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At any moment, there is a large gap between average and best practice technology; re-
ducing this gap by disseminating the techniques used by producers at the cutting edge
of knowledge is technological progress without inventions. Any discussion of the gap
between average and best practice techniques makes little sense unless we have some
notion of where the best practice technique came from in the first place. Without fur-
ther increments in knowledge, technological diffusion and the closing of the gap between
practices will run into diminishing returns and eventually exhaust itself.

—Joel Mokyr, The Lever of Riches

1 Introduction

This paper studies how the interaction between adoption and innovation determine the shape of
the productivity distribution, the expansion of the technology frontier, and the aggregate economic
growth rate. Empirical estimates of productivity distributions tend to have a large range, with
many low-productivity firms and few high-productivity firms within even very narrowly defined
industries and products (Syverson (2011)). The economy is filled with firms that produce similar
goods using different technologies, and different firms invest in improving their technologies in
different ways. Some firms are innovative, bettering themselves while simultaneously pushing out
the frontier by creating technologies that are new to the world. There are, however, many firms
that purposefully choose to avoid innovating and, instead, adopt already invented ideas.

New ideas/technologies are invented and adopted frequently. For example, taking the notion of
ideas-as-recipes literally, “now-ubiquitous dishes, such as molten chocolate cake or miso-glazed black
cod, did not just pop up like mushrooms after a storm. Each debuted in a specific restaurant but
soon migrated outward in slightly altered form. The putative inventors (Jean-Georges Vongerichten
in the case of molten chocolate cake, Nobu Matsuhisa for miso black cod) can claim no royalties on
their creation.” (Raustiala and Sprigman, 2012, p.63). Miso black cod eventually diffused from the
upscale Nobu in New York to the family restaurant Sakura Sushi in Whitehorse, Yukon, Canada.
These examples from the restaurant industry motivate two key building blocks of our theory. First,
it is useful to distinguish between innovation and adoption activity, as the economic incentives,
costs, risks, abilities, and players involved in the two activities are very different. Second, there is
often a wide range of very different firms concurrently producing closely related varieties, without
the subsequent producer pushing the original inventor out of business due to some winner-take-all
force like creative destruction.

Although the large spread in productivity within narrowly defined industries and products,
the importance of technology diffusion as a key source of growth for the less-productive, and the
importance of innovation in generating long-run growth are well established, there are few theories
with which to study these linked phenomena. The main contribution of this paper is to develop a
model that provides tools to inspect data with these forces in mind. Crucially, the model delivers a
finite, endogenously-expanding frontier with wide productivity dispersion as the result of optimal
firm behavior.

We build a model that avoids the puzzle of collapse at the frontier and the associated need for
infinite support productivity distributions, while reconciling models of innovation and idea diffusion.
A finite frontier is prima facie supported by the data and turns out to be a useful and consequential
model feature. If the frontier were finite and constant, firms would collapse to the frontier with
no long-run growth; as Mokyr points out, “without further increments in knowledge, technological
diffusion. . . eventually exhaust[s] itself.” To address this, previous models of idea diffusion, such
as Lucas and Moll (2014) and Perla and Tonetti (2014), have either assumed an infinite support
distribution or some exogenous expansion of the frontier, so that there is no exhaustion of ideas. In
a sense, this phenomenon represents “latent growth”—i.e., growth that is inherent in the interplay
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of initial conditions and exogenous stochastic processes and is foreign to the technology diffusion
mechanism at the heart of the model. The implicit assumption is that some process outside of
the model is generating an expansion of the frontier, and the model is focusing on the change
in the productivity distribution generated by the diffusion process. For some purposes, such as
studying medium-run growth rates or examining the range of aggregate growth rates consistent
with exogenously given productivity distributions, this may be a very useful assumption.1 For
other purposes, such as explaining the sources of long-term growth and the role of technology
diffusion in determining growth rates, it is necessary to close the model with a joint theory of
innovation and diffusion. Instead of using the infinite support assumption, we build such a model
of an endogenously expanding finite frontier, in which innovation and adoption occur in the long run
and determine the aggregate growth rate and shape of the productivity distribution. Furthermore,
we show that the finite support of the distribution has critical implications for key model properties
concerning latent growth, hysteresis and multiplicity and for how adoption and innovation interact.

While diffusion models typically use infinite support or exogenous innovation processes to avoid
collapse at the frontier, Schumpeterian models are designed expressly to study the endogenous
expansion of the frontier. These models of creative destruction, however, typically model the fron-
tier and near-frontier firms, with the many low-productivity firms and associated adoption activity
absent. By combining adoption, innovation, and quality-ladder-like jumps to the frontier, our
model generates substantial, but bounded, productivity dispersion consistent with the firm distri-
bution data. Innovation pushes out the frontier and creates the technologies that will eventually
be adopted, while adoption helps compress the distribution, thus keeping the laggards from falling
too far behind. Furthermore, innovation activity affects adoption incentives, and adoption can
affect innovation incentives. Thus, it is the interaction between these two forces that determines
the shape of the productivity distribution and the aggregate growth rate. Since optimal adoption
and innovation behaviors generate the shape of the productivity distribution, including the spread
between best and worst firms, the model is well-suited to analyzing the determination of the full
productivity distribution, not just the few firms at the frontier. Long-run growth is driven by
innovation, but that does not necessarily mean that adoption of already discovered ideas can not
affect long-run growth rates. Rather, it means that adoption affects growth rates by affecting the
incentives to innovate.

Model Overview and Main Results. We first build a simple model of exogenous innovation
and growth to focus on how innovation and adoption jointly affect the shape of the productivity
distribution. We then add an innovation decision in which aggregate growth is endogenously driven
in the long run by the innovation activity of high-productivity firms. At the core of the model are the
costs and benefits of adoption and innovation. Section 2.1 discusses how we model innovation and
adoption and why. Firms are heterogeneous in productivity, and a firm’s technology is synonymous
with its productivity. Adoption is modeled as paying a cost to instantaneously receive a draw
of a new technology. This is a model of adoption because the new productivity is drawn from
a distribution related to the existing distribution of technologies currently in use for production.
To represent innovation, we model firms as being in either a creative or a stagnant innovation
state; when creative, innovation generates geometric growth in productivity at a rate increasing in
firm-specific innovation expenditures. A firm’s innovation state evolves according to a two-state
Markov process, and this style of stochastic model of innovation is the key technical feature that
delivers many of the desired model properties in a tractable framework. For example, we want the
productivity distribution to have finite support so that there are better technologies to be invented,

1In particular, these diffusion models isolate the impact of the shape of the productivity distribution on determining
the incentives to adopt technology—which may be the dominant force in short- and medium-term growth for most
of the world.
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in contrast to all the knowledge that will ever be known being in use for production at time zero.2

At each point in time, any firm has the ability to innovate or adopt, and firms’ optimally choose
whether and how to improve their productivity. Since adoption is a function of the distribution of
available technologies, the productivity distribution is the aggregate state variable that moves over
time, and this movement is driven by firms’ adoption and innovation activity.

In equilibrium, there will be low-productivity firms investing in adopting technologies; stagnant
firms falling back relative to creative firms; medium-productivity creative firms investing small
amounts to grow a bit through innovation; and higher-productivity creative firms investing a lot in
R&D to grow fast, create new knowledge, and push out the productivity frontier. Easy adoption, in
the sense of low cost or high likelihood of adopting a very productive technology, tends to compress
the productivity distribution, as the low-productivity firms are not left too far behind. A low cost
of innovation tends to spread the distribution, as the high-productivity firms can more easily escape
from the pack. The stochastic innovation state ensures that some firms that have bad luck and
stay uncreative for a stretch of time fall back relative to adopting and innovating firms, generating
non-degenerate normalized distributions with adopting activity existing in the long run. Thus,
the shape of the distribution, which typically looks like a truncated Pareto with finite support, is
determined by the relative ease of adoption and innovation through the differing rates at which
high- and low-productivity firms grow.

Adoption and innovation are not two completely independent processes, with some firms per-
petual adopters and some perpetual innovators. Rather, the ability of all firms to invest in both
activities generates general equilibrium interactions between actions. The key spillover between
adoption and innovation can be seen in the option value of adoption. For high-productivity firms
which are far from being low-productivity adopters, the value of having the option to adopt is
small. The lower a firm’s productivity, the closer it is to being an adopter and, thus, the higher
the option value of adoption. The higher the option value of adoption, the lower is the incentive to
spend on innovating to grow away from entering the adoption region. Thus, the value of adoption,
which is determined by the cost of acquiring a new technology and the probability of adopting a
good technology, affects incentives to innovate.

In addition to the baseline model, we introduce a sequence of extensions designed to enrich the
model to capture more ways in which innovation and adoption might interact and to relax some
of the stark assumptions prevalent in the literature. We introduce a version of quality ladders by
including a probability of leap-frogging to the frontier technology. In an extension in which tech-
nologies are partially excludable and there is licensing, because adopters pay a fee to the firm whose
technology they adopt, there is an additional direct link between adoption behavior and innovation
incentives that affects the shape of the distribution and aggregate growth rates. The baseline model
has undirected search for a new technology, in that a draw is from the unconditional distribution of
technologies, and there is no action a firm can take to influence the source distribution. In an ex-
tension, we model “directed” adoption, whereby firms can obtain a draw from a skewed distribution
in which they can increase the probability of adopting better technologies at a cost. In the baseline
model, firms exist for all time; their output and profits equal their productivity; there is no explicit
cost of production; and there is a single market for the common good that all firms produce. While
this delivers the cleanest framework for analyzing the key forces, the model is extended to include
endogenous entry, exogenous exit, and firms that hire labor to produce a unique variety sold via
monopolistic competition to a CES final-good producer. For each extension, we examine properties
of the BGP productivity distribution, such as the tail index and the ratio of the frontier to the
minimum productivity, and whether the equilibrium is unique or if there is hysteresis in the sense
that the long-run distribution and growth rate depend on initial conditions.

2Given a continuum of firms, modeling stochastic innovation using geometric Brownian motion, as is common in
the literature, would generate infinite support instantly, while the finite-state Markov process allows for finite support
for all time.
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Through the baseline model and extensions, we show the types of stochastic processes that can
generate data consistent with the empirical evidence: balanced growth with a nearly Pareto firm
size distribution in the right-tail and finite support when normalized by aggregates. We show which
features are necessary to have both innovation and adoption activity exist in the long run and when
and how adoption affects the aggregate growth rate. Finally, we also show that assumptions such
as infinite initial support are not innocuous, in that the obviously counterfactual infinite support
initial condition implies very different important model properties than the finite support initial
condition. An important distinction between BGPs with infinite and with finite support is whether
there is latent growth—that is, the aggregate growth rate can be greater than the innovation rate,
or, more starkly, whether long-run growth can exist without innovation.

While many versions of the model can be studied analytically, the endogenous growth cases
must be solved numerically. A final contribution of this paper is the development of a generally
applicable numerical technique—based on spectral collocation and quadrature—to solve continuous-
time models with heterogeneous agents that take the form of coupled Hamilton-Jacobi-Bellman
equations, Kolmogorov forward equations, and integral constraints.

Finally, since many of the results depend on the technology frontier, in Section 6, we provide
some exploratory empirical analysis of the relative frontier using Compustat data. We show that
the relative frontier, as proxied by the ratio of the 90th to the 10th percentile of the firm size
distribution, varies significantly across industries but has been relatively stable within-industry
over the past few decades.

1.1 Recent Literature

Our paper connects to the four major strands of the literature on economic growth: 1) Expand-
ing ideas/varieties as exemplified by Romer (1990) and Jones (1995); 2) Schumpeterian creative-
destruction, as in Aghion and Howitt (1992), Grossman and Helpman (1991), and Klette and
Kortum (2004); 3) Variety improvement and human capital, as in Uzawa (1961), Arrow (1962),
and Lucas (1988); and 4) Technology/idea diffusion, as in Luttmer (2007), Perla and Tonetti (2014),
and Lucas and Moll (2014). This section will first briefly outline the relation of our paper to the
major strands of growth theory and then will focus on a few recent papers that are most closely
related.

While closely linked to many of the concepts in the literature, our model is designed to address
phenomena not jointly captured by most of the existing literature: namely, within-firm produc-
tivity improvement via adoption and innovation with large productivity dispersion among actively
producing incumbents. To focus on the interaction between adoption and innovation in a simple
environment, we abstract from some features prominent in other models of growth. Specifically,
we develop a one-product firm model and focus on within-firm growth. Thus, our baseline model
omits the creation of new varieties (although we add endogenous entry in an extension), and we
omit selection into exit. All of these features can be merged into one large model, but for exposi-
tion and clarity, we introduce our model of adoption and innovation in a minimalist environment
without these extra features.

Expanding Varieties. The expanding-varieties literature develops a theory of TFP growth by
modeling the process of discovering completely new products/ideas. The key concept in Romer
(1990) is that ideas are non-rival. Thus, when combined with a production function that features
constant returns to scale in physical (rival) inputs, the production function has increasing returns to
scale in ideas and physical inputs. Essentially, since an idea improves productivity and is non-rival,
it needs to be discovered only once and can be applied without exhaustion to improve output from
the stock of physical inputs. Because ideas are non-rival, if they could be copied by a competitor
instantly, there would be no incentive to create a new idea. Thus, excludability plays a central role

4



in determining the incentives to innovate. Given the setup in our model, there are incentives to
innovate even absent excludability since firms can coexist producing similar products, just like Nobu
inventing miso black cod and many other restaurants later adopting the recipe. In an extension
in this paper, we introduce excludability in our model of innovation and adoption, bringing this
concept, which is crucial in this literature, to the diffusion literature—capturing similar incentives,
but delivering new economics via the interaction among adoption, innovation, and the shape of the
distribution.

Typically, in this literature, there are zero within-variety improvements, and all varieties are
symmetric, such that the model has no concept of heterogeneous firms. Thus, the literature is not
able to speak to the wide dispersion in the firm size distribution, incumbents improving over time,
or different firms undertaking different types of activities to improve productivity, such as adoption
versus innovation. Another related issue in the literature is how to model the idea production
function, in which the productivity of discovering new ideas is assumed to depend on the stock of
already discovered ideas. In some sense, our model, in which the aggregate growth rate depends on
the entire productivity distribution, is a micro-foundation for the dependence of the idea production
function on past ideas.

Creative Destruction. Shumpeterian models tend to have a single leader producing each variety
and an inactive fringe, rather than a distribution of firms producing similar products with different
levels of productivity. For example, in Klette and Kortum (2004) and Acemoglu, Akcigit, Bloom,
and Kerr (2013), each good is produced by a single firm that may lose its exclusivity to an innovative
competitor that creates a new leading-edge version of the product and takes over the entire product
line. Crucially, all growth occurs through creative destruction rather than through innovations
within the firm.3 See Aghion, Akcigit, and Howitt (2014) for a survey of the creative destruction
literature.

Creative destruction models are developed expressly to model the expansion of the technology
frontier and to capture the cutthroat competitive environment associated with innovating at the
frontier. They do not, however, have a wide dispersion in firm productivity within very narrow
products, as is apparent in the data. In this sense, our paper contains a less sophisticated model of
innovation at the frontier, but it is well suited to model the determination of the entire productivity
distribution, not just the frontier firms. Creative destruction models cannot, however, provide
guidance on the evolution of the productivity and firm size distribution for those producing well
below the frontier technology. In this paper, we have many lower-productivity firms, as well as
separate processes by which high- and low-productivity firms improve. That is, we can capture
the increases in productivity for the large mass of firms that do not improve through innovation,
which is at the heart of the creative destruction literature. In future research, it could be fruitful to
combine a rich model of innovation at the frontier, as is typically modeled in the creative destruction
literature, with the adoption and dispersion features developed in this paper.

In some sense, one could view the quality ladder model—in which innovation for a given variety
is on top of the frontier production technology—as a form of technology diffusion. That is, the
productivity of the new leader is typically a function of the old leader’s productivity (e.g., a given
multiplicative step size). However, even this interpretation is very different from the adoption
we model, as it focuses on diffusion from frontier firms to new frontier firms, not firms spread
throughout the productivity distribution that typically operate with low-productivity technologies
even post-adoption. To extend the ladder analogy to diffusion models, there may be a large number
of followers on the same ladder distributed across previously invented steps. These followers improve
over time by taking modest steps up the ladder that other frontier firms built, but they rarely get

3Unlike the expanding variety models, creative destruction models generate growth via within-variety improve-
ments; however, both tend to feature one firm producing each variety.
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close to the fiercely competitive top step.

Human Capital and Variety Improvement. In contrast to the variety expansion models that
focus on the creation of new varieties, this line of literature focuses on the creation of better ideas,
either within-variety or within-individual. In our baseline model all growth comes from within-firm
productivity improvements, just as in the human capital and variety improvement literature. A key
distinction is that we model multiple ways for firms to improve their variety, via either adoption
or innovation, and study how the interaction between these two actions generates growth and the
productivity distribution. See Grossman, Helpman, Oberfield, and Sampson (2016) for a recent
example in this line of research.

Technology Diffusion. Our paper is closely related conceptually and technically to the idea
diffusion literature, including Kortum (1997), Alvarez, Buera, and Lucas (2008), Lucas (2009),
Alvarez, Buera, and Lucas (2013), Perla and Tonetti (2014), and Lucas and Moll (2014). This
technology/idea diffusion literature focuses on how existing production technologies are distributed
among agents throughout the entire distribution and how the better technologies diffuse to low-
productivity agents.4 However, the literature emphasizes neither how ideas are created in the first
place nor the role of the technology frontier.5 Rather, these papers focus on adoption, implicitly
assuming some process that generates the ideas to be copied in the long run without explicitly
modeling that innovative behavior.6 In these models, while growth in the short or medium run
can be dominated by technology adoption, long-run growth is possible only if the productivity
distribution has infinite support with fat tails (i.e., a power-law), with a direct relationship between
the power-law’s tail parameter and the growth rate.7

The interaction between innovation and technology diffusion explored in this paper also ap-
pears in Luttmer (2007, 2012, 2015a) and Sampson (2015), although with a different emphasis
and mechanism. The main similarity with this paper is that, in all cases, diffusion is modeled
as some firms drawing a new productivity from the productivity distribution of incumbents. The
big difference is that in those papers, diffusion is generated from incumbents to new entrants, and
the equilibrium selection that the worst firms exit drives diffusion and growth. In contrast, our
paper features incumbents adopting better technologies in equilibrium, with different implications
for policy counterfactuals and mapping the model to data. Another common modeling feature is
that Luttmer (2011) also features fast- and slow-growing incumbent firms—driven by differences in
the quality of blueprints for size expansion.8

Luttmer (2012, 2015a,b) provide careful analysis of the role of hysteresis and multiplicity, in-
cluding the important interaction of the stochastic process with initial conditions. Luttmer (2015a)
emphasizes the role of risky “experimentation,” modeled as a stochastic process distinct from deter-
ministic innovation, as important in the generation of endogenous tail parameters. Our model also
has a stochastic and deterministic component of innovation, and the risky part of innovation en-

4Some of the key empirical papers on technology diffusion examine cross-country adoption patterns, such as Comin
and Hobijn (2004, 2010) and Comin, Hobijn, and Rovito (2008).

5Grassi and Imbs (2016) is a recent model of technology diffusion with a finite number of firms and, thus, a finite
frontier. The authors focus on the role of granularity in generating the measured increasingly positive correlation
between growth and volatility as the share of large firms in a sector rises. Luttmer (2015b) also discusses the role of
a finite numbers of agents.

6Lucas and Moll (2014) provide an extension of their baseline diffusion model with the addition of exogenous
innovators in order to discuss finite support of the initial distribution.

7See the transition dynamics in Figure 2 of Perla and Tonetti (2014) for an example with a finite support pro-
ductivity distribution without the creation of new ideas. In the simple calibration, growth exists for decades, driven
purely by diffusion, before leveling off to zero growth eventually.

8In his model, firms stochastically enter the absorbing slow growth-state, whereas in this paper, firms can jump
back and forth between the states.
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sures that there is mixing in the distribution generating adoption in the long run. Luttmer (2015b)
describes a continuum of long-run growth rates that are possible in a class of diffusion models. We
build on this, and by cleanly establishing the maximum innovation rate in the economy, we are able
to separate the long-run growth coming from the interplay of the initial conditions and stochastic
processes. We label deviations from the intrinsic innovation rate as “latent growth”, and connect
latent growth to the hysteresis in these models generated by the infinite productivity tail (either
due to an initial condition or unbounded geometric random shocks). Luttmer (2015b) introduces
a selection device, which is to pick the smallest growth rate (and largest tail parameter) since it is
the one that would arise from a finite support or thin-tailed initial distribution when paired with
unbounded geometric random shocks to productivity. We, however, directly concentrate on the
role of finiteness and its interaction with the innovation decision. Our approach also provides a
lens through which to understand the minimal-growth equilibrium selection device in terms of the
latent growth rate.

