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1 Introduction

A large and growing body of work has investigated the ‘misallocation’ of factors of production
across firms - measured by the extent to which period-by-period marginal products are not
equalized - and the resulting adverse effects on macroeconomic outcomes such as aggregate
productivity and output. In addition to empirically documenting the presence of misallocation
in firm-level data across a variety of countries, a number of recent studies examine the role
of specific ‘frictions’ as potential sources of that misallocation. These include, for example,
adjustment costs, imperfect information, financial frictions, as well as idiosyncratic firm-specific
‘distortions’ (e.g., due to economic policies or other institutional features), both correlated
and uncorrelated with firm characteristics, e.g., size/productivity. A common methodological
theme in this work has been a focus on one particular factor while abstracting from others -
analyzing multiple forces in a single framework has proven challenging. However, this approach
is potentially problematic — by examining a single factor in isolation, there is a risk of reaching
biased conclusions of its severity and hence its contribution to misallocation.

In this paper, we outline a unified framework of firm investment to jointly analyze these
factors. Our main contribution is an empirical strategy designed to precisely measure the
effects of each using readily observable moments from widely available firm-level data. In
particular, we augment a standard general equilibrium model of firm dynamics with a number of
forces that contribute to ez-post misallocation, i.e., observed dispersion in marginal products.!
In our setup, firms choose inputs facing (1) technological frictions, in the form of quadratic
adjustment costs, (2) informational frictions, in the form of imperfect signals about their future
fundamentals and (3) a generic class of idiosyncratic distortions a la Hsieh and Klenow (2009)
and Restuccia and Rogerson (2008), both correlated and uncorrelated with firm characteristics.?
We use perturbation methods to solve the model. Apart from computational tractability, this
approach also yields useful analytic expressions that allow us to make transparent the intuition
underlying our empirical strategy.

To understand the difficulty in quantifying these factors, consider, as an example, the im-
pact of convex adjustment costs. A common approach to gauge the severity of these costs is
to examine the variability of firm-level investment. When adjustment costs are the only force
present, this moment has an intuitive, one-to-one mapping with their magnitude - the lower

is investment volatility, relative to fundamentals, the greater the adjustment cost. However,

!Throughout the paper we use the term misallocation to refer broadly to deviations from static marginal
product equalization, whether these stem from true distortions or technological factors such as adjustment costs
or imperfect information.

20ur baseline analysis abstracts from financial frictions, a choice motivated partly by the fact that previous
studies have found only a limited role for these types of factors in leading to misallocation, for example, Midrigan
and Xu (2014). We analyze the robustness of our results to the presence of liquidity constraints in Section 4.7.



suppose that there are other firm-specific factors that influence investment decisions (e.g., id-
iosyncratic distortions). Now, depending on the correlation of those factors with firm-level
fundamentals (either demand- or supply-side) they can serve to either increase or dampen in-
vestment volatility. As a result, using this particular moment to make inferences regarding the
extent of adjustment costs leads to a biased estimate of their severity. The empirically relevant
case turns out to be one where these other factors are negatively correlated with fundamentals
(i.e., they tend to disincentivize investment by firms with better fundamentals), implying a
positive bias, that is, a model with only adjustment costs will overstate their importance. As a
second example, consider the effects of firm-level uncertainty. If fundamentals are revealed only
slowly, imperfect information reduces the contemporaneous correlation between investment and
fundamentals. However, a low correlation could also be the result of factors orthogonal to fun-
damentals that enter the firm’s investment problem (e.g., uncorrelated transitory distortions).
Again, using this moment to measure uncertainty runs the risk of overstatement by incorrectly
attributing these distortions to lower quality information on the part of firms.

We propose a strategy to overcome these challenges using only firm-level production data,
namely, elements from the covariance matrix of firm-level capital and fundamentals (which we
can measure using data on revenues and inputs along with the form of production function).
The key insight behind our approach is that while each moment is a complicated function of
multiple factors, making any single moment insufficient to identify a particular one, combining
the information in a larger set of moments can be extremely helpful in disentangling them. In
fact, we show that allowing these forces to act in tandem is essential in order to reconcile a
broad set of moments in firm-level investment dynamics.

We use a special case of our model — when firm-level fundamentals follow a random walk
— to formalize this intuition. In this case, we are able to derive analytic relationships between
moments and parameters, enabling us to prove that — when examined jointly — a set of four
carefully chosen moments from the production data uniquely identify the underlying structural
parameters that determine the severity of each factor. Specifically, the variance of investment,
its autocorrelation as well as its correlation with past fundamentals, and the covariance of
the marginal product of capital (mpk) with fundamentals combine to identify the severity of
adjustment costs, the extent of uncertainty and the magnitudes of the correlated and uncor-
related transitory components of distortions. We also exploit the tractability of this case to
illustrate how this strategy works - when the alternative approach of examining a single factor
in isolation fails — and to highlight which combinations of moments are most informative in
disentangling the role of particular factors. To take the example from earlier, consider the
challenge of disentangling adjustment costs from distortions that are negatively correlated with

fundamentals. Both dampen the firm’s incentives to respond to fundamentals and so depress



the volatility of investment. However, they have opposing effects on the autocorrelation of
investment - convex adjustment costs create incentives to smooth investment over time and
so tend to make investment more serially correlated. A distortion that directly reduces the
response to fundamentals, on the other hand, increases the relative importance of transitory
factors in investment, reducing the autocorrelation. Holding all else fixed, these two moments
allow us to separate the two forces. Similar arguments can be developed for the remaining
factors as well. In our quantitative work, where we depart from the polar random walk case,
we follow an estimation strategy guided by these findings and demonstrate numerically that
the same logic carries through.

We apply our methodology to data on manufacturing firms in China from the Annual
Survey of Industrial Production over the period 1998-2009. These data represent a census of all
state and non-state manufacturing firms above a certain size threshold. Our results show that
adjustment and informational frictions account for a relatively modest share of misallocation
among Chinese firms, composing about 1% and 9% of overall dispersion in the marginal product
of capital, respectively. Losses in aggregate total factor productivity (TFP) from these two
sources (relative to the undistorted first-best) are 0.4% and 3%, respectively (the corresponding
figures for steady state output are 1% and 4%). A substantial portion of observed misallocation
in China is then due to firm-level idiosyncratic distortions, both those that are correlated with
fundamentals (and therefore, vary over time with the fortunes of the firm) and ones that are
essentially permanent. These lead to TFP losses of 12% and 19% and output losses of 17% and
26% respectively.?

We also apply our methodology to data on publicly traded US firms over the same time
period. Although the two sets of firms are not directly comparable due to their differing
coverage (the Chinese data are much more comprehensive), deriving results for firms in a
developed economy such as the US gives us a useful benchmark to put our results for China
in context. As we would expect, the overall degree of misallocation is considerably smaller
for the US firms. Adjustment costs account for a larger share (about 11%) of observed mpk
dispersion than in China, though their overall magnitude remains modest, especially relative
to earlier estimates in the literature. Uncertainty and correlated distortions play a smaller role
than among Chinese firms, reducing aggregate TFP by 1% and 2% respectively. However, firm-
specific fixed distortions, although considerably smaller in absolute magnitude than in China,
also seem to be quite significant as a share of total mpk dispersion, even among large firms in
the US. Our estimates suggest eliminating them could increase TFP by as much as 11%. In

sum, even for the US, technological and informational frictions alone cannot account for the

30ur analysis allows for distortions that are transitory and uncorrelated with firm characteristics. However,
our estimation finds them to be negligible.



majority of observed marginal product dispersion.*

We then turn to a number of extensions. First, we show that our results are robust to
allowing for country-specific production parameters (specifically, a higher share of capital in
China). Next, we analyze a variant of our framework in which the labor input choice is subject
to the same frictions/distortions that affect investment. In contrast, our baseline analysis
assumes that only capital investment decisions are made subject to frictions, while labor is
chosen period-by-period under full information. We find that allowing for frictional labor choice
leads to broadly similar conclusions on the relative importance of various forces — adjustment
costs and uncertainty account for about 13% and 11% of mpk dispersion, respectively, again
suggesting an important role for correlated and permanent distortions. However, since both
factors of production are now affected by each of the forces, their impact on aggregate TFP
is substantially higher - productivity losses from adjustment costs and uncertainty are each
about 30% and output losses from each about 40%. The corresponding values for correlated
and permanent distortions are much higher — for example, the TFP gap between status quo and
first best is as high as about 115% and 75%, respectively. We interpret this as an upper bound
on the aggregate impact of these factors, with reality likely falling somewhere in between this
and the baseline version with frictionless labor, which would tend to understate the aggregate
implications. Despite the large differences in the aggregate effects across the two scenarios,
however, it is reassuring that our main results on the composition of capital misallocation are
not particularly sensitive to our assumptions about the nature of the labor choice.

Finally, we extend our baseline framework to introduce a role for financial considerations.
In particular, we assume that firms must hold a certain amount of liquid assets in order to
be able to undertake capital investment.’ This allows us to capture the essential features of
financial constraints/frictions, which we abstract from entirely in our baseline analysis. Our
goal here is to investigate whether this omission could be a potential source of bias in our
estimates of the other factors. Parameterizing the liquidity-related components of the firm’s
optimization problem using additional production-side moments from the Chinese data, we find
that our results regarding the sources of misallocation are essentially unchanged. Moreover, the
contribution of the financial friction to misallocation is also relatively modest - were that the
only friction facing firms, it would account for less than 10% of total mpk dispersion.

The paper is organized as follows. Section 2 describes our model of production and frictional

investment. Section 3 spells out our approach to identifying these frictions using the analytically

4We also report results using data for Colombian and Mexican firms, albeit spanning an earlier time period.
The results regarding the role of the various factors in driving misallocation are quite similar to those in China.

5Formally, we model this as a continuous cost, i.e., firms are penalized as their liquid assets become small
relative to their productive capital. By using a smooth cost function instead of a hard constraint, we are able
to retain the tractability of our baseline framework and continue to use perturbation methods.



tractable random walk case, while Section 4 details our numerical analysis and presents our
quantitative results. We summarize our findings and discuss directions for future research in

Section 5. Details of derivations and data work are provided in the Appendix.

Related literature. Our paper relates to several existing branches of literature. We bear a
direct connection to recent work focusing on measuring and quantifying the effects of resource
misallocation, seminal examples of which include Hsieh and Klenow (2009) and Restuccia and
Rogerson (2008), and a recent survey of which is contained in Hopenhayn (2014). Our explicit
modeling of specific frictions as sources of misallocation relates our paper to Asker et al. (2014)
and David et al. (2015) (henceforth, DHV) who study the role of capital adjustment costs and
information frictions, respectively, as well as Buera et al. (2011), Midrigan and Xu (2014), Moll
(2014) and Gopinath et al. (2015), who analyze financial frictions. Our modeling of firm-specific
distortions follows the approach taken by the misallocation literature, for example, Restuccia
and Rogerson (2008), Guner et al. (2008), Bartelsman et al. (2013), Buera et al. (2013), Buera
and Fattal-Jaef (2016) and Hsieh and Klenow (2014). These papers emphasize the need to
distinguish between correlated distortions that are correlated with firm size/productivity and
ones that are orthogonal to fundamentals. We contribute to this literature by providing robust
estimates of the magnitude and correlation structure of these distortions.

There is a large body of work examining firm dynamics in the presence of adjustment costs,
examples of which include Cooper and Haltiwanger (2006) and Bloom (2009). Our analysis
shows that accounting for additional frictions/distortions is essential in order to reconcile a
broader set of micro-moments in firm investment dynamics and sheds new light on the the
severity of adjustment frictions.

