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1 Introduction

New technologies have made available vast quantities of digital text, recording an ever increasing

share of human interaction, communication, and culture. For social scientists, the information

encoded in text is a rich complement to the more structured kinds of data traditionally used in

research, and recent years have seen an explosion of empirical economics research using text as

data.

To take just a few examples: in finance, text from financial news, social media, and company

filings is used to predict asset price movements and study the causal impact of new information.

In macroeconomics, text is used to forecast variation in inflation and unemployment, and estimate

the effects of policy uncertainty. In media economics, text from news and social media is used to

study the drivers and effects of political slant. In industrial organization and marketing, text from

advertisements and product reviews is used to study the drivers of consumer decision making.

In political economy, text from politicians’ speeches is used to study the dynamics of political

agendas and debate.

The most important way that text differs from the kinds of data often used in economics is that

text is inherently high-dimensional. Suppose that we have a sample of documents each of which is

w words long, and suppose that each word is drawn from a vocabulary of p possible words. Then

the unique representation of these documents has dimension pw. A sample of 30-word Twitter

messages that use only the 1,000 most common words in the English language, for example, has

roughly as many dimensions as there are atoms in the universe.

A consequence is that the statistical methods used to analyze text are closely related to those

used to analyze high-dimensional data in other domains, such as machine learning and computa-

tional biology. Some methods, such as lasso and other penalized regressions, are applied to text

more or less exactly as they are in other settings. Other methods, such as topic models and multino-

mial inverse regression, are close cousins of more general methods adapted to the specific structure

of text data.

In all of the cases we consider, the analysis can be summarized in three steps:

1. Represent raw text D as a numerical array C

2. Map C to predicted values V̂ of unknown outcomes V
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3. Use V̂ in subsequent descriptive or causal analysis

In the first step, the researcher must impose some preliminary restrictions to reduce the di-

mensionality of the data to a manageable level. Even the most cutting-edge high-dimensional

techniques can make nothing of 100030-dimensional raw Twitter data. In almost all the cases we

discuss, the elements of C are counts of tokens: words, phrases, or other pre-defined features of

text. This step may involve filtering out very common or uncommon words; dropping numbers,

punctuation, or proper names; and restricting attention to a set of features such as words or phrases

that are likely to be especially diagnostic. The mapping from raw text to C leverages prior informa-

tion about the structure of language to reduce the dimensionality of the data prior to any statistical

analysis.

The second step is where high-dimensional statistical methods are applied. In a classic exam-

ple, the data is the text of emails, and the unknown variable of interest V is an indicator for whether

the email is spam. The prediction V̂ determines whether or not to send the email to a spam filter.

Another classic task is sentiment prediction (e.g., Pang et al. 2002), where the unknown variable

V is the true sentiment of a message (say positive or negative), and the prediction V̂ might be used

to identify positive reviews or comments about a product. A third task is predicting the incidence

of local flu outbreaks from Google searches, where the outcome V is the true incidence of flu.

In these examples, and in the vast majority of settings where text analysis has been applied, the

ultimate goal is prediction rather than causal inference. The interpretation of the mapping from V

to V̂ is not usually an object of interest. Why certain words appear more often in spam, or why

certain searches are correlated with flu is not important so long as they generate highly accurate

predictions. For example, Scott and Varian (2014, 2015) use data from Google searches to produce

high-frequency estimates of macroeconomic variables such as unemployment claims, retail sales,

and consumer sentiment that are otherwise available only at lower frequencies from survey data.

Groseclose and Milyo (2005) compare the text of news outlets to speeches of congresspeople in

order to estimate the outlets’ political slant. A large literature in finance following Antweiler and

Frank (2004) and Tetlock (2007) uses text from the Internet or the news to predict stock prices.

In many social science studies, however, the goal is to go further and, in the third step, use text

to infer causal relationships or the parameters of structural economic models. Stephens-Davidowitz

(2014) uses Google search data to estimate local areas’ racial animus, then studies the causal effect
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of racial animus on votes for Obama in the 2008 election. Gentzkow and Shapiro (2010) use

congressional and news text to estimate each news outlet’s political slant, then study the supply

and demand forces that determine slant in equilibrium. Engelberg and Parsons (2011) measure

local news coverage of earnings announcements, then use the relationship between coverage and

trading by local investors to separate the causal effect of news from other sources of correlation

between news and stock prices.

In this paper, we provide an overview of methods for analyzing text, and a survey of current

applications in economics and related social sciences. See Evans and Aceves (2016) and Grimmer

and Stewart (2013) for related surveys focused on text analysis in sociology and political science

respectively. For methodological survey, Bishop (2006), Hastie et al. (2009), and Murphy (2012)

cover contemporary statistics and machine learning in general while Jurafsky and Martin (2009)

overviews text and speech processing.

In Section 2 we discuss representing text data as a manageable (though still high-dimensional)

numerical array C; in Section 3 we discuss methods from data mining and machine learning for

predicting V from C. Section 4 then provides a selective survey of text analysis applications in

social science, and Section 5 concludes.

2 Representing text as data

When humans read text, they do not see a vector of dummy variables, nor a sequence of unrelated

tokens. They interpret words in light of other words, and extract meaning from the text as a whole.

It might seem obvious that any attempt to distill text into meaningful data must similarly take

account of complex grammatical structures and rich interactions among words.

The field of computational linguistics has made tremendous progress in this kind of interpreta-

tion. Most of us have mobile phones that are capable of complex speech recognition. Algorithms

exist to efficiently parse grammatical structure, disambiguate different senses of words, distinguish

key points from secondary asides, and so on.

Yet virtually all analysis of text in the social sciences, like much of the text analysis in machine

learning more generally, ignores the lion’s share of this complexity. Raw text consists of an ordered

sequence of language elements: words, punctuation, and whitespace. To reduce this to a simpler
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representation suitable for statistical analysis, we typically make three kinds of simplifications: di-

viding the text into individual documents i, reducing the number of language elements we consider,

and limiting the extent to which we encode dependence among elements within documents. The

result is a mapping from raw text D to a numerical array C. A row ci of C is a numerical vector

with each element indicating the presence or count of a particular language token in document i.

2.1 What is a document?

The first step in constructing C is to divide raw text D into individual documents {Di}. In many

applications, this is governed by the level at which the attributes of interest V are defined. For

spam detection, the outcome of interest is defined at the level of individual emails so we want to

divide out text that way too. If V is daily stock price movements which we wish to predict from

the prior day’s news text, it might make sense to divide the news text by day as well.

In other cases, the natural way to define a document is not so clear. If we wish to predict legis-

lators’ partisanship from their floor speeches (Gentzkow et al. 2016) we could aggregate speech so

a document is a speaker-day, a speaker-year, or all speech by a given speaker during the time she

is in Congress. When we use methods that treat documents as independent (which is true most of

the time), finer partitions will typically ease computation at the cost of limiting the dependence we

are able to capture. Theoretical guidance for the right level of aggregation is often limited, so this

is an important dimension along which to check the sensitivity of results.

2.2 Feature selection

To reduce the number of features to something manageable, a common first step is to strip out

elements of the raw text other than words. This might include punctuation, numbers, HTML tags,

proper names, and so on.

It is also common to remove a subset of words that are either very common or very rare. Very

common words, often called “stop words,” include articles (“the,” “a”), conjunctions (“and,” “or”),

forms of the verb “to be,” and so on. These words are important to the grammatical structure of

sentences, but they typically convey relatively little meaning on their own. The frequency of “the”

is probably not very diagnostic of whether an email is spam, for example. Common practice is
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to exclude stop words based on a pre-defined list.1 Very rare words do convey meaning, but their

computational cost in expanding the set of features that must be considered often exceeds their

diagnostic value. A common approach is to exclude all words that occur fewer than k times for

some arbitrary small integer k.

An approach that excludes both common and rare words and has proved very useful in practice

is filtering by “term-frequency-inverse-document-frequency” (tf-idf). For a word or other feature

j in document i, term frequency (t fi j) is the count ci j of occurrences of j in i. Inverse document

frequency (idf j) is the log of one over the share of documents containing j: log
(
n/d j

)
where

d j = ∑i1[ci j>0] and n is the total number of documents. The object of interest tf-idf is the product

t fi j× idf j. Very rare words will have low tf-idf scores because t fi j will be low. Very common

words that appear in most or all documents will have low tf-idf scores because idf j will be low.

(Note that this improves on simply excluding words that occur frequently, because it will keep

words that occur frequently in some documents but do not appear in others; these often provide

useful information.) A common practice is to keep only the words within each document i with

tf-idf scores above some rank or cutoff.

A final step that is commonly used to reduce the feature space is stemming: replacing words

with their root, such that, e.g., “economic,” “economics,” “economically” are all replaced by the

stem “economic.” The Porter stemmer (Porter 1980) is a standard stemming tool for English

language text.

All of these cleaning steps reduce the number of unique language elements we must consider

and thus the dimensionality of the data. This can provide a massive computational benefit, and

it is also often key to getting more interpretable model fits (e.g., in topic modeling). However,

each of these steps requires careful decisions about the elements likely to carry meaning in a

particular application. One researcher’s stop words are another’s subject of interest. Dropping

numerals from political text means missing references to “the first 100 days” or “September 11.” In

online communication, even punctuation can no longer be stripped without potentially significant

information loss :-(.

1There is no single stop word list that has become a standard. How aggressive one wants to be in filtering stop
words depends on the application. The web page http://www.ranks.nl/stopwords shows several common stop word
lists, including the one built into the database software SQL and the list claimed to have been used in early versions of
Google search. (Modern Google search does not appear to filter any stop words.)
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2.3 N-grams

Producing a tractable representation also requires that we limit dependence among language ele-

ments. A fairly mild step in this direction, for example, might be to parse documents into distinct

sentences, and encode features of these sentences while ignoring the order in which they occur.

The most common methodologies go much further.

The simplest and most common way to represent a document is called bag-of-words. The order

of words is ignored altogether, and ci is a vector whose length is equal to the number of words in the

vocabulary and whose elements ci j are the number of times word j occurs in document i. Suppose

that the text of document i is

Good night, good night! Parting is such sweet sorrow.

After stemming, removing stop words, and removing punctuation, we might be left with “good

night good night part sweet sorrow.” The bag-of-words representation would then have ci j = 2

for j ∈ {good,night}, ci j = 1 for j ∈ {part,sweet,sorrow}, and ci j = 0 for all other words in the

vocabulary.

This scheme can be extended to encode a limited amount of dependence by counting unique

phrases rather than unique words. A phrase of length n is referred to as an n-gram. For example,

in our snippet above the count of 2-grams (or “bigrams”) would have ci j = 2 for j = good.night,

ci j = 1 for j including night.good, night.part, part.sweet, and sweet.sorrow, and ci j = 0 for all

other possible 2-grams. The bag-of-words representation then corresponds to counts of 1-grams.

