NBER WORKING PAPER SERIES

WHEN HARRY FIRED SALLY: THE DOUBLE STANDARD IN PUNISHING MISCONDUCT

Mark L. Egan Gregor Matvos Amit Seru

Working Paper 23242 http://www.nber.org/papers/w23242

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 March 2017

We thank Marianne Bertrand, Kerwin Charles, Darrell Duffie, Elena Espinoza, Christopher Hennesey, Laurie Hodrick, Emir Kamenica, Crystal Lam, Edward Lazear, Sendhil Mullainathan, Joshua Rauh, Ken Singleton, Vikrant Vig, Luigi Zingales and the seminar participants at the University of Chicago, London Business School, Tuck School of Business and Stanford University. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2017 by Mark L. Egan, Gregor Matvos, and Amit Seru. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

When Harry Fired Sally: The Double Standard in Punishing Misconduct Mark L. Egan, Gregor Matvos, and Amit Seru NBER Working Paper No. 23242 March 2017 JEL No. D18,G24,G28,J71

ABSTRACT

We examine gender discrimination in the financial advisory industry. We study a less salient mechanism for discrimination, firm discipline following missteps. There are substantial differences in the punishment of misconduct across genders. Although both female and male advisers are disciplined for misconduct, female advisers are punished more severely. Following an incidence of misconduct, female advisers are 20% more likely to lose their jobs and 30% less likely to find new jobs relative to male advisers. Females face harsher punishment despite engaging in less costly misconduct and despite a lower propensity towards repeat offenses. Relative to women, men are three times as likely to engage in misconduct, are twice as likely to be repeat offenders, and engage in misconduct that is 20% costlier. Evidence suggests that the observed behavior is not driven by productivity differences across advisers. Rather, we find supporting evidence for taste-based discrimination. For females, a disproportionate share of misconduct complaints is initiated by the firm, instead of customers or regulators. Moreover, there is significant heterogeneity among firms. Firms with a greater percentage of male executives/owners at a given branch tend to punish female advisers more severely following misconduct and also tend to hire fewer female advisers with past record of misconduct.

Mark L. Egan University of Minnesota Department of Finance 3-117 Carlson School of Management 321 19th Avenue South Minneapolis, MN 55455 eganx076@umn.edu

Gregor Matvos Booth School of Business University of Chicago 5807 South Woodlawn Avenue Chicago, IL 60637 and NBER gmatvos@chicagobooth.edu Amit Seru Stanford Graduate School of Business Stanford University 655 Knight Way Stanford, CA 94305 and NBER aseru@stanford.edu

1 Introduction

Labor markets compensate productive activities with higher wages and non-wage compensation such as promotions and perks. Conversely, employees who engage in unproductive or even destructive activities are punished, for example, through job loss and lack of employment opportunities in the market. The issue of whether, and why discrimination – i.e., unequal treatment of equals, or equal treatment of unequals – exists across gender in the labor market remains hotly debated among academics and policymakers. The existing research on gender discrimination has generally focused on gender differences in the compensation of productive activities. Firms pay female employees less than comparable male employees (Altonji and Blank, 1999). Firms are also less likely to hire and promote female employees relative to male counterparts with similar credentials or output (Goldin and Rouse, 2000). In this paper, we explore whether gender discrimination carries over to punishment of undesirable activities as well. In other words, are labor markets more forgiving of missteps by men than women? Anecdotal evidence certainly suggests this is the case. Systematic evidence, on the other hand, is very scarce. In this paper, we document how gender differences are related to punishment of undesirable activities in the context of financial adviser misconduct. We then consider different alternatives that are consistent with these facts and conclude that "taste-based" discrimination best explains our facts.

Gender differences in punishment speak to the broader idea that female employees have less leniency for missteps than their male counterparts. This aspect of discrimination has received little attention in academia or in policy. One possible reason is that such discrimination is less likely to draw attention than the wage gap. When we observe a financial adviser losing her job following misconduct, the appeal that the termination was unfair or discriminatory sounds hollow. In fact, the firing may be justified. It is only after observing that, on average, male advisers were not fired for similar transgressions that one can detect discrimination. In such cases, discrimination may be a priori more difficult to detect, both by the legal system and the regulator, and possibly by the discriminating employers who may be unaware of their own biases (Bertrand et al., 2005).

Another differential aspect of discrimination in punishment is that the employer knows the employee. One view is that discrimination mostly takes place before the employer has screened potential employees, at the CV evaluation stage. An extensive literature using correspondence and audit studies has evaluated such discrimination¹, examining differences in treatment across groups while holding fixed the bundle of characteristics, which can be captured in a CV. During the hiring process, and during employment, the employer learns substantially more about the employee, reducing the potential for such "attention discrimination" (Bartos et al., 2016). One might therefore imagine that discrimination disappears conditional on employment. To punish an employee after several years of tenure, the employer has already invested in knowing them well past the formal characteristics captured in their CV, suggests a potentially different discrimination mechanism is at play. Methodologically, studying this type of discrimination does not lend itself toward audit

¹For an overview, see Bertrand and Duflo (2016).

and correspondence studies, which, by design, reduce an employee to characteristics captured in a CV. We contribute to the literature by investigating this type of discrimination in the context of financial adviser misconduct.

The financial adviser industry offers a unique setting to study gender differences in punishment and leniency in the workplace. One obstacle to research is that undesirable outcomes are generally difficult to measure, especially across firms. We use novel panel data on misconduct for all financial advisers (about 1.2 million) registered in the United States from 2005 to 2015, who represent approximately 10% of total employment in the finance and insurance sector. Misconduct is prevalent in the industry and has significant labor market consequences: roughly one in thirteen financial advisers in the U.S. has a record of misconduct. Following an incidence of misconduct, financial advisers face a substantial increase in the probability of job loss, and face worse employment opportunities in the industry (Egan et al., 2016). In this setting, we can also measure the extent of the misconduct costs to the employer and track employee movement across firms in the industry. This allows us to understand some features of discrimination at the level of the labor market, rather than individual employers.

Researching discrimination in this setting is also interesting per se. Finance is a large and highly compensated industry, which consistently ranks among the bottom industries in terms of gender equality. Personal financial advisers, for example, have among the largest gender earning gaps across occupations (Census, 2008). Recent survey evidence found that nearly 88% of female financial service professionals believe that gender discrimination exists within the financial services industry (Tuttle, 2013). A recent report from management consultant firm Oliver Wyman (2016) finds that women face a glass ceiling in the financial services industry and lists it as the number one cause for concern for women in the industry. Former FDIC chairwomen Sheila Bair (2016) writes that the glass ceiling in finance is "barely cracked" for women. If women are held to a different standard than men, such as a firm's tolerance of misconduct, the differential standards inherently contribute to the glass ceiling faced by women. Such concerns about the lack of diversity and discrimination in the financial industry have become a policy issue in their own right.

The paper has two goals. First, we document key differences in the rate and punishment of misconduct across male and female financial advisers. In the second half of the paper, we examine the rationale behind the observed discrimination. On one hand, the observed discrimination could simply be a function of statistical discrimination (Phelps, 1972; Arrow, 1973). Firms may not have an inherent prejudice against female advisers. Rather, they punish female advisers more severely because misconduct by female advisers is predictive of worse outcomes or more frequent misconduct, or because female advisers are less costly to fire. On the other hand, the observed discrimination could be taste based (Becker, 1957). The financial advisory industry, customers, or regulators could simply prefer male over female advisers. We want to distinguish between these two broad types of discrimination, and see who drives discrimination in this market.

We find that women face a harsher punishment for misconduct. Male financial advisers make up 75% of the financial advisory industry, and are responsible for a disproportionately large amount of the misconduct in that industry. On average, roughly 1 in 11 male advisers has a record of past misconduct, compared to only 1 in 33 female advisers. Male advisers are, thus, more than three times as likely to engage in misconduct. One possible reason for these gender differences would be if there is gender segregation across firms, markets, or types of products that male and female advisers sell. We therefore compare male and female advisers at the same firm, in the same location, and at the same point in time (firm×year ×county fixed). Moreover, because the market for financial advice is regulated, advisers are required to hold a particular set of qualifications to sell certain classes of products. We control for these qualifications, as well as adviser experience, and find the same large gender differences in misconduct propensity.

Despite having a lower incidence of misconduct relative to male advisers, female advisers face more severe consequences at both the firm and industry level following an incidence of misconduct. Female advisers are 50% more likely to experience job separation following misconduct. Conditional on being fired, female advisers face longer unemployment spells and are 30% less likely to find a new position in the industry within one year. We again find these results by comparing male and female advisers at the same firm, in the same location, and at the same point in time (firm×year ×county fixed), as well as conditioning on extensive adviser characteristics. The difference is particularly pronounced, because we find no gender differences in job turnover rates for advisers without misconduct. However, our results suggest that firms, and the industry as a whole, exhibit substantial discrimination against women when doling out punishments following misconduct.

Gender differences in misconduct punishment may arise even if firms do not have an inherent prejudice against female advisers. Profit-maximizing firms may punish females more severely because misconduct by female advisers is indicative of worse productivity, or costlier or more frequent misconduct. In other words, the gender differences that we observe in the data could be a result of statistical discrimination (Phelps, 1972; Arrow, 1973). We first explore whether differences in punishment could be a result of statistical discrimination.

One form of statistical discrimination could arise if bad apples among female advisers were rarer, but the extent of misconduct were more severe, requiring a larger punishment. The evidence we find suggests the exact opposite. Male advisers engage in misconduct that is 20% more costly to settle for firms. Another alternative would be that female advisers are less likely to engage in misconduct unconditionally, as we discuss above, but conditional on misconduct are more likely to be repeat offenders. Again, the opposite is true. Male advisers are more than twice as likely to be repeat offenders in the future. Both these results suggest that firms should punish male advisers *more severely* than female advisers. In other words, even if job separation rates following misconduct were identical, these results would still suggest that punishment of misconduct is biased against women.

If female advisers are less productive than male advisers, firms may also find it optimal to punish women more severely because terminating them is less costly. One advantage of the financial industry is that the productivity of financial advisers can be broadly encapsulated as the amount of assets they manage to attract, which we observe in conjunction with other measures in Meridian IQ data. Using this additional data, we find that differences in assets under management (AUM) of advisers, as well as other measures of productivity, do not explain the differences in punishment. As we show in extensive robustness tests, which we discuss at the end of the introduction, it is unlikely that differences in characteristics drive the gender differences in punishment. From the perspective of statistical discrimination, it is also interesting that we find gender differences in punishment across the range of adviser experience as well as firm tenure. In other words, discrimination occurs even for advisers whose ability is well known, both to the firm and to the market.

To recap, female advisers are less likely to engage in misconduct than their male counterparts at the same firm, time, and location, and with the same qualifications and experience, and we find no evidence that females are substantially less productive employees. Female misconduct is less costly, and female advisers are less likely to be repeat offenders. Nevertheless, female advisers' job separation rates are higher than mens' following misconduct, females suffer longer unemployment spells, and are less likely to be hired by other firms following misconduct even after being employed for several years. Overall, the evidence suggests that differences in characteristics, or statistical discrimination, are not a likely reason for gender differences in misconduct punishment in the industry.

Next we turn to exploring another potential source of discrimination. One possibility is that discrimination is "taste based" (Becker, 1957) or even implicit (Bertrand et al., 2005). Three groups can discriminate against female financial advisers who engage in misconduct: employers, consumers, and regulators. Each of these three groups can also initiate a misconduct complaint. We find that a disproportionate share of complaints initiated against female advisers comes from their employer. For male advisers, 55% of misconduct complaints are initiated by customers and 28% by their employers. For female advisers, employer-initiated instances of misconduct are almost as frequent as those initiated by consumers, 41% versus 44%. These results suggest that employers may be the primary source of gender discrimination and are consistent with the recent survey evidence which suggests that a large majority of women believe there is gender discrimination within firms (Tuttle 2013). Indeed, we document large variation in patterns of discrimination within firms, with firms such as Wells Fargo disciplining female advisors at a substantially higher rate relative to male advisers.

If discrimination arises because of employer bias, it is probably driven by the bias of the decision makers in the firm. One proposal to limit discrimination in firms is to increase the share of women in positions of power. The idea is that decision makers in organizations can directly affect policies leading to discrimination, and that members from the discriminated group, i.e., women, are more likely to recognize discrimination and less likely to support discriminatory practices. We examine whether the gender composition of the decision-making team in a firm explains some of the differences we find across firms. Financial advising is a male dominated financial industry. Male advisers represent 75% of employment, 83% of firm managers,² and

 $^{^{2}}$ We define a manager as an adviser who holds a Series 24 exam which qualifies an adviser to supervise/manage branch activities.

83% of firm executives/owners. Important for our setting, there are large differences in the share of female owners and executives across firms. If male advisers in positions of power are driving gender discrimination, we should be able to observe this in the data.

Female advisers at firms with no female representation at the executive/ownership level are 42% more likely to experience job separation than male advisers at the same branch following an incidence of misconduct. On the other hand, firms with equal representation of male and female executives/owners discipline male and female advisers at similar rates. We find similar differences between these firms when it comes to hiring advisers with misconduct records. Firms with a larger male representation at the executive/ownership level are more forgiving of misconduct by male advisers in hiring decisions. We find similar results when exploiting variation in the share of female branch-level managers. Overall, our results suggest that gender differences in labor market outcomes following misconduct are driven by the gender composition of executives at financial advisory firms. Male executives seem to be more forgiving of misconduct by men relative to women.

We devote the last section of the paper to further rejecting the alternative that male advisers differ from female advisers on characteristics other than gender, and that these characteristics lead to greater punishment of misconduct. In our analysis, we control for much of the productivity differences among financial advisers by controlling for each adviser's qualifications, experience, the firm and location at which they work, and other characteristics. The fact that we observe gender discrimination in firms with a larger share of men on the managerial team suggests that it is unlikely that some unobserved adviser characteristic, such as productivity, is driving our results. To explain our results, firms with female executives and managers would have to employ female advisers who are more productive on unobservable dimensions than firms with predominantly male executive teams. To explain a 50% increase in terminations, these differences would have to be large – which is far from obvious. We find the same discriminatory patterns hold for less experienced advisers, suggesting that the observed discrimination is not due to unobserved productivity differences, which might be harder to gauge at the start of an adviser's tenure. We also find gender differences for more experienced advisers, which suggests that the observed discrimination is also not due to expectations about future productivity formed at the start of an adviser's career.

We also examine job turnover of advisers who eventually engage in misconduct. Suppose female advisers who engage in misconduct have more undesirable characteristics relative to men who engage in misconduct. If such characteristics eventually lead to turnover biasing our results, then we should expect higher turnover among female advisers *prior* to misconduct. The evidence points in the opposite direction. Given that career interruptions can explain a sizable part of the wage gap in the finance industry (Bertrand et al., 2010), we next examine whether career interruptions can explain our facts. While career interruptions increase the probability of job separation and decrease reemployment prospects of advisers, they do not explain differences in misconduct punishment across genders.

Additionally, we examine the employment decisions of financial advisory firms that are hit with a negative

shock. A firm that decides to downsize will find it optimal to lay off the least productive employees first. If women are less productive, then firms should lay off women at a higher rate than men. Our empirical findings indicate that firms lay off male and female advisers at similar rates during times of distress, which suggests that female advisers are not less costly to lay off/fire. This collage of evidence convinces us that our results are not driven by differences in productivity or other undesirable characteristics across advisers.

We find that the unequal treatment of male and female advisers following misconduct extends beyond a firm's hiring/firing practices. We examine how past misconduct impacts future promotion prospects of female and male advisers. While both male and female advisers with recent misconduct are less likely to be promoted, the career punishment in terms of promotion prospects is substantially larger for women relative to men. Female advisers with recent misconduct are 67% less likely to be promoted relative to other female advisers. In comparision, male advisers with recent misconduct are 19% less likely to be promoted relative to other male advisers.

We conclude our analysis by documenting that regional differences in how discrimination might be perceived by the community (including customers) also explain some of the variation in discrimination. We find modest evidence suggesting that regional differences explain discrimination. Female advisers are more likely to experience discrimination in areas with high wage and participation gaps.

Our work contributes to the literature on gender discrimination. We document a new type of discrimination in a large industry: discrimination in job terminations for missteps. More broadly, our results suggest that gender discrimination can arise where female employees see less leniency for missteps than their male counterparts. Our analysis indicates that the absence of a gender gap in compensation or hiring rate at the entry level does not imply that gender discrimination is absent. It could manifest itself on the job in the form of punishment following a misstep.

Our paper relates to the vast literature on discrimination dating back to the theoretical work of Becker (1957; rev. 1971), Phelps (1972), Arrow (1973), and Aigner and Cain (1977). Our paper also contributes to empirical literature documenting gender discrimination in the workplace. Previous audit and correspondence studies, such as Neumark (1996), Goldin and Rouse (2000), and Carlsson (2011), find that women face discrimination in hiring decisions. Neumark (1996) finds that relative to men, women are less likely to receive job offers at high-end restaurants, while Goldin and Rouse (2000) find that women face discrimination in symphony orchestra auditions. While the existing research on gender discrimination has generally focused on gender differences in the compensation of productive activities we explore whether gender discrimination in punishment that sets us apart is that the employer knows the employee reducing the potential for "attention discrimination" (Bartos et al., 2016).

Our paper also contributes to the growing literature documenting that significant male/female participation and wage gaps exist in competitive, high paying jobs (Bertrand and Hallock, 2001; Wolfers, 2006; Niederle and Vesterlund, 2007; Bertrand, Goldin, and Katz, 2010). We complement this literature by focusing on a large market of financial advisers, who are perhaps more representative of the part of the labor population with a high compensation, rather than the tail of the population represented by CEOs or directions of corporate boards.

After documenting gender discrimination in the financial advisory industry, we empirically examine whether the observed discrimination is consistent with taste-based and/or statistical discrimination in the spirit of Charles and Guryan (2008) and Altonji and Pierret (2001). Instead of focusing on compensation as the labor outcome, we focus on punishment of misconduct through job separations.

Our work also relates to a literature on financial misconduct and punishment. The framework of our analysis relates closely back to the work of Becker on crime and punishment (1968). Our paper relates to the recent literature on fraud and misconduct among financial advisers (Egan, Matvos, and Seru, 2016; Dimmock et al., 2015; Qureshi and Sokobin, 2015) and in the mortgage industry (Piskorski, Seru, and Witkin, 2013; Griffin and Maturana, 2014). The paper also relates to the literature on corporate fraud, including: Povel et al. (2007), Dyck et al. (2010; 2014), Wang et al. (2010), Khanna et al. (2015), and Parsons et al. (2015).

