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ABSTRACT

We provide a nonlinear characterization of the macroeconomic impact of microeconomic TFP 
shocks in terms of reduced-form non-parametric elasticities for efficient economies. We also 
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equilibrium. In this sense, the paper extends the foundational theorem of Hulten (1978) beyond 
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play a crucial role are: structural elasticities of substitution, network linkages, structural returns to 
scale, and the degree to which factors can be reallocated. Higher-order terms are large and 
economically interesting: they magnify negative shocks and attenuate positive shocks, resulting 
in an output distribution that is asymmetric (negative skewness), fat-tailed (excess kurtosis), and 
has a lower mean. They explain how small microeconomic shocks to critical sectors can have a 
large macroeconomic impact. To give a sense of magnitudes: in our benchmark calibration, 
output losses due to business cycle fluctuations are 0:6% of GDP, an order of magnitude larger 
than the cost of business cycles calculated by Lucas (1987), and are entirely due to a reduction in 
the mean of GDP because of nonlinearities in production; and accounting for second-order terms 
increases the estimated impact of the price shock to the critical sector of oil in the 1970s from 
0:7%to 2:4% of world GDP.
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1 Introduction

The foundational theorem of Hulten (1978) states that for e�cient economies and under

minimal assumptions, the �rst-order impact on output of a TFP shock to a �rm or an

industry is equal to that industry or �rm's sales as a share of output. This surprising result,

and related results in other �elds like trade1, have led macroeconomists to de-emphasize

the role of microeconomic production structures in macroeconomics. After all, if the sales

of a �rm tell us the macroeconomic impact of a shock, and we directly observe these sales,

then we need not concern ourselves with the details of the underlying microeconomic

structure that gave rise to these sales.

A stronger form of this irrelevance argument suggests that we can also rule out mi-

croeconomic sources for aggregate 
uctuations. If we can write aggregate quantities as

a weighted average of individual-level data, Lucas (1977) and others, argue that idiosyn-

cratic changes cannot explain changes in the aggregates. Since the economy consists of

millions of workers and �rms, the law of large numbers implies that idiosyncratic shocks

to individual units should average out to zero with near-certainty, as long as the weights

we use are su�ciently close to zero. However, in order to make this argument, we need

to be able to write aggregates as a weighted average of individual quantities. Hulten's

theorem gives a formal justi�cation for this average as a �rst-order approximation and

shows that the appropriate weights are observed expenditure shares. This is called Domar

(1961) aggregation, and not only is it of theoretical interest, but it also underlies much of

national accounting.

Recently, an active theoretical and empirical literature has brought this long-held con-

viction under renewed scrutiny. Broadly speaking, there have been three di�erent ways

in which the diversi�cation argument has been challenged. The �rst branch questions the

idea that the Domar weights are small in practice, the second points out that variance

may not be the most interesting moment of GDP to focus on, and the last branch shows

that in the presence of frictions, Hulten's theorem need not hold.

In this paper, we use a new line of attack on the diversi�cation argument: we challenge

the �rst-order approximation itself. We show that Hulten's theorem, powerful as it is, can

in practice be very fragile due to signi�cant nonlinearities in how shocks are mapped to

output. We provide a reduced-form characterization of the second-order terms, and link

these to deep parameters using a relatively general structural model. These second-order

1See e.g. Burstein and Cravino (2015).
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terms are shaped by structural elasticities of substitution, network linkages, structural

returns to scale, and the degree to which factors can be reallocated, in a way that we

precisely characterize. Although we maintain a focus on the impact of idiosyncratic shocks,

we demonstrate that our results have important implications for the impact of correlated

shocks, the average performance of the economy, and the shape of the distribution of

output. These nonlinearities in production generate losses from business cycle 
uctuations,

and these losses are an order of magnitude larger than the ones owning to risk aversion

identi�ed by Lucas (1987).

Before describing our contribution in more details, we situate our work in the literature

by brie
y summarizing the other three branches. Seminal papers in the �rst branch by

Gabaix (2011) and Acemoglu et al. (2012) challenge the idea that the expenditure shares

are, in practice, close to zero. Gabaix (2011) points to the existence of very large, or in

his language granular �rms, as a possible source of aggregate volatility. If there exist very

large �rms, then shocks to those �rms will not cancel out with shocks to much smaller

�rms, resulting in aggregate 
uctuations. Acemoglu et al. (2012), working with a Cobb-

Douglas model in the spirit of Long and Plosser (1983), observed that in an economy with

input-output linkages, the equilibrium size of �rms will depend on the shape of the input-

output matrix. Central suppliers will be weighted more highly than peripheral �rms,

and therefore, shocks to those central players will not cancel out with shocks to small

�rms.2 Carvalho and Gabaix (2013) show how Hulten's theorem can be operationalized

to decompose the sectoral sources of aggregate volatility.

The second type of objection to the diversi�cation argument is due to Acemoglu et al.

(2017) who argue that if the Domar weights are fat-tailed and if the underlying idiosyn-

cratic shocks are fat-tailed, then GDP can exhibit non-normal behavior. Under these

conditions, they argue that the variance of GDP is the wrong moment to focus on. Stated

di�erently, GDP can inherit tail risk from idiosyncratic tail risk if the distribution of the

Domar weights is fat-tailed. Our paper strengthens, but is distinct from, this point. We

�nd that, for the empirically relevant range of parameters, the response of output to shocks

is signi�cantly asymmetric. Therefore, the nonlinearity inherent in the production struc-

ture can turn even symmetric thin-tailed sectoral shocks into rare disasters endogenously.

This means that the economy could plausibly experience aggregate tail risk without either

fat-tailed shocks or fat-tailed Domar weights.

2A related version of this argument was also advanced by Horvath (1998), who explored this issue quan-
titatively with a more general model in Horvath (2000). Separately, Carvalho (2010) also explores how the
law of large numbers may fail under certain conditions on the input-output matrix.
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The last line of objection to the diversi�cation argument is typi�ed by Baqaee (2016),

Grassi (2017), and Bigio and La'O (2016) who show that the presence of frictions can cause

Hulten's theorem to fail and that this failure may be extreme. Bigio and La'O (2016)

work with a Cobb-Douglas model where �nancing constraints distort the equilibrium,

and this distortion means that the Domar weights are no longer the correct weights.3

Baqaee (2016) works with a model with scale economies and imperfect competition. In his

environment, Hulten's theorem fails, and the model's propagation and di�usion properties

change. Grassi (2017) shows that the interaction of TFP shocks with the pricing power of

�rms can a�ect the volatility of GDP.

Stepping aside from the diversi�cation argument, Hulten's theorem has, more gener-

ally, been something of a bugbear for the burgeoning literature on production networks,

since it implies that, as long as we can observe the distribution of sales in the economy,

to a �rst-order approximation, we do not need to concern ourselves with the underlying

microeconomic details. In other words, from a macroeconomic perspective, it does not

matter whether a �rm is large because it produces a crucial intermediate input for other

�rms or because it sells a lot directly to the household. So, for example, up to a �rst order

through the lens of Hulten's theorem, shocks to Walmart and shocks to the electricity pro-

duction industry, the sales of which both currently stand at about 4% of U.S. GDP, have an

equal impact on GDP.4 Furthermore, under Hulten's theorem, it does not matter whether

a shock hits in a fragile, complicated ecosystem with high degrees of complementarity or

in a robust, simple, and highly substitutable economy.

Because of this, in a recent survey article Gabaix (2016) writes \networks are a partic-

ular case of granularity rather than an alternative to it." This has meant that researchers

studying the role of networks have either moved away from e�cient models, or that they

have retreated from aggregate volatility and turned their attention to the microeconomic

implications of networks, namely the covariance of 
uctuations between di�erent indus-

tries and �rms.5 However, models with the same sales distributions are only equivalent

3Altinoglu (2016) and Liu (2017) also investigate the impact of credit constraints in production economies
with network structures.

4In Appendix D we show that this �rst-order approximation can be arbitrarily bad using a stylized model
with an energy input.

5For instance, Foerster et al. (2011), Atalay (2016), Di Giovanni et al. (2014), and Stella (2015) investigate
the importance of idiosyncratic shocks propagating through networks to generate cross-sectional covariances,
but they refrain from analyzing the impact of these shocks on output. Atalay (2016) is particularly relevant
in this context, since he �nds that structural elasticities of substitution in production play a powerful role
in generating covariance in sectoral output. Our paper complements this analysis by focusing instead on the
way complementarities a�ect GDP.
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up to the �rst order, and in this paper, we highlight the fragility of this �rst-order ap-

proximation. In particular, we argue that the agenda to trace the network origins of

aggregate 
uctuations (see Acemoglu et al., 2012) extends beyond the way networks a�ect

steady-state Domar weights.

We proceed as follows. In Section 2, we derive a general formula describing the second-

order impact on output of idiosyncratic shocks in terms of non-parametric su�cient statis-

tics: reduced-form macro elasticities of substitution and input-output multipliers.6 We

also explain the implications of this formula for the impact of correlated shocks and for the

average performance of the economy. We then show how these su�cient statistics depend

on deep structural parameters, taking into account general equilibrium forces.7;8 To do so,

in Section 3, we set up a relatively general structural production model, which allows for

any arbitrary network of nested CES production functions, heterogenous returns to scale

in factors, and labor reallocation. In Sections 4, 5, and 6, using some stylized speci�cations

of the model, we dig into the the roles of structural elasticities of substitution, returns to

scale, factor reallocation, and intermediate inputs.9 In Section 7, we derive an industry-

level network-centrality measure for the special case where every industry has constant

returns to scale. In Section 8, we perform some illustrative exercises to investigate the

quantitative implications of our results. First, using a calibrated structural multi-sector

model, we �nd that the higher order terms can signi�cantly degrade the average perfor-

mance of output, reducing it by 0:6% in our benchmark calibration. Furthermore, output

in this model is also negatively skewed, and has excess kurtosis even though our underly-

ing technology shocks are lognormal. In addition, we �nd that negative shocks to crucial

6Studying the second-order terms is the �rst step in grappling with the nonlinearities inherent in mutli-
sector models with production networks. In this sense, our work illustrates the macroeconomic importance of
local and strongly nonlinear interactions emphasized by Scheinkman and Woodford (1994). Other related
work on nonlinear propagation of shocks in economic networks includes Durlauf (1993), Jovanovic (1987),
Ballester et al. (2006) Acemoglu et al. (2015), Elliott et al. (2014), and especially Acemoglu et al. (2016).

7Our work is connected to the literature showing that macro and micro elasticities can, in principle, be
very di�erent. Houthakker (1955) is the archetypal example, though more recent work by Ober�eld and
Raval (2014) and Beraja et al. (2016) also �ts into this category, albeit their focus is very di�erent from ours.
Indeed, the reduced-form su�cient statistics we de�ne, the macro elasticity of substitution and the input-
output multiplier, are general equilibrium objects and cannot be directly elicited using simple exogenous
microeconomic variation, but can be estimated by combining such variation with a structural model.

8Some of our results are also related to the literature on the Le Chatelier principle in economics, like
Samuelson (1960) and Milgrom and Roberts (1996), since we show that general equilibrium forces can
increase e�ective elasticities of substitution by reallocating inputs and factors in response to shocks.

9Some of these results are closely related to the literature on growth and misallocation, especially Jones
(2011), Jones (2013), and Kremer (1993), who have emphasized the importance of reallocation and comple-
mentarities in production for explaining the cross-sectional variation in aggregate GDP and TFP.
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industries, like \oil and gas", can have a signi�cantly larger negative e�ect on output than

negative shocks to larger but less crucial industries. Interestingly, the relative ranking of

which industries are more important depends on both the sign and the size of the shock.

Second, we derive and use a simple nonparametric formula, taking into account the ob-

served change in the Domar weight for crude oil, to analyze the impact of the energy crisis

of the 1970s up to the second order. We �nd that second-order terms ampli�ed the impact

of the oil price shocks from 0:7% to 2:4% of output.

Our results suggest that the Cobb-Douglas functional form, commonly used in the pro-

duction network, growth, and multisector macro literatures, is a very special knife-edge

case.10 For this special case, the second-order terms are identically equal to zero, and

therefore, Hulten's theorem is globally accurate. This means that the issues of comple-

mentarity, substitutability, returns to scale, factor reallocation, and network structure,

which play a key role in our results, all disappear when one works with a Cobb-Douglas

model. The empirical literature on production networks, like Atalay (2016), Boehm et al.

(2015), and Barrot and Sauvagnat (2016) all �nd that structural elasticities of substitution

in production are signi�cantly below one, and sometimes very close to zero, across inter-

mediate inputs, and between intermediate inputs and labor (at business cycle frequencies).

Our results suggest we should be wary of Cobb-Douglas functional forms, or �rst-order

approximations, under these scenarios.

This paper is focused on the implications of nonlinear production for business cycles.

Hence, our quantitative exercises deal with within-country cyclical variations. However,

our theoretical results can be applied just as easily to cross-country di�erences in output

and TFP. The fact that we �nd lower TFP in crucial industries, like energy production,

can have large e�ects on output may also help uncover the microeconomic origins of the

large observed di�erences in cross-country output and aggregate TFP.

2 General Framework

First, we set up a nonparametric framework that demonstrates both Hulten's theorem as

well as our second-order approximation. Consider a perfectly competitive economy with

10A mixture of analytical tractability, as well as balanced-growth considerations, have made Cobb-Douglas
the canonical production function for networks (Long and Plosser, 1983), multisector RBC models (Gomme
and Rupert, 2007), and growth theory (Aghion and Howitt, 2008). Recent work by Grossman et al. (2016)
shows how balanced growth can occur without Cobb-Douglas.
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a representative consumer whose consumption-bundle metric is

C = C (c1; : : : ; cN) ;

where ci is the household's consumption of good i. Aggregate consumption C is homoge-

nous of degree one and the household consumes a nonzero amount of every good. The

budget constraint is
NX
i=1

pici =
MX
i=1

wili +
NX
i=1

�i;

where pi is the price and �i is the pro�t of production unit i. For each labor type i,

there is an endowment of labor li which is supplied inelastically and competitively on a

spot market with a wage wi. These labor markets may be common across producers or

good-speci�c. Note that, in principle, ci could represent consumption of di�erent varieties

of goods from the same industry, goods from di�erent industries, or even goods in di�erent

periods of time, regions, or states of nature. Similarly, ci could stand in for di�erent types

of leisure, thereby allowing for endogenous labor supply with a disutility of labor.

We interpret C as a cardinal measure of output and note that it is the correct measure

of the household's \standard of living" in this model. We implicitly rely on the existence of

complete �nancial markets, and ex ante symmetry of endowments, to ensure the existence

of a representative consumer. Although the assumption of a representative consumer is

not strictly necessary for the results in this section, it is a standard assumption in this

literature since it allows us to unambiguously de�ne and measure changes in real GDP

without contending with the issue of the appropriate price index.11

Each good i is produced by competitive �rms using production function

yi = AiFi(li1; : : : ; liM ; xi1; : : : ; xiN);

where Ai is Hicks-neutral technology, xij are intermediate inputs of good j used in the

production of good i, and lij is labor type j used by i. Once again, in principle, these

production functions may be intertemporal or regional, however, for most of the analysis

we interpret them as industries. Our assumption that labor markets may be segmented

11In general, with heterogeneous households, without further assumptions on preferences, there is no
uncontroversial way to boil down welfare into a single number. Although recent papers have relied on
the existence of a representative consumer, Hulten (1978) instead derives his result by de�ning changes in
real GDP as changes in �nal goods consumption holding prices �xed, which corresponds to the Laspeyres
quantity index. Our results can be easily extended to cover this alternative set up.
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is motivated by increasing evidence, like Acemoglu et al. (2016), Autor et al. (2016), and

Notowidigdo (2011), that labor is not easily reallocated across industries or regions after

shocks. Note that factor-augmenting technology shocks are a special case of this set-up

since such shocks can always be rewritten as Hicks-neutral shocks simply by relabeling the

industry's factor input as a separate industry. The pro�ts earned by the producer of good

i are

�i = piyi �
MX
k=1

wklik �
NX
j=1

pjxij:

Competitive equilibrium is de�ned in the usual way, where all agents take prices as

given, and markets for every good and every type of labor clears. De�ne C(A1; : : : ; AN)

to be the equilibrium aggregate consumption as a function of the underlying technology

shocks. Throughout the paper, unless otherwise speci�ed, we refer to C(1; : : : ; 1) as the

steady-state output of the model, and we derive results regarding the e�ects of shocks in

the vicinity of this steady state. The relevant derivatives are all applied at (A1; : : : ; AN) =

(1; : : : ; 1).

Since this economy is e�cient, an application of the envelope theorem has the following

surprising but powerful implication.

Theorem 2.1 (Hulten). Let �i denote industry i's sales as a share of output. Then

@ logC

@ logAi
= Ci

Ai

C
= �i;

where Ci = @C=@Ai.

