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ABSTRACT

We assume that perfectly patient agents estimate the value of future events by generating noisy, 
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properties of classical time preferences. When the simulation noise has variance that is linear in 
the event's horizon, the as-if discount function is hyperbolic, D(t)=1/(1+at). Our agents exhibit 
systematic preference reversals, but have no taste for commitment because they suffer from 
imperfect foresight, which is not a self-control problem. In our framework, agents that are more 
skilled at forecasting (e.g., those with more intelligence) exhibit less discounting. Agents with 
more domain-relevant experience exhibit less discounting. Older agents exhibit less discounting 
(except those with cognitive decline). Agents who are encouraged to spend more time thinking 
about an intertemporal tradeoff exhibit less discounting. Agents who are unable to think carefully 
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framework, patience is highly unstable, fluctuating with the accuracy of forecasting.
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1 Introduction

Most people appear to act as if they have a strong preference for earlier rewards over later

rewards. For the last century economists have usually assumed that this type of behavior

reflects (fundamental) time preferences, which economists model with discount factors that

multiplicatively weight utils. If the one-period-ahead discount factor is δ, then δ utils expe-

rienced now are as valuable as one util experienced next period. If δ < 1, economic agents

prefer a current util to a delayed util.

However, such time preferences are only one of many ways to explain the empirical

regularity that intertemporal choices are characterized by declining sensitivity as utils are

moved further away in time. Diminishing sensitivity to future utils is also explained by

imperfect information. For example, Böhm-Bawerk (1889) wrote that “we possess inadequate

power to imagine and to abstract, or that we are not willing to put forth the necessary effort,

but in any event we limn a more or less incomplete picture of our future wants and especially

of the remotely distant ones. And then, there are all of those wants that never come to mind

at all.”Pigou (1920) similarly observed “that our telescopic faculty is defective, and that

we, therefore, see future pleasures, as it were, on a diminished scale. That this is the right

explanation is proved by the fact that exactly the same diminution is experienced when,

apart from our tendency to forget ungratifying incidents, we contemplate the past.”1 Pigou

believed that our imperfect ability to forecast the future mirrors our imperfect ability to

recall the past.

To gain intuition for the role of imperfect forecasting, consider a driver who sees an

upcoming pothole and estimates that it is small. A few moments later, he realizes that the

pothole is large, swerves to avoid it, and crashes. This accident is likely a reflection of

imperfect foresight, not procrastination or laziness. In this case, large delayed consequences

are misperceived by an imperfectly farsighted driver. We probably wouldn’t infer that the

driver didn’t care about the impending crash because it was in the “future.”If the driver had

foreseen the consequences, he would have braked earlier. In general, people will not respond

optimally to future consequences that they do not anticipate (or only partially anticipate).

Likewise, consider a sailor who sees a few clouds forming on the horizon and doesn’t

immediately take the costly action of charting a new course. When her vessel is lashed by

1For a review of the history of theories of discounting see Loewenstein (1992).
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a violent storm the next day, it is not clear whether she was lazy the previous night, or just

mistaken in her forecast about the upcoming weather.

Decision-making is rife with situations in which a current action/inaction causes a stream

of current and future consequences, many of which are hard to foresee. If delayed conse-

quences are typically harder to foresee than immediate consequences, then decision-makers

will appear to be impatient.

The role of imperfect information is also apparent in the seemingly impatient behavior

of non-human animals. When monkeys are given an abstract intertemporal choice task on

a computer, they act as if they discount delayed rewards at the rate of 10% per second.

When the same monkeys are given a temporally analogous foraging task (also presented

on a computer screen), the monkeys show very little discounting (Blanchard and Hayden

2015). Animal behavior appears to be impatient in completely novel domains and patient

in domains that are evolutionarily relevant. As Blanchard and Hayden (2015) conclude,

“Seemingly impulsive behavior in animals is an artifact of their diffi culty understanding the

structure of intertemporal choice tasks.”

In the current paper, we argue that behavior that arises from imperfect foresight is hard

to distinguish from behavior that arises from time preferences. We study a Bayesian decision-

maker with perfectly patient time preferences who receives noisy signals about the future.

The resulting signal-extraction problem leads the Bayesian agent to behave in a way that

is easy to misinterpret as a time preference; we call this seemingly impatient behavior as-if

discounting. Our analysis shows that lack of foresight generates behavior that has most of

the same characteristics of behavior that arises from deep time preferences. In other words,

a perfectly patient Bayesian decision-maker who receives noisy signals about the future will

behave as if they have time preferences.

Opthalmic myopia arises when people can’t clearly see distant objects. But myopia

also means a “lack of foresight or discernment.”2 Such forecasting limitations matter when

agents need to judge the value of events that will occur at a temporal distance. In this

paper, we show that imperfect foresight — i.e., myopia —generates as-if discounting, even

when the actors’ true preferences are perfectly patient. More generally, we show that

imperfect foresight makes agents appear to behave more impatiently than implied by their

deep time preferences.

2Merriam-Webster.
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Our formal model assumes that agents receive noisy, unbiased signals about future events

and combine these signals with their priors to generate posterior beliefs about future events.

Our key assumption is that the forecasting noise increases with the horizon of the forecast.

We give special attention to the case in which the variance of the forecasting noise rises

linearly with the forecasting horizon.

We provide an illustrative example of our framework in Section 2, where we study a

binary choice problem: an actor chooses between an early reward and a mutually exclusive

later reward. We show that when the variance of forecasting noise rises linearly with the

event horizon, Bayesian agents will act as if they are hyperbolic discounters, even though

their deep time preferences are perfectly patient.

In Section 3, we describe the broader implications of our framework, and identify predic-

tions that distinguish our framework from time preference models. First, we show that our

(perfectly patient) agents exhibit preference reversals of the same kind that are exhibited

by agents with hyperbolic discount functions. However, these preference reversals do not

reflect a self-control problem. The preference reversals arise because the agents obtain less

noisy information with the passage of time. Accordingly, our agents do not wish to commit

themselves; they act as-if they are naive hyperbolic discounters (Strotz 1957, Akerlof 1992,

O’Donoghue and Rabin 1999) rather than sophisticated ones (Laibson 1997).

In the cross-section, our framework implies that agents with greater intelligence exhibit

less as-if discounting —their superior forecasting ability enables them to make choices that

are more responsive to future utility flows.

