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1 Introduction

The foundational theorem of Hulten (1978) states that for efficient economies and under
minimal assumptions, the impact on aggregate TFP of a microeconomic TFP shock is
equal to the shocked producer’s sales as a share of GDP:

d log TFP =
∑

i

λi d log Ai,

where d log Ai is a shock to producer i and λi is its sales share or Domar weight.
Hulten’s theorem is a cornerstone result in productivity and growth accounting: it

shows how to construct aggregate TFP growth from microeconomic TFP growth, and
provides structurally-interpretable decompositions of changes of national or sectoral ag-
gregates into the changes of their disaggregated component industries or firms. It also
provides the benchmark answers for counterfactual questions in structural models with
disaggregated production.

The surprising generality of the result has led economists to de-emphasize the role of
microeconomic and network production structures in macroeconomic models. After all, if
sales summarize the macroeconomic impact of microeconomic shocks and we can directly
observe sales, then we need not concern ourselves with the details of the underlying
disaggregated system that gave rise to these sales. Since it seems to imply that the very
object of its study is irrelevant for macroeconomics, Hulten’s theorem has been something
of a bugbear for the burgeoning literature on production networks.

Are these conclusions warranted? Even at a purely intuitive level, there are reasons
to be skeptical. For example, thinking through the lens of Hulten’s theorem leads to
the questionable prediction that negative shocks to Walmart and to electricity production,
which both have a Domar weight of around 4%, should have the same impact on aggregate
output.

In this paper, we challenge the view that the macroeconomic importance of a mi-
croeconomic sector is summarized by its sales and, more broadly, the notion that the
microeconomic details of the production structure are irrelevant for macroeconomics.
They key is to recognize that Hulten’s theorem only provides a first-order approxima-
tion. Nonlinearities can significantly degrade the quality of the first-order approximation
for large enough shocks. To capture these nonlinearities, we provide a general second-
order approximation by characterizing the derivatives of Domar weights with respect to
shocks. The second-order terms are shaped by the microeconomic details of the disaggre-
gated production structure: network linkages, microeconomic elasticities of substitution
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in production, microeconomic returns to scale, and the degree to which factors can be
reallocated.

Our results are general in that they apply to any efficient general equilibrium economy.
They suggest that Cobb-Douglas models, commonly used in the production-network,
growth, and multi-sector macroeconomics literatures, are very special: the Domar weights
are constant, the first-order approximation is exact, the model is log-linear, and as a result,
the microeconomic details of the production structure are irrelevant.1 These knife-edge
properties disappear as soon as one deviates from Cobb-Douglas.

We also show that nonlinearities in production matter quantitatively for a number
of macroeconomic phenomena operating at different frequencies, ranging from the role
of sectoral shocks in business cycles to the impact of oil shocks and the importance of
Baumol’s cost disease for long-run growth:

1. Using a calibrated structural multi-industry model with realistic complementarities
in production, we find that nonlinearities amplify the impact of negative sectoral
shocks and mitigate the impact of positive sectoral shocks.2,3 Large negative shocks
to crucial industries, like “oil and gas”, have a significantly larger negative effect on
aggregate output than negative shocks to larger but less crucial industries such as
“retail trade”. Nonlinearities also have a significant impact on the distribution of
aggregate output: they lower its mean and generate negative skewness and excess
kurtosis even though the underlying shocks are symmetric and thin tailed. Non-
linearities in production generate significant welfare costs of sectoral fluctuations,
ranging from 0.2% to 1.3% depending on the calibration. These are an order of mag-
nitude larger than the welfare costs of business cycles arising from nonlinearities in
utility (risk aversion) identified by Lucas (1987).

2. We derive and use a simple nonparametric formula, taking into account the observed
1A mixture of analytical tractability, as well as balanced-growth considerations, have made Cobb-Douglas

the canonical production function for networks (Long and Plosser, 1983), multisector RBC models (Gomme
and Rupert, 2007), and growth theory (Aghion and Howitt, 2008). Recent work by Grossman et al. (2016)
shows how balanced growth can occur without Cobb-Douglas.

2The empirical literature on production networks, like Atalay (2017), Boehm et al. (2017), and Barrot and
Sauvagnat (2016) all find that structural elasticities of substitution in production are significantly below one,
and sometimes very close to zero, across intermediate inputs, and between intermediate inputs and labor at
business cycle frequencies. Furthermore, a voluminous literature on structural transformation, building on
Baumol (1967), has found evidence in favor of non-unitary elasticities of substitution in consumption and
production across sectors over the long-run.

3While complementarities prevail at the sectoral level, substituabilities dominate across firms within
sectors. This implies that while nonlinearities tend to amplify negative sectoral-level shocks and to attenuate
positive sectoral-level shocks, they tend to attenuate negative firm-level shocks and to amplify positive firm-
level shocks. Nonlinearities therefore introduce an important qualitative difference between sectoral- and
firm-level shocks which is absent from the linearized perspective.
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change in the Domar weight for crude oil, to analyze the impact of the energy crisis
of the 1970s up to the second order. We find that nonlinearities almost tripled the
impact of the oil shocks from 0.23% to 0.61% of world aggregate output.

3. We show that the nonlinearities are also important for long-run growth since they
cause the Domar weights of sectors with relatively low productivity growth to grow
over time, an effect identified as Baumol’s cost disease (Baumol, 1967). We calculate
that nonlinearities have reduced the growth of aggregate TFP by 20 percentage
points over the period 1948-2017 in the US.4

The outline of the paper is as follows. In Section 2, we derive a general formula
describing the second-order impact on aggregate output of shocks in terms of non-
parametric sufficient statistics: reduced-form general-equilibrium elasticities of substi-
tution and input-output multipliers.5 We explain the implications of this formula for the
impact of correlated shocks and for the average performance of the economy. In Section
3, we use two special illustrative examples to provide some intuition for the roles of the
general-equilibrium elasticities of substitution and of the input-output multipliers and for
their dependence on microeconomic primitives. In Section 4, we fully characterize second-
order terms in terms of microeconomic primitives for general nested-CES economies with
arbitrary microeconomic elasticities of substitution and network linkages. In Section 5,
we further generalize the results to arbitrary (potentially non-CES) production functions.
In Section 6, we provide some illustrations of the quantitative implications of our results.

Related literature. Gabaix (2011) and Acemoglu et al. (2012) revived interest in Hulten’s
theorem in the context of short-run aggregate fluctuations. Gabaix (2011) uses Hulten’s
theorem to argue that the existence of very large, or in his language granular firms, can
be a possible source of aggregate volatility. If there exist very large firms, then shocks to
those firms will not cancel out with shocks to much smaller firms, resulting in aggregate

4The literature on structural transformation emphasizes two key forces: non-unitary elasticities of substi-
tution and non-homotheticities. Both forces cause sales shares to change in response to exogenous shocks.
Since Hulten’s theorem implies that sales shares are equal to derivatives of the aggregate output func-
tion, anything that causes the derivative to change is a non-linearity. By characterizing the second-order
terms in a general way, our results encompass both non-unitary elasticities and non-homotheticities. In
fact, non-homotheticities can always be turned into non-unitary elasticities of substitution by adding more
fixed-factors to an economy.

5Studying the second-order terms is the first step in grappling with the nonlinearities inherent in mutli-
sector models with production networks. In this sense, our work illustrates the macroeconomic importance
of local and strongly nonlinear interactions emphasized in reduced form by Scheinkman and Woodford
(1994). Other related work on nonlinear propagation of shocks in economic networks includes Durlauf
(1993), Jovanovic (1987), Ballester et al. (2006) Acemoglu et al. (2015), Elliott et al. (2014), and especially
Acemoglu et al. (2016).
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fluctuations. Acemoglu et al. (2012), working with a Cobb-Douglas model in the spirit
of Long and Plosser (1983), observed that in an economy with input-output linkages, the
equilibrium size of firms will depend on the shape of the input-output matrix. Central
suppliers will be weighted more highly than peripheral firms, and therefore, shocks to
those central players will not cancel out with shocks to small firms.6 Carvalho and Gabaix
(2013) show how Hulten’s theorem can be operationalized to decompose the sectoral
sources of aggregate volatility.7

Relatedly, Acemoglu et al. (2017) deploy Hulten’s theorem to study other moments of
the distribution of aggregate output. They argue that if the Domar weights are fat-tailed
and if the underlying idiosyncratic shocks are fat-tailed, then aggregate output can exhibit
non-normal behavior. Stated differently, they show that aggregate output can inherit tail
risk from idiosyncratic tail risk if the distribution of the Domar weights is fat-tailed.
Our paper strengthens, but is distinct from, this point. We find that, for the empirically
relevant range of parameters, the response of aggregate output to shocks is significantly
asymmetric. Therefore, the nonlinearity inherent in the production structure can turn
even symmetric thin-tailed sectoral shocks into rare disasters endogenously. This means
that the economy could plausibly experience aggregate tail risk without either fat-tailed
shocks or fat-tailed Domar weights.

In a recent survey article Gabaix (2016), invoking Hulten’s theorem, writes “networks
are a particular case of granularity rather than an alternative to it.” This has meant that re-
searchers studying the role of networks have either moved away from efficient models, or
that they have retreated from studying aggregate output and turned their attention to the
microeconomic implications of networks, namely the covariance of fluctuations between
different industries and firms.8,9 However, models with the same sales distributions are
only equivalent up to the first-order, and in this paper, we highlight the fragility of this

6A related version of this argument was also advanced by Horvath (1998), who explored this issue
quantitatively with a more general model in Horvath (2000). Separately, Carvalho (2010) also explores how
the law of large numbers may fail under certain conditions on the input-output matrix.

7Results related to Hulten’s theorem are also used in international trade, e.g. Burstein and Cravino
(2015), to infer the global gains from international trade.

8Some recent papers have investigated aggregate volatility in production networks with inefficient
equilibria (where Hulten’s theorem does not hold). Some examples include Bigio and La’O (2016), Baqaee
(2016), Altinoglu (2016), Grassi (2017), and Baqaee and Farhi (2017). See also Jones (2011), Jones (2013),
Bartelme and Gorodnichenko (2015), and Liu (2017).

9For instance, Foerster et al. (2011), Atalay (2017), Di Giovanni et al. (2014), and Stella (2015) investigate the
importance of idiosyncratic shocks propagating through networks to generate cross-sectional covariances,
but they refrain from analyzing the impact of these shocks on aggregate output. Atalay (2017) is particularly
relevant in this context, since he finds that structural elasticities of substitution in production play a powerful
role in generating covariance in sectoral output. Our paper complements this analysis by focusing instead
on the way complementarities affect aggregate output.
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first-order approximation.

2 General Framework

In this section, we set up a non-parametric general equilibrium model to demonstrate both
Hulten’s theorem as well as our second-order approximation. Final demand is represented
as the maximizer of a constant-returns aggregator of final demand for individual goods

Y = max
{c1,...,cN}

D(c1, . . . , cN),

where ci is the representative household’s consumption of good i. The budget constraint
is

N∑
i=1

pici =

F∑
i=1

w f l f +

N∑
i=1

πi,

where pi is the price and πi is the profit of producer i, w f is the wage of factor f which is
in fixed supply l f . It gives a measure of (nominal) GDP.

Each good i is produced by competitive firms using the production function

yi = AiFi(li1, . . . , liF, xi1, . . . , xiN),

where Ai is Hicks-neutral technology, xi j are intermediate inputs of good j used in the
production of good i, and li f is labor type f used by i. The profits earned by the producer
of good i are

πi = piyi −

F∑
f=1

w f li f −

N∑
j=1

p jxi j.

The market clearing conditions for goods 1 ≤ i ≤ N and factors 1 ≤ f ≤ F are

yi =

N∑
j=1

x ji + ci and l f =

N∑
i=1

li f .

Competitive equilibrium is defined in the usual way, where all agents take prices as given,
and markets for every good and every type of labor clears.

We interpret Y as a cardinal measure of (real) aggregate output and note that it is the
correct measure of the household’s “standard of living” in this model. We implicitly rely
on the existence of complete financial markets and homotheticity of preferences to ensure
the existence of a representative consumer. Although the assumption of a representative
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consumer is not strictly necessary for the results in this section, it is a standard assumption
in this literature since it allows us to unambiguously define and measure changes in real
aggregate output without contending with the issue of the appropriate price index.

We assume that the production function Fi of each good i has constant returns to
scale, which implies that equilibrium profits are zero. This is without loss of generality
because decreasing returns to scale can be captured by adding fixed factors to which
the corresponding profits accrue. The assumption that shocks are Hicks-neutral is also
without loss of generality: we can represent an input-specific productivity shock by
adding a new producer that produces that input and hitting this new producer with a
Hicks-neutral shock.10 Finally, note that goods could represent different varieties of goods
from the same industry, goods from different industries, or even goods in different time
periods, regions, or states of nature.11

Define Y(A1, . . . ,AN) to be the equilibrium aggregate output as a function of the exoge-
nous technology levels. Throughout the paper, and without loss of generality, we refer
to Y(1, . . . , 1) as the steady-state aggregate output of the model, and we derive results
regarding the effects of shocks in the vicinity of this steady state. The relevant derivatives
are all evaluated at the steady-state (A1, . . . ,AN) = (1, . . . , 1).

Theorem 1 (Hulten 1978). The first-order macroeconomic impact of microeconomic shocks is
given by:12

d log Y
d log Ai

= λi,

where λi = piyi/(
∑N

j=1 p jc j) the sales of producer i as a fraction of GDP.

Hulten’s theorem can be seen as a consequence of the first welfare theorem: since this
economy is efficient, Y(A1, . . . ,AN) is also the social planning optimum and prices are the

10Shocks to the composition of demand can be captured in the same way via a set of consumer-specific
productivity shocks. For example, if the final demand aggregator is CES with an elasticity strictly greater
than one, an increase in consumer demand for i can be modeled as a positive consumer-specific productivity
shock to i and a set of negative consumer-specific productivity shocks to all other final goods such that the
consumption-share-weighted sum of the shocks is equal to zero. The sign of the shocks must be reversed
if the elasticity of substitution is strictly lower than one, and the Cobb-Douglas case can be treated as a
limit. These constructions generalize beyond the CES case. Hulten’s theorem implies that shocks to the
composition of demand have no first-order effect on aggregate output, but in general, they have nonzero
second-order (and more generally nonlinear) effects.

11If we apply the model to different periods of time and states of nature, then Y corresponds to an
intertemporal aggregate consumption index reflecting intertemporal welfare.

12In the special case where Ai is a factor-augmenting shock, the relevant λi corresponds to a producer’s
bill for this factor as a share of GDP. This is because if we relabel the labor input of producer i as a new
producer, we can represent a factor-augmenting shock to i’s labor as a Hicks-neutral shock to this new
producer.
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multipliers on the resource constraints for the different goods. Applying the envelope
theorem to the social planning problem delivers the result.

Hulten’s theorem has the powerful implication that, to a first-order, the underlying
microeconomic details of the structural model are completely irrelevant as long as we
observe the equilibrium sales distribution: the shape of the production network, the
microeconomic elasticities of substitution in production, the degree of returns to scale,
and the extent to which inputs and factors can be reallocated, are irrelevant.

We now provide a characterization of the second-order effects in terms of reduced-
form elasticities. We need to introduce two objects: GE elasticities of substitution, and
the input-output multiplier. Later on, we show how these reduced-form elasticities arise
from structural primitives using a structural model.

We start by introducing the GE elasticities of substitution. Recall that for any homoge-
neous of degree one function f (A1, . . . ,AN), the Morishima (1967) elasticity of substitution
is

1
ρi j

= −
d log(MRSi j)
d log(Ai/A j)

= −
d log( fi/ f j)

d log(Ai/A j)
, (1)

where MRSi j is the ratio of partial derivatives with respect to Ai and A j, and fi = d f/d Ai.13

When the homothetic function f corresponds to a CES utility function and Ai to
quantities, ρi j is the associated elasticity of substitution parameter. However, we do not
impose this interpretation, and instead treat this object as a reduced-form measure of
the curvature of isoquants. By analogy, we define a pseudo elasticity of substitution for
non-homothetic functions in a similar fashion.

Definition 1. For any smooth function f : RN
→ R, the pseudo elasticity of substitution is

1
ρi j
≡ −

d log(MRSi j)
d log(Ai)

= −
d log( fi/ f j)
d log(Ai)

.

The pseudo elasticity of substitution is a generalization of the Moroshima elasticity
of substitution in the sense that whenever f is homogenous of degree one, the pseudo
elasticity is the same as the Moroshima elasticity of substitution.

When applied to the equilibrium aggregate output function of a general equilibrium
economy, we call the pseudo elasticity of substitution the general equilibrium pseudo elasticity
of substitution or GE elasticity of substitution for short. The GE elasticity of substitution ρi j

is interesting because it measures changes in the relative sales shares of i and j when there

13This is a generalization of the two-variable elasticity of substitution introduced by Hicks (1932) and
analyzed in detail by Blackorby and Russell (1989).
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is an exogenous shock to i. This follows from the fact that

d log(λi/λ j)
d log Ai

=
d log[(YiAi)/(Y jA j)]

d log Ai
=

d log(Yi/Y j)
d log Ai

+ 1 = 1 −
1
ρi j
, (2)

where the first equality applies Hulten’s theorem. Since the second-order impact of a
shock to i can be measured in terms of the rate of change in the sales share of i, the GE
elasticity of substitution will turn out to be an important sufficient statistic. A decrease in
the productivity of i causes λi/λ j to increase when ρi j ∈ (0, 1), and to decrease otherwise.
We say that a j is a GE-complement for i if ρi j ∈ (0, 1), and a GE-substitute otherwise. When
f is a CES aggregator, this coincides with the standard definition of gross complements
and substitutes. As usual, when f is Cobb-Douglas, i and j are neither substitutes nor
complements. In general, GE-substitutability is not reflexive.