Our investigation of imperfect information relates to recent work on measuring firm-level
uncertainty and quantifying its implications — for example, Bloom (2009), Bachmann and Elst-
ner (2015) and Jurado et al. (2015). Our strategy for inferring the extent of uncertainty at the
firm-level is related to our earlier work in DHV, where we used a combination of production
and stock market data to identify information frictions. By adapting that approach to use only
production-side data, we make it more widely applicable (DHV focus only on publicly traded
firms). We also differ from DHV in our explicit modeling and measurement of other factors

influencing firm investment decisions.

2 The Model

We consider a discrete time, infinite-horizon environment. The economy is populated by a

representative household and a continuum of firms of fixed measure one that produce a single



homogeneous good. The household inelastically supplies a fixed quantity of labor N and has
preferences over consumption of the single good. The household side of the economy is delib-
erately kept simple as it plays a limited role in our study. Throughout the analysis, we focus

on a stationary equilibrium in which all aggregate variables remain constant.

Production. Firms are competitive and produce output using capital and labor according

to a decreasing returns to scale production function

Yiie = AuK' N2, o +as <1 (1)

where 7 indexes firms and Ay is an idiosyncratic level of firm productivity. This is the only
source of fundamental uncertainty in the model (i.e., we abstract from aggregate risk).

The decreasing returns to scale assumption ensures a well defined distribution of firm sizes.
As is well-known in the literature, this formulation is equivalent to an alternative setup in
which firms produce differentiated products and face downward sloping demand curves due to
decreasing marginal utility of consumption. In that environment, A;; can also be interpreted
as an idiosyncratic demand shifter. For the remainder of the analysis, we simply refer to A;; as

a firm-specific fundamental.

Input choices. In our baseline analysis, we assume that firms hire labor period-by-period in
a spot market at a competitive wage W under full information (since we focus on a stationary
equilibrium, we suppress the time subscript on all aggregate variables).® At the end of each
period, firms choose investment in new capital, which becomes available for production in the
following period. Investment is subject to quadratic adjustment costs, so that the total cost of

new investment is given by

2

(i, K) = K — (1= ) K+ § (2 - (1-0)) & 2)

where the term K, — (1 —0) Ky = I;; is gross investment, 0 the rate of depreciation and &
parameterizes the severity of the adjustment cost.

Investment decisions are likely to be affected by a number of ‘non-fundamental’ factors (i.e.,

other than productivity /demand and the level of installed capital). These could originate, for

example, from distortionary government policies, e.g., taxes, size restrictions or regulations, or

other features of the institutional environment that influence firm decisions. To capture these

6In Section 4.6, we analyze an alternative setup in which labor is also subject to the same adjustment and
information frictions as capital. We show that assumption leads to an optimization problem with the same
structure as our baseline version with suitably re-defined fundamentals and curvature.



factors, which we loosely call distortions, we follow Hsieh and Klenow (2009) and introduce a
class of idiosyncratic ‘wedges’ that appear in the firm’s optimization problem as proportional
taxes on the cost of capital, denoted T}, .7

The firm’s problem in a stationary equilibrium can be represented in recursive form as

1% (Kitazit) = Ni{flll?iirl Eq [Az’tKiolez%Q — WN; — ﬂfH(I) (KitJrl; Kit) + BV (Kit+1,I1;t+1)
where E;; [-] denotes the firm’s expectations conditional on the information set of the firm at
the time of making its period ¢ investment choice, denoted Z;;. We describe this set explicitly

below.

After maximizing over the choice of Ny, this becomes

V (Kit,Zy) = max Ey [GAitKiat — Tiﬁ_lCI) (Kits1, Ki) + BV (Kit—f—lal.it—f—l)} (3)

Kit+1

1

g
where G = (1 — ) (%) o2 Ay = A and a = 7o is the curvature of operating profits

(revenues net of wages).

Equilibrium. We can now define a stationary equilibrium in this economy as (i) a set of value
and policy functions for the firm, V (K, Zy;), Ny (K, Ziy) and Ky (K, i) , (ii) a wage W
and (iii) a joint distribution over (Kj,Z;) such that (a) taking as given wages and the law of
motion for Z;, the value and policy functions solve the firm’s optimization problem, (b) the

labor market clears and (c¢) the joint distribution remains constant through time.

Characterization. We solve the model using perturbation methods. In particular, we log-
linearize the firm’s optimality conditions and laws of motion around the undistorted non-
stochastic steady state, where A; = A and T, = 1. Appendix A.1.1 derives the following

log-linearized Euler equation:®
kit <(1 + 5)5 +1- 06) = Eit [ai1 + Tigg1] + BEE;, [Kityo] + Ekir (4)

where é is a composite parameter that indexes the degree of adjustment costs and 7;,1 is a

composite distortion that summarizes the effect of 7% on the firm’s investment decision.

"Note that this class of distortions do not distort the labor choice, i.e., they do not lead to any dispersion in
the marginal product of labor. In Appendix A.1.3, we show that adding distortions to the labor choice would
have no effect on our analysis and results. In particular, our identification strategy and conclusions about the
sources of mpk dispersion are unaffected by these additional distortions. Therefore, in light of our focus on
investment choices, we abstract from them in our analysis.

8We use lower-case to denote natural logs, a convention we follow throughout, so that, e.g., z;; = log X;;.



Stochastic processes. We assume that A;; follows an AR(1) process in logs with normally

distributed i.i.d. innovations o7, i.e.,
it = pag—1 + i, g ~ N (0> Ui) (5)

where the parameter p is the persistence of firm-level fundamentals.
The distortion 7;; is assumed to be jointly normal with a;, with covariance matrix . We
place no restrictions on ¥, i.e., we allow distortions to covary with contemporaneous fundamen-

tals in an arbitrary way. Then, without loss of generality, 7;; has the following representation:’

Tit = Vit + €y + X4y Eit NN(OaUz), Xi NN(()»Ui) (6)

where v indexes the extent to which 7;; is correlated with fundamentals and ¢; and y; are
uncorrelated with a;. If v < 0, the distortion discourages (encourages) investment by firms
with stronger (weaker) fundamentals - arguably, the empirically relevant case. The opposite is
true if v > 0. The remaining components capture distortionary factors that are orthogonal to
fundamentals. The first, ;, is i.i.d. over time while the second, y;, is a permanent firm-specific

component.

Information. Next, we spell out Z;;, the information set of the firm at the time of choosing
period t investment, i.e., K;.;. This includes the entire history of its fundamental shock
realizations through period ¢, i.e., {a;—_s}.,. Given the AR(1) structure of uncertainty, this
history can be summarized by the most recent observation, namely a;;. The firm also observes

a noisy signal of the following period’s innovation in fundamentals
Sit+1 = Mit+1 + €it41, eitr1 ~ N (07 03)

where e;;,1 is an i.i.d. mean-zero and normally distributed noise term. This is in essence an
idiosyncratic ‘news shock,” since it contains information about future fundamentals. Finally,
firms also perfectly observe the uncorrelated transitory component of distortions ;.1 (as well
as the fixed component x;) at the time of choosing period t investment. They do not see the
correlated component but are aware of the structure, that is, they know its covariance with the
fundamental a;.

Thus, the firm’s information set is given by Zy; = (as, Si+1, €ir1, Xi)- Direct application of

9See DHYV for details.



Bayes’ rule yields the conditional expectation of the fundamental a;;1:

i1 L ~ N (Ei [ajt+1], V) where (7)
\ 1 1\
O¢ O_M o

There is a one-to-one mapping between the posterior variance V and the noisiness of the signal,

2
In

approches infinity, V = ai, that is, all uncertainty regarding the realization of the

o2 (given the volatility of fundamentals, o2). In the absence of any learning (or ‘news’), i.e.,

2

when o

fundamental shock ;41 remains unresolved at the time of investment. In this case, we have a
standard one period time-to-build assumption with E;; [a;11] = pa;. At the other extreme, i.e.,
when o2 approaches zero, V = 0 and the firm becomes perfectly informed about i, so that
Eit [ait+1] = air+1. It turns out to be more convenient to work directly with the posterior variance

V and so, for the remainder of the analysis, we will use that as our measure of uncertainty.

Optimal investment. We use a guess and verify approach to derive the firm’s optimal

investment policy function:!®

kity1 = Y1k + U2 (1 4+ ) Eit [ai41] + ¥3€i41 + YaXi (9)

where the coefficients are given by

E@i+1) = o (+Bé+1-a) (10)
W _ W _l-w
TR S S S E

The coefficients 11-1)4 depend only on production parameters, including the adjustment cost,
and are independent of assumptions about information and distortions. The coefficient v is
increasing and -1, decreasing in the severity of adjustment costs, é . If adjustment costs are
0 (ie., £ = 0), %1 =0 and 1y =h3 =y = ﬁ At the other extreme, as ¢ tends to infinity,
11 approaches one and -4 go to zero. Intuitively, as adjustment costs become large, the
firm’s choice of capital becomes more autocorrelated and less responsive to fundamentals and

distortions.

Aggregation. We now turn to the aggregate economy, and in particular, measures of ag-

gregate output and TFP. As we derive in detail in Appendix A.1.2, aggregate output can be

10See Appendix A.1.1 for details.

10



expressed as

logY =y=a+ a1k + asn

where k and n represent the (logs of the) aggregate stock of capital and labor inputs, respec-

tively. Aggregate TFP, denoted a, is given by

g tn(l—as) do_ lon(l-ap) (11)
21—0{1—042 mpk do'?npk 21—051—062

2

mpk 18 the cross-sectional

where a* is the first-best level of TFP in the absence of all frictions and o
dispersion in (the log of) the marginal product of capital (mpk;; = yu — kiy). Thus, aggregate

productivity monotonically decreases in the extent of capital misallocation, summarized in the

2

log-normal world by oy, .

In the absence of all frictions - adjustment and informational - as

well as distortions, the mpk is equated is across firms and a = a*. As frictions or distortions

2
mpk>

on aggregate TFP depends on the relative shares of capital and labor in production - the

become more severe, in the sense of increasing o aggregate productivity falls. The effect of

2
mpk

higher is capital’s share ; (and so the lower labor’s share aw), the higher the cost of a given

g

degree of misallocation in capital. Fixing the relative shares of capital and labor, the cost of
misallocation is increasing in the overall returns to scale (i.e., as we move closer to constant
returns). Finally, holding the aggregate factor stocks fixed, the effect on aggregate productivity
a is also the effect on aggregate output y. However, the misallocation induced by these forces
also reduces incentives for capital accumulation and so the aggregate stock of capital in the
stationary equilibrium decreases with their severity. Incorporating this additional effect, we
obtain the standard result that

dy 1 da
do? - 1 — oy do? (12)
mpk 1 mpk

i.e., the output effects equal the TFP effects scaled up by a multiplier that is increasing in
capital’s share in production.

Equations (11) and (12) point to a natural way to quantify the aggregate consequences
of particular factors - i.e., to measure the adverse effects on economic aggregates stemming
from their contribution to marginal product dispersion. We will employ this strategy in our
numerical analysis to provide a quantitative decomposition of aggregate TFP and output losses

arising from various sources of misallocation.

3 Identification

In this section, we develop a strategy to identify the key parameters of the model using readily

observable moments that are now widely available in firm-level data - specifically, revenues and

11



investment - and so can be applied to a broad set of firms across a wide variety of datasets.
The parameters of interest are the costs of capital adjustment, é , the quality of firm-level
information (summarized by V), and the severity of distortions, parameterized by 7, 0% and oi.
We show that, in general, these moments are each complicated functions of all the parameters,
so that any attempt to identify a particular parameter — i.e., quantify a specific factor - without
controlling for the others can lead to estimates that are potentially biased. This finding argues
for caution in interpreting the results from previous work investigating the role of each of these
forces in isolation.