In other words, to a �rst order, the underlying microeconomic details of the structural

model are completely irrelevant as long as we observe the equilibrium sales distribution.12

Crucially, since Hulten's theorem is a consequence of the envelope theorem, as long

as the steady state is e�cient, it does not matter whether or not factors or inputs are

reallocated in response to a shock. Since this is a �rst-order approximation, it captures all

the relevant information for both idiosyncratic and correlated shocks | linearity implies

that the impact of a common shock is simply the summation of the impact of idiosyncratic

shocks.

Finally, in the special case where Ai is a labor-augmenting shock, the relevant �i

corresponds to an industry's wage bill as a share of GDP. This is because if we relabel the

12This irrelevance result only holds for technology shocks. Even when Hulten's theorem is globally true,
demand shocks will have di�erent e�ects, as shown by, for example Baqaee (2015).
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labor input of industry i as a new industry, we can represent a labor-augmenting shock to

i's labor as a Hicks-neutral shock to this new industry. Applying Hulten's theorem would

then imply that the output elasticity of a shock to i's labor are the sales of i's labor as a

share of GDP | in other words, the wage bill of i as a share of GDP.

Theorem 2.1 has long been a cornerstone of national accounting, starting with Domar

(1961), since it justi�es the creation of aggregate measures of inputs like capital and

labor, as well as the construction of aggregate TFP from disaggregated data (see Hulten,

2001). More recently, it has also become prominent in theoretical work: it underlies

the aggregation results used in the literature on the microeconomic origins of aggregate


uctuations (see Gabaix, 2011; Di Giovanni et al., 2014; Acemoglu et al., 2017; Carvalho

and Gabaix, 2013) and the microeconomic origins of cross-country TFP di�erences (see

Jones, 2011). It also emerges naturally as the correct measure of network centrality in

perfectly competitive models such as Acemoglu et al. (2012).

In this paper, we highlight the fragility of this aggregation result and show that for

quantitatively relevant cases, the �rst-order approximation can be misleading. In this

section we provide a characterization of the second-order e�ects in terms of reduced-form

elasticities that we de�ne below. Later on, we show how these reduced-form elasticities

arise from structural primitives using a structural model.

First, recall that for any homogeneous of degree one function f(A1; : : : ; AN), the Mor-

ishima (1967) elasticity of substitution is

1

�ij
= �

d log(MRSij)

d log(Ai=Aj)
= �

d log(fi=fj)

d log(Ai=Aj)
; (1)

whereMRSij is the ratio of partial derivatives with respect to Ai and Aj, and fi = @f=@Ai.

This is a generalization of the two-variable elasticity of substitution introduced by Hicks

(1932) and analyzed in detail by Blackorby and Russell (1989).

When the homothetic function f corresponds to a CES utility function and Ai to

quantities, �ij is the associated elasticity of substitution parameter. However, we do not

impose this interpretation, and instead treat it as a reduced-form measure of the curvature

of isoquants. By analogy, and with a slight abuse of language, we de�ne the reduced-form

elasticity of substitution for non-homothetic functions in a similar fashion.

Definition 2.1. For an output function C : RN ! R, de�ne the macro elasticity of

substitution as
1

�ij
� �

d log(MRSij)

d log(Ai)
= �

d log(Ci=Cj)

d log(Ai)
:
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The macro elasticity of substitution �ij is interesting because it measures changes in

the relative sales shares of i and j when there is a shock to i. This follows from the fact

that
d log(�i=�j)

d logAi
=

d log[(CiAi)=(CjAj)]

d logAi
=

d log(Ci=Cj)

d logAi
+ 1 = 1�

1

�ij
; (2)

where the �rst equality applies Hulten's theorem. Since the second-order impact of a

shock to i can be measured in terms of the rate of change in the sales share of i, the macro

elasticity of substitution will turn out to be an important su�cient statistic. A decrease in

the productivity of i causes �i=�j to increase when �ij 2 (0; 1), and to decrease otherwise.

We say that a j is a macro-complement for i if �ij 2 (0; 1), and a macro-substitute

otherwise. When f is a CES aggregator, then this coincides with the standard de�nition

of gross complements and substitutes. As usual, when f is Cobb-Douglas, i and j are

neither substitutes nor complements. In general, macro-substitutability is not re
exive.

The second object we need to de�ne is the following.

Definition 2.2. De�ne the input-output multiplier to be

� �
NX
i=1

d logC

d logAi
=

NX
i=1

�i:

When � > 1, total sales of the shocked factors exceed total income, a symptom of in-

termediate inputs. The impact of a uniform technology shock is correspondingly ampli�ed

due to the fact that goods are reproducible. Loosely speaking, � captures the percentage

change in output in response to a uniform one-percent increase in technology. In this

sense, it captures a notion of returns-to-scale at the aggregate level.

The input-output multiplier is called the intermediate input multiplier in a stylized

model by Jones (2011), but it also appears under other names in many other contexts. It

is also related to the network in
uence measure of Acemoglu et al. (2012), the granular

multiplier of Gabaix (2011), international fragmentation measure of Feenstra and Hanson

(1996), the production chain length multiplier in Kim et al. (2013), and even the capital

multiplier in the neoclassical growth model.13 It also factors into how the introduction

of intermediate inputs ampli�es the gains from trade in Costinot and Rodriguez-Clare

(2014). Although these papers feature multiplier e�ects due to the presence of round-about

production (either via intermediate inputs or capital), they do not take into account the

13This follows from the fact that we can treat capital as an intertemporal intermediate input. For more
details on how capital can be thought of in this framework, see Hulten (2001).
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fact that this multiplier e�ect can respond to shocks. This is either because they assume

constant factor shares or because they focus on �rst-order e�ects.

Having de�ned the macro elasticities of substitution and the input-output multiplier,

we are in a position to characterize the second-order terms. We start by investigating the

impact of an idiosyncratic shock.

Idiosyncratic Shocks

Theorem 2.2. Suppose that C is homogenous of degree �, then

d2 logC

d logA2
i

=
�i
�

X
j,i

�j

 
1�

1

�ij

!
:

When C is not homogeneous

d2 logC

d(logAi)2
=
�i
�

X
j,i

�j

 
1�

1

�ij

!
+ �i

@ log �

@ logAi
:

Proof. Di�erentiate
P

i �i = � to get

�i
d log �i
d logAi

= �
d log �

d logAi
�
X
j,i

�j
d log �j
d logAi

;

= �
d log �

d logAi
�
X
j,i

�j
d log �j=�i
d logAi

�
X
j,i

�j
d log �i
d logAi

;

which using (2), we can rewrite as

�i
d log �i
d logAi

= �
d log �

d logAi
+
X
j,i

�j

 
1�

1

�ij

!
� (� � �i)

d log �i
d logAi

;

Rearrange this to get

�
d log �i
d logAi

= �
d log �

d logAi
+
X
j,i

�j

 
1�

1

�ij

!
: (3)
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Finally, Theorem 2.1 implies that

d2 logC

d log(Ai)2
= �i

d log �i
d logAi

:

Substitute (3) into the expression above to get the desired result. Lastly, if C is homoge-

neous, Euler's theorem implies that

X
i

dC

dAi

Ai

C
=
X
i

�i = �;

hence, d log �=d logAi = 0. �

In words, the second-order impact of a shock to i is equal to the change in i's sales

share �i. The change in i's share of sales is the change in the aggregate sales to GDP ratio,

minus the change in the share of sales of all other industries. The former is measured

by the elasticity of the input-output multiplier �, while the latter depends on the macro

elasticities of substitution. Collectively, the sales shares �i, the reduced-form elasticities �ij

and the reduced-form elasticity of the input-output multiplier d log �=d logAi are su�cient

statistics for how output responds to technology shocks up to a second order.

This result tells us that Hulten's approximation is globally accurate if reduced-form

elasticities are unitary �ij = 1 for every j and if the input-output multiplier � is in-

dependent of the shock Ai. We shall see that this amounts to assuming Cobb-Douglas

production and consumption functions. At the opposite extreme, the output function is

nearly singular if �ij � 0 for any j. Hence, �rst-order approximations will perform more

poorly as �ij approaches zero, either from below or from above. These are the cases of

extreme macro-complementarity or extreme macro-substitutability. In the limiting case

j�ijj ! 0, the �rst-order approximation is completely uninformative even for arbitrarily

small shocks. Finally, the �rst-order approximation also behaves worse when j�ijj ! 1,

although the size of the second-order terms remains bounded in this case.14

Therefore, although the Cobb-Douglas special case is very popular in the literature,

it constitutes a very special case where the second-order terms are all identically zero.15

There is increasing evidence for strong complementarities in supply chains, and Theorem

2.2 indicates that Cobb-Douglas functional forms may be a poor guide to understanding

14In Appendix B, we derive a tight bound on the size of the error from the �rst-order approximation for
a special case.

15See for example Acemoglu et al. (2012), Long and Plosser (1983), Bigio and La'O (2016), Acemoglu
et al. (2017), Bartelme and Gorodnichenko (2015).
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the behavior of the economy in the presence of these complementarities. Finally, Theorem

2.2 also shows that there is an interaction between the macro elasticity of substitution

between i and j and the size of i and j. In the extreme case where either �i or �j is equal

to zero, the macro elasticity of substitution between the two is irrelevant.

Theorem 2.2 also shows that deviations from Hulten's theorem need not be restricted

to non-unitary macro elasticities of substitution, they can also arise from variations in

the input-output multiplier �. Since the input-output multiplier is the ratio of sales to

GDP, changes in the input-output multiplier can be interpreted as another kind of macro

elasticity of substitution: namely the substitution between the underlying factors (whose

payments are GDP) and the reproducible goods (whose payments are sales). If there is a

strong tendency to substitute between labor and intermediate inputs in response to shocks,

then this will hamper the accuracy of the �rst-order approximation.

The second-order approximation to the output function can then be written as

log(C) � log(C) + �i log(Ai) +
�i
�

X
j,i

�j

 
1�

1

�ij

!
(log(Ai))

2 + �i
@ log �

@ logAi
(log(Ai))

2 ; (4)

where C is C evaluated at the steady-state technology values. When goods are macro-

complements, the second-order terms amplify the e�ect of negative shocks and attenuate

the e�ect of positive shocks relative to the �rst-order approximation. Instead when goods

are macro-substitutes, the second-order approximation attenuates the negative shocks and

ampli�es the positive shocks instead. A similar intuition holds for the input-output mul-

tiplier: if the input-output multiplier is increasing, then the second-order approximation

ampli�es positive shocks and dampens negative shocks, and if this multiplier is decreasing,

then the opposite is true.

Correlated Shocks

To consider shocks to several industries at once, we must extend these results to cover the

o�-diagonal terms in the Hessian.

Proposition 2.3. Let � be the intermediate-input multiplier, or the ratio of total sales

to output, then

d2 logC

d logAi d logAj
=
�i
�

X
k,j

�k

 
1�

1

�jk

!
+ �i

@ log �

@ logAj
� �i

 
1�

1

�ji

!
: (i , j)
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This result shows that the cross-partials are non-trival, but are characterized by the

same collection of su�cient statistics as the second-derivatives. Even in the simplest case,

where �ij = � for all i and j and � is constant, the second-order e�ect of a common shock is

not simply twice the second-order impact of an idiosyncratic shock.16 We revisit the issue

of how common shocks to di�erent industries may interact with one another in Appendix

D.

Macro Moments

Finally, we can use the second-order terms to approximate an economy's macroeconomic

moments. First, we begin by looking at average performance.

Proposition 2.4 (Average Performance). Suppose that (logAi)
N
i=1 is a random vector

with covariance matrix � and sij is the ijth element of �. Then

E(log(C=C)) �
1

2

NX
i=1;j,i

0
@�i
�

X
k,j

�k

 
1�

1

�jk

!
+ �i

@ log �

@ logAj
� �i

 
1�

1

�ji

!1
A sij+NX

i

�isii:

In the special case where the shocks are i.i.d, � = s2I and this simpli�es to

E(log(C=C)) �
1

�

s2

2

X
i

�i
X
j

�j

 
1�

1

�ij

!
+
s2

2

X
i

�i
d log �

d logAi
:

The logic of proposition 2.4 is best seen by considering its absurd limit: we could have

two economies with identical sales distributions and identical output evaluated at the

steady-state technology. Up to a �rst order, these two economies are the same. However,

if one of these economies has �ij = 1 and the other has �ij > 0 arbitrarily close to 0, then

in the presence of any volatility s > 0, to a second order, the �rst economy will produce

C on average whereas the second economy will produce nothing.

Proposition 2.4 implies that 1
2
d2 logC=d logA2

i represents both the second-order impact

of a shock to i on GDP, and the log point di�erence between expected output and its

certainty equivalent in units of variance. Loosely speaking, we can interpret this as the

percent change in output relative to its certainty equivalent in units of variance, with the

caveat that such a description is only approximately true.

16We can also use these ideas to capture the impact of an aggregate shock to the economy, since an
aggregate shock is simply a common shock that a�ects all industries. If A is an aggregate TFP shock, then
d2 logC
d logA2 = �

P
i

d log �
d logAi

: So, for aggregate shocks, deviations from Hulten's theorem can only come from the
input-output multiplier.
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The second-order terms will also shape other moments of the distribution of GDP. To

see this, suppose that the second-order terms are negative, corresponding to the case with

high-degrees of complementarity. In this case, the distribution of GDP will endogenously

be skewed to the left and fat-tailed, even if the technology shocks are symmetric and thin-

tailed. This follows from the fact that the second-order terms magnify negative shocks and

attenuate positive shocks, which makes the distribution skewed. Furthermore, since the

negative shocks are magni�ed, this also fattens the left tail, giving rise to excess kurtosis.

To illustrate this intuition, let logAi be a normal random variable with mean 0 and

variance s2. Then the skewness of log GDP is

E

0
@
 
log(C=C)� �c

�C

!3
1
A � 1

�3C

d2 logC

d logA2
i

2
4s6

 
d2 logC

d logA2
i

!2

+ 3�2is
4

3
5 ;

where

�c = E(log(C=C)) =
1

2

d2 logC

d logA2
i

s2;

and

�2c = V ar(log(C=C)) =

"
�2i + 2

�
�c
s

�2#
s2:

Hence log output is negatively skewed if, and only if, the second-order term is negative.

This asymmetry also helps explain why average log GDP is lower than its deterministic

steady state, since GDP is subject to larger recessions than booms. Next, we consider

the thickness of tails, as measured by kurtosis. In this case, a second-order approximation

gives

E

0
@
 
log(C=C)� �c

�C

!4
1
A � 3

 
1 +

�
�c
s

�2 [22(�c=s)2 + 7�2i ]

(�2i + 2(�c=s)2)
2

!
� 3:

So, output has excess kurtosis if, and only if, the second-order terms are nonzero.

To summarize, for a given variance of output, relatively more of the variance is due to

negative, infrequent, extreme deviations, as opposed to symmetric, frequent, and modestly

sized deviations (relative to a normal distribution). In Section 8 we revisit these issues

with a calibrated model and show that they are quantitatively signi�cant.

Welfare Costs of Business Cycles

For the majority of the paper, we focus on the performance of logGDP , since this gives

rise to unitless elasticities. This assumption is innocuous for welfare questions. One may
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imagine that the losses from uncertainty that we identify depend on the concavity of the log

function. In other words, a consumer with log utility in aggregate consumption prefers a

mean-preserving reduction in uncertainty even when the GDP function is linear. However,

as shown by Lucas (1987), such losses are extremely small in practice. The much larger

e�ects we identify are nonlinearities in aggregate consumption itself, which are present even

when the utility function is linear in aggregate consumption. The following proposition

formalizes this intuition and shows that the Lucas welfare losses from risk-aversion, and

the losses we identify from nonlinear production, do not interact with one-another up

to a second-order approximation. In fact, it could easily be the case that a risk-averse

household prefers the economy to be subject to stochastic shocks if the economy features

macro-substitutability and the second-order terms are positive.17

Proposition 2.5. Let u : R ! R be a constant relative risk aversion utility function

with parameter 
 and let C : RN ! R be the GDP function. Suppose that TFP shocks

have mean A and a diagonal covariance matrix with kth diagonal element s2k. Then

E(u(C))� u(C(A)) = �
1

2



NX
k

�2ks
2
k +

1

2

NX
k

@2C

@A2
k

s2k:

The �rst term, which is quantitatively small, is the traditional Lucas cost arising from

curvature in the utility function. The second term, which is quantitatively large, is due

to the curvature inherent in production. Proposition 2.5 is stated for CRRA utility and

idiosyncratic shocks for expositional clarity. In the appendix, we prove the result for more

general utility functions and shocks.