Recent Papers Combining Mechanisms. Our paper is most closely related in spirit to recent
papers that combine different productivity growth mechanisms in one model. Coming from the
creative destruction literature, Acemoglu and Cao (2010), Akcigit and Kerr (2016), and König,
Lorenz, and Zilibotti (2016) model own-variety improvement within a Schumpeterian framework.
König, Lorenz, and Zilibotti (2016) have the same structure as Klette and Kortum (2004), with
a single firm using the best-practice technology to produce a variety subject to an inactive com-
petitive fringe, but in which both an innovation choice in the spirit of Akcigit and Kerr (2016)
and imitation of a firm’s quality from a different product-line are allowed. In this sense, it loosens
the strict separation across product lines and departs from a strictly Schumpeterian interpretation
of productivity growth.9 König and Rogers (2016) combine Klette and Kortum (2004) with an
expanding variety model using collaborative networks. In each case, there is still only a single
firm producing a given product line at any time.10 Coming from the technology diffusion litera-
ture, Buera and Oberfield (2015) is a related semi-endogenous growth model of the international
diffusion of technology and its connection to trade in goods. The authors combine the process
of idea diffusion with innovation, in the spirit of Jovanovic and Rob (1989), in which there is a
positive stochastic spillover from the diffusion process itself. They model productivity upgrading
according to one joint process that mixes innovation and adoption. In contrast, our paper models
these as distinct actions potentially undertaken by different firms. Furthermore, their focus is not
on the endogenous determination of the shape of the distribution, since it is given exogenously by
the distribution from which innovation increments are drawn.11 The industry evolution model of
Jovanovic and MacDonald (1994) has many similarities to Jovanovic and Rob (1989), but with sub-
stitution between innovation and imitation and the possibility of learning-by-doing. While the firm
cannot purposely target its investments in innovation vs. imitation a-priori, these activities make
different contributions to the growth of the firm ex-post. We build on this idea by modeling an
investment decision in these separate productivity-enhancing activities and look at the implications

9In contrast to König, Lorenz, and Zilibotti (2016), we abstain from modeling Schumpeterian forces and keep both
the innovation and adoption technology fairly simple in order to focus on the economics of their interaction. This
comes at a loss of our ability to model the richness of the innovation process for which Schumpeterian models excel,
but we gain tractability that enables us to better study the non-Schumpeterian forces and consider the role of infinite
support, a finite technology frontier, and “latent growth.” A key distinction is that the finite-state Markov innovation
process that we model allows for a finite frontier, while in models with a continuum of firms on quality ladders and
Poisson arrivals of multiplicative jumps, the frontier quality diverges to infinity from any initial condition in the same
way that it does for Brownian motion.

10Lashkari (2016) also models the role of innovation and technology diffusion—but emphasizes the interaction with
selection in a model of creative destruction.

11Acemoglu, Aghion, Lelarge, Van Reenen, and Zilibotti (2007) also model spillovers across firms in innovation,
captured by the number of firms that have attempted to implement a technology before.
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of their interaction for long-run growth and productivity distributions.
Acemoglu, Aghion, and Zilibotti (2006), Chu, Cozzi, and Galli (2014), Stokey (2014), and

Benhabib, Perla, and Tonetti (2014) also explore the relationship between innovation and diffusion
from different perspectives. Similar to this paper, there is an advantage to backwardness in the sense
of option value from the ability to adopt. The crucial element that enables the interesting trade-off
between innovation and technology diffusion in our model is that the incumbents internalize some
of the value from the evolving distribution of technologies, thus distorting their innovation choices.
That is, incumbent firms not adopting today realize they may adopt in the future, and they derive
positive value from this option to adopt.12

In our extensions, we take small steps towards reconciling our model with creative destruction
and expanding variety models. For example, the important role of excludability (often a precon-
dition for models of variety expansion) is explored in Section 5, and leap-frogging to the frontier,
which we develop in Section 3.3, is a step towards Schumpeterian forces—albeit without the crucial
force of creative destruction upon the jump.

Interpreting Productivity Dispersion and Firm Growth. Papers that closely examine pro-
ductivity find a high degree of dispersion at every level of aggregation—even in narrowly defined
industries where we would expect firms to produce goods with similar characteristics.13 For ex-
ample, Syverson (2011) surveys the evidence on productivity dispersion and finds that within the
US, the ratio of the top to the bottom decile is approximately 1.92:1. In places such as China and
India, Hsieh and Klenow (2009) finds a ratio closer to 5:1.14

Absent measures of physical productivity, either revenue or firm size is commonly used to proxy
for productivity, quality, or product differentiation—which are difficult to separately identify and
are typically combined into one dimension of firm profitability. As only one or two firms produce
each variety within a creative destruction model, all productivity or quality differences across firms
are interpreted as those firms having fewer product lines that are at the frontier or having frontier
products with lower quality/productivity relative to other frontier products. The typical models do
not allow the interpretation that firms are producing the same variety another firm is producing,
but with below-frontier quality/productivity.

With this in mind, Garcia-Macia, Hsieh, and Klenow (2016) decompose firms’ changes in em-
ployment shares as a proxy for quality into multiple possible growth channels. They find that 48
percent of such changes are attributable to own-variety improvements by incumbents; 23 percent
comes from creative destruction (from both incumbents and entrants); and the expansion of vari-
eties accounts for 29 percent. This confirms the important role of incumbent improvements that is
highlighted in our paper. From the perspective of our paper, however, not all such improvements
are attributed to innovation activity, as many of the firms improve via adoption.

While the stationary productivity distribution gives a sense of dispersion, the dynamics of
the distribution give a sense of whether the creative destruction dynamics are active throughout
the whole distribution or only for firms near the front. A classic empirical example analyzing
productivity dynamics is Baily, Hulten, Campbell, Bresnahan, and Caves (1992). In their Figure
4, they show that of the all plants in the lowest (5th) quintile of the productivity distribution in
1972, 54 percent were in the 4th or 5th quintile in 1982. Of those in the 1st quintile in 1972, 42
percent remained in the top quintile in 1982, while only 6.5 percent exited during that period. This

12Similar to our paper, Eeckhout and Jovanovic (2002) model technological spillovers that are a function of the
distribution of firm productivity.

13More aggregated approaches, such as Acemoglu and Dell (2010) find considerable dispersion both between and
within countries, and attribute most of it to differences in technological know-how.

14Furthermore, if productivity is partially embodied in management practices, as described in Bloom and
Van Reenen (2010) and Bloom, Sadun, and Reenen (2014), then the dispersion of management practices between and
within countries also provides strong evidence for a high degree of productivity dispersion for similar products.
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suggests that typical changes to plants are modest in size and occur slowly (i.e., not too many
changes in leadership). Creative destruction models are designed to capture frontier firms, so it
is quite possible that Schumpeterian forces are very strong inside the top quintile. This suggests
that, although very relevant to the expansion of the frontier, creative destruction may have more
modest effects on the bottom four quintiles. See Section 6 for basic empirics of the technology
frontier using ratios of moments in the distribution, in a sense similar to Hsieh and Klenow (2009)
and Acemoglu, Aghion, Lelarge, Van Reenen, and Zilibotti (2007).

2 Baseline Model with Exogenous Stochastic Innovation

We first analyze an exogenous growth model to simplify the introduction of the environment; to
focus on the economic forces that determine the shape of the stationary normalized productivity
distribution; and to highlight that key properties of BGP equilibria depend on whether the support
of the productivity distribution is finite or infinite.

The only choice that a firm makes in this version of the model is whether to adopt a new
technology or to continue producing with its existing technology. In Section 4, we develop an
extension of this model—in which a firm chooses its innovation rate—to study how adoption and
innovation activities interact to jointly determine the shape of the productivity distribution and
the aggregate growth rate.

Throughout the paper, we present stark models in the interest of parsimony. In Technical
Appendix G, we develop a more elaborate general equilibrium model of monopolistically competitive
firms facing CES demand that hire labor for production and productivity-improving activities to
maximize profits, with all costs denominated in units of labor at a market wage and free entry
determining the endogenous mass of firms. Results are qualitatively equivalent, so we focus on the
simpler model for clarity of exposition.

2.1 How we Model Innovation and Adoption and Why

We model adoption and innovation as two separate methods for generating within-firm productivity
gains. It could be that there is no such activity as “pure” adoption and that each act of adoption
has the chance to create something new (as in Jovanovic and Rob (1989) and Buera and Oberfield
(2015)) or requires some innovation to adapt the adopted technology to local uses. Likewise, perhaps
every act of innovation requires the concurrent adoption of some external knowledge. There is,
however, a sense in which some improvements fall closer to pure innovation while others fall closer
to pure adoption on the spectrum. Investments in adoption and innovation activities have different
costs, benefits, and risks, and are done differentially by different types of firms. Thus, we believe
that it is fruitful to distinguish between these activities. It is useful to model them as completely
separate actions in order to better understand the incentives driving firms to align themselves with
primarily adoptive or primarily innovative activity and to see how these two activities interact to
generate dynamics of the productivity distribution. The key characteristic of innovation is that
it is the process that creates new knowledge. There are two essential characteristics of adoption.
First, adoption does not create new knowledge but, rather, transfers existing knowledge across
agents. Second, the opportunities available to an adopting firm necessarily depend on the existing
technologies that are available to adopt. To make sure that we can separately capture the incentives
and effects of these two types of activities, the innovation process in our model does not share these
two essential properties of adoption, and the adoption process does not share this key characteristic
of innovation.

To capture these features, we model adoption as a meet and copy process by which an adopter
draws a new technology with some randomness that is a function of the distribution of technologies
actively in use. This is similar to the diffusion models in Perla and Tonetti (2014) and Lucas and
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Moll (2014). Adopters would prefer to copy the frontier technology, but due to the difficulty of
finding and implementing the best technologies, they will typically end up with technology that
is better than their own but not at the frontier. Innovation is important in this paper because
it generates an endogenously expanding productivity frontier. We model innovation as autarkic
geometric growth (as in Atkeson and Burstein (2010) and Stokey (2014)), in the sense that the
returns are only a function of the innovating firm’s productivity level and not of the productivity
distribution. This model of innovation delivers an endogenously expanding frontier in the simplest
way, so that we can focus on the interaction between the distinct activities of innovation and
adoption.

Since the key property of innovation is the creation of new technologies, which we capture via
the expansion of the frontier, it is essential that our model of innovation permits a productivity
distribution that has finite support for all finite times. As we will show, it turns out that a key
distinction that determines the fundamental properties of BGP equilibria is whether the long-run
productivity distribution has finite or infinite support. The important difference is between infinite
and finite support in the long run, independent of whether infinite support occurs due to initial
conditions with infinite support or to an exogenous process that generates infinite support.15 This
motivates our use of a finite-state Markov process for innovation growth rates: with this process,
growth rates are always bounded for all firms over any positive time interval, and infinite support
in the stationary distribution arises only from initial conditions with infinite support.

Beyond allowing for a finite technology frontier, modeling an innovation process with a bounded
maximum growth rate (such as our finite-state Markov chain) offers an additional advantage. Since
the process is bounded, the innovation rate in a fully-specified growth model must be less than or
equal to the maximum growth rate—whether that rate is determined endogenously or exogenously.
Hence, if the growth rate of the aggregate economy is greater than the maximum innovation rate—
as it is in the infinite support version of our model—then the degree of “latent growth” in the
economy is clearly defined. That is, if the aggregate growth rate is greater than the maximum
idiosyncratic growth rate, there must be latent growth. With unbounded innovation rates, such as
GBM or multiplicative Poisson arrivals, there is no maximum innovation rate or zero-latent-growth
benchmark for the economy, and, thus, it is difficult to determine what the sign of the latent growth
may be.

See Technical Appendix A for more discussion of the strengths, weaknesses, and failures of this
and many alternative innovation processes.

2.2 The Baseline Model

Firm Heterogeneity and Choices. A continuum of firms produce a homogeneous product
and are heterogeneous over their productivity, Z, and innovation ability, i ∈ {`, h}. For sim-
plicity, firm output equals firm profits equals firm productivity, Z. The mass of firms of pro-
ductivity less than Z in innovation state i at time t is defined as Φi(t, Z) (i.e., an unnormal-
ized CDF). Define the technology frontier as the maximum productivity of any firm, Z̄(t) ≡
sup {support {Φ`(t, ·)} , support {Φh(t, ·)}} ≤ ∞, and normalize the mass of firms to 1 so that
Φ`(t, Z̄(t)) + Φh(t, Z̄(t)) = 1. At any point in time, the minimum of the support of the distribu-

15Infinite support can be present from the beginning due to an initial condition (e.g., Perla and Tonetti (2014),
Lucas and Moll (2014)). Alternatively, infinite support can arise from an innovation process with geometric stochastic
shocks generating an infinite-support power law as its stationary distribution from any initial condition (e.g., Luttmer
(2007), Perla, Tonetti, and Waugh (2015) Appendix, and the GBM example in Technical Appendix E). For example,
in the case of processes using Brownian Motion or a Poisson arrival of geometric jumps, even an initial condition with
finite support immediately becomes infinite with a continuum of agents. The issue in either of those two cases is that
the growth rates in any strictly positive amount of time are unbounded. The properties of the equilibria are largely
the same if the infinite support comes from geometric stochastic shocks or initial conditions, as is seen in the nested
solution of Perla, Tonetti, and Waugh (2015).
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tion will be an endogenously determined Mi(t), so that Φi(t,Mi(t)) = 0. Define the distribution
unconditional on type as Φ(t, Z) ≡ Φ`(t, Z) + Φh(t, Z).

A firm with productivity Z can choose to continue producing with its existing technology, in
which case it would grow stochastically according to the exogenous innovation process, or it can
choose to adopt a new technology.

Stochastic Process for Innovation. In the high innovation ability state (h), a firm is innovating
and its productivity is growing at a deterministic rate γ.16 In the low innovation ability state (`), it
has zero productivity growth from innovation (without loss of generality).17 Sometimes, firms have
good ideas or projects that generate growth, and sometimes firms are just producing using their
existing technology. Innovation ability evolves according to a continuous-time two-state Markov
process that drives the exogenous growth rate of an operating firm. This process allows for stochastic
innovation with a finite frontier and will permit equilibria in which adoption persists in the long
run and growth is driven by the innovation choices of frontier firms. See Technical Appendix A
for a discussion of the strengths, weaknesses, and failures of this and many alternative innovation
processes (e.g., Poisson arrival of jumps or drifts; IID growth rates and singular perturbation
methods; reflected geometric Brownian motion (GBM); deterministic heterogeneous growth rates,
etc.). The innovation states are modeled primarily for technical reasons related to continuous-
time, combined with the desire to model stochastic innovation and finite-support distributions,
rather than being of first order interest per se. In some loose sense, with high switching rates this
process is quantitatively similar to IID growth rate shocks without the associated continuous-time
measurability issues.

The jump intensity from low to high is λ` > 0 and from high to low is λh > 0. Since the Markov
chain has no absorbing states, and there is a strictly positive flow between the states for all Z, the
support of the distribution conditional on ` or h is the same (except, perhaps, exactly at an initial
condition). Recall that support {Φ(t, ·)} ≡ [M(t), Z̄(t)). The growth rate of the upper and lower
bounds of the support are defined as g(t) ≡M ′(t)/M(t) and gZ̄(t) ≡ Z̄ ′(t)/Z̄(t) if Z̄(t) <∞.

For notational simplicity, define the differential operator ∂ such that ∂z ≡ ∂
∂z and ∂zz ≡ ∂2

∂z2 .

When a function is univariate, derivatives will be denoted as M ′(z) ≡ ∂zM(z) ≡ dM(z)
dz .

Adoption and Technology Diffusion. A firm has the option to adopt a new technology by
paying a cost. Adoption means switching production practice by changing to a technology that
some other firm is using. We model this adoption process as undirected search across firms.18 That
is, when a firm chooses to adopt, it immediately switches its productivity to a draw from a function
of the existing productivity distribution Φi(t, Z).19 Assume that an adopting firm draws an (i, Z)
from distributions Φ̂`(t, Z) and Φ̂h(t, Z), where Φ̂i(t, Z) is the probability that an adopting firm
becomes type i and has productivity less than Z. Let Φ̂i be such that Φ̂`(t, 0) = Φ̂h(t, 0) = 0 and
Φ̂`(t, Z̄(t)) + Φ̂h(t, Z̄(t)) = 1. Φ̂i will be determined by the equilibrium Φ`(t, Z) and Φh(t, Z). The
exact specification of Φ̂i(t, Z) typically does not affect the qualitative results, so we will write the

16In Section 4, the growth rate γ will become a control variable for a firm, with the choice subject to a convex cost.
17The different innovation types are akin to Acemoglu, Akcigit, Bloom, and Kerr (2013)—albeit without the

selection of entry inherent in that model.
18Instead of random matching, Luttmer (2015a) uses matching of teachers and students. The sorts of learning delays

embedded in Luttmer (2015a,b) give a qualitatively similar foundation to random matching from some distortion of
the productivity distribution. Furthermore, If the discrete choice of an immediate innovation arrival seems stark, an
alternative is to use choice of an innovation intensity, as in Lucas and Moll (2014). Since the optimal innovation
intensity is decreasing in relative productivity in that model, it would deliver qualitatively similar results at the
aggregate level.

19See Technical Appendix C.2 for a proof showing that a firm’s ability to recall its last productivity doesn’t change
the equilibrium conditions; and Technical Appendix C.1 for a derivation when adoption is not instantaneous—where
our main specification is the limit of the adoption arrival rate going to infinity.
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process fairly generally and then analyze specific cases. One simplification that we maintain is that
the draw of a new (i, Z) is independent of a firm’s current type. A version of the model in which
the firm can direct its search towards better technologies at some cost is nested in Section 5.

The cost of adoption grows as the economy grows. The endogenous scale of the economy is
summarized by the minimum of support of the productivity distribution M(t). For simplicity, the
cost of adoption is proportional to the scale of the aggregate economy: ζM(t).

Firm Value Functions. Firms discount at rate r > 0. Let Vi(t, Z) be the continuation value
functions—i.e., the value at time t of being an i-type firm and producing with productivity Z.

rV`(t, Z) = Z + λ` (Vh(t, Z)− V`(t, Z))︸ ︷︷ ︸
Jump to h

+ ∂tV`(t, Z)︸ ︷︷ ︸
Capital Gains

(1)

rVh(t, Z) = Z + γZ∂ZVh(t, Z)︸ ︷︷ ︸
Exogenous Innovation

+λh (V`(t, Z)− Vh(t, Z))︸ ︷︷ ︸
Jump to `

+∂tVh(t, Z). (2)

A firm’s continuation value derives from instantaneous production plus capital gains as well
as productivity growth if in the high innovation ability state, and it accounts for the intensity of
jumps between innovation abilities i.

The value of adopting is the continuation value of having a new productivity and innovation
type drawn from Φ̂` and Φ̂h minus the cost of adoption:

Net Value of Adoption =

∫ Z̄(t)

M(t)
V`(t, Z)dΦ̂`(t, Z) +

∫ Z̄(t)

M(t)
Vh(t, Z)dΦ̂h(t, Z)︸ ︷︷ ︸

Gross Adoption Value

− ζM(t)︸ ︷︷ ︸
Adoption Cost

. (3)

Optimal Adoption Policy and the Minimum of the Productivity Distribution Support.
Since the value of continuing is increasing in Z, and the net value of adopting is independent of
Z, the firm’s optimal adoption policy takes the form of a reservation productivity rule. All firms
choose an identical threshold, Ma(t), above which they will continue operating with their existing
technology and, otherwise, will adopt a new technology (i.e., a firm with Z ≤ Ma(t) is in the
adoption region of the productivity space). While the adoption threshold could depend on the type
i, see Appendix A.2 for a proof showing that ` and h firms choose the same threshold, Ma(t), if
the net value of adoption is independent of the current innovation type.

As draws are instantaneous, for any t > 0, this endogenous Ma(t) becomes the evolving min-
imum of the Φi(t, Z) distribution, M(t), and in an abuse of notation, we will refer to both the
minimum of support and the firm adoption policy as M(t) going forward.20

In principle, there may be adopters of either innovation type with productivity in the common
adoption region with Z ≤M(t). Define Si(t) ≥ 0 as the flow of i-type firms entering the adoption
region at time t. Denote the total flow of adopting firms as S(t) ≡ S`(t) + Sh(t).

20To see why the minimum support is the endogenous threshold, consider instantaneous adoption as the limit of
the Poisson arrival rate of draw opportunities approaching infinity. In any positive time interval, firms wishing to
adopt would gain an acceptable draw with probability approaching 1, so that Z > M(t) almost surely. Because of
the immediacy of draws, the stationary equilibrium does not depend on whether draws are from the unconditional
distribution or from the distribution conditional on being above the current adoption threshold. This is the same as
the small time limit of Perla and Tonetti (2014), which solves both versions of the model. A more formal derivation
of this cost function as the limit of the arrival rate of unconditional draws is in Technical Appendix C.1.
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The Firm Problem. A firm’s decision problem can be described as choosing an optimal stopping
time of when to adopt. Necessary conditions for the optimal stopping problem include the contin-
uation value functions and, at the endogenously chosen adoption boundary, M(t), value matching,

Vi(t,M(t))︸ ︷︷ ︸
Value at Threshold

=

∫ Z̄(t)

M(t)
V`(t, Z)dΦ̂`(t, Z) +

∫ Z̄(t)

M(t)
Vh(t, Z)dΦ̂h(t, Z)︸ ︷︷ ︸

Gross Adoption Value

− ζM(t)︸ ︷︷ ︸
Adoption Cost

, (4)

as well as smooth-pasting conditions,

∂ZV`(t,M(t)) = 0 if M ′(t) > 0 (5)

∂ZVh(t,M(t)) = 0 if M ′(t)− γM(t) > 0. (6)

Value matching states that at the optimal adoption reservation productivity, a firm must be
indifferent between producing with the reservation productivity or adopting a new productivity.
Smooth-pasting is a technical requirement that can be interpreted as an intertemporal no-arbitrage
condition that ensures that the recursive system of equations is equivalent to the fundamental
optimal stopping problem. Thus, the smooth-pasting conditions are necessary only if firms at the
boundary are moving backwards relative to the boundary over time.