Our methodology uses a set of carefully chosen elements from the covariance matrix of firm-
level capital and fundamentals (the latter measured using the production function and data on
revenues and inputs). Here, we outline that strategy using a tractable special case when firm-
level shocks follow a random walk, i.e., p = 1. In this case, we are able to derive closed form
expressions that allow us to analytically demonstrate the key intuition underlying our approach
and choice of moments. When we return to our general model in the following section, we will
demonstrate numerically that this intuition extends to the case with p < 1.

Because the environment with p = 1 is not stationary in levels, for the purposes of our
analytical work, we work with moments computed in changes. This does mean, however, that

we cannot identify the size of the fixed distortion ai.” Here, we focus on the four remaining

2

2, which we identify using the following four moments (1)

parameters, namely é , v, Vand o
the autocorrelation of investment, denoted py . ,, (2) the variance of investment, o7, (3) the
correlation of period t investment with the innovations in fundamentals in period ¢t — 1, denoted
Pr.a_, and (4) the comovement of the change in the marginal product of capital with the change
in fundamentals, measured by the coefficient from a regression of Ampk;; on Aa;;, which we
denote Apkq. All of these moments are drawn from the covariance matrix of capital and
fundamentals (which in turn can be directly computed using the production function and data
on revenues/value-added). We derive closed-form expressions for each in Appendix A.4 and

prove the following the result:
Proposition 1. The parameters f, v, V and o2 are uniquely identified by the moments py_,,

2
Oks Pka_q and /\mpk,a'

3.1 Intuition

The proof of Proposition 1 involves straightforward, if somewhat tedious, algebra. From the

perspective of gaining intuition, however, it turns out to be more instructive to examine the

1Tn the stationary version of our model with p < 1 that we work with in our numerical analysis in the

following section, we use afnpk, a moment computed using levels of capital and fundamentals, to pin down oi.

12



factors pairwise and analyze their effects on the most relevant moments. This exercise helps
to highlight the moments that are most useful in disentangling particular forces. To be clear,
the goal here is simply to provide some intuition behind the identification strategy and get a
sense of how the moments combine to provide information about the parameters — as mentioned
earlier, the identification result in Proposition 1 makes use of the full mapping from moments

to parameters, which is more complicated than this pairwise exercise.

Adjustment costs and correlated distortions. We begin by comparing adjustment costs,
parameterized by é , to the effect of correlated distortions, v. To do so, we use the variance
and autocorrelation of investment, o7 and Pkk_,- Both of these moments are commonly used to
estimate quadratic adjustment costs in the literature - for example, Asker et al. (2014) target the
variance of investment, among others, and Cooper and Haltiwanger (2006) the autocorrelation.

These moments take the form

21/12
ol = ( ) 2 352 13
2‘752
Pk = 1 — wi’) 2 (14)
Ok

where the ¢)’s are defined in equation (10); v, is increasing and 1y and 13 decreasing in the size
of adjustment costs. To understand how these two moments are affected by f and v, suppose for
the moment that there are no transitory distortions, i.e., 02 = 0. Then, from equation (13), we

see that low investment volatility can be due either to more severe adjustment costs, i.e., higher
wZ

kfpf

i.e., a more negative . Therefore, a strategy that uses the observed o7 to identify adjustment

é (which decreases ) or a stronger negative correlation of distortions with fundamentals,
costs while abstracting from correlated distortions would overstate those costs. In contrast,
with 02 = 0, equation (14) implies that the autocorrelation of investment is equal to 1, and so
directly identifies the adjustment cost parameter f . To see this differently, a model with only
adjustment costs that targets o7 would have an upward bias in the estimate of é , to the extent
that there are correlated distortions, and therefore overstate pyj ,. In conjunction, however,
these two moments uniquely identify f and v in the absence of transitory distortions.

More generally, with both correlated and transitory distortions, this is no longer the case,
since both moments are clearly sensitive to the latter. However, they are still useful in disen-
tangling é and ~. In particular, whereas the two factors have a similar dampening effect on the
variance of investment, they have opposing effects on the autocorrelation - the serial correlation
of investment pj,j, , increases with higher adjustment costs but decreases with a more negative

gamma. Intuitively, a more negative v reduces o3, increasing the relative weight of transitory
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distortions (which are serially uncorrelated). Thus, while these two moments are no longer

sufficient to pin down & and v, they are clearly informative for that purpose.!2

Uncertainty and correlated distortions. Next, consider the correlation of investment with
past innovations in fundamentals, p;, , and the regression coefficient A, .. The expressions

for these moments are:

Pka = {%(1—@51)4—@@1}%&7) (15)
dta = 1= (=)t (1- ) (16)

As before, the two moments are complicated functions of all the forces in the model, but they
are particularly useful in disentangling uncertainty, V, from correlated distortions, v. To see

this most clearly, assume for the moment that there are no other frictions, i.e., é =02 =0.

This implies ¢, = 0 and 9, = ﬁ, so that the expressions reduce to
\Y \Y
Pka_1 = O_—g )‘mpk,a =1- (]. + ”7) (1 — O'_Z) . (].7)

Thus, in the absence of adjustment costs and transitory distortions, the correlation of current
investment with past shocks directly identifies the extent of uncertainty, independent of the
degree of correlated distortions. The intuition is straightforward - high uncertainty implies
that the firm will respond to fundamental shocks with a lag, leading to a higher p;, ,. The
invariance to correlated distortions comes from the fact that the latter simply scale the response
of investment to fundamentals, leaving the correlation unchanged. This strategy - and the
associated robustness properties - bears a close relationship with the approach in DHV. They
show how one can draw robust conclusions about firm-level uncertainty without observing the
firm’s information set in its entirety. By adapting it to production-side data (DHV make use
of stock prices and focus only on publicly traded firms), we make it more direct and widely
applicable.’® Given ;12, the moment A, o pins down . This is also intuitive - both uncertainty
and correlated distor%ions dampen the response of investment to fundamentals. This results
in under (over)-investment by firms with high (low) a, inducing a more positive covariance

between mpk and a.

12Taken together, investment volatility could give either an over- or under-estimate of adjustment costs in the
present of both correlated and uncorrelated transitory distortions, since it is decreasing in v and increasing in
o2. The autocorrelation would tend towards an underestimate since it is decreasing in both types of distortions.

I3The response of current actions to past shocks has been used in a similar fashion in the sticky price literature
to identify information frictions - see, for example, Klenow and Willis (2007).
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More generally, with all the factors operational, this logic is still present, but adjustment
costs and/or transitory distortions confound these simple mappings. Intuitively, adjustment
costs are an additional source of positive correlation between current investment and past shocks
while uncorrelated transitory distortions are a source of orthogonal variation in investment,
increasing o7 and driving down this correlation. As a result, mapping py._, to % without
controlling for adjustment costs (uncorrelated transitory distortions) runs the risk of overstating
(understating) the true degree of uncertainty. However, for fixed é and o2, this correlation is
still monotonically increasing in V and decreasing in 7 (which dampens the firm’s incentives
to respond to fundamentals, irrespective of timing).!* In contrast, uncertainty and correlated
distortions have similar effects in increasing A,,px . Taken together then, these moments are

particularly informative in distinguishing V and ~.

Transitory and correlated distortions. To disentangle correlated from uncorrelated tran-
sitory distortions, consider Ak, and pgpi ,. We have seen that the former is increasing in
the severity of correlated distortions and is independent of transitory ones and that the latter
is decreasing in both types of distortions - a more negative 7 dampens the response to the

serially correlated fundamental, while higher o2 increases the importance of the transitory i.i.d.
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component. For given values of 5 and V, the two moments can be used to pin down v and o?.

Uncertainty and adjustment costs. Finally, what distinguishes uncertainty from adjust-
ment costs? As shown above, an increase in the severity of either of these factors can generate
sluggishness in the response of actions to fundamentals, i.e., raise the correlation of invest-
ment with past fundamental shocks pp, ,, so that examining this moment is not by itself
sufficient. However, the autocorrelation of investment py ;_, is independent of uncertainty and
determined only by adjustment costs and distortions. Thus, for a given level of distortions, the
autocorrelation of investment can be used to infer the severity of adjustment frictions. This,
in combination with the correlation of actions with lagged shocks, allows us to pin down the

extent of uncertainty.

14The influence of adjustment costs on py ,_, is not so simple. Because the first term in (15) is increasing in

é and the second term decreasing, the correlation is not monotonic in the size of these costs. When adjustment
costs are zero, Py , = (;12. When adjustment costs are sufficiently, high, 3 = 1 and pge_, = 0. The

correlation as a function of the adjustment cost takes the form of an inverted-U between these two endpoints.
The empirically relevant region turns out to be the upward sloping part, where using py ,_, to identify V while
abstracting from adjustment costs overstates V.

15Considering Appka,qa, Bartelsman et al. (2013) point out the usefulness of a highly related moment, the
covariance of mpk and a to quantify correlated distortions (and further to disentangle them from uncorrelated
ones). Buera and Fattal-Jaef (2016) parameterize the strength of correlated distortions directly to match the
regression coefficient.
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4 Quantitative Analysis

The analytical results in the previous section showed a tight relationship between the moments
(Phsa_r> Prkys T, Ampk,a) and the parameters (V, £ 02, 7) for the special case of p = 1. In this
section, we use the insights gained from those results to develop a numerical strategy for the
case where fundamentals follow a general autoregressive process, which we apply to data on
Chinese manufacturing firms. This allows us to provide quantitive measures of the severity
of the various forces in our model, the degree of resulting misallocation, and the impact on
aggregate outcomes. We also study extensions where the firm’s labor choice is subject to the
same forces as investment and where the firm also faces financial frictions in the form of liquidity
constraints. For purposes of comparison, we also provide results for publicly traded firms in

the US and later for two additional countries, Colombia and Mexico.

4.1 Parameterization

We begin by assigning values to the more standard preference and production parameters of
our model. We assume a period length of one year (our data comes at an annual frequency)
and accordingly set the discount factor 3 = 0.95.1® We assume a common degree of decreasing
returns in production across countries, a; + oo = 0.83, quite close to the standard value of 0.85.
In an environment with differentiated goods, monopolistic competition and constant returns
to scale in production, our choice corresponds to an elasticity of substitution between goods
of 6, roughly in the the middle of the commonly used range.!” Assuming that capital’s share
of payments to factors of production is one-third and labor’s share two-thirds gives values of
a; = 0.28 and ay = 0.55. These translate into an a = 0.62 in our baseline analysis.'®

Next, we turn to the parameters governing the process on firm fundamentals a;;: the persis-
tence p and the variance of the innovations ai. We can directly compute the the fundamental for
each firm (up to an additive constant) as va; — ak;; where va; denotes the log of value-added.
We then estimate the parameters of the fundamental process by performing the autoregression
implied by equation (5), additionally controlling for year by industry fixed effects to isolate the
firm-specific idiosyncratic component of the innovations. The resulting coefficient represents an
estimate of p and the variance of the residuals of 03.

To pin down the the severity of adjustment costs é , the quality of firm information V, and

160Qur explicit modeling of adjustment and other frictions allows us to perform our analysis at this relatively
higher frequency, compared, for example, to DHV, who abstract from these frictions and analyze three year
horizons.

17See DHV for details.

18Section 4.5 analyzes an additional case for China featuring a higher capital share, in line with the findings
of a number of recent papers.
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the extent of the distortions v and o2, we follow almost directly the strategy outlined above.
Specifically, we target the correlation of investment growth with lagged shocks to fundamentals
(pia_,), the autocorrelation of investment growth (p;;_,), the variance of investment growth (o?)
and the correlation of the marginal product of capital with fundamentals (pppkq). We follow
the literature by working with the growth rate of investment (in the analytical cases studied
earlier, we used investment, i.e., the growth rate of capital) in order to at least partially cleanse
the data of firm fixed effects, which are a significant component of cross-sectional differences

9

in investment rates.!® Finally, to infer ai, the fixed component of distortions in equation

2
mpk?