3 Structural Model

Theorem 2.2 implies that the macro elasticities of substitution �ij and the elasticity of the

input-output multiplier d log �=d logAi are su�cient statistics for the second-order impact

of shocks. However, these su�cient statistics are reduced-form elasticities, and unlike �i

and �, they are not readily observable. Furthermore, since they are general equilibrium

17These ideas also relate to the concepts of fragility, resilience, and antifragility in Taleb (2013). In
Section 3, we �nd that economies with immobile factors and structural complementarities are fragile, in
the sense of having large negative second derivatives, whereas economies with mobile factors and structural
complementarities are resilient, in the sense of having smaller negative second derivatives. However, we �nd
that economies with mobile factors and structural substitutabilities are antifragile in the sense that their
average performance improves with uncertainty.
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objects, they cannot be identi�ed through exogenous microeconomic variation. So, on the

one hand, while careful empirical work can identify structural elasticities in production,

the leap from micro-estimates to macro-e�ects is hazardous. On the other hand, while the

macro elasticities could, in principle, be identi�ed using exogenous macro-variation, such

a reduced-form exercise will be susceptible to a form of the Lucas critique, because the

estimated elasticities could shift in unpredictable ways. This is because the reduced-form

macro elasticities will not necessarily be stable deep parameters. Worse still, plausibly

exogenous macroeconomic variation is notoriously di�cult to come by.

In this section, we make the mapping from structural micro parameters to the reduced-

form macro elasticities explicit for a relatively general class of structural models. This

helps to bridge the gap between estimates of microeconomic structural parameters and

the macroeconomic elasticities of interest. More generally, the structural model shows

that this mapping is highly nontrivial and clari�es some of the general equilibrium forces

which must be accounted for.

Let
C

C
=

 X
k

bk

�
ck
ck

���1
�

! �
��1

;

with X
k

pkck =
X
k

wLk +
X
k

wklk +
X
k

�k;

where we divide labor into an industry-speci�c component lk, which cannot be reallocated

across industries, and a common component Lk, which can be allocated to any industry.

Here, w is the wage for the common labor and wk is the wage for the industry-speci�c

labor. We normalize
P

i bi = 1. Any variable with an overline x is a normalizing constant

denoted in the same units as x.

Let industry k's production function be given by

yk
yk

= Ak

0
BB@ak

0
@
 
Lk

Lk

!�k  lk
lk

!1��k
1
A

�k�1

�k

+ (1� ak)

 
Xk

Xk

! �k�1

�k

1
CCA

�k
�k�1

;

where Ak is a Hicks-neutral shock, and Xk is a composite intermediate input which is

combined with labor with elasticity of substitution �k. The labor input is a geometric

average of industry-speci�c and common labor inputs. Therefore, �k can be interpreted

as a measure of the degree to which industry k's labor can be reallocated. Since lk is
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industry-speci�c, in equilibrium, it is always equal to a constant, and so we can also treat

�k as technological returns-to-scale in labor. These two interpretations are equivalent for

the purposes of this model. As before, this speci�cation includes factor-augmenting shocks

as a special case.

The composite intermediate input Xk is de�ned by

Xk

Xk

=

0
@X

l

!kl

�
xlk
xlk

� "k�1

"k

1
A

"k
"k�1

;

and xlk are intermediate inputs from industry l used by industry k. We normalize
P

k !ik =

1. Market clearing in each market requires that

yk = ck +
X
l

xlk:

The production functions here allow the accommodation of any pattern of nested CES

production functions and networks as a special case.

Proposition 3.1. Let Di log � be the sales elasticities column vector whose jth element

is d log �j=d logAi. Then, at steady state, Di log � can be written explicitly as a func-

tion of observable expenditure shares ai; bi; !ij at steady state, structural elasticities

�; �i; "i, and structural returns to scale �i.

The proof can be found in the appendix. Using this proposition, and equation (2), we

can easily deduce the reduced-form macro elasticities:

d2 logC

d logA2
k

=
d�k

d logAk
=
�k
�

X
j,k

�j

 
1�

1

�kj

!
+ �k

d log �

d logAk
;

with

1�
1

�ij
=

1

�k

d�k
d logAk

�
1

�j

d�j
d logAk

; (5)

and
d log �

d logAi
=

1

�

X
i

d�k
d logAi

: (6)

In what follows, we work with increasingly complex special cases to show the various

channels through which the reduced-form elasticities �ij and � operate, both qualitatively

and quantitatively.
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4 Macro Elasticities of Substitution

In this section, we restrict ourselves to the case with no intermediate inputs. This means

that the input-output multiplier is constant � = 1, and the deviations from Hulten's

theorem only occur due to non-unitary macro elasticities of substitution. Since there are

no intermediate inputs, ak = 1 for every k. We emphasize how the following key structural

parameters shape the macro elasticities of substitution: micro elasticities of substitution

between sectors �, the degree to which labor can be reallocated, and returns to scale in

production.

Di�erent degrees of labor reallocations and returns to scale can be expected depending

on the time scale of the response to shocks. At short horizons, labor and other factors such

as capital are di�cult to adjust, but such adjustments become easier at longer horizons.

Some of these dynamic e�ects can be captured by comparative statics exercise in our

model. We continuously move from no reallocation to full reallocation in labor markets

by considering production functions with di�erent �k 2 [0; 1]. As mentioned before, this

parameter can either be interpreted as decreasing returns to scale in labor, or a geometric

average of mobile and immobile workers, where the immobile workers are residual claimants

of the �rm's revenues net of other costs. Hence, the production function of good k is

ck = AkL
�k
k :

Proposition 4.1. [Limited Labor Reallocation] Consider the following special case

of the structural model in Section 3. Aggregate consumption is CES with micro

elasticity of substitution � and expenditure share bi at steady state. Each good is

produced using labor. Assume uniform labor reallocation/returns to scale � 2 [0; 1]

for every k. Then

�ij =
�(1� �) + �

�(1� �) + � + (1� �)
; �i = bi; � = 1;

d log �

d logAi
= 0:

To build intuition, we �rst consider two polar cases with either �k = 0 for every k or

�k = 1 for every k.

We start with the case in which �k = 0 for every k. This is an endowment economy

where the household simply consumes the output of every industry, and there are no

intermediate inputs. Labor cannot be moved to increase the production of any good,

either because production is simply an endowment or because labor cannot be reallocated

19



across industries in response to shocks. The latter case proxies for a situation where there

are in�nite adjustment costs in reallocating workers across industries. Then we can write

C

C
=

 X
k

bkA
��1
�

k

! �
��1

:

Unsurprisingly, for this special case, the macro and micro elasticity of substitution coincide

�ij = �; �i = bi; � = 1;
d log �

d logAi
= 0:

Theorem 2.2 then implies that

d2 logC

d logA2
i

= bi(1� bi)
�
1�

1

�

�
:

It can immediately be seen that the second-order term changes sign depending on whether

� is greater or less than one. Hence, the second-order term ampli�es negative shocks

and attenuates positive shocks if � < 1 relative to the �rst-order approximation, and the

opposite is true if � > 1. Since � 2 [0;1) this means that � 2 [0;1) for this example.

In the Cobb-Douglas case � = 1, the second-order term is identically equal to zero and

the �rst-order approximation is globally accurate. The quality of the Hulten approximation

deteriorates as we move away from � = 1 in both directions. To understand why, it is

useful to consider the extreme limits � ! 0 and � !1.

We �rst consider the Leontief limit � ! 0 where the �rst-order term becomes com-

pletely uninformative. To understand why this happens, consider how the sales share �i

changes in response to a shock. We write

d log(�i=�j)

d logAi
=

d log(pi=pj)

d logAi
+
d log(yi=yj)

d logAi
=

d log(pi=pj)

d logAi
+
d log(Ai=Aj)

d logAi
:

When labor cannot be reallocated, the ratio of the quantities yi=yj is equal to the exoge-

nously given Ai=Aj. However, close to the Leontief limit, the change in the sales share

of i is very extreme, since the relative price of i to j goes to zero if the shock to i is

positive, and to in�nity if the shock is negative. Intuitively, this is because with extreme

complementarity the scarcest good is the only one that has a positive marginal product.

The extreme reaction of relative prices means that sales shares react very strongly to

productivity shocks, and this means that the deviations from the �rst-order approxima-
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Figure 1: log GDP as a function of productivity log(Ai) in the economy with constant
returns for di�erent values of �.

tion can be extreme. In this world, the second-order approximation ampli�es the impact

of negative shocks and attenuate the impact of positive shocks relative to the �rst-order

approximation.

We then consider the perfect substitutes limit � ! 1. Then negative shocks are

attenuated and positive shocks are ampli�ed, but the e�ect is not nearly so dramatic.

In this case, because goods are perfect substitutes, relative prices are always equal to 1.

Therefore, ratio of the sales of i relative to j will move one-for-one with the ratio of the

endowment of i relative to j. The situation is depicted graphically in Figure 1a.

Having analyzed the case with no labor reallocation, consider now the polar opposite

case, where labor can be costlessly reallocated across industries and be used with constant

returns to scale so that �k = 1 for every k. The macro elasticity of substitution in

this example is not necessarily equal to the structural micro elasticity of substitution in

consumption:

�ij =
1

2� �
; �i = bi; � = 1;

d log �

d logAi
= 0:

Theorem 2.2 then implies that

d2 logC

d logA2
i

= bi(1� bi) (� � 1) :
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As before, � > 1 ampli�es positive shocks and � < 1 ampli�es negative shocks, while

the Cobb-Douglas case � = 1 still ensures that the second-order terms are identically

zero. However, this time, the second-order term becomes singular when the goods are

highly substitutable rather than when they are highly complementary. Once again, we

can unpack this result by noting that

d log(�i=�j)

d logAi
=

d log(pi=pj)

d logAi
+
d log(yi=yj)

d logAi
=

d log(Aj=Ai)

d logAi
+
d log(Ci=Cj)

d logAi
:

The ratio of relative prices is always equal to Aj=Ai, but the quantity of goods produced

is endogenous since labor can be costlessly reallocated.

Contrary to what one may have assumed, a near-Leontief production function is not

su�cient for generating large deviations from Hulten's theorem, as long as factors can

be reallocated freely. With perfect reallocation of workers, the market always allocates

workers to equate marginal products. This means that relative prices re
ect relative pro-

ductivities. So, near the Leontief limit, if i receives a negative productivity shock, workers

are reallocated to that industry to reinforce the \weak link", since otherwise the price of

that good would soar. On the other hand, if i receives a positive productivity shock, work-

ers are reallocated to other industries, to prevent the prices from collapsing. This means

that near the Leontief limit, the relative sales shares responds one-for-one to changes in

relative technology. So, while the second-order terms still amplify negative shocks and at-

tenuate positive shocks, because they are negative, their magnitude is much smaller than

in the case where labor could not be reallocated.

In the perfect substitutes limit, equating marginal products means a near-complete

reallocation of workers to the most productive industry. This means that a positive shock

to i will cause the sales share of i to increase dramatically relative to the rest, because while

relative prices pi=pj = Aj=Ai, relative quantities change very rapidly. So, the second-order

terms ampli�es positive shocks and attenuates negative shocks relative to the �rst-order

approximation, but their magnitude is much larger than in the case where labor could

not be reallocated, because now the market can take advantage of the shocks to equate

marginal products. Once again, the situation is depicted graphically in Figure 1b.

To recap, in the case where labor cannot be freely allocated, a negative shock can

cause a large downturn due to complementarity but a positive shock does not make much

of a di�erence. On the other hand, when labor can be allocated, a negative shock can

be mitigated by a reallocation of workers to the a�ected industry, but a positive can be
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ampli�ed many times if goods are substitutable. These results are closely related to the

�ndings in Jones (2011), who noted that in a model like this, the relevant CES parameter

used in aggregating microeconomic TFP shocks depends on whether or not factors are

allocated through the market or assigned exogenously.

Finally, having analyzed the cases with no labor reallocation (� = 0) and with full labor

reallocation/constant returns to scale (� = 1), we revisit the general case with � 2 (0; 1).

The situation is depicted graphically in Figure 2. The macro elasticity of substitution is

now an intermediate value between the perfect reallocation and the no-reallocation cases.

As usual, in the Cobb Douglas case � = 1, the macro elasticity is equal to 1, and

Hulten's approximation is globally accurate. Therefore, regardless of � 2 (0; 1), the macro

elasticity of substitution is always equal to 1 for a Cobb-Douglas model. This follows from

the fact that in this case, the distribution of workers across sectors does not depend on

the shock. Therefore, the degree to which workers can be reallocated is irrelevant, since

they are not reallocated anyway.

When � < 1, negative shocks are ampli�ed and positive shocks are attenuated relative

to the �rst-order approximation, and the opposite is true when � > 1. However, we can

show that �(�) < (�(1��)=�; �=(1+�)), so the macro elasticity of substitution is bounded

away from 0 as long as � > 0. Furthermore, whether or not i and j are macro-complements

or macro-substitutes does not depend on �. Therefore, partial reallocation preserves the

general intuition of the last two sections, but dampens the size of the e�ects. Figure 2

illustrates these facts where we can see that the size of the second-order term looks like

an average of the two polar cases and always has the same sign.

5 A Network Irrelevance Result

Now we extend the model to allow for intermediate inputs and arbitrary network inter-

connections. In this section, we provide a benchmark irrelevance result where the devi-

ations from Hulten's approximation do not depend on the network structure. The key

assumptions required for obtaining this irrelevance result are: (1) a constant input-output

multiplier equal to unity, (2) uniformity of the micro structural elasticities. In Sections 6

and 7, we weaken each of these assumptions, in turn, and characterize the importance of

the network structure in shaping the second-order terms.

To obtain our benchmark result, assume that structural micro elasticities are uniform

across all agents and all inputs so that � = �j = "j for every j. In this case, the model
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Figure 2: The left panel plots the macro elasticity of substitution � against the structural
elasticity of substitution � for the model from Proposition 4.1. The second panel plots
expected log GDP relative to its certainty equivalent, in units of variance, as a function of
the structural elasticity of substitution for the same model.

becomes a generalization of the canonical Cobb-Douglas network model of Acemoglu et al.

(2012) and Long and Plosser (1983), as well as the CES competitive network model of

Baqaee (2016). Furthermore, assume that �k = 1 or �k = 0 for all k | the case with

either full reallocation or no reallocation. Finally, technology shocks are labor-augmenting,

which implies that � � 1.

Proposition 5.1 (Network Irrelevance). Consider the following special case of the

structural model in Section 3. Network interconnections are arbitrary, micro elas-

ticities are uniform across all agents and all inputs so that "k = �k = �, and shocks

are labor-augmenting. Then

�ij = �; � = 1;
d log �

d logAi
= 0;
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where

� =

8<
: � if labor cannot be reallocated

1
2��

if labor can be reallocated
:

This implies that
d2 logC

d logA2
i

= �i(1� �i)

 
1�

1

�

!
;

where �i = wiLi=PcC:

First, note that, once again the Cobb-Douglas speci�cation � = 1 is the special case

where labor reallocation becomes irrelevant. This is again a consequence of the fact that

the distribution of workers does not depend on the shock in equilibrium, and therefore,

reallocation of workers (or alternatively, returns to scale in labor) is irrelevant. However,

this is only true in the Cobb-Douglas special case. Generically, returns to scale and factor

reallocation will have a large e�ect on how the economy behaves.

Second and more importantly, when � , 1, there is a deviation from Hulten's ap-

proximation, but the structure of the network remains irrelevant up to the second order,

since the second-order approximation only depends on sales �i, the micro elasticity of

substitution �, and the extent of labor reallocation.

This network irrelevance result is driven by the fact that the micro elasticities of sub-

stitution and labor reallocation are the same in all industries, and � � 1 (since technology

shocks are labor augmenting). This makes the �ij independent of the network structure,

and ensures that the input-output multiplier � is inoperative. In Sections 6 and 7 we show

that weakening either of these two assumptions breaks this irrelevance result. First, in

Section 6, we show how input-output multipliers become variable in the presence of inter-

mediate inputs and Hicks-neutral shocks. Then, in Section 7, we show how heterogeneity

in the structural elasticities of substitution interact with the existence of general network

linkages to accentuate output nonlinearities.

6 Input-Output Multiplier

So far, we have kept � constant and shown how macro elasticities of substitution can

cause large deviations from Hulten's theorem. In this section, we instead focus on how

variability in � can also generate large deviations from Hulten's theorem, even when �ij

are well-behaved.

We consider the simplest model with both intermediate inputs (a non-trivial network)
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and Hicks-neutral technology shocks , weakening one of the assumptions (that shocks are

labor augmenting) required for the network irrelevance result of Section 5. Indeed we �nd

that this change upsets the result in the sense that the details of the network matter for

at the second order in a way that we make precise.

To demonstrate the e�ect of a variable intermediate-input multiplier �, consider a spe-

cial case where there are no deviations from Hulten's theorem arising from substitutability

across sectors. In other words, consider the economy with a single good (N = 1) and with

full labor reallocation/constant returns to scale (�1), where total output is given by

Y

Y
= A

0
@a�L

L

� ��1
�

+ (1� a)
�
X

X

� ��1
�

1
A

�
��1

:

Suppose that labor is an endowment, and so L=L = 1. GDP is given by

C = Y �X;

where X are intermediate inputs.