2 Gender Composition of Financial Advisers

2.1 Data Construction

Our data set contains all financial services employees registered with the Financial Industry Regulatory Authority (FINRA) from 2005 to 2015. The data comes from FINRA's BrokerCheck database. Additional details describing the the data set are in Egan, Matvos, and Seru (2016). Throughout the paper, we refer to a financial adviser as any individual who is registered with FINRA, but are careful to make distinctions about additional registrations or qualifications a financial adviser may hold, such as being a registered investment adviser or a general securities principal. Brokers (or stockbrokers) are registered with FINRA and the SEC and are defined in the Securities and Exchange Act 1934 as "any person engaged in the business of effecting transactions in securities for the account of others." An investment adviser provides financial advice rather than transaction services. Although both are often considered "financial advisers," brokers and investment advisers differ in terms of their registration, duties, and legal requirements. Throughout the paper, we will use the FINRA terminology and refer to both investment advisers and brokers as "financial advisers." This includes all brokers and the vast majority of investment advisers. The data set also contains additional information on the universe of currently active financial firms.

The data set contains a monthly panel of all registered advisers from 2005 to 2015. This panel includes 644,277 currently registered advisers and 638,528 previously registered advisers who have since left the industry. For each of the 1.2 million advisers in the data set, we observe the following information:

- The adviser's registrations, licenses, and industry exams he or she has passed.
- The adviser's employment history in the financial services industry. For many advisers we observe

employment history dating back substantially further than the past ten years.

• Any disclosures filed, including information about customer disputes, whether these are successful or not, disciplinary events, and other financial matters (i.e., personal bankruptcy).

FINRA requires that "all individuals registered to sell securities or provide investment advice are required to disclose customer complaints and arbitrations, regulatory actions, employment terminations, bankruptcy filings, and criminal or judicial proceedings." We observe the full set of such disclosures for each financial adviser across the time period of our data. Central to our purposes, 15% of male advisers and 8% of female advisers in our data set have a disclosure on his/her record.³ A disclosure indicates any sort of dispute, disciplinary action, or other financial matters concerning the adviser. Not all disclosures are indicative of fraud or wrongdoing. We describe the broad classification of disclosure categories in detail in Appendix A-1. We classify the categories of disclosure, which are indicative of fraud or wrongdoing as misconduct. We classify other categories that are less directly indicative of wrongdoing into a separate category called "Other Disclosure." A detailed analysis of misconduct classifications, and additional details describing the data set are in Egan, Matvos, and Seru (2016).

The BrokerCheck data set does not provide information on the gender of the financial adviser. We use data from GenderChecker to match the gender of each adviser based on the first name of the adviser. GenderChecker uses data from the UK Census in conjunction with other proprietary data sources to match the first names of individuals to gender. GenderChecker takes a conservative approach to assigning genders from names. If a name appears in the census⁴ as both male and female even once, the name is classified as being unisex. We are able to match 97% of names in the BrokerCheck database to names in the GenderChecker database. We are able to assign genders to 82% of the advisers in our database. 62% of the advisers in our data set are classified as male, 20% are classified as female, 15% are classified as unisex, and the remaining 3% are unmatched in the GenderChecker database. In our main analysis, we restrict our data set to those advisers we classify as either male or female, dropping all unisex and unmatched observations. Females therefore comprise approximately 25% in the matched data. As an additional robustness check, we use name/gender data from Merdian IQ's database on financial advisers and find similar results as with the former classification. We report these robustness tests in the Appendix (Table A7).

2.2 Gender Composition of Financial Advisers

2.2.1 Gender differences

The advisers in our data account for roughly 10% of employment of the Finance and Insurance sector (NAICS 52). 25% of financial advisers are female. Simple cuts of the data suggest that male financial advisers have more experience, more extensive qualifications, and are more likely to be in managerial and supervisory

³Our share of advisers with disclosures over the 2005 to 2015 period, 12.7%, closely matches those by FINRA of 12.6%, estimated for currently registered advisers in March of 2016.

⁴Or one of GenderChecker's other data sources.

positions than their female counterparts. Figure 1 panels (a) and (b) display some important differences between male and female advisers. Male advisers are on average more experienced, with three additional years of experience relative to female advisers. Similarly, male advisers have passed a somewhat larger number of qualification exams. Male and female advisers also differ in the types of qualification exams they have passed. Figure 1b reports the share of advisers who have passed any of the six most popular qualification exams taken by investment professionals.⁵ Female advisers are more likely to have completed the Series 6 qualification exam, which allows an adviser to sell open-end mutual funds and variable annuities, while male advisers are more likely to hold a Series 65 qualification, which allows them to act in an investment adviser capacity. 54% of currently registered male advisers and 45% of currently registered female advisers are also registered as investment advisers.

In addition to more seniority, male advisers are more likely to be in managerial and supervisory positions than their female counterparts. The Series 24 exam qualifies an individual to operate in a supervisory capacity. Male advisers are 7pp more likely to have completed the Series 24 exam. Similarly, female advisers are underrepresented among executives/owners of the financial advisory firms. Figure 2b displays the distribution of female owner/executives across active financial advisory firms. Female advisers represent 16% of the owners and executives and 17% of managers, even though they account for 25% of all financial advisers. Given these differences among male and female advisers, it will be important to account for them in our analysis.

2.2.2 Who Employs Female Advisers?

Although the percentage of female advisers in the industry has remained practically constant over the past ten years, there are substantial firm differences in the share of female advisers they employ. Figure 2a displays the percentage of female advisers working at firms with at least 100 advisers. The percentage of female advisers within a firm varies from a minimum of nearly 0% to over 70%. Firms that employ more female advisers tend to be larger, and have a larger share of female owners and executives. Among female advisers, the mean and median firm size is 7,354 and 4,139. In comparison, the mean and median firm size for male advisers is 6,310 and 2,877. There are also strong geographic differences in the dispersion of female advisers. Table 2 displays the distribution of male and female advisers across states. For example, female advisers make up one in three advisers in Iowa while only one in six advisers in Utah.

2.2.3 Turnover

Only 25% of employees in this well-compensated industry are women, and this share has remained quite stable over the last decade. One might think that such a steady ratio reflects a very low turnover rate in the industry. Figure 3 plots the job turnover rates for male and female financial advisers over the past ten years. Turnover is substantial; 19% of male and female advisers per year either switched firms or left the financial

⁵We provide details of each qualification exam in Appendix A-2.

advisory industry. Part of the reason the share of female advisers has remained so constant is because the job turnover rates among male and female advisers have been nearly identical over the corresponding period, exhibiting a correlation of 0.98.

2.3 Misconduct

Approximately 7% of financial advisers have records of past misconduct (Egan, Matvos, and Seru, 2016). Here we show that misconduct is substantially more prevalent among men than women. Table 3, columns (3) and (4) display the share of advisers with at least one record of past misconduct at a given point in time. The results indicate that 9% of male and 3% of female financial advisers have at least one misconduct disclosure during their career. This measure suggests that the unconditional probability that an investor will encounter a dishonest adviser is three times as high among male advisers.⁶

Because male financial advisers have longer tenures, the differences in past misconduct records may be driven by tenure, rather than the propensity to engage in new misconduct. Therefore we also measure the amount of new misconduct, that is, how many financial advisers engage in misconduct during a given period of time. Columns (1) and (2) of Table 3 show that the probability that an adviser engages in misconduct during a year is 0.72% for males and 0.29% for females. The incidence of misconduct among male advisers is more than twice the rate among female advisers. As a result, males account for 92% of all misconduct among financial advisers.

Table 4 displays additional details on the misconduct disclosures received by male and female advisers. Table 4a displays the most commonly reported customer complaints in the misconduct disclosures. In general, the distribution of complaints received by male and female advisers is comparable, although there is more variation in the complaints received by female advisers. Similarly, Table 4b shows that the types of financial products reported in misconduct disclosures are comparable across male and female advisers. These simple summary statistics suggest that male and female advisers engage in similar types of misconduct even though the incidence of misconduct is substantially higher among male advisers.

One potential explanation for the differences in misconduct among the two genders is that the job functions of male advisers are, on average, different from those of female advisers. The summary statistics reported in Table 1 indicate that, while male and female advisers are similar on a number of observable dimensions, male advisers tend to hold more qualifications and are more experienced. We first examine this hypothesis using simple cuts of the data. Different qualifications allow advisers to provide different services, as well as perform different supervisory activities. Figure 4a displays the incidence of misconduct among male and female advisers conditional on having completed some of the most popular exams: the Series 63, 7, 6, 65/66, and/or 24. These exams are indicative of the type of services a given adviser might be providing. The incidence of misconduct among male advisers is 2-3 times higher than the incidence of misconduct

⁶Because many financial advisers have multiple disclosures pertaining to misconduct, the subcategories of disclosure that we classify as misconduct in Table 3 add up to more than 9% and 3%.

among female advisers across these exams.

Figure 4b displays the percentage of male and female advisers with a record of misconduct conditional on their experience. The figure indicates that conditional on experience, male advisers are more than twice as likely to engage in misconduct relative to female advisers across all experience levels. This is the case for very experienced advisers, those with over 20 years of experience, as well as entry-level advisers with just 2-3 years of experience. Comparing male and female advisers with less experience may provide clearer insight into gender differences among male and female advisers if the career paths of female and male advisers evolve differently over time and therefore result in unobserved productivity differences. We separately investigate less and more experienced advisers in Section 5.3.2.

The results displayed in Figures 4a and 4b suggest that male and female advisers differ in their propensity for misconduct, and that these differences are not driven by experience and qualifications among male and female advisers. Differences between genders could nevertheless arise, either because female advisers work at firms which engage in more misconduct, or because they are exposed to different regulatory or market conditions. To account for these concerns, we examine gender differences in misconduct more systematically using the following linear probability model:

$$Misconduct_{ijlt} = \alpha Female_{ijlt} + \beta X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
(1)

Observations are at the adviser-by-year level; *i* indexes an adviser who worked for firm *j* at time *t* in county *l*. The dependent variable $Misconduct_{ijlt}$ is a dummy variable indicating that adviser *i* received a misconduct disclosure at time *t*. The independent variable of interest is the dummy variable $Female_{ijlt}$, which indicates the gender of the adviser. We control for firm×year ×county fixed effects μ_{jlt} . Doing so accounts for differences across firms and branches, such as the firm clientele and/or the products the firm branch is selling. The fixed effects also account for aggregate shocks such as the financial crisis and variation in regulatory conditions (subsuming any state- or county-level regulatory variation). That is, we identify the effects looking within the same firm, in the same location, and in the same period of time. We also control for the qualifications held by an adviser (Series 7, Series 63, etc.), the number of states an adviser is registered in, and the adviser's experience in the industry in the vector X_{it} .

Table 5 displays the results. In each specification, we estimate a negative and statistically significant relationship between the adviser's gender and the probability the adviser engages in misconduct at time t. The estimates in column (1) indicate that the probability a female adviser engages in misconduct in a given year is 0.42pp lower than that of a male adviser. Therefore, relative to female advisers within the same firm at the same time in the same county (column 3), male advisers are more than twice as likely (0.72pp) to engage in misconduct. These results suggest that men engage in more misconduct, and that gender differences in misconduct are not simply a function of the types of firms male/female advisers work for and/or their roles within the firm.

3 Labor Market Consequence of Misconduct across Genders

Roughly one in eleven male advisers, and one in thirty-three female advisers, has a record of misconduct. Egan, Matvos, and Seru (2016) show that the financial industry punishes misconduct, both through employment separations at the firm level and through worse employment opportunities at the industry level. Here we examine whether the punishment for misconduct is meted out evenly across genders.

3.1 Job Separation, Misconduct, and Gender

We first examine whether female advisers face higher job separation prospects following misconduct. We start with a simple cut of the data in Table 6a. Both male and female advisers are likely to experience a job separation following misconduct, but female advisers face harsher consequences. While 46% of male advisers experience a job separation following misconduct, 55% of female advisers do so. In other words, female advisers are 20% more likely to lose their job following misconduct than male advisers. These differences do not arise because female advisers on average face larger job turnover. Turnover rates among male and female advisers are remarkably similar. On average, 19% of male and 19% of female advisers leave his/her firm in a given year. Figure 3 reaffirms these results, showing that despite turnover fluctuations year to year, turnover rates among male and female advisers are nearly identical over the period 2005-2015, with a correlation of 0.98. In other words, on average, without misconduct male and female financial advisers face similar job turnover rates. However, female advisers are substantially more likely to lose their job following misconduct.

The extremely similar turnover rates of male and female advisers in absence of misconduct strongly suggests that the increased job loss of female advisers following misconduct is not likely driven by sorting of advisers across firms or locations. Nevertheless, it may be possible that female advisers are matched with firms which punish misconduct more severely, or provide services in markets in which consumers or regulators are particularly sensitive to misconduct. To evaluate this alternative, we compare female and male advisers in the same location, at the same point in time, by estimating the following linear probability model:

$$Separation_{ijlt+1} = \beta_1 Female_{ijlt} + \beta_2 Misc_{ijlt} + \beta_3 Misc_{ijlt} \times Female_{ijlt} + \beta_4 X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
 (2)

Observations are at the adviser-by-year level; *i* indexes an adviser who worked for firm *j* at time *t* in county *l*. The dependent variable *Separation*_{*ijlt*+1} is a dummy variable indicating that the adviser is *not* employed at firm *j* in year t + 1. The independent variable *Misconduct*_{*ijlt*}, is a dummy variable indicating that the adviser received a misconduct disclosure in year *t*. The independent variable of interest is *Misconduct*_{*ijlt*} × *Female*_{*ijlt*}, which measures the differential punishment of male and female advisers. We control for advisers' characteristics such as experience and qualifications in X_{it} . To control for differences in firms' attitudes towards misconduct or different turnover rates, demographics differences, and local labor

market conditions, we include firm × year × county fixed effects μ_{jlt} . That is, as before, our effects will be identified by comparing advisers within the same firm, operating in the same location and in the same period of time.

We present the estimates in Table 6b. In each specification, we estimate a positive and statistically significant relationship between misconduct in year t and job separation in year t+1. The coefficient on misconduct measures the probability that a male adviser experiences a job separation following misconduct. For example, the coefficient of 29 reported in column (2) implies that all else equal, misconduct is associated with a 29pp-higher chance of a job separation among male advisers. In each specification, we estimate a positive and statistically significant coefficient on $Misconduct_{ijlt} \times Female_{ijlt}$ between 8 and 10, which changes little as we include the firm×year × county fixed effects μ_{jlt} .⁷ The coefficient of 8 implies that female advisers have an 8pp higher probability of experiencing a job separation following misconduct, male advisers have a 28pp higher chance of a job separation, while female advisers have a 36pp higher chance of a job separation, while female advisers have a 36pp higher chance of a job separation, while female advisers have a 36pp higher chance of a job separation. Relative to male advisers are 20% more likely to lose their job following a misconduct disclosure. These results suggest that firms are more tolerant of misconduct among male advisers.

3.2 Gender Differences in Labor Market Costs of Misconduct

3.2.1 Reemployment

If firms are more tolerant of misconduct by male financial advisers in termination decisions, they may also be more tolerant of their misconduct in hiring decisions as well. The distinction between hiring and firing is important, because firms fire advisers for misconduct committed at the firm, but rehire advisers based on misconduct committed at other firms. Firms may be willing to discipline an adviser who engages in misconduct even if the adviser is not going to engage in misconduct in the future, simply to deter future misconduct by other advisers at the firm. Refusing to hire advisers with misconduct records, however, is not about punishing them for an offense committed at another firm. Firms would refrain from such hires because these advisers are more likely to engage in future misconduct, or because customers do not want to do business with firms who hire such advisers. Therefore, gender differences may play a different role in firing decisions than in rehiring decisions. We discuss the differential impact of risk aversion on hiring and firing decisions in Section 5.1.

Simple cuts of the data displayed in Table 6a indicate that women face worse reemployment prospects following misconduct. Almost one half (47%) of male advisers who lose their job following misconduct find a new job in the industry within a year. Only one third (33%) of female advisers are reemployed in the same period. Partially, this difference in reemployment arises because female advisers are less likely to be

⁷Following Oster (2016) and Altonji, Elder, and Taber (2005a, 2005b, 2008) work on unobservable selection, we calculate the lower bound of our estimated coefficient on $Misconduct_{ijlt} \times Female_{ijlt}$ to be 4.50. As per the guidance provided in Oster (2016), we calculate the lower bound using $R_{max}^2 = 1.3 \times \tilde{R}^2$, where $\tilde{R}^2 = 0.33$ (Table 6b column 3).

reemployed, even if job separations are not preceded by misconduct. To account for this difference, we compute the decrease in reemployment probabilities due to misconduct across genders. For female advisers, the reemployment rate declines from 48% to 33% following misconduct, or 15pp. For male advisers, the decline is substantially smaller, from 54% to 47%, or 7pp. Taking a difference in differences approach, the turnover rates in Table 6a indicate female advisers are 8% less likely⁸ to find new employment following misconduct relative to male advisers.

To ensure that the gender differences in reemployment following misconduct are not confounded by differences in regulation and demographics across markets, or differences in previous employment, we estimate the following linear probability model:

$$New_Employment_{ijlt+1} = \beta_1 Female_{ijlt} + \beta_2 Misc_{ijlt} + \beta_3 Misc_{ijlt} \times Female_{ijlt} + \beta_4 X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
 (3)

We restrict the sample to financial advisers who were separated from their job in the previous year. $New_Employment_{ijlt+1}$ is equal to one if the adviser *i* who had been employed at firm *j* has found new employment in the industry between time *t* and *t* + 1. The independent variable of interest is $Misconduct_{ijlt} \times Female_{ijlt}$, which measures the differential punishment of male and female advisers. We again control for adviser characteristics in X_{it} and firm (original firm at time *t*) × year × county fixed effects μ_{jlt} . In effect, we compare the outcomes of male and female financial advisers who had been previously employed at the same firm, at the same time, in the same county, and how their reemployment depends on whether they engaged in misconduct.