Thus, by construction, our parameterized model will generate the amount

(6), we match the overall dispersion in the marginal product of capital, o
2
-
of misallocation observed in the data, allowing us to decompose the role of each factor in

which is clearly

increasing in o

contributing to the total. We summarize our empirical approach in Table 1.

Table 1: Parameterization - Summary

Parameter Description Target/Value
Common
Time period 1 year
a1 Capital share 0.28
o Labor share 0.55
6] Discount rate 0.95

Country-specific

p Persistence of fundamentals Estimates of (5):

oy Shocks to fundamentals Qi = Pai—1 + it
\% Signal precision Pia_:

¢ Adjustment costs Pii_,

¥ Correlated distortions Prmpk.a

o? Transitory distortions o?

ai Permanent distortions afnpk

4.2 Data

The data on Chinese manufacturing firms are from the Annual Surveys of Industrial Production

conducted by the National Bureau of Statistics. The surveys include all industrial firms that are

either state-owned, or are non-state firms with sales above 5 million RMB (about $600,000)

19Gee, for example, Morck et al. (1990) and DHV.
20Tndustrial firms correspond to Chinese Industrial Classification codes 0610-1220, 1311-4392 and 4411-4620,
which includes mining, manufacturing and utilities.
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We use data spanning the period 1998-2009. The original data come as a repeated cross-section.
A panel is constructed following almost directly the method outlined in Brandt et al. (2014),
which also contains an excellent overview of the data for the interested reader. The Chinese
data have been used multiple times and are by now familiar in the misallocation literature -
for example, Hsieh and Klenow (2009) - although our use of the panel dimension is rather new.
The data on US publicly traded firms comes from Compustat North America. We use data
covering the same period as for the Chinese firms.

We measure the firm’s capital stock k;; in each period as the value of fixed assets in China
and of property, plant and equipment (PP&E) in the US, and investment as the change in
the capital stock relative to the preceding period. We construct the fundamental as a; =
va;; — aky;, where we compute value-added from revenues using a share of intermediates of 0.5,
and, ignoring constant terms that do not affect our calculations, measure the marginal product
of capital as mpk;; = va;; — k;;. First differencing k;; and a;; gives investment and changes
in fundamentals between periods. To isolate the firm-specific variation in our data series, we
extract a time by industry fixed-effect from each and use the residual as the component that is
idiosyncratic to the firm. In both countries, industries are classified at the 4-digit level. This is
equivalent to deviating each firm from the unweighted average within its industry in each time
period and serves to eliminate any aggregate components, i.e., changes in aggregate conditions,
for example, or inflation, as well as render our calculations to be within-industry, which is a
standard approach in the literature. After eliminating duplicates and problematic observations
(for example, firms reporting in foreign currencies), outliers, observations with missing data
etc., our final sample consists of 797,047 firm-year observations in China and 34,260 in the US.
Appendix B provides further details on how we build our sample and construct the moments,
as well as summary statistics from one year of our data, 2009.

Table 2 reports the target moments for both countries. The first two columns shows the
fundamental processes, which have similar persistence but higher volatility in China. The re-
maining columns show that investment growth in China is more correlated with past shocks,
is more volatile and less autocorrelated, that there is a higher correlation between firm funda-
mentals and the mpk, and that the overall dispersion in the mpk is substantially higher than
among publicly traded US firms. This variation will lead us to find significant differences in

the severity of investment frictions and distortions across the two sets of firms.

Table 2: Target Moments

2 2 2
P O'“ ‘ Pia_q Piji_q Pmpk,a ag; Ompk

China 091 0.14 | 0.25 —-0.36 0.68 0.14 0.92
US 093 0.08] 0.13 —-0.30 0.55 0.06 0.45
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4.3 Identification

Before turning to the estimation results, we revisit the logic for identification. Although we no
longer have analytical expressions for the mapping between moments and parameters, we can
show that the intuition developed in Section 3 applies to the more general case here as well.
In that section, we demonstrated how subsets of moments analyzed in pairs were particularly
informative in disentangling the various forces present in the model. Here, we conduct a nu-
merical version of that exercise. More precisely, we take two parameters at a time and plot
their combinations that give rise to the empirically observed values of two moments, holding
the other parameters fixed. In a slight abuse of terminology, we refer to these curves as isocorre-
lation curves, or isocorrs. The parameters are pinned down, at least locally, by the intersection
of the isocorrs, which is the parameter configuration that is consistent with the empirical value
of both moments. To illustrate this logic, we use the moments and parameter values from US
publicly traded firms (reported in Tables 2 and 3) for all exercises in this section. The four

plots are displayed in Figure 1. Next, we discuss each plot in turn.

Adj costs vs Correlated distortions Uncertainty vs Correlated distortions
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Figure 1: Identification - Quantitative Model
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Adjustment costs and correlated distortions. First, to distinguish adjustment costs,

é , from the size of correlated distortions, v, the top left panel of Figure 1 plots the isocorr
2

curves of the variance and autocorrelation of investment growth, o; and p;; ,, respectively.
The line marked o7 plots combinations of f and ~ that generate a variance of investment equal
to the observed level from the US data (holding fixed the other parameters, namely o2, ai and

2

V). Note that a more negative v implies more severe distortions. The o;

< isocorr is upward

sloping since both factors depress the volatility of investment (see equation (13) for example),
so that a less negative v requires more severe adjustment costs to generate the same o?. The
pii_, isocorr, on the other hand, is downward sloping since the autocorrelation is decreasing
in v but increasing in & (e.g., expression (14)). Therefore, a less negative v raises p;; , which
has to be offset by a lower é . The two curves cross at a single point, which represents the
parameter combination that matches both moments. Intuitively, the opposing effects of these
factors on the moments - more severe correlated distortions dampen both the variability and
autocorrelation of investment, whereas higher adjustment costs dampen the variability but
increase the autocorrelation — allows us to disentangle them. To see why both forces are
necessary to reconcile the two moments, note that a model featuring only adjustment costs
(i.e., imposing v = 0) parameterized to match the variability of investment would tend to
overstate adjustment costs and therefore, the autocorrelation of investment (the right end of

the graph). Allowing for a non-zero 7 gives the model the flexibility to match both moments.?!

Uncertainty and correlated distortions. Next, to tease out uncertainty, V, from corre-
lated distortions, ~, the top right panel of Figure 1 plots the isocorr curves of the correlation of
investment growth with lagged shocks and the correlation of the mpk with fundamentals, p; , ,
and pppka,q, respectively. The former is virtually flat, implying that p; ,_, is nearly independent
of 7. Recall the discussion of equation (15) in Section 3 where we showed that in the absence
of adjustment costs and transitory distortions, the correlation of current investment with past
shocks is invariant to . This invariance holds here as well, albeit approximately, reflecting the
fact that the adjustment costs and transitory distortions are fixed at modest levels (which is
what we find in the US). On the other hand, the correlation of the mpk with fundamentals
is increasing in both V and ~ - the intuition is analogous to that behind (16) — leading to
an upward sloping ppmpka,. isocorr. A less negative v increases the response of investment to
fundamentals and so, ceteris paribus, reduces p,iq. To offset this effect and generate the same

Pmpk.a, UNcertainty must be greater. Ignoring uncertainty and inferring v from p,,px o would risk

21gnoring correlated distortions and parameterizing adjustment costs to match the autocorrelation of in-
vestment growth would tend to overstate the volatility of investment growth and underestimate adjustment
costs.
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overstating the severity of distortions.?? On the other hand, using the standard one-period time-
to-build specification, which also maximizes uncertainty by assumption, would underestimate

the extent of this type of distortion.

Transitory and correlated distortions. To disentangle correlated and uncorrelated tran-
sitory distortions, v and o2, the bottom left panel of Figure 1 plots the isocorr curves of p;;_,
and pppraq- The autocorrelation isocorr is virtually flat - recall from (14) that in the absence
of transitory distortions, the autocorrelation of investment was invariant to . This result
approximately goes through here. The pppreq curve is downward sloping since the moment
is increasing in 7 but decreasing in o2 (see equation (34) in Appendix A.4.1)). Uncorrelated
transitory distortions reduce both the autocorrelation of investment and the correlation of the
mpk with fundamentals. Correlated distortions also (mildly) reduce the serial correlation of
investment, but increase ppprqaq. As before, these opposing effects imply that there is a unique

combination of 7 and o2 consistent with both moments.

Uncertainty and adjustment costs. Lastly, to separate uncertainty from adjustment costs,
the bottom right panel of Figure 1 plots the p;,_, and p;;_, isocorr curves. The former is
virtually flat - in this region of the parameter space, the correlation between investment and
lagged fundamentals is not particularly sensitive to adjustment costs. The p;; , isocorr curve,
however, is upward sloping. Higher adjustment costs increase the autocorrelation of investment,
but have little effect on its correlation with past shocks. The fact that p;,_, is high (relative to
pii_,) is an indication of a departure from full information. At the other extreme, assuming that
firms have no information about future shocks to fundamentals would lead to a p;, , that is
counterfactually high. Introducing additional information on the part of the firm, i.e., reducing

V, allows us to hit this target precisely.

4.4 Results

Table 3 contains our baseline results. In the top panel we display the parameter estimates. In
the second panel, we report the contribution of each factor to dispersion in the mpk, which we
denote Aoy, ,.** These are calculated under the assumption that only the factor of interest is
operational, i.e., in the absence of the others, so that the contribution of each one is measured

22A strategy that abstracts from correlated distortions and infers V using Pmpk,a Would, in turn, risk over-
stating the extent of uncertainty.

23For adjustment costs, we do not have an analytic mapping between the severity of these costs and misallo-
cation, but this is a straightforward calculation to make numerically; for each of the other factors in our model,
we can compute their contributions to misallocation analytically.
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t.24

relative to the undistorted first-bes The third panel expresses the contribution as a percent

of the total mpk dispersion measured in the data, denoted AUJT%:“ Because of interactions
between the factors, there is no a priori reason to expect these relative contributions to sum
to one. In practice, however, we find that the total is reasonably close to one, allowing us
to interpret this exercise as a decomposition of total observed misallocation. Finally, in the
bottom two panels of the table, we compute the implied losses in aggregate TFP and output
stemming from each factor, again relative to the undistorted first-best level, i.e., Aa = a* — a
and Ay = y* —y. Once we have the contribution of each factor to mpk dispersion, these latter

two values are simply applications of formulas (11) and (12).

Table 3: Frictions, Distortions and Misallocation

Distortions

Adjustment Costs Uncertainty Correlated Transitory Permanent

~

Parameters 3 \% v o? or
China 0.16 0.09 —0.63 0.00 0.51
US 1.38 0.03 —0.33 0.03 0.29
Aafnpk,

China 0.01 0.09 0.33 0.00 0.51
US 0.05 0.03 0.06 0.03 0.29
AO’,’ank

G'Iank

China 1.1% 9.4% 36.1% 0.0% 55.2%
US 10.8% 7.3% 14.4% 6.3% 64.7%
Aa

China 0.00 0.03 0.12 0.00 0.19
US 0.02 0.01 0.02 0.01 0.11
Ay

China 0.01 0.04 0.17 0.00 0.26
US 0.03 0.02 0.03 0.01 0.15

Adjustment costs. One of our key quantitative findings is a relatively modest degree of
adjustment frictions in both countries. For example, the estimate of é = 1.38 for the US in
Table 3 implies a primitive parameter £ in the adjustment cost function (2) of 0.2, a value which

is generally lower than existing estimates in the literature.?” Asker et al. (2014), for example,

24An alternative would be to calculate the contribution of each factor holding the others constant at their
estimated values. However, the resulting interactions between them makes it difficult to compare the severity
of the individual factors across countries.