The Technology Frontier. Given the adoption and innovation processes, if Z̄(0) <∞, then Z̄(t)
will remain finite for all t, as it evolves from the innovation of firms in the interval infinitesimally
close to Z̄(t); that is, Z̄ ′(t)/Z̄(t) = γ if Φh(t, Z̄(t)) − Φh(t, Z̄(t) − ε) > 0, for all ε > 0. With the
continuum of firms and the memoryless Poisson arrival of changes in i, there will always be some h
firms that have not jumped to the low state for any t, so the growth rate of the frontier is always
γ.

Law of Motion of the Productivity Distribution. The Kolmogorov Forward Equation (KFE)
describes the evolution of the productivity distribution for productivities above the minimum of
the support. The KFEs in CDFs for ` and h type firms are

∂tΦ`(t, Z) = −λ`Φ`(t, Z) + λhΦh(t, Z)︸ ︷︷ ︸
Net Flow from Jumps

+ (S`(t) + Sh(t))︸ ︷︷ ︸
Flow of Adopters

Φ̂`(t, Z)︸ ︷︷ ︸
Draw ≤ Z

− S`(t)︸ ︷︷ ︸
`-Adopters

(7)

∂tΦh(t, Z) = −γZ∂ZΦh(t, Z)︸ ︷︷ ︸
Innovation

−λhΦh(t, Z) + λ`Φ`(t, Z) + (S`(t) + Sh(t))Φ̂h(t, Z)− Sh(t). (8)

For each type i, the KFEs keep track of inflows and outflows of firms with a productivity level
below Z. An i-type firm with productivity less than Z stops being in the i-distribution below Z if
it keeps its type and increases its productivity above Z or if it changes its type.

A firm can keep its type and increase its Z in two ways: adoption or innovation. Because an
adopting firm has probability Φ̂i(t, Z) of becoming type i and drawing a productivity less than
Z, and there are (S`(t) + Sh(t)) number of firms adopting, (S`(t) + Sh(t))Φ̂i(t, Z) is added to
the i-distribution. Additionally, the flow of adopters of each type, Si(t), is subtracted from the
corresponding distribution (this term appears conditional on any Z because adoption occurs at
the minimum of support). Intuitively, the adoption reservation productivity acts as an absorbing
barrier sweeping through the distribution from below. As it moves forward, it collects adopters
at the minimum of support, removes them from the distribution, and inserts them back into the
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distribution according to Φ̂.21

The KFE for the h-types has a term that subtracts the firms that grow above Z through
innovation: there are ∂ZΦh(t, Z) number of h-type firms at productivity Z, and because innovation
is geometric, they grow above Z at rate γ.22

Firms of productivity Z switching from type i to type i′ leave the i-distribution and enter the
i′-distribution at rate λi. For example, there are Φ`(t, Z) many `-type firms with productivity less
than Z, and they leave the ` distribution at rate λ` and enter the h-distribution at the same rate.

Consumer Welfare and the Interest Rate The firms are owned by a representative consumer
who values the undifferentiated good with log utility and a discount rate ρ > 0.23 Given the
productivity distribution Φ(t, Z), welfare is

U(t) =

∫ ∞
0

e−ρτ log


∫ ∞
M(t)

Z∂ZΦ(t+ τ, Z)dZ︸ ︷︷ ︸
Aggregate Output

dτ. (14)

As is standard, along a balanced growth path with aggregate output growing at rate g, the discount
rate that a firm faces is

r = ρ+ g. (15)

2.3 Normalization, Stationarity, and Balanced Growth Paths

In this paper, we study economies on balanced growth paths (BGPs), in which the distribution is
stationary when properly rescaled and aggregate output grows at a constant rate. The economy
is characterized by a system of equations defining the firm problem, the laws of motion of the
productivity distributions, and consistency conditions that link firm behavior and the evolution of
the distributions. To compute BGP equilibria, it is convenient to transform this system to a set of
stationary equations. While we could normalize by any variable growing at the same rate as the
economy, it is most convenient to normalize variables relative to the endogenous boundary M(t).

21Recognizing that the λi jumps are of measure 0 when calculating how many firms cross the boundary in any
infinitesimal time period, the flow of adopters comes from the flux across the moving M(t) boundary.

S`(t) ≡M ′(t)∂ZΦ`(t,M(t)) (9)

Sh(t) ≡
(
M ′(t)− γM(t)

)︸ ︷︷ ︸
Relative Speed of Boundary

∂ZΦh(t,M(t))︸ ︷︷ ︸
PDF at boundary

. (10)

This is consistent with the solution to the ODEs in equations (7) and (8) at Z = M(t), as is apparent in the normalized
equations (21) and (22).

22To account for the drift component, assume a stochastic process with a drift µ(z), PDF f(t, z), and CDF F (t, z).
The KFE comes from the adjoint to infinitesimal generator:

∂tf(t, z) = −∂z [µ(z)f(t, z)] + . . . (11)

Integrating to get the CDF F (t, z), either using the fundamental theorem of calculus or interchanging the order of
differentiation and integration, yields

∂tF (t, z) = −µ(z)f(t, z) + . . . (12)

= −µ(z)∂zF (t, z) + . . . (13)

23The appendix uses a general firm discount rate r, and the numerical algorithm in Technical Appendix B is imple-
mented for an arbitrary CRRA utility function. Using log utility here simplifies a few of the parameter restrictions
and expressions in the algebra compared to linear utility or general CRRA.
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Define the change of variables, normalized distribution, and normalized value functions as,

z ≡ log(Z/M(t)) (16)

Fi(t, z) = Fi(t, log(Z/M(t))) ≡ Φi(t, Z) (17)

vi(t, z) = vi(t, log(Z/M(t))) ≡ Vi(t, Z)

M(t)
. (18)

The adoption threshold is normalized to log(M(t)/(M(t))) = 0, and the relative technology frontier
is z̄(t) ≡ log(Z̄(t)/M(t)) ≤ ∞. See Figure 1 for a comparison of the normalized and unnormalized
distributions. Define the normalized unconditional distribution as F (z) ≡ F`(z) + Fh(z). Since
F`(t, 0) = Fh(t, 0) = 0 and F`(t, z̄(t)) + Fh(t, z̄(t)) = 1, F (t, 0) = 0 and F (t, z̄(t)) = 1.

∂ZΦ(Z)

Z
M(t)

M ′(t)

γM(t)

∂zF (z)

z
0

M ′(t)
M(t) − γ

Unnormalized PDF Normalized PDF

Z̄(t) z̄(t)

Figure 1: Normalized vs. Unnormalized Distributions

With the above normalizations, it is possible that the value function, productivity distribution,
and growth rates can be stationary—i.e., independent of time.24

Summary of Stationary KFEs and Firm Problem. A full derivation of the normalized
system is detailed in Appendix A.1. Here, we summarize the resulting equations that characterize
the law of motion for the normalized productivity distribution and the normalized firm problem.
The equations that determine the stationary productivity distributions are:

0 = gF ′`(z)− λ`F`(z) + λhFh(z) + (S` + Sh)F̂`(z)− S` (21)

0 = (g − γ)F ′h(z)− λhFh(z) + λ`F`(z) + (S` + Sh)F̂h(z)− Sh (22)

0 = F`(0) = Fh(0) (23)

1 = F`(z̄) + Fh(z̄) (24)

S` = gF ′`(0), if g > 0 (25)

Sh = (g − γ)F ′h(0), if g > γ. (26)

24An important example is when Φ(t, Z) is Pareto with the minimum of support M(t) and a tail parameter α:

Φ(t, Z) = 1−
(
M(t)

Z

)α
, for M(t) ≤ Z. (19)

Then F (t, z) is independent of M and t:

F (t, z) = 1− e−αz, for 0 ≤ z <∞. (20)

This is the CDF of an exponential distribution, with parameter α > 1. From a change of variables, if X ∼ Exp(α),
then eX ∼ Pareto(1, α). Hence, α is the tail index of the unnormalized Pareto distribution for Z.
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The necessary conditions of the normalized firm problem are:

ρv`(z) = ez − gv′`(z) + λ` (vh(z)− v`(z)) (27)

ρvh(z) = ez − (g − γ)v′h(z) + λh (v`(z)− vh(z)) (28)

v(0) =
1

ρ
=

∫ z̄

0
v`(z)dF̂`(z) +

∫ z̄

0
vh(z)dF̂h(z)− ζ (29)

v′`(0) = 0, if g > 0 (30)

v′h(0) = 0, if g > γ. (31)

Given that both firm types choose the same adoption threshold, we drop the type index for the
value functions at the adoption threshold: v(0) ≡ vi(0).

Equations (21) to (24) are the stationary KFEs with initial conditions and boundary values.
Recall that g is the growth rate of the minimum of support and γ the innovation growth rate. In
the normalized setup, firms are moving backwards towards the constant minimum of support, and
their growth rate determines the speed at which they are falling back. S` in equation (25) is the
flow of ` agents moving backwards at a relative speed of g across the adoption barrier, while Sh in
equation (26) is the flow of h agents moving backwards at the slower relative speed of g − γ across
the barrier. The F̂i(z) specification is some function of the equilibrium Fi(z), and will be analyzed
further in Sections 3.1 to 3.3.

Equations (27) and (28) are the Bellman Equations in the continuation region, and (29) is the
value-matching condition between the continuation and technology adoption regions. The smooth-
pasting conditions in (30) and (31) are necessary only if the firms of that particular i are drifting
backwards relative to the adoption threshold. See Figure 2 for a visualization of the normalized
Bellman equations.

0 z̄ z

vi

vi(0)

λh

λℓ

vh(z)

vℓ(z)

η

Figure 2: Normalized, Stationary Value Functions

Equilibrium Definitions. This paper studies balanced growth path equilibria, defined below.

Definition 1 (Recursive Competitive Equilibrium with Exogenous Innovation). A recursive com-
petitive equilibrium with exogenous innovation consists of initial distributions Φi(0, z), adoption
reservation productivity functions Mi(t), value functions Vi(t, z), interest rates r(t), and sequences
of productivity distributions Φi(t, z), such that

1. given r(t) and Φi(t, z), Mi(t) are the optimal adoption reservation productivities, with Vi(t, z)
the associated value functions;
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2. given Mi(t) and Φi(t, z), r(t) is consistent with the consumer’s intertemporal marginal rate
of substitution;

3. given Mi(t), Φi(t, z) fulfill the laws of motion in (7) and (8) subject to the initial condition
Φi(0, z).

Definition 2 (Balanced Growth Path Equilibrium with Exogenous Innovation). A balanced growth
path equilibrium with exogenous innovation is a recursive competitive equilibrium such that the
growth rate of aggregate output is constant and the normalized productivity distributions are sta-
tionary. This is equivalent to requiring that Fi(t, z) = Fi(z) and g(t) ≡M ′(t)/M(t) = g.

Define the growth rate of aggregate output as gE(t) ≡ ∂tEt [Z] /Et [Z]; then,

Lemma 1 (Growth of the Endogenous Adoption Threshold and Aggregate Output). On a balanced
growth path, the growth rate of the endogenous threshold, M(t), must be the same as the growth
rate of aggregate output. That is, g = gE.

Proof. The value-matching condition in (29) is normalized to the endogenous threshold, and, hence,
adoption has a constant and strictly positive cost. Thus, as v(z) ≥ z, if the expected value of a
draw from the technology distribution were not stationary relative to the adoption cost, then the
value-matching could not hold with equality for all t. See Appendix A.7 for a similar, and more
formal, case.

How Adoption and Innovation Generate a Stationary Normalized Distribution. As
we will show, with geometric growth, the stationary solutions will endogenously become power-
law distributions asymptotically, as discussed with generality in Gabaix (2009). Figure 3 provides
some intuition on how proportional growth and adoption can create a stationary distribution.
Stochastic innovation spreads out the distribution and, in the absence of endogenous adoption, this
would prevent the existence of a stationary distribution. Without endogenous adoption, there is no
“absorbing” or “reflecting” barrier, and proportional random shocks generate a variance diverging
to infinity. However, when adoption is endogenous, as the distribution spreads, the incentives to
adopt a new technology increase, and the adoption decisions of low-productivity agents then act
to compress the distribution. In a BGP equilibrium, technology diffusion can balance innovation,
thus allowing for a stationary normalized distribution.

Much of the intuition for how innovation and adoption can generate a stationary normalized
power-law productivity distribution can be seen in the same model, except with innovation that
follows geometric Brownian motion. Technical Appendix E solves this modified model in closed
form. In the GBM case, however, even with a finite Z̄(0) initial condition, the support of a
stationary F (z) will be [0,∞) since, with a continuum of agents, Brownian motion instantaneously
increases the support of the distribution to infinity. Thus, this GBM model is well-suited to gaining
intuition for some features of our baseline model, but it is ill-suited to study the main questions
surrounding the expansion of the frontier, which drive the analysis in this paper.

Another advantage of our specification compared to GBM is that any firm’s maximum growth
rate is bounded by the innovation rate γ. Hence, if the aggregate growth rate g > γ, then we
can easily identify conditions under which extra growth beyond innovation is possible—i.e., latent
growth. Alternatively, if g < γ, it means that the growth rate of the distribution as a whole is
unable to keep up with the innovation rate—i.e., latent growth with a negative sign.

The existence of a stationary normalized distribution immediately places restrictions on the
relationship between the growth of the frontier and adoption behavior. Recall that g is the growth
rate of the reservation adoption productivity and, thus, the growth rate of the minimum of support
of the unnormalized distribution. A necessary condition for the existence of a stationary normalized
distribution with a finite frontier (i.e., if Z̄(t) <∞ ∀ t) is that g = gZ̄ ≤ γ. That is, the minimum
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of support must grow at the same rate as the aggregate economy, and cannot grow faster than the
frontier. The requirement that g = gZ̄ occurs since, otherwise, the returns to adoption would grow
faster than the cost, contradicting the agent’s endogenous adoption choice.

This may seem as though the growth rate of the minimum of support, which is determined by
adopters, determines the long-run growth rate, but it should be read as an equilibrium relationship
between adoption and innovation. The flow of adopters endogenously increases or decreases—
adjusting the growth rate g(t) until it is in balance with the growth rate of the frontier, γ.

F ′(z)

z
0

Adoption compresses

z̄

Stochastic innovation spreads

Figure 3: Tension between Stochastic Innovation and Adoption

Three Types of Stationary Distributions. There are three possibilities for the stationary
normalized frontier, z̄, that we will analyze separately. These are not mere technicalities, but,
rather, each type of distribution is associated with very different firm behavior in a manner that
is informative of the economic relationship among adoption, innovation, aggregate growth, and the
shape of the productivity distribution.

The first case is if z̄ = ∞, which we call “infinite-support.” Because we model innovation as
a stochastic process with bounded growth rates, the infinite-support case in this model occurs if
and only if the initial productivity distribution has infinite-support (i.e., z̄(0) = ∞ or, equiva-
lently, sup { support {F (0, ·)}} =∞). Since essential properties of the equilibria are determined by
whether the long-run productivity distribution has infinite or finite-support, this case also corre-
sponds to economies like those studied in Luttmer (2007) (in which GBM generates infinite-support
for any initial condition) and the infinite-support examples of Perla and Tonetti (2014) and Lucas
and Moll (2014).

The other two cases both have finite-support distributions (Z̄(t) < ∞ at all time periods) but
different properties of the normalized productivity frontier. The second case is when z̄(0) < ∞
(which implies z̄(t) < ∞ ∀ t), but where limt→∞ z̄(t) = ∞. We label this case “finite unbounded
support.” The final case is when the initial condition has finite-support and limt→∞ z̄(t) < ∞,
which we refer to as “finite bounded support.”

In Section 3, we provide the conditions necessary for the existence of each type of stationary
distribution; show when there is hysteresis in which the stationary distribution depends on the
initial conditions; derive properties of the stationary distribution, including the shape as a function
of primitive adoption and innovation parameters; and study how adoption and innovation activity
determine the aggregate growth rate. Finally, as the empirics in Section 6 show, we need to
understand both the unbounded and bounded cases as there is no conclusive answer on whether
the frontier is bounded—for most industries, at least.
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3 Stationary BGP Equilibria with Exogenous Innovation

In this section, we compute BGP equilibria for economies with an exogenous innovation process
and study their properties. There are three main questions that motivate this analysis. First, does
adoption activity affect long-run growth rates and, if so, how and why? Second, how do adoption
and innovation determine the shape of the productivity distribution? Third, under what conditions
is the aggregate growth rate not equal to the innovation rate.

We show that the relationship of adoption to long-run aggregate growth depends crucially
on whether the productivity distribution has finite-support. Model assumptions that generate
infinite-support power-law distributions (whether assumed as an initial condition or as properties
of the stochastic process) are not innocuous, in the sense that economies leading to distributions
with finite-support have very different properties than those leading to infinite-support power-law
economies.

First, whether the support is finite or infinite determines whether the aggregate growth rate
can be larger than the growth rate of innovators. In finite-support BGP equilibria, the aggregate
growth rate cannot exceed the growth rate of innovators (a parameter in this exogenous innovation
section). In infinite-support BGPs, it is possible for aggregate growth to be faster than growth
from innovation. For example, even if there is zero innovation, positive long-run aggregate growth
can be sustained via adoption if the productivity distribution has infinite-support. Furthermore,
conditions generating bounded versus unbounded stationary distributions will determine whether
the growth rate can be strictly less than the innovation rate (i.e., adopters and aggregate output
are not keeping up with the innovation rate).

Second, these different types of stationary distributions imply a different relationship between
adoption activity and innovation incentives. Beyond determining if the growth rate can be less
than the innovation rate, the distinction between bounded and unbounded stationary distributions
becomes most important when innovation is endogenous. Although in this section we maintain
exogenous innovation rates, by studying the firm value function, we can already see under which
assumptions adoption impacts the long-run growth rate and why. Whether adoption influences
long-run aggregate growth depends on how it impacts innovation incentives, which in turn depends
on whether innovators at the frontier think they will become adopters in any reasonable time frame.
Since adoption happens at the bottom of the distribution and innovation pushes out the frontier,
the distance between the frontier and the minimum of support will partially determine the influence
of adoption on long-run growth. In this respect, the unbounded support BGPs are closer to the
infinite-support case, in that the firms at the frontier have an arbitrarily large z̄ relative to the
adopters, and thus have an infinitesimal option value of adoption. With finite bounded support
distributions, innovators that are pushing out the frontier have positive value from the option to
adopt and adoption can affect long-run growth by affecting innovation incentives.

Third, in addition to determining the aggregate growth rate, adoption and innovation determine
the shape of the productivity distribution. Adoption is a force that compresses the distribution while
innovation stretches it. Geometric growth through innovation combined with adoption generates,
asymptotically, a power-law productivity distribution, roughly consistent with firm size data. In
this section we detail how innovation and adoption determine the ratio of best to worst technologies
and the shape (tail-index) of the productivity distribution.

Fourth, we also show under which conditions hysteresis exists, in which the stationary dis-
tribution is a function of the initial distribution. While there can be a unique equilibrium (and
aggregate growth rate) associated with finite BGPs, infinite-support allows for a continuum of
possible equilibria (and growth rates) that depend on the exact initial condition.

All of these results suggest that caution should be exercised when using an infinite-support
distribution as an approximation of a finite, even if ultimately unbounded, empirical distribution.
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3.1 Stationary BGP: Infinite Support

To set the stage, we first study the economy with infinite-support, in which the maximum growth
rate of innovations is γ. The infinite-support case is useful as a foil to the finite-support BGPs.
For reference, the characteristics of this model with infinite-support are qualitatively similar to the
model with innovation driven by GBM that is solved in closed form in Technical Appendix E. The
infinite-support case in this economy with the two-state Markov innovation process, however, is
developed here for better comparison to the finite-support cases.

