing data problem, it is impossible to identify individ-

ual treatment effects, which leads researcher to focus on average treatment effects on the

treated under the assumption that the average outcomes conditional on X for the treated

and the untreated would have followed similar trends if not exposed to any treatment.5

As in Heckman et al. (1997), the conditional average treatment effect on the treated is

5In the next section, we will present evidence that the treated and the untreated follow a parallel path.

11



expressed as follows.

E[Y 1(i, 1)− Y 0(i, 1)|X,D(i, 1) = 1] =

{E[Y (i, 1)|X,D(i, 1) = 1]− E[Y (i, 1)|X,D(i, 1) = 0]}

− {E[Y (i, 0)|X,D(i, 1) = 1]− E[Y (i, 0)|X,D(i, 1) = 0]}

(3)

As noted by Abadie (2005), the estimation process is burdensome; four conditional expec-

tations need to be estimated nonparametrically, and the number of observations may not

be large enough to estimate conditional expectation when X is high dimensional. To ad-

dress the innate limitations of DID estimator Abadie (2005) suggests the semiparametric

approach, and Athey and Imbens (2006) proposed the generalized identification method

that provides entire counterfactual distribution of outcomes that would have been realized

both for the treated and the untreated, respectively. In an empirical application, Bajari and

Kahn (2005) estimate a hedonic model non-parametrically. However, recent development

of supervised machine learning enables researchers to estimate conditional expectations

using the regression tree. Athey and Imbens (2015) propose the conditional average treat-

ment effect approach in a context where the unconfoundedness assumption holds. We

extend this model to the DID context by incorporating the treatment dummy along with

the time dummy as splitting variables in the process of growing a regression tree.

We follow the general supervised machine learning approach to grow our regression

tree. (Friedman et al. (2001), Breiman et al. (1984) and Athey and Imbens (2015)6). Let

first Qis(τ̂ ;α,X, Y obs) and Qos(τ̂ ;α,X, Y obs) denote in-sample goodness-of-fit measure

6Athey and Imbens (2015) develop five supervised machine learning algorithms for the cases where the
unconfoundedness assumption is met. Our approach is based on the single tree with the observed outcome
among the five.
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and out-of-sample goodness-of-fit measure, respectively, as follows.

Qis(τ̂ ;α,X, Y obs) = − 1

N

N∑
i=1

(Y obs
i − τ̂(Xi))

2 − α ·K

Qos(τ̂ ;α,X, Y obs) = − 1

N

N∑
i=1

(Y obs
i − τ̂(Xi))

2,

(4)

where K is the number of leafs in the tree, and α is penalty term to avoid an extremely

large tree. τ̂(Xi) is a sample average of Yi in leaf. The regularization parameter α is

chosen by cross validation, minimizing Qos(τ̂ ;α,X, Y obs). Let TM denote a tree with M

nodes: R1, R2, . . . , RM . We model the response as a constant τ̂(·;Tm) in each node and

consider the splitting variable j among J explanatory variables and threshold jthr for each

region. Using j and jthr, we split parent node(m) into two child nodes(2m and 2m+1).

R2t(j, j
thr) = {X|xj ≤ jthr} and R2t+1(j, j

thr) = {X|xj > jthr} (5)

For each j = 1, . . . , J , we fix α and find the value jthr,∗ that solves

max
jthr

Qis(τ̂(·;T x
thr
j

M );α,X, Y obs) (6)

where T
xthrj

M is a new candidate tree generated by splitting the parent node into the children

nodes with the threshold of jthr. The following stopping rule is applied;

• If maxJj=1Q
is(τ̂(·;T x

thr,∗
j

M );α,X, Y obs) ≤ Qis(τ̂(·;TM);α,X, Y obs), then stop split-

ting and Rm becomes a terminal node

• If maxJj=1Q
is(τ̂(·;T x

thr,∗
j

M );α,X, Y obs) > Qis(τ̂(·;TM);α,X, Y obs), then we follow

the steps described below.
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– If NR2m < 10 or NR2m+1 < 10 , stop splitting and then parent node Rm be-

comes a terminal node whereNR2m andNR2m+1 are the number of observations

in the child node are R2m and R2m, respectively. A very large tree may overfit

the data, and it is difficult to interpret average treatment effect within leafs that

contain only a single unit (Athey and Imbens (2015))