25The mapping is derived in equation (24) in Appendix A.1.1. We use an annual depreciation rate of § = 0.10.
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report an estimate of 8.8 for their convex adjustment cost parameter estimated using data on
US manufacturing firms. To interpret this difference, consider a firm that doubles its capital
stock in a year. Our estimates imply that the firm would incur adjustment costs equal to about
11% of the value of the investment, whereas the corresponding number using the Asker et al.
(2014) estimate would be 60%.%6 The level of costs is estimated to be even lower in China.
These results imply a limited role for adjustment costs in generating misallocation, partic-

ularly so in China - if this were the only friction, mpk dispersion in China arising from this

2

mpk- Lhe contribution of adjustment

channel would be 0.01, representing about 1% of the total o
costs in the US is significantly higher, where they lead to mpk dispersion of 0.05, about 11%
of the total. The corresponding losses in aggregate TFP are about 0.4% and 2% in the two
countries, respectively, and output losses 1% and 3%. Thus, adjustment frictions are relatively
more important in the US compared to China. However, these estimates imply that adjustment
costs alone cannot account for the majority of marginal product dispersion. While their effect
is not trivial, it is quite modest compared to the effect of distortionary factors described below.
Later, we show that this finding remains robust to a number of variants of our baseline model —
where we allow for country-specific capital share parameters, frictions/distortions in labor and
financial constraints.

It is important to note that one would reach a very different conclusion from examining
adjustment costs in isolation. To show this, we also estimated a version of our model in which
we abstract from the other forces and parameterize those costs to match a single moment in
the data. First, we infer the severity of adjustment costs from the volatility of investment
growth, o?. Doing so gives considerably larger estimates of their magnitude, about 60% higher
in the US and almost 10 times higher in China. The resulting mpk dispersion increases by a
similar amount. Tellingly, however, the implied autocorrelation of investment growth from this
approach is much higher than that observed in the data, —0.17 vs a true value of —0.30 in the US
and —0.20 vs —0.36 in China. These are precisely the patterns predicted by our identification
arguments in Sections 3 and 4.3 — a strategy that parameterizes adjustment costs to match
investment variability alone leads to estimates that substantially overstate the autocorrelation
of investment. Explicitly accounting for other factors enables the model to reconcile the two
moments and significantly reduces the implied value of those costs. A similar strategy targeting
the autocorrelation of investment leads to the opposite conclusion — here, we would understate
the magnitude of adjustment costs and predict too high a variability of investment compared
to the data.

Z6For the US, our estimates are closer to those in Cooper and Haltiwanger (2006) and Bloom (2009).
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Uncertainty. Table 3 shows that firms in both countries face significant uncertainty, although
the data rejects the extreme assumption of no information. The severity of the informational

friction is higher among Chinese firms. For example, as a share of the prior uncertainty, O’i,
v
(rﬁ ’

inates about 60% of total uncertainty in the US and about 35% in China.?” It is straightforward

to show that in an environment where imperfect information is the only friction, a?wk =V,

residual uncertainty, is 0.42 in the US and 0.63 in China. In other words, firm learning elim-

so that the contribution of uncertainty alone to observed misallocation can be directly read
off the second column in Table 3 - namely 0.09 in China and 0.03 in the US. These represent
about 9% and 7% of total mpk dispersion in the two countries, respectively. The implications
for aggregate TFP and output losses in China are 3% and 4%, while the corresponding values
in the US are slightly lower, at 1% and 2%.

Distortions. The last three columns of Table 3 show that distortions play a significant role
in generating the observed mpk dispersion in both countries. Turning first to the correlated
component, the negative values of v suggest that they disincentive investment by more produc-
tive firms and especially so in China. The contribution of these distortions to mpk dispersion is
given by 7202, which amounts to 0.33 in China, or 36% of total misallocation. The associated
aggregate consequences are also quite sizable — TFP and output losses are 12% and 17%, re-
spectively. In contrast, the estimate of v in the US is significantly less negative than in China,
suggesting that this type of size-dependent distortion is less of an issue for firms in the US,
both in an absolute sense — the mpk dispersion from these factors in the US is 0.06, less than
one-fifth that in China — and in relative terms — they account for only 14% of the observed
dispersion in marginal products in the US. The corresponding TFP and output effects are also
considerably smaller for the US - namely, 2% and 3%, respectively.

Next, we consider the role of distortions that are uncorrelated with firm fundamentals. Table

2

2) are negligible in both countries, but

3 shows that purely transitory factors (measured by o
permanent firm-specific factors (measured by ai) play a prominent role. Their contribution to
mpk dispersion, which is also given by ai, amounts to 0.51 in China and 0.29 in the US. Thus,
their absolute magnitude in the US is considerably below that in China (just over one-half),
but in relative terms, these factors do seem to account for a substantial portion of measured
misallocation in both countries. The aggregate consequences of these types of distortions are
also significant, with TFP losses of 19% in China and about half that in the US.

In sum, the estimation results point to the presence of substantial distortions to investment,

270ur values for ;12 are comparable to those in DHV, who find 0.41 in the US and 0.63 in China. Though

these estimates are not directly comparable — DHV focus on longer time horizons (they analyze 3-year time
intervals) and consider only publicly traded firms in China — the fact that they are quite close to each other
provides a degree of validation for our methodology.
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especially in China, where they disproportionately disincentivize investment by more produc-
tive firms. What patterns in the data lead us to this conclusion? Recall that the mpk in
both countries shows significant dispersion along with a high correlation with fundamentals,
indicating a dampened response of investment to fundamentals. In principle, this pattern could
emerge from adjustment costs, imperfect information or correlated distortions. However, the
autocorrelation of investment growth, p;; ,, in the data is relatively low, which bounds the
severity of adjustment frictions. Similarly, the response of investment to past shocks, p;, ,,
is also modest, limiting the role of the informational friction. Hence, the estimation assigns a
substantial role to correlated distortions, particularly in China, as well as fixed distortions, in

order to generate the observed patterns in the mpk.?

4.5 Higher Capital Share in China

In our baseline computations, we assumed a common capital share across countries of one-third,
which is a standard value used in the literature for US firms. A number of recent papers have
found a higher capital share in China, for example, Song et al. (2011) and Bai et al. (2006),
generally equal to one-half. Table 4 presents results for this case, specifically, where we set

a; = s = 28 which implies an o = 0.71. The new value of « affects our estimates of firm

2
fundamentals and through this, the target moments. We report the recomputed moments in
the top panel of the table. The second panel contains the new parameter estimates, which
are broadly similar to those in the baseline case (7 becomes slightly more negative and ai
falls somewhat), as are the implications for misallocation - adjustment costs and uncertainty
play limited roles, with correlated and permanent distortions accounting for a large portion
of mpk dispersion. A higher capital share relative to labor increases the cost of misallocation
in terms of TFP and output losses, i.e., the multipliers in equations (11) and (12) increase,
and so the adverse effects of investment frictions/distortions on aggregate outcomes is larger
than in the baseline case. Here, for example, correlated and permanent distortions each lead to
productivity losses of about 30% and output losses of about 50% and the impact of uncertainty
becomes larger, implying TFP and output losses of 7% and 12%. However, the increase in the
aggregate effects holds across all the factors, so that our conclusions regarding the substantial

role for distortions continue to hold.

28 A high value for Pmpk,a also tends to rule out uncorrelated transitory distortions as an important driver of
investment decisions.
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Table 4: China-Specific Capital Share

2
Moments p O,  Pia_r  Piioi Pmpka 5 o

091 015 029 -036 0.76 0.14 0.92

~

Parameters 13 \Y 0 o? o

013 010 -0.70 0.00 0.41

Aggregate Effects

N 001 010 044 000 041
S 13% 103% 474% 0.0% 44.4%
mpk

Aa 001 007 031 000 0.29
Ay 001 012 053 000 050

4.6 Frictional Labor

Our baseline analysis makes the rather stark assumption that there are no adjustment or in-
formation frictions in labor decisions, rendering the labor input a static choice made under full
information. Although this is not an uncommon assumption in the literature, it may not be
an apt description of labor markets in developing economies such as China. In this section, we
extend our analysis to allow for frictions in the adjustment of labor. In particular, we show
in Appendix A.2.1 that when labor is subject to the same forces as capital - adjustment and
informational frictions and distortions - the firm’s intertemporal investment problem takes the
same form as in expression (3), but where the degree of curvature is equal to @ = a3 + s
(and with slightly modified versions of the G and A;; terms). Thus, the qualitative analy-
sis of the model is unchanged, although the quantitative results will differ since we now have
a = oy + ag = 0.83. Table 5 reports results from this specification for the Chinese firms. The
top panel of the table displays the target moments recomputed under this scenario (recall that
a number of the moments depend on the value of ). A comparison to the baseline moments
in Table 2 shows that under the assumption of frictional labor, the correlation of investment
with lagged shocks increases, as does the correlation of the mpk with fundamentals. The new
values imply a higher level of adjustment costs, greater uncertainty and more severe correlated
distortions. As a result, a lower level of the permanent component of uncorrelated distortions
is needed to mach the dispersion in the mpk. The estimated parameter values are reported in
the second panel of Table 5.
Aggregate TFP in this case is equal to®

a=a"— s——0,. (18)

29Derivations are in Appendix A.2.2.
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where a* is again TFP in the frictionless, undistorted benchmark. Given the effect of misal-
location on aggregate TFP, the additional effect on output as a result of a reduction in the
aggregate capital stock is the same as in the baseline case, i.e., equation (12).

Expression (18) shows that the relative shares of capital and labor in production — a key
determinant of the aggregate ramifications of misallocation in the baseline case with frictionless
labor - no longer play a role. Only the overall returns to scale o matters and, as in the baseline
case, the higher the returns to scale (i.e., the closer to constant returns), the greater the losses
from misallocation. Further, it is straightforward to see that for a fixed set of parameters, the
cost of misallocation is larger here than in the baseline case.

The bottom panel of Table 5 reports the contribution of each factor to total misallocation
and computes the implications for aggregate TFP and output. There is a noticeable increase in
the impact of adjustment costs from the baseline case - in this specification, these costs account
for almost 13% of mpk dispersion (compared to 1% above). There is also a small increase
in the impact of uncertainty (from 9% to 11%). However, both of these forces remain muted
compared to correlated and permanent distortions, which continue to account for the largest
portion of observed misallocation. The effects on productivity and output are much larger than
in the baseline scenario - intuitively, when labor is chosen in the face of the same factors as
capital, firms are unable to mitigate capital misallocation by adjusting on the labor margin,
a force that was present in the baseline case. For example, adjustment costs and imperfect
information now lead to TFP losses of about 25% and 30%, respectively. The corresponding
figures for correlated and permanent distortions imply gaps relative to the first-best of about
115% and 75%. While the main message of our analysis remains - correlated and permanent
distortions seem to play a significant role in explaining misallocation - the results here illustrate

the potential for large aggregate consequences of adjustment/information frictions.