Since we are most interested in when growth rates can exceed innovation rates, we will con-
centrate on cases in which g ≥ γ. While in the finite-support case it must be that g ≤ γ, in the
infinite-support case there is no such requirement. An important property of the infinite-support
economy is the possibility that g > γ, and we will focus on these equilibria of interest.25

For ease of exposition, in this section, we model the adoption technology as firms copying
both the type and productivity of their draw from the unconditional distribution.26 That is, the
normalized adoption measures are F̂`(z) ≡ F`(z) and F̂h(z) ≡ Fh(z). Together with equations (23)
to (28), (30) and (31), the following value-matching and KFEs are the necessary conditions for a
BGP equilibrium.

v(0) =
1

ρ
=

∫ ∞
0

v`(z)dF`(z) +

∫ ∞
0

vh(z)dFh(z)︸ ︷︷ ︸
Adopt both i and Z of draw

−ζ (32)

0 = gF ′`(z)− λ`F`(z) + λhFh(z) + (S` + Sh)F`(z)− S` (33)

0 = (g − γ)F ′h(z)− λhFh(z) + λ`F`(z) + (S` + Sh)Fh(z)− Sh. (34)

If Φ(0, Z) has infinite-support, the normalized F (t, Z) will converge to a stationary distribution
as t→∞. A continuum of stationary distributions exists; they are determined by initial conditions,
and each is associated with its own aggregate growth rate. To characterize the continuum of
stationary distributions, parameterize the set of solutions by a scalar α. By construction, α will
be the tail index of the unconditional distribution F (z). Define the following as a function of the
parameter α with an accompanying growth rate, g(α) ,

~F (z) ≡
[
F`(z)
Fh(z)

]
~v(z) ≡

[
v`(z)
vh(z)

]
(35)

A ≡
[

1
g
1

g−γ

]
B ≡

[
ρ+λ`
g −λ`

g

− λh
g−γ

ρ+λh
g−γ

]
(36)

ϕ ≡
√

(λh − αγ) 2 + 2λl (αγ + λh) + λl2 (37)

C ≡
[−αγ+2αg+λh−λl+ϕ

2g
λh
g

λl
g−γ

−αγ+2αg−λh+λl+ϕ
2(g−γ)

]
(38)

D ≡
[
λh(g(αγ−λh+ϕ−λl)+2γλl)

γg(αγ−λh+ϕ+λl)
g(αγ−λh+ϕ−λl)+2γλl

2γ(g−γ)

]
(39)

25In cases in which g < γ, the infinite- and finite-support distributions are equivalent. See Appendix A.6.
26While an exactly correlated draw of the type and the productivity is not necessary here, see Technical Ap-

pendix C.3 for a proof showing that independent draws for adopters of Z and the innovation type i have infinite-
support equilibria only with degenerate stationary distributions. The finite-support cases do not impose the same
requirements.
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Proposition 1 (Stationary Equilibrium with Infinite Support). There exists a continuum of equi-
libria parameterized by α > 1, which, by construction, is the tail index of F . An equilibrium is
determined by the g(α) that satisfies

1

ρ
+ ζ =

∫ ∞
0

[[
(I +B)−1

(
eIz + e−BzB−1

)
A
]T
e−CzD

]
dz (40)

and the parameter restrictions given in (A.83) to (A.86). The stationary distributions and the value
functions are given by:

~F (z) =
(
I− e−Cz

)
C−1D (41)

~F ′(z) = e−CzD (42)

~v(z) = (I +B)−1
(
eIz + e−BzB−1

)
A. (43)

The aggregate growth rate is g(α).

Proof. See Appendix A.5 and (A.83) to (A.86) for parameter restrictions that ensure that r > g
for a general CRRA and positive eigenvalues of B and C. Positive eigenvalues of B ensure that
value-matching is defined, and the option value of diffusion asymptomatically goes to 0 for large z.
Positive eigenvalues of C are equivalent to α > 0.

With any infinite-support initial condition, the BGP equilibrium maintains the infinite support,
and the stationary productivity distribution F is a power-law with a particular tail index and
accompanying aggregate growth rate. Proposition 1 states that there is a continuum of combinations
of growth rates and shapes of the distribution (tail index α) that are equilibria.27 Essentially, a
fatter-tailed stationary distribution provides stronger incentives to adopt, which generates faster
growth. Thus, generically, the aggregate growth rate is not equal to γ, but to g > γ, and long-run
growth is affected by adoption per se, independent of adoption’s affect on innovation activity. Of
course, g is a function of γ, so aggregate growth depends on innovation, but even if γ = 0, growth
can be positive.28 This hysteresis and the possibility of long-run growth without innovation are
reminiscent of the equilibria computed in Perla and Tonetti (2014) and Lucas and Moll (2014).
Furthermore, adoption and aggregate growth are a function of the shape of the distribution, but
the shape of the distribution is determined by the initial distribution or exogenous stochastic
parameters, not endogenously by the interaction of adoption and innovation activity. In the next
section, we compute the finite-support BGP—which comes about from finite initial conditions—and
compare its properties with those of the infinite-support case.

3.2 Stationary BGP: Finite Unbounded Relative Support

In this section, we study the BGP equilibrium in the case when the initial distribution Φ (0, Z) has
finite support. Due to the bounded growth rates of the Markov process, if the support of Φ(0, z) is
finite, then it remains finite as it converges to a stationary distribution. Recall that, with a finite
frontier, g ≤ γ to have a BGP with non-degenerate Fi(z). Hence, in the stationary equilibrium,
there are no h-type agents hitting the adoption threshold (and the smooth-pasting condition for h
firms is not a necessary condition). As will become clear when we contrast bounded and unbounded

27Luttmer (2012) discusses sources of hysteresis in related models. He shows that if the initial distribution is thin-
tailed and innovation occurs via a GBM, then the unique stationary distribution is that associated with the thinest
power-law initial condition. We would expect similar results with our model.

28In the case studied in Technical Appendix E, in which innovation follows GBM instead of the finite-state Markov
process, g can be computed in closed form and can be decomposed into growth that would occur absent any innovation
plus growth from the drift in innovation plus growth from the randomness in innovation that induces adoption.
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support examples in Section 3.3, the g = γ case is the most natural, and the g < γ cases occur only
as knife-edge results.

In this section and the rest of the paper, for simplicity we consider the process of adopting new
technologies disruptive to R&D, in that an adopting firm becomes an ` type regardless of its former
type.29 That is,

F̂`(z) = F`(z) + Fh(z) = F (z) (44)

F̂h(z) = 0. (45)

Necessary conditions for a stationary equilibrium with a finite initial frontier are v`(z), vh(z),
F`(z), Fh(z), and S—such that (23) to (25), (27) and (30), and

ρvh(z) = ez + λh(v`(z)− vh(z)) (46)

v(0) =
1

ρ
=

∫ z̄

0
v`(z)dF (z)− ζ (47)

0 = gF ′`(z) + SF (z) + λhFh(z)− λ`F`(z)− S (48)

0 = λ`F`(z)− λhFh(z) (49)

Define the constants, λ̂ ≡ λ`
λh

and λ̄ ≡ λ`
ρ+λh

+ 1.

Proposition 2 (Stationary Equilibrium with Finite Unbounded Support). There exists a unique
maximum growth equilibrium with g = γ and z̄ → ∞. There does not exist an equilibrium with
finite and bounded support.

The unique stationary distribution is,

F`(z) = 1
1+λ̂

e−αz (50)

Fh(z) = λ̂F`(z), (51)

where α is the tail index of the power-law distribution:

α ≡ (1 + λ̂)F ′`(0), (52)

and F ′`(0) is determined by model parameters:

F ′`(0) =
λh

(
ζ(ρ+γ)((ρ+γ)+λh+λ`)−

√
ζ
((

4γ+(ρ+γ)2ζ
)
(−γ+(ρ+γ)+λh)2+2(−2γ+(γ−(ρ+γ))(ρ+γ)ζ)(γ−(ρ+γ)−λh)λ`+(γ−(ρ+γ))2ζλ`

2
)
+ζγ22+ζ(−γ)(3(ρ+γ)+2λh+λ`)

)
γ2ζ(λh+λ`)(γ−(ρ+γ)−λh)

.

(53)

The firm value functions are,

v`(z) =
λ̄

γ + ρλ̄
ez +

1

ρ(ν + 1)
e−νz (54)

vh(z) =
ez + λhv`(z)

ρ+ λh
, (55)

where ν is defined as

ν ≡ ρλ̄

γ
> 0. (56)

29Unlike the infinite-support case in Section 3.2, important properties of the finite-support equilibria are not
sensitive to the degree of correlation in the draws, and we have simply chosen the most analytically convenient.

22



Proof. See Appendix A.3.

Proposition 2 shows that while, initially, finite-support distributions maintain finite support for
all t < ∞, stationary distributions all have asymptotically infinite relative support. That is, the
ratio of frontier to lowest productivity goes to infinity: z̄ → ∞. Given the Markov process for `
and h, there will be some agents who hit lucky streaks more than others, escape from the pack, and
break away. There is no finite bounded BGP because a diminishing, yet strictly positive number
of firms at the frontier keep getting lucky and grow at γ forever.30

Why don’t the low-productivity firms simply adopt more rapidly to maintain a compact dis-
tribution? The reason is that although the mass of firms near the frontier is always positive, the
number of such firms is vanishingly small. Consequently, the probability an adopting firm will
adopt technologies near the frontier becomes arbitrarily close to zero.

The value functions given by equations (54) and (55) have an intuitive interpretation that is
informative about firms’ adoption incentives and behavior. The stationary value of an h firm is that
it will continue to produce with its current z continually earning flow profits ez, discounted for time
and accounting for the probability that it will switch to being an ` type at rate λh. Similarly, an `
firm values producing with its current z earning flow profits ez, discounting for time and switches to
h, but also considers that its productivity is falling behind relative to innovators who are growing
at rate γ. Furthermore, since it is the ` firms that adopt in equilibrium, they have an extra term
that captures the option value of being able to adopt. The elasticity parameter ν measures how
the adoption option value decreases with higher productivity. A firm with higher productivity will
take longer in expectation to fall back to the adoption threshold, and, thus, higher-productivity
firms place less value on the option to adopt. Note that ν > 0 shows that in the unbounded case
with z̄ →∞, in the limit, firms at the frontier place no value on the option to adopt.31

By comparing Propositions 1 and 2, we see that the assumption that the distribution has infinite-
support at time zero is not innocuous. When the initial distribution has infinite-support, there is
a continuum of BGP equilibria indexed by the tail parameter of the stationary distribution (α),
with each initial distribution mapping to a particular α. In this infinite-support case, aggregate
growth can be faster than the rate of innovation—i.e., g(α) > γ or latent growth. In contrast,
the BGP in the finite unbounded case—which asymptotically features a power-law distribution
with an unbounded relative support (z̄ →∞)—has a unique maximum-growth induced stationary
distribution that is independent of the initial distribution and has g = γ.

Thus, in the finite unbounded economy with exogenous innovation, adoption affects the shape
of the distribution, but the aggregate growth rate is determined solely by the innovation rate
parameter γ. When γ is a choice and growth is endogenous, the option value of adoption for
frontier firms will influence whether and how adoption affects long-run growth.

3.2.1 Equilibrium with g < γ

While we have concentrated on equilibria with maximum growth, g = γ, there may be other
equilibria with g < γ. This is the equivalent to latent growth, but with a negative sign. Intuitively,
the initial conditions of the economy are dragging it down so that a particular BGP growth rate is
kept below the innovation rate. An initial condition with a different arrangement of productivities
that provided better adoption incentives could bring the aggregate growth rate up to the innovation
rate.

30This result is robust to variations in the diffusion specification, including assuming that adopting agents draw
from the Fh(z) distribution and start with an h type, which adds the strongest incentives to increase diffusion and
compress the distribution.

31This interpretation applies more generally to other models with knowledge diffusion. For example, a similar
result would hold in Lucas and Moll (2014) or Luttmer (2015b), where the “option value” in our model would be the
component of the value function that captures the opportunities to learn from agents with higher productivity.
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Proposition 3 (Finite Unbounded Equilibrium with g < γ). For both a infinite- and finite-support
initial conditions, there exists a continuum of equilibrium parameterized by α > 1, which, by con-
struction, is the tail index of the productivity distribution. An equilibrium is determined by the
aggregate growth rate g(α) < γ that satisfies

1

ρ
+ ζ = a2b1

(
a3

α+ β2
− a3b2
ᾱ+ β2

− 1

α+ β1
+

b2
ᾱ+ β1

)
+ a1b1

(
1

1− α +
b2

ᾱ− 1

)
(57)

given a1, a2, a3, b1, b2, β1, β2, and ᾱ defined in (A.103), (A.108) to (A.110) and (A.112) to (A.114).

Proof. See Appendix A.6. Parameter restrictions are given in (A.116), (A.120) and (A.121).

The example of Figure 18 shows continuity from the endogenous α at the g = γ solution
calculated in Section 3.2 to lower g as the tail thins out. However, as we will see in Section 3.3, the
g < γ cases disappear whenever there are conditions that generate a finite bounded distribution.

The low-productivity firms don’t adopt fast enough to keep up with the innovation rate for
reasons similar to why there is no bounded equilibrium. As the mass of the lucky agents with
extremely high z thins out, it doesn’t strongly affect the diffusion incentives and adoption proba-
bilities of those with a low z. The reason that adopters don’t find it worthwhile to keep up is that
the mean can expand more slowly than the frontier. The incentive for adoption, which drives the
speed of the moving barrier at the minimum of the distribution, is given by the expected draw in
productivity. Therefore, if the frontier diverges to infinity, but the mean doesn’t keep growing at
the same rate, the frontier technology will diverge.32

Possible multiplicity in the g < γ direction is less concerning than the g > γ case, because it
is easy to believe there is a possibility that innovations are inefficiently disseminated across the
economy. Essentially, since not all firms are growing at the rate γ, if the tails are thin enough, then
the incentives for adopting—conditional on that particular distribution shape—can be insufficient
to maintain aggregate growth at the rate of the frontier. However, as Section 3.3 demonstrates, this
multiplicity is unstable and is eliminated as soon as there is any chance of jumping to the frontier.
Loosely speaking, in models with Schumpeterian forces, g < γ equilibria would not exist and latent
growth would never have a negative sign.

3.2.2 Extension to Distorted Adoption Distribution

The reason that there is no bounded support BGP is that the adopters don’t keep up with the
innovators at the frontier. We can modify the adoption process so that the Z is drawn from a dis-
tortion of the unconditional distribution, twisting the distribution so that adopters are either more
or less likely to get better technologies compared to drawing from the unconditional distribution
F .33 We show that unboundedness is a rather robust result, in the sense that higher chances of
adopting better technologies are not enough to generate bounded equilibria.

The distortion, representing the degree of imperfect mobility or beneficial adoption prospects,
is indexed by κ > 0, where the agent draws its Z from the CDF Φ(t, Z)κ. Note that for higher κ,

32Given a fixed barrier, the logic is similar to the linear or asymptotically linear Kesten processes bounded away
from zero with affine terms, for which, under appropriate conditions, the asymptotic tail index can be explicitly
computed in terms of the stationary distribution induced by the Markov process. In our model, however, the adoption
process introduces non-linear jumps that are not multiplicative in productivities and that do not permit the simple
characterization of the tail index. The endogenous absorbing adoption barrier (which acts like a reflecting barrier
with stochastic jumps) complicates the analogy since it moves according to the optimal adoption behavior of firms.

33While κ is exogenous here, in Section 5, we solve a version of the model in which κ is endogenous. We interpret
the choice of κ as limited directed search, in that, at some cost, firms can focus their attention on adopting better
technologies with higher probability.
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the probability of a better draw increases.The stationary normalized adoption distribution is

F̂`(z) = (F`(z) + Fh(z))κ = F (z)κ (58)

F̂h(z) = 0. (59)

We write F (z)κ for the normalized draw process.
Necessary conditions for a stationary equilibrium with a finite initial frontier are v`(z), vh(z), F`(z),
Fh(z), and S—such that (23) to (25), (27), (30) and (46), and

v(0) =
1

ρ
=

∫ z̄

0
v`(z)dF (z)κ − ζ (60)

0 = gF ′`(z) + SF (z)κ + λhFh(z)− λ`F`(z)− S (61)

0 = λ`F`(z)− λhFh(z). (62)

Corollary 2. There does not exist an equilibrium with finite and bounded support for any κ >
0. Furthermore, κ distorts the unique tail parameter of the (asymptotically) power-law stationary
distribution.

Proof. See Technical Appendix C.4.

Modifying κ may provide a better description of the adoption process and allow for an improved
fit to the data for the shape of the stationary productivity distribution. Nonetheless, smoothly
twisting the adoption distribution so that firms obtain substantially better technologies with high
probability is not enough to compress the distribution by allowing adopters to keep up with the
frontier. In the next section, we extend the model to obtain existence of BGP with a finite bounded
stationary distribution. The bounded and unbounded equilibria are similar in many ways, but
comparison of the firm value functions will show how adoption affects innovation once firms choose
how fast to innovate.

3.3 Stationary BGP: Finite Bounded Relative Support

For a finite bounded equilibrium to exist, Proposition 2 shows that it is not enough that adopters
have a set of adoption possibilities growing with the scale of the economy. Rather, there must
be some way that firms not at the frontier can catch up to those few lucky firms that have been
h-hypes at the frontier forever. In this section, we extend the model by introducing another type
of productivity-enhancing activity to construct finite bounded BGP equilibria.

This section helps us to further understand the hysteresis and deviations from g = γ. Recall
that the multiplicity with g > γ inherent in the infinite-support case of Section 3.1 was eliminated
because we both bounded the growth rates and assumed a finite initial condition on the distribution.
However, this left a possibility of g < γ. In this section, we will show that conditions generating a
finite bounded relative support also ensure a unique equilibrium with g = γ.

One motivation for modeling a bounded relative support is that, regardless of the commodity
space or model of competition, for all practical purposes, a firm grossly less productive than the
frontier—whether 100×, 1000×, or larger, but at some point—likely could not survive in a mar-
ket populated by firms with such better technology. The more productive firms would move in,
undercut, displace, and capture the market, or be imitated. In some sense, this bounded frontier
model provides an intermediate case between Schumpeterian models, in which one or two firms at
the frontier dominate all production, and the infinite dispersion model, in which firms of radically
different productivities coexist. A bounded frontier also seems consistent with the, admittedly, lim-
ited evidence on the stability of the right tail of the relative firm size distribution, which Luttmer
(2010) shows have been constant since 1977 using the Business Dynamics Statistics data.
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In this section, we show that the bounded frontier case that seems reasonable on first principles
has important implications for the determination of the aggregate growth rate and for how adoption
and innovation interact. In the exogenous growth context, this bounded frontier case is a building
block for the model with a frontier that evolves endogenously in response to innovation decisions
of high-productivity firms developed in Section 4.2. As will become clear, an important interaction
determining the endogenous growth rate appears in the decisions of firms at the frontier. With an
unbounded frontier, frontier firms are arbitrarily far away from the adoption threshold, and, thus,
the interactions between technology adoption and innovation are limited, unlike in this bounded
case.

An alternative way to model within-firm productivity change is to assume that firms have
some chance of leapfrogging to the frontier. Such leapfrogging is a continuous-time version of a
quality-ladders model.34 For generality, the jumps can occur either for adopting or for innovating
firms. Innovators jumping to the frontier represents some chance that the innovation process
generates a big insight, instead of steady incremental progress. Different from autarkic innovation
that generates γ proportional growth through process improvement, leapfrogging may be viewed
as a melding of innovation and diffusion since the jump is a function of the existing productivity
distribution. Adopters jumping to the frontier captures that sometimes adopters get lucky, and
their search for a new technology finds the best one available. For tractability, we model such a
jump as temporarily disruptive to innovation, such that all leapfrogging firms become `−types and
must wait for the Markov transition to h before they become innovators again.35

We modify the model that generated finite unbounded BGP, as characterized in Proposition 2,
by adding an arrival rate of jumps to the frontier, η ≥ 0, as depicted in Figure 4.

In principle, there could be a jump discontinuity in the CDF F (z) at z̄. Due to right continuity
of the CDF, the mass at the discontinuity z = z̄ is

∆i = lim
ε→0

(Fi(z̄)− Fi(z̄ − ε)) . (63)

When all leapfrogging firms become type `, we can show that Fi(z) are continuous and ∆` = ∆h = 0.
This is because type ` firms immediately fall back in relative terms and don’t pool at the frontier.
As those firms falling back also jump back and forth to the h type, the F`(z) and Fh(z) distribution
smoothly mix, ensuring continuity.

Define H (z) as the Heaviside operator. Along with (23) to (25) and (30), the following charac-
terizes the necessary conditions for a stationary equilibrium:

ρv`(z) = ez − gv′`(z) + λ`(vh(z)− v`(z))) + η(v`(z̄)− v`(z)) (64)

ρvh(z) = ez + λh(v`(z)− vh(z)) + η(v`(z̄)− vh(z)) (65)

0 = gF ′`(z) + λhFh(z)− λ`F`(z)− ηF`(z) + ηH (z − z̄) + SF (z)− S (66)

0 = λ`F`(z)− λhFh(z)− ηFh(z). (67)

34In a continuous-time model with leapfrogging event arrivals that generate a multiplicative step above the frontier,
the frontier would become infinite immediately, as there would be some agent with an arbitrarily large number of
jump arrivals in any positive time interval (as in König, Lorenz, and Zilibotti (2016)). An alternative process with
similar qualitative implications is to recast leapfrogging as a step-by-step innovation model in the spirit of Aghion,
Akcigit, and Howitt (2014). In either case, infinite support allows for the possibility of latent growth.