Proposition 6.1 (Variable IO multiplier). Consider the following special case of the

structural model in Section 3. There is a single good which is used both for con-

sumption and as an intermediate input in production. Assume full labor realloca-

tion/constant returns to scale. Then

� =
1

a
;

d log �

d logA
= (1� a) (� � 1);

where � is the micro structural elasticity of substitution in production between labor

and the intermediate input and 1� a is the intermediate input share in steady-state.

This implies that
d2 logC

d logA2
= �

d log �

d logA
=

1� a

a
(� � 1):

Proposition 6.1 shows that although in partial equilibrium, the production function is

homogenous in TFP, in general equilibrium, aggregate output is not homogeneous of degree

1. Furthermore, output is not homogenous of any degree in equilibrium, since � varies in

response to the shock. Hence, Hulten's approximation is exact whenever there are no

intermediate inputs (a = 1) or the economy is Cobb-Douglas � = 1. Otherwise, any

non-unitary elasticity of substitution (� � 1) is increased by a factor (1 � a)=a , which is
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singular when the labor share goes to zero. The details of the network matter through the

parameter 1� a which indexes the steady-state intermediate input share.

Intuitively, this results from the fact that output is used as its own input, and if � , 1,

then the intermediate input share of GDP changes with the shock, an e�ect which a �rst-

order approximation neglects. The larger is the steady-state intermediate input share, the

larger is the e�ect of this change in the intermediate input share. Figure 3 plots logC

as a function of logA for the case where � � 0, � = 1, and � = 2. As expected, the

Cobb-Douglas special case leads to a log-linear relationship where Hulten's approximation

is globally true. However, for the case where � < 1, negative shocks are ampli�ed and

positive shocks are attenuated, and the reverse is true when � > 1.

In the case where � = 1, the intermediate input-multiplier is 1=a, since a one percentage

increase in TFP would increase output by 1 + (1 � a) + (1 � a)2 + : : : percentages. This

is because the increase in TFP makes intermediate inputs more productive, which makes

output more productive, which makes intermediate inputs more productive, and so on.

When � , 1, this e�ect is either attenuated or ampli�ed depending on whether the economy

can substitute between intermediate inputs and labor relatively more or less than the

Cobb-Douglas benchmark. In the limit where � = 0, output is linear in TFP rather than

log-linear with slope 1=a, whereas when � = 2, output is hyperbolic in TFP.18

7 General Networks

In Section 5, we showed that as long as shocks are labor-augmenting and structural elas-

ticities of substitution are homogeneous, departures from Hulten's theorem do not depend

on the network structure. In this section, we allow for heterogeneity in the structural

elasticities of substitution as well as Hicks-neutral shocks. We consider arbitrary network

structures with full reallocation/constant-returns-to-scale, and we characterize the way in

which the structure of the network matters at the second order.

Along the way, we uncover two important insights. First, we show that the macro

elasticities of substitution are some weighted average of the underlying structural micro

elasticities of substitution and this average depends on the network structure. Further-

18In this example, the economy with extreme complementarity � = 0 has C = A=a, where 1=a is the
sales to output ratio in steady state. Therefore, although Hulten's approximation fails in log terms, Hulten's
theorem is globally accurate in linear terms. This is an artefact of the fact that we have only one good.
In Appendix C, we generalize this example to multiple goods, and show that output can be very strongly
nonlinear even with full labor reallocation.
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Figure 3: Output as a function of productivity shocks log(A) with variable input-output
multiplier e�ect with steady-state intermediate input share 1� a = 0:9.

more, we show that the structural elasticities of substitution in j's production matters

only so far as j is exposed to the shock in a heterogenous fashion. Second, we show that

when there are constant-returns-to-scale at the micro level, only an industry's role as a

supplier of inputs matters in terms of how output responds to shocks, up to the second

order.

To do this, we need another de�nition.

Definition 7.1. The N �N input-output matrix 
 is the the matrix whose ijth element

is equal to the steady-state value of


ij =
pjxij
piyi

:

The Leontief inverse is

	 = (I � 
)�1:

Intuitively, the ijth element  ij of the Leontief inverse is a measure of i's total reliance

on j as a supplier. It captures both the direct and indirect ways through which i uses j

in its production.
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Proposition 7.1. Consider the structural model in Section 3 with full labor realloca-

tion/constant returns to scale (�i = 1 for every i). De�ne

ci =bi(1� �)[�k �  ik] +
X
j

!ji(1� aj)�j(�j � 1)[
X
l

!lj lk �  jk]

+
X
j

!ji(1� aj)�j(1� "j)[
X
l

!lj lk �  ik] + (�k � 1)!ki(1� ak)�k:

Then the sales elasticities vectors are given by

Di log �
0 = diag(�)c0	; (7)

where diag(�) =
P

i �ieie
0

i with ei being the ith standard basis vector.

Recall, from (5) and (6), that we can easily use this proposition to recover the macro

elasticities of substitution and the elasticity of the input-output multiplier.

We decompose Proposition 7.1 into something more interpretable by relabeling the

industries such that we can assume �i = "i for every i. To do this, for every industry

i, relabel its composite intermediate input Xi to be a new industry which uses no labor.

Then, without loss of generality, we can impose the assumption that for every industry

"i = �i, as long as we keep in mind that we need to adjust the input-output matrix under

this relabeling scheme.

Then de�ne

Cov
(j)
(	(m);	(i)) =

X
k


jk ki km �

 X
k


jk ki

! X
k


jk km

!
:

In words, this is the covariance between the mth and ith column of the Leontief inverse

using the jth row of the input-output matrix as the distribution. What makes this di�erent

to a standard covariance is that the weighting distribution, 
(j), do not necessarily have

to sum to one. More generally, we could write Covb(c; d), which takes the covariance of

vectors c and d according to a weighting vector b. Now we can reinterpret (7) in the

following way.

Proposition 7.2 (Second-Order Network Centrality). Consider the structural model in

Section 3 with full labor reallocation/constant returns to scale (�i = 1 for every i).
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Without loss of generality, assume �i = �i for every i. Then

d2 logC

d logA2
i

= (� � 1)V arb(	(i)) +
X
j

(�j � 1)�jV ar
j
(	(i)); (8)

Recall that

d2 logC

d logA2
k

=
d�k

d logAk
=
�k
�

X
j,k

�j

 
1�

1

�kj

!
+ �k

d log �

d logAk
;

with

1�
1

�ij
=

1

�k

d�k
d logAk

�
1

�j

d�j
d logAk

;

and
d log �

d logAi
=

1

�

X
i

d�k
d logAi

:

Finally, using these relationships and the following fact

�m
d log �m
d logAi

= (� � 1)Covb(	(i);	(m)) +
X
j

(�j � 1)�jCov
(j)
(	(i);	(m));

we can deduce the full set of reduced-form elasticities. This means that the macro elas-

ticities are e�ectively a weighted average of the underlying structural elasticities of sub-

stitution, where the weighting does not need to sum to 1 and the weights depend on the

network structure. In the special case where all industries have the same size �, the macro

elasticities take an especially simple form:

1�
1

�mi
= (� � 1)Covb(	(i);	(m) �	(i)) +

X
j

(�j � 1)�jCov
(j)
(	(i);	(m) �	(i));

d�

d logAi
= (� � 1)Covb(	(i);

X
m

	(m)) +
X
j

(�j � 1)�jCov
(j)

 
	(i);

X
m

	(m)

!
:

Equation (8) gives, as a special case, the constant returns irrelevance result of Section

5, since in the case where all structural elasticities of substitution are the same, the formula

collapses to the one in Proposition 5.1. Equation 8 is also related to the concentration

centrality de�ned by Acemoglu et al. (2016), but generalizes their result by allowing for

heterogeneity in the interaction functions, non-symmetric network structures, and micro-

founds its use for production networks. It has a simple intuition: the second-order impact
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of a shock to i depends on how the sales share �i changes. This, in turn, depends on

how demand for i changes| which is composed of demand from the household and de-

mand from other industries, indexed by j. The extent to which the structural elasticity

of substitution �j, for industry j, matters depends on how unequally j is exposed to i

through its di�erent inputs, and on how big j is. If j is small, or is exposed in the same

way to i through all of its inputs, then the extent to which it can substitute amongst

its inputs is irrelevant. The same holds for the household, which can substitute across

consumption goods with elasticity �. Therefore, non-unitary elasticities can be ampli�ed

by concentrated linkages.

A simple example, motivated by a universal intermediate input like electricity, helps

explain some of the intuition of Proposition 8. Consider an example where

C =

 X
i

bic
��1
�

i

! �
��1

;

and

ci =
�
ail

"�1
"

i + (1� ai)E
"�1
"

i

� "
"�1

:

Assume that the universal intermediate input E is produced using labor with constant

returns to scale. For this example, industry i's steady-state sales share is �i = bi, the

intermediate input share of industry i is 1 � ai, and the sales share of electricity is �E =P
i �i(1� ai). This economy is depicted in �gure 4.

...21 N-1 N

E

HH

"

�

Figure 4: An illustration of the economy with a universal intermediate input which we
treat as energy. Each industry has gross labor share ai and substitutes across labor and
energy with elasticity ". The household can substitute across goods with elasticity of
substitution �
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For this example, (8) implies that

d2 logC

d logA2
E

= �E(1� �E)(� � 1) +
X
i

�i(1� ai)ai("� �): (9)

We know from Section 5 that the �rst term is the second-order term if there was no network

structure (or if the structural elasticities of substitution were homogeneous), the second

term is a correction that takes into account the fact that " , �. We simplify this example

further by supposing that all �nal sectors are equally sized �i = 1=N , and that M � N

sectors use electricity with steady-state intermediate input share 1 � ai = 1 � a, while

N �M use no electricity at all (1� ai = 0). We set a to ensure �E stays constant. Then

(9) implies
d2 logC

d logA2
E

= �E(1� �E)(� � 1) + ("� �)�E

�
1�

N

M
�E

�
:

For concreteness, take " < � < 1. Then the second-order term is negative and decreasing

in M , since negative shocks to electricity have a smaller impact on output if electricity is

not an input into everything, and therefore, the household can substitute to consumption

goods that do not rely on electricity.

When every sector uses electricity M = N , this simpli�es further to

d2 logC

d logA2
E

= �E(1� �E)("� 1);

and the elasticity of substitution in consumption � drops out completely. Hence, even if � is

much greater than ", this makes no di�erence to the second-order term. However, severing

just one link between electricity and �nal goods can signi�cantly increase the second-

order term and even 
ip its sign, as long as consumption is su�ciently more substitutable

than production. The fact that � is irrelevant when M = N is a manifestation of the

general principle stated in proposition 7.2. Since the household is symmetrically exposed

to shocks from the electricity industry, it does not matter how well the household can

substitute amongst its own inputs. In Appendix D, we show that this result holds much

more generally. We also show how heterogeneity in intermediate input shares, as well as

decreasing returns to scale in energy production, a�ects these results.

Another noteworthy special case of Proposition 7.2 is for nested CES production func-

tions which appear frequently in various literatures, even those not concerned with the

role of input-output relationships (e.g. see Ober�eld and Raval, 2014). In this case the
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macro elasticities take an especially simple form where they are a weighted average of the

micro elasticities of substitution within and across the di�erent nests, where the weights

depend on the relative expenditure shares. The details for this special case can be found

in Appendix F.

More intuition about (8) can be gleaned by focusing on regular economies. We call

an economy regular if its input-output matrix satis�es 
1 = c11 and 
01 = c21 for some

scalars c1 and c2, and the household's consumption expenditures are 1
N

1. Intuitively, a

regular economy is symmetric. If an economy is regular, as a matter of accounting, it

must be the case that c1 = c2 = 1 � a, where a is the value-added share of gross output.

Three leading examples of regular economies are the ring, the completely connected, and

the completely disconnected examples in Figure 5.

1
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Figure 5: Three examples of regular economies: a ring, a complete network, islands.

Consider the \island" economy where each industry only buys inputs from itself 
 =

(1 � a)I, the complete economy where each industry buys from every other industry in

equal proportions 
 = (1 � a)=N110; and a ring economy. Suppose that all structural

elasticities of substitution in production and consumption are the same � = �i = "i, and

labor is fully mobile �i = 1. Then, for the ring economy

d2 logC

d logA2
i

= (� � 1)
1

Na

 
2

1� (1� a)N
� 1�

1

Na

!
;

for the island economy

d2 logC

d logA2
i

= (� � 1)
1

Na

�
2

a
� 1�

1

Na

�
;
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and for the complete network

d2 logC

d logA2
i

= (� � 1)
1

Na

�
1

aN
+ 1�

2

N

�
:

These economies are identical up to a �rst-order approximation, but their second-order

properties can be very di�erent. Especially when a � 0 and N , 1, the island economy

can be vastly more nonlinear than the complete economy when judged by the size of the

second-order term.

Figure 6 plots the degradation in the average performance of these economies as func-

tion of the labor share a. For a �xed intermediate input share, the impact of a mi-

croeconomic shock is much greater in the island economy than in the complete and ring

economies. This di�erence is especially great for low values of a as long as N , 1. This is

driven by the strength of diversi�cation in each of these economies, and equation (8) can

provide intuition for this fact: since � < 1, for a �xed intermediate input share a, more

concentrated linkages (higher variance 	(i)'s) degrade the average performance of output.

The island economy, with the least diversi�ed links, is the worst performing, whilst the

complete economy, with complete diversi�cation, performs the best. When a negative

shock hits a sector, the impact of the shock di�uses over all sectors in the complete econ-

omy but is concentrated on the a�ected sector in the island economy. Hence, output drops

by more in the latter case due complementarities in consumption and production. The

ring constitutes an intermediate case with less diversi�cation than the complete economy

but more diversi�cation than the island economy.19

On the other hand, as we reduce a, we see that all of these economies perform worse. In

the language of Elliott et al. (2014), we can think of this as varying integration rather than

diversi�cation, since the input-output matrix 
 scales with 1� a increasing the intensity

of network connections uniformly. As a approaches zero, the intermediate input share

approaches unity, and the elements of Leontief inverse 	(i) become larger and larger, as

does their variance. This magni�es the size of the terms in (8).20 Proposition 7.2 allows

19This analysis allows us to connect with one of the most surprising, and well-known, results in the
literature on production networks due to Dupor (1999) who showed that, for a Cobb-Douglas economy,
all regular economies with the same a have the same output function C(A1; : : : ; An). In this sense, there
is nothing more unstable about rings versus complete graphs. Since �i = 1

Na
in steady state, Hulten's

theorem can be used to extend this intuition to non Cobb-Douglas economies up to a �rst order. However,
the examples in this section show that this result is only true up to a �rst-order approximation, and this
�rst-order approximation can, in practice, be very poor.

20Our results show that the issues of integration and diversi�cation, whose importance for volatility has
been recognized by Koren and Tenreyro (2013) and Kurz and Senses (2016), also a�ect average performance
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us to easily characterize the best-performing and worst-performing networks as measured

by their certainty-equivalents when we vary the gross labor share.
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Figure 6: E(log(C)=C) as a function of the gross labor share a. For this example, the
shocks are idiosyncratic with mean zero and standard deviation one (in logs), the structural
elasticity of substitution � = 1=2, and the number of industries N = 3. If � > 1, the sign
of this plot would 
ip, but the relative magnitudes would be preserved.

Proposition 7.3 (Ranking Networks). Consider di�erent versions of the structural

model in Section 3 with full labor reallocation/constant returns to scale (�i = 1 for

every i). Without loss of generality, assume �i = �i for every i. We rank networks

by the second-order approximation to E(log(C=C)) for i.i.d shocks.

1. When all micro elasticities are below one (� < 1 and �j < 1 for every j), the

degenerate network (ai = 1 for every i) performs the best. The performance of

a network can be arbitrarily bad in the limit of a zero gross labor share (ak ! 0

for every k).

2. When all micro elasticities are above one (� > 1 and �j > 1 for every j), the

degenerate network (ai = 1 for every i) performs the worst. The performance of

a network can be arbitrarily good in the limit of a zero gross labor share (ak ! 0

for every k).

when the output function is not loglinear.

35



Intuitively, when the structural elasticities are less than one, we are in a world with

complementarities, and so performance is improved if there are no intermediate inputs at

all, minimizing the magnitude of the elements of the Leontief inverse 	(i)'s in (8). On the

other hand, performance can be made arbitrarily bad by increasing the intermediate input

share, driving the elements of the Leontief inverse to in�nity.

A �nal implication of equation (8) is that even with variable elasticities, in this context,

only the industry's role as a supplier matters, not its role as a consumer. This generalizes

Proposition 4.1 in Baqaee (2016), showing that even with di�erent CES parameters, the

output elasticity of a TFP shock to k only depends on k's role as a supplier.

Proposition 7.4 (Direction of Di�usion). Consider the structural model in Section

3 with full labor reallocation/constant returns to scale (�i = 1 for every i). Con-

sider two industries k and l that sell the same share to all other industries and the

household (!ik = !il for each i and bk = bl). Then

d logC

d logAk
=

d logC

d logAl
;

and
d2 logC

d logA2
k

=
d2 logC

d logA2
l

:

Proof. Denote the ith standard basis vector by ei. Then, by assumption, 
ek = 
el.