An important special case is when the shocks d log A f hit the stocks of factors. In that
case, Hulten’s theorem implies that d log Y/d log A f = Λ f , where Λ f = w f l f/(

∑N
j=1 p jc j)

is the share of factor f in GDP. Since
∑F

f=1 w f l f = GDP, Euler’s theorem implies that
the aggregate output is homogenous of degree one in the supplies of the factors. This
implies that the general equilibrium pseudo elasticity of substitution between two factors
can be interpreted as a genuine elasticity of substitution between these factors in general
equilibrium.14

Next,we introduce the input-output multiplier.

Definition 2. The input-output multiplier is

ξ ≡
N∑

i=1

d log Y
d log Ai

=

N∑
i=1

λi.

When ξ > 1, total sales of the shocked quantities exceed total income: an indication
that there are intermediate inputs. When ξ > 1, the impact of a uniform technology shock
is correspondingly amplified due to the fact that goods are reproducible. The input-
output multiplier ξ captures the percentage change in aggregate output in response to
a uniform one-percent increase in technology. Loosely speaking, it captures a notion of
returns-to-scale at the aggregate level.

The input-output multiplier is called the intermediate input multiplier in a stylized
model by Jones (2011), but it also appears under other names in many other contexts. It

14The difference between an elasticity of substitution and a pseudo elasticity of substitution is that the
former is the elasticity of the ratio of marginal rates of substitution with respect to the ratio of two arguments,
whereas the latter is the elasticity of marginal rates of substitution with respect to an argument. The two
definitions are equivalent whenever the function they are applied to is homogeneous of degree one.
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is also related to the network influence measure of Acemoglu et al. (2012), the granular
multiplier of Gabaix (2011), international fragmentation measure of Feenstra and Hanson
(1996), the production chain length multiplier in Kim et al. (2013), and even the capital
multiplier in the neoclassical growth model.15 It also factors into how the introduction
of intermediate inputs amplifies the gains from trade in Costinot and Rodriguez-Clare
(2014). Although these papers feature multiplier effects due to the presence of round-
about production (either via intermediate inputs or capital), they do not take into account
the fact that this multiplier effect can respond to shocks. This is either because they assume
Cobb-Douglas functional or because they focus on first-order effects.

Having defined the GE elasticities of substitution and the input-output multiplier, we
are in a position to characterize the second-order terms. We start by investigating the
impact of an idiosyncratic shock.

Idiosyncratic Shocks

Theorem 2 (Second-Order Macroeconomic Impact of Microeconomic Shocks). The second-
order macroeconomic impact of microeconomic shocks is given by16

d2 log Y
d log A2

i

=
dλi

d log Ai
=
λi

ξ

∑
1≤ j≤N

j,i

λ j

(
1 −

1
ρi j

)
+ λi

d log ξ
d log Ai

.

In words, the second-order impact of a shock to i is equal to the change in i’s sales share
λi. The change in i’s share of sales is the change in the aggregate sales to GDP ratio, minus
the change in the share of sales of all other industries. The former is measured by the
elasticity of the input-output multiplier ξ, while the latter depends on the GE elasticities
of substitution. Collectively, the sales shares λi, the reduced-form elasticities ρi j and
the reduced-form elasticity of the input-output multiplier d log ξ/d log Ai are sufficient

15This follows from the fact that we can treat capital as an intertemporal intermediate input. For more
details on how capital can be thought of in this framework, see Hulten (2001).

16In the case where shocks are factor-augmenting, the aggregate output function is homogeneous of
degree 1 and the formula becomes

d2 log Y
d log A2

i f

= λi f

∑
1≤ j≤N
1≤g≤F

( j,g),(i, f )

λ jg

(
1 −

1
ρi f , jg

)
, (3)

where Ai f is a shock augmenting factor f in the production of good i, λi f is the share of factor f in GDP
arising from its use by producer i, and ρi f , jg is the GE elasticity of substitution between factor f in the
production of good i and factor g in the production of good j.
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statistics for how aggregate output responds to technology shocks up to a second order.
This result tells us that Hulten’s approximation is globally accurate if reduced-form

elasticities are unitaryρi j = 1 for every j and if the input-output multiplierξ is independent
of the shock Ai. We shall see that this amounts to assuming Cobb-Douglas production
and consumption functions where sales shares and more generally the whole input-output
matrix is constant.

At the opposite extreme, the aggregate output function is nearly non-smooth if ρi j ≈ 0
for any j. Hence, first-order approximations performs more poorly as ρi j approaches zero,
either from below or from above. These are the cases of extreme complementarity or
extreme substitutability. In the limiting case

∣∣∣ρi j

∣∣∣ → 0, the first-order approximation is
completely uninformative even for arbitrarily small shocks.

Therefore, although the Cobb-Douglas special case is very popular in the literature,
it constitutes a very special case where the second-order terms are all identically zero.17

Theorem 2 also shows that there is an interaction between the GE elasticity of substitution
ρi j and the size of i and j. In the extreme case where either λi or λ j is equal to zero, the GE
elasticity of substitution between the two is irrelevant.

Theorem 2 also shows that deviations from Hulten’s theorem need not be restricted
to non-unitary GE elasticities of substitution, they can also arise from variations in the
input-output multiplier ξ. Since the input-output multiplier is the ratio of sales to GDP,
changes in the input-output multiplier can be interpreted as another kind of GE elasticity
of substitution: namely the substitution between the underlying factors (whose payments
are GDP) and the reproducible goods (whose payments are sales). A strong tendency
to substitute between labor and intermediate inputs in response to shocks hampers the
accuracy of the first-order approximation.

The second-order approximation of the aggregate output function with respect to the
productivity of producer i can then be written as

log(Y) ≈ log(Y) + λi log(Ai) +
1
2
λi

ξ

∑
1≤ j≤N

j,i

λ j

(
1 −

1
ρi j

) (
log(Ai)

)2
+

1
2
λi

d log ξ
d log Ai

(
log(Ai)

)2 , (4)

where Y is Y evaluated at the steady-state technology values. When goods are GE-
complements, the second-order terms amplify the effect of negative shocks and attenuate
the effect of positive shocks relative to the first-order approximation. Instead when goods
are GE-substitutes, the second-order approximation attenuates the negative shocks and

17See for example Acemoglu et al. (2012), Long and Plosser (1983), Bigio and La’O (2016), Acemoglu et al.
(2017), Bartelme and Gorodnichenko (2015).
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amplifies the positive shocks instead. A similar intuition holds for the input-output
multiplier: if the input-output multiplier is increasing, then the second-order approxi-
mation amplifies positive shocks and dampens negative shocks, and if this multiplier is
decreasing, then the opposite is true.

Correlated Shocks

To consider shocks to several industries at once, we must extend these results to cover the
off-diagonal terms in the Hessian.

Proposition 3 (Correlated Shocks). The second-order macroeconomic impact of correlated mi-
croeconomic shocks is given by

d2 log Y
d log A j d log Ai

=
dλi

d log A j
=
λi

ξ

∑
1≤k≤N

k, j

λk

(
1 −

1
ρ jk

)
+ λi

d log ξ
d log A j

− λi

(
1 −

1
ρ ji

)
. (i , j)

This result shows that the cross-partials are non-trival, but are characterized by the
same collection of sufficient statistics as the second-derivatives.

The second-order effect of a common shock to i and j is not simply the sum of the
second-order impacts of the idiosyncratic shocks to i and to j, and instead there are
interactions between the two shocks.18 In Section 4, we provide an explicit characterization
of the Hessian in terms of microeconomic primitives.

Macro Moments

We can use the second-order terms to approximate an economy’s macroeconomic mo-
ments. To illustrate this intuition (and minimize tedious algebra), we consider shocks to
a single producer i which are lognormal with mean 0 and variance σ2.19 Then, a Taylor
approximation yields

µY = E(log(Y/Y)) ≈
1
2

d2 log Y
d log A2

i

σ2 =
1
2

λi

ξ

∑
1≤ j≤N

j,i

λ j

(
1 −

1
ρi j

)
+ λi

d log ξ
d log Ai

 σ2.

18We can also use these ideas to capture the impact of an aggregate shock to the economy, since an
aggregate shock is simply a common shock that affects all industries. If A is an aggregate productivity

shock, then d2 log Y
d log A2 = ξ

∑N
i=1

d log ξ
d log Ai

. So, for aggregate shocks, deviations from Hulten’s theorem can only
come from the input-output multiplier.

19In Appendix D, we include the approximation equations for mean, variance, and skewness for multi-
variate shocks.
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HenceµY has the same sign as the second-order term. The logic of this equation is best seen
by considering its absurd limit. Consider two economies with identical sales distributions
and identical aggregate output evaluated at the steady-state. Up to a first-order, these two
economies are the same. However, if one of these economies has ρi j = 1 and the other has
ρi j > 0 arbitrarily close to 0, then in the presence of any volatility σ > 0, to a second order,
the first economy produces Y on average whereas the second economy produces nothing.

Hence, 1
2 d2 log Y/d log A2

i represents both the second-order impact of a shock to i on
aggregate output, and the log point difference between expected aggregate output and its
certainty equivalent in units of variance. Loosely speaking, we can interpret this as the
percent change in aggregate output relative to its certainty equivalent in units of variance,
with the caveat that such a description is only approximately true.

Similarly, the second-order terms also shape higher moments of the distribution of
aggregate output. For instance, for instance, for variance

σ2
Y = Var(log(Y/Y)) ≈

(
λ2

i + 2
(µY

σ

)2
)
σ2
≥ λ2

i σ
2, (5)

where the right-hand side is the variance of the log-linear approximation. Hence, nonlin-
earities increase the implied variance of aggregate output.

Going to higher moments, nonlinearities also affect the skewness and kurtosis of
aggregate output. For example, when the second-order terms are negative, corresponding
to complementarity, the distribution of aggregate output is skewed to the left since the
second-order terms magnify negative shocks and attenuate positive shocks. The skewness
of log aggregate output is

E


 log(Y/Y) − µY

σY

3 ≈ 1
σ3

Y

d2 log Y
d log A2

i

σ6

(
d2 log Y
d log A2

i

)2

+ 3λ2
i σ

4

 =
2µY

σ3
Y

(
4µY + 3λ2

i σ
2
)
.

Since the term in the square brackets is always positive, log aggregate output is negatively
skewed if the second-order term is negative. This asymmetry also helps explain why
average log aggregate output is lower than its deterministic steady state, since aggregate
output is subject to larger recessions than booms.

Finallly, since the negative shocks are magnified, this also fattens the left tail, giving
rise to excess kurtosis, even if the technology shocks are symmetric and thin-tailed. In
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this case, a second-order approximation gives

E


 log(Y/Y) − µY

σY

4 ≈ 3

1 +
(µY

σ

)2 22(µY/σ)2 + 7λ2
i(

λ2
i + 2(µY/σ)2

)2

 ≥ 3.

So, aggregate output has excess kurtosis if, and only if, the second-order terms are nonzero.
Therefore, for a given variance of aggregate output, relatively more of the variance is
due to negative, infrequent, extreme deviations, as opposed to symmetric, frequent, and
modestly sized deviations (relative to a normal distribution). In Section 6 we revisit these
issues with a calibrated model and show that they are quantitatively significant.

Welfare Costs of Sectoral Shocks

For the majority of the paper, we focus on log aggregate output, which can be characterized
with unit-less elasticities. With complementarities, we have argued that sector shocks
lower the mean of log aggregate output, an effect which we can interpret as the welfare
cost of sectoral shocks. One may imagine that the losses from uncertainty that we identify
depend on the concavity of the log function. A consumer with log utility prefers a mean-
preserving reduction in uncertainty even when the aggregate output function is linear.
However, as shown by Lucas (1987), the corresponding losses are extremely small in
practice in business-cycle settings. The much larger effects that we identify originate in
nonlinearities in production, and they are present even when the utility function is linear
in aggregate consumption.

The following proposition formalizes this intuition and shows that the Lucas-style
welfare losses due to nonlinearities in the utility function in the form of risk-aversion and
the losses due to nonlinearities in production do not interact with one-another up to a
second-order approximation.20

Proposition 4 (Welfare Cost of Sectoral Shocks). Let u : R → R be a utility function and let
Y : RN

→ R be the aggregate output function. Suppose that productivty shocks have mean 1 and
a diagonal covariance matrix with kth diagonal element σ2

k . Then

u′(Y)

Y

(
E(u(Y)) − u(Y)

)
≈ −

Y
2

γ N∑
k=1

λ2
kσ

2
k +

N∑
k=1

d2 Y
d A2

k

σ2
k

 ,
20In fact, it could easily be the case that a risk-averse household prefers the economy to be subject to

stochastic shocks if the economy features macro-substitutability and the second-order terms are positive,
which happens in the presence of GE-substitutability.
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where γ is the coefficient of relative risk aversion at the deterministic steady-state Y.

The first term on the right-hand side, which is quantitatively small, is the traditional
Lucas-style cost arising from curvature in the utility function. The second term, which is
quantitatively large, is due to the curvature inherent in production and does not depend
on the coefficient of relative risk aversion.21

Mapping From Micro to Macro

Theorem 2 implies that the GE elasticities of substitution ρi j and the elasticity of the input-
output multiplier d log ξ/d log Ai are sufficient statistics for the second-order impact of
shocks. However, these sufficient statistics are reduced-form elasticities, and unlike λi

and ξ, they are not readily observable. Furthermore, since they are general equilibrium
objects, they cannot be identified through exogenous microeconomic variation. So, while
careful empirical work can identify micro-elasticities, the leap from micro-estimates to
macro-effects can be hazardous.

In this paper, we provide the mapping from structural micro parameters to the reduced-
form GE elasticities. This general characterization can be found in Section 4 for CES
networks, and in Section 5 for arbitrary networks. However, rather than stating these
results up front, we build up to the general characterization using some important special
cases in Section 3.

3 Illustrative Examples

In this section, we work through two special cases to illustrate and isolate some intuition
for how the GE elasticities of substitution and the input-output multiplier affect the shape
of the aggregate output function. After working through these examples, we provide a
generic characterization of the second-order terms in Section 4 and 5.

3.1 GE Elasticities of Substitution

To start with, we focus on the GE elasticities of substitution by considering a simple
example of a horizontal economy with no intermediate inputs. The input-output multiplier

21Proposition 4 is stated idiosyncratic shocks for expositional clarity. In Appendix A, we prove the result
for more general utility functions and shocks. For our theoretical results, we find it convenient work with
elasticities d2 log Y/d log A2

k , but we can use these results to compute the welfare cost in Proposition 4 by
noting that d2 Y/d A2

k = Y d2 log Y/d log A2
k − λk(Y − 1).
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is constant and equal to one, and so deviations from Hulten’s theorem only occur due
to non-unitary GE elasticities of substitution. We emphasize how the GE elasticities of
substitution depend not only on the micro elasticities of substitution, but also the degree
to which labor can be reallocated across uses, and the returns to scale in production.
Throughout all the upcoming examples, variables with overlines denote steady-state
values.

There are N goods produced using the production functions

yi

yi
= Ai

 lisi

lisi

1−ωg
 lig

lig


ωg

, (6)

where lisi and lig are the amounts of the specific and general labor used by producer i. The
specific labor of type i can only be used by producer i and the general labor cab be used
by all producers.

The household’s consumption function is

Y

Y
=

∑
i

ω0i

(
ci

ci

) θ0−1
θ0


θ0
θ0−1

,

where θ0 is the microeconomic elasticity of substitution in consumption and
∑

iω0i = 1.
The specific labors and the general labor are in fixed supplies at lsi = lisi and lg =

∑N
i=1 lig.

The market-clearing conditions are

ci = yi, lsi = lisi , and lg =

N∑
i=1

lig.

Different degrees of labor reallocation can be expected depending on the time horizon
and on the degree of aggregation. If we imagine that these producers represent different
industries, then we might expect labor to be difficult to adjust at short horizon, and such
adjustments to become easier at longer horizons. Some of these dynamic effects can be
captured by performing comparative statics with respect to ωg, where ωg = 0 represents
an economy where labor cannot be reallocated, and ωg = 1 an economy where labor can
be fully reallocated.

Proposition 5. In the horizontal economy, the sales shares are given by λi = ω0i, the input-output
multiplier is constant with ξ = 1 and d log ξ/d log Ai = 0. The GE elasticities of substitution
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are all equal and are given by

ρi j = ρ =
θ0(1 − ωg) + ωg

θ0(1 − ωg) + ωg + (1 − θ0)
.

The second-order macroeconomic impact of microeconomic shocks is given by

d2 log Y
d log A2

i

=
dλi

d log Ai
= λi(1 − λi)

(
1 −

1
ρ

)
.

To build intuition, we consider the polar cases with no-reallocation where ωg = 0 and
with full reallocation where ωg = 1. We start with the no-reallocation case where ωg = 0.
Because labor cannot be moved across producers, it is as if there were a fixed endowment
of each good and so aggregate output is given by:

Y

Y
=

 N∑
i=1

ω0iA
θ0−1
θ0

i


θ0
θ0−1

.

The GE elasticities of substitution and the structural microeconomic elasticities of substi-
tution coincide so that ρ = θ0. Since θ0 ∈ [0,∞) we have ρ ∈ [0,∞). The second-order
macroeconomic impact of microeconomic shocks is given by

d2 log Y
d log A2

i

=
dλi

d log Ai
= λi(1 − λi)

(
1 −

1
θ0

)
.

In the Cobb-Douglas case θ0 = 1, second-order terms are identically equal to zero and
the first-order approximation is globally accurate. The quality of the Hulten approxima-
tion deteriorates as we move away from θ0 = 1 in both directions. The second-order
term changes sign depending on whether θ0 is greater or less than one. Relative to the
first-order approximation, the second-order approximation amplify negative shocks and
mitigate positive shocks if θ0 < 1 , and the reverse if θ0 > 1.