In addition, our agents exhibit as-if discounting that is domain specific. They exhibit

less as-if discounting (i) when they have more overall life experience, (ii) when they are more

experienced in the specific choice domain, (iii) when they have more time to think about an

intertemporal choice (e.g., Imas, Khun, and Mironova, 2016), and (iv) when they have more

cognitive bandwidth to think about their choice (e.g., Benjamin and Shapiro, 2015).

In Section 4, we generalize our example by making the action set continuous. We provide

suffi cient conditions that imply that perfectly patient agents who are imperfect forecasters

will act as if they are naive hyperbolic discounters.

In Section 5, we discuss connections between our framework and related literatures on

myopia, Bayesian cognition, risk, and discounting. Section 6 concludes.
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2 A Basic Case: Binary Choice

Our approach can be explained with a simple example of a binary choice. Consider an

agent at time zero, who must choose (irreversibly) between two mutually exclusive rewards:

Early and Late. Reward Early would be experienced at date, t ≥ 0. Reward Late would

be experienced at date, t + τ > t (i.e., τ > 0). The agent doesn’t know the true value of

Early and Late, respectively denoted, ut and ut+τ . To simplify exposition and without loss of

generality, we assume that these utility events are deterministic, though they were originally

generated from a prior distribution that we will characterize below. (Note that any non-

deterministic, zero-mean component is irrelevant because we are operating in utility space

and we assume that our agents have classical expected utility preferences.)

Although the agent doesn’t know the value of ut and ut+τ , the agent can mentally simulate

these deterministic rewards and thereby generate unbiased signals of their value:

st = ut + εt

st+τ = ut+τ + εt+τ .

In the first equation, ut is the true value of the Early utils and εt is the simulation noise.

In the second equation, ut+τ is the true value of the Late utils and εt+τ is the associated

simulation noise. For tractability, we assume that the simulation noise is Gaussian. To

simplify exposition, we assume that the correlation between εt and εt+τ is zero.

2.1 Simulation Noise

We assume that the longer the horizon, the greater the variance of the simulation noise.

Intuitively, the further away the event, the harder it is to accurately simulate the event’s

utility. Because our set-up assumes that t < t+ τ, this assumption implies that

var(εt) < var(εt+τ ). (1)

We will also sometimes assume that

lim
t→∞

var(εt) =∞,
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however this property is not important for our qualitative results.

We will pay particular attention to the special case of simulation noise that has a variance

that is proportional to the simulation horizon:

var(εt) = σ2εt = σ2εt (2)

var(εt+τ ) = σ2εt+τ = σ2ε (t+ τ) . (3)

This linearity assumption engenders a specific (hyperbolic) functional form in the analysis

that follows. But this linearity assumption is not necessary for our qualitative results. We

provide a complete characterization of noise functions below: i.e., necessary and suffi cient

=conditions for the noise function to generate as-if discounting with declining discount rates

as the horizon increases. The case of linear variance is a special case in this larger class of

noise functions.

2.2 Bayesian Priors and Posteriors

The agents in our model combine Bayesian priors with their signals (st and st+τ ) to generate

a Bayesian posterior. We model the Bayesian prior over utility events (in whatever class of

events we are studying) as a Gaussian density with mean µ and variance σ2u:

u ∼ N (µ, σ2u). (4)

Here µ is the average value in this class of utility events (e.g., visits to Philadelphia), whereas

σ2u is the overall variance within the class (e.g., some trips are great —Philadelphia in June

—and some trips are much less great —Philadelphia in January).

In the appendix, we derive the agent’s Bayesian posterior distribution of ut, which is

generated by combining her prior (4) and her signal st:

ut ∼ N

µ+
st − µ
1 +

σ2εt
σ2u

,

1− 1

1 +
σ2εt
σ2u

σ2u

 . (5)

We summarize these results with the following propostion.

Proposition 1 If the agent generates a mental simulation st, then her Bayesian posterior
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will be

ut ∼ N
(
µ+D(t)(st − µ), (1−D(t))σ2u

)
,

where

D(t) =
1

1 +
σ2εt
σ2u

, (6)

the variance of her simulation noise is σ2εt and her prior distribution is u ∼ N (µ, σ2u).

For reasons that will become apparent below, we refer toD(t) as the agent’s as-if discount

function. Because we assume that simulation noise, σ2εt , is increasing in t, D(t) is decreasing

in t, which is a standard property of a discount function. If limt→∞ var(εt) = ∞, then

limt→∞D(t) = 0, another common property of a discount function. In this case, the posterior

expectation of ut converges to the mean of the prior as the horizon increases. In notation,

lim
t→∞

E0[ut | st] = µ.

It is helpful to integrate posteriors over agents in the economy. We assume that the

signals st are unbiased, so they are equal to ut on average. Accordingly, the average forecast

of ut will be ∫
st

E0[ut | st] dF (st | ut) = µ+D(t)(ut − µ).

In general, the mean of the prior will be less extreme than the actual values of ut. To model

this statistical property, consider the illustrative case in which the prior is approximately

equal to zero. (We will relax this restriction later.) Under this restriction, the average belief

is ∫
st

E0[ut | st] dF (st | ut) = D(t)ut.

We now have an expression that looks like a discounted utility framework:D(t) is a decreasing

function and it multiplies the actual utility value ut.

2.3 Hyperbolic As-if Discounting

We explore a benchmark case: noise that is linear in the horizon.
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Lemma 1 When we assume that var(εt) = σ2εt = σ2εt, we obtain hyperbolic as-if discounting:

D(t) =
1

1 + αt
(7)

where

α =
σ2ε
σ2u
, (8)

which is the (one-period) noise-to-signal variance ratio.

The discount function, D(t) = 1
1+αt

, implies an instantaneous discount rate

discount rate = − D′(t)

D(t)
=

α
(1+αt)2

1
1+αt

=
α

1 + αt
.

At horizon 0, the as-if discount rate is α. The as-if discount rate falls with t. As t→∞, the

as-if discount rate converges to 0.

2.4 An Example When the Mean Priori Is not Zero (µ 6= 0)

As we noted above, actual utility events will tend to be more extreme than priors. To

capture this property, we previously set the mean of the prior distribution equal to zero:

µ = 0. We now relax this restriction and illustrate the general case with an example in

which the mean of the prior distribution is µ = 1. For this example, we assume that the

simulation variance is linear in the time horizon and the variance ratio is σ2ε
σ2u

= 0.1. Figure 1

plots the population level expectations of ut for three values of ut (holding the mean of the

prior distribution fixed at µ = 1):

ut = µ+ 10 = 11

ut = µ− 1/2 = 1/2

ut = µ− 10 = −9.