Repeated multiplication implies that 
nek = 
nel. This then implies that 	ek = 	el. In

steady state, �k = b0	ek = b0	el = �l: So the �rst-order impact of a shock is the same.

Furthermore, substitution into (8) shows that the second-order impact of a shock is also

the same. �

This is an implication of the full labor reallocation/constant-returns-to-scale assump-

tion at the micro level, and this result would break down otherwise. The intuition is that

output then depends only on the prices of consumption goods. Furthermore a change in

the size of the ith industry will not a�ect its price. Hence, a productivity shock will travel

downstream from suppliers to their consumers, by lowering their marginal costs, but it

will not travel upstream from consumers to their suppliers, since the supplier's price does

not depend on its size. The general model of Section 3 does not satisfy this property since

it allows for imperfect labor reallocation/decreasing returns to scale. In Appendix E, we

work through an explicit example to show how decreasing returns to scale will break this
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result. Other ways to break this result are explored by Baqaee (2016), who studies a CES

network with scale economies and �xed costs of operating.

8 Quantitative Illustration

In this section, we perform some illustrative quantitative simulations to gauge whether or

not the nonlinearities we have identi�ed are likely to be important in the data. We perform

two exercises. First, we calibrate a multi-sector model to match input-output data and use

the best available information to calibrate the structural elasticities of substitution. We

shock this model and compare its performance relative to the �rst-order approximation.

This �rst exercise necessarily imposes an unrealistic degree of homogeneity across the

structural elasticities of substitution due to a lack of information.21 In the second exercise,

we study the macroeconomic impact of the energy crisis of the 1970s using a non-parametric

generalization of Hulten (1978) that takes the second-order terms into account. Both

exercises suggest that production is highly nonlinear.

8.1 A Quantitative Structural Model

In this section, we quantitatively explore the importance of the nonlinearities in production

that we have emphasized. To do this, we calibrate a simpli�ed version of the structural

model in Section 3. To calibrate the model, we need estimates for the industry-speci�c

structural elasticities of substitution. Unfortunately, disaggregated estimates of these elas-

ticities do not exist. We rely instead on on estimates from Atalay (2016) and Comin et al.

(2015) who estimate a small number of structural elasticities. These are the elasticities of

substitution between value-added and intermediate inputs, amongst intermediate inputs,

and among consumption goods. For our model, this imposes �i = �, and "i = ". We set

� = 0:3, � = 0:4, and " = 0:0001.

Our values of � and � are on the lower end of the values estimated by Atalay (2016)

and Comin et al. (2015). We justify this by the fact that we use more disaggregated data,

and for more disaggregated data, the elasticities of substitution are smaller for reasons

emphasized by Ober�eld and Raval (2014). Indeed, �rm-level estimates like Boehm et al.

21In Appendix D we use a more stylized example but zoom in on how heterogenous elasticities of substitu-
tion can give an outsized importance to an industry even though it is small { a situation that is impossible
for a �rst-order approximation.
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(2015) suggest that the �rm-level elasticity of substitution between intermediate inputs

and value-added � is zero.

We verify that the benchmark model with these values of (�; "; �) matches the volatility

of observed industry-level sales shares. We target
P

i �i��i = 0:0197, where �i is the time-

series average and ��i is the time-series standard deviation of industry i's Domar weight. A

Cobb-Douglas model would imply that this should always be zero, since the Domar weights

would be constant. We also consider two robustness cases, one with more substitutability

(�; �) = (0:6; 0:8) and one with less substitutability (�; �) = (0:3; 0:1) than the benchmark

model. As expected, the volatility of the Domar weights approaches zero as the model

approaches the Cobb-Douglas limit. Our benchmark model matches
P

i �i��i = 0:0197,

but the more substitutable economy undershoots with 0:0110 and the less substitutable

economy overshoots with 0:0413.

We work with the 88 sector US KLEMS annual input-output data from Dale Jorgenson

and his collaborators, dropping the government sectors. The dataset contains sectoral

output and inputs from 1960 to 2005. The advantage of this dataset over the more detailed

input-output table from the BEA is that it contains both price and quantity data, which

allows for the construction of sectoral gross TFP at annual frequency. We use the sector-

level TFP series computed by Carvalho and Gabaix (2013) using the methodology of

Jorgenson et al. (1987).22

We calibrate the expenditure share parameters to match the input-output table, using

1982 (the middle of the sample) as the base year for the calibration. For our benchmark

results, we set sectoral TFP logAi � N (��ii=2;�ii), where �ii is the sample variance of

� log TFP for the industry i. We work with uncorrelated sectoral shocks since the average

correlation between sectoral growth rates is extremely small (less than 5%). Our results

are not signi�cantly a�ected if we matched the whole covariance matrix of sectoral TFP

instead.

Table 1 displays the mean, standard deviation, and skewness of log GDP for various

speci�cations. For comparison, the table also shows these moments for GDP growth and

aggregate TFP growth.23

Our benchmark model, without reallocation, assumes that the labor market for each

22As shown by Diewert (1976), TFP accounting with the Tornqvist index is equivalent to assuming that
the production function is a translog function of inputs, which is consistent with our emphasis on accounting
for the second-order impact of shocks. For a review of these issues, see also Diewert and Nakamura (1993).

23Since our model has inelastic factor supply, its output is more comparable to aggregate TFP than GDP.
As shown by Gabaix (2011) and Carvalho and Gabaix (2013), elastic capital and labor supply would further
amplify TFP shocks.
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sector is completely segmented so that no workers can be reallocated across industries in

response to shocks. The benchmark model has three important ingredients that we have

emphasized in the paper: (1) non-unitary structural elasticities of substitution, (2) labor

market segmentation, (3) network structures. In table 1, we not only show the macro

moments for our benchmark model, we also show these moments for every combination

of these three ingredients. Since the model is nonlinear, these ingredients interact with

one another, and therefore, this is as far as we can go in providing a decomposition of the

importance of the various channels. The model with full reallocation has (1) and (3) but

not (2). The log-linear approximation has (3) and (2) but not (1).24 The \no network,

no reallocation" model has (1) and (2) but not (3). The \no network, full realloction"

model has (1) but not (2) or (3). To emphasize the importance of these nonlinearities in

production, we also display the results for a linear (as opposed to log-linear) approximation.

Finally, we also include results for more volatile shocks, which we discuss in detail later.

For now, let's consider each moment of in turn.

We start with the mean. In the benchmark model, the mean is �0:0057 log points.

This means that the welfare cost of business cycles are 0:57% of output. These costs are

entirely due to nonlinearities in production. They are an order of magnitude larger than

the welfare gains of around 0:05% of output arising from risk aversion in consumption

estimated by Lucas (1987).25 In the model with full reallocation the mean is �0:0026,

while for the model with no network but labor market segmentation it is �0:0014. These

numbers are signi�cantly smaller than the benchmark model but they are still non-trivial.

Hence, all three ingredients are important. The model with \no network and full reallo-

cation" yields an almost zero mean. This con�rms our �nding from Section 4 that low

structural elasticities of substitution, without either labor market segmentation or inter-

mediate inputs, cannot generate substantial deviations from linearity. Lastly, under the

log-linear approximation the mean is �0:0010, and under the linear approximation it is

exactly 0 { this is due to the fact that the TFP shocks have a negative mean in logs but

not in levels.

Now, consider the standard deviation. The benchmark has a standard deviation of

0:0117, which is a slight ampli�cation relative to the log-linear model. Overall, the stan-

dard deviation is fairly constant across speci�cations, which is intuitive since larger second-

24For this case, labor market segmentation is irrelevant.
25As shown by proposition 2.5, looking at log consumption rather than consumption does not alter these

results by much. We manually computed the same numbers for GDP instead of log GDP and the results
are very similar.
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Mean Standard Deviation Skewness

GDP Data { 0.0238 -0.6190

TFP Data { 0.0147 -0.2888

Benchmark -0.0057 0.0117 -0.5229
Full reallocation -0.0026 0.0110 -0.0745
Log Linear Hulten -0.0010 0.0110 0.0000
Linear Hulten 0.0000 0.0110 0.0432
No Network, no reallocation -0.0014 0.0053 -0.0420
No Network, full reallocation 0.0000 0.0053 0.0301
(�; �) = (0:1; 0:3) -0.0102 0.0138 -1.2864
(�; �) = (0:6; 0:8) -0.0035 0.0112 -0.1648
High Volatility Benchmark -0.0117 0.0180 -0.8821
High Volatility Hulten -0.0015 0.0155 0.0000

Table 1: Simulated and estimated moments. For GDP and aggregate TFP, we use the
demeaned growth rates. For the model, we use the sample moments of log GDP. The
simulated moments are calculated from 50,000 draws.

order terms will magnify some shocks but attenuate other shocks, leaving the variance

relatively stable. The only case where the standard deviation is substantially di�erent is

the case with no intermediate inputs. In this case, the input-output multiplier � is coun-

terfactually equal to one. The lack of an input-output multiplier means that the model

generates less variance than the log-linear model, which has � � 2:

Skewness �ts the same pattern as the results on the mean. The benchmark model gen-

erates strong skewness in output, which is substantially mitigated if we remove either the

network or allow reallocation of workers. Reducing substitutability signi�cantly decreases

the mean and increases the negative skewness of output. As expected, the log-linear, lin-

ear, and almost log-linear models generate no skewness or a slight positive skew (since the

lognormal distribution is positively skewed).

For comparison, we also compute the same moments for the second-order approxima-

tion of the model in logs. The second-order approximation performs well in approximating

the mean and standard deviation of the underlying structural model, but does less well on

higher moments like skewness and kurtosis (though these are in the right direction). For

the benchmark model without reallocation, the second-order approximation to logGDP

has mean of �0:0056, with a standard deviation of 0:0113, skewness �0:3679. The mo-

ments for other parameterizations are shown in Appendix G.

In �gure 7 we plot the histograms for the model with no reallocation for di�erent val-
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ues of " and �. The model exhibits signi�cant negative skewness when the elasticity of

substitution is low, but it also has excess kurtosis or fat tails. For instance, the benchmark

model has an excess kurtosis of 0.96, meaning that it is subject to occasional and endoge-

nous large negative 
uctuations (rare disasters). These features become signi�cantly more

pronounced as � and � are lowered, to the point where the model with � = 0:1 and � = 0:3

has excess kurtosis of 3.47. We do not formally tabulate our results for kurtosis since our

sample size of 45 observations is far too small to be able to estimate kurtosis with any

degree of con�dence in the data.
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Figure 7: The distribution ofGDP for the benchmark calibration, as well as two robustness
cases.

Unlike Acemoglu et al. (2017) or Barro (2006), to achieve rare disasters, we do not need

to assume fat-tailed exogenous shocks nor rule out \rare bonanzas" a priori, instead these

features are endogenously generated by the nonlinearities in the model. This can be seen

in �gure 8, where we plot the histograms for the benchmark model and for a log-linear

approximation subject to the same shocks. To drive this point home, we also simulate

and plot the benchmark model with more volatile shocks. We double the variance of the

sectoral shocks, which roughly corresponds to the average variance of sectoral TFP shocks

during the 1970s and before the Great Moderation. For the log-linear model, increasing

the variance of lognormal shocks has no e�ect on the skewness or kurtosis of GDP, since
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these standardized moments are scale invariant. However, for the benchmark model, more

volatile shocks signi�cantly increase the deviations from normality and dramatically de-

crease the economy's average performance to �0:012. Excess kurtosis increases to 2.3 for

the benchmark model when shocks are more volatile. These results suggest that comple-

mentarities are likely to be signi�cantly more costly in eras or countries where volatility

is high.

0:94 0:96 0:98 1 1:02 1:04 1:06
0

10

20

30

40

p
d
f

Benchmark
Hulten

0:94 0:96 0:98 1 1:02 1:04 1:06
0

5

10

15

20

25

30

p
d
f

Benchmark High Volatility
Hulten High Volatility

Figure 8: The left panel shows the distribution of GDP for the benchmark model and
log-linearized model. The right panel shows these for shocks whose variance is twice as
high.

Finally, we consider the response of GDP to shocks to speci�c industries. It turns out

that for a large negative shock, the \oil and gas" industry produces the largest negative

response in GDP { this despite the fact that the oil and gas industry is not the largest

industry in the economy. Figure 9 plots the response of GDP for shocks to the oil and gas

industry as well as for the \retail trade (excluding automobiles)" industry. The retail trade

industry has a similar sales share, and therefore, to a �rst order, both industries are equally

important. As expected, the nonlinear model is signi�cantly more fragile to both kinds of

shocks (negative shocks are ampli�ed and positive ones are attenuated). However, output

is more sensitive to oil and gas for large negative shocks. On the other hand, output is more

sensitive to the retail industry for positive shocks. The strong asymmetry is consistent

with the empirical �ndings of Hamilton (2003) that oil price increases are much more

important than oil price decreases.

Figure 9 gives an impression that the relative ranking of industries is stable as a function

of the size of the shock. The oil industry is always more important than the retail trade

industry for negative shocks, and always less important for positive shocks. However,
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Figure 9: The e�ect of TFP shocks to the oil and gas industry and the retail trade industry.
Both industries have roughly the same sales share, and so they are equally important up
to a �rst-order approximation (dotted line). The nonlinear model is more fragile to both
shocks than the log-linear approximation. The oil and gas industry is signi�cantly more
important than retail trade for large negative shocks. The histogram is the empirical
distribution of sectoral TFP shocks pooled over the whole sample.

this need to be the case. In �gure 10 we plot GDP as a function of shocks to the oil

industry and the construction industry. Unlike retail trade, the construction industry is

signi�cantly larger than the oil industry. Therefore, the �rst-order approximation implies

that it should be more important. The nonlinear model also behaves the same way for

positive shocks, and small negative shocks. However, for very large negative shocks, the

oil and gas industry once again becomes more important. In fact, for a negative 20% TFP

shock, the oil and gas industry is the most important industry in the economy.

8.2 The Effect of Oil Shocks

The oil shocks of the 1970s serve as a useful example of the way industry-level shocks can

have macroeconomic consequences. To recap the history, in October 1973, the Arab mem-

bers of OPEC proclaimed an oil embargo limiting shipments of oil to the United States and
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Figure 10: The e�ect of TFP shocks to the oil and gas industry and the construction
industry. Construction has a bigger sales share, but oil and gas is more important for large
negative shocks. This graph shows that the ranking of which industry is more important
is not monotonic in the size of the shock.

some of its allies (including Japan and the United Kingdom). Although the oil embargo

was lifted in 1974, coordinated action by OPEC kept prices elevated throughout the mid-

1970s. The price of crude oil increased from $3:5 a barrel in 1972 to $11 a barrel in 1974.

In 1979, OPEC implemented a second round of price increases which caused the price of

crude to soar to $31 a barrel. At the same time, the Iranian revolution in 1979, as well as

the ensuing Iraqi invasion of Iran in 1980, caused further disruptions to global crude oil

supply. The price peaked at $37 in 1980. Starting in the early 1980s, with the departure

of the Shah, OPEC's pricing structure collapsed as Saudi Arabia 
ooded the market with

inexpensive oil. In real terms, the price of crude oil declined back to its pre-crisis levels

by 1986. According to the NBER's business cycle dating committee, both oil price shocks

coincided with recessions in the US. Although our structural model suggests that the \oil

and natural gas" extraction industry is important, it abstracts away from trade, by assum-

ing all intermediate inputs are sourced domestically, with net imports showing up only

in �nal demand. Hence, the Domar weight of the oil and natural gas industry measures
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domestic production, rather than domestic consumption. Since the oil price shocks did

not directly a�ect the productivity of domestic oil production, this means that they are

not measured in our sectoral TFP data (which is for domestic production). Furthermore,

our industry classi�cation is too coarse to isolate crude oil separately from other petro-

chemicals. Therefore, in this section, we pursue a non-parametric calibration of the impact

of the oil price shocks up to second-order terms for the world as a whole, avoiding strong

structural assumptions as well as the complications arising from international trade.