– If NR2m ≥ 10 and NR2m+1 ≥ 10, split the node, using variable j∗ = argmaxj

Qis(τ̂(·;T x
thr,∗
j

M );α,X, Y obs) with the threshold of jthr,∗

• We iterate this process until all of the nodes become terminal nodes and then define

Tα as the tree based on the final iteration for a given α, .

In order to choose the optimal penalty parameter, α, we utilize 10-fold cross-validation,

minimizingQos(τ̂ ;α,X, Y obs). Breiman et al. (1984) prove that a finite number of relative

α exist, though possible ‘α’s are a set of continuous values. This implies that there is the

unique Ti that minimizes Qos(τ̂(·;α);X te, Y te,obs) within the interval [αi, αi+1). Taking

advantage of the algorithm Breiman et al. (1984) proposed, we construct a sequence of the

optimal trees T (α) =< T0, T1, . . . , Tn >, corresponding to each relative αi (See Breiman

et al. (1984) for more details). We partition the entire sample into ten subsamples. With

only k-1 the training subsamples except the kth subsample, we generate a sequence of

tree, T k(α), using the method described above. With the kth test sample, we estimate the

prediction error, using Qos(τ̂(k)(·;α);X te, Y te,obs). For each k, we iterate using the same

procedure and find the optimal α∗ that solves

arg max
α

1

K

K∑
k=1

Qos(τ̂(k)(·;α);X te, Y te,obs), where K = 10. (7)

With the optimal α∗, we define Tα∗ and τ̂α∗
(x) to be the optimal tree and the final estima-

tor, respectively.
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In the process of growing the regression tree we include the treatment dummy (D)

along with the time dummy (T) and other covariates (X) as splitting variables as we did

in the linear specification. The treatment dummy equals one if the distance between the

apartment and the LINE9 station is less than one kilometer, zero otherwise. Likewise,

the time dummy equals one if the year is after the opening of the line and equals zero

otherwise. The outcome variable of interest is the log of apartment price (Y), and the

covariate vector X includes the apartment size(m2)7, the number of rooms, the number

of baths, years of depreciation8, distance to other existing subway transit station9 and

each district dummy. We take advantage of the constructed regression tree, and calculate

E(Y |X = x,D = d, T = t) as the conditional expectation. Building on Athey and Imbens

(2015), we estimate the conditional average treatment effect(CATE) in DID context as

CATE ={E[Y |X = x,D = 1, T = 1]− E[Y |X = x,D = 0, T = 1]}

− {E[Y |X = x,D = 1, T = 0]− E[Y |X = x,D = 0, T = 0]}
(8)

According to Athey and Imbens (2015), our approach represents a single tree model be-

cause the treatment dummy, the time dummy and all covariates are included in the single

tree. We can extend our approach to the two tree model or the four tree model, based

on how splitting variables are included when the tree grows. If the post-treatment effects

and the pre-treatment effects are estimated separately from two different trees with sub-

sample of T = 1 and T = 0, respectively, then it is referred to as the two tree model.

In implementing our machine learning approach, the main assumption we are making is

7We construct a categorical variable, using 25%, 50% and 75% quantile. One represents the smallest
group and four is the largest group

8We use a categorical variable that takes on the value of one if less than five years have passed and equals
two if between five and ten years have passed, and three otherwise.

9We use a dummy that equals one if the distance between the apartment and the existing other station is
less than 1km, and equals zero otherwise.
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that both the treated and controls would follow a similar trajectory in the absence of the

intervention. We discuss pre-trends below to address the issue.

We recognize that the LINE9’s geographic placement was not randomly determined.

Thus, we are conducting a conditional analysis. Given the line that was built how has it

affected real estate pricing? This approach is relevant for an ex-post evaluation of who are

the winners and losers of this investment. Our approach cannot be used to predict what

will be the future impact of a new Seoul subway in another location.