Table 5: Frictional Labor

2 2 2
Moments p Oy Pias  Piia Pmpka  O; T mpk

092 0.16 033 -036 081 0.14 094

Parameters 13 \% ol o2 o
0.78 0.11 —-0.68 0.04 0.30

Aggregate Effects

N 012 011 048 004 0.30
0.2
St 12.8% 11.3% 51.2% 4.0% 32.2%
mpk
Aa 029 026 117 009 074
Ay 041 036 162 013 1.02
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4.7 Financial Frictions

Our baseline analysis abstracts from financial frictions, a choice motivated by the fact that
previous studies have found only a limited role for these types of factors in leading to mis-
allocation, for example, Midrigan and Xu (2014). Despite this finding, a potential concern
is that our baseline conclusions regarding the composition of misallocation, i.e., the relative
contributions of the various forces in the model, are potentially biased by omitting financial
considerations. Further, it is of interest to understand whether the large magnitude of distor-
tions that we measure are in any significant part attributable to financial market imperfections.
To address these questions, this section introduces liquidity constraints into our framework,
which capture, albeit in a stylized way, some essential features of financial frictions while re-
taining the tractability of the baseline model. We find that including financial factors modestly
increases our estimate of adjustment costs and reduces the severity of correlated distortions,
but our results on the sources of misallocation are largely unchanged. Further, the role of the
financial friction itself in generating misallocation, although non-negligible, is fairly modest, a
result broadly in line with the findings in the existing literature.

To introduce financial frictions, we assume that firms face a liquidity cost Y (K41, Birs1)
that is increasing in the chosen level of capital (K1) but decreasing in their holding of liquid
assets (denoted Bj11). This cost captures the idea that firms may not have frictionless access to
external funds from financial markets and so must finance some portion of investment internally.
Our formulation can be interpreted as a smoothed version of financing or other constraints such
as that in Buera and Shin (2013) and Moll (2014). Using a continuous penalty function rather
than an occasionally binding constraint allows us to continue using perturbation methods, while
still capturing the influence of liquidity or financial considerations on investment decisions.

We work with a flexible parameterization of the liquidity cost function:

Kwt

oA
T (KitJrla BitJrl) =V—5
B2

it+1

where 7, w; and ws are parameters. The firm’s recursive problem becomes

1% (Kit7 Bityzit) = B.tifll%??tﬂ Ei [H (Kita Ait) + RBy — Bit—l—l - (Kit+17 Kit) -7 (Kit-i-la Bz‘t+1)]
+ BEq [V (Kits1, Bitt1, Ziv1))

where R < %3 denotes the (exogenous) gross return on liquid assets, which are risk-free. This is

the sense in which liquidity is costly - it requires the firm to hold a low-return asset simply for
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the sake of moderating its effective cost of capital. The optimal choice of B,y is given by’

1
A a1 w
g [ fwe \=T s
i+l o\ B8R it+1

and using this to replace Bj;11, we obtain the following version of the firm’s value function,

v 14w

V (Kit, ) = max E; {H (Kit, Ait) + RBy — @ (K1, Kit) — 1o o vt

Kit41

+ BEi [V (Kiti1, Zits1)]

where
wy — (1 + we)

1—|—C<J2

and v is a composite parameter that is increasing in the scale parameter, 7, and in the net cost
of holding liquid assets, 1 — SR. The parameter w governs the additional curvature introduced
by liquidity costs into the firm’s capital choice problem. If w < 0, then the marginal cost of
liquidity is decreasing in Kj;.1. The opposite is true if w > 0. This is arguably the more
intuitive case, where the financial friction exerts a dampening effect on the firm’s incentives to
adjust K41 in response to changes in expected fundamentals (and distortions).

We can show that the linearized Euler equation takes precisely the same form as in expression

(4) in our baseline setting, but with the curvature parameter « replaced by a liquidity-adjusted

(L vEe
““\apGaKer1)"

Thus, financial frictions manifest themselves as a change in the degree of curvature in the firm’s

one, denoted &, where

o

investment policy function. This can be higher or lower than the curvature from the production
function, depending on the properties of the liquidity cost function, specifically, the sign of w.
When w > 0, so that the marginal cost of liquidity is increasing in K;;.1, we have & < « and the
firm’s response to changes in expected fundamentals is muted. The opposite is true if w < 0.
To better understand the implications of the financial friction, consider the special case
when this is the only factor distorting investment. The choice of capital (in logs) is simply
1

ki = ﬁait, whereas the frictionless choice is k; = ;=—a;. When & < «, the elasticity of ky to

a;; is dampened relative to the frictionless level. To see the implications for misallocation, note

30All derivations for this section are in Appendix A.3.
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that, in this case

a—a
mpki = ait+<a_1)kit:(1_d)ait (19)
a—a\’
i = (122 o (20)

which is zero when o = & and increasing in the difference between the two.

How can we discipline &7 A common strategy in the literature is to use aggregate data on
the extent of external finance and/or liquidity in the economy.?* Here, we take an alternative
approach and estimate & (along with the other factors) by continuing to focus on production-
side moments from the micro-data. In particular, we modify the estimation exercise from the
previous sections to also target the correlation of the mpk with k, denoted ppp 1, as well as the
variance of the change in the mpk, denoted Uimpk. We pick the parameter configuration that
is jointly consistent with the observed values of both of these moments (in addition to the ones
used in our baseline analysis). Table 6 reports the results for China. The empirical values of
the two additional moments are ppyprr = —0.52 and 03,,,,;, = 0.16. For purposes of comparison,
the first row of the table displays the parameter estimates from our baseline analysis and the

second row the estimates with financial frictions.

Table 6: Financial Frictions - Parameter Estimates

£ \% y o o2 a

X
Baseline 0.16 0.09 —-0.63 0.00 0.51 -
With Financial Frictions 0.24 0.09 —-0.44 0.00 1.14 0.45

2

The estimate of € under financial frictions increases modestly, while V and o?

are quite
close to their baseline values, implying that our finding of a relatively modest contribution to
mpk dispersion from these sources is unchanged. The main change from adding the financial
friction is a reduction in (the absolute value of) 7. This suggests that some portion of what
we previously measured as correlated distortions can be attributed to financial factors. In-
tuitively, financial frictions and correlated distortions have a similar dampening effect on the
responsiveness to expected fundamentals. Quantitatively, the mpk dispersion stemming from
correlated distortions alone (Ac?, . = v%07) falls from 0.33 to 0.16. However, both correlated
and permanent distortions remain key drivers of observed misallocation.

Note that our estimate of ai increases considerably with financial frictions. This is because,
under our formulation, the liquidity cost also reduces the responsiveness of investment to x;, so

that a higher 0'>2< is needed to generate the empirical level of mpk dispersion. In the presence of

31See Buera et al. (2011) and Moll (2014), among others.
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financial frictions, mpk dispersion from y; is equal to (}:—3)2 O’i = 0.54, which is only slightly
higher than the baseline contribution of 0.51. In other words, because of the strong interaction
between financial frictions and permanent distortions, the model with financial frictions suggests
a higher level of the latter.

Finally, to quantify the effects of the financial friction, we can apply equation (20) to find
Aa?npk = 0.08. As the only operational friction, financial factors lead to non-negligible, but
relatively modest levels of mpk dispersion, representing just under 10% of the total (recall that
onpe = 0.92 in China). Thus, consistent with the existing literature on financial frictions, we
find that they play a somewhat limited role in generating misallocation. Moreover, these results
also show that explicitly incorporating them does not significantly alter our main conclusions

regarding the contribution of other factors.

4.8 Evidence from Additional Countries

Our main analysis examines the sources of misallocation in China and their aggregate implica-
tions, with results for publicly traded US firms reported as a benchmark for basis of comparison.
In a further exercise, we estimated our model on two additional countries for which micro-data
were available to us, although the time periods are not as recent - Colombia and Mexico.
For Colombia, we have plant-level data from the Annual Manufacturers Survey over the years
1982-1998, which covers plants with more than 10 employees or sales above a certain thresh-
old (around $35,000 in 1998). The Mexican data are also at the plant-level and are from the
Annual Industrial Survey over the years 1984-1990, which covers plants of the 3200 largest
manufacturing firms.?

Table 7 reports the estimated parameter values for these countries, the share of mpk disper-
sion arising from each factor and the effect on aggregate productivity.?® In brief, the results are
quite similar to those from China. The contribution of adjustment costs and uncertainty as a
share of overall misallocation is rather limited, and that of uncorrelated transitory distortions
negligible - a large portion of misallocation in both countries stems from correlated and per-
manent distortions. The TFP losses from the latter two forces are fairly large, totaling roughly
30% in both countries.

32For a detailed description of the Colombian data, see Eslava et al. (2004) and for Mexico, Tybout and

Westbrook (1995).
33In Appendix C we describe the data and moments in more detail and report more detailed output from
the estimation.
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Table 7: Evidence from Additional Countries

Parameters é \% vy o? ai
Colombia 0.54 0.05 —-0.55 0.01 0.60
Mexico 0.13 0.04 -0.82 0.00 0.42
Aagnpk

U?npk‘
Colombia 2.5% 56% 309% 0.7% 61.3%
Mexico 0.5% 4.9% 44.9% 0.0% 52.8%
Aa
Colombia 0.01 0.02 0.11 0.00 0.22
Mexico 0.00 0.01 0.13 0.00 0.16

5 Conclusion

In this paper, we have laid out a model of investment under a variety of frictions and distor-
tions, along with an empirical strategy to disentangle them using readily observable firm-level
production data. An application to Chinese manufacturing firms suggests that static measures
of resource misallocation are driven only partly by technological and informational frictions.
Even after accounting for these factors, ‘distortions’ which penalize investment and/or hiring
by specific firms — particularly more efficient ones — play an important role as well. Our results
are quite different from those analyzing these forces in isolation and showcase the value of using
a unified framework like the one we have proposed.

Our analysis points to several directions for future work. First, it should be relatively
straightforward to apply this methodology to understand labor misallocation. An analogous
set of moments computed using detailed data on labor inputs can be used to quantify the
relative importance of adjustment/informational frictions and policy /institutional distortions
in driving the dispersion in the marginal product of labor across firms.

Our formulation of frictions/distortions is rather stylized along a number of dimensions -
our modeling choices were guided in part by considerations of tractability. An important but
computationally demanding next step would be to generalize these specifications and allow
for a broader class of frictions. Examples could include non-convex adjustment costs, a richer
informational environment and specific distortionary policies. We conjecture, however, that
even in a more general environment, the main message of this paper - that using a set of
carefully chosen moments is essential to disentangle the effects of the various forces influencing
firm investment decisions - would be relevant and help guide future empirical work in this
regard.

Our findings on the prevalence of distortionary factors across countries points to the need for
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further research into their underlying sources, for example, by linking them to specific policies
and/or institutional features. Hopenhayn (2014) reviews a number of recent papers that have
investigated specific size-dependent policies that resemble correlated distortions. Buera et al.
(2013) show how irreversibility in government policy can result in fixed distortions at the firm-
level. Although it is unlikely that a single policy can account for the distortions we measure, a
deeper understanding of how particular policies translate into distortions to allocative efficiency

would be extremely valuable.
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Appendix

A Derivations

A.1 Baseline

In this section, we provide detailed derivations for the model solution and aggregation results

in our baseline analysis.

A.1.1 Model Solution

The first order condition and envelope conditions associated with (3) are, respectively,

Tiﬁl‘bl (Kit41, Kit) = BEy Vi (Kig1, Ligs1)]
Vi (K, Zyy) = 1 (Ky, Ay) — Tiﬁl@z (Kitg1, Kir)

and combining yields the Euler equation

Eit [BHI (KitJrly AitJrl) - B,TifJJ(I)Q (Kit+2> Kit+1) - Criiirlq)l (KitJrh Kzt)} =0 (21)
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where

11, (Kit+17Ait+1> = OéGAitHKgH

Oy (Kipy1, Kip) = 14¢€ (KZHI —(1- 5))

K;

Ky Ky Ky ?