Counting n-grams of order n > 1 yields data that describes a limited amount of the dependence

between words. Specifically, the n-gram counts are sufficient for estimation of an n-order homo-

geneous Markov model across words (i.e., the model that arises if we assume that word choice

is only dependent upon the previous n words). This can lead to richer modeling. In analysis of

partisan speech, for example, single words are often insufficient to capture the patterns of interest:

“death tax” and “tax break” are phrases with strong partisan overtones that are not evident if we

look at the single words “death,” “tax,” and “break” (see, e.g., Gentzkow and Shapiro 2010).

Unfortunately, the dimension of ci increases exponentially quickly with the order n of the

phrases tracked. The majority of text analyses consider n-grams up to two or three at most, and

the ubiquity of these simple representations (in both machine learning and social science) reflects

7



a belief that the return to richer n-gram modeling is usually small relative to the cost. Best practice

in many cases is to begin analysis by focusing on single words. Given the accuracy obtained with

words alone, one can then evaluate if it is worth the extra time to move on to 2-grams or 3-grams.

2.4 Richer representations

While rarely used in the social science literature to date, there is a vast array of methods from

computational linguistics that capture richer features of text and may have high return in certain

applications. One basic step beyond the simple n-gram counting above is to use sentence syntax to

inform the text tokens used to summarize a document. For example, Goldberg and Orwant (2013)

describe syntactic n-grams where words are grouped together whenever their meaning depends

upon each other, according to a model of language syntax.

An alternative approach is to move beyond treating documents as counts of language tokens,

and to instead consider the ordered sequence of transitions between words. In this case, one would

typically break the document into sentences, and treat each as a separate unit for analysis. A single

sentence of length s (i.e., containing s words) is then represented as a binary p× s matrix S, where

the nonzero elements of S indicate occurrence of the row-word in the column-position within the

sentence, and p is the length of the vocabulary. Such representations lead to a massive increase in

the dimensions of the data to be modeled, and analysis of this data tends to proceed through word-

embedding: the mapping of words to a location in RK for some K � p, such that the sentences

are then sequences of points in this K dimensional space. This is the domain of the neural network

models discussed in Section 3.3.1.

2.5 Other practical considerations

It is worth mentioning two details that can cause practical social science applications of these

methods to diverge a bit from the ideal case considered in the statistics literature. First, researchers

sometimes receive data in a pre-aggregated form. In the analysis of Google searches, for example,

one might observe the number of searches containing each possible keyword on each day, but not

the raw text of the individual searches. This means documents must be similarly aggregated (to

days rather than individual searches), and it also means that the natural representation where ci j is
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the number of occurrences of word j on day i is not available. This is probably not a significant

limitation, as the missing information (how many times per search a word occurs conditional on

occurring at least once) is unlikely to be essential, but it is useful to note when mapping practice

to theory.

A more serious issue is that researchers sometimes do not have direct access to the raw text and

must access it through some interface such as a search engine. For example, Gentzkow and Shapiro

(2010) count the number of newspaper articles containing partisan phrases by entering the phrases

into a search interface (e.g., for the database ProQuest) and counting the number of matches they

return. Baker et al. (2016) perform similar searches to count the number of articles mentioning

terms related to policy uncertainty. Saiz and Simonsohn (2013) count the number of web pages

measuring combinations of city names and terms related to corruption by entering search queries in

Google. Even if one can automate the searches in these cases, it is usually not feasible to produce

counts for very large feature sets (e.g., every two-word phrase in the English language), and so the

initial feature selection step must be relatively aggressive. Relatedly, interacting through a search

interface means that there is no simple way to retrieve objects like the set of all words occurring at

least 20 times in the corpus of documents, or the inputs to computing tf-idf.

3 Statistical methods

This section considers methods for mapping the document-token matrix C to predictions V̂ of an

attribute V. In some cases, the observed data is partitioned so that the matrix Ctrain collects rows

for which we have observations Vtrain of V. The dimension of Ctrain is ntrain× p and the dimension

of Vtrain is ntrain× k, where k is the number of attributes we wish to predict.

Attributes in V can include observable quantities such as the frequency of flu cases, the positive

or negative rating of movie reviews, or the unemployment rate, about which the documents are

informative. There can also be latent attributes of interest, such as the topics being discussed in a

congressional debate or in news articles.

Methods to connect counts ci to attributes vi can be roughly divided into four categories. The

first, which we will call dictionary-based methods, do not involve statistical inference at all: they

simply specify v̂i = f (ci) for some known function f (·). This is by far the most common method in
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the social science literature using text to date. In some cases, researchers define f (·) based on a pre-

specified dictionary of terms capturing particular categories of text. In Tetlock (2007), for example,

ci is a bag-of-words representation and the outcome of interest vi is the latent “sentiment” of Wall

Street Journal columns, defined along a number of dimensions such as “positive,” “optimistic,”

and so on. The author defines the function f (·) using a dictionary called the General Inquirer,

which provides lists of words associated with each of these sentiment categories.2 The elements

of f (ci) are defined to be the sum of the counts of words in each category. (As we discuss below,

the main analysis then focuses on the first principal component of the resulting counts.) In Baker

et al. (2016), ci is the count of articles in a given newspaper-month containing a set of pre-specified

terms such as “policy,” “uncertainty,” and “Federal Reserve,” and the outcome of interest vi is the

degree of “policy uncertainty” in the economy. The authors define f (·) to be the raw count of

the pre-specified terms divided by the total number of articles in the newspaper-month, averaged

across newspapers. We do not provide additional discussion of dictionary-based methods in this

section, but we return to them in Section 3.4 below and in our discussion of applications in Section

4.

The second and third groups of methods are distinguished by whether they begin from a model

of p(vi|ci) or a model of p(ci|vi). In the former case, which we will call text regression methods,

we directly estimate the conditional outcome distribution, usually via the conditional expectation

E[vi|ci] of attributes vi. This is intuitive: if we want to predict vi from ci, we would naturally

regress the observed values of the former (Vtrain) on the corresponding values of the latter (Ctrain).

Any generic regression technique can be applied, depending upon the nature of vi. However, the

high-dimensionality of ci, where p is often as large as or larger than ntrain, requires use of regression

techniques appropriate for such a setting, such as L1 regularized linear or logistic regression.

In the latter case, we begin from a generative model of p(ci|vi). To see why this is intuitive,

note that in many cases the underlying causal relationship runs from outcomes to language rather

than the other way around. For example, Google searches about flu do not cause flu cases to

occur; rather, people with flu are more likely to produce such searches. Congresspeople’s ideology

is not determined by their use of partisan language; rather, people who are more conservative

or liberal to begin with are more likely to use such language. From an economic point of view,

2http://www.wjh.harvard.edu/~inquirer/
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the correct “structural” model of language in these cases maps from vi to ci, and as in other cases

familiar to economists modeling the underlying causal relationships can provide powerful guidance

to inference and make the estimated model more interpretable.

Generative models can be further divided by whether the attributes are observed or latent. In

the first case of supervised methods, we observe training data Vtrain and we can fit our model, say

fθθθ (ci;vi) for a vector of parameters θθθ , to this training set. The fitted model f
θ̂θθ

can serve as a basis

for interpretation of the count-attribute map, or it can be inverted in order to infer vi for documents

in the test set. In the second case of unsupervised methods, we do not observe the true value of

vi for any documents. The function relating ci and vi is unknown, but we are willing to impose

sufficient structure on it to allow us to infer vi from ci. This class includes principal component

analysis (PCA), as well as text-specific methods such as latent Dirichlet allocation (LDA, topic

modeling) and its variants. Finally, in some cases vi includes both observed and latent attributes

for a semi-supervised analysis.

The final category of methods we discuss are deep learning techniques, including neural net-

works and distributed language models. These leverage richer representations of the underlying

text than the token counts that underlie other methods. They have seen limited application in eco-

nomics to date, but their dramatic successes in other machine learning domains suggest they are

likely to have high value in the future.

We close in Section 3.4 with some broad recommendations for practitioners.

3.1 Text regression

Suppose there is an attribute of interest vi for document i that a researcher wishes to predict from

the text counts ci. This is a regression problem like any other, except that the high-dimensionality

of ci makes OLS and other standard techniques infeasible.

3.1.1 Penalized linear models

The most popular strategy for very high-dimensional regression in contemporary statistics and

machine learning is the estimation of penalized linear models, particularly with L1 penalization.

We recommend this strategy for most text regression applications: linear models are intuitive and
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Figure 1: From left to right, L2 costs (ridge, Hoerl and Kennard 1970), L1 (lasso, Tibshirani 1996), the
“elastic net” mixture of L1 and L2 (Zou and Hastie 2005), and the log penalty (Candes et al. 2008).

interpretable, fast high-quality software is a available for big sparse input matrices like our C,

and for simple text-regression tasks it is seldom possible to do much better (e.g., out-of-sample

prediction) than penalized linear models when the input dimension is near to the sample size.

Linear models in the sense we mean here are those where vi depends on ci through a linear index

ηi = α +x′iβββ , where xi is a known transformation of the text token counts, ci, and E[vi|xi] = f (ηηη i)

for some link function f (·) . The link function may also be linear, or it may be a non-linear

function, as in the case of logistic regression.

Common transformations are the identity xi = ci, normalization by document length xi = ci/mi

with mi = ∑ j ci j, or the positive indicator xi j = 1[ci j>0]. The best choice is application-specific, and

may be driven by interpretability; does one wish to interpret β j as the added effect of an extra count

for token j (if so, use xi j = ci j) or as the effect of the presence of token j (if so, use xi j = 1[ci j>0])?

The identity is a reasonable default in many settings.

Write l(α,βββ ) for an unregularized objective proportional to the negative log likelihood,

− logp(vi|xi). For example, in Gaussian (linear) regression, l(α,βββ )=∑i (vi−ηi)
2 and in binomial

(logistic) regression, l(α,βββ ) = −∑i [ηivi− log(1+ eηi)] for vi ∈ {0,1}. A penalized estimator is

then the solution to

min

{
l(α,βββ )+nλ

p

∑
j=1

κ j(|β j|)

}
, (1)

where λ > 0 controls overall penalty magnitude and κ j(·) are increasing “cost” functions that

penalize deviations of the β j from zero.

A few common cost functions are shown in Figure 1. Those that have a non-differentiable
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spike at zero (all but ridge) lead to sparse estimators, with some coefficients set to exactly zero.

The curvature of the penalty away from zero dictates the weight of shrinkage imposed on the

nonzero coefficients: L2 costs increase with coefficient size; lasso’s L1 penalty has zero curvature

and imposes constant shrinkage, and as curvature goes towards −∞ one approaches the L0 penalty

of subset selection. The lasso’s L1 penalty (Tibshirani 1996) is extremely popular: it yields sparse

solutions (some β̂ j will be exactly zero) with a number of desirable properties (e.g., Bickel et al.