The corresponding results are reported in Table 6c. We estimate a negative and significant relationship between misconduct and new employment. The negative coefficient on the interaction term *Misconduct* × *Female* indicates that female advisers face more severe punishment at the industry level; they are 3.5 - 7ppless likely to find a new job than a male financial adviser who engaged in misconduct. Given that male advisers who are disciplined at time t are 8 - 12pp less likely to find a new job in the next year, this magnitude is substantial. Relative to male advisers, female advisers' decline in reemployment opportunities following misconduct is 30% larger.

Another way to measure differences in reemployment prospects across genders is through the duration of unemployment. Figure 5 displays the unemployment survival function for male and female advisers, cut by whether the adviser engaged in misconduct in the year prior to unemployment. As the figure illustrates, on average, the unemployment spells for female advisers are longer than the unemployment spells for male advisers. This is the case both for advisers with misconduct in the past year and advisers without misconduct. Roughly 50% of female advisers remain unemployed after 24 months, while only 44% of male advisers remain unemployed after 24 months. More relevant to differential punishment across genders is the increase in unemployment duration from misconduct. The probability of long-term unemployment following misconduct

 $^{8}-8\% = (33\% - 48\%) - (47\% - 54\%)$

increases substantially more for female advisers than for their male counterparts.

The simple non-parametric survival analysis in Figure 5 does not account for other differences among financial advisers, such as their experience or qualifications. We formally analyze the impact of misconduct on an adviser's job search by estimating the following Cox proportional hazards model:

$$\lambda_{it}(\tau) = \lambda_0(\tau) exp\left(\gamma_1 Female_{it} + \gamma_2 Misc_{\cdot it-1} \times Male_{it} + \gamma_3 Misc_{\cdot it-1} \times Female_{it} + \beta X_{it} + \mu_t\right), \quad (4)$$

where $\lambda_i(\tau)$ is the hazard rate of finding new employment in the industry for individual *i* conditional on being unemployed for τ months. The hazard rate is a function of the baseline hazard $\lambda_0(\tau)$ and changes proportionally depending on whether the financial adviser was reprimanded for misconduct in the year preceding the unemployment spell, $Misconduct_{it-1}$, gender, and the interaction of the two. We also control for an adviser's characteristics X_{it} and include time fixed effects μ_t to account for aggregate fluctuations in the employment market.

Table 7a reports the hazard ratios corresponding to our Cox proportional hazards model. Any reported hazard ratio less than one suggests that the covariate is correlated with longer unemployment spells. The estimates reaffirm the results displayed in Figure 5. The results indicate that female advisers face longer unemployment spells relative to male advisers. Female advisers have a 4% smaller chance of finding new employment in the industry at any given moment in time relative to male advisers. Misconduct results in longer unemployment spells for both male and female advisers, but the effect is much larger for female advisers. An unemployed male adviser who had engaged in misconduct in the year prior to the start of his unemployment spell has a 16% smaller chance of finding new employment in the industry at any given without recent misconduct (Table 7a column 1). Conversely, an unemployed female adviser who engaged in misconduct has a 26% smaller chance of finding new employment in the industry at any given moment in time relative to a female adviser without misconduct (Table 7a column 1).

Last, we examine the quality of new employment among male and female advisers recently reprimanded for misconduct. We estimate the following specification:

New Firm Characteristic_{ij'lt+1} =
$$\beta_1 Misc_{ijlt} + \beta_2 Misc_{ijlt} \times Female_{ijlt} + \mu_{jlt} + \varepsilon_{ijlt}$$
. (5)

The dependent variable $New_Firm_Characteristic_{ij't+1}$ measures the size and the amount of misconduct of the firm j' joined by adviser i who joined firm j' after leaving firm j. The independent variable of interest is the interaction term $Misconduct_{ijt} \times Female_{ijlt}$, which captures the difference in quality of new employment opportunities obtained by female advisers with recent misconduct relative to male advisers with recent misconduct. Here we include the previous firm \times county \times time fixed effects μ_{jlt} . In other words, we are comparing the new employment outcomes of male and female advisers with recent misconduct who were working for the same firm at the same location at the same time. Table 7b displays the results. Both male and female advisers with recent misconduct move to firms that are smaller and firms that have a higher share of employees with past misconduct records. However, relative to male advisers with recent misconduct, female advisers with recent misconduct move to firms that have 800 fewer employees and firms that have a 1.37pp lower incidence of past misconduct. Overall, these results suggest that, relative to male advisers, female advisers experience face harsher consequences for engaging in misconduct at both the firm and industry level. Subsequent to leaving the firm after misconduct, female advisers also move to firms that are cleaner in terms of misconduct propensity of the advisers that are employed by the new firm.

4 Gender Discrimination

Although men commit misconduct at a rate that is three times higher than women, women face substantially harsher punishments both by the firms that employ them and other potential employers in the industry. These results do not necessarily imply that firms have an inherent prejudice against female advisers. Profitmaximizing firms may punish females more severely because misconduct by female advisers is indicative of worse productivity, or costlier or more frequent misconduct. In other words, the gender differences that we observe in the data could be a result of statistical discrimination (Phelps, 1972; Arrow, 1973). We examine this possibility in the next section. We then address the alternative, that discrimination is taste based (Becker, 1957), driven by preferences either of firm employees or customers having less tolerance for misconduct among women.

4.1 Statistical Discrimination

In this section, we examine whether the evidence in the data is consistent with statistical discrimination. Statistical discrimination arises when an employer uses group membership to infer something about underlying characteristics. Under this argument, it may be optimal for firms to be more tolerant of male adviser misconduct if women engage in more costly misconduct. Larger costs could arise if women engage in more misconduct, or if this misconduct is more expensive. Another reason, under this argument, why firms may be more tolerant of misconduct among male advisers could be that male advisers are more productive than female advisers. Thus, women would, on average, be marginal employees in terms of productivity. We examine these and other potential sources of statistical discrimination in turn.

4.1.1 Repeat Offenders

One reason for firms to fire advisers following misconduct is that such advisers are likely to engage in misconduct again in the future (Egan, Matvos, and Seru, 2016). We find that unconditionally men have higher rates of misconduct. Roughly 9% of male and 3% of female advisers engaged in misconduct during their career. However, it is possible that female advisers with a misconduct record are more likely to engage

in misconduct than their male counterparts. Then firms would find it optimal to fire female advisers with a higher probability. Figure 6a displays the share of male and female repeat offenders. 41% of men with misconduct records are repeat offenders, having two or more disclosures of misconduct. Conversely, only 22% of female advisers are repeat offenders. Male advisers are roughly twice as likely to be repeat offenders relative to female advisers.

To ensure that gender differences in the propensity towards repeat offenses are not driven by differences in firms, which employ advisers of different genders, or differences in qualifications, we more formally examine the propensity of male and female advisers to commit future offenses using a linear probability model. Consider the probability that adviser i, at firm j, in county l engages in misconduct at time t. We estimate the following linear probability model:

$$Misc_{ijlt} = \beta_1 Female_{ijlt} + \beta_2 PriorMisc_{ijlt} + \beta_3 PriorMisc_{ijlt} \times Female_{ijlt} + \beta X_{ijlt} + \mu_{jlt} + \varepsilon_{ijlt}.$$
 (6)

The dependent variable $Misconduct_{ijlt}$ is a dummy variable indicating that the adviser was disciplined for misconduct at time t. The variable $PriorMisconduct_{ijlt}$ is a dummy variable indicating whether the adviser was ever reprimanded for misconduct prior to time t. The main independent variable of interest is $PriorMisconduct_{ijlt} \times Female_{ijlt}$. The interaction measures the difference in propensity of male and female advisers to engage in repeat offenses. We also control for the adviser's gender to account for any differences in the baseline misconduct rate across the two genders. To ensure that the correlation between past and future misconduct is robust, we control for firm \times year \times county fixed effects μ_{jlt} . We also control for the adviser's characteristics in X_{ijlt} .

Table 8 displays the corresponding estimates. The $PriorMisconduct_{ijlt}$ coefficient measures the propensity of a male adviser with a record of misconduct to engage in new misconduct relative to other male advisers in his firm, in the same county, and at the same point in time. The coefficient of 2.4pp suggests that a male adviser who has a past record of misconduct is 2.4pp more likely to receive a new misconduct disclosure in the upcoming year. The negative coefficient of -0.7pp on the variable of interest, $PriorMisconduct_{ijlt} \times Female_{ijlt}$, suggests the tendency of women to engage in repeat offenses is smaller. In other words, women are less likely to be repeat offenders. The financial advisory industry may find it optimal to punish female advisers more severely if women engage in more misconduct. However, the evidence presented in Figure 6a and Table 8 indicates the exact opposite; male advisers are substantially more likely to be repeat offenders relative to female advisers.

4.1.2 Cost of Misconduct

Female advisers do not seem to engage in more misconduct than male advisers. Instead, harsher punishment may be warranted if women engage in more costly misconduct. We examine the settlements and damages firms paid to investors as a result of misconduct. Figure 7 displays the distribution of settlements paid out as a result of misconduct among male and female advisers. The distribution of settlements from male adviser misconduct stochastically dominates the distribution of settlements resulting from female adviser misconduct. Table 4c reports the corresponding summary statistics. The median settlement is \$40k for male advisers and \$31k for female advisers. Furthermore, the average settlement of male advisers is more than double that of female advisers (\$832k versus \$320k).

We examine the difference in damages paid out on behalf of male and female advisers using the following regression specification:

$$\ln(Damages)_{ijlt} = \alpha Female_{ijlt} + \beta X_{it} + \mu_i + \phi_l + \psi_t + \varepsilon_{ijlt}.$$
(7)

The sample is restricted to instances of misconduct in which settlements or damages were paid to the customer. The dependent variable is $\ln(Damages_{ijlt})$, which measures the damages paid out on behalf of advisers following an incidence of misconduct. The key independent variable of interest is the dummy variable $Female_{ijlt}$. We control for adviser characteristics in X_{it} , firm (original firm at time t), year, and county fixed effects μ_j , ϕ_l , ψ_t . In effect, we compare the outcomes of female and male financial advisers who engaged in misconduct at the same firm, at the same time, in the same county, with the same characteristics.

The results in Table 9 confirm that misconduct committed by male advisers is more costly than misconduct committed by female advisers. On average, damages from female adviser misconduct are 15-20% lower than damages from comparable male advisers. Overall, we find evidence that male advisers engage in more misconduct and in more costly misconduct. These results are at odds with the idea that more tolerance for male misconduct is warranted because their misconduct is less costly. Instead, firms should punish male advisers *more severely* than female advisers. In other words, even if job separation rates following misconduct were identical, these results would still suggest that punishment of misconduct is biased against women.

4.1.3 Productivity Differences

Firms may find it optimal to punish women more severely if it is less costly to punish female advisers relative to male advisers. For example, it would be more costly to fire an adviser that generates \$1mm in revenue relative to an adviser who generates \$100k in revenue. Firms would optimally be more tolerant of misconduct among their more productive employees.⁹

In our analysis, we control for much of the productivity differences among financial advisers by controlling for each adviser's qualifications, experience, the firm and location at which they work, and other characteristics. We use Meridian IQ data, which contains additional details on adviser productivity for a large subset of active¹⁰ financial advisers. We observe information on the adviser's productivity (revenues

⁹Note that if firms observe the productivity of each adviser, then this is not statistical discrimination per se. Suppose that male advisers are more productive on average relative to female advisers and that, consequently, firms are more tolerant of misconduct among male advisers. It could be the case that firms are more tolerant of misconduct among male advisers it could be the case that firms are more tolerant of misconduct among male advisers either because: (a) firms observe the productivity of each adviser or (b) firms instead know that male advisers are more productive on average. We do not make the distinction between these two mechanisms.

¹⁰We only observe productivity information for currently active advisers. This limits our ability to conduct the same reem-

brought to a firm), assets under management (AUM), and quality¹¹. We report the productivity summary statistics for male and female advisers in the bottom panel of Table 1. The summary statistics suggest that male advisers are marginally more productive and manage more assets. However, the economic magnitudes of the differences in AUM and productivity are small.

We examine whether these small observable productivity differences can explain the gender differences we document in Section 3. We first reexamine the probability male and female advisers engage in misconduct. We reestimate the linear probability model discussed in Section 2.3 (eq. 1), controlling for adviser productivity. The results in column (1) of Table 10 suggest that female advisers are 46%¹² less likely to receive a misconduct disclosure in a given year.¹³ Controlling for productivity leaves the estimates comparable to those corresponding to our baseline specification (Table 5).

Differences in productivity do not explain our finding that male advisers are more likely to engage in misconduct, but can it explain the differences in firm discipline across male and female advisers? We reestimate the linear probability model discussed in Section 3 (eq. 2) where we control for adviser productivity. We report the corresponding estimates in column (2) of Table 10. Even controlling for productivity differences, we still find evidence that female advisers are substantially more likely to experience an employment separation following misconduct. The results in column (2) indicate that female advisers are 5pp more likely to experience a job separation following misconduct relative to male advisers. Intuitively, we also find that those advisers that are more productive, manage more assets, and that have a high quality rating are less likely to experience an employment separation. Overall, the results suggest that the observed differences in productivity do not explain the differences in firm discipline across male and female advisers.

In conjunction with our previous findings in Sections 4.1.1 and 4.1.2, we do not find evidence that statistical discrimination explains differences in punishments across male and female advisers. Female advisers are less likely to engage in misconduct, less likely to be repeat offenders, engage in misconduct that is 20% less costly, and are equally productive relative to their male counterparts. Nevertheless, they face a higher probability of job termination and a smaller probability of reemployment following misconduct.

4.2 What Drives Discrimination

In Section 3 we do not find evidence in favor of statistical discrimination. If anything, male financial advisers are more likely to engage in repeated misconduct and generate larger costs for the firm. Therefore, evidence seems to suggest taste-based discrimination (Becker, 1957). Broadly, three groups can discriminate against female financial advisers who engage in misconduct: employers, consumers, and regulators. We now explore differences across these groups to better understand the source of discrimination that we observe in the data.

ployment analysis discussed in Section 3.2 since all of the advisers with productivity data are currently employed in the industry, ¹¹Meridian IQ has a proprietary success-likelihood measure for a large subset of the advisers in the data set. We control for whether or not the adviser has a "high" or "low" success likelihood.

 $^{^{12}}$ On average, 0.72% of male financial advisers receive a misconduct disclosure in a given year.

 $^{^{13}}$ The results in column (1) suggest that more productive advisers are more likely to receive misconduct disclosures: a 100% increase in assets under management is associated with a small, 6% increase in the probability of receiving a misconduct disclosure in a given year.

4.2.1 Firm Initiated Misconduct

Recent survey evidence suggests that a large majority of women believe that gender discrimination persists within their firms. Nearly 88% of female financial service professionals in a recent survey said that they believe that gender discrimination exists within the financial services industry, 46% believe gender discrimination exists in their firm, and 31% said they have personally been discriminated against based on gender (Tuttle, 2013). To explore whether within-firm discrimination is related to misconduct punishment, we first examine who triggers the allegation of misconduct: customers, regulators, or advisory firms themselves. Customers can do so for a variety of reasons, ranging from fraud to violations of fiduciary or suitability standards. Regulators pursue regulatory violations. Advisory firms can trigger misconduct allegations as the result of misconduct accusations, or if the adviser violated the firms' internal policies. Table 11a breaks down the share of misconduct originating from each category by the gender of the adviser and Table 11b reports the corresponding allegations. The share of misconduct originated by consumers is higher for male advisers (55%) relative to female advisers (45%). Likewise, the share of regulatory complaints is slightly higher for male advisers (17%) relative to female advisers (13%). However, female advisers are more likely to have misconduct initiated by their firm (41%) relative to male advisers (28%). In other words, firm-initiated misconduct is substantially more common among female financial advisers, suggesting that the source of discrimination may lie with the employer.

To ensure our results are not driven by heterogeneity in experience, qualifications, or firm characteristics, we examine the source of misconduct allegations more formally using the following specification:

Firm Initiated Misconduct_{ijlt} =
$$\beta_1 Female_{ijlt} + \beta_2 X_{it} + \mu_j + \mu_l + \mu_t + \varepsilon_{ijlt}$$
. (8)

We restrict our data set to observations in which an adviser has new misconduct disclosure on his/her record. The dependent variable $Firm_Initiated_Misconduct_{ijlt}$ is a dummy variable that indicates whether or not the firm initiated the misconduct proceedings rather than a customer or regulator. The dependent variable of interest is the gender of the adviser, $Female_{ijlt}$. We also control for adviser characteristics in X_{it} and include firm, county, and year fixed effects. The results in Table 11c confirm the summary statistics results that, conditional on having a misconduct event, female advisers are substantially more likely (3-14pp) to have a claim initiated by their firm relative to male advisers. The results suggest that discrimination may be "taste-based," driven by preferences of firms' management, who make firing and hiring decisions.

4.2.2 Differences Across Firms

To better understand the source of taste-based discrimination at the employer level, we first document that firms differ in how they treat male and female advisers following misconduct. We then explore whether differences between firms, such as the gender composition of management, can explain differences in discrimination across firms. We first compute differences in gender discrimination across firms using the following specification:

$$Separation_{ijlt+1} = \beta_{j0} + \beta_{j1}Female_{ijlt} + \beta_{j2}Misc_{ijlt} + \beta_{j3}Misc_{ijlt} \times Female_{ijlt} + \beta_4X_{it} + \varepsilon_{ijlt}.$$
 (9)

The firm specific coefficient of interest β_{j3} measures the difference between the probability a female adviser experiences an employment separation following misconduct relative to male advisers, in a given firm.¹⁴ Figure 8a displays the dispersion in gender discrimination (β_{j3}) across firms.¹⁵ The estimated distribution of firm coefficients (β_3) are jointly significantly different from each other, confirming differences in discrimination across firms. We report the firms where female advisers with misconduct face the highest separation rates relative to male advisers in Figure 8b. Three firms with the highest rates are Wells Fargo Advisers, Wells Fargo Investments, and AG Edwards & Sons. Note that all three firms are now affiliated with Wells Fargo & Company. The results indicate that relative to the average firm, female advisers at Wells Fargo Advisers are $18pp^{16}$ more likely to experience an employment separation following misconduct relative to male advisers.