Proposition 8.1. Up to the second order in the vector �, we have

log (C(A+�)=C(A)) =
1

2
[�(A+�) + �(A)]0 (log(A+�)� log(A)) :

Proof. Let C2nd(A + �) be the quadratic function of � that provides a second-order

approximation to output at point A as a function of �. The quadratic approximation

lemma from Diewert (1976) implies that

log
�
C2nd(A+�)=C2nd(A)

�
=

1

2

h
r logC2nd(A+�) +r logC2nd(A)

i
0

[log(A+�)� log(A)] : (10)

Hulten (1978) then implies that r logC(A) = �(A) and r logC(A+�) = �(A+�). The

result follows since r logC2nd(A) = r logC(A), r logC2nd(A +�) = r logC(A +�) up

to the �rst order in �, and log
�
C2nd(A+�)=C2nd(A)

�
= log

�
C(A+�)=C(A)

�
up to the

second order in �. �

The idea of averaging weights across two periods is due to Leo T�ornqvist (1936). Propo-

sition 8.1 relates the impact of the oil shocks on GDP to the size of the shock and the

corresponding Domar weights before and after the shock.26

26One can always compute the full nonlinear impact of a shock on output by computing
R A+�
A

�( ~A) d log ~A,
and our formula approximates this integral by performing a �rst-order (log) approximation of the Domar
weight �( ~A) or equivalently a second-order (translog) approximation of GDP. In theory, if TFP is a continuous
di�usion then one can disaggregate time-periods and compute the impact of shocks over a time period [t; t+�]

as
R t+�
t

�(As) d log(As) which can be seen as a repeated application of Hulten's theorem at every point in
time over in�nitesimal intervals of time. However, when TFP has jumps, then this decomposition no longer
applies. In any case, even when it does apply, and when the required high-frequency data regarding TFP
shocks and Domar weights is available, it can only be useful ex post to asses the changes in GDP over an
elapsed period of time due to the TFP shocks d log(As) to a given sector given the observed path of Domar
weight �(As). It is of no use ex ante to predict how these future shocks will a�ect GDP because one would
need to know how the Domar weight will change over time as a result of the shocks, and hence of no use to
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We measure the price of oil using the West Texas Intermediate Spot Crude Oil price

from the Federal Reserve Database. Global crude oil production, measured in thousand

tonne of oil equivalents, is from the OECD. World GDP, in current USD, is from the

World Bank national accounts data. The choice of the pre and post Domar weight is not

especially controversial. Crude oil, as a fraction of world GDP, increased from 5% in 1972

to 31% in 1980. Reassuringly, the Domar weight is back down to its pre-crisis level by 1986

(see �gure 11). This means that, taking the second-order terms into account, we need to

weight the shock to the oil industry by 1=2(5+31) = 18%. Hence, the second-order terms

amplify the shock by a factor of 18=5 � 3:6.
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Figure 11: Global expenditures on crude oil as a fraction of world GDP.

Calibrating the size of the shock to the oil industry is more tricky, since it's not directly

observed. If we assume that oil is an endowment, then we can measure the shock simply

via changes in the physical quantity of production. To do this, we demean the log growth

rate in global crude oil production, and take the shock to be the cumulative change in

demeaned growth rates from 1973 to 1981, which gives us a shock of �13%.

Putting this altogether, the �rst-order impact on GDP is therefore

0:05��0:13 = �0:0078:

run counterfactuals. This latter part is precisely what the second-order approximation at the heart of our
paper accomplishes.
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On the other hand, the second-order impact on GDP is

1

2
(0:05 + 0:31)��0:13 = �0:0244:

Hence, accounting for the second-order terms ampli�es the impact of the oil shocks signif-

icantly, so that oil shocks can be macroeconomically signi�cant even without any �nancial

or demand side frictions.27

9 Conclusion

The paper points to many unanswered questions. For instance, it shows that the macroe-

conomic impact of a microeconomic shock depends greatly on how quickly factors can be

reallocated across production units. Since our structural model is static, we are forced to

proxy for the temporal dimension of reallocation by resorting to successive comparative

statics. In ongoing work, we investigate the dynamic adjustment process more rigorously

and �nd that although we can think of the no-reallocation and perfect-reallocation cases as

the beginning and end of the adjustment, the speed of adjustment also greatly depends on

the microeconomic details. This means that the dynamic response of output to di�erent

shocks is greatly a�ected by issues like geographic or sectoral mobility of labor, even with

perfect and complete markets that allow us to abstract from distributional issues. Our

model also lacks capital accumulation and reallocation, and incorporating these into the

present analysis is an interesting area for future work.

Similarly, although our structural model assumes away geography, we speculate that

our results are likely to have implications for work on the aggregate gains from trade, as

well as on how, even with complete markets, the speed and extent of readjustment can

play an important role in how the economy as a whole responds to changes in international

and regional trade policy.

Finally, although our results assume away market frictions beyond impediments to

reallocation, the forces we identify are unlikely to disappear in richer models with ine�cient

27As noted by Hamilton (2013), �rst-order approximations of e�cient models assign a relatively small
impact to oil price shocks. Hence, the literature has tended to focus on various frictions that may account
for the strong statistical relationship between oil shocks and output. Our calculations suggests that non-
linearities in production, even in an e�cient model, may help to explain the outsized e�ect of oil shocks.
Furthermore, our calculation also makes no allowance for ampli�cation of shocks through endogenous labor
supply and capital accumulation, which are the standard channels for ampli�cation of shocks in the business
cycle literature. Hence, coupled with the standard ampli�cation mechanisms of those models, we would
expect the reduction in aggregate output to be even larger.
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equilibria. As suggested by the results of Jones (2011) and Baqaee (2016), networks and

macro-substitutability can amplify or attenuate the underlying frictions. A systematic

characterization of these e�ects seem to us to be valuable areas for further work.

References

Acemoglu, D., D. Autor, D. Dorn, G. H. Hanson, and B. Price (2016). Import competition

and the great US employment sag of the 2000s. Journal of Labor Economics 34 (S1),

S141{S198.

Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012). The network

origins of aggregate 
uctuations. Econometrica 80 (5), 1977{2016.

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015). Systemic risk and stability in

�nancial networks. The American Economic Review 105 (2), 564{608.

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2016). Networks, shocks, and systemic

risk. In The Oxford Handbook of the Economics of Networks.

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2017). Microeconomic origins of

macroeconomic tail risks. The American Economic Review 107 (1), 54{108.

Aghion, P. and P. W. Howitt (2008). The economics of growth. MIT press.

Allcott, H., A. Collard-Wexler, and S. D. O'Connell (2016). How do electricity shortages

a�ect industry? evidence from india. The American Economic Review 106 (3), 587{

624.

Altinoglu, L. (2016). The origins of aggregate 
uctuations in a credit network economy.

Atalay, E. (2016). How important are sectoral shocks? Technical report.

Autor, D. H., D. Dorn, and G. H. Hanson (2016). The china shock: Learning from labor-

market adjustment to large changes in trade. Annual Review of Economics 8, 205{240.

Ballester, C., A. Calv�o-Armengol, and Y. Zenou (2006). Who's who in networks. wanted:

the key player. Econometrica 74 (5), 1403{1417.

Baqaee, D. R. (2015). Targeted �scal policy.

48



Baqaee, D. R. (2016). Cascading failures in production networks.

Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century. The

Quarterly Journal of Economics , 823{866.

Barrot, J.-N. and J. Sauvagnat (2016). Input speci�city and the propagation of idiosyn-

cratic shocks in production networks. The Quarterly Journal of Economics .

Bartelme, D. and Y. Gorodnichenko (2015). Linkages and economic development. Tech-

nical report, National Bureau of Economic Research.

Beraja, M., E. Hurst, and J. Ospina (2016). The aggregate implications of regional business

cycles. Technical report, National Bureau of Economic Research.

Bigio, S. and J. La'O (2016). Financial frictions in production networks. Technical report.

Blackorby, C. and R. R. Russell (1989). Will the real elasticity of substitution please

stand up?(a comparison of the Allen/Uzawa and Morishima elasticities). The American

economic review 79 (4), 882{888.

Boehm, C., A. Flaaen, and N. Pandalai-Nayar (2015). Input linkages and the transmission

of shocks: Firm-level evidence from the 2011 t�ohoku earthquake. US Census Bureau

Center for Economic Studies Paper No. CES-WP-15-28 .

Burstein, A. and J. Cravino (2015). Measured aggregate gains from international trade.

American Economic Journal: Macroeconomics 7 (2), 181{218.

Carvalho, V. and X. Gabaix (2013). The great diversi�cation and its undoing. The

American Economic Review 103 (5), 1697{1727.

Carvalho, V. M. (2010). Aggregate 
uctuations and the network structure of intersectoral

trade.

Comin, D. A., D. Lashkari, and M. Mestieri (2015). Structural change with long-run

income and price e�ects. Technical report, National Bureau of Economic Research.

Costinot, A. and A. Rodriguez-Clare (2014). Trade theory with numbers: quantifying the

consequences of globalization. Handbook of International Economics 4, 197.

Di Giovanni, J., A. A. Levchenko, and I. M�ejean (2014). Firms, destinations, and aggregate


uctuations. Econometrica 82 (4), 1303{1340.

49



Diewert, W. E. (1976). Exact and superlative index numbers. Journal of economet-

rics 4 (2), 115{145.

Diewert, W. E. and A. Nakamura (1993). Essays in index number theory, Volume 217.

Emerald Group Publishing.

Domar, E. D. (1961). On the measurement of technological change. The Economic

Journal 71 (284), 709{729.

Dupor, B. (1999). Aggregation and irrelevance in multi-sector models. Journal of Mon-

etary Economics 43 (2), 391{409.

Durlauf, S. N. (1993). Nonergodic economic growth. The Review of Economic Stud-

ies 60 (2), 349{366.

Elliott, M., B. Golub, M. O. Jackson, et al. (2014). Financial networks and contagion.

American Economic Review 104 (10), 3115{53.

Feenstra, R. C. and G. H. Hanson (1996). Globalization, outsourcing, and wage inequality.

The American Economic Review 86 (2), 240.

Foerster, A. T., P.-D. G. Sarte, and M. W. Watson (2011). Sectoral versus aggregate

shocks: A structural factor analysis of industrial production. Journal of Political

Economy 119 (1), 1{38.

Gabaix, X. (2011). The granular origins of aggregate 
uctuations. Econometrica 79 (3),

733{772.

Gabaix, X. (2016). Power laws in economics: An introduction. Journal of Economic

Perspectives 30 (1), 185{206.

Gomme, P. and P. Rupert (2007). Theory, measurement and calibration of macroeconomic

models. Journal of Monetary Economics 54 (2), 460{497.

Grassi, B. (2017). IO in I-O: Competition and volatility in input-output networks. Tech-

nical report.

Grossman, G. M., E. Helpman, E. Ober�eld, and T. Sampson (2016). Balanced growth

despite Uzawa. Technical report, National Bureau of Economic Research.

Hamilton, J. D. (2003). What is an oil shock? Journal of econometrics 113 (2), 363{398.

50



Hamilton, J. D. (2013). Historical oil shocks. In R. E. Parker and R. M. Whaples (Eds.),

Routledge Handbook of Major Events in Economic History, Chapter 21, pp. 239{265.

Routledge.

Hicks, J. (1932). Theory of wages. Springer.

Horvath, M. (1998). Cyclicality and sectoral linkages: Aggregate 
uctuations from inde-

pendent sectoral shocks. Review of Economic Dynamics 1 (4), 781{808.

Horvath, M. (2000). Sectoral shocks and aggregate 
uctuations. Journal of Monetary

Economics 45 (1), 69{106.

Houthakker, H. S. (1955). The pareto distribution and the Cobb-Douglas production

function in activity analysis. The Review of Economic Studies 23 (1), 27{31.

Hulten, C. R. (1978). Growth accounting with intermediate inputs. The Review of

Economic Studies , 511{518.

Hulten, C. R. (2001). Total factor productivity: a short biography. In New developments

in productivity analysis, pp. 1{54. University of Chicago Press.

Jones, C. I. (2011). Intermediate goods and weak links in the theory of economic devel-

opment. American Economic Journal: Macroeconomics , 1{28.

Jones, C. I. (2013). Input-Output economics. In Advances in Economics and Econo-

metrics: Tenth World Congress, Volume 2, pp. 419. Cambridge University Press.

Jorgenson, D. W., F. Gollop, and B. M Fraumeni (1987). Productivity and US economic

growth.

Jovanovic, B. (1987). Micro shocks and aggregate risk. The Quarterly Journal of Eco-

nomics , 395{409.

Kim, S.-J., H. S. Shin, et al. (2013). Working capital, trade and macro 
uctuations.

Technical report.

Koren, M. and S. Tenreyro (2013). Technological diversi�cation. The American Economic

Review 103 (1), 378{414.

Kremer, M. (1993). The O-ring theory of economic development. The Quarterly Journal

of Economics , 551{575.

51



Kurz, C. and M. Z. Senses (2016). Importing, exporting, and �rm-level employment

volatility. Journal of International Economics 98, 160{175.

Liu, E. (2017). Industrial policies and economic development. Technical report.

Long, J. B. and C. I. Plosser (1983). Real business cycles. The Journal of Political

Economy , 39{69.

Lucas, R. E. (1977). Understanding business cycles. In Carnegie-Rochester conference

series on public policy, Volume 5, pp. 7{29. North-Holland.

Lucas, R. E. (1987). Models of business cycles, Volume 26. Basil Blackwell Oxford.

Milgrom, P. and J. Roberts (1996). The LeChatelier principle. The American Economic

Review , 173{179.

Morishima, M. (1967). A few suggestions on the theory of elasticity. Keizai Hyoron

(Economic Review) 16, 144{150.

Notowidigdo, M. J. (2011). The incidence of local labor demand shocks. Technical report,

National Bureau of Economic Research.

Ober�eld, E. and D. Raval (2014). Micro data and macro technology. Technical report,

National Bureau of Economic Research.

Samuelson, P. A. (1960). An extension of the LeChatelier principle. Econometrica , 368{

379.

Scheinkman, J. A. and M. Woodford (1994). Self-organized criticality and economic 
uc-

tuations. The American Economic Review , 417{421.

Stella, A. (2015). Firm dynamics and the origins of aggregate 
uctuations. Journal of

Economic Dynamics and Control 55, 71{88.

Taleb, N. N. (2013). `Antifragility' as a mathematical idea. Nature 494 (7438), 430{430.

T�ornqvist, L. (1936). The Bank of Finland's consumption price index. Bank of Finland

Monthly Bulletin 10, Bank of Finland.

52



A Proofs

Proof of theorem 2.1. Since the �rst welfare theorem holds, the equilibrium allocation

solves

C(A1; : : : ; AN) = max
ci;xij ;lij

C(c1; : : : ; cn)+
X
i

�i

0
@AiFi ((lij)j; (xij)j)�

X
j

xij � ci

1
A+X

i

�i

0
@Li �

X
j

lji

1
A ;

where Li is the endowment of each labor type, and �i and �i are Lagrange multipliers.

The envelope theorem then implies that

@C

@Ai
= �iFi ((lij)j; (xij)j) = �iyi:

If we can show that �i is equal to the price of i in the competitive equilibrium, then we

are done.

To prove this note that competitive equilibrium requires that

@C=@ci
@C=@c1

=
�i
�1

=
pi
p1
;

for every i, since the household consumes a nonzero amount of every good. In other words,

we have
@C

@ci
=
pi
p1

@C

@c1
: (11)

Hence, using Euler's theorem on homogenous functions we can write

C =
X
i

@C

@ci
ci =

@C=@c1
p1

X
i

pici: (12)

De�ne the expenditure function for the household to be e(p; C). Since C is homogenous

of degree one, we can write e(p; C) = e(p)C. In other words, we must have that

X
i

pici = e(p)C:

Normalize the unit cost of consumption e(p) = 1, so that

X
i

pici = C:
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Combine this with (12) to get
@C

@c1
= p1;

which can be substituted into (11) to yield pi = �i for every i.

�

Proof of proposition 2.3.
d2 logC

d logAj logAi
=

d�i
d logAj

: (13)

By de�nition
d log �i
d logAj

=

 
1

�ji
� 1

!
+

d log �j
d logAj

; (14)

which simpli�es to
d�i

d logAj
= �i

 
1

�ji
� 1

!
+
�i
�j

d�j
d logAj

: (15)

Now apply theorem 2.2 to the second summand to obtain the desired result. �

Proof of proposition 2.4. The second-order approximation to logC is given by

log(C=C) =
X
i

�i d logAi +
X
ij

@2 logC

@ logAi@ logAj
d logAi d logAj:

Take expectations of both side and substitute the result from proposition 2.3 to get the

desired result. �

Proof of proposition 2.5. We prove a slightly more general formulation with arbitrary

variance covariance matrix and an arbitrary twice-di�erentiable utility function.

E(f(g(A))) � E
�
f(g(A)) + f 0(g(A))rg(A)(A� A) +

1

2
f 00(g(A))(A� A)0

�
rg(A) � rg(A)0

�
(A� A)+

1

2
f 0(g(A))(A� A)0r2g(A)(A� A)

�
;

= f(g(A)) +
1

2
f 00(g(A))tr

��
rg(A) � rg(A)0

�
�
�
+
1

2
f 0(g(A))tr

�
r2g(A)�

�
:

Now apply Hulten's theorem to get

= f(g(A)) +
1

2
f 00(g(A))

NX
k;j

�k�j�jk +
1

2
f 0(g(A))

NX
j;k

@2g

@Ak@Aj
�jk;
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with idiosyncratic shocks, this simpli�es to

= f(g(A)) +
1

2
f 00(g(A))

NX
k

�2k�
2
k +

1

2
f 0(g(A))

NX
j;k

@2g

@A2
k

�2k:

Finally, observe that f 0(g(A)) = 1 and f 00(g(A)) = �
 for CRRA utility with risk aversion

parameter 
. The second summand is the Lucas term (which equals zero when f is linear),

and the third summand is our term. �

Proof of proposition 3.1. De�ne qi to be the ideal price index for intermediate inputs

used by industry i. The second-order approximation is given by

d�i
d logAk

=bi(1� �)
d log pi
d logAk

+ (16)

X
j

"
!ji(1� aj)�j

(
(�j � 1)

 
1(j = k)�

d log qj
d logAk

+
d log pj
d logAk

!