2009; Wainwright 2009; Belloni et al. 2011; Buhlmann and van de Geer 2011), and the number

of nonzero estimated coefficients is an unbiased estimator of the regression degrees of freedom

(which is useful in model selection; see Zou et al. 2007). Penalties with a bias that diminishes

with coefficient size, such as the log penalty in Figure 1 (Candes et al. 2008), the smoothly clipped

absolute deviation (SCAD) of Fan and Li (2001), or the adaptive lasso of Zou (2006), have been

promoted in the statistics literature as improving upon the lasso by providing consistent variable

selection and estimation in a wider range of settings. These diminishing bias penalties lead to

increased computation costs (due to a non-convex loss), but there exist efficient approximation

algorithms (see, e.g., Fan et al. 2014; Taddy 2016).

Focusing on L1 regularization, re-write the penalized linear model deviance objective as

min

{
l(α,βββ )+nλ

p

∑
j=1

ω j|β j|

}
. (2)

A common strategy sets ω j so that the penalty cost for each coefficient is scaled by the sample

standard deviation of that covariate. In text analysis, where each covariate corresponds to some

transformation of a specific text token, this type of weighting is referred to as “rare feature up-

weighting” (e.g., Manning et al. 2008) and is generally thought of as good practice: rare words are

often most useful in differentiating between documents.3

Large λ leads to simple model estimates, in the sense that most coefficients will be set at or

close to zero, while as λ → 0 we approach maximum likelihood estimation (MLE). Since there is

no way to define an optimal λ a priori, standard practice is to compute estimates for a large set of

possible λ and then use some criterion to select the one that yields the best fit.

We denote the result of these repeated estimations as a regularization path: a p×T field of

3This is the same principle which motivates “inverse-document frequency” weighting schemes, such as tf-idf.
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β̂ββ λ t estimates obtained while moving from high to low penalization along λ 1 > λ 2 . . . > λ T ; least-

angle regression (LARS) in Efron et al. (2004) is a well known example.4 These paths typically

begin at λ 1 set to the infimum of λ such that all coefficients in (1) are set to zero, and proceed

down to some pre-specified λ T (e.g., λ T = 0.01λ 1). Fortunately, there are efficient algorithms

for common cost functions that solve for the entire regularization path (e.g., Friedman et al. 2010)

rather than literally estimating the model for each value of λ . With high-dimensional sparse inputs

(as we have in text regression), this means the paths are often solvable in far less time than would

be required for a brute-force least-squares solution.

Several criteria are available to choose an optimal λ given the path β̂ββ λ t . One common approach

is to leave out part of the training sample in estimation and then choose the λ that yields the best

out-of-sample fit according to some criterion such as mean squared error. Rather than work with

a single leave-out sample, researchers most often use K-fold cross-validation (CV). This splits the

sample S= {xi,vi}n
i=1 into K disjoint subsets Sk, and then fits the full regularization path K times

excluding each Sk in turn. This yields K realizations of the mean squared error or other out-of-

sample fit measure for each value of λ . Common rules are to select the value of λ which minimizes

the average error across these realizations, or (more conservatively) to choose the largest λ with

mean error no more than one standard error away from the minimum.

An analytic alternative to cross-validation is Akaike’s information criteria (AIC; Akaike 1973),

particularly the AICc version described in Flynn et al. (2013) that is bias-corrected for high-

dimensional applications. AICc defines a criterion function AICc(λ ) = 2l(αλ ,βββ λ )+2dfλ
n

n−dfλ−1 ,

where dfλ is the regression degrees of freedom. For the lasso, dfλ is equal to the number of

nonzero estimated coefficients under penalty λ (Zou et al. 2007). AICc selection chooses λ to

minimize AICc(λ ). Another option is the Bayesian information criterion (BIC) of Schwarz (1978),

BIC(λ ) = l(αλ ,βββ λ )+dfλ logn, which is motivated as an approximation to the Bayesian posterior

marginal likelihood in Kass and Wasserman (1995). Roughly, BIC minimization attempts to find

the λ that has the highest probability of minimizing the expected error. The BIC tends to choose

simpler models than cross-validation error minimization or AICc. Zou et al. (2007) recommend

BIC for lasso penalty selection whenever variable selection, rather than predictive performance, is

the primary goal.

4Each β̂ββ λ t implies an associated intercept estimate α̂λ t which we’ve omitted for simplicity.
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3.1.2 Bayesian regression methods

The penalized methods above can all be interpreted as posterior maximization under some prior.

For example, ridge regression maximizes the posterior under independent Gaussian priors on each

coefficient while Park and Casella (2008) and Hans (2009) give Bayesian interpretations to the

lasso. See also the horseshoe of Carvalho et al. (2010) and the double Pareto of Armagan et al.

(2013) for Bayesian analogues of diminishing bias penalties like the log penalty on the right of

Figure 1.

For those looking to do a full Bayesian analysis for high-dimensional (e.g., text) regression,

an especially appealing model is the spike-and-slab introduced in George and McCulloch (1993).

This models the distribution over regression coefficients as a mixture between two densities cen-

tered at zero—one with very small variance (the spike) and another with large variance (the slab).

This model allows one to compute posterior variable inclusion probabilities as, for each coefficient,

the posterior probability that it came from the slab and not spike component. Due to a need to in-

tegrate over the posterior distribution, e.g., via Markov chain Monte Carlo (MCMC), inference for

spike-and-slab models is much more computationally intensive than fitting the penalized regres-

sions of Section 3.1.1. However, Yang et al. (2016) argue that spike-and-slab estimates based on

short MCMC samples can be useful in application, while Scott and Varian (2014) have engineered

efficient implementations of the spike-and-slab model for big data applications. These procedures

give a full accounting of parameter uncertainty, which we miss in a quick penalized regression.

3.1.3 Nonlinear text regression

Penalized linear models are the most widely applied tools for text regression. However, there

are many other tools from machine learning that may be useful in certain cases where the linear

specification is too restrictive.

A reliable class of regression and classification methods are built around decision trees. Al-

though the single classification algorithms and regression trees (CART) of Breiman et al. (1984)

can be difficult to tune to avoid overfit, techniques such as bagging (yielding the random forests of

Breiman 2001) and boosting (see Hastie et al. 2009) have been hugely successful in construction

of robust tree-based regression. (Hastie et al. 2009 provide an overview of these methods). In
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addition, see Wager et al. (2014) and Wager and Athey (2015) for results on confidence intervals

for Random Forests; also see Taddy (2015a) and Taddy et al. (2016) for interpretation of Random

Forests as a Bayesian posterior over potentially optimal trees.

The benefits of tree models—nonlinearity and high-order interaction detection—are typically

less useful with high-dimensional inputs. While we would generally recommend tree models, and

especially random forests, they are not often worth the effort for simple text regression. Trees are

likely to be most useful for a final prediction step after some of the dimension reduction derived

from the generative models in Section 3.2.

Another method which has appeared in the social science literature is support vector machines,

or SVMs, first developed in Vapnik (1996). These are used when V is categorical. An SVM finds

hyperplanes in a basis expansion of C that partition the observations into sets with equal response

(i.e., so that vi are all equal in each region). Hastie et al. (2009 chap.12) and Murphy (2012 chap.

14) provide detailed overviews. One drawback of SVMs is that they cannot be easily connected

to the estimation of a probabilistic model and the resulting fitted model can sometimes be difficult

to interpret.5 Moreover, SVMs have some limitations when the dimension of C is large: the basis

expansions will tend to lead to overfit so that their application requires extensive cross-validation

and tuning (Hastie et al. 2009; Murphy 2012), and their performance suffers in the presence of

many spurious “noise” inputs (Hastie et al. 2009).6

3.2 Generative language models

Text regression treats the token counts as generic high-dimensional input variables, without any

attempt to model structure that is specific to language data. In many settings it is useful to instead

propose a generative model for the text tokens to learn about how the attributes influence word

choice and account for various dependencies between words and between attributes. The words

in a document are viewed as the realization of some stochastic process. The generative process is

defined through a probability model for p(ci|vi).

5Polson and Scott (2011) provide a pseudo-likelihood interpretation for a variant of the SVM objective.
6Our own experience has led us to lean away from SVMs for text analysis in favor of more easily interpretable

models. Murphy (2012 chap. 14.6) attributes the popularity of SVMs in some application areas to an ignorance of
alternatives.
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3.2.1 Unsupervised generative models

In the unsupervised setting we have no direct observations of the true attributes vi. Our infer-

ence about these attributes must therefore depend entirely on strong assumptions we are willing to

impose on the structure of the model p(ci|vi).

A typical probability model implies that each observation ci is a conditionally independent

draw from the vocabulary of possible tokens according to some document-specific token proba-

bility vector, say qi = [qi1 . . .qip]
′. Conditioning on document length, mi = ∑ j ci j, this implies a

multinomial distribution for the counts

ci ∼MN(qi,mi). (3)

This multinomial model underlies the vast majority of contemporary statistical models for text.

Under the basic model in (3), a connection between text and attributes is defined through the

link function qi = q(vi). The topic model specification of Blei et al. (2003) has

E

[
ci

mi

]
= qi = vi1θθθ 1 + vi2θθθ 2 + . . .+ vikθθθ k = ΘΘΘvi (4)

where attributes vil are now referred to as topic weights, restricting vil ≥ 0 and ∑
k
l=1 vil = 1, and

each topic θθθ l is a probability vector over possible tokens: θl j ≥ 0 and ∑
p
j=1 θl j = 1. Topic modeling

is alternatively labeled as “latent Dirichlet allocation,” (LDA) which refers to the Bayesian model

in Blei et al. (2003) that treats each vi and θθθ l as generated from a Dirichlet-distributed prior.7

Since its introduction into text analysis, topic modeling has become hugely popular.8 (See Blei

2012 for a high-level overview.) The model has been especially useful in political science (e.g.,

Grimmer 2010), where researchers have been successful in attaching political issues and beliefs to

the estimated latent topics.

Since the vi are of course latent, estimation for topic models tends to make use of some al-

7An alternative specification that is popular in political science (e.g., Quinn et al. 2010) keeps θθθ l as Dirichlet-
distributed but treats vi as a draw of a single categorical random variable, so that one vil = 1 while the rest are zero.
This may be most appropriate for short documents, such a press releases or single speeches.

8The same model was independently introduced in genetics by Pritchard et al. (2000) for factorizing gene expres-
sion as a function of latent populations; it has been similarly successful in that field. Latent Dirichlet allocation is also
an extension of a related mixture modeling approach in the latent semantic analysis of Hofmann (1999).
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ternating inference for V|ΘΘΘ and ΘΘΘ|V. One possibility is to employ a version of the expectation-

maximization algorithm (EM) to either maximize the likelihood implied by (3) and (4) or, after

incorporating the usual Dirichlet priors on vi and θθθ l , to maximize the posterior; this is the ap-

proach taken in Taddy (2012; see this paper also for a review of topic estimation techniques).