4 Data

In this section, we describe the data and the summary statistics.

4.1 Apartment Data

We use apartment price data provided by the Ministry of Strategy and Finance of South

Korea. This covers more than 90% of entire apartments in South Korea since 2000 and

contains a rich set of apartment characteristics, including size, the number of rooms and

bath and parking spaces. Since our goal is to investigate the effects of LINE9 on apartment

prices, we restrict our sample to the locations where LINE9 passes. In figures 1 and 2,

the light green area represents our districts of interest. These data restrictions result in our

sample that includes 1,102 apartment complexes and 4,161 apartment types. Market prices

are surveyed based on an apartment type rather than at the apartment level. This means

that the price data represents the average price of all apartment types that share the same

characteristics within the same complex. For example, 84 square meter apartment units

with two beds and a bath within the same complex are considered to be the same product
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and thus have an identical price in our data.10 Our data has a panel structure such that the

price for each apartment type has been surveyed on a weekly basis. We use the quarterly

average price for our analysis. As shown in Table 1, the average apartment has three beds

and 1.7 baths, and it is as old as 8.2 years.

4.2 Geographic Information Data

Geographical information data are obtained from the Seoul Metropolitan Government. It

provides administrative borders, locations of bus stops and hospital, and all subway sys-

tems including LINE9. Figure 2 shows the locations of LINE9 subway stations. Using

ArcGIS, we measure the distance between center of each apartment complex and the clos-

est LINE9 station. This is a key variable in our analysis. Our control group consists of

apartments more than one kilometer away from the new transit.11

As shown in table 2, the mean distance between an apartment and the closest LINE9

station is 1.92 kilometers, and each apartment has other subway station, excluding LINE9,

within 0.7 kilometers on average. Our sample of apartments consists of those in districts

where the number 9 passes through.

The largest fraction of Seoul residents live in apartments (42.36%, 2014), followed by

single-family houses (37.5%). Apartments in Seoul are organized into complexes. The

“complex” is composed of several apartment buildings. In our sample, each “complex”

10We are interested in the value of a certain apartment type, not individual apartments. An apartment com-
plex has a limited number of apartment types. Under a certain apartment type, there are many homogeneous
units. For example, an apartment complex has 600 units, but they can be categorized into four different
types, meaning that each type has 150 units on average. We cannot observe transaction prices of individual
units but we observe an appraisal of the type. The appraisal process uses each property’s selling price and
then an averaging takes place. Though our price data has some measurement error due to this process, this
is classical error.

11In order to control for the direct impact of buses and hospitals on apartment price from benefits from the
new subway, we also construct one kilometer buffers for each apartment to count the number of bus stops
and hospitals within 1km. These are utilized as controls along with the apartment characteristics.
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features an average of 5.5 apartment buildings. Each apartment building contains many

apartment units where households reside in. All “apartment units” can be classified into

a few number of “apartment type” that share the same apartment characteristics e.g. size,

the number of rooms and baths to name but a few. Within the same “apartment type”,

it is reasonable to assume that apartment units are homogenous. Table 2 shows that each

complex has 435 “apartment units” in our sample, meaning that each “apartment building”

contains more than 80 “apartment units’”.

The Seoul housing stock is quite young. The average age of a Seoul apartment in

our data is eight years. It is worth noting that the supply of apartments in Seoul has

been expanding since the mid 1970s. The city’s growing population and rapid economic

development since the 1970s catalyzed the need for high-density residential structures,

The development plan for Gangnam caused a massive apartment supply increase in the

1980s. Our data shows the oldest apartment building is 46-year-old, but a large fraction

of apartment were built between 1997 and 2007. The recent economic development in the

southern part of the city explains why the average age of the housing stock is eight years.