+(1� "j)

 
d log pi
d logAk

�
d log qj
d logAk

!
+

d�j
d logAk

1

�j

)#
;

d log qi
d logAk

=
X
j

!ij
d log pj
d logAk

; (17)

d log yi
d logAk

=
d log �i
d logAk

+ �k �
d log pi
d logAk

; (18)

0 =
X
i

ai�i�i
�i(1� �i) + �i

"
d log yi
d logAk

+ �i

"
d log pi
d logAk

�
d logw

d logAk

#
� 1(i = k)

#
; (19)

d log yi
d logAk

=�i

"
1�

ai
�i(1� �i) + �i

� (1� ai)

#
�1 ("

ai
�i(1� �i) + �i

+ (1� ai)

#
d log pi
d logAk

�
ai

�i(1� �i) + �i

d logw

d logAk
� (1� ai)

d log qi
d logAk

)
+ 1(i = k); (20)

To see this, note that �rst-order conditions for industry i are given by

qi = pi

 
yi
Aiyi

! 1
�i

(1� ai)

 
1

X i

! �i�1

�i

X
�1
�i

i :
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We can rearrange the intermediate input demand function as

Xi =

 
qi
pi

!
��i

(1� ai)
�i

 
yiAi

X i

!�i�1
yi;

and

xij =

 
pj
qi

!
�"i

!"iij

 
X i

xij

!"i�1
Xi:

Using the input demand functions, the household demand functions, and market clearing,

we can deduce that

yi = b�i

 
C

ci

!��1  
pi
pc

!
��

C +
X
j

 
pi
qj

!
�"j

!
"j
ji

 
Xj

xji

!"j�1  qj
pj

!
��j

(1� aj)
�j

 
yjAj

Xj

!�j�1
yj:

Multiplying both sides of this equation by pi=pcC gives a recursive characterization of

expenditure shares:

�i = b�i

 
C

ci

!��1  
pi
pc

!1��

+
X
j

 
pi
qj

!1�"j

!
"j
ji

 
Xj

xji

!"j�1  qj
pj

!1��j

(1� aj)
�j

 
yjAj

Xj

!�j�1
�j:

(21)

On the other hand, we know from cost minimization that

qi =

0
@X

j

!"iij

 
X i

xij

!"i�1
p
1�"j
j

1
A

1
1�"j

: (22)

The �rst-order condition for labor for industry i is given by

w = pi

 
yi
Aiyi

! 1
�i

ai�i

 
zi
li

!�i �i�1�i

l
�i�1

�i
�i�1

i ; (23)

We can rearrange the labor demand function as

li =

 
w

pi

! ��i
�i(1��i)+�i

(ai�i)
�i

�i(1��i)+�i

 
yi
Aiyi

! 1
�i(1��i)+�i

 
zi
li

! (�i�1)�i
�i(1��i)+�i

:
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Summing this across i and equating it to labor supply l gives

l =
X
i

 
w

pi

! ��i
�i(1��i)+�i

(ai�i)
�i

�i(1��i)+�i

 
yi
Aiyi

! 1
�i(1��i)+�i

 
zi
li

! (�i�1)�i
�i(1��i)+�i

: (24)

Finally, substituting the input demand back into the production function of i yields a

relationship between i's price (marginal cost) and the price of its inputs as well as output,

since the industry potentially exhibits diminishing returns to scale

 
yi
Aiyi

!
= ai

2
64
�
pi
w

� �i
�i(1��i)+�i

 
yi
Aiyi

! 1
�i(1��i)+�i

(ai�i)
�i

�i(1��i)+�i

 
zi
li

! �i
�i(1��i)+�i

3
75

�i�1

�i

+ (1� ai)
�i

 
pi
qi

!�i�1  yi
Aiyi

! �i�1

�i

 
1

X i

!�i�1
: (25)

Last, we set consumption to be numeraire so that pc = 1 and observe that by de�nition

yi =
�iC

pi
: (26)

The set of equations (21), (22), (24), (25), and (26) collectively de�ne the equilibrium. To

derive the second-order approximation, observe that

d2 logC

d logA2
k

=
d�k

d logAk
:

To �nd this, we must �nd the �rst-order approximation of the changes to �i. To this end,
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linearize the system of equations that collectively de�ne the equilibrium. This gives

d�i
d logAk

=b�i

 
C

ci

!��1
(1� �)

 
pi
pc

!1��
d log pi
d logAk

(27)

+
X
j

!
"j
ji (1� aj)

�j

 
yjAj

Xj

!�j�1  pi
qj

!1�"j  Xj

xji

!"j�1  qj
pj

!1��j

�j

"
(�j � 1)

 
1(j = k) +

d log pj
d logAk

�
d log qj
d logAk

!
+ (1� "j)

 
d log pi
d logAk

�
d log qj
d logAk

!
+

d log �j
d logAk

#
;

d log qi
d logAk

=
X
j

!"iij

 
X i

xij

!"i�1  pj
qi

!1�"i d log pj
d logAk

; (28)

d log yi
d logAk

=
d log �i
d logAk

+ �k �
d log pi
d logAk

; (29)

0 =
X
i

1

�i(1� �i) + �i

 
w

pi

!
�

�i
�i(1��i)+�i

 
yi
Aiyi

! 1
�i(1��i)+�i

(ai�i)
�i

�i(1��i)+�i

 
zi
li

! �i�1

�i(1��i)+�i

"
d log yi
d logAk

� 1(i = k) + �i

 
d log pi
d logAk

�
d logw

d logAk

!#
(30)

 
�i � 1

�i

! 
yiAi

yi

! 1��i
�i

"
d log yi
d logAk

� 1(i = k)

#
=

�i � 1

�2i (1� �i) + �i�i
ai

"�
pi
w

��i  yi
Aiyi

!
(ai�i)

�i

# �i�1

�i

1
�i(1��i)+�i

"
�i

 
d log pi
d logAk

�
d logw

d logAk

!
+

 
d log yi
d logAk

� 1(i = k)

!#

+ (�i � 1)(1� ai)
�i

 
pi
qi

!�i�1  yi
Aiyi

! �i�1

�i

 
1

X i

!�i�1
"
d log pi
d logAk

�
d log qi
d logAk

+
1

�i

 
d log yi
d logAk

� 1(i = k)

!#
; (31)

Evaluating these derivatives at the steady-state, where Ai = 1, pi = qi = 1, xij = (1�ai)!ij,

ci=C = bi, yi=Y = �i, li=yi = �iai gives the desired result. �

Proof of proposition 4.1. The �rst-order equation for the allocation of labor is

��iA
��1
�

i L
� ��1

�

i = �LiC
�

1
� :

where � is the Lagrange multiplier on labor. Using the �rst-order conditions and the labor
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market clearing condition implies that

Li =

0
B@ �iA

��1
�

iP
�jA

��1
�

j

1
CA

1

1�� ��1
�

:

Substituting this into the utility function gives

C =

 X
i

�
�

�(1��)+�

i A
��1

�(1��)+�

i

! �(1��)+�

��1

:

Then for this economy

�ij = � =
�(1� �) + �

�(1� �) + � + (1� �)
;

where � = 0 corresponds to

� = �;

which is the same as no reallocation case. On the other hand, for � = 1,

� =
1

2� �
;

which is the same as the fully reallocative case. Note that this explodes when � � 2, since

in that case, the reallocative solution is more substitutable than perfectly substitutes! For

� 2 (0; 1) we get something in between the perfectly reallocative and no reallocation special

cases. �

Proof of proposition 5.1. First consider the case with reallocation, and note that

~�k =
p�kyk
p�cC

= �i
p��1k

p��1c

:

Substitute this into the expression for C in proposition E.1 to get

C =

"X
k

�k
p��1k

p��1c

A��1
k �kz

��1
k

# 1
��1

L:
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On the other hand, we have that

�k =
w�Lk

p�kyk

�
Akzk

�1��
:

Substitute this into the previous expression to get

C =

2
4X

k

ak
w��1
k

p��1c

 
Akzk
Akzk

!��135
1

��1

L:

Finally, substitute in pc = wL=C and rearrange to get the result.

Next, consider the case without reallocation and note that

~�k =
p�kyk
p�cC

;

and

�k =
w�
kLk

p�kyk
;

which we can substitute into the expression for GDP in proposition E.1 to get our desired

expression. �

Proof of proposition 6.1. Consumption is given by

C = AY

0
@a�L

L

� ��1
�

+ (1� a)
�
X

X

� ��1
�

1
A

�
��1

�X:

The �rst-order condition gives

X

X
=
�
Y A

���1
(1� a)�X

��
Y:

Substituting this into the production function gives

Y =
AY a

�
��1�

1� (1� a)�
�
Y A=X

���1� �
��1

:
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This means that

C =
AY a

�
��1�

1� (1� a)�
�
Y A=X

���1� 1
��1

:

Finally, note that
d logC

d logA
= �:

�

Proof of proposition 7.1. We can write

d log pi
d logAk

= ai�k +
X
j

(1� ai)!ij
d log pj
d logAk

� 1(i = k):

We can solve this to get
d log pi
d logAk

= �k �  ik;

where  ik is the ikth element of the Leontief inverse. This says that the change in the price

of i depends on the change in the real wage �k to the intensity with which i consumes from

k. We know that  kk �  ik: This expression, which greatly simpli�es matters, stems from

constant-returns-to-scale, which means that relative prices don't depend on quantities.

Next, we know that

d�i
d logAk

=bi(1� �)
d log pi
d logAk

+ (32)

X
j

"
!ji(1� aj)�j

(
(�j � 1)

 
1(j = k)�

d log qj
d logAk

+
d log pj
d logAk

!

+(1� "j)

 
d log pi
d logAk

�
d log qj
d logAk

!
+

d�j
d logAk

1

�j

)#
;

(33)

where
d log qj
d logAk

= �k �
X
l

!jl lk:

Combining these facts, we can write

D�0 = c0	;
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where

ci =bi(1� �)[�k �  ik] +
X
j

!ji(1� aj)�j(�j � 1)[
X
l

!lj lk �  jk]

+
X
j

!ji(1� aj)�j(1� "j)[
X
l

!lj lk �  ik] + (�k � 1)!ki(1� ak)�k:

We can interpret ci as how �i changes conditional on the change in prices holding �xed

other ��i. �

Proof of proposition 7.2. In the special case where �j = "j,

ci = bi(1� �)(�k �  ik) +
X
j

�j!ji(1� aj)(�j � 1)[ ik �  jk] + (�k � 1)!ki(1� ak)�k:

Therefore,

d�m
d logAk

= c0	em;

=
X
i

ci im;

= (1� �)

 
�k�i �

X
i

bi ik im

!

+
X
i

X
j

!ji�j(1� aj)(�j � 1) [ im ik �  jk im]

+ �k(�k � 1)
X
i

!ki(1� ak) im;

= (� � 1)

 X
i

bi ik im �
X
i

bi ik

X
i

bi im

!

+
X
j

(�j � 1)�j

 X
i

!ji(1� aj) im ik �

"X
l

!jl(1� aj) lk + 1(j = k)

# "X
i

!ji(1� aj) im

#!

+ �k(�k � 1) ( km + 1(k = m)) ;

= (� � 1)

 X
i

bi ik im �
X
i

bi ik

X
i

bi im

!

+
X
j

(�j � 1)�j

 X
i

!ji(1� aj) im ik �

"X
l

!jl(1� aj) lk

# "X
i

!ji(1� aj) im

#!

+ �k(�k � 1) ( km + 1(k = m)) + (1� �k)�k
X
i

!ki(1� ak) im;
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where the third and fourth line make repeated use of the fact that

	� I = (I � 
)�1	

and

�0 = b0	:

To complete the proof, observe that d2 logC d logA2
k = d�k=d logAk; and substitute m =

k. �

B A Bound on the Approximation Error

When GDP is homogeneous of degree 1 and the macro elasticities of substitution are

all constant, we can bound the size of the �rst-order approximation error in terms of

observable expenditure shares before the shock.

Proposition B.1. Assume that � is constant and equal to 1 and that �ij is constant

and equal to � for every i , j (at and away from steady state). Denote �i at steady

state by �i. Then

C(Ai) =

 
�i:A

��1
�

i + (1� �i)

! �
��1

;

where with some abuse of notation, we denote output as a function of Ai by C(Ai).

Furthermore, if �i < 1=2, then

����log
�
C

C

�
� �i log (Ai)

���� � 1

2

������� 1

�

������i(1� �i) jlog (Ai)j
2 : (34)

whenever (1� Ai)(�� 1) < 0.

Proposition B.1 shows that when �ij are uniform and constant, we can globally char-

acterize output with a CES aggregator, where the relevant weights are the steady-state �i.

Furthermore, if �i < 1=2, then we can put a lower bound on the size of the approximation

error from Hulten's theorem.

Proof of proposition B.1. Using theorem 2.2, we know that

d2 logC

d log z2i
=

 
�� 1

�

!
�i(zi) (1� �i(zi)) :
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We wish to provide a lower bound for d2 logC
d log z2

i

over some interval I with zi 2 I. Note that

if �i < 1=2 then �i(zi) (1� �i(zi)) is minimized at minz2I �(z).

First, consider � � 1. In this case, minz2I �(z) = �(maxz2I z). If I = [z; zi]; then

minz2I �i(zi) (1� �i(zi)) = �i(1� �i):

Next, consider � > 1. In this case, minz2I �(z) = �(minz2I z). If I = [zi; z]; then

minz2I �i(zi) (1� �i(zi)) = �i(1� �i):

Therefore, as long as (�� 1)(zi � zi) < 0, then

min
z2I

d2 logC

d log z2i
=
�� 1

�
�i(1� �i):

Finally, Taylor's theorem states that

log(C) = log(C) + �i log(zi=zi) +
1

2

d2 logC

d log z2i

�����
~z2I

(log(zi=zi))
2 ; (35)

� log(C) + �i log(zi=zi) + min
~z2I

1

2

d2 logC

d log z2i

�����
~z2I

(log(zi=zi))
2 ; (36)

� log(C) + �i log(zi=zi) +
1

2

 
�� 1

�

!
�i(1� �i) (log(zi=zi))

2 : (37)

Rearrange this to get the desired result. �

C Generalization of Section 6 to Multiple Goods

For the example is Section 6, the economy with extreme complementarity � = 0 has

C = A=a, where 1=a is the sales to output ratio in steady-state. Therefore, in this ex-

ample, although Hulten's approximation fails in log terms, Hulten's theorem is globally

accurate in linear terms. In other words, our examples so far may suggest that extreme

complementarities can only have outsized e�ects, in linear terms, if we restrict the move-

ment of labor across industries.

However, this impression is false. To see this, consider a slightly more complex ex-

ample where we generalize the example above by allowing multiple industries. Aggregate

consumption is Cobb-Douglas across goods (� = 1) with equal weights (bi = 1=N). Each

good is produced using labor and the good itself as an intermediate input. We assume full
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labor reallocation/constant returns to scale (�i = 1). We have

C =
Y
i

c
1=N
i ;

and

Yi = Y iAi

0
B@ai

 
Li

Li

! �i�1

�i

+ (1� ai)

 
Xi

X i

! �i�1

�i

1
CA

�i
�i�1

;

with

Yi = ci +Xi;

and perfect reallocation of labor. Then we have the following.

Proposition C.1. Consider the following special case of the structural model in Sec-

tion 3. Aggregate consumption is Cobb-Douglas across goods with equal weights,

where each good is produced using labor and the good itself as an intermediate input,

with expenditure share on labor ai in steady state and micro elasticity of substitution

�i. Assume full labor reallocation/constant returns to scale. Then

1�
1

�ij
= (�i � 1)

�
1

ai
� 1

�
;

and
@ log �

@ logAi
=

1

N
(�i � 1)

�
1

ai
� 1

�
:

In Figure 12 we plot output as a function of TFP shocks in linear terms. As promised,

this economy features strong aggregate complementarities in the sense that a negative TFP

shock can cause a drastic reduction in output even in linear terms, despite the fact that

labor can be costlessly reallocated across sectors. This happens because, in equilibrium, a

negative shock to industry i does not result in more labor being allocated to production

in industry i. This follows from the fact that consumption has a Cobb-Douglas form, and

so the income and substitution e�ects from a shock to i o�set each other. Since no new

labor is allocated to i, if i faces a low structural elasticity of substitution �i � 0, its output

falls dramatically in response to a negative shock. This can then have a large e�ect on

aggregate consumption. Of course, Cobb-Douglas consumption is simply a clean way to

illustrate this intuition. If the structural elasticity of substitution in consumption � < 1,

then these e�ects would be even further ampli�ed.
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Figure 12: GDP for the Leontief case �i � 0 with two industries.