Alternatively, one can target the full posterior distribution p(ΘΘΘ,V | ci). Estimation, say for ΘΘΘ, then

proceeds by maximization of the estimated marginal posterior, say p(ΘΘΘ | ci). Due to the size of

the datasets and dimension of the models, posterior approximation for topic models usually uses

some form of variational inference (Wainwright and Jordan 2008) that fits a tractable parametric

family to be as close as possible in Kullback-Leibler divergence from the true posterior. This vari-

ational approach was used in the original Blei et al. (2003) paper and in many applications since.

Hoffman et al. (2013) present a stochastic variational inference algorithm that takes advantage of

techniques for optimization on massive data; this algorithm is used in many contemporary topic

modeling applications.

The choice of k, the number of topics, is often fairly arbitrary. Data-driven choices do exist:

Taddy (2012) describes a model selection process for k that is based upon Bayes factors, Airoldi

et al. (2010) provide a cross-validation (CV) scheme, while Teh et al. (2006) use Bayesian non-

parametric techniques that view k as an unknown model parameter. In practice, however, it is very

common to simply start with a number of topics on the order of ten, and then adjust the number

of topics in whatever direction seems to improve interpretability. Whether this ad hoc procedure

is problematic depends on the application. As we discuss below, in many applications of topic

models to date the goal is to provide an intuitive description of text rather than inference on some

underlying “true” parameters; in these cases, the ad hoc selection of the number of topics may be

reasonable.

Many readers will recognize the model in (4) as a factor model for the normalized token counts.

Indeed, a topic model is simply a factor model for multinomial data. Standard least-squares factor

models have long been employed in “latent semantic analysis” (LSA; Deerwester et al. 1990),

which applies PCA (i.e., singular value decompositions) to token count transformations such as

xi = ci/mi or xi j = ci j log(d j) where d j =∑i1[ci j>0]. Topic modeling and its precursor, probabilistic

LSA, are generally seen as improving on such approaches by replacing arbitrary transformations

with a plausible generative model.
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The basic topic model has been generalized and extended in variety of ways. A prominent

example is the dynamic topic model of Blei and Lafferty (2006), which considers documents that

are indexed by date (e.g., publication date for academic articles) and allows the topics, say ΘΘΘt , to

evolve smoothly in time. Another example is the supervised topic model of Blei and McAuliffe

(2007), which combines the standard topic model with an extra equation relating the weights vi

to some additional attribute yi in p(yi|vi). This pushes the latent topics to be relevant to yi as well

as the text ci. In these and many other extensions, the modifications are designed to incorporate

available document metadata (in these examples, time and yi respectively).

3.2.2 Supervised generative models

Perhaps the most common supervised generative model is the so-called naive Bayes classifier (e.g.,

Murphy 2012) which treats counts for each token as independent with class dependent means (e.g.,

different token count means for different authors). In this case, vi is a univariate categorical variable

and the token count distribution is factorized as p(ci|vi) = ∏ j p j(ci j|vi), thus “naively” specifying

conditional independence between tokens j. This rules out the possibility that by choosing to say

one token (say, “hello”) we reduce the probability that we say some other token (say, “hi”). The

parameters of each independent token distribution are estimated, yielding p̂ j for j = 1 . . . p, and

classification probabilities for the possible class labels are obtained via Bayes’s rule as

p(V|ci) =
p(ci|V)πv

∑a p(ci|a)πa
=

∏ j p j(ci j|V)πv

∑a ∏ j p j(ci j|a)πa
(5)

where πa is the prior probability on class a (usually just one over the number of possible classes).

In text analysis, Poisson naive Bayes procedures, with p(ci j|V) = Pois(ci j; θv j) where E[ci j|V] =

θv j, have been used as far back as Mosteller and Wallace (1963). Some recent social science

applications use binomial naive Bayes, which sets p(ci j|V) = Bin(ci j; θv j) where E[ci j/mi|V] =

θv j. The Poisson model has some statistical justification in the analysis of text counts (Taddy

2015b), but the binomial specification seems to be more common in off-the-shelf software.

A possibly more plausible sampling model for text token counts is the multinomial model of

(3). This introduces limited dependence between token counts, encoding the fact that using one

token for a given utterance must slightly lower the expected count for all other tokens. Combin-
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ing such a sampling scheme with generalized linear models, Taddy (2013b) advocates the use of

multinomial logistic regression to connect text counts with observable attributes. The generative

model specifies probabilities in the multinomial distribution of (3) as

qi j =
eηi j

∑
p
h=1 eηih

, ηi j = α j +v′iϕϕϕ j. (6)

Taddy (2013a,b) applies these models in the setting of univariate or low dimensional vi, focusing

on their use for prediction of future document attributes through an inversion strategy discussed

below. More recently, Taddy (2015b) provides a distributed-computing strategy that allows the

model implied by (6) to be fit (using penalized deviance methods as detailed in Section 3.1.1)

for high-dimensional vi on massive corpora. This facilitates language models containing a large

number of sources of heterogeneity (even document-specific random effects), thus allowing social

scientists to apply familiar regression analysis tools in their text analyses.

Application of the logistic regression text models implied by (6) often requires an inversion

step for inference about attributes conditional on text—that is, to map from p(ci|vi) to p(vi|ci).

The simple Bayes’s rule technique of (5) is difficult to apply beyond a single categorical attribute.

Instead, Taddy (2013b) uses the inverse regression ideas of Cook (2007) in deriving sufficient

projections from the fitted models. Say ΦΦΦ = [ϕϕϕ1 · · ·ϕϕϕ p] is the matrix of regression coefficients

from (6) across all tokens j; then the token count projection ΦΦΦci is a sufficient statistic for vi in the

sense that

vi ⊥⊥ ci |ΦΦΦci, (7)

i.e., the attributes are independent of the text counts conditional upon the projection. Thus, the

fitted logistic regression model yields a map from high-dimensional text to the presumably lower

dimensional attributes of interest, and this map can be used instead of the full text counts for future

inference tasks. Use of projections built in this way is referred to as multinomial inverse regres-

sion (MNIR). The same idea can also be applied to only a subset of the variables in vi, yielding

projections that are sufficient for the text content relevant to those variables after conditioning on

the other attributes in vi. Taddy (2015b) details use of such sufficient projections in a variety of

applications, including attribute prediction, treatment effect estimation, and document indexing.

New techniques are arising that combine MNIR techniques with the latent structure of topic
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models. For example, Rabinovich and Blei (2014) directly combine the logistic regression in (6)

with the topic model of (4) in a mixture specification. Alternatively, the structural topic model of

Roberts et al. (2013) allows both topic content (θθθ l) and topic prevalence (latent vi) to depend on

observable document attributes. Such semi-supervised techniques seem promising for their com-

bination of the strong text-attribute connection of MNIR with topic modeling’s ability to account

for latent clustering and dependency within documents.

3.3 Deep learning and word embedding

There is a host of other machine learning techniques that have been applied to text regression. The

most common techniques not mentioned thus far are neural networks, which typically allow the

inputs to act on the response through one or more layers of interacting nonlinear basis functions

(e.g., see Bishop 1995). In high-dimensional and very noisy settings, such as in text analysis, the

classical neural nets tend to suffer from the same issues as SVMs: they often overfit and can be

difficult to tune. However, the recently popular “deep” versions of neural networks (with many

layers, and fewer nodes per layer) incorporate a number of innovations that allow them to work

better, faster, and with less tuning even in difficult text analysis problems. Such deep neural nets

(DNNs) now provide the state-of-the-art solution in many machine learning tasks (LeCun et al.

2015).

Goodfellow et al. (2016) provide a thorough textbook overview of these “deep learning” tech-

nologies, while Goldberg (2016) is an excellent primer on their use in natural language processing.

The success of DNNs is due to a number of factors. For example, algorithms for stable and efficient

stochastic gradient descent (e.g., Duchi et al. 2011; Kingma and Ba 2014) allow for fast training on

massive datasets. The high-level languages available for programming DNNs—e.g., Tensorflow,

Theano, and CNTK—allow for quick development of software that runs on distributed computing

resources (e.g., many graphical processing units). A number of regularization techniques have

developed, such as dropout training (Srivastava et al. 2014), to avoid the issues of overfitting that

plague older neural networks. DNNs are now employed in complex natural language processing

tasks, such as translation (Sutskever et al. 2014; Wu et al. 2016) and syntactic parsing (Chen and

Manning 2014), as well as in exercises of relevance to social scientists—for example, Iyyer et al.
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(2014) infer political ideology from text using a DNN.

The structure of DNNs varies greatly across applications and implementations, and a full survey

is beyond the scope of this article. However, one common hallmark of successful deep learning is

that the model inputs undergo a compression, or dramatic dimension reduction, at the first layer of

the network. For example, each node in a “convolution layer” of a neural net applies a different

matrix convolution—i.e., a linear smoother—to its inputs. This technique has been used heavily in

vision and image processing applications (where the inputs are pixels), but also in text applications

where the inputs encode the identity of words (Johnson and Zhang 2015), parts of words (Wu et al.

2016), or even characters (Zhang et al. 2015) as they appear in sequence in a sentence.

An alternative strategy for text inputs is to include a pre-processing step that replaces word

identities—encoded as binary indicators in a vocabulary-length vector—with a word embedding

(Mikolov et al. 2013) that places each word in a fixed-dimensional vector space. This approach is

strongly advocated, e.g., by Chen and Manning (2014) and by Goldberg (2016), and it forms the

basis for many DNNs that involve textual data. However useful these embeddings are as part of

the DNN architecture, they are also valuable on their own for mapping from words and language

to a vector space where we can compute distances and angles between words. Indeed, such word

embeddings have been adopted by social scientists as a useful representation of text data. Below,

we outline how these embeddings are estimated and describe some example applications.

3.3.1 Word embeddings

Throughout this article, documents have been represented through their token count vectors, ci.

This is a crude language summarization, but it is easy to work with and has been useful as a

foundation for much text analysis. However, the newer word embedding representations treat

textual content in its more full format, as an ordered sequence of transitions between words. These

embeddings, also known as distributed language representations, map from sentences to a discrete

path through a latent vector space. This vector space, say V, consists of an embedding (location)

for every vocabulary word inRK , where K is the dimension of the latent representation space. The

embeddings are chosen to optimize, perhaps approximately, an objective function defined on the

original text such as a likelihood for word occurrences.

Distributed language representations have been studied since the early work on neural net-
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works (Rumelhart et al. 1986) and have long been applied in natural language processing (Morin

and Bengio 2005). A new and popular embedding technique is the Word2Vec of Mikolov et al.