To build intuition, it is useful to inspect how the relative sales share λi/λ j of i versus j
changes in response to a shock to i:

d log(λi/λ j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(yi/y j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(Ai/A j)
d log Ai

= 1 −
1
θ0
.

Because there is no reallocation, the relative quantity yi/y j moves one-for-one with
the shock to i. In the Cobb-Douglas case θ0 = 1, the relative price pi/p j moves one-for-
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(a) log aggregate output with no realloca-
tion/extreme decreasing returns. Perfect sub-
stitutes and Hulten’s approximation overlap al-
most perfectly.
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(b) log aggregate output with full realloca-
tion/constant returns. Leontief and Hulten’s ap-
proximation overlap almost perfectly.

Figure 1: log aggregate output as a function of productivity log(Ai) in the economy with
full reallocation/constant returns for different values of θ0. This example consists of two,
equally, sized industries using labor as their only input. The economies depicted in
Figures 1a and 1b are all equivalent to a first-order.

one in the opposite direction, and so the relative share λi/λ j remains constant. When
θ0 < 1, relative prices move more than one-for-one with the shock, and so the relative
share increases when the shock is negative, and increases when it is positive. When
θ0 > 1, relative prices move less than one-for-one with the shock, and so the relative share
decreases when the shock is negative, and increases when it is positive.

Let us consider the Leontief limit θ0 → 0. In this limit, the first-order term becomes
completely uninformative and deviations from the first-order approximation become ex-
treme. Following a negative shock to i, the relative price pi/p j jumps to infinity, and so does
the relative share λi/λ j. Following a positive shock, the relative price jumps to zero and
so does the relative share. The associated amplification of negative shocks and mitigation
of negative shocks is extreme.

Let us now consider the perfect-substitutes limitθ0 →∞. Positive shocks are amplified
and negative shocks are mitigated, but the effect is not nearly so dramatic. In fact, because
goods are perfect substitutes, the relative price pi/p j is constant. Therefore, the relative
share λi/λ j moves one-for-one with the shock to i. The situation is depicted graphically
in Figure 1a.

Having analyzed the case with no labor reallocation, we now consider the polar oppo-
site case, where labor can be costlessly reallocated across producers and can be used with
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constant returns to scale so that ωg = 1. In this case, the GE elasticities of substitution do
not typically coincide with the structural microeconomic elasticity of substitution since we
have ρ = 1/(2 − θ0). Since θ0 ∈ [0,∞) we have ρ ∈ (−∞, 0) ∪ [1/2,+∞). The second-order
macroeconomic impact of microeconomic shocks is given by

d2 log Y
d log A2

i

=
dλi

d log Ai
= λi(1 − λi) (θ0 − 1) .

As above, in the Cobb-Douglas case θ0 = 1, second-order terms are identically equal
to zero and the first-order approximation is globally accurate. The second-order term
changes sign depending on whether θ0 is greater or less than one. Relative to the first-
order approximation, the second-order approximation amplifies negative shocks and
mitigates positive shocks if θ0 < 1 , and the reverse if θ0 > 1. However, this time, the
second-order term becomes singular when the goods are highly substitutable rather than
when they are highly complementary.

Once again, we can unpack this result by noting that

d log(λi/λ j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(yi/y j)
d log Ai

=
d log(A j/Ai)

d log Ai
+

d log(yi/y j)
d log Ai

= θ0 − 1.

Because labor can be costlessly reallocated across producers, the relative price pi/p j

always moves inversely one-for-one with the shock to i. In the Cobb-Douglas case, the
relative quantity yi/y j moves one for one with the shock to i, and the relative share λi/λ j

remains constant. When θ0 < 1, the relative quantity moves less than one-for-one with
the shock as labor is reallocated towards i if the shock is negative and away from i if the
shock is positive. As a result, the relative share increases when the shock is negative, and
increases when it is positive. When θ0 > 1, relative quantity moves more than one-for-one
with the shock as labor is reallocated away from i when the shock is negative and towards
i when it is positive. As a result, the relative share decreases when the shock is negative,
and increases when it is positive.

Contrary to what one may have assumed, a near-Leontief production function is not
sufficient for generating large deviations from Hulten’s theorem, as long as factors can
be reallocated freely, precisely because this reallocation is successful at reinforcing “weak
links”. In the Leontief limit, the relative quantity yi/y j is invariant to the shock, and so the
relative sales share λi/λ j moves inversely one-for-one with the shock to i. Relative to the
first-order approximation, the second-order approximation still amplifies negative shocks
and mitigates positive shocks, but the corresponding magnitudes are much smaller than
in the case where labor cannot not be reallocated.
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In the perfect substitutes limit, labor is entirely allocated to the most productive pro-
ducer. In response to a positive shock to i, the relative quantity yi/y j jumps to infinity,
and so does the relative share λi/λ j. In response to a negative shock, the relative quantity
drops to zero, and so does the relative share. Relative to the first-order approximation,
the second-order approximation still amplifies positive shocks and mitigates negative
shocks, but the corresponding magnitudes are now much larger than in the case where
labor cannot not be reallocated. The situation is depicted graphically in Figure 1b.

To recap, with complementarities: a negative shock can cause a large downturn when
labor cannot be freely re-allocated, but the ability to re-allocate labor largely mitigates these
effects; positive shocks have a lesser impact. By contrast, with substitutabilities: a positive
shock can cause a big boom when labor can be re-allocated, but the inability to re-allocated
labor mitigates these effects; negative shocks have a lesser impact. Cobb-Douglas stands
as a special case where the macroeconomic impact of microeconomic shocks is symmetric
independently of whether or not labor can be reallocated (since the equilibrium allocation
of labor across producers is constant even when labor can be re-allocated).22

3.2 Input-Output Multiplier

In the previous example of a horizontal economy, the input-output multiplier ξ is constant
and deviations from Hulten’s theorem are due to non-unitary GE elasticities of substitu-
tion. We now focus on a different example, that of a roundabout economy, where deviations
from Hulten’s theorem are driven purely by variability in ξ, and the GE elasticities of
substitution play no role.

The economy has a single good and single factor. Gross output is given by

y1

y1
= A1

ω1l

(
l1

l1

) θ1−1
θ1

+ (1 − ω1l)
(

x1

x1

) θ1−1
θ1


θ1
θ1−1

,

where x1 is the amount of good 1 used as an intermediate input.The supply of the factor
is inelastic at l = l1. Final output Y = c1 is produced one-to-one from good 1.

The market-clearing conditions are

y1 = c1 + x1 and l = l1.

22These results are closely related to the findings in Jones (2011), who noted that the relevant CES
parameter used in aggregating microeconomic productivity shocks depends on whether or not factors are
allocated through the market or assigned exogenously.
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The steady-state input-output multiplier

ξ = 1 + (1 − ω1l) + (1 − ω1l)2 + . . . = 1/ω1l

decreases with the labor share ω1l and increases with the intermediate input share 1−ω1l.
Hulten’s theorem implies that

d log Y
d log A1

= ξ, (7)

so that the first-order impact of the shock increases with the steady-state input-output
multiplier ξ.

Proposition 6 (Variable IO multiplier). In the roundabout economy, the input-output multiplier
is given by ξ = 1/ω1l and its elasticity is given by23

d log ξ
d log A1

= (ξ − 1)(θ1 − 1).

The second-order macroeconomic impact of microeconomic shocks is given by

d2 log Y
d log A2

1

=
dξ

d log A1
= ξ(ξ − 1)(θ1 − 1).

Hulten’s approximation is exact only when there are no intermediate inputs so that
ξ = 1 or when the economy is Cobb-Douglas so that θ1 = 1. Otherwise, the second-order
term is increasing in θ1 − 1 and in a network term ξ(ξ − 1).

Intuitively, this results from the fact that output is used as its own input. When θ1 = 1,
the input-output multiplier remains constant. When θ1 < 1, the input-output multiplier
increases if the shock is negative, and decreases if it is positive. When θ1 > 1, the input-
output multiplier decreases if the shock is negative, and increases if it is positive. The
larger is the steady-state input-output multiplier, the larger is the effect.

Figure 2 plots log Y as a function of log A1 for the case where θ1 ≈ 0, θ1 = 1, and θ1 = 2.
In the limit θ1 → 0, output is linear in productivity (rather than loglinear) with slope
1/ω1l. When θ1 = 2, output is hyperbolic in productivity.24

23Proposition 6 shows that even though the gross production function is homogenous in productivity,
aggregate net output (value added) is not homogeneous of degree 1. Furthermore, aggregate output is not
homogenous of any degree in equilibrium, since ξ varies in response to the shock.

24In this example, when θ1 = 0, we have Y = A/ω1l, where 1/ω1l is the steady-state input-output
multiplier. Therefore, although Hulten’s approximation fails in log terms, Hulten’s theorem is globally
accurate in linear terms. This is a consequence of the fact that there is only one good. In Appendix B, we
generalize this example to multiple goods, and show that output can be very strongly nonlinear even with
full labor reallocation.
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Figure 2: Output as a function of productivity shocks log(A1) with variable input-output
multiplier effect with steady-state input-output multiplier ξ = 10.

4 General nested-CES Networks

We now characterize the second-order terms for a general nested-CES economy (encom-
passing the examples in Section 3). Any CES economy with a representative consumer,
an arbitrary numbers of nests, elasticities, and intermediate input use, can be re-written
in what we call standard form, which is more convenient to study. Throughout this section,
variables with over-lines are normalizing constants equal to the values in steady-state.25

A CES economy in standard form is one where we treat each CES aggregator as a node
in the production network, with an accompanying elasticity of substitution. Through
a relabelling, this structure can represent any CES economy with an arbitrary pattern of
nests and elasticities. Intuitively, by relabelling each CES aggregator to be a new producer,
we can have as many nests as desired.

A CES economy in standard form is defined by a tuple (ω, θ, F) and a set of normalizing
constants (y, x). The (N+F+1)×(N+F+1) matrixω is a matrix of input-output parameters
where the first row and column correspond to household sector, the next N rows and
columns correspond to reproducible goods and the last F rows and columns correspond
to factors. What distinguishes factors from goods is that factors cannot be produced. The
(N + 1) × 1 vector θ is a vector of microeconomic elasticities of substitution.26

The F factors are modeled as non-reproducible goods and the production function of

25Since we are interested in log changes, the normalizing constants are irrelevant. We use normalized
quantities since it simplifies calibration, and clarifies the fact that CES aggregators are not unit-less.

26For convenience we use number indices starting at 0 instead of 1 to describe the elements of ω and θ.
We impose the restriction that ωi j ∈ [0, 1],

∑N+1+F
j=1 ωi j = 1 for all 0 ≤ i ≤ N, ω f j = 0 for all N < f ≤ N + F,

ω0 f = 0 for all N + 1 ≤ f ≤ N + 1 + F, and ωi0 = 0 for all 0 ≤ i ≤ N.
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these goods are endowments
y f

y f
= 1.

The other N + 1 other goods are reproducible, and the production of a reproducible good
i can be written as

yi

yi
= Ai

N+1+F∑
j=1

ωi j

(
xi j

xi j

) θi−1
θi


θi
θi−1

,

where xi j are intermediate inputs from j used by i. Producer 0 represents final-demand
and its production function the final-demand aggregator so that

Y

Y
=

y0

y0
, (8)

where Y is aggregate output and y0 is the final good.
The market-clearing conditions for goods and factors 1 ≤ i ≤ N + 1 + F are

yi =

N+1∑
j=1

x ji.

To state our results, we need the following definitions.

Definition 3. The (N + F + 1) × (N + F + 1) input-output matrix Ω is the matrix whose i jth
element is equal to the steady-state value of

Ωi j =
p jxi j

piyi
.

The Leontief inverse is
Ψ = (I −Ω)−1.

Intuitively, the i jth element Ψi j of the Leontief inverse is a measure of i’s total reliance
on j as a supplier. It captures both the direct and indirect ways through which i uses j in
its production.27

Definition 4. The input-output covariance operator is

CovΩ(k)(Ψ(i),Ψ( j)) =

N+1+F∑
l=1

ΩklΨliΨl j −

N+1+F∑
l=1

ΩklΨli


N+1+F∑

l=1

ΩklΨl j

 . (9)

27See, for example, Baqaee (2015) for a detailed description of Ω and Ψ.
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In words, this is the covariance between the ith and jth column of the Leontief inverse
using the kth row of the input-output matrix as the distribution. The input-output covariance
operator plays a crucial role in our results.

We consider arbitrary CES network structures (in standard-form), starting with a one-
factor model and then generalizing to multi-factor models. As previously mentioned, a
one-factor model is equivalent to a model where primary factors are fully reallocatable
(all factors are paid the same wage). To model limited factor reallocation or decreasing-
returns, we need to have multiple factors.

4.1 One Factor Model

Proposition 7 (Second-Order Network Centrality). Consider a nested-CES model in standard
form with a single factor. The second-order macroeconomic impact of microeconomic shocks is
given by

d2 log Y
d log A j d log Ai

=
dλi

d log A j
=

N∑
k=0

(θk − 1)λkCovΩ(k)(Ψ(i),Ψ( j)), (10)

and in particular

d2 log Y
d log A2

i

=
dλi

d log Ai
=

N∑
k=0

(θk − 1)λkVarΩ(k)(Ψ(i)). (11)

Equations (10) and (11) have a simple intuition. Let us focus first on equation (10).
The change in the sales share of i, in response to a shock to j, depends on how the relative
demand expenditure for i changes. Changes in the demand expenditure for i arise from
the direct and indirect substitution by every node indexed by k captured by the different
terms in the sum on the right-hand side.28

Consider for example the effect of a negative productivity shock d log A j < 0 to j. The
change in the vector of prices of the different producers is proportional to the vector of

28There is a connection between these formulas and the gains-from-trade formulas in Arkolakis et al.
(2012). Both formulas relate changes in welfare to expenditure shares and elasticities of substitution.
However, there are some important differences. Conceptually, in an open-economy context, Hulten’s
theorem can no longer be used to capture the effects of shocks on welfare. Because of terms-of-trade effects,
the elasticity of welfare with respect to a shock is typically not equal to its Domar weight. However, in
Appendix E , we show that the calculation of the gains from trade in a large class of open-economy models is
isomorphic to that of the effects of productivity shocks in associated closed-economy models. This mapping
allows us to build a formal bridge between our results and theirs, and shows how our results can be used
to generalize their formulas to arbitrary networks structures and patterns of microeconomic elasticities of
substitution. In ongoing work (Baqaee and Farhi, 2018) we investigate these issues in more detail.
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direct and indirect exposures to the shock, which is simply the jth column Ψ( j) of the
Leontief inverse. Now consider a given producer k. If θk < 1, producer k increases its
expenditure share on inputs whose price increases more, i.e. inputs that are more exposed
to the shock to j, as measured by Ψ( j). This increases the relative demand expenditure
for i if those inputs are also relatively more exposed to i, as measured by the ith column
of the Leontief inverse Ψ(i). The overall effect is stronger, the higher is the covariance
CovΩ(k)(Ψ(i),Ψ( j)), the larger is the size of producer k as measured by λk, and the further
away from one is the elasticity of substitution θk as measured by θk − 1.

Equation (11) is a particular case of equation (10) and so the intuition is identical. The
change in the sales share of i depends on substitution by all producers k. The extent to
which substitution by producer k matters depends on how unequally k is exposed to i
through its different inputs, on how large k is, and on far away from one is the elasticity of
substitution in production of k. If k is small, or is exposed in the same way to i through all of
its inputs, then the extent to which it can substitute amongst its inputs is irrelevant. If the
elasticity of substitution of k is equal to one, then the direct and indirect relative demand
expenditure for i arising from k does not change in response to shocks. Equation (11) can
be seen as a centrality measure which combines structural microeconomic elasticities of
substitution and features of the network.29

The Cobb-Douglas case is the knife-edge special case where all the second-order terms
are equal to zero and where the first-order approximation is globally accurate. This occurs
because sales shares, and more generally, the whole input-output matrix, are constant and
can be taken to be exogenous. Away from the Cobb-Douglas case, sales shares and the
input-output matrix respond endogenously to shocks, and this is precisely what gives rise
to non-trivial nonlinearities as captured by the second-order approximation.

GE Elasticities of Substitution

Proposition 7 can also be used to compute the GE elasticities of substitution, using equa-
tions (10) and (11) to substitute the corresponding derivatives in the following equations:

1 −
1
ρi j

=
d logλi

d log Ai
−

d logλ j

d log Ai

29Equation (11) is also related to the concentration centrality defined by Acemoglu et al. (2016), but
generalizes their result by allowing for heterogeneity in the interaction functions, non-symmetric network
structures, and micro-founds its use for production networks.
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and
d log ξ
d log Ai

=
1
ξ

∑
j

λ j
d logλ j

d log Ai
.

A Nework-Irrelevance Result

To build more intuition, we provide a benchmark irrelevance result where the deviation
from Hulten’s approximation does not depend on the network structure. The key as-
sumptions required for obtaining this irrelevance result are: (1) productivity shocks are
factor-augmenting; (2) the structural microeconomic elasticities of substitution are all the
same.30,31

Corollary 1 (Network Irrelevance). Consider a nested-CES model in standard form with a
single factor, uniform elasticities of substitution θ j = θ for every j, and with factor-augmenting
shocks log Ai. Aggregate output is given by the closed-form expression

Y

Y
=

 N∑
i=1

λiAθ−1
i


1
θ−1

,

where λi is the steady-state Domar weight of i. The second-order macroeconomic impact of
microeconomic shocks is given by32

d2 log Y
d log A j d log Ai

=
dλi

d log A j
= (θ − 1)λi(1(i = j) − λ j),

and in particular

d2 log Y
d log A2

i

=
dλi

d log Ai
=

N∑
j=0

(θ j − 1)λ jVarΩ( j)(Ψ(i)) = (θ − 1)λi(1 − λi).