5 Results

5.1 The Pre-Treatment Trend

In conducting a difference in difference study it is important to demonstrate that the pre-

trends for the treatment and control groups are not statistically different. In Figure 4, we

define the treatment group as the set of apartments within 1 kilometer of LINE9 transit

station and the control group is the set of those apartments located more than 2 kilometers

away. In figure 5, the treatment group we further refine this set to represent the apartments

located within 1/2 of a kilometer of the closest LIEN9 station while the controls are the
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same as in figure 4. These figures are based on apartments located in districts where the

new number 9 passes through. Both figure 4 and figure 5 show that the pre-trends are

parallel, which implies that both the treated and the controls would have followed the

similar path in the absence of the intervention. Figure 5 shows that the gap between the

treated and controls has been decreasing significantly after LINE9 opened.

Each bar in figure 6 represents the coefficient for interaction between the dummy of

within 1 kilometer and the estimated year dummy along with a 90 percent confidence

interval. 12 This shows when the LINE9 started affecting apartment prices, and the new

transit station effects becomes statistically significant at 10% after 2009 when the LINE9

opened. This implies that the treated and the untreated had experienced a similar path prior

to the LINE9, meaning that they would have followed the same trajectory in the absence of

the LINE9 even though detailed blueprint was announced at the early period. All pre-trend

analyses indicates that the difference in difference approach is suitable to for estimating

the impact of the LINE9 on apartment prices.

5.2 OLS Results

Our first set of results builds on earlier work studying the consequences of Seoul’s invest-

ment in transit infrastructure (see Kim et al. (2005), Cervero and Kang (2011), Bae et al.

(2003), Agostini and Palmucci (2008) and Ahlfeldt (2013)).

Table 3 reports results from a standard linear hedonic pricing regression. Controlling

for standard structure attributes, the double difference approach indicates that an extra kilo-

meter of distance from LINE9 station is associated with a 1.7% reduction in the home’s
12We estimate Log(Priceijt) = β1Within1kmi +

∑2015
Y=2000 βYWithin1kmi × Y EARY + β3Xijt +

µj + λt + εijt where Within1kmi takes one if an apartment type i has the new station within 1km, and
zero otherwise. Y EARY is a year dummy and Xijt is a set of apartment type i’s characteristics in district j
at time t. µj and λt are a district fixed effect and a quarter fixed effect, respectively.
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price. We further explore these results by including distance to transit dummies. All else

equal, properties within 1 kilometer of the transit experience a 4% price appreciation com-

pared to those more than 2km away from the transit (see column 3). Column 4 documents

that there is significant heterogeneity in the treatment effects. The district geographic des-

ignation called “Dong” is the smallest administrative level, and Seoul has 424 “Dong”s.

5.3 Machine Learning Results

The ML approach yields 142 estimates of the treatment effect. In Figure 9, we present

a histogram of these estimates. Based on our estimates, we find that 89 are positive and

53 are negative. One plausible way to interpret the results is that demands for a certain

apartment type is low, meaning that there is an apartment type that consumer would like to

buy nearby the transit. One explanation is sub-urbanization. Negative leafs are associated

with many apartments in Gangnam according to table7 and table 9, which means some

residents move out to find a bigger apartment with less congested environment. Table

8 shows that big apartments in suburb area(Gangseo) benefited, while table 9 shows rela-

tively small apartments in Gangnam lost out on LINE9. This suggests that the new subway

catalyzes residents to move out to the suburb because traveling costs became smaller due

to LINE9. These findings are in accord with urban economics theory that the ability to

move at higher speeds encourages suburbanization(Baum-Snow (2007)).

To simplify the presentation of our finding, we sort our estimates of the 142 treatment

effects and report the ten largest and smallest CATE estimates. These results are reported

in Table 6.
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5.4 Developer Responses to the Shifting Real Estate Price Gradient

If we have recovered the true underlying gradient, then the non-linear pricing function

sketches out the developer’s revenue function for producing different new housing units.