(2013). This trains the vector representations for each word to be highly probable given the vector

representations of the surrounding context. Say ws j ∈ {1 . . . p} denotes the identity of the jth word

in sentence s. Most word embedding algorithms can be viewed as solving

argmax
V,U

∑
s,t

t+b

∑
j 6=t, j=t−b

v′ws j
uwst −A(V,U) (8)

where each of V and U are K× p matrices with columns (e.g., vws j) denoting the embedding of

each word in a vector space. Here, A(·, ·) is a normalizing function. In Word2Vec it is implied

by the multinomial likelihood, while for the Global Vector for Word Representation (GloVe) of

Pennington et al. (2014), another popular embedding algorithm, A(·, ·) can be derived from their

specific squared-error loss function. We note that there are actually two embedding spaces esti-

mated here—both V and U. In many setups these will be near mirror images of each other, and

only one space is reported, but in general these two spaces (and the angles between words across

the two) can both be useful.

Researchers are beginning to connect these vector-space language models with the sorts of

document attributes that are of interest in social science. For example, Le and Mikolov (2014)

estimate latent document scores in a vector space, while Taddy (2015c) develops an inversion

rule for document classification based upon Word2Vec. In one especially compelling application,

Bolukbasi et al. (2016) estimate the direction of gender in an embedding space by averaging the

angles between female and male descriptors. They then show that stereotypically male and female

jobs, for example, live at the corresponding ends of the implied gender vector. This information

is used to derive an algorithm for removing these gender biases, so as to provide a more “fair” set

of inputs for machine learning tasks. Approaches like this, which use embeddings as the basis for

mathematical analyses of text, can play a role in the next generation of text-as-data applications in

social science.

23



3.4 Some practical advice

The methods above will be compared and contrasted in subsequent discussion of applications. In

broad terms, however, we can make some rough recommendations for practitioners.

3.4.1 Choosing the best approach for a specific application

Dictionary-based methods heavily weight prior information about the function mapping features ci

to outcomes vi. They are therefore most appropriate in cases where such prior information is strong

and reliable, and where information in the data is correspondingly weak. An obvious example is

a case where the outcomes vi are not observed for any i, so there is no training data to use to

fit a supervised model, and where the mapping of interest does not match the factor structure of

unsupervised methods such as topic models. In the setting of Baker et al. (2016), for example, there

is no ground truth data on the actual level of policy uncertainty reflected in particular articles, and

fitting a topic model would be unlikely to endogenously pick out policy uncertainty as a topic. A

second example is where some training data does exist, but it is sufficiently small or noisy that the

researcher believes a prior-driven specification of f (·) is likely to be more reliable. While we are

optimistic about the value of more sophisticated statistical methods, we also expect the dictionary

approach to remain the optimal choice in many settings.

Text regression is generally a good choice for predicting a single attribute, especially when

one has a large amount of labeled training data available. As described in Ng and Jordan (2002)

and Taddy (2013c), supervised generative techniques such as naive Bayes and MNIR can improve

prediction when p is large relative to n; however, these gains diminish with sample size due to

the asymptotic efficiency of many text regression techniques. In text regression, we have found

that it is usually unwise to attempt to learn flexible functional forms unless n is much larger than

p. When this is not the case, we generally recommend linear regression methods. Given the

availability of fast and robust tools (gamlr and glmnet in R, and scikit-learn in Python), and the

typically high dimensionality of text data, most prediction tasks in social science with text inputs

are most efficiently addressed via penalized linear regression.

When there are multiple attributes of interest, and one wishes to resolve or control for interde-

pendencies between these attributes and their effect on language, then one will need to work with a
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generative model for text. Multinomial logistic regression and its extensions can be applied to such

situations, particularly via distributed multinomial regression. Alternatively, for corpora of many

unlabeled documents (or when the labels do not tell the whole story that one wishes to investigate),

topic modeling is the obvious approach. Word embeddings are also becoming an option for such

questions. In the spirit of contemporary machine learning, it is also perfectly fine to combine tech-

niques. For example, a common setting will have a large corpora of labeled documents as well as

a smaller set of documents about which some metadata exist. One approach is to fit a topic model

on the larger corpora, and to then use these topics as well as the token counts for supervised text

regression on the smaller labeled corpora.

3.4.2 Model validation and interpretation

Ex ante criteria for selecting an empirical approach are suggestive at best. In practice, it is also

crucial to validate the performance of the estimation approach ex post. Real research often involves

an iterative tuning process with repeated rounds of estimation, validation, and adjustment.

When the goal is prediction, the primary tool for validation is checking out-of-sample pre-

dictive performance on data held out from the main estimation. In Section 3.1.1, we discussed

the technique of cross-validation (CV) for penalty selection, a leading example. More generally,

whenever one works with complex and high-dimensional data, it is good practice to reserve a test-

set of data to use in estimation of the true average prediction error. Looping across multiple test

sets, as in CV, is a common way of reducing the variance of these error estimates. (See Efron 2004

for a classic overview.)

In many social science applications, the goal is to go beyond prediction and use the values V̂ in

some subsequent descriptive or causal analysis. In these cases, it is important to also validate the

accuracy with which the fitted model is capturing the economic or descriptive quantity of interest.

One very effective approach is what we call manual audits: cross-checking some subset of

the fitted values against the coding a human would produce by hand. An informal version of this

is for a researcher to simply inspect a subset of documents alongside the fitted V̂ and evaluate

whether the estimates align with the concept of interest. A formal version would involve having

one or more people manually classify each document in a subset and evaluating quantitatively the

consistency between the human and machine codings. The subsample of documents does not need
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to be large in order for this exercise to be valuable—often as few as 20 or 30 documents is enough

to provide a sense of whether the model is performing as desired.

This kind of auditing is especially important for dictionary methods. Validity hinges on the

assumption that a particular function of text features—counts of positive or negative words, an

indicator for the presence of certain keywords, etc.—will be a valid predictor of the true latent

variable V. In a setting where we have sufficient prior information to justify this assumption, we

typically also have enough prior information to evaluate whether the resulting classification looks

accurate. An excellent example of this is Baker et al. (2016), who perform a careful manual audit

to validate their dictionary-based method for identifying articles that discuss policy uncertainty.

Audits are also valuable in studies using other methods. In Gentzkow and Shapiro (2010),

for example, the authors perform an audit of news articles that their fitted model classifies as

having right-leaning or left-leaning slant. They do not compare this against hand-coding directly,

but rather count the number of times the key phrases that are weighted by the model are used

straightforwardly in speech, as opposed to occurring in quotation marks.

A second approach to validating a fitted model is inspecting the estimated coefficients or other

parameters of the model directly. In penalized linear regression, which we recommend for many

text regression applications, there is an abundant literature on statistical properties of the estimated

regression coefficients. For example, see Buhlmann and van de Geer (2011) and Hastie et al. (2015)

for texts on the subject. Unfortunately, the practical reality is that—apart from settings where

the true model is extremely sparse—coefficients in these high-dimensional regressions should be

viewed with caution. The inevitable multicollinearity makes individual parameters difficult to

interpret. However, it is still a good exercise to look at the most important coefficients to see if

they make intuitive sense in the context of a particular application. Note that “most important”

can be defined in a number of ways; one can rank estimated coefficients by their absolute value,

or by absolute value scaled by the standard deviation of the associated covariate, or perhaps by the

order in which they first become nonzero in a lasso path of decreasing penalties. Alternatively, see

Gentzkow et al. (2016) for application-specific term rankings. We suggest looking at a number of

different term orderings when attempting to audit a text-regression model fit.

Inspection of fitted parameters is generally more informative in the context of a generative

model. Even in that case, however, it can remain difficult to interpret individual parameters and
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we recommend caution. For example, Taddy (2015b) finds that for MNIR models, getting an

interpretable set of word loadings requires careful penalty tuning and the inclusion of appropriate

control variables. As in text regression, it is usually worthwhile to look at the largest coefficients

for validation but not take the smaller values too seriously.

Interpretation or story building around estimated parameters tends to be a major focus for

topic models and other unsupervised generative models. Interpretation of the fitted topics usually

proceeds by ranking the tokens in each topic according to token probability, θl j, or by token lift

θl j/p̄ j with p̄ j =
1
n ∑i ci j/mi. For example, if the five highest lift tokens in topic l for a model fit to

a corpus of restaurant reviews are another.minute, flag.down, over.minute, wait.over, arrive.after,

we might expect that reviews with high vil correspond to negative experiences where the patron

was forced to wait on service and food (example from Taddy 2012). Again, however, we caution

against the over-interpretation of these unsupervised models: the posterior distributions informing

parameter estimates are highly multimodal, and multiple topic model runs can lead to multiple

different interpretations. As argued in Airoldi and Bischof (2017) and in a comment by Taddy

(2017), the best way to build interpretability for topic models is usually to add some supervision.

4 Applications

We now turn to applications of text analysis in economics and related social sciences. Rather than

presenting a comprehensive literature survey, the goal of this section is to present a selection of

illustrative papers to give the reader a sense of the wide diversity of questions that may be addressed

with textual analysis and to provide a flavor of how some of the methods in Section 3 are applied

in practice.

4.1 Authorship

A classic descriptive problem is inferring the author of a document. While this is not usually a

first-order research question for social scientists, it provides a particularly clean example, and a

good starting point to understand the applications that follow.

In what is often seen as the first modern statistical analysis of text data, Mosteller and Wallace

(1963) use text analysis to infer the authorship of the disputed Federalist Papers that had alterna-
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tively been attributed to either Alexander Hamilton or James Madison. They define documents i

to be individual Federalist Papers, the data features ci of interest to be counts of function words

such as “an,” “of,” and “upon” in each document, and the outcome vi to be an indicator for the

identity of the author. Note that the function words the authors focus on are exactly the “stop

words” that are frequently excluded from analysis. The key feature of these words is that their use

by a given author tends to be stable regardless of the topic, tone, or intent of the piece of writing.

This means they provide little valuable information if the goal is to infer characteristics such as

political slant or discussion of policy uncertainty that are independent of the idiosyncratic styles

of particular authors. When such styles are the object of interest, however, function words become

among the most informative text characteristics. Mosteller and Wallace (1963) use a sample of

Federalist Papers, whose authorship by either Madison or Hamilton is undisputed, to train a naive

Bayes classifier (a supervised generative model) in which the probabilities p
(
ci j|vi

)
of each phrase

j are assumed to be independent Poisson or negative binomial, and the inferences for the unknown

documents are made by Bayes’s rule. The results provide overwhelming evidence that all of the

disputed papers were authored by Madison.