In words, if we consider factor-augmenting shocks, and if all microeconomic elasticities
of substitution are the same, then the network structure remains irrelevant, even though
there are deviations from Hulten’s approximation. In this special case, the Domar weights

30Once the economy is written in standard form, a shock d log Ai is factor-augmenting if the only input
of i is a primary factor, i.e. if Ωi j = 0 for every j = 0, . . . ,N.

31Footnote 13 of Baqaee (2016) also discusses this network irrelevance result.
32An implication of Corollary 1 is that whenever i and j are factor-augmenting shocks,

N∑
k=0

λkCovΩ(k) (Ψ(i),Ψ( j)) = λi(1(i = j) − λ j).
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and the structural microeconomic elasticities of substitution are sufficient statistics for the
second-order effects.In fact, the result is true not only locally, but also globally.

Essentially, factor-augmenting shocks shut down variations in ξwhich is constant and
equal to one, and uniform structural microeconomic elasticities of substitution shut down
variations in ρi j which are uniform and constant

ρi j =
1

2 − θ
.

Deviating from either condition breaks the irrelevance.

Energy Example – One Factor

A simple example, motivated by a universal intermediate input like energy, helps explain
some of the intuition of Proposition 11 and Corollary 1. Consider the example economy
depicted in Figure 3. Energy is produced linearly from labor:

e
e

= Ae
le

le

.

Downstream producers produce using energy and labor with elasticity of substitution θ1:

yi

yi
=

(1 − ωie)
li

li

θ1−1
θ1

+ ωie

(
ei

ei

) θ1−1
θ1


θ1
θ1−1

.

They sell directly to the household who values goods with an elasticity of substitution θ0:

Y

Y
=

 N∑
i=1

ω0i

(
ci

ci

) θ0−1
θ0


θ0
θ0−1

,

where
∑N

i=1ω0i = 1.
The market-clearing conditions are

yi = ci, e =

N∑
i=1

ei and l = le +

N∑
i=1

li,

where l = le +
∑N

i=1 li.
Producer i’s steady-state sales share isλi = ω0i, the intermediate input share of industry

i is ωie, and the sales share of energy is λe =
∑

i λiωie.
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Figure 3: An illustration of the economy with a near-universal intermediate input which
we treat as energy. Each downstream producer substitutes across labor and energy with
elasticity θ1 < 1. The household can substitute across final goods with elasticity of
substitution θ0 > θ1. Energy is produced from labor with constant-returns.

We simplify the example further by supposing that all final sectors are equally sized
with λi = 1/N, and that M ≤ N producers use energy with the same steady-state interme-
diate input share ωie = ωe, while the other N −M producers use no energy at all so that
ωie = 0. We set ωe to ensure that λe stays constant. We take θ1 < θ0 and θ1 < 1.

Proposition 7 implies that

d2 log Y
d log A2

e
= λ2

e
N −M

N
(θ0 − 1) + λe

(
1 −

N
M
λe

)
(θ1 − 1) (12)

= λe(1 − λe)(θ0 − 1) + λe

(
1 −

N
M
λe

)
(θ1 − θ0). (13)

Equation (12) directly expresses the second-order term as a weighted sum of the microeco-
nomic elasticities of substitution as in Proposition 7. The first term on the right-hand side
of equation (13) is the network-independent second-order term when all the microeco-
nomic elasticities of substitution are identical so that θ0 = θ1 as in Corollary 1. The second
term is a network-dependent correction that takes into account the fact that θ0 , θ1.

When every sector uses energy M = N, these equations become

d2 log Y
d log A2

e
= λe(1 − λe)(θ1 − 1),

and the elasticity of substitution in consumption θ0 drops out completely. The fact that θ0

is irrelevant when M = N is a manifestation of the general principle stated in Proposition
7. When M = N, energy is a universal input, and hence VarΩ(0)(Ψ(e)) = 0. In this case,
the household is symmetrically exposed to shocks to energy via the different downstream
producers, and so the elasticity of substitution in consumption θ0 is irrelevant.
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When M , N instead θ0 matters, with a weight that decreases with N. Through the
lens Proposition 7, VarΩ(0)(Ψ(e)) = λ2

e (N −M)/N > 0 is increasing in M: as heterogeneity in
energy-intensity across downstream producers increases, the ability of the household to
substitute across these producers matters more and more.

Because θ1 < 1, when M = N, the second-order approximation magnifies negative the
macroeconomic impact of negative shocks to energy compared to the first-order approxi-
mation. As M decreases, this effect becomes weaker, since a lower M means that energy
is less of a universal input, and so it becomes easier to substitute away from it further
downstream across producers with different energy intensities. The sign of the effect can
even flip if M is low enough and if θ0 is high enough above one.

Macro-Influence – One Factor

A final implication of Proposition 7 is that it is only the producer’s role as a supplier that
matters, not its role as a consumer.33

Proposition 8 (Macro-Influence). Suppose that there is a single factor. Suppose that all producers
k have the same expenditures on producers i and j so that Ωki = Ωkj for all k. Then

d log Y
d log Ai

=
d log Y
d log A j

,

d2 log Y
d log A2

i

=
d2 log Y
d log A2

j

,

and for all l,
d2 log Y

d log Al d log Ai
=

d2 log Y
d log Al d log A j

.

The intuition is that, in a one factor model, we can normalize the wage to one, and then
aggregate output depends only on the prices of final goods. A change in the size of the ith
industry does not affect its price. Hence, a productivity shock travels downstream from
suppliers to their consumers by lowering their marginal costs and hence their prices, but
it does not travel upstream from consumers to their suppliers. This result fails whenever
there are multiple factors, and by implication when the model does not feature constant
returns to scale. 34

33This generalizes a result in Baqaee (2016).
34Acemoglu et al. (2015) show that outside of the Cobb-Douglas special case, shocks can propagate both

upstream and downstream. There is no contradiction between their result and Proposition 8. Their results
and ours simply characterize different forms of propagation: they focus on the propagation of shocks to
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4.2 Multiple Factors

We now generalize the results of the previous section to allow for multiple factors of
production. This in turn opens the door to modelling limited-reallocation and decreasing-
returns-to-scale via producer or industry-specific fixed factors.

We sometime use separate uppercase indices to denote the producers that correspond
to factors, and lowercase indices to denote all other producers. For example, we sometime
use Λ f to denote the Domar weight, or income share, of factor f , and Λ to denote the F× 1
vector of factor shares.

Proposition 9 (Second-Order Network Centrality with Multiple Factors). Consider a nested-
CES model in standard form. Then

d2 log Y
d log A j d log Ai

=
dλi

d log A j
=

N∑
k=0

(θk − 1)λkCovΩ(k)(Ψ( j),Ψ(i)) (14)

−

N∑
k=0

(θk − 1)λkCovΩ(k)

N+1+F∑
f=N+1

Ψ( f )
d log Λ f

d log A j
,Ψ(i)

 ,
where the vector of changes in factor income shares solves the linear system

d log Λ

d log A j
= Γ

d log Λ

d log A j
+ δ( j), (15)

with

Γ f ,g = −
1

Λ f

 N∑
k=0

(θk − 1)λkCovΩ(k)

(
Ψ( f ),Ψ(g)

) ,
and

δ( j)
f =

1
Λ f

 N∑
k=0

(θk − 1)λkCovΩ(k)

(
Ψ( f ),Ψ( j)

) .
Note that we can rewrite equation (14) as a function of d logλ j/d log A j using the

identity d logλ j/d log A j = (1/A j)(d logλ j/d log A j). Proposition 9 can then be seen as a
full characterization of the elasticities of the Domar weights of the different producers to
the different shocks.

The intuition is the following. The first set of summands on the right-hand side of
equation (14) are exactly the same as in Proposition 7: these terms capture how substitution
by downstream producers k changes the sales share of i. The second set of summands

producers on the quantities and sales of other producers, whereas we focus on the impact of shocks to
producers on the prices of other producers and on aggregate output.
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in equation (14) take into account the fact that, when there are multiple factors, the
shock also changes relative factor prices, and substitution in response to changes in
factor prices also affects the sales share of i. Note that changes in relative factor prices
d log w f/d log A j−d log wg/d log A j for f , g are reflected in changes in the relative factor
income shares d log Λ f/d log A j − d log Λg/d log A j for f , g. This change in relative
factor prices leads to further changes in the sales share of industry i, and hence to further
second-order effects.

Consider for example a negative shock d log A j < 0 to producer j. Imagine that
this shock increases the price of factor f relative to the prices of other factors, so that
d log Λ f > 0. Now consider the response of a producer k to this change. If θk < 1,
producer k increases its expenditure share on producers that are more exposed to factor
f as measured by Ψ( f ). If these producers are also more exposed to i, as measured by
Ψ(i), then the substitution increases the sales share of i. These changes must be cumulated
across producers k and factors f . The total effect on the relative demand expenditure for
producer i, and hence on its sales share, is the sum of the effect of substitutions in response
to the initial impulse d log A j, as well as the substitutions in responses to changes in relative
factor prices captured by d log Λ f .

Equation (15) in turn determines the elasticities d log Λ f/d log A j of the different factor
shares to the different shocks. For a given set of factor prices, a shock to j affects the relative
demand expenditure for each factor, and hence the factor income shares, as measured by
the F×1 vector δ( j). This change in the factor income shares then causes further substitution
through the network, leading to additional changes in relative factor shares and prices.
The impact of the change in the relative share or price of factor g on the relative demand
expenditure for factor f is measured by the f gth element of the F × F matrix Γ. Crucially,
the matrix Γ does not depend on which producer j is being shocked.

We can verify that we get back Proposition 7 when there is only a single factor, since in
that case the exposure vector Ψ( f ), corresponding to the unique factor, is equal to a vector
of all ones, and so the second set of summands in equation (14) is identically zero.

Just like in the case of a single factor and for the same reasons, the Cobb-Douglas
case is the knife-edge special case where all the second-order terms are equal to zero and
where the first-order approximation is globally accurate because sales shares, and more
generally the whole input-output matrix, are constant and can be taken to be exogenous.
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GE Elasticities of Substitution and Elasticities of Substitution Between Factors

Proposition 9 can also be used to compute the GE elasticities of substitution, using equa-
tions (10) and (11) to substitute the corresponding derivatives in the following equations:

1 −
1
ρi j

=
d logλi

d log Ai
−

d logλ j

d log Ai

and
d log ξ
d log Ai

=
1
ξ

∑
j

λ j
d logλ j

d log Ai
.

Although Proposition 9 is stated in terms of productivity shocks to non-factor pro-
ducers j, the same formulas hold for a productivity shock d log Ag to a factor industry g.
The productivity shock is then just a shock to the endowment of the factor.35 We can also
compute the GE elasticities of substitution between two factors f and g using

1 −
1
ρ f g

=
d log Λ f

d log A f
−

d log Λg

d log A f
.

Because the aggregate output function of the economy is homogenous of degree one with
respect to factors, we can write the GE elasticity of substitution between two factors f and
g as the inverse of the logarithmic derivative of the marginal rates of substitution with

35For example, we have
d2 log Y
d log A2

g
= Λg

d log Λg

d log Ag
,

where d log Λg/d log Ag is the gth element of the vector d log Λ/d log Ag which solves the linear system

d log Λ

d log Ag
= Γ

d log Λ

d log Ag
+ δ(g). (16)

32



respect to the ratio of the quantity of the factors (in general equilibrium):36

1
ρ f g

=
d log(Y f/Yg)
d log(A f/Ag)

.

A Network-Irrelevance Result

In the special case where all microeconomic elasticities of substitution are the same, we
once again get network-irrelevance result. However, because there are multiple factors,
it is not enough to consider factor-augmenting shocks as we did in the case of a single
factor, and we must instead focus on shocks that increase the overall quantity of factors.

Corollary 2 (Network Irrelevance). Consider a nested-CES model in standard form with uni-
form elasticities of substitution θ j = θ for every j, and shocks d log A f to the quantity of factors.
Aggregate output is given by the following closed-form expression

Y

Y
=

N+1+F∑
f=N+1

Λ f A
θ−1
θ

f


θ
θ−1

, (17)

where Λ f is the Domar weight of f at steady-state. The second-order macroeconomic impact of
microeconomic shocks to the supplies of factors is given by

d2 log Y
d log Ag d log A f

=
d Λ f

d log Ag
=

(
1 −

1
θ

)
Λg(1(g = f ) −Λg),

and in particular,
d2 log Y
d log A2

f

=
d Λ f

d log A f
=

(
1 −

1
θ

)
Λ f (1 −Λ f ).

In this special case, the Domar weight and the structural microeconomic elasticities of
substitution are sufficient statistics for the second-order effects. In fact, the result is true
not only locally, but also globally.

36Proposition 9 shows that the GE elasticities of substitution between factors is a nonlinear function of
the underlying micro elasticities of substitution. The source of this nonlinearity lies in the fixed-point
problem in (16) which encapsulates the fact that factor prices are endogenous. If instead we treated factor
prices as exogenous (rather than taking factor quantities as exogenous), then a partial equilibrium version
of (16) would apply where d log Λ/d log Ag = δ(g). This equation establishes that the macro-elasticity of
substitution between factors (when factor prices are exogenous), is a linear function of the underlying
microeconomic elasticities (in fact, a weighted average). A noteworthy special case of this formula can be
applied to Sato (1967) two-level CES production functions which appear frequently in various literatures,
even those not concerned with the role of input-output relationships (see for example Oberfield and Raval,
2014).
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A consequence of this corollary is that whenever all the micro-elasticities of substitution
are the same θ, the GE elasticity of substitution between any two factors is also equal to θ.

Energy Example – Multiple Factors

We revisit the energy example already developed in Section 4.1, but we now model energy
as an endowment rather than as a produced good. The economy is represented in Figure
4. For this example, the effect of a shock to energy is now a nonlinear function of the
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Figure 4: An illustration of the economy with a near-universal input which we treat as
energy. Each industry has different shares of labor and energy and substitutes across
labor and energy with elasticity θ1 < 1. The household can substitute across goods with
elasticity of substitution θ0 > θ1. Labor and energy are in fixed supply.

underlying microeconomic elasticities of substitution

d2 log Y
d log A2

e
=

d Λe

d log A2
e

=
(θ0 − 1)Λe(1 −Λe) + (θ1 − θ0)Λe

(
1 − N

MΛe

)
θ0 + (θ1 − θ0) 1− N

M Λe

1−Λe

.

The difference with the case of a single factor is that following a negative productivity
shock to energy, labor cannot be reallocated to the production of energy in order to
reinforce that weak link. This effect, encapsulated in the denominator, further amplifies
the effect of the shock.

Once again, and in accordance with Corollary 2, whenever the micro-elasticities of
substitution are the same θ0 = θ1, the shape of the network becomes irrelevant. Addition-
ally, in the extreme case where energy becomes a universal input M = N, the elasticity θ0

drops out of the formula because producers are uniformly exposed to energy:

d2 log Y
d log A2

e
=

(
1 −

1
θ1

)
Λe(1 −Λe).
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Note that even in this case, the formula is different from that of the case of a single factor
where the first term on the right-hand side is θ1 − 1 instead of (1 − 1/θ1). This reflects
the fact that in contrast to the case of a single factor, labor cannot be reallocated to the
production of energy following a negative shock to energy, which further amplifies the
negative impact of the energy shock.

Macro-Influence – Multiple Factors

In contrast to the case of a single factor, shocks to prices now propagate downstream and
upstream. The result derived in Proposition 8 when there is only factor breaks down when
there are multiple factors: two producers on which the expenditure by all other producers
is the same do not necessarily have the same importance. This is simply because they
might have different direct and indirect exposures to the different factors. As a result, the
role of a producer as a consumer matters as well as its role as a supplier.

5 Beyond CES

The input-output covariance operator defined in equation (9) is useful in characterizing the
substitution patterns in economies where all production and utility functions are nested-
CES functions. In this section, we generalize this input-output covariance operator in
such a way that allows us to work with arbitrary production functions.

For a producer k with cost function Ck, let θk(x, y) = CkCk,xy/
(
Ck,xCk,y

)
denote the Allen-

Uzawa elasticity of substitution between inputs x , y, noting that θk(x, y) = θk(y, x) due
to symmetry of partial derivatives.

Then, we define the input-output substitution operator for producer k as

Φk(Ψ(i),Ψ( j)) =
∑

1≤x,y≤N+1+F
x,y

ΩkxΩky(θk(x, y) − 1)ΨxiΨyj, (18)

=
1
2

EΩ(k)

(
(θk(x, y) − 1)(Ψi(x) −Ψi(y))(Ψ j(x) −Ψ j(y))

)
, (19)

where Ψi(x) = Ψxi and Ψ j(x) = Ψxj.
When all the Allen-Uzawa elasticities θk(x, y) are identical with θk(x, y) = θk, as hap-

pens when the production function of k is CES with elasticity θk, we recover the input-
output covariance operator:

Φk(Ψ(i),Ψ( j)) = (θk − 1)CovΩ(k)(Ψ(i),Ψ( j)).
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Even when the Allen-Uzawa elasticities θk(x, y) are not identical across couples (x, y),
the input-output substitution operator shares many properties with the input-output
covariance operator. It is immediate to verify, for example, that: Φk(Ψ(i),Ψ( j)) is bilinear
in Ψ(i) and Ψ( j); Φk(Ψ(i),Ψ( j)) is symmetric in Ψ(i) and Ψ( j); and Φk(Ψ(i),Ψ( j)) = 0 whenever
Ψ(i) or Ψ( j) is a constant.

Luckily, it turns out that all of the results stated so far can be generalized to non-CES
economies simply by replacing terms of the form (θk − 1)CovΩ(k)(Ψ(i),Ψ( j)) by Φk(Ψ(i),Ψ( j)).
For example, we have

d2 log Y
d log A j d log Ai

=

N∑
k=0

Φk(Ψ(i),Ψ( j)) −
N+1+F∑
f=N+1

N∑
k=0

Φk(Ψ(i),Ψ( f ))
d log Λ f

d log A j
.