4.2.3 Women in Management Positions, and Discrimination

If discrimination arises because of employer bias, it is probably driven by the bias of the decision makers in the firm. One proposal to limit discrimination in firms is to increase the share of women in positions of power. The idea is that decision makers in organizations can directly affect policies leading to discrimination, and that members from the discriminated group, i.e., women, are more likely to recognize discrimination and less likely to support discriminatory practices. We first examine whether differences in the gender composition of executive teams across firms can explain across-firm differences in discrimination. We then look within firms, and see whether the gender composition of branch managers within firms can explain differences in discrimination across branches.

We first examine whether the gender composition of decision-making teams across firms explains some of the firm differences in discrimination. Figure 2b illustrates the substantial differences in gender composition of firm executives in our sample as of May 2015. In Section 3 we document that female advisers are more likely to lose their job following misconduct. We now examine whether gender differences are smaller in firms

¹⁴Note that we allow firms to differ in both the extent of misconduct, as well as the turnover rate for female advisers without misconduct, by including firm specific coefficients β_{j1} and β_{j1} .

 $^{^{15}}$ To improve statistical power, we restrict our analysis to those firms where we observe at least twenty female advisers receive misconduct disclosures.

¹⁶The results displayed in Table 6a indicate that, on average, female advisers are 9pp more likely to experience an employment separation following misconduct relative to male advisers. The results displayed in Figure 8b indicate that female advisers at Wells Fargo are 27pp more likely to experience an employment separation following misconduct relative to male advisers.

with more female executives. We estimate the following linear probability model:

$$Separation_{ijlt+1} = \beta_1 Misc._{ijlt} + \beta_2 Female_{ijlt} + \beta_4 Misc._{ijlt} \times Female_{ijlt} + \beta_5 Misc._{ijlt} \times Female_{ijlt} \times Pct_Female_Exec_j$$
(10)
+ $\beta_4 X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$

Observations are at the adviser-by-year level; *i* indexes an adviser who worked for firm *j* at time *t* in county *l*. The dependent variable $Separation_{ijlt+1}$ is a dummy variable indicating that the adviser is *not* employed at firm *j* in year t + 1. The variable $Pct_Female_Exec_{jlt}$ measures the percentage of females in executive management as of 2015; the level effect is absorbed by the fixed effect μ_{jlt} . The independent variable of interest is $Misconduct_{ijlt} \times Female_{ijlt} \times Pct_Female_Exec_j$, which measures how the differences in punishment across genders depends on the share of female executives. We control for advisers' characteristics such as experience and qualifications in X_{it} . To control for differences in firms' attitudes towards misconduct or turnover rates, demographics differences, and local labor market conditions, we include firm \times year \times county fixed effects μ_{ilt} .

Table 12a displays the corresponding estimates. Firms with a greater share of female executives are substantially less likely to discriminate. In firms in which females comprise one-third of the executive team, there is almost no differential punishment for misconduct between genders.¹⁷ In firms without any female executives, female advisers are 16pp more likely to experience an employment separation relative to their male counterparts following misconduct (Table 12a, column 3).

The share of female executives at the top level of the firm's organizational structure is related to differences in discrimination across firms. Gender discrimination may also depend on more granular firm characteristics at the branch level. We examine the effects of female representation in management at the branch level by constructing the variable $Pct_Female_Mgmt_{jlt}$, which measures the percentage of managers that are female at the firm × county × year level. We also examine the effects of female representation at the branch level more generally by constructing the variable Pct_Female_{jlt} , which reflects the percentage of advisers (weighted by experience) that are female at the firm × county × year level. Figures 9b and 9c display the variation in the variables $Pct_Female_Mgmt_{jlt}$ and Pct_Female_{jlt} . We reestimate specification eq. (10), where we separately include and interact the branch-level characteristics $Pct_Female_Mgmt_{jlt}$ and Pct_Female_{jlt} . These specifications allow us to exploit within-firm variation to examine the causes of gender discrimination.

Tables 12b and 12c display the estimation results corresponding to eq. (10), where we examine the effects of female representation at the branch level in terms of its advisers and management. The results displayed in Table 12b indicate that female advisers employed at branches with more male management are more likely

¹⁷The results in column (2) of Table 12a indicate that estimated coefficient on the interaction term $Misconduct \times Female \times Pct_Female_Exec$ is -41.0 and estimated coefficient on the term $Misconduct \times Female$ is 14.1. Thus, there is no differential in job separation probabilities for male and female advisers following misconduct if $Pct_Female_Exec = \frac{14.1}{41.0} = 0.34$.

to experience an employment separation after receiving a misconduct disclosure relative to male advisers. At branches with no female representation at the management level, female advisers are 14pp more likely to experience an employment separation following misconduct relative to their male counterparts. The results displayed in 12c mirror that of Tables 12a and 12b. Female advisers experience less differential treatment following misconduct at branches with more female advisers. The results displayed in column (2) of Table 12c indicate that female and male advisers experience similar outcomes following misconduct when male and female advisers are roughly equally represented at the firm branch.¹⁸

4.2.4 Female Managers and Misconduct Tolerance in Hiring

If female executives are more tolerant of missteps from female advisers in their own firm, are they also more tolerant of misconduct when considering new hires? Recall that misconduct decreases female advisers' chances of reemployment relative to male counterparts. We therefore estimate the following specification:

New Female Hires Disciplined_{it+1} =
$$\beta_1 Female Mgmt_{it} + \beta_2 X_{it} + \mu_s + \mu_t + \varepsilon_{it}$$
. (11)

Observations are at the firm \times year level. The dependent variable reflects the share of new employees that were hired by firm j at time t+1 that are female and have a past record of misconduct. The independent variable of interest is again the percentage of executives/owners that are female. We also control for firm characteristics such as the formation type, size, business, etc., and include state and year fixed effects.

The estimation results are reported in Table 12d. Firms with a greater percentage of female executives hire a larger share of female advisers at time t+1 who were disciplined for misconduct at time t. The estimate in column (3) indicates that a 10pp increase in the percentage of female executives is associated with a 3.6pp increase in the share of new employees that are both female and have a record of misconduct. To put these numbers in perspective, moving from the 50th to the 75th percentile in terms of female executives is correlated with an 11% higher share of new employees that are female and have a record of misconduct. These results suggest that firms with a greater percentage of male executives are less willing to hire female advisers with past offenses.

Overall, our results suggest that gender differences in labor market outcomes following misconduct are driven by discrimination by male executives of financial advisory firms. Male executives seem to be more forgiving of misconduct by men relative to women. The correlation between discrimination and the share of female executives also deceases the likelihood that our results are driven by unobserved differences in productivity across genders. To explain the striking differences in discrimination across firms, firms with a larger share of women executives would have to employ more productive women than firms with predominantly male executive teams, and do so to a large extent.

¹⁸The results in column (2) of Table 12c indicate that estimated coefficient on the interaction term $Misconduct \times Female \times Pct_Female$ is -16.9 and estimated coefficient on the term $Misconduct \times Pct_Female$ is 10.6. Thus, there is no differential in job separation probabilities for male and female advisers following misconduct if $Pct_Female = \frac{10.6}{16.9} = 0.62$.

5 Discussion and Robustness

We now discuss several other alternatives that have been considered in the literature on gender discrimination to be important in explaining differences. In addition, we also present several other tests that assess the robustness of our main findings.

5.1 Gender Differences in Risk Aversion

One possible reason why firms may want to punish female advisers more severely for misconduct is that there may be differences in risk aversion across genders.¹⁹ Bertrand et al. (2010) discuss that differences in risk aversion across genders can explain several important phenomena that might look like discrimination across gender. Higher risk aversion in women may play an important role in explaining why female advisers exhibit substantially lower levels of misconduct relative to their male counterparts. If misconduct provides risky rewards and punishments, then women may engage in less misconduct. Higher risk aversion can also increase the effectiveness of greater punishment, so it may be optimal for firms to punish misconduct among female financial advisers more severely.

The evidence presented in this paper suggests that it is unlikely that risk aversion is the sole cause of gender differences related to discipline consequent to misconduct in this market. First, more severe punishment may explain why firms are more likely to fire women after misconduct, but has a difficult time explaining why other firms would be loathe to rehire them, since punishment is presumably expensive and misconduct took place elsewhere. Second, we find large differences between firms, both in disciplining and hiring, based on the share of the executive team that is female. To explain this fact, female advisers hired by firms with a larger female executive team would have to be less – not more – risk averse. Therefore, while it is possible that risk aversion partially contributes to gender differences in misconduct, discrimination by male-dominated firms exists.

5.2 Career Interruptions

Bertrand et al. (2010) find that career interruptions explain about one-third of the gender wage gap in young professionals in the financial and corporate sectors. We examine whether the differential treatment among male and female advisers can be explained by career interruptions. As in Bertrand et al. (2010), we define a career interruption as an unemployment spell lasting six months or longer. Roughly 19% of the advisers in our data set have experienced a career interruption. After controlling for observable characteristics, female advisers are 1.26pp more likely to experience a career interruption. We replicate our main analysis for Section 3 to examine whether the discrimination we observe is robust to career interruptions.

¹⁹See Croson and Gneezy (2009) for a review on the literature documenting differences in risk tolerance among males and females. Croson and Gneezy find robust differences in risk preference among men and women with women being more risk averse than men.

Table A1 displays the estimation results for our baseline specifications where we now control for career interruptions. In column (1), we reestimate eq. (1), where the dependent variable is a dummy variable indicating whether or not an adviser engages in misconduct at time t. The results indicate that after controlling for career interruptions, male advisers are still more than twice as likely to engage in misconduct. More central to our analysis, we reexamine how firms and the industry discipline misconduct after controlling for career separations. In columns (2) and (3) we reestimate the effect of gender on the probability of job loss and rehiring following misconduct, eq. (2) and (3). Career interruptions have a substantial effect on labor market outcomes. An interruption is correlated with a 5pp increase in job separation rate, and a 4pp decrease in reemployment rates. However, it does little to explain the different treatment of genders following misconduct: our main results are robust and essentially remain unchanged after controlling for career interruptions.

5.3 Unobserved Adviser Characteristics

5.3.1 Unobserved Adviser Characteristics

In our analysis, we control for a plethora of financial adviser characteristics. Using additional data from Meridian IQ, we also control for observable productivity differences in Section 4.1.3. However, female and male advisers may differ on unobservable dimensions not captured in the data. To address the concern of potential unobserved productivity differences among male and female advisers, we examine the employment decisions of financial advisory firms that are hit with a negative shock. A firm that decides to downsize will find it optimal to lay off the least productive employees first. If women are less productive, then firms should lay off women at a higher rate than men.

We examine firms in our data that experienced large declines in their labor force. We first measure if female advisers are displaced at a higher rate than male advisers among these distressed firms by plotting displacement rates in Figure A1. The two series are highly correlated (0.95) and nearly identical. The figure suggests that female employees do not seem to be marginal. We examine these differences more systematically by estimating the following linear probability to compare the displacement rates across male and female advisers:

$$Separation_{ijlt} = \alpha_1 Female_{ijlt-1} + \alpha_2 Female_{ijlt-1} \times Downsize_{ijtl-1} + \beta X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
 (12)

The dependent variable $Separation_{ijlt}$ is an independent variable indicating whether adviser *i* working for firm *j* in county *l* at time *t* experiences a job separation. The independent variable $Downsize_{ijlt-1}$ is a dummy variable indicating that firm *j* downsized its workforce; the level effect is absorbed by the fixed effect. The key independent variable of interest is the interaction between $Female_{ijlt-1}$ and $Downsize_{ijlt-1}$. If female advisers are less productive employees then we would expect to estimate a positive and significant coefficient for the interaction term $Female_{ijlt-1} \times Downsize_{ijtl-1}$.²⁰

Table A2 reports the estimation results across three different definitions of firm downsizing. We define downsizing as a year over year decline in the adviser workforce of 5%, 10%, or 25%. For example, roughly 13% of our data set (in terms of adviser-by-year observations) experiences 10% declines. The average displacement rate at these distressed firms is 45%. When we compare male and female advisers within the same firm at the same time in the same county, we find no evidence that distressed firms downsize more extensively among females; in fact, the coefficient on *Female* × *Distressed* is negative. We find similar results across different definitions of downsizing.

5.3.2 Adviser Experience

The career paths of male and female advisers may evolve differently over time. For example, male and female advisers may acquire human capital on the job at different rates, or relatedly, female advisers may be more likely than male advisers to experience career interruptions. Here, we separately examine those financial advisers with five or fewer years of experience and those advisers with fifteen or more years of experience. Comparing male and female advisers with less experience may provide clearer insight into gender differences if the career paths of female and male advisers evolve differently over time because of differences in on-the-job-training and other factors that would result in unobserved productivity differences. Previous research suggests that gender differences in pre-market human capital among men and women are negligible (Blau 1997; Altonji and Blank 1999). If we find that the same discriminatory patterns hold for less experienced advisers, this suggests that the observed discrimination is not due to unobserved productivity differences. Similarly, if we find that the same discriminatory patterns hold for more experienced advisers, this suggests that the observed discriminatory patterns hold for more experienced advisers, this suggests that the same discriminatory patterns hold for more experienced advisers.

We separately reestimate our baseline misconduct (eq. 1), employment separation (eq. 2), and reemployment (eq. 3) linear probability models based on the adviser's level of experience in the industry. The corresponding estimates are displayed in Tables A3a and A3b. The results in Table A3a indicate that the same discriminatory patterns hold for less experienced advisers: relative to male advisers, female advisers are $49\%^{21}$ less likely to engage in misconduct, 9pp more likely to experience an employment separation following misconduct, and 2pp less likely to find a new job following misconduct relative to male advisers. We find similar patterns for more experienced advisers. Among those advisers with fifteen years experience, female advisers are $50\%^{22}$ less likely to engage in misconduct and 4pp more likely to experience an employment separation following misconduct. In both sub-samples we find less evidence suggesting that female advisers

²⁰As additional support for our empirical specification, we first examine the specification

 $Separation_{ijlt} = \alpha_1 Downsize_{ijlt-1} + \alpha_2 Manager_{ijlt-1} \times Downsize_{ijtl-1} + \beta X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$

The independent variable $Manager_{ijlt-1}$ indicates whether adviser *i* holds a General Securities Principal Examination license, which allows the adviser to operate in supervisory capacity. As reported in the Appendix, we find that distressed firms are less likely to lay off managers. This suggest that firms lay off less productive employees during times of distress.

²¹On average, 0.38% of male advisers with five or fewer years of experience receive misconduct disclosures in a given year.

²²On average, 1.01% of male advisers with fifteen or more years of experience receive misconduct disclosures in a given year.

face worse reemployment prospects following misconduct relative to male advisers. However, this is likely due to a statistical power issue, given the smaller sample sizes. The discriminatory patterns documented in Section 3 are persistent throughout a female adviser's career.

We also reexamine the relationship between misconduct and discipline based on the adviser's level of experience within his/her firm. In Tables A3c and A3d we report the estimation results for our baseline specifications for those advisers with five years or less experience and fifteen or more years experience within his/her firm. We find the same patterns hold for less experienced advisers (within a firm). The results displayed in column (2) of Table A3c indicate that female advisers are 12pp more likely to experience an employment separation following misconduct and are 3pp less likely to find a new job following misconduct relative to male advisers. In contrast to our previous results, we do not find evidence suggesting that female advisers with fifteen or more years of experience face differential treatment following misconduct relative to male advisers (A3d). One explanation for this result is a lack of statistical power; we see few women working fifteen or more years with the same firm. In untabulated results, we find evidence suggesting that women face more severe career punishments following misconduct among those advisers with ten or more years experience within the same firm. Another potential explanation could be selection: discriminatory firms do not retain female advisers.

5.4 Alternative Misconduct Classifications

We define misconduct disclosures using a subset of the 23 disclosure classifications as reported by FINRA following Egan et al. (2016). To see whether our results could be driven by our definition of misconduct, we also measure "Severe Misconduct" (Egan et al., 2016), which focuses on more severe instances of misconduct such as explicit fraud.²³ Table A4a reports the incidence of severe misconduct among male and female advisers. Because severe misconduct is a strict subset of misconduct, the incidence of severe misconduct is lower than the incidence of misconduct. Roughly 3.6% of male advisers and 1.1% of female advisers have a record of severe misconduct. The results indicate that male advisers are roughly three times as likely to engage in both misconduct and severe misconduct relative to female advisers. We reestimate our baseline specifications using the severe misconduct definition and present the results in Table A4b. In column (1) we reestimate eq. (1) to illustrate that male advisers are almost three times as likely to engage in severe misconduct relative to female advisers, firms, and time.

We then test whether the labor market is more forgiving of misconduct by male financial advisers even when misconduct is severe. We reestimate gender differences in job separation following misconduct from eq. (2). The results in column (2) of A4b show that severe misconduct leads to elevated termination for both male and female advisers. However, the punishment is more severe for female advisers, whose probability of job termination rises by 24pp relative to 17pp for their male counterparts. In other words, firms are more

²³Severe misconduct is defined as any settled regulatory, civil, or customer dispute involving: unauthorized activity, fraud, forgery, churning, selling unregistered securities, misrepresentation, and/or omission of material/key facts. We also include as severe misconduct any finalized criminal cases involving investment-related activities, fraud, and/or forgery.

forgiving of male advisers' misconduct committed on their premises, even when such misconduct is quite severe. Advisory firms are also more tolerant of male financial advisers who engaged in severe misconduct at their previous employer. Female advisers who engage in severe misconduct are 4pp less likely to find new employment relative to male advisers who engage in severe misconduct. These results reaffirm our initial finding that the financial services industry is less tolerant of misconduct among female advisers.

5.5 **Promotions**

Our main analysis focuses on how a firm disciplines misconduct in terms of the firm's firing/hiring practices. Another dimension firms could use to discipline misconduct is through promotion. Here, we examine how a past record of misconduct impacts the promotion prospects of male and female advisers.

We examine the probability an adviser is promoted in a given year. Our measure of promotion is whether or not the financial adviser is promoted to a general securities principal. A general securities principal must pass the Series 24 exam, which qualifies an individual to supervise or manage employees at a general securities broker dealer. We estimate the corresponding linear probability model

$$Promotion_{ijlt} = \beta_1 Female_{ijlt} + \beta_2 Misc_{ijlt} + \beta_3 Misc_{ijlt} \times Female_{ijlt} + \beta_4 X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
 (13)

The dependent variable, $Promotion_{ijlt}$, indicates whether or not adviser *i* passed the general securities principal exam at time *t*. Our unit of observation is at the adviser-by-year level, where we restrict our analysis to the full set of financial advisers who were not general securities principals prior to time *t*. The independent variables of interest are the variables *Misconduct* and the interaction term *Misconduct* × *Female*. The interaction term tells us if and how the promotion prospects of male and female advisers differ after he/she receives a misconduct disclosure.