35The assumption that all leapfroggers switch to the ` state is purely for analytical convenience and can be changed
without introducing qualitative differences. If some firms leapfrogged to the h state instead, then a right discontinuity
in Fh(z) would exist (∆h > 0) and more care would be necessary in solving the KFE and integrating the value-
matching condition. Furthermore, this simplification ensures that the values of jumps to the frontier remain identical
for both agents, and, hence, both types have the same adoption threshold, as demonstrated in Appendix A.2. With
this specification, a possible downside is that v`(z̄) < vh(z̄ − ε) for some set of small ε, and those firms would rather
keep the lower z rather than innovate. In the calibrated model, the difference between v` and vh is tiny due to high
switching probabilities, and, thus, this is binding for a very small number of firms.
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While the value-matching condition is identical to equation (47) in the unbounded setting, the value
of adopting is now dependent on the value at the frontier:

v(0) =
1 + ηv`(z̄)

ρ+ η
=

∫ z̄

0
v`(z)dF (z)− ζ. (68)

Define the constants, λ̂ ≡ λ`
η+λh

, λ̄ ≡ ρ+λ`+λh
ρ+λh

, and ν = ρ+η
γ λ̄.

Proposition 4 (Stationary Equilibrium with a Bounded Frontier). Given parameter restrictions,
a unique equilibrium with z̄ <∞ exists with g = γ. The stationary distribution is

F`(z) =
F ′`(0)

(F ′`(0)− η/γ)(1 + λ̂)
(1− e−αz) (69)

Fh(z) = λ̂F`(z), (70)

with

α ≡ (1 + λ̂)(F ′`(0)− η/γ) (71)

z̄ =
log(γF ′`(0)/η)

α
. (72)

The equilibrium F ′`(0) solves the following implicit equation (substituting for α and z̄),

ζ +
1

ρ
=

γF ′`(0)αλ̄

(
− e−νz̄(−1+e−αz̄)η

ραν +
ez̄η(e−αz̄−1)

−αρ + −e−(α+ν)z̄+1
ν(α+ν) + −ez̄−αz̄+1

α−1

)
γ(γF ′`(0)− η)(ν + 1)

. (73)

The value functions for the firm are,

v`(z) =
λ̄

γ(1 + ν)

(
ez +

1

ν
e−νz +

η

ρ

(
ez̄ +

1

ν
e−νz̄

))
(74)

vh(z) =
ez + (λh − η)v`(z) + ηv`(z̄)

ρ+ λh
. (75)
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Proof. See Appendix A.4. Parameter restrictions include those such that the F ′`(0) that solves
equation (73) is larger than η/γ. A proof of uniqueness, showing that g < γ equilibria do not exist,
is in Appendix A.7.

As before, α represents the shape of the productivity distribution. The α is an empirical “tail
index” that can be estimated from a discrete set of data points. Unlike in the unbounded case,
z̄ is now bounded, and, hence, this tail index is better interpreted as the shape parameter of a
right-truncated power-law.

In contrast to the finite unbounded BGP, the Bellman equations (74) and (75) now contain the
value of production and the option value of adoption for the frontier z̄. That is, in addition to the
value of production with current z modified by time discount and the probabilities of switching
i-type, the value function accounts for the chance of jumping to the frontier. Thus, movements in
the frontier provide enough incentive for adopters at the bottom of the distribution to keep up with
the frontier, allowing for a bounded stationary distribution.

As noted at the end of the previous section, leapfrogging to the frontier by a positive mass
of agents can contain the escape in relative productivities by lucky firms that get streaks of long
sojourns in the high-growth group h. As they eventually lose their innovative ability and become
`-types, they will be overtaken by others that leapfrog to the frontier from within the productivity
distribution and replenish it. This leapfrogging/quality ladder process prevents almost every laggard
from remaining a laggard forever. The distribution of relative productivities then remains bounded,
as the frontier acts as a locomotive in a relay race. Note that this locomotive process is similar
to models of technology diffusion in which the growth rate of adopters is an increasing function
of the distance to the frontier, unlike this model of innovators with multiplicative growth in their
productivity level (see, e.g., Nelson and Phelps (1966) and Benhabib, Perla, and Tonetti (2014)).
If adopters were to fall behind, they would adjust their behavior, endogenously increasing their
adoption activity to match innovators’ growth rates, ensuring that relative productivities would be
bounded in equilibrium.

Additionally, now that the relative frontier is bounded, in the long run, frontier firms still
place positive value on the option to adopt. This means that increases in the value of adoption,
either associated with lower costs or higher benefits of adoption, will affect the value of frontier
firms. Depending on how far the frontier is from the adoption threshold, in the endogenous growth
environment changes in the value of adoption will influence innovation behavior, which may affect
aggregate growth rates.

Before moving to the endogenous growth case in the next section, we compute a finite bounded
equilibrium with calibrated parameter values and use comparative statics to illustrate properties
of the economy. The calibration is designed to set roughly set parameters in the relevant region
of the state space. Details of the calibration are discussed in Appendix D.6. We set γ = .02 to
target a 2 percent growth rate and ρ = 0.01 to generate a real interest rate of 3 percent. Transition
rates λh and λ` are chosen to roughly match firms’ growth-rates, with firms growing faster than
5 percent annually labeled h types and all other firms labeled `-types. While the transition rates
are sensitive to the h-threshold growth rate, all resulting numerical analysis is unchanged by wide
variation in this threshold, as all calibrated transition rates are high enough to suggest that there
is little persistence in either state and that the process essentially acts like iid growth rates. We
target a tail index α = 2.12, which corresponds to a tail parameter of 1.06 in the size or profits
distribution in a monopolisitic competition model, as used in Luttmer (2007). We target z̄ = 1.61
(i.e., the frontier to minimum productivity ratio is 5). This ratio is larger than the z̄ = 0.651
(1.92 ratio in levels) documented by Syverson (2011) between the top and bottom decile within
narrowly defined industries, and is closer to the 5:1 ratio found in Hsieh and Klenow (2009) in India
and China. Alternatively, comparing the largest to smallest firms in the economy yields a much
larger 279:1 ratio ( z̄ = 5.63), which is numerically close to ∞ for all intents and purposes in this
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model. The resulting parameterization is γ = 0.02, ρ = 0.01, λ` = 0.533, λh = 1.128, and ζ = 25.18
η = 0.00098.

First, as shown in Figure 5, v` and vh are very similar because the calibrated λi are large, and,
thus, the extra benefit of being in the high state or the relative pain from being in the low state
does not last very long. Second, the distributions Fi are truncated power-law shaped, with many
low-productivity firms and few high-productivity firms, but is truncated above at the z̄ relative
frontier. In this calibration, there are also fewer h firms than ` firms at all productivities.

Comparative statics on how changes in η, γ, ζ, and λh affect z̄ and α are shown in Figure 6.
Easier innovation, in the sense of a higher growth rate for innovators, spreads out the distribution,
creating a more distant technology frontier and a thicker tail. Easier leapfrogging, in the sense of
a higher probability of jumps to the frontier, also generates thicker tails but generates less of a
productivity gap between the best and worst firms. Easier adoption, captured by lower costs ζ,
compresses the distribution, shrinking the relative frontier and thinning the tail.
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3.4 Stationary BGPs with Exogenous Innovation: Summary and Analysis

An analysis of BGP equilbria with exogenous growth points to economically important differences
between economies with infinite-support, finite bounded support, and finite bounded support dis-
tributions. There are two major difference between infinite- and finite-support BGPs. First, with
finite-support, the aggregate growth rate must be weakly less than the growth rate of innovators,
while in the infinite-support case the aggregate growth rate can exceed the growth rate of innova-
tors. Second, in the finite unbounded case, there is still the possibility of growth rates strictly less
than the innovation rate. Finally, in the finite bounded support case, there is no such hysteresis;
there is a unique equilibrium stationary distribution and a growth rate g = γ. Since the finite
bounded cases’ unique BGP occurs for an arbitrarily small arrival rate of jumps (i.e., η → 0), we
focus attention on the equilibrium with g = γ even in the finite unbounded case.

These results on infinite-support distributions arise when the initial distribution has infinite-
support but can be mapped to models that generate infinite-support distributions from arbitrary
finite-support initial conditions—such as the GBM models discussed previously. In those cases, the
result is stronger: any sort of stochastic shocks with unbounded growth rates generate a contin-
uum of stationary distributions and growth rates, which can have a growth rate greater than the
innovation rate.

We live in a finite-support world: there is no firm operating at any point in time with the best
technology that could ever be invented and there were no car manufacturers in the Stone Age.
While it may be appropriate for certain questions, because the economic properties of infinite- vs.
finite-support equilibria are so different, using an infinite-support assumption as an approximation
to finite-support requires caution.

Even for finite-support distributions, when normalized, the relative frontier of best to worst
firms could be bounded or could be diverging to infinity. We showed that in order to maintain
a bounded relative frontier, there needs to be some way for laggards to keep up with the frontier
innovators by, for example, leapfrogging. Beyond eliminating the g < γ hysteresis, the key difference
between the bounded and unbounded cases appears in the option value of adoption for firms at the
frontier. In the bounded equilibrium, even the best firm realizes that it may become an adopter
in some reasonable time frame and places some positive value on the option to adopt. Since it is
the innovative firms with the highest productivity that push out the frontier, this creates a link
between their innovation incentives and the value of adoption, through which a change in the cost
of the benefits of adoption will affect aggregate growth. In Section 4, we study this interaction
between adoption and innovation in an endogenous growth version of the model.

4 Stationary Equilibria with Endogenous Stochastic Innovation

This section introduces endogenous innovation into the stochastic model with finite-support. We
assume that firms can control the drift of their innovation process, as in Atkeson and Burstein
(2010) and Stokey (2014). In Section 4.1, in order to analyze the unbounded case with z̄ →∞ we
first assume that the arrival rate of jumps to the frontier, η, is zero. This allows us to focus on
the link between innovation and aggregate growth before adding the complication of the aggregate
growth rate being affected by the option value of adoption for innovators at the frontier. Then, in
Section 4.2, we move to the model with jumps to the frontier and bounded support and analyze how
the innovation choice of frontier firms is influenced by the option value of adoption, which affects
the aggregate growth rate. Thus far, the main link between innovation and adoption is through the
option value of adoption. In Section 5, we also model technology as excludable, and allow adopting
firms to bargain with the owner of the technology that they are trying to adopt. We show how
payments from adopters affect innovation investments and aggregate growth.

For simplicity, we model the innovation choice with no direct spillovers from other firms, in order
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to focus on the new interactions that we are modeling. With this simplification, the interactions
here arise via tradeoffs in the firms’ choices, rather than via a coupled innovation and adoption
technology.36

To model endogenous innovation, a firm in the innovative state can choose its own growth rate
γ ≥ 0 subject to a convex cost proportional to its current Z. Let χ > 0 be the productivity of its
R&D technology and the cost be quadratic in the growth rate γ. Thus the h-firm Bellman becomes

ρvh(z) = max
γ≥0

ez − (g − γ)︸ ︷︷ ︸
Drift

v′h(z)− 1
χe

zγ2︸ ︷︷ ︸
R&D cost

+λh(v`(z)− vh(z)) + η(v`(z̄)− vh(z))

 (76)

The key additional necessary equilibrium condition in the endogenous growth model comes from
the first-order condition associated with optimal innovation rates:

γ(z) = χ
2 e
−zv′h(z). (77)

Thus, the value function of the h-firm in (76) becomes the following non-linear ODE:

ρvh(z) = ez − gv′h(z) + χ
4 e
−zv′h(z)2 + λh(v`(z)− vh(z)). (78)

Instead of all h-firms growing at rate γ exogenously, h-firms are now choosing a growth rate γ that
is a function of their current productivity level, z.37

Adapting the equations in Section 3.3, the equations that characterize an equilibrium are (23)
to (26), (30), (31) and (68) with the following Bellman and KFE equations:

ρv`(z) = ez − gv′`(z) + λ`(vh(z)− v`(z)) + η(v`(z̄)− v`(z)) (79)

ρvh(z) = ez − gv′h(z) + χ
4 e
−zv′h(z)2 + λh(v`(z)− vh(z)) (80)

0 = gF ′`(z) + +λhFh(z)− λ`F`(z)− ηF`(z) + ηH (z − z̄) + SF (z)− S` (81)

0 = (g − γ(z))︸ ︷︷ ︸
Drift

F ′h(z) + λ`F`(z)− λhFh(z)− ηFh(z)− Sh. (82)

Numerical Methods. For all endogenous growth cases, the need to jointly solve for the nonlinear
Hamilton-Jacobi-Bellman equations and the Kolmogorov forward equations necessitates non-trivial
numerical solution methods. The problem takes the form of a set of ODEs with parameters con-
strained by equilibrium conditions that are themselves functions of the solutions to the ODEs.
We compute the equilibrium using a generally applicable numerical technique based on spectral
collocation and quadrature, as detailed in Technical Appendix B.38

36This is in contrast to Schumpeterian models, where innovations are built upon on diffusion from the frontier,
and approaches such as that of Chor and Lai (2013), who are interested in the direct interaction with a dependent
innovation process, with aggregate spillovers of knowledge.

37As the choice of γ is increasing in z in equilibrium, agents in the h state will end up crossing the endogenous
adoption threshold, as shown in Appendix A.2, and, thus, the smooth-pasting condition for h types is now neces-
sary. To generalize the approach, different innovation types are best understood as having different productivity in
innovation, χ, with the bellman equation for each type as (78).

38The technique uses a simple trick: line up the collocation nodes for the function approximation with those of
the quadrature nodes for calculating expectations and equilibrium conditions. After everything is lined up, you can
naively stack every equation in the model, including the Bellman Equations, KFEs, equilibrium conditions, etc. into
a single nonlinear system of equations, and solve without any nested fixed points. In practice, this requires using a
high-performance solver and auto-differentiation, but is easy to implement and reasonably fast.
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4.1 Endogenous Innovation with a Finite Unbounded Frontier

In this section, we study the finite unbounded BGP, which is the case corresponding to η = 0.

Proposition 5 (Endogenous Innovation and Finite Unbounded Support BGP). For η → 0, a
unique equilibrium exists with a growth rate that is the solution to the cubic equation39

g
(
g2 + g(2λh + λ` + 3ρ) + 2ρ(λh + λ` + ρ)

)
= χ(g + λh + λ` + ρ). (83)

The endogenous innovation choice is such that γ(0) = 0 and lim
z→∞

γ(z) = g.

Proof. See Appendix B. The numerical method to compute the equilibrium γ(z) and Fi(z) is
described in Technical Appendix B.

In addition to the existence and uniqueness of the equilibrium, a main result is that the inno-
vation rate is increasing in productivity—i.e., γ′(z) > 0. There is a tradeoff in firms’ innovation
decisions: investing more in innovation grows their productivity and increases their profits, but
firms with higher productivity are further from the adoption threshold and, thus, have a smaller
option value of adoption. Since the option value of adoption is a larger component of total value for
lower-productivity firms, the low productivity firms invest less in innovation. Intuitively, for a firm
just above the adoption threshold, why invest in innovation to get an incremental improvement
when they can save the cost of innovating and, instead, adopt a technology discretely better in
expectation than the one it is currently operating? Of course, the cost of adopting and innovating
will jointly determine this adoption threshold.40

The innovation rate and statistics of the productivity distribution for a computed equilibrium
are presented in Figure 7. In addition to the calibration discussed in Section 3.3, the innovation cost
parameter χ = 0.001074 is calibrated to match g = 0.02 and ζ = 27.2 to match the tail parameter
of α = 2.12.
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Figure 7: Endogenous γ(z), Fi(z), and α(z) with a Finite Unbounded Frontier

In order to get a sense of the shape of the unconditional distribution, we define the “local” tail
index

α(z) ≡ F ′(z)
1− F (z)

. (84)

39The limit is necessary here for uniqueness, because otherwise a g < γ growth rate along the lines of Section 3.2.1
is possible and (83) only determines γ(∞). For the same reasons as discussed in Section 3.2.1 we do not focus on the
negative latent growth cases here.

40Research that separates internal innovation on existing products from Schumpeterian innovation replacing prod-
ucts, such as Akcigit and Kerr (2016), find that internal innovation scales moderately faster with size. Since all
innovation in our model is “internal innovation” of this sort, this is consistent with our result that innovation rates
are increasing in productivity.
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In the standard log-log plot used for estimating power-laws, as in Gabaix (2009), this α(z)
would be the slope of the non-linear equation at z. Note that with this definition, the “local” tail
index of a Pareto distribution is constant and equal to its true tail index. Furthermore, for any
distribution with infinite-support, the tail index is α ≡ lim

z→∞
α(z). Figure 7 plots the local tail

coefficient, converging to the calibrated value of 2.12. As the tail index is increasing, this shows
that there is more productivity dispersion for firms with lower relative productivity.
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Figure 8: Comparative Statics on Adoption Cost

The endogenous aggregate growth rate is the growth rate chosen by innovators at the frontier.
As alluded to in the exogenous growth sections, now that aggregate growth is endogenous, we can
see that, in the unbounded case, the aggregate growth rate is independent of the cost of adoption.
This is because innovating firms at the frontier have zero option value from adoption; therefore,
changes in the cost or benefits of adoption do not alter their innovation behavior. Figure 8 plots
comparative statics for a change in the adoption cost. As the theory shows, the aggregate growth
rate is invariant. However, changes in the cost of adoption affect the shape of the distribution.
Higher adoption costs induce a significantly thicker tail, but almost no change in the Gini coefficient.

4.2 Endogenous Innovation with a Finite Bounded Frontier

In this section, we study the finite bounded BGP, which is the case corresponding to η > 0. For the
same reasons as discussed in the exogenous innovation case, without leapfrogging, lim

η→0
z̄(η) =∞.

Proposition 6 (Stationary Equilibrium with Continuous Endogenous Innovation and Bounded
Support). The endogenous innovation choice is such that γ(0) = 0 and γ(z̄) ≡ g. A continuum of
equilibria exist, parameterized by a z̄.

Proof. See Appendix B. A numerical method to solve for the continuum of equilibria is described
in Technical Appendix B.

In the limit approaching the unbounded case, as η → 0, the upper bound on g equals the
unbounded growth rate in Proposition 5. However, in the endogenous growth bounded distribution
case, there are a continuum of equilibria indexed by the frontier z̄, each with an associated aggregate
growth rate g(z̄).

Compared to Stokey (2014), who features a similar innovation process but differs in the treat-
ment of adoption, here, the endogenous choice of γ is complicated by the option value of adoption.
In the unbounded case, the aggregate growth rate—i.e., γ(z) as z → ∞—is unique because the
option value disappears, as opposed to when z̄ is bounded. Different distributions and associated
z̄ induce different growth option values, and allow for a continuum of self-fulfilling γ(z̄). That is, a
smaller z̄ increases the option value of adoption for innovators at the frontier, which is a disincentive
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to innovate; this leads to less innovation at the frontier, which, consistently, generates a smaller
z̄. The multiplicity here is due to complementarity of firm decisions and is fundamentally different
than the g > γ latent growth multiplicity driven by initial conditions as discussed previously (see
Appendix C.1).

Since the option value of adoption is positive for innovators at the frontier, the aggregate growth
rate is affected by adoption costs and benefits.41
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A calibrated example of the optimal innovation policy and productivity distributions for a
bounded endogenous growth BGP is shown in Figure 9. Figure 10 documents the intuition that
lower z̄ are associated with lower aggregate growth rates, due to the self-fulfilling balancing of
innovation incentives. The larger the option value of adoption—which is increasing in the distance
of the relative frontier—the lower are the incentives to push out the frontier by innovation.
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Figure 10: Equilibrium g as a function of z̄

Figure 11 plots the maximum growth rate of the set of admissible g as a function of η, using
equation (83) with the same parameters used in Figure 7 (Endogenous Unbounded BGP). As

41Due to the multiplicity of equilibria, comparative statics of stationary distributions are not well-defined. Numer-
ically, we find that—fixing all parameters—the range of feasible g in these stationary equilibria tends to be fairly
small. For example, Figure 10 contains all regions of g where the numerical algorithm converged.
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η → 0, the number of jumps to the frontier approaches 0, and the bounded model studied in
Section 4.2 asymptotically becomes the unbounded model studied in Section 4.1. The intuition
for a decreasing max(g(η)) is that with more jumps to the frontier, the distribution becomes more
compressed. As the growth rate of the frontier is determined by the innovation decision at z̄, which
takes into account the option value of diffusion, the more compressed the distribution, the lower
the innovation rate, for the same reasons that g(z̄) is increasing in Figure 10.
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5 Extensions: Licensing and Directed Adoption

In this section, we combine all of the elements from earlier sections, and add additional features to
endogenize all of the innovation and technology diffusion choices. These additions show that the
model is extensible and further highlight how adoption and innovation interact. The extension to
licensing brings the concept of variable degrees of excludability to models of technology diffusion.
The extension to directed adoption captures that firms may be able to better target their adoption
activities on technologies than if they merely obtain unconditional draws of the existing technologies
in use. This also gives the model flexibility to produce firm dynamics for adopters that may be
more consistent with the panel data.