By replacing the input-output covariance operator with the input-output substitution
operator, we fully characterize the Hessian of the output function of the general econ-
omy described in Section 2, with arbitrary, and potentially, non-homothetic production
functions, an arbitrary number of factors, and arbitrary patterns of input-output linkages.

Intuitively, Φk(Ψ(i),Ψ( j)) captures the way in which k redirects demand expenditure
towards i in response to one percent change in the price of j. To see this, we make use
of the following well-known result (see for example Russell, 2017): the change in the
expenditure share of producer k on input x with respect to the price of input y is given by
ΩkxΩky(θk(x, y) − 1). Equation (18) requires considering, for each pair of inputs x and y,
how much the change Ψyj in the price of y induced by the change in the price of j causes
producer k to increase its expenditure share on x as measured by ΩkxΩky(θk(x, y) − 1)Ψyj

and how much x is exposed to i as measured by Ψxi.
Equation (19) exploits the symmetry of Allen-Uzawa elasticities of substitution to

say that this amounts to considering, for each pair of inputs x and y, whether or not
increased exposure to j as measured by Ψ j(x) −Ψ j(y), corresponds to increased exposure
to i as measured by Ψi(x) −Ψi(y), and whether x and y are complements or substitutes as
measured by (θk(x, y) − 1). If x and y are substitutes, and Ψ j(x) −Ψ j(y) and Ψi(x) −Ψi(y)
are both positive, then substitution across x and y by k, in response to a shock to a positive
productivity shock to j, increases demand for i.

6 Quantitative Illustration

In this section, we develop some illustrative quantitative applications of our results to
gauge the practical importance of the nonlinearities that we have identified. We perform
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three exercises focusing on macroeconmic phenomena at different frequencies. First,
we calibrate a multi-sector business-cycle model with sectoral productivity shocks. We
match the observed input-output data, we use the best available information to choose
the structural (micro) elasticities of substitution, and we match the volatility of sectoral
shocks at business cycle horizons. We compare the outcome of the nonlinear model to its
first-order approximation. In the second exercise, we study the macroeconomic impact
of the energy crisis of the 1970s using a non-parametric generalization of Hulten (1978)
that takes second-order terms into account. In the third and final exercise, we investigate
the importance of nonlinearities inherent in Baumol’s cost disease for long-run aggregate
TFP growth. All our exercises suggest that production is highly nonlinear.

6.1 A Quantitative Multi-Sector Business-Cycle Model with Sectoral

Productivity Shocks

In this section, we use a simple version of the structural model defined in Section 2,
calibrate it with sectoral shocks at business-cycle frequencies, and solve for the equilibrium
using global solution methods.37 The final demand function is

Y

Y
=

 N∑
i=1

ω0i

(
ci

ci

) σ−1
σ


σ
σ−1

.

The production function of industry i is

yi

yi
= Ai

ωil

(
li

li

) θ−1
θ

+ (1 − ωil)
(

X̂i

Xi

) θ−1
θ


θ
θ−1

,

consisting of labor inputs li and intermediate inputs X̂i. We consider two polar opposite
possibilities for the labor market: the case where each labor type is specific to each
industry, and cannot be reallocated, and the case where there is a common factor with
full reallocation across all industries. In light of increasing evidence (see for example

37For comparison, Table 3 in Appendix C shows the macro-moments for the model using the second-
order approximation. The second-order approximation does a very good job at capturing the mean and
standard deviation of aggregate output at both annual and quadrennial frequencies. It also performs well for
skewness and kurtosis at an annual frequency, but less so at a quadrennial frequency. Basically, the quality
of the approximation is worse for larger shocks and higher moments of output. Of course, whenever it is
feasible to solve the model non-linearly, the fully nonlinear solution is preferable. However, our (pen and
paper) approach also sheds light on the mechanisms driving nonlinearities that would be lost were we to
simply solve a series of nonlinear equations on a computer. Furthermore, our sufficient statistics approach
allows us to construct the second-order approximation without needing to fully specify the nonlinear model.
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Acemoglu et al., 2016; Autor et al., 2016; Notowidigdo, 2011) that labor is not easily
reallocated across industries or regions after shocks in the short run, we view the no-
reallocation case as more realistic for modeling the short-run impact of shocks, and the
full-reallocation case as better suited to study the medium to long-run impact shocks.

The composite intermediate input Xi is given by

Xi

Xi

=

 N∑
j=1

ωi j

(
xi j

xi j

) ε−1
ε


ε
ε−1

,

where xi j are intermediate inputs from industry j used by industry i. For each composite
intermediate input, we allow for the possibility that there are adjustment costs, indexed
by κ ≥ 0, in adjusting the quantity of the input compared to its steady-state value:

X̂i = Xi

1 −
κ
2

(
Xi

Xi

− 1
)2 ,

where Xi are units of good i purchased and X̂i are the units of good i actually used. When
κ = 0, there are no adjustment costs.

Data and Calibration

We work with the 88 sector US KLEMS annual input-output data from Dale Jorgenson and
his collaborators, dropping the government sectors. The dataset contains sectoral output
and inputs from 1960 to 2005. We use the sector-level TFP series computed by Carvalho
and Gabaix (2013) using the methodology of Jorgenson et al. (1987).

We calibrate the expenditure share parameters to match the input-output table, using
1982 (the middle of the sample) as the base year. We set sectoral TFP shocks to be
lognormally distributed so that log Ai ∼ N(−Σii/2,Σii), where Σii is the sample variance
of log TFP growth for industry i. We work with uncorrelated sectoral shocks since the
average correlation between sectoral growth rates is small (less than 5%). Our results
are not significantly affected if we matched the whole covariance matrix of sectoral TFP
instead.

We consider shocks at annual and quadrennial horizon, the latter corresponding to
the average period of a business cycle. The average standard deviation at a quadrennial
frequency is about twice its value at an annual frequency. In fact, this is the only difference
between the annual and quadriennal calibrations. Nonlinearities, which matter more for
bigger shocks, are more important at a quadriennal frequency than at an annual frequency.
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Our specification assumes only three distinct structural microeconomic elasticities of
substitution. This is because estimates of more disaggregated elasticities are not available.
For our benchmark calibration, we set (σ, θ, ε) = (0.9, 0.5, 0.001). We set the elasticity of
substitution in consumption σ = 0.9, following Atalay (2017), Herrendorf et al. (2013), and
Oberfield and Raval (2014), all of whom use an elasticity of substitution in consumption
(across industries) of slightly less than one. For the elasticity of substitution across value-
added and intermediate inputs, we set θ = 0.5. This accords with the estimates of Atalay
(2017), who estimates this parameter to be between 0.4 and 0.8, as well as Boehm et al.
(2017), who estimate this elasticity to be close to zero. Finally, we set the elasticity of
substitution across intermediate inputs to be ε = 0.001, which matches the estimates of
Atalay (2017).

Owing to uncertainty surrounding the estimates for (σ, θ, ε), we include many robust-
ness checks in Tables 4-7 in Appendix C. In the main text in Tables 1 and 2, we focus on
four sets of elasticities (σ, θ, ε): our benchmark calibration (0.9, 0.5, 0.001); a calibration
with lower but still plausible elasticities (0.7, 0.3, 0.001); a calibration with higher elastici-
ties (0.9, 0.6, 0.2); and a (close to) Cobb-Douglas calibration (0.99, 0.99, 0.99). In Appendix
C, we report robstness checks for different values of these elasticities on a grid with
σ ∈ {0.8, 0.9, 0.99}, θ ∈ {0.4, 0.5, 0.6, 0.99}, and ε ∈ {0.001, 0.2, 0.99}. Our results in Table 1
are not sensitive to the exact value of (σ, θ, ε) provided that the elasticities are collectively
low enough that the calibration matches the observed volatility of the Domar weights.

Since the volatility of Domar weights are a measure of the size of the second-order
terms in the model, we use the volatility of Domar weights as a sanity check for our cali-
bration. Specifically, we target σλ =

∑
i λiσλi , where λi is the time-series average of the ith

Domar weight and σλi is the time-series standard deviation of industry i’s log-differenced
Domar weight. In our data, at annual frequency, σλ ≈ 0.13 and for quadrennial frequency
σλ ≈ 0.27. With no labor-reallocation and no adjustment costs, our baseline calibra-
tions match these numbers relatively well; the lower-elasticity calibrations overshoot; the
higher-elasticity calibrations undershoot; and the Cobb-Douglas calibrations deliver zero
volatility of the Domar weights. Allowing for labor re-allocation reduces the volatility of
the Domar weights, and introducing adjustment costs increases it.38

38To match the data, we assume that changes in sectoral TFPs are the sole driver of fluctuations in the
Domar weight. Other types of shocks, besides industry-level TFP shocks, could also drive volatility to the
Domar weights (for example shocks to the composition of demand). While such shocks, whatever they
are, would also indicate the presence nonlinearities, they would imply different elasticities of substitution
for the calibration of the micro-elasticities of substitution. We abstract from this issue in calibrating the
parameters of the model in Section 6.1.
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Results with No Adjustment Costs

We start by setting adjustment costs to zero. Table 1 displays the mean, standard devi-
ation, skewness, and excess kurtosis of log aggregate output for various specifications.
For comparison, the table also shows these moments for aggregate TFP growth in the
data.39 In addition, we also report the volatility of the Domar weights, both in the model
as well as in the data. Since we have too few annual (and even fewer quadrennial) obser-
vations of aggregate TFP, we do not report the skewness and excess kurtosis (the implied
confidence intervals for these estimates would be so large as to make the point estimates
uninformative). In Appendix C, we report results for numerous other permutations of
the elasticities of substitution for robustness.

Overall, the model with full reallocation is unable to replicate the volatility of the
Domar weights at either annual or quadrennial frequency (given our elasticities of sub-
stitution) suggesting that this model is not nonlinear enough to match the movements in
the Domar weights as arising from sectoral productivity shocks. On the other hand, the
model without reallocation is able to match the volatility of the Domar weights, which is
consistent with the intuition of Section 3.

Let us consider each moment in turn starting with the mean. For our benchmark
calibration (σ, θ, ε) = (0.9, 0.5, 0.001), the model without reallocation can match the volatil-
ity of Domar weights at both annual and quadrennial frequency. The reductions in the
mean are around 0.3% at annual and just under 2% at quadrennial frequency. Since our
lognormal shocks are calibrated to have a mean of 1 in levels, as we increase the variance,
the mean of the log declines. We can net out this mechanical effect by subtracting the
average loss in performance from the ones in the loglinear Cobb-Douglas model. So, for
example, at the annual frequency, this would result in a loss of 0.34% − 0.011% = 0.23%,
and at quadrennial frequency, the loss is 1.87% − 0.57% = 1.30%. These numbers, which
identify the welfare costs of sectoral shocks arising from concavity in production, can be
compared with the welfare costs of fluctuations à la Lucas (1987) arising from concavity
in utility, which are around 0.01% and 0.05% respectively in these calibrations.

The losses increase as we pump up the degree of nonlinearity, and fall to roughly
0.1% and 0.6% for an approximately Cobb-Douglas model. The reason why the reduction
in the mean for the loglinear Cobb-Douglas model is nonzero is that we normalize the
shocks to have a mean of 1 in levels (and hence a negative mean in logs). A qualitatively
similar pattern holds for the model with full reallocation. In that case, the reductions

39Since our model has inelastic factor supply, its output is more comparable to aggregate TFP than to real
GDP. As shown by Gabaix (2011) and Carvalho and Gabaix (2013), elastic capital and labor supply would
further amplify TFP shocks.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ

Full Reallocation - Annual
(0.7, 0.3, 0.001) -0.0023 0.011 -0.10 0.1 0.090
(0.9, 0.5, 0.001) -0.0022 0.011 -0.08 0.0 0.069
(0.9, 0.6, 0.2) -0.0020 0.011 -0.05 0.0 0.056
(0.99, 0.99, 0.99) -0.0013 0.011 0.01 0.0 0.001

No Reallocation - Annual
(0.7, 0.3, 0.001) -0.0045 0.012 -0.31 0.4 0.171
(0.9, 0.5, 0.001) -0.0034 0.012 -0.18 0.1 0.115
(0.9, 0.6, 0.2) -0.0024 0.011 -0.11 0.1 0.068
(0.99, 0.99, 0.99) -0.0011 0.011 0.00 0.0 0.001

Full Reallocation - Quadrennial
(0.7,0.3,.0.001) -0.0118 0.026 -0.4 0.4 0.307
(0.9, 0.5, 0.001) -0.0113 0.026 -0.28 0.4 0.176
(0.9, 0.6, 0.2) -0.0100 0.026 -0.23 0.2 0.133
(0.99, 0.99, 0.99) -0.0058 0.025 0.01 0.0 0.003

No Reallocation - Quadrennial
(0.7, 0.3, 0.001) -0.0270 0.037 -2.18 12.7 0.404
(0.9, 0.5, 0.001) -0.0187 0.030 -1.11 3.6 0.267
(0.9, 0.6, 0.2) -0.0129 0.027 -0.44 0.7 0.154
(0.99, 0.99, 0.99) -0.0057 0.025 0.00 0.0 0.002

Annual Data - 0.015 - - 0.13
Quadrennial Data - 0.030 - - 0.27

Table 1: Simulated and estimated moments. For the data, we use the demeaned growth
rate of aggregate TFP. For the model, we use the sample moments of log output. The
simulated moments are calculated from 50,000 draws. Skewness and kurtosis of the data
are impossible to estimate with enough precision and so we do not report them.
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in the mean are smaller 0.2% − 0.1% = 0.1% at annual and 1.1% − 0.57% = 0.46% at
quadrennial frequency. Unsurprisingly, the approximately Cobb-Douglas model behaves
similarly regardless of the mobility of labor — this follows from the fact that Hulten’s
theorem holds globally for a Cobb-Douglas model where no labor reallocation takes place
in equilibrium whether or not it is allowed.

At an annual frequency, both models undershoot a little on the overall volatility of
aggregate TFP somewhat. One reason why the model undershoots on standard deviation,
particularly at annual frequency, is that we restrict the industry-level productivity shocks
to be independent, whereas in the data, particularly at higher frequencies, they feature
some correlation. At a quadrennial frequency, the model better matches the volatility
of aggregate TFP. The degree of nonlinearity makes little difference for the volatlity of
aggregate TFP at an annual frequency.40 Nonlinearities matter more for the volatility of
aggregate TFP at a quadrennial frequency because the shocks are larger.

Finally, the models (with and without reallocation) generate negative skewness and
some positive excessive kurtosis (in fact, a very high amount for the quadrennial specifi-
cations without reallocation). The skewness and excess kurtosis fatten the left tail of the
distribution, providing an endogenous explanation for “rare disasters”. Unlike Acemoglu
et al. (2017) or Barro (2006), to achieve rare disasters, we do not need to assume fat-tailed
exogenous shocks nor rule out “rare bonanzas” a priori. Instead these features are en-
dogenously generated by the nonlinearities in the model. This can be seen in Figure 5,
where we plot the histograms for the benchmark calibrations with no reallocation (which
match the volatility of Domar weights) and for a loglinear approximation subject to the
same shocks. As expected, nonlinearities are more important at a quadrennial frequency
than at an annual frequency because the shocks are larger (more volatile).

We also consider the response of aggregate output to shocks to specific industries,
using our benchmark calibration. It turns out that for a large negative shock, the “oil and
gas” industry produces the largest negative response in aggregate output, despite the fact
it is not the largest industry in the economy. Figure 6 plots the response of aggregate
output for shocks to the oil and gas industry as well as for the “retail trade (excluding
automobiles)” industry. The retail trade industry has a similar sales share, and therefore,
to a first-order, both industries are equally important. As expected, the nonlinear model
amplifies negative shocks and mitigates positive shocks. However, whereas output is

40Whereas for the mean, skewness, and kurtosis, the second-order terms are the dominant power in the
Taylor expansion (since the linear terms have no effect), for the variance, the dominant power is the linear
term. For example, letting σ be the standard deviation of the shocks, the approximation of the variance in
Appendix D shows that the contribution of the linear terms scales in σ2, whereas that of the nonlinear terms
scales in σ4.
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Figure 5: The left panel shows the distribution of aggregate output for the benchmark
model and loglinear model at an annual frequency. The right panel shows these for
shocks at a quadrennial frequency. The difference between the two frequencies is that
shocks are larger (their volatility is higher) at a quadrennial than at an annual frequency.
The benchmark model has (σ, θ, ε) = (0.9, 0.5, 0.001) and no labor reallocation. Note that
the scales are different in these two figures.

roughly loglinear for shocks to retail trade, output is highly nonlinear with respect to
shocks to oil and gas.

The intuition for this asymmetry comes from the examples in Figures 3 and 4. Oil and
gas are approximately universal inputs, so that the downstream elasticity of substitution
(in consumption) σ is less relevant and the upstream elasticity of substitution (in produc-
tion) θ is more relevant. Since θ � σ in our calibration, this means that output is more
nonlinear in shocks to oil and gas than in shocks to retail trade. Furthermore, since oil and
gas have a relatively low share of intermediate input usage, this means that, in response
to a negative shock, resources cannot be reallocated to boost the production of oil and
gas. This means that we are closer to the economy depicted in Figure 4 than the one in
Figure 3, with a correspondingly lower GE elasticity of substitution between oil and gas
and everything else due to the lack of reallocation.