Oy (Kity1, Kip) = —(1—-9)—¢ ( K:l —(1- 5)) K;rl ‘1“% ( Kjl - (1- 5))
o 5 2 é Kit—l—l 2
= —(1-0)+301-9) —5( e )

In the undistorted (T K= 1) non-stochastic steady state, these are equal to

= § 2 &
by, = —(1—-0H)+=2(1-90)"—-2
by = (1950
I, = aGAK*™!
Log-linearizing the Euler equation around this point yields
E; [ﬁﬁﬂﬁ,itﬂ — B, (¢2,it+1 + Tzﬁg) —®, (¢1,z‘t + 7'5;1)] =0 (22)
where
f[17T1,it+1 ~ aGAK* ' (app + (a0 — 1) ki1)
<I>1¢1,it ~ f(kﬁitﬂ - k?it)
<B2¢2,it+1 ~ =€ (kit+2 - /ﬂ't+1)
Let _— _—
el = — (5q)27it+2ﬁ+ (I)lTitJrl) (23)
1

Substituting into (22) and rearranging leads to expression (4).
The steady state Euler equation yields an expression for é = J@%{ﬁ as a function of

parameters:
ST, — pby =TI, = m@ﬂ(&1_5(_<1_5)+§(1_5)2_§) g

and rearranging,

aBGAK*™ ' =1—-B(1—-6)+&65 (1—5(1—%))
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so that
RN S ‘
afGAK*=  1-B(1-68)+&(1-6(1-19))

(24)

It is straightforward to show gg > 0.

To derive the investment policy function, we conjecture that it takes the form in expression
(9). Then,

kivz = P1kier + Yo (1 4+ 7) By ire + Yairre + Yaxi
Eit [kitr2] = Vrkigr + 92 (14+7) pRit [@isa] + Yax
= 1 (Yrkie + o (1 +7) Eit [ais1] + ¥38ier1 + Yaxs) + ¥ (14+7) pEit [@irg1] + Yax
= ki + (1 + p) Yo (1 +7) Eit [ais1] + 1thscinrr +va (14191) x

where we have used E; [g442] = 0 and Ey [Ejyq [airo]] = pEi [aiey1]. Substituting and rear-

ranging,

(1 Béwa (14 w0) xo+ (1+ Béunts) cun
+ (1 + BE (11 + p) %) (14 7) Eit [aga] + € (1+ BY7) ki

= ((1 +8)E+1— Oé) (V1kie + 2 (1 + ) B [as41] + ¥sgis1 + axi)

Finally, matching coefficients gives

Eui+1) = wi(Q+/i+1-a
L+ BE(Wr+p)hy =

4
&
I

)
<1+B a>:>¢2:
L+ By = v (1+B)E+1-a)
(( )

1+5é¢4(1+¢1) = Yy 1—1—55—1-1—04

A few lines of algebra yields the expressions in (10).

A.1.2 Aggregation

To derive aggregate TFP and output, substitute the firm’s optimality condition for labor

1

A th;l) “o2

&%)

Nt = <W
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into the production function (1) to get

Qo _@2 1 ag Qo 1&
l-ay FT1-a T—a —oag a
.{’L't = (—) A 2 B . 2 = <—> A’Ltk .
”r ot it ”r it

Labor market clearing implies

/Nitdz' - / (%) AuKodi = N

so that o N a ALK
042) T—ag it a
= - = Y; = Qa2 N®2
(W ( I Az-tKgdi) Y (AuKgdi)
By definition,
el
MPK;; =« Ay ~az N

so that

2

" \MPK, [ AuKadi

and capital market clearing implies

N T-a 1 1
h= /Kitdi =ar= (m) /Ailta MPK, " di
it gt

The latter two equations give
1 1 «
Ay “MPK;, "™

K = 1 — 1
f A *MPK, '"~di

K

Substituting into the expression for Y;; and rearranging, we can derive

1 o
T—a —T1—a
A'Lt “ MPKzt “

1 — 1 [
( fAal e mpr, e di)

Y =

(e%1 (6D

a KN
1 o

JAL Y MPK, T di

1 1 «
(f Al MmpPK, e di)

Aggregating gives expressions for aggregate output and TFP:

Y = /Y;tdz’ = AK**N*
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where
1—ao

[ A MPK, ™ di

A= o
_1 __1
( [ AL MPEK, ™" dz’)

or in logs,

1 - - 1
a=(1-ay) {ln (/ A “MPK,, 1°‘> —aln (/ A “MPK,, 1”‘)}

The first term in brackets is equal to

SR SN G S R
l—a 1™ T o\12q) e

DN | —
VR
—_
e
Q
N——
no
3w
3
>
—
o
e
S
3
3
>
B

Combining,

a = (1— o) [a+—

* 1 o 2
= —5(1—Oé2)m0'mpk
1 1-—-
— *__Mggnpk

21-&1-@2

which is equation (11) in the text.

To compute the effect on output, notice that the aggregate production function is

y=ark+asn+a

so that
dy N % da da
do_?%’zpk Yda dafnpk do? i
= da 1+« %
do?, d

In the stationary equilibrium, the aggregate marginal product of capital must be a constant,
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denote it by R, i.e., Ina; +y — k = 7 so that

and

Combining,

k:l_al(lna1+a2n+a—F)
dt 1
da 1—ag
d da o da 1
2y: 2 (1+ 1 ): 2
damplC dampk 11—y damplC 11—

A.1.3 Labor Market Distortions

In this section, we add labor distortions to our setup and show that they change our interpre-

tation of the fundamental but otherwise have no effect on our analysis. We show that these

distortions do not lead to measured mpk dispersion and so our strategy for disentangling the

various sources of capital misallocation and our estimates for their magnitudes go through

unchanged.

We introduce labor distortions as proportional labor ‘taxes’, denoted 7}Y. The firm’s prob-

lem becomes

1% (Kityzit) = max [E; flquilNﬁg - Wﬂ-]tvNit - Tiﬁfb (Kit+17 Kit) + /BV (Kit-i-lazit-i-l)]

The labor choice satisfies the first order condition

1

Ay
N’i —_ wo
t (OKQ Wj;]tv )

Substituting, we can derive output/revenues as

Yi = flithil (CY

a2 1

Wy
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and operating profits (revenues net of total wages) as

1

~ al pra A a /L'tKial e Aithql o
AitKithit2 - Wﬂ{vait = AitKitl (aQ WTz]t\t[ ) - Wsztv <a2 Wﬂjgf

1
1—ag a1\1= ag 1
Ait (Kzt )1 -2 |:a1—a2 1—a2:|

= o —
wryyee L i
o1 1 o1
AT (go1yioas A1
= = é” >a72 (1—ay) = G—"—=-Kj,
(TH) o2 Wi (T )=e=

which is the same form as in the baseline version, except now the transformed fundamental

A;; also incorporates the effect of the labor tax on net revenues and is defined by3*

With this re-interpretation, the firm’s dynamic investment decision is still given by (3). To
see that this also implies that labor distortions do not contibute to mpk dispersion, suppose
that they are the only friction, i.e., the capital choice is made under full information with no

adjustment costs or uncertainty. The capital choice is then static and given by

1

aGA; ™
(1Y)

Kiy =

Combining this with the expression for revenues, the measured mpk is equal to

mpk; = Const + vy — ky

= Const + S+ 4+ (a—1 S+ (a—1 ,
ons 1—ao T Ty Qg i + (@ = 1) 1—asl— ot (a=1) Git

= Const

So, T does lead to any measured dispersion in the mpk.

A.2 Frictional Labor

In this section, we provide detailed derivations for the model solution and aggregation results

in the case of frictional labor.

34This is also the a;; we would measure from the data using the definition a;; = va; — aks.
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A.2.1 Model Solution

When labor is chosen under the same frictions as capital, the firm’s value function takes the

form

1% (Kita Nitazit) = K m%( Ei AithZlNﬁ2 - Tz‘t+1q) (Kit—i—lv Kit) - Tz‘t+1WCI) (Nit+17 Nit)
1t+1,4Vit+1
+ Ei [BY (Kitg1, Nitv1, Lirg1)] (25)

where the adjustment cost function ® (-) is as defined in expression (2). Because the firm makes
a one-time payment to hire incremental labor, the cost of labor W is now to be interpreted as the
present discounted value of wages. Capital and labor are both subject to the same adjustment
friction, the same distortions, denoted Tj;11, and are chosen under the same information set,
though the cost of labor adjustment is denominated in labor units.

The first order and envelope conditions yield two Euler equations:

Eit [Tir41®1 (Kipg1, Kip)] = Eg [/BalﬁimeZﬁlNﬁil — BTit42Po (Kt o, Kit—l—l)]

Eit WTii1®1 (Nig41, Nie)] = Ei [ﬁazﬂimKﬁilNﬁﬂl — W Ty 12®9 (Nitga, Nit+1):|

To show that this setup leads to an intertemporal investment problem that takes the same
form as (3), we prove that there exists a constant 7 such that N;;11 = 7K1 which leads to the
same solution as if the firm were choosing only capital facing a degree of curvature o = a;; + aw.

Under this conjecture, we can rewrite the firm’s problem in (25) as
Qa2

]} (Kit7 Im‘,) max Eit "

— _ A gotar . 4 V (K. .
- Koot 1 + WT]AZtKZt Et+1q) (Kzt+17 Kzt) + BV (K’Lt+17Ilt+1>:|

Let { K} } be the solution to this problem. By definition, it must satisfy the following optimality

condition
(061 + 042) Ait+1K:til1+a2_l77a2
Ei | TP (K, K = E; 26
— Byt [BTis2®2 (K0, Ky 1) ]
(27)

Now substitute the conjecture that N} = nK}; into the optimality condition for labor from the
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original problem and rearrange to get:

. . Oészi 1Ki*a1+012—1,,7a2 i} .
[ [Tz’t+1‘1>1 (Kin Kit)} =E;y |5 = I/It/t; — BTLit2®P2 (Kit+27 Kit+1) (28)
If n satisfies
(03] + [6%) 9 %)
1+Wn Wn " o (29)

then (28) is identical to (26). In other words, under (29), the sequence {K};, Nj;} satisfies the

it?
optimality condition for labor from the original problem. It is straightforward to verify that

this also implies that { K}, N} satisfy the optimality condition for capital from the original

(2

problem:

K [Titﬂqh (K;H, Kft)} = Ey [ﬁ@lAit+1K;ill+a2_177a2 — BT 42Po (K;;5+27 KZH)]

K*Oq—l—ozg—l
— Tit+292 (KZ&+2> K;f+1)

o A1 K33y
Wn

Q2

= Eu |8

Thus, we can analyze this environment in an analogous fashion to the baseline specification

in the text of the paper, where the firm’s intertemporal optimization problem takes the same

. . a
form as expression (3), with a = ag + ag, G = 1ZWn and A;;, = A

A.2.2 Aggregation

To derive aggregate output and TFP for this case, we use the fact that, as shown above,

a2

Ny = nKy where n = . Substitituting into the production function (1) gives

a W
Y = Agn®2 Ko o2 = Ay K3 (30)
By definition,
MPK; = aAgn®? K3}
so that )
OZAZ'tnOQ 1o
Ki -
t (MPKZ-t>

and ) )

K = /Kitdz’ = aTanTe /fl;t‘aMPK;l“‘di (31)

and substituting into (30),
a [e% ~_ 1 _ o
Yie = aﬁﬁﬁfl&_a MPK; "™
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so that aggregate output is
Y = atfagts /A;tlaMPKitlaadz’ (32)
Using (31), we have
KYN® = g K® = qToapi-a ( / Afa MPK,, 11°‘di)a (33)
and from (32) and (33) we can derive aggregate TFP to be

Y JATTMPK,"di
Ko Nz PO __1 @
( [AF"MPEK, ™" dz)

L1 _a L1 1
a=1n (/ A “MPK, '™ dz’) —aln (/ Al *MPK,, 1‘”dz’)

Following similar steps as in the baseline case, we can derive

A

or in logs,

11 , 1 a
= oz — = o
21—a @ 21—q ™k
1 o
51—agmpk

a = a-+

*

= a —

The output effects are the same as in the baseline case.