Stock and Trebbi (2003) apply similar methods to answer an authorship question of more direct

interest to economists: who invented instrumental variables? The earliest known derivation of the

instrumental variables estimator appears in an appendix to The Tariff on Animal and Vegetable Oils,

a 1928 book by statistician Philip Wright. While the bulk of the book is devoted to a “painfully

detailed treatise on animal and vegetable oils, their production, uses, markets and tariffs,” the

appendix is of an entirely different character, with “a succinct and insightful explanation of why

data on price and quantity alone are in general inadequate for estimating either supply or demand;

two separate and correct derivations of the instrumental variables estimators of the supply and

demand elasticities; and an empirical application” (Stock and Trebbi 2003 pg. 177). The contrast

between the two parts of the book has led to speculation that the appendix was not written by

Philip Wright, but rather by his son Sewall. Sewall Wright was an economist who had originated

the method of “path coefficients” used in one of the derivations in the appendix. Several authors

including Manski (1988) are on record attributing authorship to Sewall; others including Angrist

and Krueger (2001) attribute it to Philip.

In Stock and Trebbi’s (2003) study, the outcome vi is an indicator for authorship by either
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Figure 2: Scatterplot of Authorship Predictions from PCA Method
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Second, we computed the two principal components regressions using only the 
first two principal components, then again using the first six principal components. 
The results are similar to those in Figure 1, assigning all the Appendix B and 

chapter 1 blocks to Philip. 

Source: Stock and Trebbi (2003).

Philip or Sewall. The data features ci =
[

c f unc
i cgram

i

]
are counts of the same function words

used by Mosteller and Wallace (1963) plus counts of a set of grammatical constructions (e.g,

“noun followed by adverb”) measured using an algorithm due to Mannion and Dixon (1997). The

training sample consists of 45 documents known to have been written by either Philip or Sewall,

and the test sample in which vi is unobserved consists of eight blocks of text from the appendix

plus one block of text from chapter 1 of The Tariff on Animal and Vegetable Oils included as a

validity check. The authors apply PCA. They extract the first four principal components from

c f unc
i and cgram

i respectively, and then run regressions of the binary authorship variable on the

principal components, resulting in predicted values v̂ f unc
i and v̂gram

i .

The results provide overwhelming evidence that the disputed appendix was in fact written by

Philip. Figure 2 plots the values
(

v̂ f unc
i , v̂gram

i

)
for all of the documents in the sample. Each

point in the figure is a document i, and the labels indicate whether the document is known to be

written by Philip (“P” or “1”), known to be written by Sewall (“S”), or of uncertain authorship

(“B”). The measures clearly distinguish the two authors, with documents by each forming clear,

non-overlapping clusters. The uncertain documents all fall squarely within the cluster attributed to

Philip, with the predicted values v̂ f unc
i , v̂gram

i ≈ 1.
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4.2 Stock prices

An early example analyzing news text for stock prediction appears in Cowles (1933). He subjec-

tively categorizes the text of editorial articles of Peter Hamilton, chief editor of the Wall Street

Journal from 1902 to 1929, as “bullish,” “bearish,” or “doubtful.” Cowles then uses these classi-

fications to predict future returns of the Dow Jones Industrial Average. Hamilton’s track record is

unimpressive. A market-timing strategy based on his Wall Street Journal editorials underperforms

a passive investment in the Dow Jones Industrial Average by 3.5 percentage points per year.

In its modern form, the implementation of text-based prediction in finance is computationally

driven, but is conceptually the same as Cowles’s approach. Rather than manually reading and

scoring each article based on the researcher’s subjective interpretation, the text corpus is tokenized

into a numeric array C, and this data is used in a statistical procedure to forecast a target quantity

V (the Dow Jones return, in the example of Cowles). We discuss three examples of recent papers

that study equity return prediction in the spirit of Cowles: one relying on a pre-existing dictionary,

one using regression techniques, and another using generative models.

Tetlock (2007) is a leading dictionary-based example of analyzing media sentiment and the

stock market. He studies word counts ci in the Wall Street Journal’s widely read “Abreast of the

Market” column. Counts from each article i are converted into a vector of sentiment scores v̂i

in 77 different sentiment dimensions based on the Harvard IV-4 psychosocial dictionary.9 The

time series of daily sentiment scores for each category (v̂i) are condensed into a single principal

component, which Tetlock names the “pessimism factor” due to the component’s especially close

association with the “pessimism” dimension of the sentiment categories.

The second stage of the analysis uses media pessimism measured from the “Abreast” column

to forecast stock market activity. High pessimism significantly negatively forecasts one-day-ahead

returns on the Dow Jones Industrial Average. This effect is transitory, and the short term index dip

associated with media pessimism mean reverts within a week, consistent with the interpretation

that article text is informative regarding media and investor sentiment, as opposed to containing

fundamental news that permanently impacts prices.

9While it has only recently been used in economics and finance, the Harvard dictionary and associated General
Inquirer software for textual content analysis dates to the 1960s and has been widely used in linguistics, psychology,
sociology, and anthropology.
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The number of studies using dictionary methods to study asset pricing phenomena is grow-

ing. Loughran and McDonald (2011) demonstrate that the widely used Harvard dictionary can

be ill-suited for financial applications. They construct an alternative, finance-specific dictionary

of positive and negative terms and document its improved predictive power over existing sen-

timent dictionaries. Bollen et al. (2011) document a significant predictive correlation between

Twitter messages and the stock market using other dictionary-based tools such as OpinionFinder

and Google’s Profile of Mood States. Wisniewski and Lambe (2013) show that negative media at-

tention of the banking sector, summarized via ad hoc pre-defined word lists, Granger-causes bank

stock returns during the 2007–2009 financial crisis and not the reverse, suggesting that journalistic

views have the potential to influence market outcomes, at least in extreme states of the world.

The use of text regression for asset pricing is exemplified by Jegadeesh and Wu (2013). They

estimate the response of company-level stock returns, vi, to text information in the company’s

annual report (token counts, ci). The authors’ objective is to determine whether regression tech-

niques, which estimate the association between words and outcomes of interest rather than relying

on pre-defined dictionary values, offer improved stock return forecasts relative to text summaries

based on sentiment dictionaries.

The authors propose the following regression model to capture correlations between occur-

rences of individual words and subsequent stock return realizations around regulatory filing dates

vi = a+b

(
∑

j
w j

ci j

∑ j ci j

)
+ εi.

Documents i are defined to be annual reports filed by firms at the Securities Exchange Commis-

sion. The outcome variable vi is a stock’s cumulative four-day return beginning on the filing day.

The independent variable ci j is a count of occurrences of word j in annual report i. The coefficient

w j summarizes the average association between an occurrence of word j and the stock’s subse-

quent return. The authors show how to estimate w j from a cross-sectional regression, along with

a subsequent rescaling of all coefficients to remove the common influence parameter b. Finally,

return predictor variables are built from the estimated weights, and are shown to have stronger out-

of-sample forecasting performance than dictionary-based indices from Loughran and McDonald

(2011). The results highlight the limitations of using fixed dictionaries for diverse predictive prob-
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lems, and that these limitations are often surmountable by estimating application-specific weights

via regression.

Manela and Moreira (2015) take a regression approach to construct an index of news-implied

market volatility based on text from the Wall Street Journal from 1890-2009. They apply support

vector regression, which uses a penalized least squares objective to identify a small subset of words

whose frequencies are most useful for matching patterns of turbulence in financial markets. Two

important findings emerge from their analysis. First, the terms most closely associated with market

volatility relate to government policy and wars. Second, high levels of news-implied volatility

forecast high future stock market returns. These two facts together give insight into the types of

risks that drive investors’ valuation decisions.

The closest modern analog of Cowles’s study is Antweiler and Frank (2004), who take a gen-

erative modeling approach to ask: How informative are the views of stock market prognosticators

who post on internet message boards? Similar to Cowles’s analysis, these authors classify post-

ings on stock message boards as “buy,” “sell,” or “hold” signals. But the vast number of postings,

roughly 1.5 million in the analyzed sample, makes subjective classification of messages infeasible.

Instead, generative techniques allow the authors to automatically classify messages.

The authors create a training sample of 1,000 messages, and form Vtrain by manually classify-

ing messages into one of the three categories. They then use the naive Bayes method described in

Section 3 to estimate a probability model that maps word counts of postings C into classifications

V̂ for the remaining 1.5 million messages. Finally, the buy/sell/hold classification of each message

is aggregated into an index that is used to forecast stock returns. Consistent with the conclusions

of Cowles, message board postings show little ability to predict stock returns. They do, however,

possess significant and economically meaningful information about stock volatility and trading

volume.10

4.3 Central bank sentiment

A related line of research analyzes the impact of communication from central banks on financial

markets. As banks rely more on these statements to achieve policy objectives, an understanding of

10Other papers that use naive Bayes and similar text classifiers to study behavioral finance questions include
Buehlmaier and Whited (2016), Li (2010), and Das and Chen (2007).

32



their effects is increasingly relevant.

Lucca and Trebbi (2011) use the content of Federal Open Market Committee (FOMC) state-

ments to predict fluctuations in Treasury securities. To do this, they use two different dictionary-

based methods—Google and Factiva semantic orientation scores—to construct v̂i, which quantifies

the direction and intensity of the ith FOMC statement. In the Google score, ci counts how many

Google search hits occur when searching for phrases in i plus one of the words from a list of

antonym pairs signifying positive or negative sentiment (e.g., “hawkish” versus “dovish”). These

counts are mapped into v̂i by differencing the frequency of positive and negative searches and

averaging over all phrases in i. The Factiva score is calculated similarly. Next, the central bank

sentiment proxies v̂i are used predict Treasury yields in a vector autoregression (VAR). They find

that changes in statement content, as opposed to unexpected deviations in the federal funds target

rate, are the main driver of changes in interest rates.

Born et al. (2014) extend this idea to study the effect of central bank sentiment on stock market

returns and volatility. They construct a financial stability sentiment index v̂i from Financial Stabil-

ity Reports (FSRs) and speeches given by central bank governors. Their approach uses a sentiment

dictionary to assign optimism scores to word counts ci from central bank communications. They

find that optimistic FSRs tend to increase equity prices and reduce market volatility during the

subsequent month.

Hansen et al. (2014) research how FOMC transparency affects debate during meetings by

studying a change in disclosure policy. Prior to November 1993, the FOMC meeting minutes were

secret, but following a policy shift minutes became public with a time lag. There are potential

costs and benefits of increased transparency, such as the potential for more efficient and informed

debate due to increased accountability of policymakers. On the other hand, transparency may make

committee members more cautious, biased toward the status quo, or prone to group-think.