The strong asymmetry between the effects of positive and negative shocks is consistent
with the empirical findings of Hamilton (2003) that oil price increases are much more
important than oil price decreases.41

41Figure 6 may give the impression that the relative ranking of industries is stable as a function of the
size of the shock. The oil industry is always more important than the retail trade industry for negative
shocks, and always less important for positive shocks. However, this need not be the case. In Appendix
C we plot aggregate output as a function of shocks to the oil industry and the construction industry. The
construction industry is larger than the oil industry. Therefore, the first-order approximation implies that it
should be more important. The nonlinear model also behaves the same way for positive shocks, and small
negative shocks. However, for very large negative shocks, the oil and gas industry once again becomes
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Figure 6: The effect of TFP shocks to the oil and gas industry and the retail trade industry.
Both industries have roughly the same sales share, and so they are equally important
up to a first-order approximation (dotted line). The nonlinear model is more fragile to
both shocks than the loglinear approximation. The oil and gas industry is significantly
more important than retail trade for large negative shocks. The histogram is the empirical
distribution of sectoral annual TFP shocks pooled over the whole sample. The model has
(σ, θ, ε) = (0.9, 0.5, 0.001) with no labor reallocation and no adjustment costs.

Results with Adjustment Costs

For the model with adjustment costs, we choose the value of the adjustment cost parameter
κ so that, given the microecononomic elasticities of substitution, the model matches
the volatility of the Domar weights at an annual frequency (when the model already
overshoots without adjustment costs, we set them to zero). We then keep the same value
of κ when we move quadrennial frequency. By picking a suitable value for κ, even the
model with fully mobile labor can match the volatility of the Domar weights. We report
these results in Table 2. Interestingly, once we pick κ to match the volatility of Domar
weights at annual frequency, the model also roughly matches the volatility of the Domar
weights at a quadrennial frequency. The results are consistent with what we found in
Table 1. In the final column of Table 2 we also report the value of resources destroyed by
the adjustment cost directly

∆ = E
(∑

i pi(Xi − X̂i)
GDP

)
.

more important.
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In all cases, the amount of resources destroyed directly by the adjustment costs are not large
enough to mechanically drive the reductions in average aggregate output. For example,
whereas at quadrennial frequency, the reduction in expected log aggregate output is
around 1.5% − 0.5% ≈ 1.0%, the value of the resources destroyed by the adjustment costs
are less than 0.5%.

(σ, θ, ε, κ, t) Mean Std Skewness Ex-Kurtosis σλ ∆

No reallocation

(0.9, 0.5, 0.001 , 0, 1) -0.0034 0.012 -0.18 0.1 0.115 0

(0.9, 0.5, 0.001 , 0 , 4) -0.0187 0.030 -1.11 3.6 0.267 0

(0.9, 0.6, 0.2, 2, 1) -0.0033 0.011 -0.27 0.21 0.124 0.0007

(0.9, 0.6, 0.2, 2, 4) -0.0152 0.028 -0.63 1.57 0.286 0.0046

Full reallocation

(0.9, 0.5, 0.001, 3, 1) -0.0031 0.012 -0.25 0.26 0.124 0.0006

(0.9, 0.5, 0.001, 3, 4) -0.0166 0.030 -0.98 2.47 0.279 0.0046

(0.9, 0.6, 0.2, 4, 1) -0.0026 0.011 -0.23 0.23 0.129 0.0004

(0.9, 0.6, 0.2, 4, 4) -0.0140 0.029 -0.75 1.05 0.291 0.0028

Table 2: Simulated and estimated moments for the model with adjustment costs. The
simulated moments are calculated from 10,000 draws. The parameter t measures the
length of the time interval for the shocks: annual and quadrennial. Finally, the column ∆
is the share of lost resources.

6.2 The Effect of Oil Shocks

In this section, we use the oil shocks of the 1970s to demonstrate the way nonlinearities
can amplify the macroeconomic impact of industry-level shocks.42 To recap the history,

42Although our structural model suggests that the “oil and natural gas” extraction industry is important,
it abstracts away from trade, by assuming all intermediate inputs are sourced domestically, with net imports
showing up only in final demand. Hence, the Domar weight of the oil and natural gas industry measures
domestic production, rather than domestic consumption. Since the oil price shocks did not directly affect
the productivity of domestic oil production, this means that they are not measured in our sectoral TFP data
(which is for domestic production). Furthermore, our industry classification is too coarse to isolate crude
oil separately from other petrochemicals. For this reason, we use global (rather than US) data.
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starting in 1973, coordinated action by OPEC caused the price of crude oil to increase
from $3.5 per barrel in 1972 to $11 per barrel in 1974. In 1979, OPEC implemented a
second round of quantity restrictions which caused the price of crude to soar to $31 per
barrel. Shortly after this, the Iranian revolution of 1979 and the ensuing Iraqi invasion
of Iran caused further disruptions to global crude oil supply. The price peaked at $37 in
1980. Starting in the early 1980s, with the abdication of the Shah, OPEC’s pricing structure
collapsed and, in a bid to maintain its market share, Saudi Arabia flooded the market with
inexpensive oil. In real terms, the price of crude oil declined back to its pre-crisis levels
by 1986.

We adopt a non-parametric approach which allows us to account for the second-order
macroeconomic impact of microeconomic shocks using ex-post data. Instead of trying
to predict how Domar weights change in response to a shock as would be required for
a counterfactual exercise, we can simply observe it. Formally, we rely on the following
result.

Proposition 10. Up to the second order in the vector ∆, we have

log (Y(A + ∆)/Y(A)) =
1
2

[λ(A + ∆) + λ(A)]′
(
log(A + ∆) − log(A)

)
.

The idea of averaging weights across two periods is due to Törnqvist (1936). Propo-
sition 10 relates the macroeconomic impact of microeconomic shocks to the size of the
shock and the corresponding Domar weights before and after the shock.43

We measure the price of oil using the West Texas Intermediate Spot Crude Oil price
from the Federal Reserve Database. Global crude oil production, measured in thousand
tonne of oil equivalents, is from the OECD. World GDP, in current USD, is from the World
Bank national accounts data. The choice of the pre and post Domar weight is not especially
controversial. Crude oil, as a fraction of world GDP, increased from 1.8% in 1972 to 7.6%

43One can always compute the full nonlinear impact of a shock on output by computing
∫ A+∆

A λ(Ã) d log Ã,
and our formula approximates this integral by performing a first-order (log) approximation of the Domar
weight λ(Ã) or equivalently a second-order (translog) approximation of aggregate output. In theory, if
TFP is a continuous diffusion then one can disaggregate time-periods and compute the impact of shocks

over a time period [t, t + δ] as
∫ t+δ

t λ(As) d log(As) which can be seen as a repeated application of Hulten’s
theorem at every point in time over infinitesimal intervals of time. However, when TFP has jumps, then
this decomposition no longer applies. In any case, even when it does apply, and when the required high-
frequency data regarding TFP shocks and Domar weights is available, it can only be useful ex post to asses
the changes in aggregate output over an elapsed period of time due to the TFP shocks d log(As) to a given
sector given the observed path of Domar weight λ(As). It is of no use ex ante to predict how these future
shocks will affect aggregate output because one would need to know how the Domar weight will change
over time as a result of the shocks, and hence of no use to run counterfactuals. This latter part is precisely
what the second-order approximation at the heart of our paper accomplishes.

46



in 1979. Reassuringly, the Domar weight is back down to its pre-crisis level by 1986 (see
Figure 7). This means that, taking the second-order terms into account, we need to weight
the shock to the oil industry by 1/2(1.8% + 7.6%) = 4.7%. Hence, the second-order terms
amplify the shock by a factor of 4.7/1.8 ≈ 2.6.
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0.08

Figure 7: Global expenditures on crude oil as a fraction of world GDP.

Calibrating the size of the shock to the oil industry is more tricky, since it is not directly
observed. If we assume that oil is an endowment, then we can measure the shock simply
via changes in the physical quantity of production. To do this, we demean the log growth
rate in global crude oil production, and take the shock to be the cumulative change in
demeaned growth rates from 1973 to 1980, which gives us a shock of −13%.44

Putting this altogether, the first-order impact on aggregate output is therefore

1.8% × −13% = −.23%

On the other hand, the second-order impact on aggregate output is

1
2

(1.8% + 7.6%) × −13% = −.61%.

44We use the demeaned growth rate to remove the overall (positive) trend in production. Intuitively, if
everything is growing at the same rate, then a negative oil shock is a reduction in the growth of oil relative
to trend. Of course, one can easily quibble with this estimate of the size of the shock, but fortunately, the
degree of amplification (defined as the ratio of the second-order approximation to the first) is independent
of our estimate for the size of the shock. So, for any value of the shock, the second-order approximation
almost triples the impact of the shock.
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Hence, accounting for the second-order terms amplifies the impact of the oil shocks
significantly, so that oil shocks can be macroeconomically significant even without any
financial or demand side frictions.45

6.3 Baumol’s Cost Disease and Long-Run Growth

Our final empirical exercise looks to quantify the importance of nonlinearities on long-
run productivity growth. For this exercise, we use World KLEMS data for the US from
1948-2017.

The “nonlinear” measure of aggregate TFP growth over the sample is built by updating
the Domar weights every period:

∆ log TFPnonlinear =

N∑
i=1

2016∑
t=1948

λi,t(log Ai,t+1 − log(Ai,t)).

This provides an approximation, by discrete left Riemann sums, of the exact aggregate
TFP growth, given by the sum of continuous integrals

∑N
i=1

∫ 2016

1948
λi,td log Ai,t.

Now consider the following counterfactual: imagine that the economy is loglinear so
that the Domar weights are constant throughout the sample at their 1948 values. Assuming
that the path for industry-level TFP is unchanged, aggregate TFP growth over the sample
would be given by

∆ log TFP1st order =

N∑
i=1

λi,1948(log Ai,2017 − log Ai,1948),

By comparing actual aggregate TFP growth and TFP growth in the counterfactual
loglinear economy, we quantify the importance of Baumol’s cost disease (Baumol, 1967):
the notion that over time, because of complementarities, the shares of low-productivity-
growth industries increase while those of high-productivity-growth industries decrease,
thereby slowing down aggregate TFP growth.

By the end of the sample, aggregate TFP growth in the counterfactual loglinear or

45As noted by Hamilton (2013), first-order approximations of efficient models assign a relatively small
impact to oil price shocks. Hence, the literature has tended to focus on various frictions that may account for
the strong statistical relationship between oil shocks and aggregate output. Our calculations suggests that
nonlinearities in production, even in an efficient model, may help to explain the outsized effect of oil shocks.
Furthermore, our calculation also makes no allowance for amplification of shocks through endogenous
labor supply and capital accumulation, which are the standard channels for amplification of shocks in the
business cycle literature. Hence, coupled with the standard amplification mechanisms of those models, we
would expect the reduction in aggregate output to be even larger.
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Cobb-Douglas economy is around 87% whereas actual TFP grew by 68%. Hence the
presence of nonlinearities slowed down aggregate TFP growth by around 19 percentage
points over the sample period.

1940 1950 1960 1970 1980 1990 2000 2010 2020
1.00

1.20

1.40

1.60

1.80

Nonlinear
First Order
Second Order

Figure 8: Cumulative change in TFP: nonlinear (actual), first-order approximation, and
second-order approximation.

Baumol’s cost disease is a manifestation of nonlinearities, since ∆ log TFP1st order is a
first-order approximation of actual aggregate TFP growth. A second-order approximation,
which captures some of the nonlinearities, is given by

∆ log TFP2nd order =
1
2

N∑
i=1

(λi,1948 + λi,2017)(log Ai,2017 − log Ai,1948).

In Figure 8, we plot aggregate TFP growth using the nonlinear, first-order, and second-
order measures. The gap between the nonlinear measure and the first-order approxima-
tion is sizeable, but that between the nonlinear measure and the second-order approxi-
mation is much smaller.

These findings are in some sense more general than Baumol’s hypothesized mecha-
nism. Traditionally, the mechanism for Baumol’s cost disease is through prices: because of
complementarities, as the prices of high-productivity-growth industries fall, their shares
in aggregate output fall, reducing aggregate TFP growth. Alternative stories for structural
transformation emphasize other mechanisms, principally, non-homotheticities whereby
as real income increases, consumers increase their expenditures on industries that happen

49



to have lower productivity growth.46 From the perspective of our framework, non-
homotheticities and complementarities are both nonlinearities. Our calculations of the
impact of nonlinearities encompass both types of mechanisms.47,48

7 Conclusion

The paper points to many unanswered questions. For instance, it shows that the macro
impact of a micro shock depends greatly on how quickly factors can be reallocated across
production units. Since our structural model is static, we are forced to proxy for the
temporal dimension of reallocation by resorting to successive comparative statics. In
ongoing work, we investigate the dynamic adjustment process more rigorously and find
that although we can think of the no-reallocation and perfect-reallocation cases as the
beginning and end of the adjustment, the speed of adjustment also greatly depends on
the microeconomic details. This means that the dynamic response of aggregate output to
different shocks is greatly affected by issues like geographic or sectoral mobility of labor,
even with perfect and complete markets that allow us to abstract from distributional
issues. Our model also lacks capital accumulation and endogenous labor supply, and
incorporating these into the present analysis is an interesting area for future work.

Furthermore, in this paper, we have focused exclusively on the way shocks affect
aggregate output. In ongoing work, we take up the related question of how shocks affect
non-aggregate outcomes, namely how shocks propagate from one producer to another,
and how microeconomic variables comove with one another in a production network.
Since the i jth element of the Hessian, that we characterize, is also the response of the sales
share of i to a shock to j, our formulas are also relevant to understanding comovement in
general equilibrium models.

Finally, our results ignore non-technological frictions, but the forces we identify do
not disappear in richer models with inefficient equilibria. Non-unitary elasticities of
substitution in networks can amplify or attenuate the underlying frictions. In a companion
paper, Baqaee and Farhi (2017), we undertake a systematic characterization of these effects.

46See Herrendorf et al. (2013) as an example.
47Our theoretical characterizations cover all these nonlinearities. In fact, formally, non-homotheticities

can always be represented via non-unitary elasticities of substitution between inputs and a fixed factor.
To see this, note that any non-homothetic function f (x) can be extended into a constant-returns function
f̃ (x, y) = y f (x/y) where f (x) = f̃ (x, 1). Then, non-homotheticity in f is equivalent to a non-unitary elasticity
of substitution between x and y in f̃ (x, y).

48Another potential source of nonlinearities is shocks to the composition of demand. For example, a Cobb-
Douglas model with shocks to the share parameters is a nonlinear model since the cross-partial derivatives
of aggregate output with respect to industry TFP and share shocks are non-zero. Our results also cover such
economies.
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We show that in inefficient models, the “second-order” terms that we characterize in this
paper can become first order.
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A Proofs

Proof of theorem 1. Since the first welfare theorem holds, the equilibrium allocation solves

Y(A1, . . . ,AN) = max
ci,xi j,li j

D(c1, . . . , cn)+
∑

i

µi

AiFi

(
(li j) j, (xi j) j

)
−

∑
j

xi j − ci

+∑
i

λi

li −

∑
j

l ji

 ,
where li is the endowment of each labor type, and µi and λi are Lagrange multipliers. The
envelope theorem then implies that

d Y
d Ai

= µiFi

(
(li j) j, (xi j) j

)
= µiyi.

If we show that µi is equal to the price of i in the competitive equilibrium, then we are
done.

Meanwhile, for each good j, either there exists another producer i using that good as
an input, or the household must consume that input (otherwise, the input is irrelevant
and has a price of zero). Hence, in a competitive equilibrium, we must have either

pi
∂Fi

∂xi j
= p j (20)

and/or

Pc
∂D
∂c j

= p j, (21)

where Pc is the ideal price index associated withD (which we can take to be the numeraire).
The expression above uses the fact thatD is constant-returns-to-scale.

On the other hand, the first-order conditions of the social planners problem implies
that for each j, either

µi
∂Fi

∂xi j
= µ j (22)

and/or
∂D
∂c j

= µ j. (23)

Hence µi = pi for every i.
�
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Proof of Theorem 2. Differentiate
∑

i λi = ξ to get

λi
d logλi

d log Ai
= ξ

d log ξ
d log Ai

−

∑
j,i

λ j
d logλ j

d log Ai
,

= ξ
d log ξ
d log Ai

−

∑
j,i

λ j
d logλ j/λi

d log Ai
−

∑
j,i

λ j
d logλi

d log Ai
,

which using (2), we can rewrite as

λi
d logλi

d log Ai
= ξ

d log ξ
d log Ai

+
∑
j,i

λ j

(
1 −

1
ρi j

)
− (ξ − λi)

d logλi

d log Ai
,

Rearrange this to get

ξ
d logλi

d log Ai
= ξ

d log ξ
d log Ai

+
∑
j,i

λ j

(
1 −

1
ρi j

)
. (24)

Finally, Theorem 1 implies that

d2 log Y
d log(Ai)2 = λi

d logλi

d log Ai
.

Substitute (24) into the expression above to get the desired result. Lastly, if Y is homoge-
neous, Euler’s theorem implies that∑

i

d Y
d Ai

Ai

Y
=

∑
i

λi = ξ,

hence, d log ξ/d log Ai = 0. �

Proof of Proposition 4. We prove a slightly more general formulation with arbitrary vari-
ance covariance matrix and an arbitrary twice-differentiable utility function.

E(u(Y(A))) ≈ E
(
u(Y(A)) + u′(Y(A))∇Y(A)(A − A) +

1
2

u′′(Y(A))(A − A)′
(
∇Y(A) ◦ ∇Y(A)′

)
(A − A)+

1
2

u′(Y(A))(A − A)′∇2Y(A)(A − A)
)
,

= u(Y(A)) +
1
2

u′′(Y(A))tr
((
∇Y(A) ◦ ∇Y(A)′

)
Σ
)

+
1
2

u′(Y(A))tr
(
∇

2Y(A)Σ
)
.
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Now apply Hulten’s theorem to get

= u(Y(A)) +
1
2

u′′(Y(A))
N∑
k, j

λkλ jσ jk +
1
2

u′(Y(A))
N∑
j,k

d2 Y
d Ak d A j

σ jk,

with idiosyncratic shocks, this simplifies to

= u(Y(A)) +
1
2

u′′(Y(A))
N∑
k

λ2
kσ

2
k +

1
2

u′(Y(A))
N∑
k

d2 Y
d A2

k

σ2
k .