When the three utility events are in the present (t = 0), the three expectations are equal

to the true value of each utility event, respectively 11, 1/2, and -9. However, as the three

utility events recede into the distant future, the three expectations revert to the mean of the

prior, µ = 1. This discounting towards the mean of the prior is hyperbolic because we are
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Figure 1: Plot of the average perceived value ut, given for three different true utilities ut
(ut ∈ {−9, 1/2, 11}), as a function of the time horizon t. This average perceived value is:
ut = µ+ ut−µ

1+
σ2ε
σ2u
t
. The figure uses σ2ε/σ

2
u = 0.1.

assuming linear variance (see subsection 2.3).

The ut = 11 curve is characterized by standard discounting. The further ahead the

utility event is shifted, the lower the perceived value of the event. The ut = −9 curve is

also characterized by standard discounting on most of its domain. As the event is moved

further into the future, its value declines toward zero. However, at t = 90, the perceived

value crosses the x-axis and continues asymptoting toward µ = −1. Finally, the ut = 1/2

line displays anti-discounting. The further the value is moved into the future, the higher its

perceived value, as it asymptotes to the prior mean of µ = 1.

These three lines illustrate the three types of cases that arise in our framework, including

the special case of anti-discounting. Note that anti-discounting arises when the true value

of ut lies between 0 and the mean of the prior distribution, µ.

2.5 Probabilistic Choice

Our framework implies that choice is probablistic, because agents receive noisy signals about

the value of future rewards. In our example, the agent chooses Early if and only if

D(t)st ≥ D(t+ τ)st+τ ,
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where D(t) is the as-if discount function introduced above and st and st+τ are the (unbiased)

signals of the respective values of the Early and Late rewards.

From the perspective of an observer who knows the values of ut and ut+τ , the probability

that that agent chooses the Early reward is

P(choose Early) = P [D (t) (ut + εt) ≥ D (t+ τ) (ut+τ + εt+τ )]

= Φ

(
1

Σ
[D(t)ut −D(t+ τ)ut+τ ]

)
,

where Φ is a Gaussian CDF and Σ is a scaling factor:

Σ =
√
D(t)2var(εt) +D(t+ τ)2var(εt+τ ).

This probabilistic choice function has natural properties. If t = 0 (i.e., the Early reward

is an immediate reward), then,

P(choose Early) = P [u0 ≥ D (τ) (uτ + ετ )]

= Φ

(
1

Σ
[u0 −D(τ)uτ ]

)
.

If we let the time delay between the Early reward and the Late reward go to infinity (i.e.,

τ →∞), then

lim
τ→∞

P(choose Early) = 1u0>0.

This implies that the agent chooses the Early reward with probability one if three properties

hold: (i) the Early reward is available immediately (t = 0), (ii) the Late reward is available

arbitrarily far in the future (τ →∞), and (iii) the Early reward is strictly positive (u0 > 0).

In other words, the agent behaves as if she places no value on the (infinitely) delayed Late

reward.

Now assume that the Early reward is available with some delay, so that t > 0 (i.e., the

Early reward is not immediate), then

lim
τ→∞

P(choose Early) = P [ut + εt > 0]

= Φ
(ut

Σ

)
.

10



Accordingly, if the Late reward is available arbitrarily far in the future (τ → ∞), then the

agent chooses the Early reward with the same probability that she perceives the Early

reward to have positive value. Once again, the agent behaves as if she places no value on

the (infinitely) delayed Late reward.

2.6 Preference Reversals without Commitment

In our setting, an observer who knows the values of ut and ut+τ will be able to predict

(probabilistic) preference reversals. For example, consider the case of linear variances. In

addition, assume that ut+τ > ut > 0, and

ut > D(τ)ut+τ .

When the two options are suffi ciently far in the future (large t), a majority of agents (if

forced to choose) will prefer Late over Early, because

P(choose Early) = Φ

(
1

Σ
[D(t)ut −D(t+ τ)ut+τ ]

)
.

Note that

D(t)ut −D(t+ τ)ut+τ =
ut

1 + αt
− ut+τ

1 + α (t+ τ)
.

For suffi ciently large values of t, ut+τ > ut implies,

ut
1 + αt

− ut+τ
1 + α (t+ τ)

< 0.

However, with the passage of time, all agents will eventually choose Early because ut >

D(τ)ut+τ . More precisely, if agents were not forced to choose in advance, but were instead

given the chance to choose at time t, all would choose Early.

In many economic models, such preference reversals are a sign of dynamic inconsistency

in preferences.3 That is not the case here. The agents in the current model have imperfect

information, not dynamically inconsistent time preferences. Their externally predictable

3See McGuire and Kable (2012, 2013) for a setting in which preference reversals arise because of rational
learning dynamics. If a delayed reward that was probabilitistically expected does not arrive after a period
of waiting, the agent infers that the hazard rate of arrival is low and further waiting is not likely to pay off,
and therefore reverts to choosing the immediate reward.
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preference reversals are a result of their imperfect information. Accordingly, the agents in

our model will not desire to limit their own choice sets. Preference reversals arise from their

inference problems, not self-control problems.

2.7 More General Discounting Functions

We can provide necessary and suffi cient conditions for the as-if discount function, D(t),

to exhibit decreasing impatience. In other words, we can derive necessary and suffi cient

conditions for the property that the instantaneous as-if discount rate

ρ(t) := −D
′(t)

D(t)

is decreasing in the horizon t.

Proposition 2 The as-if discount function D(t) exhibits strictly decreasing impatience at

time horizon t if and only if
d2σ2εt
dt2

σ2u
−

(
dσ2εt
dt
/σ2u

)2
(

1 +
σ2εt
σ2u

) < 0.

This proposition is proved in the appendix. Because we assume that
dσ2εt
dt

> 0, this

proposition yields an immediate corollary.

Lemma 2 The as-if discount function D(t) exhibits strictly decreasing impatience if the

variance of simulation noise, var(εt) = σ2εt , is a weakly concave function of time.