Complete Nested Model (with Extensions). Since a firm may receive profits from licensing
its technology, its profits no longer necessarily equal its productivity. We define π(z) to be the
total profits of the firm, with π(z) = ez in the baseline model with no excludability. π(z) in the
model with licensing will be derived in Section 5.1. To endogenize leapfrogging, we allow firms
that are adopting to jump to the frontier with probability θ ∈ [0, 1). Just as firms can choose
their innovation rate γ subject to a convex cost, firms can also choose the probability of a jump
to the frontier with a convex cost. The cost of choosing jump probability θ is 1

ϑθ
2. Thus, when a

firm upgrades its technology through adoption, it has some chance of adopting a state-of-the-art
invention and jumping to the frontier, and it can invest on the intensive margin to try to obtain
such a large upgrade. Finally, we allow firms to choose the degree of distortion in their draws (i.e.,
directed adoption) by choosing κ > 0 at a cost of 1

ς κ
2. In this section, we adapt Sections 3.3 and 4.1

to include the endogenous innovation choice of γ, partial-excludability, a choice of θ, and a choice
of κ. The system of equations that characterize the equilibrium are (23) to (28), profits as defined
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in equation (98), and

ρv`(z) = π(z)− gv′`(z) + λ`(vh(z)− v`(z)) + η(v`(z̄)− v`(z)) (85)

ρvh(z) = max
γ≥0

{
π(z)− 1

χe
zγ2 − (g − γ)v′h(z) + λh(v`(z)− vh(z)) + η(v`(z̄)− vh(z))

}
(86)

v(0) =
1 + ηv`(z̄)

ρ+ η
= max

θ≥0, κ>0

{
(1− θ)

∫ z̄

0
v`(z)dF (z)κ + θv`(z̄)−

1

ψ

(
ζ + 1

ϑθ
2 + 1

ς κ
2
)}

(87)

0 = gF ′`(z) + λhFh(z)− λ`F`(z)− ηF`(z)
+ (η + θ(S` + Sh))H (z − z̄) + (1− θ)(S` + Sh)F (z)κ − S` (88)

0 = (g − γ(z))F ′h(z) + λ`F`(z)− λhFh(z)− ηFh(z)− Sh (89)

See Appendix B for a nested derivation of all extensions. Note that when a particular firm chooses
θ or κ, it does not influence the θ or κ chosen by the other firms. Firms will take into account the
effects of the aggregate “directed adoption” choice on Fi(z), and as all adopting firms are a priori
identical, each firm will choose the same θ, which will induce an Fi(z) that is consistent with firms’
beliefs about Fi(z) in equilibrium.

In addition to all other equilibrium requirements, the chosen intensity of jumps to the frontier
for adopting agents comes from the first-order condition of (87),

θ =
ψϑ

2

∫ z̄

0
v′`(z)F (z)κdz, (90)

and the directed technology diffusion choice from the first-order condition of (87) solves the implicit
equation

κ =
−ςψ(1− θ)

2

∫ z̄

0
v′`(z) log(F (z))F (z)κdz. (91)

5.1 Licensing and Partial Excludability

Up to now, the firm providing the underlying technology to the adopter was not able to prevent being
imitated—i.e., there was no excludability of the technology (no intellectual property protection).
To bring excludability to this environment with adopters and innovators, we model licensing, in
which an adopting firm must pay a fee to the technology holder in order to adopt it. The fee is
modeled as a portion of the present discounted value of adopting the technology and, instead of
being paid as a sequence of residual payments, the fee is paid up front in one lump sum. Firms
bargain to determine the size of the licensing fee, with the fee reflecting the bargaining power of
adopters and license issuers. There is no cost to the actual transfer of technology.

Bargaining. The timing is that the adopting firm first pays the adoption cost and then, upon the
realization of the match, negotiations over licensing commence. Negotiations take the form of Nash
bargaining, with a bargaining power parameter of ψ ∈ (0, 1]. ψ = 1 represents no excludability,
in which the technology is adopted for free, without profit to the higher-productivity firm. The
outside option of the adopting firm (i.e., the licensee) is to reject the offer and continue on with
its existing technology—i.e., v(0). The outside option of the licensor is simply to reject the offer
and gain nothing. From standard Nash bargaining, with a total surplus value of v`(z), let v̂ be the
proportion of the surplus obtained by the licensee and v`(z)− v̂ be the proportion obtained by the
licensor. The Nash bargaining problem is

arg max
v̂

{
(v̂ − v(0))ψ(v`(z)− v̂)1−ψ

}
. (92)
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Solving for the surplus split, the value for a licensee that matches a firm with productivity z is,

v̂(z) = (1− ψ)v(0) + ψv`(z), (93)

while the licensor gains

v`(z)− v̂(z) = (1− ψ)(v`(z)− v(0)). (94)

As is apparent in equation (93), if ψ = 1, then the licensee gains the entire value with v̂(z) = v`(z).
Given that firms are risk-neutral, the value-matching condition integrates over the adopter’s surplus
from the matches across all possible z.

Licensing and Flow Profits If both ψ < 1 and κ 6= 1, then the matching probabilities are
distorted, and profits become a direct function of F (z). To simplify the analysis and numerical
algorithm, we will restrict our analysis to undirected adoption when there is licensing—i.e., κ = 1
if 0 < ψ < 1.42 In the simple case of κ = 1 with no distortions in the adoption distribution, there
is an equal probability of adopting from any licensor. Thus, the flow of adopters engaging any
licensing firm is just the flow of adopters S = gF ′(0).
Since γ(0) = 0 in equilibrium (as shown in Section 4.1), then,

π(z) = ez + gF ′(0)︸ ︷︷ ︸
Amount of Licensees

(1− ψ) (v`(z)− v(0))︸ ︷︷ ︸
Profits per Licensee

. (98)

Differentiate and multiply by e−z, we find a function for marginal profits relative to profits from
production,

e−zπ′(z) = 1 + (1− ψ)gF ′(0)e−zv′`(z). (99)

When ψ < 1, profits are a function of g since (1) faster growth means more adopters—given a
fixed F (z); and (2) faster growth increases the licensor Nash bargaining threat of v(0) by making

42This assumption shuts down the interaction between κ choices and licensing, but is otherwise innocuous. The
technical issue is that the marginal profits in (99) becomes a direct function of F (z), which means that the HJBE
and the KFE need to be solved concurrently. To find the solution for any κ with an interior ψ, use a conservation
of the total surplus from the value-matching condition with draws of F (z)κ distribution, the total surplus flows to
the operating firms with distribution F (z), and the flow (94). Then, for some q(z) representing the distortion of the
surplus flow to z agents, the flow of adopters licensing the firm’s technology is Sq(z), and the conservation of total
licensing flows is

S

∫
(v`(z)− v(0)) dF (z)κ = S

∫
(v`(z)− v(0)) q(z)dF (z). (95)

With (58), we can reverse engineer the distortion as q(z) ≡ κF (z)κ−1. From (94), we find the flow profits, including
the direct value of production and the flow licensing given z as

π(z) ≡ ez︸︷︷︸
Production

+

Licensee Flow︷ ︸︸ ︷
κF (z)κ−1S

Profits per Licensee︷ ︸︸ ︷
(1− ψ)(v`(z)− v(0))︸ ︷︷ ︸

Total Licensing Profits

(96)

The more general form of (99), using definitions (B.1) and (B.13) is, then,

e−zπ′(z) ≡ 1 + (1− ψ)κgF ′(0)F (z)κ−1

(
w`(z) + (κ− 1)F (z)−1F ′(z)e−z

∫ z

0

w`(z̃)dz̃

)
(97)

Note that after substitution, the HJBE in w`(z) would then be a system of integro-differential equations, significantly
increasing the complexity of the problem. As we do not feel the economics of the κ and ψ interaction are sufficiently
interesting, we leave these complexities out of the main body, but handle all cases in the numerical solution described
in Technical Appendix B.
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it relatively more valuable to wait for the economy to grow before accepting a new technology.
Given the equilibrium F (z) and v`(z)—which are themselves determined by g—these tensions help
determine the relative profits from licensing. Also, as z → 0, the profits from licensing disappear as
the surplus of accepting a draw close to the adoption boundary goes to 0. Consequently, π(0) = 1.
Since (99) is increasing in z, the incentives generated by licensing are such that firms with the
highest productivity have the strongest incentive to innovate.

Value-Matching Condition. Since the surplus does not introduce state dependence to the cost
of adopting, the smooth-pasting condition is unchanged. However, since adopters may not gain the
full surplus from the newly adopted technology due to licensing costs, the value-matching condition
changes. Combining (47), (93) and (A.29), the value-matching condition is

v(0) =
1

ρ
=

∫ ∞
0

[ψv`(z) + (1− ψ)v(0)] dF (z)− ζ. (100)

Rearranging, the value-matching condition is identical to that previously derived in (47), but with
a proportional increase in the adoption cost,

v(0) =
1

ρ
=

∫ ∞
0

v`(z)dF (z)− ζ

ψ
. (101)

Thus, from an adopter’s perspective, the problems with and without license fees are identical, except
for a change in the effective cost of adoption and a modification of the post-adoption continuation
value of potentially being a licensor in the future. The two environments are quite different for the
innovator, as license fees provide an extra incentive to innovate.

Role of Excludability. Figure 12 uses the same parameterization as in Figure 7 (Unbounded
Endogenous Growth BGP with ψ = 1—zero excludability), but varies the degree of excludability
parameter ψ. To set a baseline value, according to Kemmerer and Lu (2012), the median fraction
of profits that a licensor must pay is 5%, corresponding roughly to ψ = 0.95 if most licenses are for
high-productivity technologies.

When excludability is not too strong, the aggregate growth rate is increasing in the degree of
excludability (i.e., growth increases with weaker bargaining power for the adopter). The increase
in the aggregate growth rate is due to the added incentive to invest in growing via innovation, as
higher productivity firms gain extra profits from licensing the better technology to adopting firms.

There is, however, a countervailing force that dominates when excludability is already strong. If
the licensor’s bargaining power is too strong, the incentive to adopt technologies becomes too small.
Consequently, fewer firms adopt new technologies, ultimately generating less licensing revenue.
Lower licensing revenue decreases the returns to R&D for all firms, including those near the frontier
that determine the aggregate growth rate. This is analogous to the forces at play in the optimal
patent length literature.

To give a sense of the distribution shape, the local tail index α(z) is plotted at large z =
2.4 (i.e., for firms with approximately 11:1 productivity relative to the minimum).43 Increasing
excludability increases innovation activity, generating a more unequal distribution with a fatter
tail parameter. This shows a trade-off between productivity inequality and aggregate growth rates.
This independent positive association between productivity dispersion and the aggregate growth
rate operates through innovation activity, compared to the typical link (i.e., Perla and Tonetti
(2014)) driven by adoption incentives.

43A level smaller than the asymptotic z → ∞ is chosen due to numerical instabilities of calculating α(z) ≡
F ′(z)/(1 − F (z)) where F (z) ≈ 1. The asymptotic tail index α will be only slightly larger than the local tail
parameter for this large of a z.
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Figure 12: Growth and Distribution Shape under Excludability

Figure 13 presents another perspective on the role of excludability. For several levels of ψ, the
growth rate is plotted for various adoption costs, ζ. In the absence of excludability (i.e., ψ = 1),
adoption costs change the shape of the distribution, but have no impact on the aggregate growth
rate—since the option value of adoption is infinitesimal for the highest-productivity agents making
the innovation decision. With a strong degree of excludability, however, lower adoption costs drive
higher aggregate growth, even in the unbounded case. While the option value of adoption for firms
at the frontier is still infinitesimal, an innovating firm gains extra profits from adopting firms, and
the number of adopting firms increases when adoption costs are lower.

The shape of the distribution is more subtle since the tail parameter is decreasing substantially
as adoption costs increase, which means that tail inequality is substantially increasing. If the
distribution was Pareto, then the Gini coefficient would be decreasing in the tail parameter (Pareto
Gini= 1

2α−1). However, here, the Gini coefficient decreases modestly, but is nearly flat. The reason
is that the shape of the distribution near the adoption threshold is impacted by the large mass
of agents there, which is generally determined by the innovation decisions of those firms rather
than by the tail innovation rates. Consequently, (1) more excludability leads to a large increase
in tail inequality and a modest increase in broader measures of inequality; (2) only looking at
changes in tail inequality for comparative statics is deceptive in the case of endogenous innovation;
and (3) increasing excludability can lead to substantial increases in the aggregate growth rate, but
decreasing adoption costs leads only to a modest increase in aggregate growth when starting around
reasonable excludability levels and adoption costs.
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Figure 13: Interaction of Excludability and Adoption Costs
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5.2 Directed Adoption: Endogenous κ

In the unbounded BGP, if there is no excludability (ψ = 1), then κ has no effect on the aggregate
growth rate. Since the option value is essentially zero for innovating firms at the frontier, a change
in the probability of adopting better technologies does not impact their innovation incentives,
and, thus, does not affect the aggregate growth rate. Changes in the probabilities of adopting
good technologies does, however, change the shape of the distribution. This occurs through both
altering the incentives to adopt a new technology, as well as distorting the productivities that firms
draw. Figure 14 demonstrates how directed adoption affects the shape of the distribution, using
the same calibration as in Figure 7, but allowing for an endogenous choice of κ according to varying
efficiency in firms’ ability to direct their adoption activity, parameterized by ς. The growth rate
always equals g = 0.02, but the tail parameters and Gini coefficient of the distribution change
with ς. The approximate tail parameter and the Gini move in the same direction as the efficiency
of directing adoption changes. More efficiency in directed adoption leads to thinner tails and less
productivity inequality because changes in κ directly affect the tail parameter by distorting the
adoption distribution.
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Figure 14: Distribution Shape with Endogenous κ

6 Empirics of the Technology Frontier

The technology frontier is the highest possible productivity and/or quality available to produce a
given product. As Mokyr describes “at any moment, there is a large gap between average and best
practice technology,” and there are many operating firms producing closely related products who
have not (or can not) implement the leading-edge technology, resulting in productivity or quality
dispersion.

In this section, we provide some preliminary empirical evidence on the size and time-series
behavior of the technology frontier. In this paper, we make the distinction between a relative
technology frontier that is finite but bounded (in relative terms) and one that is finite but unbounded
(in relative terms). Our specification’s simple association between a continuous forward drift of the
relative technology frontier and an unbounded frontier only occurs with a continuum of firms.
Instead, with a finite number of firms the equivalent check on the technology frontier is whether it
is a sub-martingale, weakly growing in expectation. Using measures of the frontier for each industry
and year, we check the time series properties of the frontier for each industry. The questions guiding
this exploration are whether the relative frontier have a positive drift and is it stationary?

Whether z̄(t) diverges or is stationary, and whether it is large or small, implies very different
equilibrium behavior for firms and the aggregate economy. While we have analyzed all of the cases
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in this paper, further work needs to be done on determining if z̄ is unbounded or bounded for
different industries and economies. Here we provide some exploratory analysis to guide us on the
magnitudes of z̄ and its time-series trends, and in Appendix D.1 we perform statistical tests for
stationarity to get a sense for whether the frontier may be diverging in various industries.

Following the existing literature, with all associated caveats, we use revenue (and/or employ-
ment) as a proxy for productivity (and/or quality). Fixing a particular level of aggregation (such
as the aggregate economy or at the industry level), we can plot moments of the distribution. In
a growing economy, the model consistent measure of the frontier that is the relevant measure of
dispersion is not the frontier technology itself, but rather the frontier technology normalized to
another moment of the distribution (e.g., the mean). This is in the spirit of Acemoglu, Aghion,
Lelarge, Van Reenen, and Zilibotti (2007), which summarizes distance to the frontier as the ratio of
the productivity of a firm to the highest productivity within each industry code, or the ratio of the
90th to the 10th percentile. Mapping directly to the model, z̄ is defined as the log of the 100th to
the 0th percentile, so these 90−−10 proxies provide an approximation, albeit it downwards biased,
to the relative frontier.

To give a rough sense of the dynamics of the relative technology frontier, we use data on 416
industries from Compustat with 233,754 observations of firms from 1980-2014, and 176,480 for
1990-2014.44 In the case of the 1990-2014 sample, when we collapse the firms within each industry
to obtain a distribution across industries, this gives us 12,818 observations by SIC and year.45

We first present evidence on the aggregate economy before grouping by industry. This has the
advantage of protecting against some small sample issues, but has the major disadvantage that
many of the size differences are likely compositional across industry and not due to the type of
within-product heterogeneity in quality/productivity that motivates our theoretical analysis.
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Figure 15: Time Series of the Frontier (Pooled Industries, 1980-2014)

44While Compustat is imperfect due to its selection of publicly traded firms which tend to be large, it is less of an
issue for measuring the absolute frontier since we are primarily interested in the size of the most productive firms
within an industry-year. The lower moment used to find the relative frontier is more sensitive to this selection, which
motivates robustness checks with the 5th and 10th percentile, or even the median. See Technical Appendix D.1 for
additional results and robustness checks. The qualitative results remain the same. Also, a longer panel is given in
Technical Appendix Figure 2, but we advise caution in trusting proxies for early years in the sample due to small
sample sizes.

45If we further require that there are at least 2 firms and 10 observations, then there is a total of 11,097 SIC-year
observations. SIC codes for recent data uses NAICS to SIC concordance tables.
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(1)

mean p25 p50 p75 sd

Log(p90/p10) Revenue 4.39 3.08 4.27 5.55 2.03
Log(p90/p10) Employment 4.18 2.96 4.15 5.39 1.86
% Change Log(p90/p10) Revenue -1.25 -27.59 -0.36 27.34 72.31
% Change Log(p90/p10) Employment 0.96 -24.42 0.00 25.32 68.59

Observations 12818

Table 1: Frontier Summary Statistics (by SIC, 1980-2014)

Figure 15 is informative of the broad time-series patterns of the relative frontier using the
employment and revenue proxies for productivity for all industries pooled together. The 90th
percentile of employment and/or revenue is a proxy for the frontier, and the 10th percentile is used
to provide the proxy for the minimum productivity.

The pooling of industries leads to a dispersed distribution and a distant frontier, with the log
of the ratio of the 90th to 10th percentiles around 6. More important than the particular level is a
sense of the broad time trends and stationarity. The relative frontier seems to be fairly stable, and
does not appear to be diverging in this sample—i.e., the ratio of the most to the least productive
seems to remain bounded, albeit large.

Pooling at the SIC level of aggregation, Table 1 and Figure 16 show statistics of the frontier for
all of the SIC4 industries across all the years. Presented in Table 1 and Figure 16, the mean frontier
is 4.39 when using revenue, and 4.18 when using employment. Not only is there wide dispersion
in the productivity distribution represented by large values of the relative frontier, there is wide
dispersion across industries in the size of the relative frontier.
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Figure 16: Histogram of Frontier Proxies (by SIC, 1980-2014)

While there is substantial dispersion across industries in the size of the frontier, the frontier for
a given industry seems to be rather stable over time. Table 1 shows that, while differing sizably
across industries, the median growth rate of the frontier is -0.36 percent using revenue and 0.00
percent using employment. Consequently, we find no strong evidence in the panel for a positive drift
during this period. However, this measure may be misleading due to high-frequency movements.
Smoothing these out by computing the median frontier during 1981-1990, 1991-2000, and 2001-
2010, we then analyze how the ratios change—i.e., (1991-2000)/(1980-1990) gives, in log points,
the ratio of frontiers over long time periods within industry. Summary statistics for this variable
using the z̄ ≈ log(p90/p10) proxy is given in Table 2, with histograms given in Figure 17.46

46See Technical Appendix D.1 for robustness tests with the p99/p05 proxy for the frontier.
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(1)

mean p50 p25 p75

Revenue Frontier Ratio (1991-2000)/(1981-1990) 1.06 0.98 0.83 1.18
Employment Frontier Ratio (1991-2000)/(1981-1990) 1.08 0.99 0.83 1.19
Revenue Frontier Ratio (2001-2010)/(1991-2000) 0.95 0.93 0.71 1.11
Employment Frontier Ratio (2001-2010)/(1991-2000) 0.97 0.96 0.74 1.15
Revenue Frontier Ratio (2001-2010)/(1981-1990) 0.97 0.89 0.66 1.16
Employment Frontier Ratio (2001-2010)/(1981-1990) 1.01 0.95 0.66 1.22

Observations 12763

Table 2: Frontier Ratio Summary Statistics (Using Log(p90/p10) by SIC)
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Figure 17: Histogram of Frontier Ratios (Using Log(p90/p10) by SIC)
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The time-series pattern of these proxies suggest that the median frontier by industry remained
largely constant when comparing 1981-1990 to 1991-2000 while it declined marginally comparing
1991-2000 to 2001-2010. his modest decline in the long-run is also evident when comparing 1981-
1990 with 2001-2010. Hence, we find no evidence of the diverging frontier we would expect if the
finite unbounded frontier was the correct specification. That said, since the median frontier in
Table 1 is around 4.2—which corresponds to e4.2 in levels—the magnitude may be sufficient to use
the unbounded approximation for many industries. We highlight, however, that these estimates of
the size of the frontier are larger than those resulting from better microdata, such as in Syverson
(2011) and Hsieh and Klenow (2009).

7 Conclusion

Technology adoption, technological innovation and their interaction contribute to economic growth.
In this paper, we provide a theory of the shape of the productivity distribution and of its evolution
over time. Costly and risky adoption generates a spread between the best and worst technologies
concurrently used to produce similar goods. Innovation pushes out the technological frontier,
spreading the distribution, while adoption helps laggards catch up to leaders, compressing the
distribution. The balance of innovation and adoption activity, driven by the relative costs and
benefits of adoption and innovation, can generate stationary normalized distributions and balanced
growth paths. We first study exogenous growth BGPs, in which innovators’ growth rate is fixed at
some rate γ, to explore the determinants of the shape of the distribution and some properties of
the BGPs. Then, to study the joint determination of growth and productivity shape, we introduce
an intensive margin through which innovators decide how fast grow.