The corresponding estimates for our promotion linear probability model are reported in Table A5. In each specification, we find a negative relationship between misconduct and the probability an adviser is promoted in a given year. The results in column (1) of Table A5 indicate that those male advisers who recently received a misconduct disclosure are 17bps less likely to be promoted. To put this number in perspective, 0.91% of male advisers in the sample are promoted each year. Thus, those male advisers who recently received misconduct disclosures are 19% less likely to be promoted relative to other male advisers. The results also indicate that female advisers are disproportionately punished for misconduct. We estimate a negative relationship between promotion and the interaction term $Misconduct \times Female$ in each specification and the estimated coefficient is statistically significant in two out of three specifications. The results in column (1) of Table A5 indicate that female advisers recently disciplined for misconduct are 67% less likely to be promoted relative to other female advisers. The results suggest that firms not only discriminate across male and female advisers in terms of their hiring/firing practices following misconduct, but also in their promotion decisions.

5.6 Regional Differences

We find that there is substantial variation in discriminatory practices across firms but how about across regions? In this section, we examine regional differences in discriminatory hiring/firing practices and how they relate to other measures of gender inequality. Using spatial variation allows us to ask if the regional differences in gender outcomes, which represents the tolerance of the community (including customers of the firm), might explain some of the differences we document. Specifically, we examine how our measures of discrimination relate to wage and participation gender gaps in the finance sector. We supplement our data set with data from the American Community Survey on wage and participation gender gaps in the financial sector²⁴ at the county-by-year level over the period 2010-2015. One might expect that women would face harsher discipline relative to men in areas with larger gender gaps, regardless of whether or not the underlying discrimination is taste based or statistical.

We reestimate our baseline employment separation and reemployment regressions (eq. 2 and 3), where we fully interact our misconduct and gender variables with our measure of gender wage and participation gaps:

$$Separation_{ijlt+1} = \beta_1 Female_{ijlt} + \beta_2 Misc._{ijlt} + \beta_3 Wage_Gap_{lt} + \beta_4 Misc._{ijlt} \times Female_{ijlt} + \beta_5 Gender_Gap_{lt} \times Misc._{ijlt} + \beta_6 Gender_Gap_{lt} \times Female_{ijlt} + \beta_7 Gender_Gap_{lt} \times Misc._{ijlt} \times Female_{ijlt} + \beta_8 X_{it} + \mu_{jlt} + \varepsilon_{ijlt}.$$
(14)

The dependent variable indicates whether or not adviser *i* experienced an employment separation at time *t*. We construct four different measures of the variable *Gender_Gaplt* at the year-by-county level. First, we construct *Gender_Gaplt* as a dummy variable equal to one if county *l's* wage gap is above the median wage gap in the sample. We define the wage gap in the financial sector and across all sectors such that $Wage_Gap_{lt} = \frac{Median_Male_Wages_{lt}-Median_Female_Wages_{lt}}{Median_Male_Wages_{lt}}$. Second, we construct *Gender_Gaplt* as a dummy variable equal to one if county *l's* participation gap is above the median participation gap in the sample. We define the participation gap in the financial sector and across all sectors such that $Participation_Gap_{lt} = \frac{\#Male_Employees_{lt}}{\#Female_Employees_{lt}}$. The independent variable of interest is the triple interaction term *Gender_Gap_{lt* × Misconduct_{ijlt} × Female_{ijlt}. A positive coefficient on the triple interaction term indicates that female advisers experience more discrimination in areas with large gender gaps. We also estimate the corresponding specification where the dependent variable is whether or not the adviser was reemployed following an employment separation.

The corresponding estimation results are displayed in Tables A6a and A6b. We report the results corresponding to our employment separation regressions (eq. 2) in Table A6a. We find modest evidence suggesting that female advisers face more discrimination in areas with relatively large wage and participa-

 $^{^{24}}$ We examine the median wages earned by males and females in "Management, business, science, and arts occupations: Management, business, and financial occupations: Business and financial operations occupations."

tion gender gaps. In all four specifications, we estimate a positive coefficient on the triple interaction term $Gender_Gap_{lt} \times Misconduct_{ijlt} \times Female_{ijlt}$. The estimated coefficients are statistically significant at the 10% level in column (1) and are marginally significant in columns (2) and (3) (p values of 0.10 and 0.11 respectively). The estimates in column (1) indicate that female advisers with recent misconduct in regions with relatively large wage gaps (above the median) are roughly $20pp^{25}$ more likely to experience an employment separation relative to male advisers in those regions with recent misconduct. Conversely, female advisers with recent misconduct in regions with relatively low wage gaps are roughly 16pp more likely to experience an employment separation relative to male advisers in those regions with recent misconduct.

Table A6b displays our results corresponding to our reemployment regressions (eq. 3). The dependent variable indicates whether or not an adviser who recently experienced an employment separation was able to find new employment within a year. We again find modest evidence suggesting that female advisers face more discrimination in areas with relatively large wage and participation gender gaps. In three out of the four specifications we estimate a negative coefficient on the triple interaction term, $Gender_Gap_{lt} \times Misconduct_{ijlt} \times Female_{ijlt}$. A negative coefficient indicates that the reemployment prospects of female advisers with recent episodes of misconduct are worse in areas with larger wage gaps. The estimates in column (4) indicate that female advisers with recent misconduct disclosures in regions with relatively large participation gaps (above the median) are $9.38pp^{26}$ less likely to find new employment relative to male advisers in those regions with recent misconduct.

6 Conclusion

We document large and pervasive differences in the treatment of male and female advisers. Female financial advisers face more severe consequences at both the firm and industry level for engaging in misconduct relative to male advisers. While male advisers are more than two times as likely to engage in misconduct, female advisers are 20% more likely to be fired for engaging in misconduct. Female advisers are also 30% less likely to find new employment and face longer unemployment spells as a result of misconduct.

The observed discrimination could simply be statistical discrimination. Firms may find it optimal to punish women more severely if female advisers engage in more costly misconduct or if female employees are less costly to replace. The empirical evidence suggests the exact opposite. Male advisers tend to engage in more costly misconduct and male advisers are twice as likely to be repeat offenders. Conversely, we find evidence suggesting that the observed discrimination is taste based. Firms initiate relatively more complaints against female advisers. Moreover, there is significant heterogeneity among firms. And, firms in which males comprise a greater percentage of executives/owners are more likely to punish female advisers more severely and hire fewer females with a record of past misconduct. Finally, we also document that regional differences in how discrimination might be perceived by the community (including customers) also explain some of the

^{250.157 + 0.0401 = 0.1971}

 $^{^{26} 4.443 \!+\! 4.942 \!=\! 9.385}$

variation in discrimination.

Our findings provide new insight into gender discrimination in the workplace. We examine an inconspicuous and potentially costly channel of discrimination: termination following cause. The financial advisory industry is willing to give male advisers a second chance, while female advisers are likely to be cast from the industry.

References

- Aigner, Dennis J. and Glenn G. Cain. 1977. "Statistical Theories of Discrimination in Labor Markets." *Industrial and Labor Relations Review*, 30(1): 175-187.
- Altonji, Joseph. 1999. "Race and Gender in the Labor Market," In Orley and Ashenfelter and Daid Card, eds. Handbook of labor economics, Vol. 30. Amsterdam: North-Holland.
- Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005a. "An evaluation of instrumental variable strategies for estimating the effects of catholic schooling." Journal of Human Resources, 40(4): 791-821.
- Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005b. "Selection on observed and unobserved variables: Assessing the effectiveness of Catholic schools." *Journal of Political Economy*, 113(1): 151-184.
- Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2008. "Using selection on observed variables to assess bias from unobservables when evaluating swan-ganz catheterization." *The American Economic Review*, 98(2): 345-350.
- Altonji, Joseph G., and Charles R. Pierret. 2001. "Employer learning and statistical discrimination." The Quarterly Journal of Economics, 116(1): 313-350.
- Arrow, Kenneth, J. 1973. "The Theory of Discrimination," in Orley Ashenfelter and Albert Rees eds., *Discrimination in labor markets*. Princeton, NJ: Princeton University Press.
- Bair, Sheila. 2016. "BankThink The Glass Ceiling in Finance: Barely Cracked." American Banker, https://www.americanbanker.com/opinion/the-glass-ceiling-in-finance-barely-cracked. Accessed 6 March 2017.
- Bartoš, Vojtěch, Michal Bauer, Julie Chytilová, and Filip Matějka. 2016. "Attention Discrimination: Theory and Field Experiments with Monitoring Information Acquisition." The American Economic Review, 106(6): 1437-1475.
- Becker, Gary S. 1968. "Crime and Punishment: An Economic Approach." Journal of Political Economy, 76: 169-217
- Becker, Gary S. 2010. The Economics of Discrimination. University of Chicago Press.
- Bertrand, Marianne, and Esther Duflo. "Field Experiments on Discrimination," in Abhijit Banerjee and Esther Duflo eds., Handbook of Field Experiments.
- Bertrand, Marianne, Claudia Goldin and Lawrence F. Katz. 2010. "Dynamics of the Gender Gap for Young Professionals in the Financial and Corporate Sectors." American Economic Journal: Applied Economics, 2(3): 228-255.
- Bertrand, Marianne, and Kevin F. Hallock. 2001. "The Gender Gap in Top Corporate Jobs." Industrial and Labor Relations Review, 55(1): 3-21.
- Blau, Francine D. and Lawrence M. Kahn. 1997. "Swimming upstream: trens in the gender wage differential in the 1980s." *Journal of Labor Economics* 15(1):1-42.
- Carlsson, Magnus. 2011. "Does Hiring Discrimination Casue Gender Segregation in the Swedish Labor Market?" *Feminist Economics*, 17(3): 71-102.
- Charles, Kerwin Kofi and Jonathan Guryan. 2008. "Prejudice and Wages: An Empirical Assessment of Becker's the Economics of Discrimination." Journal of Political Economy, 116(5): 773-809.
- Croson, Rachel, and Uri Gneezy. "Gender Differences in Preferences." Journal of Economic Literature, 47(2): 448-474.
- Dimmock, Stephen G., William C. Gerken and Nathaniel P. Grahm. 2015. "Is Fraud Contagious? Career Networks and Fraud by Financial advisers." Working Paper
- Dyck, Alexander, Adair Morse and Luigi Zingales. 2010. "Who Blows the Whistle on Corporate Fraud." Journal of Finance, 65(6): 2213-2253

- Dyck, Alexander, Adair Morse and Luigi Zingales. 2014. "How Pervasive is Corporate Fraud?" Rotman School of Managment Working Papering No. 2222608
- Egan, Mark, Gregor Matvos, and Amit Seru. 2016. "The Market for Financial Adviser Misconduct." NBER Working Paper No. 22050
- Goldin, Claudia and Cecilia Rouse. 2000. "Orchestrating Impartiality: The Impact of Blind Auditions on Female Musicians." *American Economic Review*, 90(4): 715-741.
- Griffin, John M. and Gonzalo Maturana. 2014. "Who Facilitated Misreporting in Securitized Loans?" Forthcoming in *Review of Financial Studies*.
- Khanna, Vikramaditya S., E. Han Kim and Yao Lu. 2015. "CEO Connectedness and Corporate Fraud." *Journal of Finance*, 70(3): 1203-1252.
- Neumark, David. 1996. "Sex Discrimination in Restaurant Hiring: An Audit Study." Quarterly Journal of Economics, 111(3): 915-942.
- Niederle, Muriel, and Lise Vesterlund. 2007. "Do Women Shy Away from Competition? Do Men Compete too Much?" *Quarterly Journal of Economics*, 122(3): 1067–1101.
- Oliver Wyman. 2016. "Women in Financial Services." http://www.oliverwyman.com/content/dam/oliverwyman/global/en/2016/june/WiFS/WomenInFinancialServices_2016.pdf. Accessed 6 March 2017.
- Oster, Emily. 2016. "Unobservable Selection and Coefficient Stability." Journal of Business Economics and Statistics, Forthcoming.
- Parsons, Christopher A., Johan Sulaeman and Sheridan Titman. 2014. "The Geography of Financial Misconduct." NBER Working Paper No. w20347.
- Phelps, Edmund S. 1972. "The statistical theory of racism and sexism." American Economic Review, 62(4): 659-661.
- Piskorski, Tomasz, Amit Seru and James Witkin. 2015. "Asset Quality Misrepresentation by Financial Intermediaries: Evidence from the RMBS Market." Forthcoming in the *Journal of Finance*
- Povel, Paul, Rajdeep Sign and Andrew Winton. 2007. "Booms, Busts, and Fraud." Review of Financial Studies, 20(4): 1219-1254.
- Qureshi, Hammad and Jonathan Sokobin. 2015. "Do Investors Have Valuable Information About Brokers?" FINRA Office of the Chief Economist Working Paper.
- Tuttle, Beecher. 2014. "How female bankers react to gender bias today." eFinancialCareers, http://news.efinancialcareers.com/us-en/184541/female-bankers-recommend-gender-biased-firmwomen-colleagues/. Accessed 6 March 2017.
- Wang, Tracy Yu, Andrew Winton and Xiaoyun Yu. 2010. "Coporate Fraud and Business Conditions: Evidence from IPOs." Journal of Finance, 65(6): 2255-2291.
- Wolfers, Justin. 2006. "Diagnosing Discrimination: Stock Returns and CEO Gender." Journal of the European Economic Association, 4(2-3): 531-41.

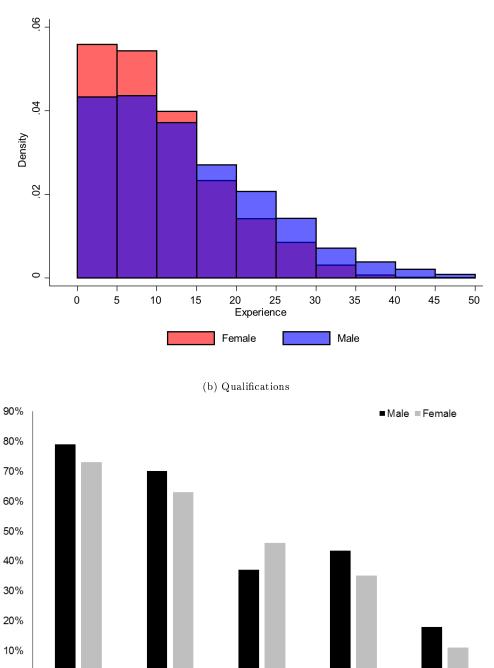


Figure 1: Characteristics of Female and Male Financial Advisers

(a) Experience

Figure 1 panels (a) and (b) plot the distribution of characteristics among male and female advisers in the data set. Panel (a) plots the distribution of experience among male and female advisers. Panel (b) displays the percentage of female and male advisers that hold a particular qualification. We examine the six most popular qualifications. Observations are at the adviser-by-year level over the period 2005-2015.

Rep. (6)

Inv. Co. Products Investment Adviser

(65/66)

General Sec.

Principal (24)

0%

Uniform Sec. Agent General Sec. Rep.

(7)

St. Law (63)

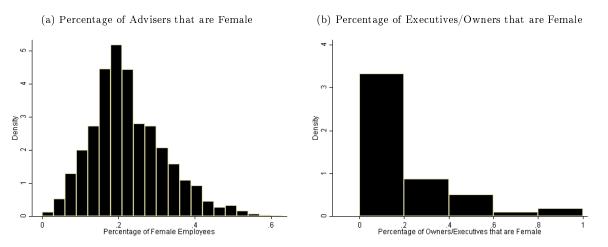
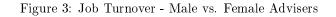
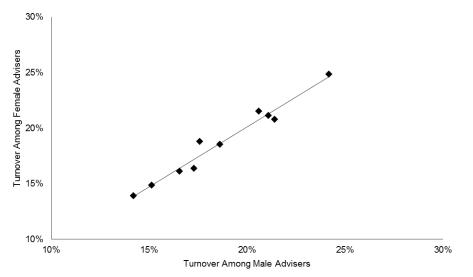




Figure 2: Distribution of Female Advisors Across Firms

Note: Figure 2a displays a histogram of the percentage of advisers that are female for each firm in our data set with at least 100 advisers. Observations are firm by year over the period 2005-2015. Figure 2b displays the percentage of executives/owners in our sample that are female as of 2015.

Note: Figure 3 plots the annual job turnover among male and female advisers over the period 2005-2014.