Accordingly, our model generates as-if discount rates that decrease as the horizon in-

creases in many cases. We next study a boundary case.

Exponential As-if Discounting Our framework can also be reverse-engineered to gen-

erate exponential discounting as a special case. However, this requires assumptions on the

variance function that we believe are heroic.

Lemma 3 The as-if discount function D(t) exhibits a constant discount rate, ρ, if and only

if

σ2εt = [exp(ρt)− 1]σ2u.
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Accordingly, the discount rate is exponential if and only if the simulation variance, σ2εt ,

rises exponentially. This Lemma is proven by setting

D(t) =
1

1 +
σ2εt
σ2u
t

= exp(ρt).

This sort of cognitive discounting is useful because of the tractability it induces (see for

instance Gabaix 2016a,b).

3 Implications

We now discuss the key predictions of our model, emphasizing several ways that our model

of myopia differs from other models in the intertemporal choice literature. As discussed

above, our myopic agent acts as if she is maximizing a utility function with an as-if discount

function, D(τ), where

D(τ) =
1

1 +
σ2ετ
σ2u

.

When the variance of the forecasting noise is weakly concave in the simulation horizon, the

discounting function is characterized by an instantaneous discount rate that falls with the

horizon. When the forecasting noise is linear in the simulation horizon, so that σ2ετ = σ2ετ

then the discount function is hyperbolic:

D(τ) =
1

1 + σ2ε
σ2u
τ
.

These as-if discounting functions arise because of the imperfect information that the agent

has when she generates forecasts. If she were asked to describe her preferences, she would

say that she has no times preferences. In other words, she is trying to maximize

T−t∑
τ=0

u(at+τ ).

Her as-if discounting behavior arises because she doesn’t have perfect foresight regarding the

future utility flows u(at+τ ).

13



3.1 Absence of Commitment

The agents in this model have a forecasting problem, not a self-control problem. Therefore

they are never willing to reduce their choice set (unless they are paid to do so). This absence

of a willingness to pay for commitment may explain the lack of commitment technologies in

markets. In real markets there is little commitment for commitment’s sake.4 Personal train-

ers and website blocking apps are frequently mentioned exceptions, but such technologies

are not commonly used.

By contrast, economists have been able to elicit commitment in experiments (see Cohen,

Ericson, Laibson, and White 2017, for a review). However, most of these experiments elicit

only a weak taste for a commitment and little or no willingness to pay for commitment (e.g.,

Augenblick, Niederle and Sprenger 2015, Sadoff, Samek and Sprenger 2016).

Our myopia model predicts that agents will exhibit as-if hyperbolic discounting with

preference reversals and no willingness to pay for commitment. In this sense, our model

reproduces the predictions of the standard hyperbolic discounting model with naive beliefs

(see O’Donoghue and Rabin 1999, 2001, Laibson 2015, and Ericson forthcoming). However,

it also generate further implications, to which we now turn.

3.2 Intelligence Is Associated with Less As-if Discounting

Our model predicts that agents with less forecasting noise will exhibit less as-if discounting.

Because of this mechanism, agents that are more intelligent will exhibit less as-if discounting.5

To see this formally, let H represent human capital and assume that the variance of

forecasting noise is declining in human capital:

dσ2ε(H)

dH
< 0.

The as-if discount rate is given by

−D
′(t)

D(t)
=

α

1 + αt
,

4However, there is a great deal of ancillary commitment, like mortgage contracts, which create a forced
savings system as a by-product of a stream of loan/principal repayments.

5The underlying assumption is that more intelligent agents simulate the future with less noise– for in-
stance because they generate more simulations. If they run n simulations, the variance of the average
simulation will be 1/n, so it will be lower.
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where

α =
σ2ε(H)

σ2u
.

The as-if discount rate is increasing in σ2ε(H), so as-if discounting is decreasing in human

capital, H.

The available evidence supports this prediction. Measured discount rates are negatively

correlated with scores on IQ tests: see Benjamin, Brown, and Shapiro (2013), Burk et al.

(2009) and Shamosh and Gray (2008). Indeed, such effects also arise across species. Tobin

and Logue (1994) show that patience increases as the study population switches from pigeons,

to rats, to humans.

3.3 Myopia Is Domain Specific

These comparative statics on cognitive function generate a wider set of predictions when

forecasting ability varies across domains. For example, our framework predicts that agents

with more domain-relevant experience, and hence better within-domain forecasting ability,

will exhibit less discounting. Read, Frederick and Scholten (2013) report that people exhibit

more patience when an intertemporal choice is posed as an investment rather than a (seem-

ingly novel) money-now-vs-money-later decision. Relatedly, recall our earlier discussion of

the monkey experiments reported by Blanchard and Hayden (2015): when an intertemporal

choice is presented as a reward-now-vs-reward-later decision, monkeys choose far more im-

patiently then they do when a foraging problem is used to frame the intertemporal tradeoffs.

Likewise, our framework predicts that older agents —who generally have more life experi-

ence and consequently better forecasting skills —will exhibit less discounting. This prediction

is supported by Green, Fry, and Myerson (1994). Relatedly, Addessi et al (2014) show that

replacing one-for-one representations of future reward with more abstract one-for-many rep-

resentations of the same future rewards, leads capuchin monkeys and (human) children to

exhibit more impatience. In contrast, adults, who have more experience using abstract sym-

bols, do not behave more impatiently when one-for-one representations of future reward are

replaced with one-for-many representations. The Addessi et al (2014) experimental evidence

implies that childhood impatience is due, at least in part, to children’s less developed ability

to cognitively represent (abstract) future rewards. Our framework also predicts that people

who experience cognitive decline (e.g., due to normal aging) will exhibit more discounting;
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see James, Boyle, Yu, Han, and Bennett 2015 for supporting evidence.

Our framework predicts that agents who are encouraged to spend more time thinking

about a future tradeoff will exhibit less discounting. Imas, Kuhn, and Mironova (2016)

robustly measure such an effect experimentally. In their experiment, some subjects decide

at time 0 how to divide an effort task between time 0 and time t. Other subjects are given a

preceding hour to decide how to divide the effort task between time 0 and time t. Subjects

in the latter condition choose more patiently: their measured discount rate is 16 percentage

points lower.

Our framework also predicts that rewards delivered in future periods that are cognitively

well-simulated will exhibit less discounting. Peters and Büchel (2010) exogenously manip-

ulate the salience of various future periods and find that higher salience/imagery of future

reward periods increases the value of rewards delivered during those periods.