Key properties of the BGP equilibria depend on whether the productivity distribution has
infinite or finite support. Many previous models of technology diffusion avoid running out of good
ideas to adopt by modeling an infinite support initial distribution or by generating infinite support
via an exogenous stochastic process. In this paper, we model innovation with a finite-state Markov
process with finite growth rates, which generates long-run distributions with finite support unless
starting from an initially infinite support distribution. This allows us to highlight the hysteresis and
latent growth generated by fat-tailed distributions while studying the impact of the finite frontier.

In Proposition 1, we show that there is a continuum of possible infinite support equilibria,
indexed by the tail coefficient of the initial distribution. In this case, there is latent growth, in the
sense that the long-run growth rate can be higher than the maximum growth rate of innovators,
and there can even be positive long-run growth if there is no innovation and firm productivity
improves only via adoption. Furthermore, the tail index of the long-run distribution equals that
of the initial distribution. Thus, while the model can speak to how the shape of the distribution
affects incentives to adopt and what growth rates are consistent with given distributions, the model
does not generate an endogenous distribution shape. We show in Proposition 2 that with a finite
support initial distribution, the shape of the distribution is endogenous to the parameters that
govern the cost and benefit of adoption and innovation. Furthermore, the growth rate must be
less than or equal to the maximum growth rate of innovators; there is no positive latent growth
coming from initial conditions. While distributions with initially-finite support retain finite support
for all time, in the baseline model featured in Proposition 2, the relative frontier (the max to min
productivity ratio) is unbounded—i.e., it grows over time and approaches infinity in the long run.
This result is at odds with economic intuition and the exploratory data analysis provided in Section
6. Since the frontier is a core element of the model driving behavior and equilibrium properties, in
Section 3.3, we extend the model with a quality ladder feature that generates a bounded relative
frontier. In Proposition 4, we show that the shape of the productivity distribution for bounded
BGP is determined by the balance of adoption and innovation, now with both an endogenous tail
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index and an endogenous (and finite) relative frontier. The aggregate growth rate is unique and
equals the growth rate of innovators. This does not mean, however, that in an endogenous growth
setting, adoption will not affect the growth rate. Instead, in a bounded support equilibrium, the
innovating firm at the frontier derives positive value from the option to adopt in the future, and,
thus, changing the cost or benefit of adoption affects the chosen innovation rate.

In Section 4, we examine this endogenous growth case, allowing innovating firms to choose the
intensity of innovation subject to a cost. In equilibrium, the highest-productivity firms choose to
grow the fastest since the option value of adoption is smallest for those furthest from being adopters.
While the exogenous growth case demonstrates how innovation and adoption can balance to de-
termine the shape of the distribution, this result highlights how adoption and innovation processes
interact to affect firms’ decisions and generate the behavior that determines the distribution shape
and aggregate growth rate.

In addition to developing the baseline model, we explore several extensions that focus on alter-
native ways in which adoption and innovation interact. We enrich the model to study alternative
ways in which the aggregate environment might influence firms to invest in improving their pro-
ductivity. Most prominently, we extend the model to the case in which technology is excludable,
and adopters must pay a licensing fee to the owners of the technology that they wish to adopt.
Firms enter into a Nash bargain, and there is an interior bargaining power that maximizes growth,
reminiscent of an optimal positive and finite patent length. Too much power to the licensee dilutes
incentives for innovation, as the innovator is unable to capture much of the gains to innovation,
aside from just modifying its own profits from production. Too much power to the licensor decreases
the amount of adopting firms, slowing down the diffusion of better technologies to low-productivity
firms.

The baseline model of adoption builds on a model of undirected search, in which adopters receive
a draw of a new productivity from the unconditional productivity distribution. We also extend the
model such that the adopter, at some cost, can choose the distribution it is drawing from. This
feature captures the idea that adopters put in effort to ensure they are focusing on a subset of
technologies that are better than the unconditional distribution, but also that they still face risk
when adopting and that it is difficult to target the frontier technology. Throughout the paper, we
work with a stripped-down model with just the basic building blocks needed to illustrate the key
mechanisms. In Technical Appendix G, we show that the qualitative features of the model hold true
in a more elaborate general equilibrium model of monopolistically competitive firms facing CES
demand that hire labor for production and productivity-improving activities to maximize profits,
with all costs denominated in units of labor at a market wage and free entry determining the
endogenous mass of firms. It may be promising in future work to build a more fully-fledged model,
potentially with other models of competition in the goods market and other growth mechanisms
such as creative destruction and variety creation. This larger-scale model may be well-suited to
take to firm dynamics panel data to decompose the relative contribution of the forces to aggregate
growth, with a particular focus on separating the role of adoptive versus innovative activity.
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Appendix A Exogenous Markov Innovation

Rather than the log utility in the main paper, the Appendix uses a general firm discount rate r, and
the numerical algorithm in Technical Appendix B is implemented for an arbitrary CRRA utility
function. Using log utility here simplifies a few of the parameter restrictions and expressions in the
algebra compared to linear utility or general CRRA.

A.1 Normalization

This section derives the normalization procedure for the value functions and KFE.

Normalizing the Productivity Distribution Define the normalized distribution of produc-
tivity, as the distribution of productivity relative to the endogenous adoption threshold M(t):

Φi(t, Z) ≡ Fi(t, log(Z/M(t))) (A.1)

Differentiate to obtain the PDF yields

∂ZΦi(t, Z) =
1

Z

∂Fi(t, log(Z/M(t)))

∂z
=

1

Z
∂zFi(t, z) (A.2)

Differentiate (A.1) with respect to t and use the chain rule to obtain the transformation of the time
derivative

∂tΦi(t, Z) =
∂Fi(t, log(Z/M(t)))

∂t
− M ′(t)
M(t)

∂iF (t, log(Z/M(t)))

∂z
(A.3)

Use the definition g(t) ≡M ′(t)/M(t) and the definition of z,

∂tΦi(t, Z) = ∂tFi(t, z)− g(t)∂zFi(t, z) (A.4)

Normalizing the Law of Motion Substitute (A.2) and (A.4) into (7) and (8),

∂F`(t, log(Z/M(t)))

∂t
− g(t)

∂F`(t, log(Z/M(t)))

∂z
= −λ`F`(t, log(Z/M(t))) + λhFh(t, log(Z/M(t)))

+ (S`(t) + Sh(t)) F̂`(t, log(Z/M(t)))− S`(t)
(A.5)

∂Fh(t, log(Z/M(t)))

∂t
− g(t)

∂Fh(t, log(Z/M(t)))

∂z
= −λhFh(t, log(Z/M(t))) + λ`F`(t, log(Z/M(t)))

− γZ
Z

∂Fh(t, log(Z/M(t)))

∂z

+ (S`(t) + Sh(t)) F̂h(t, log(Z/M(t)))− Sh(t)
(A.6)

Use the definition of z and reorganize to find the normalized KFEs,

∂tF`(t, z) = −λ`F`(t, z) + λhFh(t, z) + g(t)∂zF`(t, z) + S(t)F̂`(t, z)− S`(t) (A.7)

∂tFh(t, z) = λ`F`(t, z)− λhFh(t, z) + (g(t)− γ)∂zFh(t, z) + S(t)F̂h(t, z)− Sh(t) (A.8)

Take (9) and (10) and substitute from (A.2),

S`(t) = g(t)∂zF`(t, 0) (A.9)

Sh(t) = (g(t)− γ)∂zFh(t, 0) (A.10)
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Normalizing the Value Function Define the normalized value of the firm as,

vi(t, log(Z/M(t))) ≡ Vi(t, Z)

M(t)
(A.11)

Rearrange and differentiate (A.11) with respect to t

∂tVi(t, Z) = M ′(t)vi(t, log(Z/M(t)))−M ′(t)∂vi(t, log(Z/M(t))

∂z
+M(t)

∂vi(t, log(Z/M(t))

∂t
(A.12)

Divide by M(t) and use the definition of g(t)

1

M(t)
∂tVi(t, Z) = g(t)vi(t, z)− g(t)∂zvi(t, z) + ∂tvi(t, z) (A.13)

Differentiate (A.11) with respect to Z and rearrange

1

M(t)
∂ZVi(t, Z) =

1

Z
∂zvi(t, z) (A.14)

Divide (2) by M(t) and then substitute from (A.13) and (A.14),

r
1

M(t)
Vh(t, Z) =

Z

M(t)
+ γ

M(t)

M(t)

Z

Z
∂zvh(t, z) + g(t)vh(t, z)− g(t)∂zvh(t, z) + λh(v`(t, z)− vh(t, z)) + ∂tvh(t, z)

(A.15)

Use (A.11) and the definition of z and rearrange,

(r − g(t))vh(t, z) = ez + (γ − g(t))∂zvh(t, z) + ∂tvh(t, z) (A.16)

Similarly, for (1)

(r − g(t))v`(t, z) = ez − g(t)∂zv`(t, z) + λ`(vh(t, z)− v`(t, z)) + ∂tv`(t, z) (A.17)

Optimal Stopping Conditions Divide the value-matching condition in (4) by M(t),

Vi(t,M(t))

M(t)
=

∫ Z̄(t)

M(t)

V`(t, Z)

M(t)
∂ZΦ̂`(t, Z)dZ +

∫ Z̄(t)

M(t)

Vh(t, Z)

M(t)
∂ZΦ̂h(t, Z)dZ − M(t)

M(t)
ζ (A.18)

Use the substitutions in (A.2) and (A.11), and a change of variable z = log(Z/M(t)) in the integral,
which implies that dz = 1

ZdZ. Note that the bounds of integration change to [log(M(t)/M(t)), log(Z̄(t)/M(t))] =
[0, z̄(t)]

vi(t, 0) =

∫ z̄(t)

0
v`(t, z)dF̂`(t, z) +

∫ z̄(t)

0
vh(t, z)dF̂h(t, z)− ζ (A.19)

Evaluate (A.14) at Z = M(t), and substitute this into (6) to give the smooth-pasting condition,47

∂zvi(t, 0) = 0 (A.20)

47As a model variation, if the cost is proportional to Z, then the only change to the above conditions is that the
smooth-pasting condition becomes ∂zv(t, 0) = −ζ. This cost formulation has the potentially unappealing feature
that the value is not monotone in Z, as firms close to the adoption threshold would rather have a lower Z to decrease
the adoption cost for the same benefit. Furthermore, as the gross value of adoption is independent of the Z, it makes
sense that the cost of adoption is independent of the Z.
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A.2 Common Adoption Threshold for All Idiosyncratic States

Proof. This section derives sufficient conditions for heterogeneous firms to choose the same adoption
threshold. It is kept as general as possible to nest a model variations.

Allow for some discrete type i, and augment the state of the firm with an additional state
x (which could be a vector or a scalar). Assume that there is some control u that controls the
infinitesimal generator Qu of the Markov process on type i and, potentially, x.48 Also assume
that the agent can control the growth rate γ̂ at some cost. The feasibility set of the controls is
(u, γ̂) ∈ U(t, i, z, x). The cost of the controls for adoption and innovation have several requirements
for this general property to hold: (a) the net value of searching, vs(t), is identical for all types
i, productivities z, and additional state x, (b) the minimum of the cost function is 0 and in the
interior of the feasibility set: min

(γ̂,u)∈U(t,i,z,x)
c(t, z, γ̂, i, x, u) = 0, for all t, x, i; and (c) the value of a

jump to the frontier, v̄(t), is identical for all agent states (e.g. v̄(t) = v`(t, z̄(t)) = vh(t, z̄(t))).49

Let flow profits be potentially type-dependent, πi(t, z, x), but require that π(t, 0) ≡ πi(t, 0, x) is
identical for all i and x. Then, the normalization of the firm’s problem gives the following set of
necessary conditions:

(r − g(t))vi(t, z, x) = max
(γ̂,u)∈U(·)

{
πi(t, z, x)− c(t, z, γ̂, i, x, u) + (γ̂ − g)

∂vi(t, z, x)

∂z
+
∂vi(t, z, x)

∂t

+ei ·Qu · v(t, z, x) + η(v̄(t)− vi(t, z, x))} (A.21)

vi(t, z(t, i, x), x) = vs(t) (A.22)

∂vi(t, z(t, i, x), x)

∂z
= 0, (A.23)

where z(t, i, x) is the normalized search threshold for type i and additional state x. To prove that
these must be identical, we will assume that z(t, i, x) = 0 for all types and additional states, and
show that this leads to identical necessary optimal stopping conditions. Evaluating at z = 0,

vi(t, 0, x) = vs(t) (A.24)

∂vi(t, 0, x)

∂z
= 0. (A.25)

Note that equations (A.24) and (A.25) are identical for any i and x. Substitute equations (A.24)
and (A.25) into equation (A.21) to obtain

(r − g(t))vs(t) = max
(γ̂,u)∈U(·)

{
π(t, 0)− c(t, z, γ̂, i, x, u) + ei ·Qu · vs(t) + η(v̄(t)− vs(t)) + v′s(t)

}
.

(A.26)

Since in order to be a valid intensity matrix, all rows in Qu add to 0 for any u, the last term is 0
for any i or control u,

(r − g(t))vs(t) = max
(γ̂,u)∈U(·)

{
π(t, 0)− c(t, z, γ̂, i, x, u) + v′s(t) + η(v̄(t)− vs(t))

}
. (A.27)

48Ordering the states as {l, h}, the infinitesimal generator for this continuous-time Markov chain is

Q =

[
−λ` λ`
λh −λh

]
, with adjoint operator Q∗. The KFE and Bellman equations can be formally derived using these

operators and the drift process.
49Without this requirement, firms may have differing incentives to “wait around” for arrival rates of jumps at the

adoption threshold. A slightly weaker requirement is if the arrival rates and value are identical only at the threshold:
η(t, 0, ·) and v̄(t, 0, ·) are idiosyncratic states.
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The optimal choice for any i or x is to minimize the costs of the γ̂ and u choices. Given that γ̂
only shows up as a cost, and our assumption that the cost at the minimum is 0 and is interior,

(r − g(t))vs(t) = π(t, 0) + v′s(t) + η(v̄(t)− vs(t)) for all i. (A.28)

Therefore, the necessary conditions for optimal stopping are identical for all i, x, z, confirming our
guess. Furthermore, equation (A.28) provides an ODE for vs(t) based on aggregate g(t) and v̄(t)
changes. Solving this in a stationary environment gives an expression for vs in terms of equilibrium
g, v̄ and the common π(0),

v(0) ≡ vs =
π(0) + ηv̄

r − g + η
(A.29)

Furthermore, note from equation (96) that π(0) = 1 for all variations of the model in the body of
the paper.

A.3 Stationary BGP with a Finite, Unbounded Technology Frontier

Proof of Proposition 2. This proof begins by proving that growth cannot be greater than the in-
novation rate, and then solves the g = γ version. For the g < γ, see the nested solution in
Appendix A.6.

Claim: g ≤ γ Assume by contradiction there exists an optimally chosen—according to (4)—
g > γ and Z̄ < ∞. Note that M(t) = M(0)egt and Z̄(t) = Z̄(0)eγt, so for any initial conditions
M(T ) > Z̄(T ) for all t greater than some T . That is, the distribution compresses until it is a point.

A more subtle question is why an equilibrium cannot exist with g(t) > γ for all t, but where
limt→∞ g(t) = γ. That is, why can’t M(t) grow faster than the frontier and only converge when the
distribution reaches the point M(T ) = Z̄(T ) at arbitrary large T? The reason is that this would
be a contradiction of the optimality of M(t) from (4). Recall that the returns to adoption are
related to the current productivity, M(t), relative to the expectation of a draw. As the distribution
compresses to a point, the returns to adoption become arbitrarily small. However, the cost of
adoption is strictly positive in (4), and equality could not be maintained. Therefore, there would
be some point along the transition where they were in balance, the distribution would cease to
compress, and M(t) < Z̄(t) would be maintained for all subsequent t.

Case g = γ: Define the following to simplify notation,

α ≡ (1 + λ̂)
S

g
(A.30)

λ̂ ≡ λ`
λh

(A.31)

λ̄ ≡ λ`
r − g + λh

+ 1 (A.32)

ν =
(r − g)λ̄

g
(A.33)

See Technical Appendix C.4 for a proof that there are no bounded, finite equilibria for any
κ > 0. For the solution to the κ = 1 case, take (49) and solve for Fh(z)

Fh(z) = λ̂F`(z) (A.34)
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Substitute into (48)

S = gF ′`(z) +
(
λ̂+ 1

)
SF`(z) (A.35)

Solve this as an ODE in F`(z), subject to the F`(0) = 0 boundary condition in (23)

F`(z) = 1
1+λ̂

e−αz (A.36)

We can check that if α > 0 the right boundary conditions hold

lim
z→∞

(F`(z) + Fh(z)) = 1 (A.37)

Differentiate (A.36),

F ′`(z) = α
1+λ̂

e−αz (A.38)

With (A.34), the PDF for the unconditional distribution, F (z),

F ′(z) = αe−αz (A.39)

Solve (46) for vh(z)

vh(z) =
ez + λhv`(z)

r − g + λh
(A.40)

Substitute into (21) to find an ODE in v`(z)

(r − g)v`(z) = ez + λhλ̂

(
−v`(z) +

ez + λhv`(z)

r − g + λh

)
− gv′`(z) (A.41)

Use the constant definitions and simplify

(r − g)v`(z) = ez − gv′`(z)
λ̄

(A.42)

Solve this ODE subject to the smooth-pasting condition in (30) and simplify,

v`(z) =
λ̄

g + (r − g)λ̄
ez +

1

(r − g)(ν + 1)
e−zν (A.43)

Use the definitions of the constants and (A.43)

v`(0) = 1
r−g (A.44)

Substitute (A.39), (A.43) and (A.44) into the value-matching condition in (47) and simplify

1

r − g =

∫ ∞
0

 e
z
(
λ̄−α− rλ̄

g

)
αg

(g − r)
(
−rλ̄+ g

(
λ̄− 1

)) +
ez−zααλ̄

g + rλ̄− gλ̄

dz − ζ (A.45)

Evaluate the integral,

ζ =
α
(
−rλ̄+ g

(
λ̄− α+ 1

))
(g − r)

(
rλ̄+ g

(
α− λ̄

))
(α− 1)

− 1

(r − g)(ν + 1)
− λ̄

g + rλ̄− gλ̄ (A.46)

Substitute for α gives an implicit equation in S

0 = ζ +
g
(

1
r−g + λ̄

S−g+Sλ̂ −
λ̄

S−gλ̄+rλ̄+Sλ̂

)
−rλ̄+ g

(
λ̄− 1

) +
1

(r − g)(ν + 1)
(A.47)

As g = γ in equilibrium, only S is unknown. This equation is a quadratic in S, and can be
analytically in terms of model parameters as,

S =
λh

(
ζr(r+λh+λ`)−

√
ζ((4g+r2ζ)(−g+r+λh)2+2(−2g+(g−r)rζ)(g−r−λh)λ`+(g−r)2ζλ`2)+ζg22+ζ(−g)(3r+2λh+λ`)

)
2ζ(λh+λ`)(g−r−λh)

(A.48)
From this S, α can be calculated through (A.30) and the the rest of the equilibrium follows.
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A.4 Bounded Support

Proof of Proposition 4. Define the following to simplify notation,

α ≡ (1 + λ̂)
S − η
g

(A.49)

λ̂ ≡ λ`
η + λh

(A.50)

λ̄ ≡ r − g + λ` + λh
r − g + λh

(A.51)

ν =
r − g + η

g
λ̄ (A.52)

Solve for Fh(z) in (67),

Fh(z) = λ̂F`(z) (A.53)

Substitute this back into (66) to get an ODE in F`

0 = gF ′`(z) + (S − η)(1 + λ̂)F`(z) + ηH (z − z̄)− S (A.54)

Solve this ODE with the boundary condition F`(0) = 0

F`(z) =


S

(S−η)(1+λ̂)
(1− e−αz) 0 ≤ z < z̄

S
(S−η)(1+λ̂)

(1− e−αz̄) z = z̄
(A.55)

This function is continuous at z = z̄, and therefore so is Fh(z). The unconditional distribution is,

F (z) = (1 + λ̂)F`(z̄) (A.56)

=
S

S − η (1− e−αz) (A.57)

Use the boundary condition that F (z̄) = 1, and solve for z̄ with the assumption that S > η,

z̄ =
log(S/η)

α
(A.58)

The PDF of the unconditional distribution is,

F ′(z) =
αS

S − η e
−αz (A.59)

(A.60)

To solve for the value, solve (65) for vh(z),

vh(z) =
ez + (λh − η)v`(z) + ηv`(z̄)

r − g + λh
(A.61)

Substitute into (64) and simplify

(r − g + η)v`(z) = ez + ηv`(z̄)−
g

λ̄
v′`(z) (A.62)

Solve (30) and (A.62) and simplify,

v`(z) =
λ̄

g + (r + η − g)λ̄
ez +

η

r − g + η
v`(z̄) +

1

(r + η − g)(ν + 1)
e−zν (A.63)
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Evaluate (A.63) at z̄ and solve for v`(z̄),

v`(z̄) =

(
− η

g − r + 1

)(
ez̄λ̄

g + (η + r − g)λ̄
+

e−νz̄

(η + r − g)(ν + 1)

)
(A.64)

Subtitute (A.64) into (A.63) to find an expression for v`(z)

v`(z) =
λ̄

g(1 + ν)

(
ez +

1

ν
e−νz +

η

r − g

(
ez̄ +

1

ν
e−νz̄

))
(A.65)

Substitute (A.59) and (A.65) into the value-matching condition in (47) and evaluate the integral,

ζ +
1

r − g =

Sαλ̄

(
− e−νz̄(−1+e−αz̄)η

(−g+r)αν +
ez̄η(e−αz̄−1)

α(g−r) + −e−(α+ν)z̄+1
ν(α+ν) + −ez̄−αz̄+1

α−1

)
g(S − η)(ν + 1)

(A.66)

To find an implicit equation for the equilibrium S, take (A.66) and substitute for α and z̄ from
(A.49) and (A.58)

ζ + 1
r−g =

Sλ̄(λ̂+1)


−(Sη )

−1− gν

(S−η)(1+λ̂) +1

ν

(
ν+

(S−η)(λ̂+1)
g

) +g


1

−g+(S−η)(λ̂+1)
+

η

−(Sη )
− gν

(S−η)(1+λ̂)

ν +
(Sη )

g

(S−η)(λ̂+1) (η+r−S+λ̂(η+r−g−S))

−g+(S−η)(λ̂+1)


S(g−r)(λ̂+1)




g2(ν+1)

(A.67)

A.5 Stationary Stochastic Innovation Equilibrium with Infinite Support

This proof applies to the case of infinite-support and g > γ.