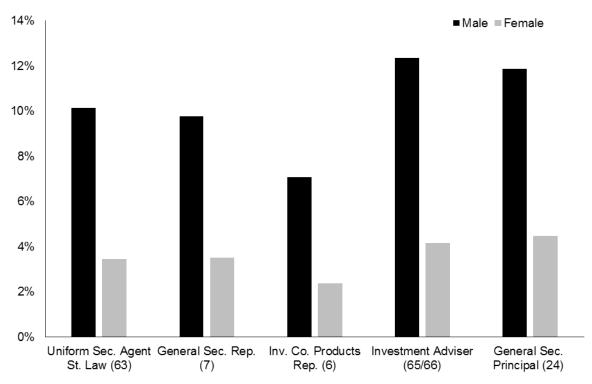


Figure 4: Misconduct Among Male and Female Advisers

(a) Frequency of Misconduct by Qualification Exam

(b) Frequency of Misconduct by Experience

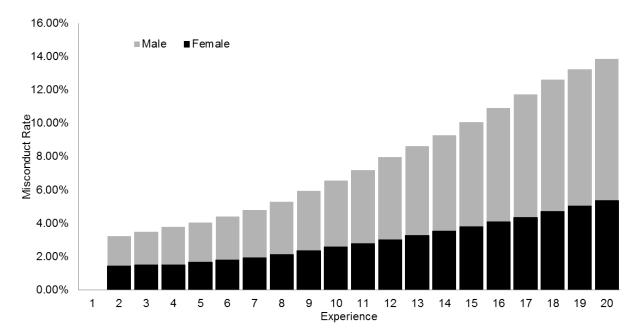
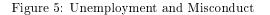
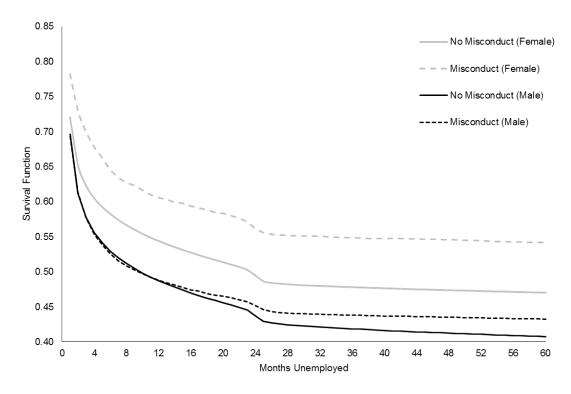
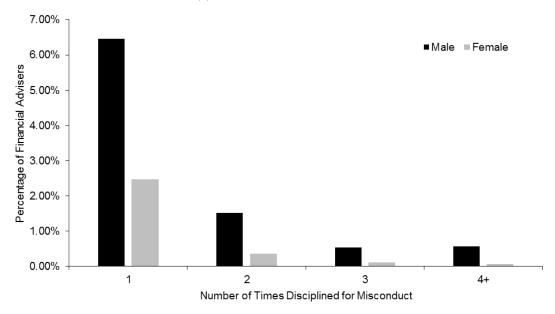
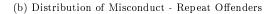



Figure 4a displays the percentage of male and female advisers with a misconduct disclosure on his/her record conditional on the adviser holding the specified qualification exam. Figure 4b displays the percentage of male and female advisers with a misconduct disclosure on his/her record conditional on the advisers' experience. Observations are at the adviser-by-year level over the period 2005-2015.

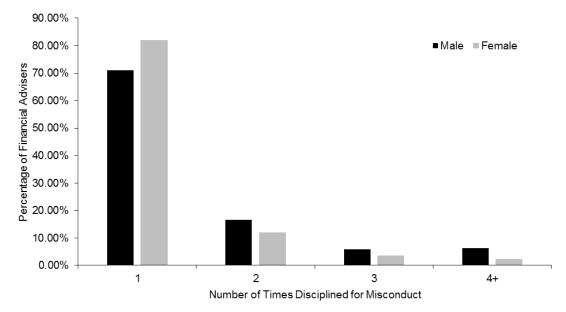

Figure 5 displays the unemployment survival function for all adviser unemployment spells over the period 2005-2015. The solid black and gray lines display the unemployment survival functions for those male and female advisers who were not disciplined for misconduct in the year prior to their unemployment spell. The dashed lines display the unemployment survival functions for male and female advisers who were reprimanded for misconduct in the year prior to the adviser's unemployment spell.

Figure 6: Frequency of Misconduct

(a) Distribution of Misconduct

Note: Figures 6a and 6b display the percentage of male and female advisers who have misconduct disclosures and the number of misconduct disclosures. Figure 6a displays the unconditional distribution of misconduct disclosures, while 6b displays the distribution of misconduct among those advisers with at least one misconduct disclosure. Observations are at the adviser-by-year level over the period 2005-2015.

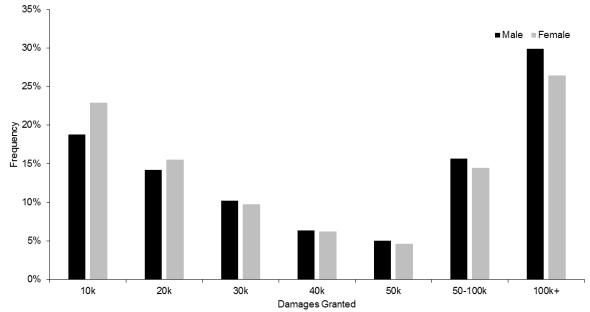
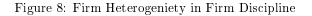
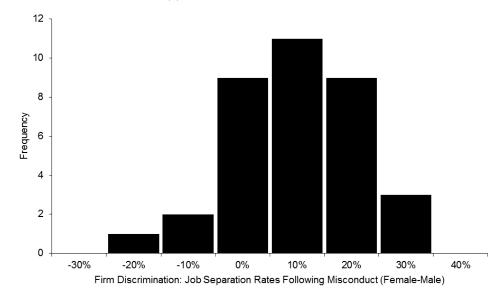
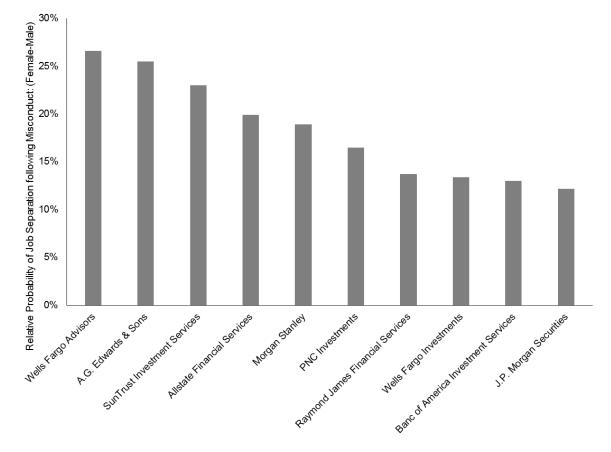




Figure 7: Distribution of Settlments/Damages


Note: Figure 7 displays the distribution of settlements/damages for male and female advisers that were granted over the period 2005-2015. In the BrokerCheck database, we observe the settlements/damages details for 45.80% of misconduct related disclosures and 0.55% of the other types of disclosures. Observations are financial adviser by year.

(a) Distribution of Firm Discipline

(b) Top Firms

Note: Figures 8a and 8b display the distribution of discipline across firms. Specifically, the figures plot the distribution of the coefficient β_{j3} from eq. (9), which captures the probability female advisers experience an employment separation following misconduct relative to male advisers (i.e., the difference in differences for female and male advisers with and without misconduct). Figure 8b displays the firms with the ten highest coefficient estimates. We restrict our analysis to those 44 firms where we observe at least twenty female advisers receive a misconduct disclosure.

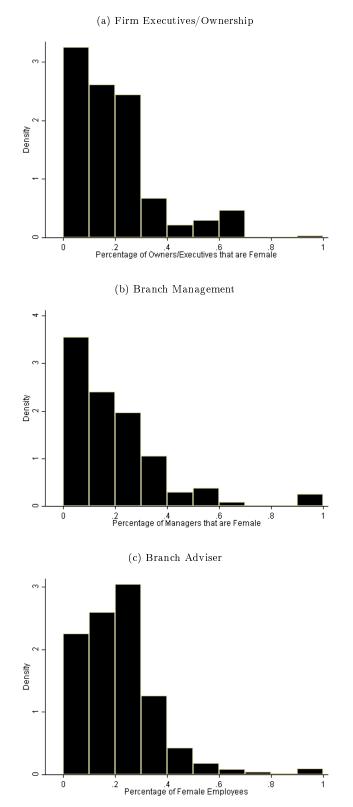


Figure 9: Female Representation at Financial Advisory Firms

Note: Figure 9a displays the percentage of owners/executives that are female. Figure 9b displays the percentage of managers that are female at the firm by county by year level. Figure 9c displays the percentage of advisers (weighted by experience) that are female at the firm by county by year level. Observations in 9a are at the adviser-by-year level as of 2015. Observations in Figures 9b and 9c are at the adviser-by-year level over the period 2005-2015.

Variable	Male		Fema	\mathbf{Female}		
	Obs	Mean	Obs	Mean		
Experience (years)	4,932,478	12.31	$1,\!615,\!496$	9.37		
Registration:						
Currently Registered	$4,\!932,\!478$	0.72	$1,\!615,\!496$	0.66		
Registered as an IA	$3,\!529,\!429$	0.54	$1,067,\!656$	0.45		
Discloures:						
Disclosure (in a year)	$4,\!932,\!478$	0.0183	$1,\!615,\!496$	0.0108		
Misconduct (in a year)	$4,\!932,\!478$	0.0072	$1,\!615,\!496$	0.0029		
Disclosure (ever)	$4,\!932,\!478$	0.1489	$1,\!615,\!496$	0.0761		
Misconduct (ever)	$4,\!932,\!478$	0.0908	$1,\!615,\!496$	0.0300		
Exams and Qualifications (Series):						
No. Qualifications	$4,\!932,\!478$	3.05	$1,\!615,\!496$	2.65		
Uniform Sec. Agent St. Law (63)	4,932,478	0.79	$1,\!615,\!496$	0.73		
General Sec. Rep. (7)	$4,\!932,\!478$	0.70	$1,\!615,\!496$	0.63		
Inv. Co. Products Rep. (6)	$4,\!932,\!478$	0.37	$1,\!615,\!496$	0.46		
Uniform Combined St. Law (66)	4,932,478	0.21	$1,\!615,\!496$	0.21		
Uniform Inv. Adviser Law (65)	4,932,478	0.23	$1,\!615,\!496$	0.15		
General Sec. Principal (24)	4,932,478	0.18	$1,\!615,\!496$	0.11		
Productivity:						
Assets Under Management (\$mm)	$988,\!217$	54.70	$169,\!641$	53.20		
Productivity (\$100k)	$560,\!519$	532.46	90,572	502.97		
High Quality Indicator	$2,\!272,\!975$	0.45	559,589	0.32		

 Table 1: Adviser Summary Statistics

Note: Table 1 displays the summary statistics corresponding to our panel of male and female financial advisers. Observations are adviser by year over the period 2005-2015. We report the standard deviation and median for the non-dummy variables.

Table 2:	Financial	Advisers	by State
----------	-----------	----------	----------

Rank	State	Pct Female	Number of Observations	Female Turnover	Male Turnover
1	Iowa	32.30%	74,940	16.57%	15.78%
2	New Mexico	29.89%	15,383	14.17%	13.68%
3	Alaska	29.70%	4,788	13.07%	11.15%
4	Puerto Rico	28.46%	9,116	17.39%	15.21%
5	Wyoming	28.28%	5,028	11.92%	12.37%
6	Hawaii	27.95%	13,966	13.87%	14.69%
7	Washington	27.70%	89,201	16.38%	15.57%
8	$\operatorname{Colorado}$	27.66%	$153,\!124$	16.13%	16.72%
9	Missouri	27.43%	132,450	17.33%	19.28%
10	Delaware	27.42%	15,948	19.14%	19.38%
11	North Dakota	27.37%	10,336	15.86%	13.89%
12	Arizona	27.33%	$126,\!564$	18.75%	19.61%
13	Rhode Island	26.99%	33,819	21.69%	19.50%
14	$\operatorname{Minnesota}$	26.89%	174,716	23.06%	23.24%
15	Florida	26.71%	350,989	17.81%	18.64%
16	Kentucky	26.67%	50,509	15.92%	14.59%
17	Montana	26.67%	11,947	11.49%	11.95%
18	Wisconsin	26.53%	111,672	15.51%	15.31%
19	California	26.45%	$601,\!664$	19.38%	19.14%
20	Nebraska	26.37%	57,875	17.26%	18.94%
21	Texas	26.22%	$367,\!645$	18.75%	18.07%
22	Georgia	25.93%	168,652	24.49%	23.08%
23	Oklahoma	25.90%	40,419	15.87%	13.18%
24	Indiana	25.81%	91,892	18.87%	17.02%
25	Ohio	25.78%	212,704	18.52%	17.38%
26	Oregon	25.66%	52,675	17.08%	16.37%
27	Michigan	25.46%	138,815	16.79%	15.46%
28	Virginia	25.33%	106,954	16.42%	16.44%
29	Nevada	25.32%	28,493	20.04%	19.80%
30	Kansas	25.27%	52,437	15.28%	15.69%
31	Vermont	25.17%	9,590	16.28%	18.25%
32	Maryland	25.15%	96,829	17.54%	17.37%
33	New Hampshire	25.14%	33,289	17.78%	16.25%
34	North Carolina	25.02%	155,334	16.50%	16.08%
35	Louisiana	24.53%	43,942	17.69%	15.16%
36	$\operatorname{Connecticut}$	24.37%	$145,\!698$	19.82%	19.94%
37	Maine	24.11%	14,236	18.59%	17.37%
38	South Dakota	24.04%	11,250	14.59%	13.20%
39	Illinois	23.91%	430,477	17.11%	16.26%
40	Pennsylvania	23.54%	256,151	15.35%	15.32%
41	Tennessee	23.10%	79,351	17.80%	16.07%
42	Massachusetts	22.59%	193,717	22.04%	19.89%
43	West Virginia	22.33%	11,686	17.13%	13.62%
49 44	Alabama	22.35% 22.28%	45,115	20.37%	17.73%
$44 \\ 45$	Arkansas	22.23% 21.97%	24,257	12.27%	14.45%
40 46	New York	21.97% 21.74%	1,223,637	21.18%	22.29%
$40 \\ 47$	South Carolina	21.74% 21.59%	1,223,037 38,491	16.17%	15.02%
47 48	New Jersey	21.39% 21.37%	265,635	18.39%	15.02% 18.69%
$\frac{48}{49}$	Idaho	21.37% 21.13%	205,035 16,396	18.39% 17.45%	15.95%
$\frac{49}{50}$		21.13% 20.01%		17.45% 19.20%	15.95% 18.63%
$\frac{50}{51}$	Mississippi Utah	16.26%	$22,150 \\ 49,928$	19.20% 18.33%	16.89%

Note: Table 2 displays the summary statistics corresponding to our panel of male and female financial advisers at the state level. Turnover reflects the percentage of advisers who leave their firm in a given year. Observations are adviser by year over the period 2005-2015.

Disclosure	$\operatorname{Disclosure}/\operatorname{Misconduct}$			ıct
	Cu	rrent	Current	and Past
	Male	Female	Male	Female
Misconduct Related Disclosures				
Customer Dispute - Settled	0.39%	0.13%	4.74%	1.35%
Employment Separation After Allegations	0.20%	0.12%	1.21%	0.43%
Regulatory - Final	0.12%	0.04%	1.62%	0.35%
Criminal - Final Disposition	0.03%	0.01%	2.46%	0.98%
Customer Dispute - Award/Judgment	0.02%	0.01%	0.75%	0.15%
Civil - Final	0.00%	0.00%	0.04%	0.01%
Any Misconduct Related Disclosure	0.72%	0.29%	9.08%	3.01%
Other Disclosures:				
Financial - Final	0.33%	0.39%	1.95%	2.47%
Customer Dispute - Denied	0.38%	0.15%	3.92%	1.49%
m Judgment/Lien	0.24%	0.15%	1.10%	0.76%
Customer Dispute - Closed-No Action	0.09%	0.03%	1.20%	0.38%
Financial - Pending	0.05%	0.07%	0.18%	0.24%
Customer Dispute - Pending	0.07%	0.02%	0.36%	0.10%
Customer Dispute - Withdrawn	0.02%	0.01%	0.20%	0.06%
Criminal - Pending Charge	0.01%	0.00%	0.02%	0.01%
Investigation	0.01%	0.00%	0.03%	0.01%
Regulatory - Pending	0.01%	0.00%	0.02%	0.00%
Civil - Pending	0.00%	0.00%	0.02%	0.01%
Customer Dispute - Final	0.00%	0.00%	0.02%	0.01%
Customer Dispute - Dismissed	0.00%	0.00%	0.02%	0.00%
Civil Bond	0.00%	0.00%	0.03%	0.01%
Regulatory - On Appeal	0.00%	0.00%	0.00%	0.00%
Criminal - On Appeal	0.00%	0.00%	0.00%	0.00%
Civil - On Appeal	0.00%	0.00%	0.00%	0.00%
Total	1.83%	1.08%	14.89%	7.61%

Table 3: Financial Adviser Disclosures and Misconduct

Note: Table 3 displays the incidence of disclosures/misconduct among male and female financial advisers. Observations are year by financial adviser over the period 2005-2015. We classify the six categories listed at the top of the table as being indicative of adviser misconduct. The column "Current" displays the share of observations (year by adviser) in which the adviser received one or more of a given type of disclosure that particular year. The column "Current and Past" displays the share of observations (year by adviser) in which the adviser received a given type of disclosure in that particular year and/or previously.

(a) Reasons for Complaint					
Reasons for Complaint	Gender				
	Male	Female			
Unsuitable	22.80%	18.30%			
Misrepresentation	18.34%	14.64%			
Unauthorized Activity	14.90%	14.07%			
Omission of Key Facts	11.58%	8.13%			
Fee/Commission Related	8.09%	5.98%			
Fraud	7.80%	5.23%			
Fiduciary Duty	7.05%	4.94%			
Negligence	6.39%	4.56%			
Risky Investments	3.92%	2.95%			
Churning/ Excessive Trading	2.92%	1.01%			
Other	41.73%	50.86%			

(b) Products				
Product	Gender			
	Male	Female		
Insurance	13.23%	14.39%		
Annuity	8.74%	9.73%		
Stocks	6.06%	3.88%		
Mutual Funds	4.73%	4.97%		
Bonds	2.07%	1.61%		
Options	1.27%	0.82%		
Other/Not Listed	69.88%	70.25%		

(c) Settlements/Damages $\overline{\Omega}$

Variable	Obs	Mean	Std. Dev.	Median
Male Advisers:				
${\it Settlements}/{\it Damages}$ ${\it Granted}$	27,469	549,791	9,199,107	40,000
Settlements/Damages Requested	21,749	1,719,226	69,458,640	100,000
Female Advisers:				
Settlements/Damages Granted	2,749	$262,\!530$	2,281,979	$32,\!500$
Settlements/Damages Requested	$2,\!119$	$449,\!282$	$3,\!107,\!101$	60,000

Table 4a displays the most frequently reported allegations corresponding to the disclosures that occurred over the period 2005-2015. We observe allegations for 91.89% of the misconduct-related disclosures. The allegation categories are not mutually exclusive. The "Other" category includes all other allegations/classifications that were reported with a frequency of less than 2%. Table 4b displays the most frequently reported financial products in the allegations. Over half of the allegations do not list a specific financial product. Table 4c displays the settlements/damages (in \$) that were granted and requested over the period 2005-2015. We observe the settlements/damages details for 45.80% of misconduct related disclosures.