Our framework predicts that agents who are unable to think carefully about an intertem-

poral tradeoff —e.g., due to a cognitive load manipulation or the effects of alcohol —will

exhibit more discounting. Steele and Josephs (1990), Shiv and Fedorikhin (1999), Hinson,

Jameson, and Whitney (2003), and Benjamin, Brown and Shapiro (2013) document such

effects. This prediction is closely related to the theory of cognitive scarcity: see Spears

(2012), Eldar and Shafir (2013), and Schilbach et al (2016).

Finally, our framework predicts that discounting behavior will only be weakly correlated

across domains because discounting is not a domain general preference, but rather the result

of imperfect forecasting, which will naturally vary across domains. Chapman (1996) and

Chabris et al (2008) document the low level of correlation in discount rates that are measured

in different decision-making domains.

4 Extension to a Continuous Action

Until now we have studied the case in which the agent has two mutually exclusive actions:

choose an Early reward or a Late reward. We now generalize the action space to a con-

tinuum. We then provide suffi cient conditions that enable us to apply our framework to a

general, multi-period intertemporal choice problem.

The upshot of this section is that the economics of the binary action case still goes

through, though with more complex mathematics.
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4.1 Modelling How Agents Observe with Noise a Whole Utility

Function

Suppose that an action a leads to a true payoff u (a). However, the agent observes this

noisily: we suppose that the agent observes the “noised up”version of the utility function:

s = (s (a))a∈A (9)

of the whole function u = (u (a))a∈A, where A = [a, a] is the support of the action, which is

assumed to contain 0 (this is just a normalization). This noised-up version is assumed to

take the form:

s (a) = u (a) + σεtW (a) + χσεtη0 (10)

for all a ∈ A. There is a continuous noise W (a), modelled as standard Brownian motion

withW (0) = 0 except that W is “two-sided”, i.e. runs to the left and right of 0.6 ,7 The noise

is modelled as proportional to σεt when the utility is seen from a distance t. For instance, the

linear case is σεt = σε
√
t. The term χσεtη0 ensures that the value at a = 0 is also perceived

with noise (ση0 = 1, χ is a parameter).

Given this perceived curve s, what’s his posterior about u (a)? We will see the under the

“right”assumptions (to be specified soon), we simply have

E [u (a) | s] = D (t) s (a)

with the same D (t) as in the binary case. This means that the representative agent just

dampens the true function.

4.2 Assumptions for Our Result

Here we detail the assumptions we use for the results. But the reader may wish to skip to

the result itself, in the next subsection 4.3.

Assumption 1 (Wiener decomposition) We suppose that function v (·) := u(·)−u(0)
σu

is per-

6Formally, W (x)x≥0 and W (−x)x≥0 are independent Brownian motions.
7See Callender and Hummel (2014) for a recent model using inference on Brownian paths, though with a

signal structure different from ours.
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ceived as drawn from the Wiener measure, and u (0) is drawn as u (0) ∼ N (0, χ2σ2u) inde-

pendent of v. We call

D (t) =
1

1 +
σ2εt
σ2u

(11)

where σεt is as in (10).

Let us state this assumption in more user-friendly language. The value of u (0) is also

seen as random– and we index its randomness by χ. The rest of the function u, outside

the intercept, is also random. To specify this, we v (a) := u(a)−u(0)
σu

, which is u normalized

to have 0 intercept, and with standardized size (so E
[
v (1)2

]
= 1). We view v a a “random

function”drawn from a distribution. For simplicity, we consider that it’s drawn from the

simplest distribution of random functions —the so-called Wiener measure (Brownian motions

are typical instances of such functions).8 Basically, the assumption is that the component

of du (a) are drawn as i.i.d. normal increments, like a Brownian motion, with square width

σ2uda. Note that this refers to the distribution assumed by the agent when he performs his

Bayesian inference, not necessarily the true distribution.

The appendix (section 7.2) proposes a variant, Assumption 2, with polynomial utility,

that uses more elementary mathematics, at the cost of heavier notations and proofs.

4.3 Perceived Utility Function Given the True Utility

We can now derive the utility perceived by the agent, given she agent sees the whole noised-up

function s (equation (10)).

Proposition 3 (Perceived utility for a continuous utility function) Make Assumption 1 or

2. Then, the perceived utility is proportional to the signal:

E [u (a) | s] = D (t) s (a)

where D (t) = 1

1+
σ2εt
σ2u

. As a result, the average perceived utility ū (a), defined as:

ū (a) := E [E [u (a) | s] | u]

8We could imagine a number of variants, e.g. u′′ would be drawn from this distribution; or, to keep u
concave, we could have ln (−u′′) drawn from that distribution. This becomes quickly more mathematically
involved, so we leave this to a separate investigation, and focus on what we view as the simplest case.
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satisfies:

ū (a) = D (t)u (a) (12)

This means that the average perceived utility is D (t)u (a) rather than plainly u (a),

exactly like in the simple two-action (consume / don’t consume) case.

4.4 The Representative Agent Perspective

4.4.1 Assumptions for a Tractable Generalization

To cleanly study dynamic problem, we assume the following (in addition to the assumptions

of Proposition 3).9

A1. The agent treats the noise at all simulation horizons as uncorrelated.

A2. The agent has Gaussian priors with 0 mean (and no correlation between ut, ut+τ ).

A3. The agent acts as if she won’t learn new simulation information in the future.10

The notion of “average behavior” is potentially messy with non-linear utilities. Hence,

we find it useful to define the following form of “representative agent”version of the model.

We study the equilibrium path in which all simulation noise happens to be realized as zero

(but the agent doesn’t know this). In our illustrative example, this corresponds to εt = 0.

For instance, we had st = ut + εt and E[ut | st] = D(t)st. The representative agent draws

noise εt = 0, so for the representative agent, E[ut | st] = D (t)ut.

Proposition 4 (Dynamic choices of the representative agent) Assume that the agent has

dynamically consistent preferences
T∑
t=0

u(at).

Then A1-A3 imply that at each time period t ∈ {0, ..., T} the representative agent acts as if

she is trying to maximize
T−t∑
τ=0

D(τ)u(at+τ )

9There are many alternative ways to generate variances that are linear in the forecasting horizon, including
new signals that contain all of the information of the old signals.
10This is the assumption of the “anticipated utility”framework of Kreps (1998) used also by Cogley and

Sargent (2008).
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where

D(τ) =
1

1 +
σ2ετ
σ2u

.