The second summand is the Lucas term (which equals zero when u is linear), and the third
summand is our term. Rearrange this to get the desired result. �

Proof of Proposition 3.
d2 log Y

d log A j log Ai
=

dλi

d log A j
. (25)

By definition
d logλi

d log A j
=

(
1
ρ ji
− 1

)
+

d logλ j

d log A j
, (26)

which simplifies to
dλi

d log A j
= λi

(
1
ρ ji
− 1

)
+
λi

λ j

dλ j

d log A j
. (27)

Now apply theorem 2 to the second summand to obtain the desired result. �

Proof of Proposition 5. The allocation for labor is

lig

lig

=

 ω0iA
θ−1
θ

i∑
ω0 jA

θ−1
θ

j


1

1−ωg θ−1
θ

.

Substituting this into the utility function gives

Y

Y
=

∑
i

ω
θ

θ(1−ωg)+ωg

0i A
θ−1

θ(1−ωg)+ωg

i


θ(1−ωg)+ωg

θ−1

.
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Then for this economy

ρi j = ρ =
θ(1 − ωg) + ωg

θ(1 − ωg) + ωg + (1 − θ)
,

where ωg = 0 corresponds to
ρ = θ,

which is the same as no reallocation case. On the other hand, for ωg = 1,

ρ =
1

2 − θ
,

which is the same as the fully reallocative case. Note that this explodes when θ ≥ 2.
For ρ ∈ (0, 1) we get something in between the perfectly reallocative and no reallocation
special cases. �

Proof of Proposition 6. Consumption is given by

Y = AY

a
(

l

l

) θ−1
θ

+ (1 − a)
(

X

X

) θ−1
θ


θ
θ−1

− X.

The first-order condition gives

X

X
=

(
YA

)θ−1
(1 − a)θX

−θ
Y.

Substituting this into the production function gives

Y =
AYa

θ
θ−1(

1 − (1 − a)θ
(
YA/X

)θ−1
) θ
θ−1

.

This means that

Y =
AYa

θ
θ−1(

1 − (1 − a)θ
(
YA/X

)θ−1
) 1
θ−1

.

Finally, note that
d log Y
d log A

= ξ.

�
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Proof of Proposition 7. This follows as a special case of Proposition 9. �

Proof of Corollary 1. The proof is similar to that of Corollary 2. �

Proof of Proposition 8. Denote the ith standard basis vector by ei. Then, by assumption,
Ωei = Ωe j and b′ei = b′e j. Repeated multiplication implies that Ωnei = Ωne j. This then
implies that Ψei = Ψe j so that in steady state, λi = b′Ψei = b′Ψe j = λ j. So the first-
order impact of a shock is the same. Furthermore, substitution into (11) shows that the
second-order impact of a shock is also the same. �

Proof of Proposition 9. Denote the N× F matrix corresponding to Ωi f by αi f . By Shephard’s
lemma,

d log pi

d log Ak
= −1(i = k) +

∑
j

Ωi j
d log p j

d log Ak
+

∑
f

αi f
d log w f

d log Ak
. (28)

Invert this system to get

d log pi

d log Ak
= −Ψik +

∑
f

Ψi f
d log w f

d log Ak
, (29)

where Ψ( f ) = (I −Ω)−1α( f ). Note that b′Ψ f = Λ f .
Denote the household’s final demand expenditure share Ω0i by bi. Then, for a factor L,

we have

d Λ f

d log Ak
=

∑
i

bi(1 − θ0)[−Ψik +
∑

g

Ψig
d log wg

d log Ak
]Ψi f ,

+
∑

j

(1 − θ j)λ j

∑
i

Ω ji[−Ψik +
∑

g

Ψig
d log wg

d log Ak
+ Ψ jk −

∑
g

Ψ jg
d log wg

d log Ak
]Ψi f

+ (θk − 1)λk

∑
i

ΩkiΨi f .

Simplify this to

d Λ f =(θ0 − 1)

∑
i

biΨikΨi f −

∑
i

biΨi f

∑
g

Ψig
d log wg

d log Ak

 ,
+

∑
j

(θ j − 1)λ j

∑
i

Ω jiΨikΨi f −

∑
i

Ω jiΨ jkΨi f


+

∑
j

(1 − θ j)λ j

∑
i

Ω ji

∑
g

(
Ψig −Ψ jg

) d log wg

d log Ak
Ψi f


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+ (θk − 1)λk

∑
i

ΩkiΨi f ,

=(θ0 − 1)

∑
i

biΨikΨi f −

∑
i

biΨi f

∑
g

Ψig
d log wg

d log Ak

 ,
+

∑
j

(θ j − 1)λ j

∑
i

Ω jiΨikΨi f −

∑
i

Ω jiΨi f

 ∑
i

Ω jiΨik


+

∑
j

(1 − θ j)λ j

∑
i

Ω ji

∑
g

(
Ψig −Ψ jg

) d log wg

d log Ak
Ψi f

 ,
=(θ0 − 1)

∑
i

biΨikΨi f −

∑
i

biΨi f

∑
g

Ψig
d log wg

d log Ak

 ,
+

∑
j

(θ j − 1)λ jCovΩ( j)(Ψ(k),Ψ( f ))

+
∑

j

(1 − θ j)λ j

∑
g

∑
i

Ω jiΨigΨi f −

∑
i

Ω jiΨi f

 ∑
i

Ω jiΨig

 d log wg

d log Ak
,

=(θ0 − 1)

∑
i

biΨikΨi f −

∑
i

biΨi f

∑
g

Ψig
d log wg

d log Ak

 ,
+

∑
j

(θ j − 1)λ jCovΩ( j)(Ψ(k),Ψ( f ))

+
∑

j

(1 − θ j)λ j

∑
g

CovΩ( j)(Ψ(g),Ψ( f ))
d log wg

d log Ak
,

=(θ0 − 1)

∑
i

biΨikΨi f −

∑
i

biΨi f

∑
g

Ψig
d log wg

d log Ak

 ,
+

∑
j

(θ j − 1)λ jCovΩ( j)(Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f ))

=(θ0 − 1)

∑
i

biΨi f

Ψik −

∑
g

Ψig
d log wg

d log Ak


 ,

+
∑

j

(θ j − 1)λ jCovΩ( j)(Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f ))

=(θ0 − 1)Covb(Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f )) + (θ0 − 1)(λk −

∑
g

Λg
d log wg

d log Ak
)λ f ,

+
∑

j

(θ j − 1)λ jCovΩ( j)(Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f )).
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Hence, for a productivity shock d log Ak, letting Λ f be demand for factor f , we have

d Λ f

d log Ak
=(θ0 − 1)Covb

Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f )


+

∑
j

(θ j − 1)λ jCovΩ j

Ψ(k) −

∑
g

Ψ(g)
d log wg

d log Ak
,Ψ( f )


+ (θ0 − 1)

λk −

∑
g

Λg
d log wg

d log Ak

Λ f . (30)

We have
d log w f

d log Ak
=

d log Y
d log Ak

+
1

Λ f

d Λ f

d log Ak
= λk +

1
Λ f

d Λ f

d log Ak
. (31)

Substituting this expression for back into the formula, we get

d log Λ f

d log Ak
=(θ0 − 1)

1
Λ f

Covb

Ψ(k) −

∑
g

Ψ(g) d log Λg,Ψ( f )


+

∑
j

(θ j − 1)
λ j

Λ f
CovΩ( j)

Ψ(k) −

∑
g

Ψ(g)
d log Λg

d log Ak
,Ψ( f )

 . (32)

The proof obtains by labelling final demand as producer 0. The derivation of the expression
for d logλi/d log Ak is similar. �

Proof of Corollary 2. Note that since θi = θ for every i, market clearing for a good i (neglect-
ing the normalizing constants and setting the household’s price index to be the numeraire),
is

pθi yi = ωθ0iY +
∑

j

pθj y jω
θ
ji. (33)

Hence, letting pθy denote the vector whose ith element is pθi yi and bi = ω0i, we can write

pθy = b′(I − ω◦θ)−1Y, (34)

where ωθ is the matrix of ωi j raised to θ elementwise. Let b̃′ = b′(I − ω◦θ)−1. This is
reminiscent of the supplier centrality defined by Baqaee (2016).

Furthermore, market clearing for labor type k is

wθ
k lk = Aθ−1

k
1∑

i
pθi yiω

θ
ik, (35)
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where we use the fact that productivity shocks affect only the stock of factors. Rearrange
this to get

wθ
k lk = zθ−1

k Y

∑
i

b̃iω
θ
ik

 , (36)

whence

wk =

(
Y

lk

) 1
θ

z
θ−1
θ

k

∑
i

b̃iω
θ
ik


1
θ

. (37)

To complete the proof note that

Y =
∑

k

wklk =

(
Y

lk

) 1
θ

z
θ−1
θ

k

∑
i

b̃iω
θ
ik


1
θ

lk. (38)

Rearrange this to get a closed form expression for output

Y =

∑
k

(
zklk

) θ−1
θ

∑
i

b̃iω
θ
ik


1
θ


θ
θ−1

. (39)

Since Y can be written in closed-form as a CES aggregate of the underlying productivity
shocks, Corollary 2 follows immediately. �

Proof of Proposition 10. By Lemma (5.8) from (Theil, 1967, p.222) we know that

log (Y(A + ∆)/Y(A))

=
1
2
[
∇ log Y(A + ∆) + ∇ log Y(A)

]′ [log(A + ∆) − log(A)
]
+ O(∆3). (40)

Hulten (1978) then implies that ∇ log Y(A) = λ(A) and ∇ log Y(A + ∆) = λ(A + ∆). �

B Generalization of Section 3.2 to Multiple Goods

For the example is Section 3.2, the economy with extreme complementarity θ = 0 has
Y = A/a, where 1/a is the sales to output ratio in steady-state. Therefore, in this example,
although Hulten’s approximation fails in log terms, Hulten’s theorem is globally accurate
in linear terms. In other words, our examples so far may suggest that extreme comple-
mentarities can only have outsized effects, in linear terms, if we restrict the movement of
labor across industries.
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However, this impression is false. To see this, consider a slightly more complex exam-
ple where we generalize the example above by allowing multiple industries. Aggregate
consumption is Cobb-Douglas across goods with equal weights (bi = 1/N). Each good is
produced using labor and the good itself as an intermediate input. We assume full labor
reallocation/constant returns to scale. We have

Y =
∏

i

c1/N
i ,

and

yi = yiAi

ωil

(
li

li

) θi−1
θi

+ (1ωil)
(

xi

xi

) θi−1
θi


θi
θi−1

,

with
yi = ci + xi,

and perfect reallocation of labor. Then we have the following.

Proposition 11. Consider the model described above. Then

1 −
1
ρi j

= (θi − 1)
( 1
ωil
− 1

)
,

and
d log ξ
d log Ai

=
1
N

(θi − 1)
( 1
ωil
− 1

)
.

In Figure 9 we plot output as a function of TFP shocks in linear terms. As promised,
this economy features strong aggregate complementarities in the sense that a negative TFP
shock can cause a drastic reduction in output even in linear terms, despite the fact that
labor can be costlessly reallocated across sectors. This happens because, in equilibrium, a
negative shock to industry i does not result in more labor being allocated to production
in industry i. This follows from the fact that consumption has a Cobb-Douglas form, and
so the income and substitution effects from a shock to i offset each other. Since no new
labor is allocated to i, if i faces a low structural elasticity of substitution θi ≈ 0, its output
falls dramatically in response to a negative shock. This can then have a large effect on
aggregate consumption. Of course, Cobb-Douglas consumption is simply a clean way to
illustrate this intuition. If the structural elasticity of substitution in consumption where
less than unity (θ0 < 1), then these effects would be even further amplified.
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Figure 9: Aggregate output for the Leontief case θi ≈ 0 with two industries.

Proof of Proposition 11. First, consider

max
xi

yi − xi,

which has the first-order condition

xi = yi(1 − ωil)θi

(
Aiyi

xi

)θi−1

= yi(1 − ωil)A
θi−1
i ,

where we use the fact that Xi = yi(1 −ωil). Substitute this into the production function for
yi to get

yi =
Aiyia

θi/(θi−1)li/li(
1 − (1 − a)Aθi−1

i

) θi
θi−1

.

Substitute this into ci = yi − xi to get

ci =
Aiyia

θi/(θi−1)li/li(
1 − (1 − a)Aθi−1

i

) 1
θi−1

.

Substitute these into the utility function to get aggregate consumption when labor can-
not be reallocated. To get aggregate consumption when labor is reallocated, maximize
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aggregate the non-reallocative solution with respect to li:

Y

Y
=


N∑
i

b
θ0

i

 Aiyia
θi
θi−1

i /li

(1 − (1 − ωil)A
θi−1
i )

1
θi−1


θ0−1

1
θ0−1

l.

�

C Additional Tables and Figures

Mean Std Skewness Ex-Kurtosis

No reallocation, Annual -0.0031 0.011 -0.16 0.1
No reallocation, Quadrennial -0.0173 0.027 -0.60 1.0
Full Reallocation, Annual -0.0021 0.011 -0.09 0.0
Full Reallocation, Quadrennial -0.0110 0.026 -0.25 0.1

Table 3: Moments of log output estimated from 50, 000 draws using the second order
Taylor approximation with the benchmark elasticities (σ, θ, ε) = (0.9, 0.5, 0.001). This is the
version of the model with no adjustment costs κ = 0.
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Figure 10: The effect of TFP shocks to the oil and gas industry and the construction
industry. Construction has a bigger sales share, but oil and gas is more important for large
negative shocks. This graph shows that the ranking of which industry is more important
is not monotonic in the size of the shock.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0023 0.011 -0.06 0.0 0.074
(0.9, 0.5, 0.001) -0.0022 0.011 -0.08 0.0 0.069
(0.99, 0.5, 0.001) -0.0021 0.011 -0.07 0.0 0.065
(0.8, 0.5, 0.2) -0.0020 0.011 -0.07 0.0 0.066
(0.9, 0.5, 0.2) -0.0020 0.011 -0.08 0.0 0.062
(0.99, 0.5, 0.2) -0.0019 0.011 -0.06 0.0 0.058
(0.8, 0.5, 0.99) -0.0014 0.011 -0.02 0.0 0.044
(0.9, 0.5, 0.99) -0.0013 0.011 -0.03 0.0 0.040
(0.99, 0.5, 0.99) -0.0013 0.011 -0.02 0.0 0.036
(0.8, 0.4, 0.001) -0.0023 0.011 -0.08 0.0 0.079
(0.9, 0.4, 0.001) -0.0022 0.011 -0.06 0.0 0.075
(0.99, 0.4, 0.001) -0.0022 0.011 -0.07 0.0 0.071
(0.8, 0.4, 0.2) -0.0021 0.011 -0.06 0.0 0.073
(0.9, 0.4, 0.2) -0.0021 0.011 -0.08 0.0 0.068
(0.99, 0.4, 0.2) -0.0020 0.011 -0.07 0.0 0.064
(0.8, 0.4, 0.99) -0.0013 0.011 -0.04 0.0 0.052
(0.9, 0.4, 0.99) -0.0014 0.011 -0.04 0.0 0.047
(0.99, 0.4, 0.99) -0.0013 0.011 -0.01 0.0 0.044
(0.8, 0.6, 0.001) -0.0022 0.011 -0.06 0.0 0.068
(0.9, 0.6, 0.001) -0.0021 0.011 -0.08 0.0 0.063
(0.99, 0.6, 0.001) -0.0020 0.011 -0.07 0.0 0.059
(0.8, 0.6, 0.2) -0.0021 0.011 -0.05 0.0 0.061
(0.9, 0.6, 0.2) -0.0020 0.011 -0.05 0.0 0.056
(0.99, 0.6, 0.2) -0.0020 0.011 -0.04 0.0 0.052
(0.8, 0.6, 0.99) -0.0014 0.011 -0.02 0.0 0.037
(0.9, 0.6, 0.99) -0.0013 0.011 -0.02 0.0 0.033
(0.99, 0.6, 0.99) -0.0013 0.011 -0.01 0.0 0.029
(0.8, 0.99, 0.001) -0.0022 0.011 -0.09 0.0 0.052
(0.9, 0.99, 0.001) -0.0020 0.011 -0.05 0.0 0.047
(0.99, 0.99, 0.001) -0.0021 0.011 -0.06 0.0 0.044
(0.8, 0.99, 0.2) -0.0021 0.011 -0.04 0.0 0.043
(0.9, 0.99, 0.2) -0.0019 0.011 -0.05 0.0 0.039
(0.99, 0.99, 0.2) -0.0018 0.011 -0.04 0.0 0.035
(0.8, 0.99, 0.99) -0.0013 0.011 -0.03 0.0 0.011
(0.9, 0.99, 0.99) -0.0013 0.011 -0.02 0.0 0.006
(0.99, 0.99, 0.99) -0.0013 0.011 0.01 0.0 0.001