	(1)	(2)	(3)
Female	-0.429***	-0.331***	-0.336***
	(0.0250)	(0.0229)	(0.0300)
Adviser Controls		Х	Х
Year×Firm×County F.E.			Х
Observations	6,547,974	$6,\!547,\!974$	6,221,173
R-squared	0.001	0.002	0.097

Table 5: Misconduct Among Male and Female Advisers

Note: Table 5 displays the regression results for a linear probability model (eq. 2). The dependent variable is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t. Coefficients are in percentage points. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

	No Mi	No Misconduct		onduct
	Male	Female	Male	Female
Remain with the Firm	81%	81%	54%	45%
Leave the Firm	19%	19%	46%	55%
Leave the Industry	46%	52%	53%	67%
Join a Different Firm	54%	48%	47%	33%

(b) Firm Level Consequences

 Table 6: Consequences of Misconduct

	-		
	(1)	(2)	(3)
Misconduct	27.65***	29.04***	22.26***
	(1.473)	(1.401)	(1.524)
$Misconduct \times Female$	8.316^{***}	8.179***	10.19 * * *
	(2.049)	(1.960)	(1.908)
\mathbf{Female}	0.139	-0.878**	-0.750***
	(0.292)	(0.348)	(0.155)
Adviser Controls		Х	Х
Year×Firm×County F.E.			Х
Observations	6,002,088	6,002,088	5,698,577
R-squared	0.004	0.011	0.331

(a) Industry and Firm Discipline

(c) Industry Level Consequences - New Employment

	(1)	(2)	(3)
Misconduct	-7.657***	-11.70***	-8.917***
	(2.129)	(1.355)	(1.026)
$Misconduct \times Female$	-7.223***	-5.359***	-3.464***
	(1.795)	(1.296)	(1.178)
Female	-6.220***	-1.333**	-2.912***
	(0.647)	(0.617)	(0.258)
Adviser Controls		X	Х
Year×Firm×County F.E.			Х
Observations	$1,\!125,\!715$	$1,\!125,\!715$	$1,\!006,\!760$
R-squared	0.003	0.125	0.379

Note: Table 6a displays the average annual job turnover among financial advisers over the period 2005-2015. Leave the Industry is defined as an adviser not being employed as a financial adviser for at least one year; Join a Different Firm is a dummy variable that takes the value of one if the adviser is employed at a different financial advisory firm within a year. The job transitions are broken down by the whether or not the adviser received a misconduct disclosure in the previous year.

Tables 6b and 6c display the regression results corresponding to linear probability models (eq. 2 and 3). The dependent variable in Table 6b is a dummy variable indicating whether or not a financial adviser left his firm (either leaving the industry or switching firms). The dependent variable in Table 6c is a dummy variable indicating whether or not a financial adviser joined a new firm within one year. In Table 6c, we restrict the sample to those advisers who left their firm in a given year. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Coefficients are in percentage points. Observations are at the financial adviser by year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

(1)	(2)
0.843***	0.845***
(0.00754)	(0.00757)
0.743^{***}	0.754***
(0.0192)	(0.0195)
0.961***	0.961***
(0.00294)	(0.00294)
Х	Х
	Х
$1,\!109,\!210$	1,109,210
	(0.00754) 0.743*** (0.0192) 0.961*** (0.00294) X

 Table 7: Labor Market Consequences of Misconduct

 (a) Unemployment Duration

(b) New Firm	Characteristics	and Misconduct
--------------	-----------------	----------------

		Misc. Rate (pp)
Misconduct	-1,300***	0.0420***
	(162.0)	(0.00312)
Misconduct \times Female	-798.5***	-0.0137***
	(222.6)	(0.00387)
Year×Firm×County F.E.	Х	Х
Observations	519,758	519,758
R-squared	0.588	0.546

Note: Table 7a displays the estimation results corresponding to a Cox proportional hazard model (eq. 4). The dependent variable is the length of an unemployment spell in months. The key independent variable of interest Misconduct is a dummy variable indicating whether or not the adviser was disciplined for misconduct in the year prior to his/her unemployment spell. We interact Misconduct with the gender of the adviser to allow the effect to be different for male and female advisers. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. The coefficients are reported in terms of proportional hazards such that a coefficient less than one indicates that it takes longer for an adviser to find a new job. Observations are at the financial adviser by unemployment spell level. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10.

Table 7b displays the characteristics of new firms joined by advisers who switched firms as a function of whether or not the adviser was reprimanded for misconduct in the year prior to the job transition (eq. 5). Observations are adviser by job transition for which the adviser found a job within a year. Standard errors are in parenthesis and are clustered by firm. *** p < 0.01, ** p < 0.05, * p < 0.10.

	(1)	(2)	(3)
Prior Misconduct	2.421***	2.315^{***}	1.924***
	(0.102)	(0.0995)	
Prior Misconduct \times Female	-0.686***	-0.696***	-0.573***
	(0.0987)	(0.0985)	(0.0897)
Female	-0.268***	-0.222***	-0.245***
	(0.0173)	(0.0180)	(0.0256)
Adviser Controls		x	х
Year×Firm×County F.E.			X
Observations	6,547,974	6,547,974	6,221,173
R-squared	0.007	0.007	0.101

Table 8: Adviser Characteristics and Misconduct

Note: Table 8 displays the regression results for a linear probability model (eq. 6). The dependent variable is whether or not a financial adviser received a misconduct disclosure at time t. Coefficient units are percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

09** -0.141***	٢
(0.0383)	
X X X X X X	
537 20,485 0.246 0.246	
	X X

Table 9: Settlements/Damages Granted by Gender

Note: Table 9 displays the results for linear regression model (eq. 7). The dependent variable is the log damages paid out on behalf of a financial adviser as the result of a misconduct settlement/arbitration. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the financial adviser by year level over the period 2005-2015. We restrict the data set to only those observations in which the adviser was disciplined for misconduct and paid out a settlement/damages. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

Dependent Variable	Misconduct	Job Separation
Female	-0.333***	-0.647***
	(0.0569)	(0.110)
Misconduct		8.914 * * *
		(0.882)
Misconduct \times Female		4.362^{***}
		(1.573)
High Rating	0.0107	-4.097***
	(0.0597)	(0.634)
$\ln(AUM)$	0.0348^{**}	-0.433***
	(0.0156)	(0.0736)
$\ln(Production)$	0.184^{***}	-0.250***
	(0.0227)	(0.0716)
Adviser Controls	Х	х
Year×Firm×County F.E.	X	X
Observations	487,159	442,159
R-squared	0.181	0.627
it squarea	0.101	0.021

Table 10: Productivity Differences

Note: Table 10 displays the regression results for two linear probability models (eq. 1 and 2). The dependent variable in column (1) is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t. The dependent variable in column (2) is a dummy variable indicating whether or not a financial adviser left his firm (either leaving the industry or switching firms). Coefficients are in percentage points. We observe the adviser's quality rating (as per Meridian IQ), self-reported AUM, and self-reported revenue (production) generated by the adviser as of 2016. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

Table 11: Distribution of Misconduct Claims

Misconduct	Conditiona	l Probability
	Male	Female
Customer Dispute - Settled	55%	44%
Employment Separation	28%	41%
Regulatory - Final	17%	13%
Criminal - Final Disposition	4%	4%
Customer Dispute - Award	3%	2%
Civil - Final	0%	0%
Any Misconduct Disclosure	100%	100%

	(b)	Reasons	for	Compl	laint
--	-----	---------	-----	-------	-------

Reasons for Employment Separation	Gender	
	Male	Female
Unauthorized Activity	12.95%	13.67%
Omission of Key Facts	9.36%	4.62%
${ m Fee}/{ m Commission} \ { m Related}$	3.13%	2.39%
Unsuitable	2.67%	1.34%
Misrepresentation	1.86%	1.34%
Fraud	1.78%	1.89%
Other	70.88%	76.42%

(c) Firm Initiated Misconduct				
	(1)	(2)	(3)	
Female	13.72***	7.166***	3.348***	
	(2.462)	(1.257)	(0.923)	
Adviser Controls		Х	Х	
Year F.E.			Х	
County F.E.			Х	
Firm F.E.			Х	
Observations	$40,\!264$	40,264	38,406	
R-squared	0.009	0.107	0.307	

Note: Table 11a displays the conditional probability an adviser has a particular type of misconduct disclosure in a given year, conditional on the adviser engaging in misconduct in the given year. Observations are at the adviser-by-year level over the period 2005-2015.

Table 11b displays the most frequently reported allegations corresponding to disclosures classified as "Employment Separation after Allegations" over the period 2005-2015. We observe allegations for 98.6% of the misconduct related disclosures. The allegation categories are not mutually exclusive. The "Other" category includes all other allegations/classifications that were reported with a frequency of less than 1%.

Table 11c displays the regression results for a linear probability model (eq. 8). The dependent variable is a dummy variable indicating whether or not the adviser experienced a misconduct event that was initiated by his/her firm in year t. We restrict our data set to those adviser-by-year observations in which an adviser experienced a misconduct event. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

Table 12: Firm Characteristics and Discriminati	Table 12:	Firm	Characteristics	and	Discriminatio
---	-----------	------	-----------------	-----	---------------