Corollary 1 Assume that simulation variance is linear in the horizon of the simulation:

σ2ετ = τσ2ε . Then, at each time period t ∈ {0, ..., T} the representative agent acts as if she is

trying to maximize
T−t∑
τ=0

D(τ)u(at+τ ),

where

D(τ) =
1

1 + ατ

α =
σ2ε
σ2u
.

Proposition 4 shows that our basic results extend to arbitrary utility functions with

continuous actions.

5 Literatures on Related Mechanisms

We now review other lines of research that are related to this paper and on which this paper

builds. We review three literatures: models of myopia, Bayesian foundations of imperfect

and costly cognition, risk-based models of as-if discounting (including risk-based models with

probability distortions).

5.1 Myopia

Political economists, psychologists, and other social scientists have long posited that impa-

tient behavior was due in part to imperfect foresight. These ideas were informally described

by political economists, including Böhm-Bawerk (1889), and economists, including Pigou

(1921), both of whom are quoted in the introduction of this paper.

These informal explanations have been joined by formal, mathematical definitions, mod-

els, and analyses of that incorporate various formulations of myopia. For example, Brown

and Lewis (1981) provide an axiomatic definition of myopia. Feldstein (1985) evaluates the

optimality of social security under the assumptions of myopia and partial myopia (modeled
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as a low discount factor in a two-period decision problem). Phillippe Jéhiel (1995) studies

two-player games in which players have limited forecasting horizons. Spears (2012) gener-

ate a forecasting horizon that is endogenous because forward-looking calculations are costly.

Gabaix, Laibson, Moloche, and Weinberg (2006) report experimental evidence that supports

a model in which agents choose an endogenous forecasting horizon at which the cognitive cost

and estimated utility benefit of marginally increasing the forecasting horizon are equalized.

This optimal forecasting framework generates a complex option value problem with respect

to information acquisition (see also Fudenberg, Strack, and Strzalecki 2016).

In the current paper, we assume that the agent has noisy signals about the future, which

engenders Bayesian forecasts that have “myopic” properties: i.e., declining sensitivity to

future events. When the noise is linear in the forecasting horizon, the as-if discounting takes

a simple hyperbolic form. Accordingly, our paper introduces a tractable microfoundation

for myopia.

5.2 Bayesian Models of Attention and Cognition

The current paper assumes that agents are Bayesian, which adopts the approach of early

decision-theory pioneers like Raiffa and Schlaifer (1961). There is a growing body of litera-

ture (in economics, cognitive psychology, and neuroscience) that studies the effects of noisy

perception and Bayesian inference, and uses this combination to explain seemingly subop-

timal behaviors. One of the pioneering examples is the work of Commons, Woodford and

Ducheny (1982), and Commons, Woodford and Trudeau (1991) who use this approach to

generate a theory of hyperbolic memory recall — in their framework, the noisy signals are

memories, whereas the noisy signals in our model are simulations of the future. The literature

on attention allocation assumes that agents have limited information, which is mathemat-

ically equivalent to the assumption that agents have noisy signals about the state of the

world. Geanakoplos and Milgrom (1991), Sims (2003), Kamenica (2008), Woodford (2009),

Gabaix (2014), Schwartzstein (2014), Hanna, Mullainathan and Schwartzstein (2014), All-

cott and Taubinsky (2015), Matejka, Steiner and Stewart (forth.), Taubinsky and Rees-Jones

(2016a,b), study agents who allocate their limited attentional bandwidth to the activities

that they believe are the most valuable.11 Steiner and Stewart (2016) and Khaw, Li, and

11Another strand of the literature uses non-Bayesian rules to govern attention and salience (e.g. Bordalo,
Gennaioli and Shleifer 2012, 2013), though it might be probably be given some quasi-Bayesian interpretation.
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Woodford (2017) study an environment in which agents react to the noise in their probability

perceptions by (optimally) distorting their perceived probabilities in a way that mimics the

probability mapping in prospect theory (Kahneman and Tversky 1979).

Our paper adopts the approach that unifies the work above: noisy signals plus Bayesian

inference jointly produce as-if behavior that appears to be imperfectly rational. Specifically,

in our case, this combination generates as-if hyperbolic discounting.

5.3 Risk-Based Models of As-if Discounting

It has long been recognized that time preferences engender the same kind of behavior that is

associated with risk or mortality (e.g., Yaari 1965). For example, if promised future rewards

may be permanently withdrawn/lost at a constant hazard rate, ρ, then a perfectly patient

decision-maker should be indifferent between 1 util at time zero and exp(ρτ) utils a time τ .

In this example, risk induces a perfectly patient agent to appear to discount the future with

exponential discount rate ρ.

This type of risk-based discounting can also produce hyperboloid discount functions un-

der specific assumptions about a non-constant hazard rate (see Sozou 1998, Azfar 1999,

Weitzman 2001, Halevy 2004, and Dasgupta and Maskin 2005). For instance, Azfar, Sozou

and Weitzman assume that the hazard rate that governs the withdrawal of rewards is itself

drawn from a distribution and has a value that can only be inferred from the observed data.

This assumption produces preferences that are characterized by a declining discount rate as

the horizon increases —the more time passes without a withdrawal, the more likely that one

of the low hazard rates is the hazard rate that was drawn from the distribution at the start

of time, implying a lower effective discount rate at longer horizons. Risk can also produce

hyperboloid discount functions because of probability transformations that are characterized

by a certainty effect, whereby a certain present reward is discretely more valuable than an

even slightly uncertain delayed reward (see the non-expected utility frameworks in Prelec

and Loewenstein 1991, Quiggin and Horowitz 1995, Keren and Roelofsma 1995, Weber and

Chapman 2005, Halevy 2008, Epper, Fehr-Duda and Bruhin 2011, Baucells and Heukamp

2012, Andreoni and Sprenger 2012, and Fehr-Duda and Epper 2015).