Table 4: Annual Shocks, Model with full reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0112 0.026 -0.31 0.3 0.178
(0.9, 0.5, 0.001) -0.0113 0.026 -0.28 0.4 0.176
(0.99, 0.5, 0.001) -0.0107 0.026 -0.27 0.3 0.163
(0.8, 0.5, 0.2) -0.0102 0.026 -0.25 0.2 0.162
(0.9, 0.5, 0.2) -0.0101 0.026 -0.23 0.1 0.152
(0.99, 0.5, 0.2) -0.0098 0.026 -0.22 0.2 0.144
(0.8, 0.5, 0.99) -0.0070 0.025 -0.09 0.0 0.113
(0.9, 0.5, 0.99) -0.0066 0.025 -0.09 0.1 0.103
(0.99, 0.5, 0.99) -0.0064 0.025 -0.09 0.0 0.095
(0.8, 0.4, 0.001) -0.0116 0.026 -0.32 0.3 0.228
(0.9, 0.4, 0.001) -0.0110 0.026 -0.32 0.3 0.228
(0.99, 0.4, 0.001) -0.0107 0.026 -0.27 0.3 0.212
(0.8, 0.4, 0.2) -0.0106 0.026 -0.27 0.3 0.201
(0.9, 0.4, 0.2) -0.0104 0.026 -0.24 0.2 0.195
(0.99, 0.4, 0.2) -0.0097 0.026 -0.25 0.2 0.173
(0.8, 0.4, 0.99) -0.0072 0.025 -0.09 0.0 0.134
(0.9, 0.4, 0.99) -0.0070 0.025 -0.09 0.0 0.125
(0.99, 0.4, 0.99) -0.0067 0.025 -0.08 0.0 0.117
(0.8, 0.6, 0.001) -0.0112 0.026 -0.26 0.2 0.159
(0.9, 0.6, 0.001) -0.0108 0.026 -0.27 0.3 0.149
(0.99, 0.6, 0.001) -0.0105 0.026 -0.26 0.2 0.140
(0.8, 0.6, 0.2) -0.0102 0.026 -0.23 0.2 0.143
(0.9, 0.6, 0.2) -0.0100 0.026 -0.23 0.2 0.133
(0.99, 0.6, 0.2) -0.0096 0.026 -0.20 0.1 0.123
(0.8, 0.6, 0.99) -0.0071 0.025 -0.07 0.0 0.093
(0.9, 0.6, 0.99) -0.0066 0.025 -0.06 0.0 0.083
(0.99, 0.6, 0.99) -0.0064 0.025 -0.06 0.0 0.075
(0.8, 0.99, 0.001) -0.0106 0.026 -0.20 0.1 0.112
(0.9, 0.99, 0.001) -0.0104 0.026 -0.19 0.1 0.103
(0.99, 0.99, 0.001) -0.0101 0.026 -0.19 0.1 0.096
(0.8, 0.99, 0.2) -0.0100 0.025 -0.15 0.1 0.093
(0.9, 0.99, 0.2) -0.0095 0.026 -0.14 0.1 0.085
(0.99, 0.99, 0.2) -0.0091 0.026 -0.13 0.1 0.078
(0.8, 0.99, 0.99) -0.0064 0.025 -0.02 0.0 0.024
(0.9, 0.99, 0.99) -0.0062 0.025 -0.01 0.0 0.013
(0.99, 0.99, 0.99) -0.0058 0.025 0.01 0.0 0.003

Table 5: Quadrennial Shocks, model with full reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0036 0.011 -0.23 0.2 0.128
(0.9, 0.5, 0.001) -0.0034 0.012 -0.18 0.1 0.115
(0.99, 0.5, 0.001) -0.0032 0.011 -0.20 0.1 0.104
(0.8, 0.5, 0.2) -0.0026 0.011 -0.13 0.1 0.079
(0.9, 0.5, 0.2) -0.0026 0.011 -0.11 0.0 0.070
(0.99, 0.5, 0.2) -0.0025 0.011 -0.13 0.0 0.063
(0.8, 0.5, 0.99) -0.0014 0.011 -0.01 0.0 0.018
(0.9, 0.5, 0.99) -0.0014 0.011 -0.01 0.0 0.014
(0.99, 0.5, 0.99) -0.0012 0.011 -0.01 0.0 0.011
(0.8, 0.4, 0.001) -0.0039 0.012 -0.23 0.2 0.137
(0.9, 0.4, 0.001) -0.0035 0.011 -0.21 0.2 0.123
(0.8, 0.4, 0.2) -0.0028 0.011 -0.14 0.1 0.082
(0.9, 0.4, 0.2) -0.0026 0.011 -0.12 0.1 0.073
(0.99, 0.4, 0.2) -0.0030 0.011 0.15 5.9 0.065
(0.8, 0.4, 0.99) -0.0015 0.011 -0.05 0.0 0.020
(0.9, 0.4, 0.99) -0.0013 0.011 -0.05 0.0 0.016
(0.99, 0.4, 0.99) -0.0014 0.011 -0.04 0.0 0.014
(0.8, 0.6, 0.001) -0.0034 0.011 -0.20 0.1 0.122
(0.9, 0.6, 0.001) -0.0032 0.011 -0.20 0.1 0.109
(0.99, 0.6, 0.001) -0.0030 0.011 -0.14 0.1 0.098
(0.8, 0.6, 0.2) -0.0026 0.011 -0.12 0.0 0.077
(0.9, 0.6, 0.2) -0.0024 0.011 -0.11 0.1 0.068
(0.99, 0.6, 0.2) -0.0023 0.011 -0.10 0.0 0.061
(0.8, 0.6, 0.99) -0.0015 0.011 -0.05 0.0 0.016
(0.9, 0.6, 0.99) -0.0013 0.011 0.00 0.0 0.011
(0.99, 0.6, 0.99) -0.0013 0.011 -0.02 0.0 0.009
(0.8, 0.99, 0.001) -0.0030 0.011 -0.15 0.1 0.107
(0.9, 0.99, 0.001) -0.0028 0.011 -0.13 0.1 0.095
(0.99, 0.99, 0.001) -0.0027 0.011 -0.11 0.1 0.086
(0.8, 0.99, 0.2) -0.0026 0.011 -0.11 0.0 0.072
(0.9, 0.99, 0.2) -0.0024 0.011 -0.09 0.0 0.063
(0.99, 0.99, 0.2) -0.0022 0.011 -0.07 0.0 0.056
(0.8, 0.99, 0.99) -0.0014 0.011 -0.01 0.0 0.010
(0.9, 0.99, 0.99) -0.0013 0.011 -0.01 0.0 0.005
(0.99, 0.99, 0.99) -0.0011 0.011 0.00 0.0 0.001

Table 6: Annual Shocks, model with no labor reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0202 0.031 -1.26 4.5 0.297
(0.9, 0.5, 0.001) -0.0187 0.030 -1.11 3.6 0.267
(0.8, 0.5, 0.2) -0.0139 0.028 -0.58 1.1 0.180
(0.9, 0.5, 0.2) -0.0133 0.027 -0.52 0.9 0.160
(0.99, 0.5, 0.2) -0.0176 0.024 -0.66 1.3 0.138
(0.8, 0.5, 0.99) -0.0073 0.025 -0.09 0.0 0.041
(0.9, 0.5, 0.99) -0.0068 0.025 -0.07 0.0 0.033
(0.99, 0.5, 0.99) -0.0068 0.025 -0.09 0.0 0.027
(0.8, 0.4, 0.001) -0.0217 0.032 -1.40 5.3 0.320
(0.9, 0.4, 0.001) -0.0201 0.031 -1.30 4.8 0.287
(0.8, 0.4, 0.2) -0.0146 0.028 -0.67 1.4 0.187
(0.9, 0.4, 0.2) -0.0137 0.028 -0.59 1.1 0.167
(0.8, 0.4, 0.99) -0.0075 0.025 -0.13 0.0 0.048
(0.9, 0.4, 0.99) -0.0069 0.025 -0.10 0.0 0.039
(0.99, 0.4, 0.99) -0.0069 0.025 -0.09 0.0 0.034
(0.8, 0.6, 0.001) -0.0188 0.030 -0.99 2.5 0.281
(0.9, 0.6, 0.001) -0.0176 0.029 -0.90 2.2 0.253
(0.99, 0.6, 0.001) -0.0163 0.028 -0.65 1.0 0.229
(0.8, 0.6, 0.2) -0.0136 0.027 -0.49 0.7 0.175
(0.9, 0.6, 0.2) -0.0129 0.027 -0.44 0.7 0.154
(0.99, 0.6, 0.2) -0.0128 0.026 -0.50 0.6 0.138
(0.8, 0.6, 0.99) -0.0070 0.025 -0.08 0.0 0.036
(0.9, 0.6, 0.99) -0.0066 0.025 -0.08 0.0 0.027
(0.99, 0.6, 0.99) -0.0067 0.025 -0.09 0.1 0.021
(0.8, 0.99, 0.001) -0.0163 0.028 -0.64 1.1 0.246
(0.9, 0.99, 0.001) -0.0153 0.028 -0.58 0.9 0.221
(0.99, 0.99, 0.001) -0.0145 0.027 -0.53 0.8 0.200
(0.8, 0.99, 0.2) -0.0128 0.026 -0.40 0.4 0.162
(0.9, 0.99, 0.2) -0.0120 0.026 -0.35 0.3 0.143
(0.99, 0.99, 0.2) -0.0114 0.026 -0.29 0.3 0.127
(0.8, 0.99, 0.99) -0.0066 0.025 -0.01 0.0 0.021
(0.9, 0.99, 0.99) -0.0061 0.025 -0.03 0.0 0.011
(0.99, 0.99, 0.99) -0.0057 0.025 0.00 0.0 0.002

Table 7: Quadrennial Shocks, model with no reallocation and no adjustment costs.
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D Macro Moment Approximations

The notes in this section were prepared with the assistance of a research assistant Chang
He. Let output be Y(A), where A is the N × 1 vector of productivity parameters. Suppose
that A is distributed according to a multivariate normal distribution, and that the elements
of A are independent. Let Y∗(A) be the second-order Taylor approximation of Y around
the mean vector of A.

Second-order Taylor Approximation

Let µA denote the mean vector of A. The second-order Taylor expansion of Y(A) is:

Y∗(A) = Y(µA) +

N∑
i=1

∂Y(µA)
∂Ai

(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

∂2Y(µA)
∂Ai∂A j

(Ai − µAi)(A j − µA j).

We introduce the following abbreviations:

Yi =
∂Y(µA)
∂Ai

, Yi j =
∂2Y(µA)
∂Ai∂A j

,

µAi =

∫
∞

−∞

Ai fA(Ai)dAi µAi,k =

∫
∞

−∞

(Ai − µAi)
k fA(Ai)dAi,

µAi,A j

∫
∞

−∞

∫
∞

−∞

(Ai − µAi)(A j − µA j) fA(Ai,A j)dAidA j,

where fA is the density function of A.

Mean Value Approximation

Let µY∗ be the mean value approximation of Y(A). We have:

µY∗ = E[Y∗(A)] =

∫
∞

−∞

Y∗(A) fA(A)dA,

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]

fA(A)dA,

= Y(µA) +
1
2

N∑
i=1

N∑
j=1

Yi jµAi,A j .
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Expanding the quadratic and since elements of A are independent, we get

µY∗ = Y(µA) +
1
2

N∑
i=1

YiiµAi,2.

Variance Approximation

Let σ2
Y∗ be the variance approximation of Y(A).

σ2
Y∗ = E

([
Y∗(A) − Y(µA)

]2)
= E

(
Y∗2(A)

)
− Y2(µA),

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]2

fA(A)dA − µ2
Y∗ .

Since elements of A are independent, we get

σ2
Y∗ =

N∑
i=1

Y2
i µAi,2 + Y2(µA) − µ2

Y∗ + Y(µA)
N∑

i=1

YiiµAi,2 +

N∑
i=1

YiYiiµAi,3

+
1
4

N∑
i=1

Y2
iiµAi,4 +

1
2

N∑
i=1

N∑
j=i+1

YiiY j jµAi,2µA j,2 +

N∑
i=1

N∑
j=i+1

Y2
i jµAi,2µA j,2.

Skewness Approximation

Let νY∗ be the skewness approximation of Y(A). By definition, νY∗ = µY∗,3/σ3
Y∗ .

Use the definition of skewness, and that
∫
∞

−∞
Y∗2(A) fA(A)dA = σ2

Y∗ + µ2
Y∗ , we have

µY∗,3 = E
([

Y∗(A) − Y(µA)
]3)

=

∫
∞

−∞

[
Y∗(A) − Y(µA)

]3
fA(A)dA,

=

∫
∞

−∞

Y∗3(A) fA(A)dA − 3µY∗σ2
Y∗ − µ

3
Y∗ ,

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]3

fA(A)dA − 3µY∗σ2
Y∗ − µ

3
Y∗ .

Simplifying the equation above and use the fact that the elements of A are independent,
we have:

70



µY∗,3 =

N∑
i=1

Yi
3µAi,3 + Y3(µA) +

3
2

Y2(µA)
N∑

i=1

YiiµAi,2 + 3Y(µA)
N∑

i=1

Y2
i µAi,2 + 3Y(µA)

N∑
i=1

YiYiiµAi,3

+
3
4

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

YiiY j jYkkµAi,2µA j,2µAk,2 +
3
2

N−1∑
i=1

N∑
j=i+1

YiiYi jY j jµAi,3µA j,3

+
3
8

N∑
i=1

N∑
j=1
j,i

YiiY2
j jµAi,2µA j,4 +

1
8

N∑
i=1

Y2
iiµAi,6 +

3
2

N∑
i=1

N∑
j=1
j,i

Y2
i Yi jµAi,2µA j,2

+
3
2

N∑
i=1

Y2
i YiiµAi,4 +

3
2

Y(µA)
N−1∑
i=1

N∑
j=i+1

YiiY j jµAi,2µA j,2 +
3
4

Y(µA)
N∑

i=1

Y2
iiµAi,4

+
3
2

N∑
i=1

N∑
j=1
j,i

YiYiiY j jµAi,3µA j,2 +
3
4

N∑
i=1

YiY2
iiµAi,5

+
3
2

N∑
i=1

N−1∑
j=1
j,i

N∑
k= j+1

k,i

YiiY2
jkµAi,2µA j,2µAk,2 +

9
4

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

Yi jYikY jkµAi,2µA j,2µAk,2

+

N−1∑
i=1

N∑
j=i+1

Y3
i jµAi,3µA j,3 +

3
2

N∑
i=1

N∑
j=1
j,i

Y2
i jY j jµAi,2µA j,4 + 6

N−1∑
i=1

N∑
j=i+1

YiY jYi jµAi,2µA j,2

+ 3Y(µA)
N−1∑
i=1

N∑
j=i+1

Y2
i jµAi,2µA j,2 + 3

N∑
i=1

N∑
j=1
j,i

YiYi jY j jµAi,2µA j,3 + 3
N∑

i=1

N∑
j=1
j,i

YiY2
i jµAi,3µA j,2

− 3µY∗σ2
Y∗ − µ

3
Y∗ .

We can then use the expression of σ2
Y∗ from previous to compute νY∗ = µY∗,3/σ3

Y∗ .

E Gains from Trade in Open Economies and Relation to

ACR

Arkolakis, Costinot, and Rodrı́guez-Clare (2012), henceforth ACR, consider an open-
economy model with no intermediate inputs and a single factor of production per country.
They impose some macro-level restrictions, and prove a powerful characterization of the
gains from trade. Namely, they assume that (1) trade is balanced, (2) profits are a constant
share of revenues, and (3) import demand system is CES. Using these assumptions, they
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show that the gains from trade, as measured by the change in real income associated with
going to autarky, is given by the reciprocal of the domestic expenditure share raised to the
reciprocal of the trade elasticity. The ACR result, and its generalizations (summarized in
Costinot and Rodriguez-Clare, 2014), suggest that one can quantify the gains from trade
without needing to directly estimate the size of the trade shock.

We now show how under certain conditions, changes in iceberg trade costs in an open-
economy model can be recast as productivity shocks in an associated closed-economy
model. This then allows us to use our results to study the second-order effects of trade
shocks. For simplicity, we work with a one-factor model (like ACR), but these results
can be extended to the case of multiple factors. We also restrict ourselves to nested-CES
economies in standard form.

We start by associating a fictitious nested-CES domestic closed-economy model to the
true nested-CES open-economy model, both in standard form. The closed economy has
the same set C of domestic producers as the open economy and the same elasticities of
substitution, but its input-output matrix Ωc is different because each domestic producer
only sources from other domestic producers, and not from foreign producers:

Ωc
i j ≡

Ωi j∑
k∈C Ωik

,

where C denotes the set of domestic producers. The domestic IO matrix has an associated
domestic Leontief-inverse matrix

Ψc
≡ (1 −Ωc)−1.

We normalize the price of the domestic factor to one. For each producer i ∈ C, in
response to a change in iceberg trade costs, we have

d log pi =
∑
j∈C

Ωc
i jd log p j +

d logλic

θi − 1
,

where λic is the domestic cost share of producer i. The second term in this summand
follows from Feenstra (1994), and is also at the heart of ACR. The solution of this system
of equations is

d log pi =
∑
j∈C

Ψc
i j

d logλ jc

θ j − 1
.
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This allows us to compute welfare gains

d log Yc = −
∑
i∈C

bc
i d log pi = −

∑
i∈C

∑
j∈C

bc
i Ψ

c
i j

d logλ jc

θ j − 1
= −

∑
j∈C

λc
j

d logλ jc

θ j − 1
, (41)

where
λc

i ≡

∑
j∈C

bc
jΨ

c
ji.

Hence the effects of welfare of a change in trade costs in the true open-economy
model are identical to the effects on aggregate output of a set of productivity shocks
−d logλic/(θi − 1) to each producer i in the associated fictitious domestic economy. This
result is not only true locally but also globally for the integrated version of the shocks
(λic/λic)1/(1−θi).

The first-order effects of the shocks are given by (41). It is straightforward to leverage
our results to characterize the effects of these shocks up to the second order. When (41)
can be integrated in closed form, we get a global expression like the one derived by ACR.
But in general, this is impossible outside of special cases resembling those underpinning
our network-irrelevance result in Corollary 1 (see also Footnote ??). The baseline ACR
specification falls in this category: it has a single sector and no intermediate goods. In this
case λc = 1, so we can integrate (41) to get

Yc

Y
c =

(
λc

λc

) 1
1−θ

,

where λc is the domestic cost share and λc is its steady-state value.
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