Assuming smooth cost functions with respect to apartment size, if developers can earn

a large marginal revenue for bundling certain features then they have a profit incentive

to build these in. To be specific, developer i supplies apartment type j to maximize the

following profit function.

max
j∈J

Πij = πij + εij

πij = Rij − Cij(L, P,B)

B = B(size)

(9)

where Rij represents revenue of apartment type j and Cij is a cost function of constructing

apartment type j. L indicates required amounts of land, and P is costs related to attaining

permits. B denotes building costs that hinge mainly on size, and εij is a random compo-

nent. The probability that developer i supplies apartment type j is

Pr{Yi = j} = Pr{max(Πi1, . . . ,ΠiJ) = Πij} (10)

where Yi indicates an apartment type chosen by developer i. If εij is independent and iden-

tically distributed with Gumbel (type 1 extreme value) distributions13, then the probability

that type j is chosen by developer i is as follows (McFadden et al. (1973)).

Pr{Yi = j} =
exp(πij)∑J
j=1 exp(πij)

(11)

13Its cumulative density function is F (εij) = exp(−exp(−εij))
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We do not have any cost of construction data, but our ML estimates provide information

on the shape of the revenue function. We test whether new construction is positively

correlates with our estimates of the revenue function. Potential buyers are more willing

to pay for more attractive apartment types. Our CATE estimates provide a proxy for the

revenue a developer will receive from selling a given type of apartment. This suggests that

the flow of new construction’s attributes should be positively correlated with our CATE

estimates.

We study this by constructing three histograms. These histograms are based on prop-

erties built at three points in time; before 2002, between 2002 and 2012, and after 2012.

These three stages can be thought of as the before, middle period and after the construction

of LINE9.

The histograms display the share of all housing units as a function of their CATE. We

find that units built before 2002 (when developers at that time were unaware of what the

future treatment effects of LINE9 would be) build housing units that are symmetrically

distributed around zero. In the post-period, the new units built are clustered in the positive

CATE estimates. We interpret this as evidence that developers are focusing their efforts on

constructing what the market signals is scarce and valued.

5.5 Testing Two Explanations for the Price Appreciation Effects

In this section, we explore two potential reasons for why transit access is associated with

rising real estate prices. One explanation is reduced travel time to popular destinations

and the other is that new “consumer city” retail and restaurants co-agglomerate near the

new train stations. We test each of these by augmenting our linear hedonic regression to

include additional explanatory variables and then we test if the capitalization of transit

effect changes.
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In Table 6, we report results where we return to the parametric hedonic specification

reported in equation (1). Across the eight regressions reported in Table 6, we include dif-

ferent combinations of extra control variables to test if the treatment effect shrinks as we

control for these variables. We use the distance between each apartment and the LINE9

station in column (1) to (4), and we use the dummy variable that indicates whether an

apartment locates within a kilometer from the LINE9 station. We add travel times to 20

key destinations in column (2) and (6), while we control a measure of the new restaurants

and the retails co-agglomerated near the new transit lines in column (3) and (7).14 All

controls are included in column (4) and (8). The first four columns do not show that the

treatment effect shrinks much as the travel times and the the counts of restaurants and

retails are included separately. However, column (4) indicates that the treatment effect

shrinks around 20% and becomes no longer statistically different from zero at 10%. This

implies that the travel time saving and the “consumer city” rising are leading mechanisms.

Column (5) to (8) provides another prospective that reductions in travel time is more in-

fluential mechanism behind price appreciation. Apartments within a kilometer from the

LINE9 station experience a price premium of 3.36%. Controlling for travel times makes

the treatment effect not statistically different from zero at the 10% significance level, while

the treatment effect is still statistically significant with controls for retails and restaurants.

The findings suggest that the price appreciation is mainly caused by travel time savings

rather than by a “consumer city” effect.

We also take our panel CATE estimates from the ML procedure and we compare these

leaf specific estimates to those obtained when we conduct a “long difference” ML esti-

mation. In this second case, we only keep the data for the first year and the last year

14We use counts of restaurants and retail establishments and the number of employees in those industries at
the “Dong” level. “Dong” is the smallest administrative level. The data is drawn from the Seoul metropolitan
government
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of our sample and we rerun the ML estimator. In Figure 10, we graph the relationship

between the long run CATE and the short run CATE. The slope is 0.42. This suggests

that the CATE effects shrinks over time. The first possible explanation is that the local

“consumer city” effect is small as time passes, which is consistent with what we found

in table 6. Another explanation is that there is a general equilibrium effect as developers

build new desirable housing units (as revealed by the CATE responses by developers). As

the developers engage in this activity, increase in supply lowers the equilibrium prices.