Our model works off a related but different risk mechanism than those listed above. The

uncertainty in our model is due to noise that is generated by the forecaster herself. For
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example, our mechanism predicts that an expert would exhibit little as-if discounting in

her domain of expertise (she forecasts the future with little or no noise) while a non-expert

would exhibit substantial as-if discounting in the same domain (she forecasts the future

with relatively more noise than the expert). Likewise, our framework predicts that cognitive

load should increase as-if discounting because it reduces an agent’s ability to forecast accu-

rately. Accordingly, our noise-based discounting mechanism is not propagated by external

risk (like mortality or the likelihood of default), but rather by noise associated with the

limited forecasting ability of the decision maker.

Finally, our framework is consistent with Bayesian decision-making and expected utility

theory. Accordingly, our agent will not be dynamically inconsistent and will not pay for

commitment. In our framework, preference reversals reflect classical information acquisition,

not weakness of will.

Our key assumption is that the agent has (unbiased) noise in her signals about the

future. This noise leads our agent to optimally down-weight her simulations of the future

and therefore place more weight on her priors. Consequently, she ends up being (rationally)

imperfectly responsive to future contingencies and therefore behaves as if she discounts the

future. As her expertise and experience improves (over her lifetime, or as she gains domain-

specific knowledge), she shifts her behavior and acts as-if she has become more patient.

6 Conclusion

We assume that perfectly patient agents estimate the value of future events by generating

noisy, unbiased simulations of those events. Our agents combine these noisy signals with

their priors, thereby forming posterior utility expectations. We show that these expectations

exhibit a property that we call as-if discounting. Specifically, the agent makes choices as if

she were maximizing a stream of known utils weighted by an as-if discount function, D(t).

This as-if discount function adjusts for the fact that future utils are not actually known by

the agent and must be estimated with noisy signals and priors. This estimation shades

the estimated utils toward the mean of the prior distribution, creating behavior that largely

mimics the effect of classical time preferences.

When the simulation noise has a variance that is linear in the event’s horizon, the as-if
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discount function is hyperbolic:

D(t) =
1

1 + αt
,

where α is the ratio of the variance of (per-period) simulation noise to the variance of events

in the agent’s prior distribution.

Our model generates several predictions that match the known empirical evidence. Our

agents exhibit systematic preference reversals. Our agents have no intrinsic taste for com-

mitment, because they suffer from an imperfect forecasting problem, not a self-control prob-

lem. Our agents will exhibit comparative statics with respect to cognitive function: people

who are more skilled at forecasting (e.g., those with greater intelligence) will exhibit less

discounting.

Our framework predicts many domain-specific discounting effects. Agents with more

domain-relevant experience will exhibit less discounting. Older agents will exhibit less

discounting (except those with cognitive decline, who will exhibit more discounting). Agents

who are encouraged to spend more time thinking about a future tradeoff will exhibit less

discounting. Finally, agents who are unable to think carefully about an intertemporal

tradeoff —e.g., due to a cognitive load manipulation —will exhibit more discounting.

Our framework predicts that discounting is a highly variable/plastic phenomenon that

arises from imperfect forecasting of future rewards/costs. Our model provides a complemen-

tary alternative to the classical assumption that discounting arises from a deep preference

for known rewards (costs) to be moved earlier (later) in time.
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7 Appendix: Proofs and Complements

7.1 Omitted Proofs

Proof of Proposition 1 This proof is very elementary, but for completeness we provide

its calculations. We normalize µ = 0 without loss of generality (for instance, by considering

u′t = ut − µ and s′t = st − µ). It is well-known that ut | st is Gaussian distributed, and can

be represented:

ut = λst + ηt (13)

for some λ, and some Gaussian variable ηt independent of st, so that E [stηt] = 0. Multiplying

(13) by st on both sides and taking the expectations gives: E [utst] = λE [s2t ], i.e.

λ =
E [utst]

E [s2t ]
=
E [ut (ut + εt)]

E
[
(ut + εt)

2] =
E [u2t ]

E [u2t + ε2t ]
as E [utεt] = 0

=
σ2u

σ2u + σ2εt
=

1

1 +
σ2εt
σ2u

= D (t) .

Next, taking the variance of both sides of (13), we have

σ2u = λ2σ2s + var(ηt)

as cov (st, ηt) = 0 and with σ2s = σ2u + σ2εt . So, using λσ
2
s = σ2u,

var(ηt) = σ2u − λ2σ2s = σ2u − λσ2u = (1− λ)σ2u.

Hence, ut | st ∼ N (λst, (1− λ)σ2u), as announced.

Proof of Proposition 3 It is a corollary of Proposition 5 (for Assumption 1) and

Proposition 6 (for Assumption 2) below.

Proof of Proposition 4 Given our assumptions, the agent at time t will want to

maximize

max
(at+τ )τ≥0

E

[
T−t∑
τ=0

u(at+τ ) | s
]

= max
(at+τ )τ≥0

T−t∑
τ=0

D (τ) st+τ (at+τ )
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where s = (st (y) , ..., st+τ (y))y∈A. Assumption A1-A3 allows us to remove expected values.

For our representative agent, we have st+τ (a) = ut+τ (a). Hence, this representative agent

maximizes at time t:

max
(at+τ )τ≥0

T−t∑
τ=0

D (τ)u(at+τ ).

7.2 Complements to the Continuous Actions Case

Here are some complements to Section 4. To simplify the notations, we set σ = σεt.

7.2.1 Result for the Wiener case

Proposition 5 (Bayesian updating with functions) Under Assumption 1, we have

E [u (a) | s] = λs (a)

with λ = 1
1+σ2εt/σ

2
u
. This means that we can do Bayesian updating on this space of functions.

Proof. Take the increments:

ds (a) = du (a) + σdW (a)

The key observation is that the ds (a)’s are all Gaussians innovations, independent of the

value of the functions are other points y 6= a. So, by the formulation for Gaussian updating

we used before:

E [du (a) | ds (a)] = λds (a)

with λ = 1
1+σ2/σ2u

. Next, because the du (a) and dW (a) are independent,

E [du (a) | s] = E [du (a) | ds (a)] = λds (a) . (14)

Next, the behavior at 0 needs a special treatment. Because s (0) = u (0) + χση0,

E [u (0) | s (0)] = λ0s (0), with λ0 = 1

1+
var(χση0)
var(u0)

= 1

1+ χ2σ2

χ2σ2u

= λ. Then, E [u (0) | s (0)] = λs (0),

and by independence:

E [u (0) | s] = λs (0) . (15)

32



Hence, integrating from 0 to a, we get

E [u (a) | s] = E
[
u (0) +

∫ a

y=0

du (y) | s
]

= E [u (0) | s] +

∫ a

y=0

E [du (y) | s]

= λs (0) +

∫ a

0

λds (y)

= λs (a) .