A.3 Financial Frictions

Including the liquidity constraint (and abstracting from distortions for ease of notation, but

which are straightforward to include), the firm’s problem can be written

1% (Km Bitazit) = B ma}gc Ei [H (Kit, Ait) + RBy — Bit+1 - (KitJrla Kit) -7 (Kit+17 Bz’t+1)]
it+1,04t41
+ BEi [V (Kitg1, Bit1, Ziv+1)]

The first order conditions are given by

Eit [BI1) (Kitg1, Aitr1) — BPo (Kitro, Kits1)] = @1 (Kitg1, Kit) + L1 (Kits1, Bitt1)
—1 =Ty (Kity1, Biuy1) + BR = 0
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Let

gien
T (Kit+1a Bz’t+1) =V (il)

w2
B
K Ko
~ it+1 ~ it+1
= Ty (Kit+17 Bit-i—l) = VW T, (Kit—i-la Bit+l) = leBT
B it+1
Using the FOC for Bj; 4
Kith wp \ BT
o ~ 7 . wo+
1 = bw—"7+BR = By ,= Kith
B2 1—-6R
it+1
Kglfl Kglfl l;w wo wi—(wo+1)
A~ 1 ~ 1 1 —= w
T (Kity1, Bis1) = I/(,ulBZfJ—;r = D, s = o (1 — BR)=* K, 72"
it+1 bwy | w2t pownl dwp | w2t
1-BR it+1 1-BR
o w
= VK,
where
Dwy _wy
v = —— (1 — BR)«2+1
Dw2 wa+1
1-BR
W = w1 — (WQ + 1)
- Wy + 1
Approximating,

Tl + T1U1t+1 ~ l/Kw + VKMWICZ'HJ

T1U11t+1 ~ VKkait—l—l
and subsituting into the FOC,

Ky [Oéﬁéf_u_(a_l (@iter + (o = 1) kyppr) + BE (Kirga — kit—l—l)} = & (kirs1 — kir) + VK Wk

or
Kt ((1 + B) é +1-— 54) =E; [apt1] + 551[3% (Kit2] + gkit
where _
. vK%w
¢S ABGART

Adding distortions in the same manner as in the baseline case gives the same expression as (4),

but with a replaced by a.
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A.4 Identification

In this Appendix we derive analytic expressions for the four moments in the random walk case,

i.e., when p = 1, and prove proposition 1.

A.4.1 Moments

From expression (9), we have the firm’s investment policy function

kitv1 = Uik + Y2 (1 4+ v) Eit [ai41] + VYs€ie1 + Yaxi

and substituting for the expectation and defining ¥ = 15 (1 4 ) to ease notation,

Kitp1 = P1ky + 1;2 (@i + & (Wits1 + 1)) + Vs€irg1 + Vax;

where ¢ = - so that 1 — ¢ = (;12. Then,

o2
U&

Akjr1 = Y1 Ak + 1&2 (1= @) pit + Pprirs1 + ¢ (€1 — €it)) + U3 (Sirp1 — €it)

We will use the fact that

cov (Akitt1, fits1) = @/;2@73
cov (Akipi1, €it41) = Vad0?

2
cov (Akjr1,€i41) = Ys0-
Now,

var (Akiy1) = vivar (Aky) + 03 (1 — ¢)? 02 +136°0% + 2036°02 + 20307
+ 2010y (1 — @) cov (Akip, tar) — 20nabapcov (Akyy, eir) — 20nhscov (Akip, )

where substituting, rearranging and using the fact that the moments are stationary gives

(1+9)* 9302 +2(1 — ¢y) Y302
1—3?

o7 = var (Aky) =

which can be rearranged to yield expression (13).
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Next,

cov (Akit+1, Aklt) = z/lear (Aklt) -+ 1212 (1 — ¢> COov (Akit, ILLZt)
- 1&2¢C0V (Akm eit) — 1bzcov (Akm €it)
= ¢1V&I‘ (Akzt) — 2/J3COV (Ak’it, 5it)

_ 2 2 9
= Y10}, — P30;

so that )
0-5

Py = corr (Akyy, Aky_1) = ¢y — @/»%;

2

which is expression (14).

Similarly,

cov (Akjpi1, Aay) = cov (Akipgr, pit)
= Prcov (Aky, p1ie) + U (1 — ) o
= P1ador + 1 (1— )02
= (1-0(1—n)¥2(l+7)0,

and from here it is straightforward to derive

\Y 14+
Pra_r = corr (Aky, Aajy—1) = {; (1 =)+ 1/11} W
o

as in expression (15).

Finally,
mpk; = Const + y;; — ki = Const + ay + aky — ki = Const + ay — (1 — a) ky

so that
Ampky = Aay — (1 — ) Ak = pyy — (1 — o) Aky

which implies
cov (Ampki, pi) = (1 — (1 — a) (1 +7) ¥a9) ai
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and

_cov (Ampky, pit)

s = ST = 1 (1) (149) g
\Y
— -0 (1- )
m

which is expression (16).

2

2, we derive

To see that the correlation pppiq,q is decreasing in o

var (Ampky) = o>+ (1—a 262 —92(1 —a)cov Ak, it
k

72 2 2 2
o o (V305 +2(1 =) 307
= Ou—i-(l—Oé) ( =

=

) —2(1 — &) tao0

= (=) (=20 =) (1 +9)020) + (1= 0 (1+9)63) o)
b (0 - o)
ot = (11— 0) (1) tad) 0/ T

V=0 (=201 = a) (14 7)620) + (1= ) (14+7)° ¥3) o2 +2 (1 = ) (1 = ) v3o?
(34)

A.4.2 Proof of Proposition 1

Write the variance of investment as
or = Yiop + (1L +7) Y30 + 2(1 — ) Y307

To rewrite the last term as a function of an observable moment, use the autocovariance of

investment,

Ok y = 10} — 307 (35)

and substitution yields

op = iop + (1+7) Y302 +2 (1 — ¢1) (V107 — oke_,) (36)
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To eliminate the second term, use the equation for A, to solve for

1— )\m k,a Y
(L+7)thd = —— === (37)
-«
where )\ is a decreasing function of A, . that depends only on the known parameter o. Sub-
stituting into the expression for the covariance of investment with the lagged shock, o, _,, and

rearranging yields
Ok,a_1

(1+7)¢2:7+5\(1_¢1) (38)

m

which is an equation in ¢, and observable moments. Substituting into (36) gives

2
Ok.a_ N
O'Iz = w%az + < ]:;_2 L + A (1 - ¢1)> O'Z + 2 (1 - 1?1) (2/)10']3 - O'k,k,l)

i

and rearranging, we can derive

0= (5\2 - 1) (1-— Y1) +2 <5\pk,a_1 — pk,k_1> (1 =)+ Pi,a_l (39)

where

o 25— 2 (1 e

Equation (39) represents a quadratic equation in a single unknown, 1 — ¢y, or equivalently, in
1. The solution features two positive roots, one greater than one and one less. The smaller
root corresponds to the true v; that represents the solution to the firm’s investment policy.
The value of ¥ pins down the adjustment costs parameter é as well as ¥y and 3. We can then
back out v from (38), ¢ (and so V) from (37) and finally, o2 from (35).

B Data

As described in the text, our Chinese data are from the Annual Surveys of Industrial Production
conducted by the National Bureau of Statistics. The data span the period 1998-2009 and are
built into a panel following quite closely the method outlined in Brandt et al. (2014). We
measure the capital stock as the value of fixed assets and calculate investment as the change in
the capital stock relative to the preceding period. We construct firm fundamentals a;; as the
log of value-added less a multiplied by the log of the capital stock and (the log of) the marginal
product of capital (up to an additive constant) as the log of value-added less the log of the
capital stock. We compute value-added from revenues using a share of intermediates of 0.5

(our data does not include a direct measure of value-added in all years). We first difference the
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investment and fundamental series to compute investment growth and changes in fundamentals.
To extract the firm-specific variation in our variables, we regress each on a year by time fixed-
effect and work with the residual. Industries are defined at the 4-digit level. This eliminates
the industry-wide component of each series common to all firms in an industry and time period
(as well the aggregate component common across all firms) and leaves only the idiosyncratic
variation. To estimate the parameters governing firm fundamentals, i.e., the persistence p and

variance of the innovations 2, we perform the autoregression implied by (5), again including

industry by year controls. Weueliminate duplicate observations (firms with multiple observations
within a single year) and trim the 3% tails of each series. We additionally exclude observations
with excessively high variability in investment (investment rates over 100%). Our final sample
in China consists of 797,047 firm-year observations.

Our US data are from Compustat North America and again span the period 1998-2009.
We measure the capital stock using gross property, plant and equipment. We treat the data
in exactly the same manner as just described for the set of Chinese firms. We additionally
eliminate firms that are not incorporated in the US and/or do not report in US dollars. Our
final sample in the US consists of 34,260 firm-year observations.

Table 8 reports a number of summary statistics from one year of our data, 2009: the number
of firms (with available data on sales), the share of GDP they account for, and average sales

and capital.

Table 8: Sample Statistics 2009

No. of Firms Share of GDP  Avg. Sales ($M) Avg. Capital ($M)

China 303623 0.65 21.51 8.08
US 6177 0.45 2099.33 1811.35

C Additional Countries

In this Appendix, we apply our empirical methodology to two additional countries for which
we have firm-level data - Colombia and Mexico. As described in the text, the Colombian
data come from the Annual Manufacturers Survey (AMS) and span the years 1982-1998. The
AMS contains plant-level data and covers plants with more than 10 employees, or sales above a
certain threshold (around $35,000 in 1998, the last year of the data). We use data on output and
capital, which includes buildings, structures, machinery and equipment. The construction of
these variables is described in detail in Eslava et al. (2004). Plants are classified into industries

defined at a 4-digit level. The Mexican data are from the Annual Industrial Survey over
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the years 1984-1990, which covers plants of the 3200 largest manufacturing firms. They are
also at the plant-level. We use data on output and capital, which includes machinery and
equipment, the value of current construction, land, transportation equipment and other fixed
capital assets. A detailed description is in Tybout and Westbrook (1995). Plants are again
classified into industries defined at a 4-digit level. For both countries, we compute the target
moments following the same methodology as outlined in the text of the paper for China and
the US. Our final sample for Colombia consists of 44,909 plant-year observations; for Mexico,
3,208.

Table 9: Additional Countries

Moments P Ui Pia_1  Pii_1  Pmpk,a 01'2 O-'?npk
Colombia 0.95 0.09 028 —-0.35 0.61 0.07  0.98
Mexico 0.93 0.07 0.17 -0.39 0.69 0.02 0.79
Parameters ¢ \Y v o? o;
Colombia 0.54 0.05 —-0.55 0.01 0.60
Mexico 0.13 0.04 —-0.82 0.00 0.42
Aaglpk
Colombia 0.02 0.05 0.30 0.01 0.60
Mexico 0.00 0.04 0.36 0.00 0.42
A"?npk

ognpk
Colombia 2.5% 5.6% 30.9% 0.7% 61.3%
Mexico 0.5% 4.9% 44.9% 0.0% 52.8%
Aa
Colombia 0.01 0.02 0.11 0.00 0.22
Mexico 0.00 0.01 0.13 0.00 0.16
Ay
Colombia 0.01 0.03 0.16 0.00 0.31
Mexico 0.00 0.02 0.18 0.00 0.22

51