Proof of proposition C.1. First, consider

max
Xi

Yi �Xi;

which has the �rst-order condition

Xi = Yi(1� ai)
�i

 
AiY i

X i

!�i�1
= Yi(1� ai)A

�i�1
i ;

where we use the fact that X i = Y i(1 � ai): Substitute this into the production function

for Yi to get

Yi =
AiY ia

�i=(�i�1)Li=Li�
1� (1� a)A�i�1

i

� �i
�i�1

:

Substitute this into ci = Yi �Xi to get

ci =
AiY ia

�i=(�i�1)Li=Li�
1� (1� a)A�i�1

i

� 1
�i�1

:

Substitute these into the utility function to get aggregate consumption when labor can-

not be reallocated. To get aggregate consumption when labor is reallocated, maximize
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aggregate the non-reallocative solution with respect to Li.

Cr

C
=

0
BB@

NX
i

b
�

i

0
BB@ AiY ia

�i
�i�1

i =Li

(1� (1� ai)A
�i�1
i )

1
�i�1

1
CCA
��11CCA

1
��1

L:

�

D A Quantitative Illustration in the Case of Electricity

Finally, we end with a simple illustration of some of the limitations of our quantitative

exercise. Due to data limitations, we assumed uniform symmetry of "i. In this section,

we instead work with a stylized representation of the economy, still calibrated to match

the relevant expenditure shares, but highlight the unique role an industry like power

generation can have when the elasticities of substitution can be heterogeneous. This

exercise helps shed some light on how we can reconcile the fact that an industry like

electricity production is a small part of the economy, but a priori, we think that it is a

critical industry. This tension between size and importance is exempli�ed by a 2013 speech

from Lawrence Summers: \Electricity is only four percent of the economy, and so if you

lost eighty percent of electricity you couldn't possibly have lost more than three percent

of the economy, ... we understand that somehow, even if we didn't exactly understand in

the model, that when there wasn't any electricity there wasn't really going to be much

economy."

Consider an economy where

C =

 X
i

bic
��1
�

i

! �
��1

;

and

ci =

 
ail

"i�1

"i

i + (1� ai)E
"i�1

"i

i

! "i
"i�1

;

with

E =
X
i

Ei = Al�E;

where � 2 [0; 1].
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Proposition D.1. Consider the special case of the structural model in Section 3

outlined above where each good is produced with a structural elasticity of substitution

"i from labor and energy with steady-state shares ai and 1�ai. All industries, except

energy, have constant returns to scale and hire their workers from a common labor

market. However, energy is produced with decreasing returns to scale � < 1: Let A

denote TFP shocks to the energy industry, then at steady state,

d2 logC

d logA2
=

P
i(1� ai)�i[(� � 1)(1� �E) + ai("i � �)]

1 + 1��
�l�E

P
i(1� ai)�i [ai("i � �) + (1� �)(1� �E)�E(� � 1)]

; (38)

where �E is the Domar weight of energy and �l is the Domar weight of labor.
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Figure 13: A calibration of the �rst-order and second-order terms as a function of � with
�i = 0:01 and AE = 0:2.

We calibrate (38) for di�erent values of consumption elasticity of substitution � as-

suming �E = 0. To calibrate the model, we set (1 � ai) to match the Eith element of

the Leontief inverse. We then set bi equal to the sales share of the ith industry. This

calibration preserves the equilibrium steady-state size of all industries, as well as the total

dependence of each industry on electricity. Finally, we set "i = 0:01 to re
ect the low

structural elasticity of substitution energy inputs have with labor. Figure 13 plots the

�rst and second-order terms of the Taylor approximation to log(GDP ), following (4), for
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an 80% reduction in the productivity of the energy industry AE = 0:2. In our calibration,

�E � 0:04, so the �rst-order loss from an 80% decline in electricity generation is just over

3%. However, the second-order losses are roughly �0:5� log(0:2)2 = �1:318, or 73% when

� = 1, and they are even larger if � < 1.

We can also use the second-order terms to approximate the expected value of log GDP

in the presence of shocks to the energy industry. If we take Cobb-Douglas consumption

as a benchmark, then if the energy industry experiences volatility with variance v, then

average GDP will be around v=2 times lower than its certainty equivalent. So despite

the electricity industry being smaller 4% of GDP, it can transmit idiosyncratic shocks to

expected GDP 1-for-2. This may help explain why unreliable electricity production in

developing countries can have very harmful e�ects on output (see Allcott et al., 2016).

We can simplify proposition D.1 by considering a special case where all industries use

electricity by the same amount.

Corollary. For the model of proposition D.1, in the special case where ai = a for all

i, denote the expenditure-weighted average
P

i �i"i by ": Then we have

d2 logC

d logA2
=
(1� a)a(� + a(1� �))("� 1)

a(1� �)"+ �
;

this simpli�es to

d2 logC

d logA2
=

8<
: �E(1� �E)

"�1
"
; � = 0

�E(1� �E)("� 1); � = 1

regardless of the value of �. Our decomposition is � = 1 + �E, and

d2 logC

d logA2
=�E

@ log �

@ logA
+

�E
1 + �E

X
i

�i

 
�Ei � 1

�Ei

!
;

=
�E

1 + �E

(1� a)a(� + a(1� �))("� 1)

a(1� �)"+ �
+

1

1 + �E

(1� a)a(� + a(1� �))("� 1)

a(1� �)"+ �
:

The fact that � disappears when ai are symmetric is a manifestation of general principle

stated in Section 7. Since the household is symmetrically exposed to shocks from the

electricity industry, it does not matter how well the household can substitute amongst its

inputs! This example suggests that there are three attributes of the energy sector that make

it important to the economy. First, energy appears with a low elasticity of substitution in
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production, or "i is low for every i, second, energy appears in every production function,

or ai � 0 for every i, and �nally, energy is produced inelastically, or � � 0. All three of

these attributes must be present in order for a negative shock to industry E to have large

second-order e�ects on output.

The result below formalizes the idea that although the energy industry E and another

industry i , E can have the exact same share of sales and, therefore, �rst-order e�ects

on the economy. Their second-order impact can be arbitrarily di�erent from one another.

Let bi = 1=N , ai = 1� 1=N . If � = 1, then

d2 logC

d logA2
E

=
N � 1

N
(�"� 1) ;

and if � = 0, then
d2 logC

d logA2
E

=
N � 1

N

�
�"� 1

�"

�
;

while
d2 logC

d logA2
i

=
N � 1

N
(� � 1) i 2 f1; : : : Ng:

However, �i = �E = 1=N:

Finally, we turn our attention to the non-trivial way in which common shocks will

a�ect this economy. Suppose that we split energy production into hydroelectric power

and wind, and we calibrate the expenditure shares so that �h = �w = 1=N , where h and w

denote hydro and wind. For simplicity, suppose that there is only one �nal goods producer

�3. Suppose that �hw = �wh = � and �h3 = �w3 = �. Finally, assume � is constant. Then

the second-order impact of a shock to hydro is

1

2

1

N2

 
1�

1

�

!
+
1

2

1

N

N � 2

N

 
1�

1

�

!
;

whereas the second-order impact of a common shock to hydro and wind is

1

N

�
2

N
� 1

� 
1�

1

�

!
+

2

N

N � 2

N

 
1�

1

�

!
:

We see that the e�ect of the common shock is not simply twice that of the idiosyncratic

shock (which would be the case if the Hessian was diagonal). Furthermore, the sign on

(1 � 1=�) 
ips when comparing the idiosyncratic and the common shock. The di�er-

ence between the second-order approximation of a common shock and the sum of two
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idiosyncratic shocks is

�
1

N

N � 1

N

 
1�

1

�

!
+

1

N

N � 2

N

 
1�

1

�

!
:

We take 1 � 1=� < 0, since hydro and wind are macro-complements with the rest of the

economy. Then the di�erence between the idiosyncratic shock and the common shock is

greater if the two forms of power generation are macro-substitutes than if they are macro-

complements. Intuitively, the closer a substitute that wind is for hydro, the bigger the

di�erence between the impact of an idiosyncratic shock and the impact of a common shock.

Proof of proposition D.1. Denote electricity's sales as a share of GDP by �E. Then

�E =
X
i

(1� ai)

 
pE
pi

!1�"i

�i;

while

�i = bi

 
pi
pc

!1��

;

and

p1�"ii = aiw
1�"i + (1� ai)p

1�"i
E ;

and

pE =
wl1��E

A�
;

and

lE =
�
pE
w

�
�E:

Finally, we know that

C = wl+ (1� �)pEE;

where consumption is the numeraire. These equations can be di�erentiated to give

d2 logC

d logA2
=

d�E
d logA

=
X
i

(1� ai)

 
pE
pi

!1�"i "
(1� "i)

"
d log pE
d logA

�
d log pi
d logA

#
�i +

d�i
d logA

#
;

we also have that

d�i
d logA

= bi

 
pi
pc

!1��

(1� �)

"
d log pi
d logA

�
d log pc
d logA

#
;
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and

�E =
d logw

d logA
�l + (1� �)

d log pEE

d logA
�E =

d logw

d logA
�l + (1� �)

 
d�E
d logA

+ �2E

!
: (39)

Next, note that
d log pi
d logA

= ai
d logw

d logA
+ (1� ai)

d log pE
d logA

; (40)

and
d log pE
d logA

=
d logw

d logA
+ (1� �)

d log lE
d logA

� 1; (41)

d log lE
d logA

=
1

�E

d�E
d logA

+ �E �
d logw

d logA
:

Combining the last two equations gives

d log pE
d logA

= �
d logw

d logA
+ (1� �)

"
1

�E

d�E
d logA

+ �E

#
� 1; (42)

Combine this with (39) to get

d logw

d logA
=
�E
�l
�
1� �

�l

 
d�E
d logA

+ �2E

!
:

Substitute this equation into (42) to get

d log pE
d logA

= �
�E
�l

+

"
1� �

�E
�
�(1� �)

�l

# 
d�E
d logA

+ �2E

!
� 1;

Substitute these into (40) to get

d log pi
d logA

= (ai+(1�ai)�)

 
�E
�l
�

1

�l

 
d�l

d logA
+ �2E

!!
+(1�ai)

(1� �)

�E

 
d�E
d logA

+ �2E

!
�(1�ai)

Some tedious algebraic manipulation, as well as the fact that

�l = 1� (1� �)�E

gives the desired result. �
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E Tractable Special Case with Uniform Elasticities

GDP as a function of the underlying productivity shocks can be written in closed form

when � = " = �. In this case, the network model collapses into the same setup as the one in

Section 1, we basically recover the same result except the weight parameters have to now be

\weighted" by the network. Let A and z denote the vector of TFP and labor-augmenting

technology shocks.

In this special case, we have

p�y = �0(I � diag(1� �) diag(A)��1
)�1p�cC;

p1�� = (I � diag(1� �) diag(A)��1
)�1 diag(A)��1 diag(� � z��1)w1��;

w� = diag(A)��1 diag(L)�1 diag(� � z��1)p�y;

and

C = w0L:

De�ne the Leontief inverse to be

	 = (I � diag(1� �) diag(A)��1
)�1;

and de�ne the network-adjusted consumption share to be

~�0 = �0	;

noting that in the case where � = 1, we have � = ~�.

Proposition E.1. In the case where labor cannot be reallocated,

C =

"X
k

~�
1
�

kA
��1
�

k �
1
�

k z
��1
�

k L
��1
�

k

# �
��1

:

In the case where labor can be perfectly reallocated,

C =

"X
k

~�kA
��1
k �kz

��1
k

# 1
��1

L:

Proof. For perfect reallocation, note that the vector w is now a constant which can be set
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to 1 without loss of generality. Then

p1�� = 	diag(A)��1�:

We know that

C =
wL

pc
;

which by de�nition is

C =
�
�0p1��

� 1
��1 L:

Substitute the formula for p1�� to get the desired result. �

Proposition E.2. At the steady-state, when labor cannot be reallocated,

d2 logC

d logA2
i

=

 
� � 1

�

!
�iai ii( ii � �i)�

(� � 1)2

�

X
k,i

ak
�2i 

2
ik

�k
(43)

+ (� � 1)�i(2 ii � 1)� (� � 1)�iai 
2
ii: (44)

If i buys from no one else, then this simpli�es to

d2 logC

d logA2
i

=

 
� � 1

�

!
�i(1� �i): (45)

When labor can be reallocated

d2 logC

d logA2
i

= (� � 1)�i ( ii � 1 +  ii � �i)) ;

when i buys from no one else, then this simpli�es to

d2 logC

d logA2
i

= (� � 1)�i (1� �i) :

F Nested Networks with Heterogeneous Micro Elas-

ticities

Now we turn our attention to examples where the macro elasticities of substitution can

vary in response to shocks. These examples show that having heterogeneous (but constant)

micro elasticities of substitution can lead to variable elasticities at the aggregate level.
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Consider a simple nested CES production network with a single �nal goods producer

Y =

 X
k

�kx
��1
�

k

! �
��1

;

where

xk =

0
@NkX

i

1

N
x

"k�1

"k

ik

1
A

"k
"k�1

;

and

xik = AikLik:

This is the simplest example of a network with non-uniform micro-elasticities of substi-

tution. Since we only consider labor-augmenting shocks, we still have that � = 1 and

d log �=dAi = 0.

We consider three cases: (1) labor cannot be reallocated at all, (2) labor can be real-

located within the inner nest but not the outer nest, (3) labor can be fully reallocated.

Using these examples, we see how extreme complementarity or substitutability can prop-

agate through the network. De�ne

�r =

8<
: "r if labor cannot be reallocated within industry r;

1
2�"r

if labor can be reallocated within industry r;

and

� =

8<
: � if labor can be reallocated across industries;

1
2��

if labor can be reallocated across industries:

Then we can show the following.

Proposition F.1. Consider the following special case of the structural model in Sec-

tion 3. There is a nested CES network structure with heterogeneous micro elasticities

of substitution and labor-augmenting shocks. The macro elasticity of substitution is

given by

1�
1

�ij
=

8><
>:

1� 1
�k

i; j 2 Nk

a(1� 1
�r
)+b
�
1� 1

�k

�
+c(1� 1

�)
a+b+c

; i 2 Nk; j 2 Nr

; (46)

where a; b; c are positive and a = 1

�
(i)
r

� 1
�r
, b = 1

�
(j)
k

� 1
�k
, and c = 1

�r
+ 1

�k
with �(i)r being

good i's expenditure share of total expenditure, and �r is industry r's expenditure

share of GDP.
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This example shows how networks can mix elasticities of substitution, such that the

macro elasticities of substitution are not constant even though all the micro elasticities

of substitution are constant. In the special case where the network has a simple nested

structure, the macro elasticities of substitution take an especially simple form: a harmonic

average of the e�ective elasticities of substitution within and across the di�erent nests,

where the weights depend on the relative expenditure shares. The e�ective elasticity of

substitution here is the micro elasticity of substitution adjusted for the general equilibrium

e�ect of reallocation. This example also shows that if any of the e�ective elasticities of

substitutions are close to zero, from below or from above, then this will strongly a�ect the

macro elasticity of substitution. In other words, near-singularities will be propagated to

macro elasticities regardless of where they show up in the nests. This gives a simple way

of deducing the ultimate impact of complementarity or substitutability within nests, up

to a second order, by simply averaging across them with appropriate weights.

For these special cases, we can go one step further and even provide the expression for

output in closed form.

Proposition F.2. For the case with no-reallocation, GDP as a function of productivity

shocks is given by

C =

0
B@X

k

�k

0
@NkX

i

1

N

�
AikLik

� "k�1

"k

1
A

"k
"k�1

��1
�

1
CA

�
��1

:

Proposition F.3. For the case with sectoral reallocation, GDP as a function of pro-

ductivity shocks is given by

C =

0
BB@X

k

�k

0
B@
0
@NkX

i

�
1

N

�"k
A"k�1
ik

1
A

1
"k�1

Lk

1
CA

��1
�

1
CCA

�
��1

:

Proposition F.4. For the case with full reallocation, GDP as a function of produc-

tivity shocks is given by

C =

0
B@X

k

��k

0
@NkX

i

�
1

N

�"k
A"k�1
ik

1
A

1
"k�1

(��1)
1
CA

1
��1

L:
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G Macro Moments of Second-Order Approximation

Mean Standard Deviation Skewness

Model without reallocation -0.0056 0.0113 -0.3679
Model with full reallocation -0.0036 0.0110 -0.1081
(�; �) = (0:1; 0:3) -0.0089 0.0117 -0.6496
(�; �) = (0:6; 0:8) -0.0035 0.0112 -0.1648

Table 2: For each model, we compute the second-order approximation of logGDP as a
translog function (quadratic in log of TFP shocks). We then simulate the quadratic model
with 50,000 draws of TFP shocks.
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