7.2.2 Polynomial utility

Here we provide assumptions that are a little more elementary, but apply only when the

utility function u (a) is a polynomial in a. For instance, we want to capture that u (a) =

b0+ b1a+ b2a
2 with unknown coeffi cients bi, that the agent wants to learn from noisy signals.

Assumptions for the polynomial utility case We shall use the Legendre Pi (a)

polynomials as a basis, as they are more convenient than the plain monomials ai. We have

for instance:12

P0 (a) = 1, P1 (a) = a, P2 (a) =
1

2

(
3a2 − 1

)
, P3 (a) =

1

2

(
5a3 − 3a

)
.

Using the product

〈f | g〉 :=

∫ 1

−1
f (a) g (a) da, (16)

we have the standard result: 〈Pi | Pj〉 = 1
i+ 1

2

1i=j. So we define qi to be a rescaled version of

the standard Legendre polynomial:

qi (a) :=

√
i+

1

2
Pi (a) , (17)

so that

〈qi | qj〉 = 1i=j. (18)

Polynomial qi has degree i, and the qi’s form an orthogonal basis for polynomial functions.

We can now state our assumption.

12More generally we have Pi (a) = 1
2ii!

di

dai

[(
a2 − 1

)i]
by Rodrigues’formula.
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Assumption 2 (Utility function as drawn from a random distribution on polynomial basis)

We decompose the true utility function u (a) as:

u (a) =
∞∑

i=−1
fiQi (a) (19)

where Q−1 (a) ≡ 1 and for i ≥ 0, Qi (a) =
∫ a
0
qi (y) dy, where qi (y) is the i-th normalized

Legrendre polynomial (17). We assume that a finite subset I such that coeffi cients {fi}i∈I
are nonzero and that the fi for i ∈ I are i.i.d. and follow a N (0, σ2u) distribution. Also

assume σ2f−1 = χ2σ2u.

We note that, in the limit where all coeffi cients are non-zero, we get the “Wiener”case.

Result We prove a more general proposition.

Proposition 6 Suppose that coeffi cients fi are drawn from the Gaussian N
(
0, σ2fi

)
, and

jointly Gaussian and uncorrelated. Then, the posterior E [u (a) | s] := E
[
u (a) | (s (y))y∈[−1,1]

]
is:

E [u (a) | s] =
∞∑

i=−1
E [fi | s]Qi (a)

where, for i ≥ 1

E [fi | s] = λi 〈qi | ds〉 = λi

∫ 1

a=−1
qi (a) ds (a)

λi = 1/
(
1 + σ2/var (fi)

)
while E [f−1 | s] = λ−1s (0) with λ−1 = 1/ (1 + χ2σ2/var (f−1)). This implies that the average

posterior is:

u (a) := E [[u (a) | s] | f ] =
∞∑

i=−1
λifiQi (a) . (20)

In particular, take the case of flat priors of Assumption 2, and call λ = 1/
(

1 + σ2

σ2u

)
.

Then,

u (a) = λu (a) (21)

i.e. we obtain uniform dampening.
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Proof of Proposition 6 Suppose that we have a function u (a), and we observe, as in

(10),

s (a) = u (a) + σW (a) + χση0 (22)

where W (a) is a Brownian motion and η̃0 = χση0 is a Gaussian variable of mean zero.

Differentiate:

ds (a) = u′ (a) da+ σdW (a)

u′ (a) =
∞∑

j=−1
fjQ

′
j (a) =

∞∑
j=0

fjqj (a) .

Hence:

ds (a) =
∞∑
j=0

fjqj (a) da+ σdW (a).

The agent wants to infer u given s, i.e. f given ds (we consider the intercept u (0) at the

end). Multiplying the previous equation by qi (a) and integrating between −1 and 1 gives:

Si := 〈qi | ds〉 (23)

=
∑
j

fj 〈qi | qj〉+ σ 〈qi | dW 〉

= fi + σ 〈qi | dW 〉

because of (18).

Hence we can write the signal Si := 〈qi | ds〉 as

Si = fi + σεi (24)

with εi := 〈qi | dW 〉 =
∫ 1
−1 qi (a) dWa satisfies E [εi] = 0. In addition

E [εiεj] = E
[(∫

qi (a) dWa

)(∫
qj (a) dWa

)]
=

∫
qi (a) qj (a) da

= 1i=j.

Hence, the signal-extraction problem E [fi | s] is quite simple, as only Si is informative
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about fi: E [fi | s] = E [fi | Si]. Given (24),

E [fi | s] = λiSi (25)

λi = 1/
(
1 + σ2/var (fi)

)
. (26)

Hence, we have

E [u′ (a) | s] =

∞∑
i=0

E [fi | s] qi (a)

=

∞∑
i=0

E [fi | s]Q′i (a)

We next study the intercept in (22), u (0). Given s (0) = u (0) + χση0 and u (0) = f−1,

E [u (0) | s] = E [f−1 | s (0)] = λ−1s (0) = λ−1S−1

where S−1 := s (0) and λ−1 = 1/ (1 + χ2σ2/var (f−1)). Integrating,

E [u (a) | s] = E [u (0) | s] + E
[∫ a

0

u′ (b) db | s
]

= λ−1S−1 +
∞∑
i=0

λiSiQi (a) =
∞∑

i=−1
λiSiQi (a) .

In addition, the average perception is:

u (a) := E [[u (a) | s] | u] =
∞∑

i=−1
λiE [Si | f ]Qi (a)

=

∞∑
i=−1

λifiQi (a) (27)

If we assume a “flat” prior of Assumption 2, where var (fi) is independent of i (if

var (fi) > 0), we have for i ≥ 0

λi = λ =
1

1 + σ2

var(fi)

=
1

1 + σ2

σ2u

.
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Furthermore, as σ2f−1 = χ2σ2u,

λ−1 =
1

1 + χ2σ2

var(f−1)

= λ.

Hence, λi = λ for all i ≥ −1, and (27) implies:

u (a) =
∞∑

i=−1
λifiQi (a) = λ

∞∑
i=−1

fiQi (a) = λu (a) .
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