5.6 Estimating the Value of Time

We study what is the implied value of time for different Seoul residents if all of the ob-

served capitalization effect is due to time savings. To study this, we first regress the rent for

apartment i in district j at time t on each travel time to twenty major destinations presented

in table 1 with apartment type fixed effect as follows.

Rentijt =
20∑
g=1

βgHoursigt +Xjt + µi + λt + εijt, (12)

where Hoursigt represents travel time between apartment i and destination g at time t, and

Xjt includes counts of restaurants and retail shops and the number of employees in those

industries in district j at time t. µi is apartment type fixed effect and λt is quarter fixed

effect.

The main reason we use the rent data is to rule out any speculative demand that may

affect the property price, and focusing on instant benefits. Though an apartment is not

located in the vicinity of the transit station, travel time from the apartment to each destina-

tion changed because riders might use a faster route after LINE9 opened. This reveals the

correlation between an hour reduction to each destination and rent. We find that tenants

are likely to pay US$ 1,454,545 more rent as one travels to Kangnam(CBD) an hour ear-

24



lier (Table 7, A). Note again that rent is not monthly payments but two-year deposit unlike

the U.S. and many countries. This suggests that willingness to pay to be an hour closer to

Kangnam is not the amount of deposit per-se, but foregone interest that tenants would have

eared if they live in their own apartment. Assuming an interest rate of 2%, the opportunity

cost for two years is US$ 29,090(Table 7, B), which means tenants that sacrifice US$ 39

everyday (Table 7, C).

We compare our estimated value of saving an hour in commute time to Gangnam and

the taxi fare in Seoul to cross-validate our estimates. Based on the current taxi fares, riders

pay US$ 2,73 for first 2km, even though they travel less than 2km. After 2km, riders pay

US$ 0.09 for every 142m. With an average speed of 35.4km in Seoul (The Korea Transport

Institute, 2011), the estimated taxi fare to travel for an hour is US$ 24.11, which implies

that riders pay US$ 48.22 for a round-trip. If one commuted only by a taxi, she would

save US$ 48.22 everyday by moving to the region where she is able to travel to Gangnam

an hour faster.

6 Conclusion

Over the years 2000 to 2009, US$818 millions were spent to build a new subway in Seoul,

South Korea. Such place based investments offer the opportunity to explore how a city’s

urban form and real estate pricing are affected by such an investment. This paper has used

ML methods to contribute to the urban transit infrastructure effects literature.

Our paper implements a difference in difference empirical design. We find that the

introduction of the train is associated with apartment price appreciation for certain leafs

but actually lowered apartment price growth in other neighborhoods. We posit that the

fast train is most likely to reduce prices for apartments in the destination area of Gangnam

because people can now decentralize and still access this location by using the fast train.

25



The notable feature of our study is our ability to document significant heterogeneity on

observable dimensions. The payoff for urban research from ML methods is the ability to

search across a large number of dimensions of heterogeneity at low cost. Such conditional

average treatment effects disaggregate the overall average treatment effect that has been the

typical object of interest in earlier real estate studies. By estimating the CATEs our work

has new implications for estimating the economic incidence of public transit improvement

projects.