The authors use the unsupervised method of topic modeling to study 149 FOMC meeting tran-

scripts during Alan Greenspan’s tenure. The unit of observation is a member-meeting. The vector

ci counts the words used by FOMC member m in meeting t, and i is defined as the pair (m, t). The

outcome of interest, vi, is a vector that includes the proportion of i’s language devoted to the K dif-

ferent topics (estimated from the fitted topic model), the concentration of these topic weights, and

frequency of data citation by i. Next, a difference-in-differences regression estimates the effects

33



of the change in transparency on v̂i. The authors find that, after the move to a more transpar-

ent system, inexperienced members discuss a wider range of topics (particularly during economic

discussion) and cite more data. They interpret this as evidence that transparency leads to greater

discipline and efficiency in the meetings.

4.4 Nowcasting

Important variables such as unemployment, retail sales, and GDP are measured at low frequency,

and estimates are released with a significant lag. Others, such as racial prejudice or local govern-

ment corruption are not captured by standard measures at all. Text produced online such as search

queries, social media posts, listings on job websites, and so on can be used to construct alternative

real-time estimates of the current values of these variables. By contrast with the standard exer-

cise of forecasting future variables, this process of using diverse data sources to estimate current

variables has been termed “nowcasting” in the literature (Banbura et al. 2013).

A prominent early example is the Google Flu Trends project. Zeng and Wagner (2002) note that

the volume of searches or web hits seeking information related to a disease may be a strong pre-

dictor of its prevalence. Johnson et al. (2004) provide an early data point suggesting that browsing

influenza-related articles on the website healthlink.com is correlated with traditional surveillance

data from the Centers for Disease Control (CDC). In the late 2000s, a group of Google engineers

built on this idea to create a product that predicts flu prevalence from Google searches using text

regression.

The results are reported in a widely-cited Nature article by Ginsberg et al. (2009). Their raw

data D consist of “hundreds of billions of individual searches from 5 years of Google web search

logs.” Aggregated search counts are arranged into a vector ci, where a document i is defined to be

a particular US region in a particular week, and the outcome of interest vi is the true prevalence of

flu in the region-week. In the training data, this is taken to be equal to the rate measured by the

CDC. The authors first restrict attention to the 50 million most common terms, then select those

most diagnostic of an outbreak using a text regression variant of partial least squares regression.

They first run 50 million univariate regressions of log(vi/(1− vi)) on log
(
ci j/

(
1− ci j

))
, where

ci j is the count of searches in i containing search term j. They then fit a sequence of multivariate
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regression models of vi on the top n terms j as ranked by average predictive power across regions

for n ∈ {1,2, ...}. Next, they select the value of n that yields the best fit on a hold-out sample. This

yields a regression model with n = 45 terms. The model produces accurate flu rate estimates for

all regions approximately 1–2 weeks ahead of the CDC’s regular report publication dates.11

Related work in economics attempts to nowcast macroeconomic variables using data on the

frequency of Google search terms. In Choi and Varian (2012) and Scott and Varian (2014, 2015),

search term counts are aggregated by week and by geographic location, then converted to location-

specific frequency indices. Forecasts of regional retail sales, new housing starts, and tourism ac-

tivity are all significantly improved by incorporating a few search term indices that are relevant

for each category in linear models. Their results suggest a potential for large gains in forecasting

power using web browser search data.

Saiz and Simonsohn (2013) use web search results to estimate the current extent of corruption

in US cities. Standard corruption measures based on surveys are available at the country and state

level, but not for smaller geographies. The authors use a dictionary approach in which the index

v̂i of corruption is defined to be the share of web pages containing the name of geographic area

i that also contain the word “corruption.” These counts are extracted from search engine results.

As a validation, the authors first show that country-level and state-level versions of their measure

correlate strongly with established corruption indicies and covary in a similar way with country and

state-level demographics. They then compute their measure for US cities, and study its observable

correlates.

Stephens-Davidowitz (2014) uses the frequency of racially charged terms in Google searches

to estimate levels of racial prejudice in different areas of the United States. Estimating prejudice

via traditional surveys is challenging because individuals are often reluctant to state their true

attitudes. The paper’s results suggest Google searches provide a less filtered and therefore more

accurate measure. The author uses a dictionary approach in which the index v̂i of racial animus in

area i is the share of searches originating in that area that contain a set of racist words. He then

11A number of subsequent papers argue that the more recent performance of the Google Flu Trends measure falls
short of what Ginsberg et al. (2009) suggest. Lazer et al. (2014), for example, show that the accuracy of the Google Flu
Trends model—which has not been re-calibrated or updated based on more recent data—has deteriorated dramatically,
and that in recent years it is outperformed by simple extrapolation from prior CDC estimates. This may reflect changes
in both search patterns and the epidemiology of the flu, and it suggests a general lesson that the predictive relationship
mapping text to a real outcome of interest may not be stable over time.
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uses these measures to estimate the impact of racial animus on votes for Barack Obama in the 2008

election, finding a statistically significant and economically large negative effect on Obama’s vote

share relative to the Democratic vote share in the previous election.

4.5 Policy uncertainty

Among the most influential applications of text analysis in the economics literature to date is

a measure of economic policy uncertainty (EPU) developed by Baker et al. (2016). Uncertainty

about both the path of future government policies and the impact of current government policies has

the potential to increase risk for economic actors and so potentially depress investment and other

economic activity. The authors use text from news outlets to provide a high-frequency measure of

EPU and then estimate its economic effects.

Baker et al. (2016) define the unit of observation i to be a country-month. The outcome vi of

interest is the true level of economic policy uncertainty. The authors apply a dictionary method to

produce estimates v̂i based on digital archives of ten leading newspapers in the US. An element of

the input data ci j is a count of the number of articles in newspaper j in country-month i containing

at least one keyword from each of three categories defined by hand: one related to the economy,

a second related to policy, and a third related to uncertainty. The raw counts are scaled by the

total number of articles in the corresponding newspaper-month and normalized to have standard

deviation one. The predicted value v̂i is then defined to be a simple average of these scaled counts

across newspapers.

The simplicity of the manner in which the index is created allows for a high amount of flexibil-

ity across a broad range range of applications. For instance, by including a fourth, policy-specific

category of keywords, the authors can estimate narrower indices related to Federal Reserve policy,

inflation, and so on.

Baker et al. (2016) validate v̂i using a human audit of 12,000 articles from 1900 to 2012. Teams

manually scored articles on the extent to which they discuss economic policy uncertainty and the

specific policies they relate to. The resulting human-coded index has a high correlation with v̂i.

With the estimated v̂i in hand, the authors analyze the micro and macro-level effects of EPU.

Using firm-level regressions, they first measure how firms respond to this uncertainty, and find that
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it leads to reduced employment, investment, and greater asset price volatility for that firm. Then,

using both US and international panel VAR models, the authors find that increased v̂i is a strong

predictor of lower investment, employment, and production.

4.6 Media slant

A text analysis problem that has received significant attention in the social science literature is

measuring the political slant of media content. Media outlets have long been seen as having a

uniquely important role in the political process, with the power to potentially sway both public

opinion and policy. Understanding how and why media outlets slant the information they present

is important to understanding the role media play in practice, and to informing the large body of

government regulation designed to preserve a diverse range of political perspectives.

Groseclose and Milyo (2005) offer a pioneering application of text analysis methods to this

problem. In their setting, i indexes a set of large US media outlets, and documents are defined to

be the complete news text or broadcast transcripts for an outlet i. The outcome of interest vi is the

political slant of outlet i. To give this measure content, the authors use speeches by politicians in

the US Congress to form a training sample, and define vi within this sample to be a politician’s

Americans for Democratic Action (ADA) score, a measure of left-right political ideology based on

congressional voting records. The predicted values v̂i for the media outlets thus place them on the

same left-right scale as the politicians, and answer the question “what kind of politician does this

news outlet’s content sound most similar to?”

The raw data are the full text of speeches by congresspeople and news reports by media outlets

over a period spanning the 1990s to the early 2000s.12 The authors dramatically reduce the di-

mensionality of the data in an initial step by deciding to focus on a particularly informative subset

of phrases: the names of 200 think tanks. These think tanks are widely viewed as having clear

political positions (e.g., the Heritage Foundation on the right and the NAACP on the left). The

relative frequency with which a politician cites conservative as opposed to liberal think tanks turns

out to be strongly correlated with a politician’s ideology. The paper’s premise is that the citation

12For members of Congress, the authors use all entries in the Congressional Record from January 1, 1993 to
December 31, 2002. The text includes both floor speeches and documents the member chose to insert in the record but
did not read on the floor. For news outlets, the time period covered is different for different outlets, with start dates as
early as January 1990 and end dates as late as July 2004.
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Figure 3: Distribution of Political Orientation: Media Outlets and Members of Congress 1228 QUARTERLY JOURNAL OF ECONOMICS
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frequencies of news outlets will then provide a good index of those outlets’ political slant. The

features of interest ci are a (1×50) vector of citation counts for each of 44 highly-cited think tanks

plus 6 groups of smaller think tanks.

The text analysis is based on a generative model. The utility that congress member or media

firm i derives from citing think tank j is Ui j = a j+b jvi+ei j, where vi is the observable ADA score
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of a congressmember i or unobserved slant of media outlet i, and ei j is an error distributed type-I

extreme value. The coefficient b j captures the extent to which think tank j is cited relatively more

by conservatives. The model is fit by maximum likelihood with the parameters
(
a j,b j

)
and the

unknown slants vi estimated jointly. This is an efficient but computationally intensive approach to

estimation, and it constrains the authors’ focus to 20 outlets. This limitation can be sidestepped

using more recent approaches such as Taddy’s (2013b) multinomial inverse regression.

Figure 3 shows the results, which suggest three main findings. First, the media outlets are all

relatively centrist: they are all to the left of the average Republican and to the right of the average

Democrat with one exception. Second, the ordering matches conventional wisdom, with the New

York Times and Washington Post on the left, and Fox News and the Washington Times on the right.13

Third, the large majority of outlets fall to the left of the average in congress, which is denoted in

the figure by “average US voter.” The last fact underlies the authors’ main conclusion, which is

that there is an overall liberal bias in the media.

Gentzkow and Shapiro (2010) build on the Groseclose and Milyo (2005) approach to measure

the slant of 433 US daily newspapers. The main difference in approach is that Gentzkow and

Shapiro (2010) omit the initial step that restricts the space of features to mentions of think tanks,

and instead consider all phrases that appear in the 2005 Congressional Record as potential predic-

tors, letting the data select those that are most diagnostic of ideology. These could potentially be

think tank names, but they turn out instead to be politically charged phrases such as “death tax,”

“bring our troops home,” and “war on terror.”

After standard pre-processing—stemming and omitting stopwords—the authors produce counts

of all 2-grams and 3-grams by speaker. They then select the top 1,000 phrases (500 of each length)

by a χ2 criterion that captures the degree to which each phrase is diagnostic of the speaker’s party.