	(1)	(2)	(3)
Misconduct	53.51***	54.08***	51.39***
	(4.861)	(4.429)	(5.292)
Misconduct \times Female	14.69 * * *	14.06***	16.41 * * *
	(3.025)	(2.966)	(3.517)
$Misconduct \times (Pct Female Exec)$	-24.55	-23.01	-25.49
	(15.57)	(14.32)	(16.78)
$Misconduct \times Female \times (Pct Female Exec)$	-40.74***	-41.03***	-43.32***
``````````````````````````````````````	(14.31)	(14.13)	(16.19)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.			Х
Observations	$564,\!905$	564,905	$541,\!137$
R-squared	0.010	0.018	0.143

(a) Executive Gender Composition and Firm Discipline

(b) Branch Manager Gender Composition and Firm Discipline

( ) O I		1	
	(1)	(2)	(3)
Misconduct	$25.24^{***}$	26.78***	19.98***
	(1.259)	(1.183)	(1.299)
Misconduct $\times$ Female	$11.23^{***}$	$10.86^{***}$	13.55 * * *
	(2.675)	(2.542)	(2.350)
Misconduct $\times$ (Pct Female Mgmt)	$10.09^{***}$	$9.826^{***}$	$11.15^{***}$
	(2.643)	(2.508)	(2.451)
$Misconduct \times Female \times (Pct Female Mgmt)$	-13.49***	-12.58***	-18.15***
	(4.652)	(4.462)	(3.736)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.			Х
Observations	$4,\!927,\!304$	$4,\!927,\!304$	4,807,888
R-squared	0.003	0.011	0.315

(c) Branch Gender Composition and Firm Discipline

	(1)	(2)	(9)
	(1)	()	(3)
Misconduct	24.27 * * *	25.62***	16.62***
	(1.112)	(1.067)	(1.290)
$Misconduct \times Female$	10.44 * * *	$10.57^{***}$	$11.79^{***}$
	(3.226)	(3.067)	(3.111)
$Misconduct \times (Pct Female)$	$19.80^{**}$	$19.87^{***}$	30.00***
	(8.275)	(7.616)	(8.805)
$Misconduct \times Female \times (Pct Female)$	$-15.93^{*}$	$-16.86^{**}$	-16.17**
	(8.162)	(7.611)	(6.786)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.			Х
Observations	5,990,929	$5,\!990,\!929$	$5,\!695,\!544$
R-squared	0.004	0.011	0.331

(d) Firm Hiring						
	(1)	(2)	(3)			
Pct Female Exec	0.00820**	0.00820**	0.00931**			
	(0.00369)	(0.00369)	(0.00377)			
Adviser Controls	Х	Х	Х			
Year F.E.			Х			
State F.E.			Х			
Observations	1,982	$1,\!982$	1,982			
R-squared	0.012	0.012	0.049			

Table 12: Firm Characteristics and Discrimination

TT · ·

(1) .....

Note: Table 12a displays the results for a linear probability model (eq. 10). The dependent variable is a dummy variable indicating whether or not the adviser experienced a job separation between time t and t+1. The key independent variables of interest are Pct Female Exec, Pct Female Mgmt, and Pct Female, and their interaction with the variables Misconduct and Female. The variable Pct Female Exec measures the percentage of executives/owners that are female as of May 2015. The variable Pct Female Mgmt measures the percentage of managers working for a firm in a given county and year that are female. The variable Pct Female Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations in Table 12a are at the adviser level in 2015. Observations in Tables 12b and 12c are at the adviser level in 2015. Standard errors are in parenthesis and are clustered by firm. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 12d displays the estimation results corresponding to a firm's hiring patterns. The dependent variable is the percentage of new hires made by a firm who are female and have a history of misconduct. The key independent variable of interest is Pct Female Mgmt. We control for the firm's formation type (corporation, limited liability, etc.) and firm age, as well as whether or not it has a referral arrangement with other advisory firms. Observations are at the firm level as of 2014. Each observation is weighted by the square root of the number of advisers the firm hired in a given year. Robust standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.10.

## Appendix

## A1: Disclosure Definitions²⁷

**Civil-Final:** This type of disclosure event involves (1) an injunction issued by a court in connection with investment-related activity, (2) a finding by a court of a violation of any investment-related statute or regulation, or (3) an action brought by a state or foreign financial regulatory authority that is dismissed by a court pursuant to a settlement agreement.

**Civil - Pending:** This type of disclosure event involves a pending civil court action that seeks an injunction in connection with any investment-related activity or alleges a violation of any investment-related statute or regulation.

**Customer Dispute - Award/Judgment:** This type of disclosure event involves a final, consumer-initiated, investment-related arbitration or civil suit containing allegations of sales practice violations against the adviser that resulted in an arbitration award or civil judgment for the customer.

**Customer Dispute - Settled:** This type of disclosure event involves a consumer-initiated, investment-related complaint, arbitration proceeding or civil suit containing allegations of sale practice violations against the adviser that resulted in a monetary settlement to the customer.

Customer Dispute - Closed-No Action/Withdrawn/Dismissed/Denied/Final: This type of disclosure event involves (1) a consumer-initiated, investment-related arbitration or civil suit containing allegations of sales practice violations against the individual adviser that was dismissed, withdrawn, or denied; or (2) a consumer-initiated, investment-related written complaint containing allegations that the adviser engaged in sales practice violations resulting in compensatory damages of at least \$5,000, forgery, theft, or misappropriation, or conversion of funds or securities, which was closed without action, withdrawn, or denied.

**Customer Dispute - Pending:** This type of disclosure event involves (1) a pending consumer-initiated, investment-related arbitration or civil suit that contains allegations of sales practice violations against the adviser; or (2) a pending, consumer-initiated, investment related written complaint containing allegations that the adviser engaged in, sales practice violations resulting in compensatory damages of at least \$5,000, forgery, theft, or misappropriation, or conversion of funds or securities.

**Employment Separation After Allegations:** This type of disclosure event involves a situation where the adviser voluntarily resigned, was discharged, or was permitted to resign after being accused of (1) violating investment-related statutes, regulations, rules or industry standards of conduct; (2) fraud or the wrongful taking of property; or (3) failure to supervise in connection with investment-related statutes, regulations, rules, or industry standards of conduct.

²⁷Definitions as per http://brokercheck.finra.org/

**Judgment/Lien:** This type of disclosure event involves an unsatisfied and outstanding judgments or liens against the adviser.

**Criminal - Final Disposition:** This type of disclosure event involves a criminal charge against the adviser that has resulted in a conviction, acquittal, dismissal, or plea. The criminal matter may pertain to any felony or certain misdemeanor offenses, including bribery, perjury, forgery, counterfeiting, extortion, fraud, and wrongful taking of property.

**Financial - Final:** This type of disclosure event involves a bankruptcy, compromise with one or more creditors, or Securities Investor Protection Corporation liquidation involving the adviser or an organization the adviser controlled that occurred within the last 10 years.

**Financial - Pending:** This type of disclosure event involves a pending bankruptcy, compromise with one or more creditors, or Securities Investor Protection Corporation liquidation involving the adviser or an organization the adviser controlled that occurred within the last 10 years.

**Investigation:** This type of disclosure event involves any ongoing formal investigation by an entity such as a grand jury state or federal agency, self-regulatory organization or foreign regulatory authority. Subpoenas, preliminary or routine regulatory inquiries, and general requests by a regulatory entity for information are not considered investigations and therefore are not included in a BrokerCheck report.

**Regulatory** - **Final:** This type of disclosure event may involves (1) a final, formal proceeding initiated by a regulatory authority (e.g., a state securities agency, self-regulatory organization, federal regulatory such as the Securities and Exchange Commission, foreign financial regulatory body) for a violation of investment-related rules or regulations; or (2) a revocation or suspension of a adviser's authority to act as an attorney, accountant, or federal contractor.

**Civil Bond:** This type of disclosure event involves a civil bond for the adviser that has been denied, paid, or revoked by a bonding company.

**Criminal - On Appeal:** This type of disclosure event involves a conviction for any felony or certain misdemeanor offenses, including bribery, perjury, forgery, counterfeiting, extortion, fraud, and wrongful taking of property that is currently on appeal.

**Criminal - Pending Charge:** This type of disclosure event involves a formal charge for a crime involving a felony or certain misdemeanor offenses, including bribery, perjury, forgery, counterfeiting, extortion, fraud, and wrongful taking of property that is currently pending.

**Regulatory** - **On Appeal:** This type of disclosure event may involves (1) a formal proceeding initiated by a regulatory authority (e.g., a state securities agency, self-regulatory organization, federal regulator such as the Securities and Exchange Commission, foreign financial regulatory body) for a violation of investment-related rules or regulations that is currently on appeal; or (2) a revocation or suspension of a adviser's authority to act as an attorney, accountant, or federal contractor that is currently on appeal.

**Regulatory** - **Pending:** This type of disclosure event involves a pending formal proceeding initiated by a regulatory authority (e.g., a state securities agency, self-regulatory organization, federal regulatory agency such as the Securities and Exchange Commission, foreign financial regulatory body) for alleged violations of investment-related rules or regulations.

**Civil - On Appeal:** This type of disclosure event involves an injunction issued by a court in connection with investment-related activity or a finding by a court of a violation of any investment-related statute or regulation that is currently on appeal.

#### A2: FINRA Qualifications and Exams²⁸

Series 6 Exam: The Series 6 exam—the Investment Company and Variable Contracts Products Representative Qualification Examination (IR)—assesses the competency of an entry-level representative to perform his or her job as an investment company and variable contracts products representative. The exam measures the degree to which each candidate possesses the knowledge needed to perform the critical functions of an investment company and variable contract products representative, including sales of mutual funds and variable annuities.

Series 7 Exam: The Series 7 exam – the General Securities Representative Qualification Examination (GS) – assesses the competency of an entry-level registered representative to perform his or her job as a general securities representative. The exam measures the degree to which each candidate possesses the knowledge needed to perform the critical functions of a general securities representative, including sales of corporate securities, municipal securities, investment company securities, variable annuities, direct participation programs, options and government securities.

Series 24 Exam: The Series 24 exam—the General Securities Principal Qualification Examination (GP)—assesses the competency of an entry-level general securities principal candidate to perform his or her job as a general securities principal. The exam measures the degree to which each candidate possesses the knowledge needed to perform the critical functions of a general securities principal, including the rules and statutory provisions applicable to the supervisory management of a general securities broker-dealer.

Series 63 Exam: The Uniform Securities Agent State Law Examination was developed by NASAA in cooperation with representatives of the securities industry and industry associations. The examination, called the Series 63 exam, is designed to qualify candidates as securities agents. The examination covers the principles of state securities regulation reflected in the Uniform Securities Act (with the amendments adopted by NASAA and rules prohibiting dishonest and unethical business practices). The examination is intended to provide a basis for state securities administrators to determine an applicant's knowledge and understanding of state law and regulations.

Series 65 Exam: The Uniform Investment Adviser Law Examination and the available study outline were developed by NASAA. The examination, called the Series 65 exam, is designed to qualify candidates as investment adviser representatives. The exam covers topics that have been determined to be necessary to understand in order to provide investment advice to clients.

 $^{^{28}}$ Definitions as per http://www.finra.org/industry/qualification-exams?bc=1

Series 66 Exam: The Uniform Combined State Law Examination was developed by NASAA based on industry requests. The examination (also called the "Series 66") is designed to qualify candidates as both securities agents and investment adviser representatives. The exam covers topics that have been determined to be necessary to provide investment advice and effect securities transactions for clients.

## A3: Additional Figures and Tables

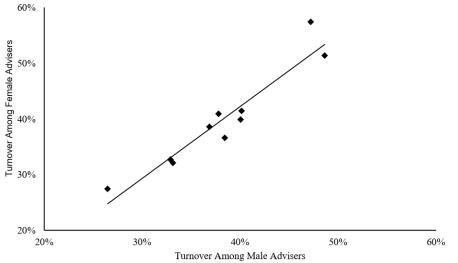



Figure A1: Job Displacement - Male vs. Female Advisers

Note: Figure A1 plots the annual job turnover among male and female advisers at distressed firms over the period 2005-2014. We define distressed firms as those firms that reduce the number of financial advisers they employ by 10% or more in a given year.

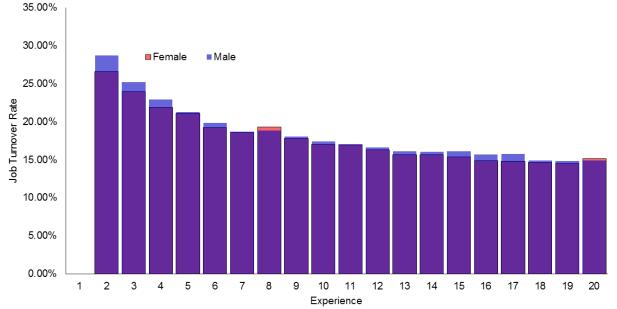



Figure A2: Job Turnover by Experience

Figure A2 displays job turnover among male and female advisers conditional on the advisers' experience. Observations are at the adviser-by-year level over the period 2005-2015.

Dependent Variable	Misconduct	Job Separation	New Employment
Female	-0.335***	-0.811***	-2.889***
	(0.0298)	(0.155)	(0.259)
Misconduct		22.41 ***	-9.112***
		(1.511)	(1.017)
Misconduct $\times$ Female		10.09 * * *	-3.331***
		(1.890)	(1.177)
Career Interruption	-0.117***	5.194 * * *	-3.789***
	(0.0182)	(0.243)	(0.208)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.	Х	Х	Х
Observations	$6,\!221,\!173$	$5,\!698,\!577$	1,006,760
R-squared	0.097	0.333	0.380

Table A1: Robustness - Career Interruptions

Note: Table A1 displays the regression results for three linear probability models. The dependent variable in column (1) is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t (eq. 1). The dependent variable in column (2) is a dummy variable indicating whether or not a financial adviser left his firm (eq. 2). The dependent variable in column (3) is a dummy variable indicating whether or not a financial adviser joined a new firm within one year (eq. 3). In column (3), we restrict the sample to those advisers who left their firm in a given year. Career interruption is a dummy variable indicating whether or not an adviser has previously left the financial services industry for more than six months. Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

	(1)	(2)	(3)	(4)	(5)
Downsize	$22.87^{***}$	22.67 * * *			
	(1.876)	(1.905)			
Downsize $\times$ Female	$1.912^{*}$	1.932*	-0.0848	-0.00331	-0.464
	(1.017)	(1.006)	(0.278)	(0.199)	(0.557)
Female	-0.142	$-1.129^{***}$	-0.787***	-0.798***	-0.777***
	(0.218)	(0.265)	(0.174)	(0.187)	(0.167)
Adviser Controls		Х	Х	Х	Х
Year×Firm×County F.E.			Х	Х	Х
Downsize: $5\%+$				Х	
${ m Downsize:} \ 25\%+$					Х
Observations	6,002,088	6,002,088	$5,\!698,\!577$	$5,\!698,\!577$	$5,\!698,\!577$
R-squared	0.042	0.049	0.329	0.329	0.329

Table A2: Robustness - Displaced Advisers

Note: Table A2 displays the results for a linear probability model (eq. 12). The dependent variable is a dummy variable indicating whether or not the adviser experienced a job separation between time t and t+1. The key independent variable of interest is the dummy variable  $Downsize_{ijt}$ , which indicates whether or not firm j reduced the number of advisers it employs by 10% or more between time t and t+1. In columns (1)-(3), we define a Downsize as a firm that reduced the number of advisers it employs by 10% or more. In columns (4) and (5), we redefine Downsize as a firm that reduced the number of advisers it employs by 5% or more and 25% or more. Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

## Table A3: Robustness - Adviser Experience

· · ·		i i	
Dependent Variable		Job Separation	New Employment
Female	-0.187***	-1.561***	-0.865***
	(0.0280)	(0.243)	(0.275)
Misconduct		37.29 * * *	-12.00***
		(3.731)	(1.845)
$Misconduct \times Female$		8.868***	-1.969
		(1.670)	(1.328)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.	Х	Х	Х
Observations	$1,\!985,\!627$	1,854,824	$409{,}506$
R-squared	0.098	0.311	0.388

(a) Advisers with 5 or Fewer Years Industry Experience

(b) Advisers with 15 or More Years Industry Experience

Dependent Variable	Misconduct	Job Separation	New Employment
Female	-0.504***	$0.264^{**}$	-6.096***
	(0.0365)	(0.109)	(0.440)
Misconduct		$17.87^{***}$	-7.044***
		(1.085)	(1.274)
Misconduct $\times$ Female		4.338 * * *	0.907
		(1.510)	(2.538)
Adviser Controls	Х	X	Х
Year×Firm×County F.E.	Х	Х	Х
Observations	$1,\!887,\!084$	$1,\!663,\!752$	$209,\!358$
R-squared	0.151	0.410	0.437

Table A3:	Robustness -	Adviser	Experience
-----------	--------------	---------	------------

Dependent Variable	Misconduct	Job Separation	New Employment
Female	-0.338***	-0.888***	-2.275***
	(0.0287)	(0.179)	(0.243)
Misconduct		$24.26^{***}$	-10.86***
		(1.945)	(1.098)
$Misconduct \times Female$		$12.46^{***}$	-3.382**
		(1.941)	(1.317)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.	Х	Х	Х
Observations	$3,\!890,\!742$	$3,\!619,\!403$	753,714
R-squared	0.108	0.322	0.358

(c) Advisers with 5 or Fewer Years Experience (within the Firm)

(d) Advisers with 15 or More Years Experience (within the Firm)

Dependent Variable	Misconduct	Job Separation	New Employment
Female	-0.369***	0.244*	-5.478***
	(0.0471)	(0.147)	(0.962)
Misconduct		$16.36^{***}$	0.159
		(2.375)	(2.546)
Misconduct $\times$ Female		1.503	4.940
		(3.491)	(4.807)
Adviser Controls	Х	X	Х
Year×Firm×County F.E.	Х	Х	Х
Observations	$514,\!935$	$449,\!430$	37,316
R-squared	0.177	0.482	0.620

Note: Tables A3a-d display the regression results for three linear probability models. The dependent variable in column (1) is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t (eq. 1). The dependent variable in column (2) is a dummy variable indicating whether or not a financial adviser left his firm (eq. 2). The dependent variable in column (3) is a dummy variable indicating whether or not a financial adviser joined a new firm within one year (eq. 3). In column (3), we restrict the sample to those advisers who left their firm in a given year. In panel (a), we restrict our analysis to those advisers with five or fewer years of industry experience. In panel (b), we restrict our analysis to those advisers with fifteen or more years of experience. In panel (c), we restrict our analysis to those advisers with fifteen or more years of experience within their current firm. Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

		Eno			
	C		quency		
	04	rrent	Current		
Disclosure Classifica	ation Male	Female	$\operatorname{Male}$	Female	
Any Disclosure	1.83%	1.08%	14.89%	7.61%	
Misconduct	0.72%	0.29%	9.08%	3.01%	
Severe Misconduct	0.30%	0.11%	3.68%	1.09%	
(b) Severe Mise		,	<i>v</i>		
Dependent Variable Se	vere Miscone	duct Job	o Separati	on New 1	Employment
Female	-0.138***		-0.780***	-2	2.889***
	(0.0135)		(0.156)		(0.256)
Severe Misconduct	( )		17.40***		8.891***
			(1.112)		(1.033)
Severe Misconduct $\times$ Female			6.762***		-3.687
			(1.936)		(2.274)
Adviser Controls	х		х		Х
Year×Firm×County F.E.	X		X		XX

# Table A4: Robustness - Alternative Misconduct Classification (a) Severe Misconduct

Note: As a robustness check we construct the classification "Severe Misconduct," which is a subset of misconduct. We define severe misconduct as any settled regulatory, civil, or customer dispute involving: unauthorized activity, fraud, forgery, churning, selling unregistered securities, misrepresentation, and/or omission of material/key facts. We also include as severe misconduct any finanlized criminal cases involving investment-related activites, fraud, and/or forgery. Table A4a reports the incidence of severe misconduct among male and female advisers.

6,221,173

0.097

Observations

R-squared

1,006,760

0.379

5,698,577

0.330

Table A4b displays the regression results for three linear probability models. The dependent variable in column (1) is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t. The dependent variable in column (2) is a dummy variable indicating whether or not a financial adviser left his firm (either leaving the industry or switching firms). The dependent variable in column (3) is a dummy variable indicating whether or not a financial adviser joined a new firm within one year. In column (3), we restrict the sample to those advisers who left their firm in a given year. Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

	()	(-)	(-)
	(1)	(2)	(3)
Misconduct	-0.173**	-0.138**	-0.0964
	(0.0754)	(0.0650)	(0.0649)
$Misconduct \times Female$	$-0.247^{**}$	-0.181*	-0.133
	(0.106)	(0.104)	(0.113)
Female	-0.251***	-0.203***	-0.0716***
	(0.0302)	(0.0339)	(0.0237)
Adviser Controls		Х	Х
Year×Firm×County F.E.			Х
Observations	$5,\!657,\!813$	5,657,813	$5,\!351,\!741$
R-squared	0.000	0.007	0.094

Table A5: Robustness - Promotions

Note: Table A5 displays the regression results corresponding to a linear probability model (eq. 13). The dependent variable is a dummy variable indicating whether or not a financial adviser passed the general securities principal exam (Series 24) at time t. Coefficients are expressed in percentage points. Observations are at the financial adviser by year level over the period 2005-2015. We restrict our sample to those financial advisers that are not general securities principals prior to time t. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

Tabl	e A6:	Robustness	s - Geog	graphic	Differences
------	-------	------------	----------	---------	-------------

	(1)	(2)	(3)	(4)
Female	-0.545***	-0.526***	-0.492**	-0.458**
	(0.196)	(0.201)	(0.204)	(0.218)
Misconduct	27.90***	28.39***	27.96***	28.91***
	(2.282)	(2.074)	(2.314)	(2.414)
$Misconduct \times Female$	15.66***	15.77***	15.61***	14.07***
	(2.444)	(2.470)	(2.223)	(2.125)
Gender Gap $\times$ Female	-0.0387	-0.00208	0.0651	0.136
	(0.123)	(0.128)	(0.152)	(0.171)
Gender Gap $\times$ Misconduct	-2.765**	-1.876	-2.690***	-0.922
	(1.123)	(1.243)	(1.042)	(1.249)
Gender Gap $\times$ Misconduct $\times$ Female	4.013*	4.307	3.796	1.116
	(2.278)	(2.630)	(2.427)	(2.772)
Gender Gap: Wages (Finanical Sector)	Х			
Gender Gap: Wages (All)		Х		
Gender Gap: Participation (Financial Sector)			Х	
Gender Gap: Participation (All)				Х
Adviser Controls	Х	Х	Х	Х
Year×Firm×County F.E.	Х	Х	Х	Х
Observations	$2,\!696,\!417$	$2,\!698,\!886$	$2,\!697,\!749$	$2,\!697,\!749$
R-squared	0.256	0.256	0.256	0.256

(a) Firm Level Consequences - Employment Separation

(b) Industry Level Consequences - New Employment

$(1) \\ (.050***) \\ (0.502)$		(3) -4.489***	(4)
		-4.489***	-2 976***
(0.502)	(0.502)		2.010
	(0.004)	(0.547)	(0.443)
$1.33^{***}$	-11.19***	-11.85***	-12.66***
(1.616)	(1.696)	(1.461)	(1.957)
4.351*	-2.589	-4.962**	-4.942**
(2.424)	(2.904)	(2.141)	(1.948)
0.817**	0.238	-1.781***	1.318***
(0.389)	(0.393)	(0.538)	(0.397)
2.281	2.589**	1.299	-0.393
(1.556)	(1.237)	(1.335)	(1.466)
-2.387	0.686	-3.307	-4.443*
(2.363)	(3.281)	(2.345)	(2.571)
X			
	Х		
		Х	
			Х
Х	Х	Х	Х
Х	Х	Х	Х
$104,\!114$	404,277	$404,\!185$	404, 185
0.363	0.363	0.363	0.363
	2.424) 0.817** 0.389) 2.281 1.556) -2.387 2.363) X X X X 04,114	$\begin{array}{cccc} 2.424) & (2.904) \\ 0.817^{**} & 0.238 \\ 0.389) & (0.393) \\ 2.281 & 2.589^{**} \\ 1.556) & (1.237) \\ 2.387 & 0.686 \\ 2.363) & (3.281) \\ X & & \\ & & X \\ & & & \\ & & & X \\ & & & \\ & & & X \\ & & & &$	$\begin{array}{ccccccc} 2.424 & (2.904) & (2.141) \\ 0.817^{**} & 0.238 & -1.781^{***} \\ 0.389 & (0.393) & (0.538) \\ 2.281 & 2.589^{**} & 1.299 \\ 1.556 & (1.237) & (1.335) \\ 2.387 & 0.686 & -3.307 \\ 2.363 & (3.281) & (2.345) \\ X & & & \\ X & & \\ X & & & \\ X & & \\ X$

Note: Table A6 displays the regression results for two linear probability models (eq. 14). The dependent variable in Table A6a is a dummy variable indicating whether or not a financial adviser left his firm. The dependent variable in Table A6b is a dummy variable indicating whether or not a financial adviser joined a new firm within one year. In Table A6b we restrict the sample to those advisers who left their firm in a given year. Each column in Tables A6a and A6b differs in terms of how the variable Gender Gap is constructed. First, we construct the variable Gender Gap as a dummy variable equal to one if county wage gap is above the median wage gap in the sample. We define the wage gap in the financial sector and across all sectors such that  $Wage_Gap_{lt} = \frac{Median_Male_Wages_{lt}}{Median_Male_Wages_{lt}}$ . Second, we construct the variable Gender Gap as a dummy variable equal to one if county participation gap is above the median participation gap in the sample. We define the participation gap in the financial sector and across all sectors such that  $Participation_Gap_{lt} = \frac{\#Male_Employees_{lt}}{\#Male_Employees_{lt}}$ . Coefficients are in percentage points. Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level over the period 2010-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.

Dependent Variable	Misconduct	Job Separation	New Employment
Female	-0.311***	-0.549***	-1.309***
	(0.0347)	(0.148)	(0.204)
Misconduct		$11.39^{***}$	0.168
		(0.761)	(0.444)
Misconduct $\times$ Female		3.258 * * *	-1.651
		(1.262)	(1.648)
Adviser Controls	Х	Х	Х
Year×Firm×County F.E.	X	Х	Х
Observations	3,787,172	3,359,568	$340,\!136$
R-squared	0.113	0.435	0.240

Table A7: Robustness - Alternative Gender Data

Note: Table A7 displays the regression results for three linear probability models. The dependent variable in column (1) is a dummy variable indicating whether or not the adviser was formally disciplined for misconduct in year t (eq. 1). The dependent variable in column (2) is a dummy variable indicating whether or not a financial adviser left his firm (eq. 2). The dependent variable in column (3) is a dummy variable indicating whether or not a financial adviser joined a new firm within one year (eq. 3). In column (3), we restrict the sample to those advisers who left their firm in a given year. Here we identify the gender of each adviser using data from Meridian IQ. Meridian IQ contains data on the gender of active advisers as of June 2016. Because we only observe the gender for active advisers in Meridian IQ, this limits our ability to identify the impact of misconduct on an adviser's reemployment prospects (all of the advisers in the Meridian IQ data set are active and employed as of 2016 by construction). Other adviser controls include the adviser's experience, tests (series 6, 7, 63, 24 and investment adviser exam), and number of other qualifications. Observations are at the adviser-by-year level over the period 2005-2015. Standard errors are in parenthesis and are clustered by firm. *** p<0.01, ** p<0.05, * p<0.10.