In addition to presenting new ML estimates, we have also studied the causes of the

positive treatment effects. We find that both commute time reductions to desirable loca-

tions and the opening of new stores and restaurants close to the new stations contribute to

the price premium. Finally, we have explored how developers of new housing respond to

the shifting pricing gradient. Developers produce new units featuring the highest CATE

values.
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Figure 1: Map of Seoul

Figure 2: Line 9

32



Figure 3: Time line

2000 2015
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Table 2: Summary Statistics

Variable Mean Std. Dev. N
Subway

Distance to line9 (km) 1.915 1.244 265600
Distance to closest other line (km) 0.702 0.560 265600

Apt Characteristics

Area (m2) 94.976 39.501 265600
Room 3.131 0.959 265344
Bath 1.744 0.507 260381
Age, in Years 8.205 9.946 265600
Parking spaces within Complex 546.053 777.993 265600
Number of Apartment units within Complex 435.59 558.62 265600
Number of Apartment buildings within Complex 5.597 9.057 265600
Bus stops within 1km 62.863 19.662 265600
Hospitals within 1km 2.452 1.772 265600

35



Figure 4: The Pre-Treatment Trend: 1km vs 2km (Lowess Graph)

Notes: Vertical line represents when the LINE9 opened.
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Figure 5: The Pre-Treatment Trend: 0.5km vs 2km (Lowess Graph)

Notes: Vertical line represents when the LINE9 opened.
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Figure 6: Treatment Effect Estimates Over Time

Notes: Each circle indicates the coefficient on the interaction between a

”within 1km dummy”and the calendar year. Each bar represents a 90 percent

confident interval.
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Table 3: OLS Estimates of the Value of Rail Access

(1) (2) (3) (4)
VARIABLES Log(Price) Log(Price) Log(Price) Log(Price)

Distance (km) 0.0339*
(0.0193)

Distance (km) × AFTER -0.0174**
(0.0078)

Log(Distance, km) 0.0138
(0.0181)

Log(Distance, km) × AFTER -0.0246**
(0.0103)

Within 1km -0.0785** -0.0641**
(0.0367) (0.0254)

Between 1 ∼ 2km -0.0253
(0.0400)

Within 1km × AFTER 0.0392*
(0.0205)

Between 1 ∼ 2km × AFTER 0.0224
(0.0214)

Within 1km × AFTER 0.4073***
(0.0970)

Within 1km × AFTER × Size (m2) (1) -0.0017**
(0.0006)

Within 1km × AFTER × Other Line (km) (2) 0.0092
(0.0101)

Within 1km × AFTER × Room (3) -0.0178
(0.0285)

Within 1km × AFTER × Bath (4) -0.0269
(0.0233)

Within 1km × AFTER × Age (5) -0.0117**
(0.0051)

Within 1km × AFTER × Age2 (6) 0.0001
(0.0001)

Joint F-value (1) ∼ (6) 11.19
(P-value) (0.000)
Observations 201,985 201,985 201,985 201,985
R-squared 0.9079 0.9076 0.9078 0.9102

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. The standard errors
are clustered at the district(“Dong”) level. Controls include size, the number of room and bath,
parking spaces, age, age squared, distance to other closest station, the number of bus stops within
1km, the number of hospitals within 1km, whether it has named brand, the number of households
within complex and the number of apartment building within complex. District fixed effect and
quarter fixed effect are included
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Figure 7: The Regression Tree Result
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Figure 8: The CATE Distribution
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Table 4: Conditional Average Treatment Effects (CATE)

CATE N Size Room Bath Old Near County

Bottom 10

1 -.5619 470 4 4 2 3 1 Kangseo
2 -.5024 120 4 5 2 2 1 Youngdeungpo
3 -.4321 833 1 3 1 3 1 Dongjak
4 -.4003 132 1 2 1 2 0 Yangchun
5 -.3865 784 1 3 1 3 0 Yangchun
6 -.3075 1463 3 3 2 1 1 Kangnam
7 -.3031 628 1 2 1 2 1 Kangnam
8 -.3010 1155 2 3 2 1 1 Kangnam
9 -.2802 282 3 4 2 3 1 Kangseo
10 -.2755 1244 4 4 2 3 1 Dongjak

Top 10

1 1.0573 201 4 3 2 1 1 Seocho
2 .9023 360 1 1 1 3 1 Youngdeungpo
3 .8203 96 4 5 2 2 0 Yangchun
4 .6403 208 2 3 1 2 1 Seocho
5 .5959 1179 2 3 2 1 1 Seocho
6 .5524 536 3 4 2 1 1 Seocho
7 .5453 787 3 4 2 2 1 Kangnam
8 .5011 1530 2 3 2 2 0 Kangseo
9 .4972 628 4 4 2 2 0 Kangseo
10 .4637 532 1 2 1 2 1 Kangseo