This is the standard χ2 test statistic for the null hypothesis that phrase j is used equally often

by Democrats and Republicans, and it will be high for phrases that are both used frequently and

used asymmetrically by the parties.14 Next, a two-stage supervised generative method is used to

13The one notable exception is the Wall Street Journal which is generally considered to be right-of-center but
which is estimated by Groseclose and Milyo (2005) to be the most left-wing outlet in their sample. This may reflect
an idiosyncrasy specific to the way they cite think tanks; Gentzkow and Shapiro (2010) use a broader sample of text
features and estimate a much more conservative slant for the Wall Street Journal.

14The statistic is
χ

2
j =

f jr f∼ jd− f jd f∼ jr

( f jr + f jd)( f jr + f∼ jd)( f∼ jr + f jd)( f∼ jr + f∼ jd)
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predict newspaper slant vi from the selected features. In the first stage, the authors run a sepa-

rate regression for each phrase j of counts (ci j) on speaker i’s ideology, which is measured as the

2004 Republican vote share in the speaker’s district. They then use the estimated coefficients β̂ j to

produce predicted slant v̂i ∝ ∑
1,000
j=1 β̂ jci j for the unknown newspapers i.15

The main focus of the study is characterizing the incentives that drive newspapers’ choice of

slant. With the estimated v̂i in hand, the authors estimate a model of consumer demand in which

a consumer’s utility from reading newspaper i depends on the distance between i’s slant vi and an

ideal slant v∗ which is greater the more conservative is the consumer’s ideology. Estimates of this

model using zipcode-level circulation data imply a level of slant that newspapers would choose

if their only incentive was to maximize profits. The authors then compare this profit-maximizing

slant to the level actually chosen by newspapers, and ask whether the deviations can be predicted

by the identity of the newspaper’s owner, or by other non-market factors such as the party of local

incumbent politicians. They find that profit maximization fits the data well, and that ownership

plays no role in explaining the choice of slant. In this study, v̂i is both an independent variable of

interest (in the demand analysis) and an outcome of interest (in the supply analysis).

Note that both Groseclose and Milyo (2005) and Gentzkow and Shapiro (2010) use a two-

step procedure where they reduce the dimensionality of the data in a first stage and then estimate

a predictive model in the second. Taddy (2013b) shows how to combine a more sophisticated

generative model with a novel algorithm for estimation to estimate the predictive model in a single

step using the full set of phrases in the data. He shows that substantially this increases the in-sample

predictive power of the measure.

4.7 Market definition

Many important questions in industrial organization hinge on the appropriate definition of product

markets. Standard industry definitions can be an imperfect proxy for the economically relevant

concept. Hoberg and Phillips (2015) provide a novel way of classifying industries based on product

where f jd and f jr denote the number of times phrase j is used by Democrats or Republicans, respectively, and f∼ jd
and f∼ jr denote the number of times phrases other than j are used by Democrats and Republicans, respectively.

15As Taddy (2013b) notes, this method (which Gentzkow and Shapiro 2010 derive in an ad hoc fashion) is essen-
tially partial least squares. It differs from the standard implementation in that the variables vi and ci j would normally
be standardized. Taddy (2013b) shows that doing so increases the in-sample predictive power of the measure from
0.37 to 0.57.
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descriptions in the text of company disclosures. This allows for flexible industry classifications that

may vary over time as firms and economies evolve, and allows the researchers to analyze the effect

of shocks on competition and product offerings.

Each publicly traded firm in the US must file an annual 10-K report describing, among other

aspects of their business, the products that they offer. The unit of analysis i is a firm-year. Token

counts from the business description section of the ith 10-K filing are represented in the vector ci. A

pairwise cosine similarity score, si j, based on the angle between ci and c j, describes the closeness

of product offerings for each pair i and j in the same filing year. Industries are then defined by

clustering firms according to their cosine similarities. The clustering algorithm begins by assuming

each firm is its own industry, and gradually agglomerates firms into industries by grouping a firm

to the cluster with its nearest neighbor according to si j. The algorithm terminates when the number

industries (clusters) reaches 300, a number chosen for comparability to SIC and NAICS codes.

After establishing an industry assignment for each firm-year, v̂i, the authors examine the effect

of military and software industry shocks to competition and product offerings among firms. As an

example, they find that the events of September 11, 2001 increased entry in high demand military

markets and pushed products in this industry towards “non-battlefield information gathering and

products intended for potential ground conflicts.”

4.8 Topics in research and political debate

A number of studies apply topic models to describe how the focus of attention in specific text

corpora shifts over time.

A seminal contribution in this vein is Blei and Lafferty’s (2007) analysis of topics in Science.

Documents i are individual articles, the data ci are counts of individual words, and the outcome of

interest vi is a vector of weights indicating the share of a given article devoted to each of 100 latent

topics. The authors extend the baseline LDA model of Blei et al. (2003) to allow for the importance

of one topic in a particular article to be correlated with the presence of other topics. They fit the

model using all Science articles from 1990-1999. The results deliver an automated classification

of article content into semantically coherent topics such as evolution, DNA and genetics, cellular

biology, and volcanoes.

41



Table 1: Congressional Record Topics and Key Words

ANALYZE POLITICAL ATTENTION 219

TABLE 3 Topic Keywords for 42-Topic Model

Topic (Short Label) Keys

1. Judicial Nominations nomine, confirm, nomin, circuit, hear, court, judg, judici, case, vacanc
2. Constitutional case, court, attornei, supreme, justic, nomin, judg, m, decis, constitut
3. Campaign Finance campaign, candid, elect, monei, contribut, polit, soft, ad, parti, limit
4. Abortion procedur, abort, babi, thi, life, doctor, human, ban, decis, or
5. Crime 1 [Violent] enforc, act, crime, gun, law, victim, violenc, abus, prevent, juvenil
6. Child Protection gun, tobacco, smoke, kid, show, firearm, crime, kill, law, school
7. Health 1 [Medical] diseas, cancer, research, health, prevent, patient, treatment, devic, food
8. Social Welfare care, health, act, home, hospit, support, children, educ, student, nurs
9. Education school, teacher, educ, student, children, test, local, learn, district, class

10. Military 1 [Manpower] veteran, va, forc, militari, care, reserv, serv, men, guard, member
11. Military 2 [Infrastructure] appropri, defens, forc, report, request, confer, guard, depart, fund, project
12. Intelligence intellig, homeland, commiss, depart, agenc, director, secur, base, defens
13. Crime 2 [Federal] act, inform, enforc, record, law, court, section, crimin, internet, investig
14. Environment 1 [Public Lands] land, water, park, act, river, natur, wildlif, area, conserv, forest
15. Commercial Infrastructure small, busi, act, highwai, transport, internet, loan, credit, local, capit
16. Banking / Finance bankruptci, bank, credit, case, ir, compani, file, card, financi, lawyer
17. Labor 1 [Workers] worker, social, retir, benefit, plan, act, employ, pension, small, employe
18. Debt / Social Security social, year, cut, budget, debt, spend, balanc, deficit, over, trust
19. Labor 2 [Employment] job, worker, pai, wage, economi, hour, compani, minimum, overtim
20. Taxes tax, cut, incom, pai, estat, over, relief, marriag, than, penalti
21. Energy energi, fuel, ga, oil, price, produce, electr, renew, natur, suppli
22. Environment 2 [Regulation] wast, land, water, site, forest, nuclear, fire, mine, environment, road
23. Agriculture farmer, price, produc, farm, crop, agricultur, disast, compact, food, market
24. Trade trade, agreement, china, negoti, import, countri, worker, unit, world, free
25. Procedural 3 mr, consent, unanim, order, move, senat, ask, amend, presid, quorum
26. Procedural 4 leader, major, am, senat, move, issu, hope, week, done, to
27. Health 2 [Seniors] senior, drug, prescript, medicar, coverag, benefit, plan, price, beneficiari
28. Health 3 [Economics] patient, care, doctor, health, insur, medic, plan, coverag, decis, right
29. Defense [Use of Force] iraq, forc, resolut, unit, saddam, troop, war, world, threat, hussein
30. International [Diplomacy] unit, human, peac, nato, china, forc, intern, democraci, resolut, europ
31. International [Arms] test, treati, weapon, russia, nuclear, defens, unit, missil, chemic
32. Symbolic [Living] serv, hi, career, dedic, john, posit, honor, nomin, dure, miss
33. Symbolic [Constituent] recogn, dedic, honor, serv, insert, contribut, celebr, congratul, career
34. Symbolic [Military] honor, men, sacrific, memori, dedic, freedom, di, kill, serve, soldier
35. Symbolic [Nonmilitary] great, hi, paul, john, alwai, reagan, him, serv, love
36. Symbolic [Sports] team, game, plai, player, win, fan, basebal, congratul, record, victori
37. J. Helms re: Debt hundr, at, four, three, ago, of, year, five, two, the
38. G. Smith re: Hate Crime of, and, in, chang, by, to, a, act, with, the, hate
39. Procedural 1 order, without, the, from, object, recogn, so, second, call, clerk
40. Procedural 5 consent, unanim, the, of, mr, to, order, further, and, consider
41. Procedural 6 mr, consent, unanim, of, to, at, order, the, consider, follow
42. Procedural 2 of, mr, consent, unanim, and, at, meet, on, the, am

Notes: For each topic, the top 10 (or so) key stems that best distinguish the topic from all others. Keywords have been sorted here by
rank(!kw) + rank(rkw), as defined in the text. Lists of the top 40 keywords for each topic and related information are provided in the web
appendix. Note the order of the topics is the same as in Table 2 but the topic names have been shortened.

Source: Quinn et al. (2010).

Applying similar methods in the political domain, Quinn et al. (2010) use a topic model to

identify the issues being discussed in the US Senate over the period 1997–2004. Their approach

deviates from the baseline LDA model in two ways. First, they assume that each speech is asso-

ciated with a single topic. Second, their model incorporates time series dynamics that allow the

proportion of speeches generated by a given topic to gradually evolve over the sample, similar to

the dynamic topic model of Blei and Lafferty (2006). Their preferred specification is a model with

42 topics, a number chosen to maximize the subjective interpretability of the resulting topics.

Table 1 shows the words with the highest weights in each of twelve fitted topics. The labels

“Judicial Nominations,” “Constitutional,” and so on are assigned by hand by the authors. The

results suggest that the automated procedure successfully isolates coherent topics of congressional

debate. After discussing the structure of topics in the fitted model, the authors then track the

relative importance of the topics across congressional sessions, and argue that spikes in discussion

of particular topics track in an intuitive way the occurrence of important debates and external

events.

5 Conclusion

Digital text provides a rich repository of information about economic and social activity. Modern

statistical tools give researchers the ability to extract this information and encode it in a quantitative

form amenable to descriptive or causal analysis. Both the availability of text data and the frontier

42



of methods are expanding rapidly, and we expect the importance of text in empirical economics to

continue to grow.
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