Average 0.08
Number of types with positive impacts 89
Number of types with negative impacts 53

Observations 201,530
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Figure 9: The Empirical Distribution of New Construction as a Function of the CATE

(a) Before 2002

(b) Between 2002 and 2012 (c) After 2012
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Figure 10: Long Difference Result
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Table 7: Estimates of the Value of Time

The Estimated Value of an Hour

Correlation b/w An hour reduction in travel time to CBD
and 2-year rent deposit US$ 1,454,545 (A)

Interests for two years
(Interest rate 2 %) US$ 29,090 (B = A × 0.02)

Daily opportunity costs
(1 year = 730 days) US$ 39 (C = B / 730)

Estimate Taxi Fare for an hour

Basic Fare (First 2km) US$ 2.73

Extra Fare US$0.09 per 142m

Estimated Driving Distance in an Hour
(With an average speed of 35.4km/hour, 2011) 35.4km

Estimated Taxi Fare for One-way US$ 24.11
Estimated Taxi Fare for a Roundtrip US$ 48.22
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APPENDIX

Appendix
This section reports an effect of the LINE9 on rent price. Note that the rent here is

not monthly payments but two-year deposit unlike the U.S. and many countries. If an

anticipation effect or a speculative demand had played a major role in price appreciation

due to the LINE9, prices would have experienced a bigger premium than rents. This is

because rents are less subject to an anticipation effect. Empirical strategy for the rents

are the same as equation (1) and (2), but we replace Log(Priceijt) with Log(Rentijt). In

comparison to table 3, table A1 reports bigger treatment effects. For every a kilometer

closer to the LINE9 station, an apartment experiences of 2.03% premium . If an apart-

ment locates within 1km from the LINE9 station, rents are 6.26% higher than those more

than two kilometers away from the new station. Both of them imply that the treatment

effect comes from direct benefits like travel time savings or growing retail activities rather

than an anticipation of future price hike. Assuming heterogeneous buyers, some who are

patient enough to wait for a long time may buy properties in advance and expect a price

appreciation later. However, our results show that such cases are not big enough. This

justifies that we define the date of opening as a treatment.
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Table A1: Impacts of the LINE9 on Rent

(1) (2) (3) (4)
VARIABLES Log(Rent) Log(Rent) Log(Rent) Log(Rent)

Distance (km) 0.0117
(0.0181)

Distance (km) × AFTER -0.0203***
(0.0060)

Log(Distance, km) 0.0120
(0.0138)

Log(Distance, km) × AFTER -0.0365***
(0.0084)

Within 1km -0.0619* -0.0516*
(0.0326) (0.0278)

Between 1 ∼ 2km -0.0042
(0.0282)

Within 1km × AFTER 0.0626***
(0.0194)

Between 1 ∼ 2km × AFTER 0.0108
(0.0197)

Within 1km × AFTER 0.2555***
(0.0896)

Within 1km × AFTER × Size (m2) -0.0020***
(0.0005)

Within 1km × AFTER × Other Line (km) 0.0426***
(0.0127)

Within 1km × AFTER × Room 0.0081
(0.0208)

Within 1km × AFTER × Bath 0.0024
(0.0202)

Within 1km × AFTER × Age -0.0102*
(0.0053)

Within 1km × AFTER × Age2 0.0002*
(0.0001)

Observations 199,742 199,742 199,742 199,742
R-squared 0.9102 0.9105 0.9105 0.9124
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. The standard
errors are clustered at the district level. Controls include size, the number of room and bath,
parking spaces, age, age squared, distance to other closest station, the number of bus stops
within 1km, the number of hospitals within 1km, whether it has named brand, the number of
households within complex and the number of apartment building within complex. District
fixed effect and quarter fixed effect are included
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