Proof of Proposition 1. Define 0,1, I as a vector of 0, 1, and the identity matrix and the following:

A ≡
[

1
g
1

g−γ

]
B ≡

[
r+λ`−g

g −λ`
g

− λh
g−γ

r+λh−g
g−γ

]
(A.68)

C ≡
[
gF ′`(0)+(g−γ)F ′h(0)−λ`

g
λh
g

λ`
g−γ

gF ′`(0)+(g−γ)F ′h(0)−λh
g−γ

]
D ≡

[
F ′`(0)
F ′h(0)

]
(A.69)

~F (z) ≡
[
F`(z)
Fh(z)

]
v(z) ≡

[
v`(z)
vh(z)

]
(A.70)

Then the equilibrium conditions can be written as a linear set of ODEs:

v′(z) = Aez −Bv(z) (A.71)

v′(0) = 0 (A.72)

~F ′(z) = −C ~F (z) +D (A.73)

~F (0) = 0 (A.74)

~F (∞) · 1 = 1 (A.75)

v`(0) = vh(0) =

∫ ∞
0

(
v(z)T · ~F ′(z)

)
dz − ζ (A.76)
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Solve these as a set of matrix ODEs, where eAz is a matrix exponential. Start with (A.71)
and (A.72) to get,50

v(z) = (I +B)−1
(
eIz + e−BzB−1

)
A. (A.79)

Evaluate at z = 0,

v(0) = B−1A =
[
1/(r − g) 1/(r − g)

]
. (A.80)

Then (A.73) and (A.74) gives

~F (z) =
(
I− e−Cz

)
C−1D. (A.81)

Take the derivative,

~F ′(z) = e−CzD. (A.82)

For (A.79) and (A.81) to be well defined as z →∞, we have to impose parameter restrictions that
constrain the growth rate g so that the eigenvalues of B and C are positive or have positive real
parts. Sl and Sh are defined in equations (25) and (26) in terms of F ′l (0) and F ′h (0) , C and B will
have roots with positive real parts iff their determinant and their trace are strictly positive. For C
it is straightforward to compute that the conditions for a positive trace and determinant are

Sl + Sh >
(g − γ)λl + gλh

(g − γ) + g
(A.83)

Sh + Sl > λh + λl (A.84)

and for B the corresponding conditions are

r > g > γ (A.85)

r − g + λh + λl > 0. (A.86)

With these conditions imposed, we can proceed to characterize the solutions to the value functions
and the stationary distribution.

Evaluate (A.82) at z = 0,

~F ′(0) = D. (A.87)

Take the limit of (A.81)

~F (∞) = C−1D (A.88)

50The equation ~F ′(z) = AF (z) + b subject to ~F (0) = 0 has the solution,

~F (z) =
(
eAz − I

)
A−1b. (A.77)

The derivation of these results uses that
∫ T

0
etAdt = A−1

(
eTA − I

)
. With appropriate conditions on eigenvalues, this

implies that
∫∞

0
etAdt = −A−1.

Equations of the form, v′(z) = Aez −B · v(z) with the initial condition v′(0) = 0 have the solution,

v(z) = (I +B)−1
(
eIz + e−BzB−1

)
A. (A.78)

This derivation exploits commutativity, as both eBz and (I +B)−1 can be expanded as power series of B.
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and (A.75) becomes

1 = C−1D · 1. (A.89)

We can check that, by construction, with the C and D defined by (A.69), (A.89) is fulfilled for any
F ′`(0), F ′h(0), λ`, and λh.

For ~F ′(z) to define a valid PDF it is necessary for ~F ′(z) > 0 for all z. It can be shown, that for
C > 0, the only D > 0 fulfilling this requirement is one proportional to the eigenvector associated
with the dominant eigenvalue of C.51 The unique constant of proportionality is determined by
(A.89). The two eigenvectors of C fulfilling this proportionality are,

νi ≡

−
F ′h(0)

(
γ(g−γ)F ′h(0)±

√
2(g−γ)λl

(
γ
(
g
(
F ′
h
(0)+F ′

l
(0)
)
−γF ′

h
(0)
)
+gλh

)
+
(
γ
(
g
(
F ′
h
(0)+F ′

l
(0)
)
−γF ′

h
(0)
)
−gλh

)
2+(g−γ)2λl2+γgF ′l (0)−gλh+gλl−γλl

)
2gλl

F ′h(0)


(A.90)

Denote ν as the eigenvector with both positive elements–which is associated with the dominant
eigenvalue–then as discussed above, D ∝ ν. Use (A.69) and (A.90), and note the eigenvector has
already been normalized to match the second parameter.

D = ν. (A.91)

The 2nd coordinate already holds with equality by construction, for the first coordinate equating
(A.69) and (A.90). Equate the first parameter and choose the positive eigenvector,

F ′`(0) = −
F ′h(0)

(
γ(g−γ)F ′h(0)−

√
2(g−γ)λl(γ(g(F ′h(0)+F ′

l
(0))−γF ′h(0))+gλh)+(γ(g(F ′h(0)+F ′

l
(0))−γF ′h(0))−gλh)2+(g−γ)2λl

2+γgF ′l (0)−gλh+gλl−γλl
)

2gλl

(A.92)

Solve this equation for F ′`(0) and choose the positive root

F ′`(0) =
F ′h(0)λh

γF ′h(0) + λ`
. (A.93)

We can check that with the C and D defined by (A.69), (A.89) is fulfilled by construction. The
value-matching in (A.76) becomes,

1

r − g + ζ =

∫ ∞
0

[[
(I +B)−1

(
eIz + e−BzB−1

)
A
]T
e−CzD

]
dz. (A.94)

Note that if B has positive eigenvalues, then limz→∞ v (z) = (1 + B)−1 (ez)A. Therefore, as long
as C has a minimal eigenvalue (defined here as α), strictly greater than one, the integral is defined.

The tail index of the unconditional distribution, F (z) ≡ F`(z)+Fh(z) can be calculated from the
C matrix in (A.82). As sums of power-law variables inherit the smallest tail index, the endogenous
power-law tail is minimum eigenvalue of C. After the substitution for F ′`(0) from above, the smallest
eigenvalue of C is

α ≡ ((g − γ)F ′h(0)− λl) (γ(g − γ)F ′h(0) + g (λh + λl)− γλl)
g(g − γ)

(
γF ′h(0) + λl

) . (A.95)

51Since C > 0 and irreducible (in this case off diagonals not zero), then by Perron-Frobenius it has a simple
dominant real root α and an associated eigenvector ν > 0. Hence, as ~F (0) = 0, F`(∞) + Fh(∞) = 1, and ~F ′(z) > 0,
we have a valid PDF. This uniqueness of the ν solution only holds if the other eigenvector of C has a positive and
negative coordinate, which always holds in our model.
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Solve (A.95) for F ′h(0) as a function of α,

F ′h(0) =
g
(
αγ − λh +

√
(λh − αγ) 2 + 2λl (αγ + λh) + λl2 − λl

)
+ 2γλl

2γ(g − γ)
. (A.96)

Substitute for F ′i (0) into C and D to get a function in terms of g and α,

C =

−αγ+2αg+λh+
√

(λh−αγ)2+2λl(αγ+λh)+λl2−λl
2g

λh
g

λl
g−γ

−αγ+2αg−λh+
√

(λh−αγ)2+2λl(αγ+λh)+λl2+λl
2(g−γ)


(A.97)

D =


λh

(
g
(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2−λl

)
+2γλl

)
γg
(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2+λl

)
g
(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2−λl

)
+2γλl

2γ(g−γ)

 (A.98)

As in the example with Geometric Brownian Motion, there are multiple stationary equilibria.
While both F ′i (0) could conceivably parameterize a set of solutions for each g, they are constrained
by the eigenvector proportionality condition, which ensures that the manifold of solutions is 1
dimensional.

(41) shows that the positivity of the tail index α is now equivalent to C having positive eigen-
values. For the decomposition of the option value, (43) shows that positive eigenvalues of B ensure
the option values in the vector v(z) converges to 0 as z increases.

In Technical Appendix Propositions 1 and 2 we characterized the stationary distributions in
terms of the tail index of the initial distribution of productivities, given in Technical Appendix
(E.39) explicitly by α = κF ′(0), a scalar. In this section, the stationary distribution is a vector
~F (z) solving (33) and (34) , a system of linear ODEs. If we define the unconditional distribution
F (z) ≡ F`(z)+Fh(z), and if both F`(z) and Fh(z) are power-laws, any mixture of these distributions
inherits the smallest (i.e. thickest) tail parameter (as discussed in Gabaix (2009)). Since there are
now two dimensions of heterogeneity, the tail index, α, is defined as that of the unconditional
distribution, F (z). The ODE solution for the vector ~F (z) given in Proposition 1 by (41) will
depend on the roots of C (both positive, see Appendix A.5). The smallest root of C, representing
the slower rate of decay for both elements of F (z), is the tail index α by the construction of (38).

Note that in Technical Appendix Propositions 1 to 3, the tail index is determined by the single
initial condition F ′ (0) > 0, a scalar. In Proposition 1 the initial condition F ′ (0) is a vector, so
in principle this raises the possibility that the continuum of stationary equilibria could be two
dimensional, parametrized by F ′`(0) > 0 and by F ′h(0) > 0. However as shown in Appendix A.5 this
is not possible since the only initial condition that ensures that F`(z) and Fh(z) remain positive
and satisfy (21) and (22) is exactly the eigenvector of C corresponding to its dominant (Frobenius)
eigenvalue. Since the eigenvector is determined only up to a multiplicative constant, the continuum
of stationary distributions is therefore one dimensional. We use the smallest eigenvalue of C, defined
as the tail index α, to solve for F ′h (0), which then determines F ′` (0) from the eigenvector restriction.
This then allows us to obtain the expressions (38) and (39) in terms of parameters, α and g. Then
value-matching, (A.76) and (A.94), gives us expression (40) to define g in terms α, so we end up
with a continuum of stationary equilibria parametrized by α.

A.6 Stationary Stochastic Innovation Equilibrium with g < γ

This derivation applies to the case with g < γ and either unbounded or infinite-support.
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Proof of Proposition 3. Unlike the case with a infinite-support and g > γ in Appendix A.5, we
can use the simple case of draws are from the unconditional distribution, i.e. Φ̂(t, Z) = Φ`(t, Z) +
Φh(t, Z).

Given our g < γ assumption, Sh = 0 as no agents in the high state will cross the barrier. For the
support of the distribution, the minimum of support has been normalized to log(M(t)/M(t)) = 0.

The maximum of support starts at log(Z̄(0)/M(0)) ≡ z̄(0) and grows as z̄(t) = log
(
z̄(0) e

γt

egt

)
or

z̄(t) = z̄(0) + (γ − g)t (A.99)

Hence, asymptotically, limt→∞ z̄(t) = ∞ given our γ > g assumption. Alternatively, if Z̄(0) = ∞,
then this solution fully nests the g < γ case as well. Following the notation of Appendix A.5 as
much as possible, define

A ≡
[

1
g
1

γ−g

]
B ≡

[
r+λ`−g

g −λ`
g

− λh
γ−g

r+λh−g
γ−g

]
(A.100)

C ≡
[
f`(0)− λ`

g f`(0) + λh
g

−λ`
γ−g

λh
γ−g

]
D ≡

[
F ′`(0)

0

]
(A.101)

Otherwise, the ~F (z), and v(z) are identical to those in (A.68) and (A.69), and the ODEs for the
KFE and the value function fulfill the same (A.71) to (A.75).52 The only change in A and B from
the previous definition was to swap the order to γ − g. Under these definitions, the matrix A and
the eigenvalues of B are positive.

As we have unconditional draws ending up with the ` type, the value-matching condition is
replaced with the standard one, as in (47)

v`(0) = vh(0) =

∫ ∞
0

v`(z)F
′(z)dz − ζ (A.102)

The other matrices and generic solutions to the ODEs for the v(z) and F (z) are identical to
those in (A.79), (A.81) and (A.82).

In order to better parameterize the solutions, reorganize the algebra to be in terms of the
asymptotic tail parameter of the distribution, α, instead of F ′`(0). Using this, there may be a
continuum of {g, α} which generate stationary distributions (and have an accompanying F ′`(0)).
Define the following,

ᾱ ≡ λh
γ − g −

λ`
g
− αγλ`
g (λ` + λh − α(γ − g))

(A.103)

F ′`(0) ≡ α
(

1− γλ`
g (−(γ − g)α+ λh + λ`)

)
(A.104)

= α+ ᾱ− λh
γ − g +

λ`
g

(A.105)

Here, {α, ᾱ} are the eigenvalues of the matrix C, ordered so that ᾱ > α

Take the solution (A.82) and expand using the constant definitions above,

~F ′(z) =
α
(
λh −

(
γ
g − 1

)
λ` − (γ − g)α

)
(γ − g) (ᾱ− α)

1

λh + λ` − α(γ − g)

(λh − α(γ − g)) e−αz − (λh − ᾱ(γ − g)) e−ᾱz

λ` (e−αz − e−ᾱz)


(A.106)

52Unlike the infinite horizon case with g > γ, we no longer require an argument based on Perron-Froebenius in the
proof. The reason is that F ′h(0) = 0 trivially, so the manifold of the solution in {g, F ′`(0)} is already of the correct
dimension.
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The solution for the unconditional PDF, F ′(z) ≡ F ′`(z) + F ′h(z), is,

F ′(z) = b1
(
e−αz − b2e−ᾱz

)
(A.107)

Where,

b1 ≡
α
(
−α(γ − g) +

(
1− γ

g

)
λl + λh

)
(ᾱ− α)(γ − g)

(A.108)

b2 ≡
ᾱ(g − γ) + λh + λl
α(g − γ) + λh + λl

(A.109)

To solve the value function in (A.81), first define the value β1 and β2 as,

β1/2 ≡ −
−g (γ − λh + λl)±

√
(g λh + (γ − g)λl + γ(r − g)) 2 + 4g (g − γ)(g − r) (g − λh − λl − r) + γ (λl + r)

2g(g − γ)
(A.110)

Using the eigenvectors and eigenvalues, the matrix exponential in (A.79) can be written through
a standard eigendecomposition with the eigenvalues β1, β2 and associated eigenvectors. Use this
technique and rearrange (A.79) to find,

v`(z) = a1e
z + a2

(
e−β1z − a3e

−β2z
)

(A.111)

where,

a1 ≡
γ − 2g + λh + λl + r

−2g (λl + r) + r (γ + λh + r) + λl(γ + r)
(A.112)

a2 ≡
(−β2γ + (β2 − 1) g + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (g (β1 − 1) + λh − γβ1 + r))

(g − γ)(r − g)λh (β1 − β2) (−2g (λl + r) + r (γ + λh + r) + λl(γ + r))
(A.113)

a3 ≡
(g (β1 − 1)− γβ1 + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (−β2γ + (β2 − 1) g + λh + r))

(−β2γ + (β2 − 1) g + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (g (β1 − 1) + λh − γβ1 + r))
(A.114)

To finalize the solution, for any given α within the set of admissible parameters, substitute
(A.107) and (A.111) into (A.102) and solve as an implicit function of g. Substitute and simplify to
find,

1

r − g = a2b1

(
a3

α+ β2
− a3b2
ᾱ+ β2

− 1

α+ β1
+

b2
ᾱ+ β1

)
+ a1b1

(
1

1− α +
b2

ᾱ− 1

)
− ζ (A.115)

For a given α (or, equivalently, a g), this implicit equation provides a solution for the corre-
sponding g given all of the g and α dependent constants in (A.103), (A.108) to (A.110) and (A.112)
to (A.114).

Parameter Restrictions A set of parameter restrictions are required to ensure that F ′(z) > 0
and that the eigenvalues of both B and C are strictly positive to ensure a non-explosive root.

To ensure that the PDF is positive at every point in (A.107), note that since ᾱ > α, the term

0 < λ`+λh−(γ−g)ᾱ
λ`+λh−(γ−g)α < 1 is positive as long as λ` + λh − (γ − g)ᾱ > 0. Similarly, for F ′`(z) > 0 in

(A.106), a requirement is that 0 < λh−(γ−g)ᾱ
λh−(γ−g)α < 1 and λh − (γ − g)ᾱ > 0, which reduce to

g > γ − λ` + λh
α

(A.116)
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Note that the thicker the tail (i.e. smaller α), the greater the range of possible g to match the α.
For (A.81) to be well defined as z →∞, we have to impose parameter restrictions that constrain

the growth rate g so that the eigenvalues of C are positive or have positive real parts. Note that,

det {C} =
λh + λ`
γ − g f`(0) > 0 (A.117)

And,

Trace {C} = f`(0) +
λh
γ − g −

λ`
g

(A.118)

Hence, since the determinant is positive, a necessary condition for C to have two positive eigenvalues
is for

f`(0) >
λ`
g
− λh
γ − g (A.119)

From (A.82) we see that ~F ′(0) = D and fh(0) = 0. If C does have two positive eigenvalues,
then from (A.81), ~F (∞) = 1

λ`+λh

[
λh λ`

]
, which fulfills F (∞) = 1.

With the new constants, the condition in (A.119) to ensure positive eigenvalues becomes,

α <

√
(λh + λl) (g (λh + λl)− γλl)

g(g − γ)2
(A.120)

Furthermore, as α has been constructed to be the smallest eigenvalue, and hence is the tail param-
eter, a necessary condition to have a finite mean is that α > 1. From this, the g in equilibrium
must fulfill,

2g (λh + λl) >
√

4g2(g − γ)2 + γ2λ2
l + γλl (A.121)

To ensure that the eigenvalues of B are positive, and hence vi(z) is well-defined, note that the

determinant of B is always positive, and the trace of B requires g < γ(r+λ`)
γ−λh+λ`

. However, in practice
this upper-bound is greater than γ.

To summarize: the key conditions parameter restrictions are, (A.116), (A.120) and (A.121)

As an example of this equilibrium, with the same parameters as Section 3.3, Figure 18 plots
the equilibrium growth rate as a function of α. For smaller α values, the growth rate approaches
γ = 0.02, and matches it exactly at the calibrated g = γ case.

A.7 No Equilibrium Exist with g < γ and Jumps

Proof of Uniqueness of Proposition 4. In order to show that there are no stationary equilibrium
with g < γ and η > 0, we will: (1) assume there is some constant g < γ which is the consumer’s
optimal choice (i.e. balancing adoption costs and benefits); (2) use the constant g to calculate
the expectation of the stationary productivity distribution; (3) show that the mean cannot be
stationary relative to the adoption costs, and hence the g(t) cannot have been an optimal choice.

Prior to finding the evolution of the moments, we need to be careful of exactly where agents are
removed from the distribution, so replace the S in the CDF with the heaviside function removing
at the threshold log(M(t)/M(t)) = 0, i.e. SH (z). Take the normalized version in (A.7) and (A.8),
add in the jumps as in (66) and (67). We maintain the assumption of a constant g and S with

62



2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0

0.005

0.01

0.015

0.02
g(α)

α

Figure 18: Exogenous g < γ examples, for various α > 1

draws from the unconditional F (t, ·). Use that the derivative of the Heaviside is the dirac-delta to
find,

∂tf`(t, z) = g∂zf`(t, z) + (S − λ` − η)f`(t, z) + (S + λh)fh(t, z)− Sδ (z) + ηδ (z − z̄) (A.122)

∂tfh(t, z) = (g − γ)∂zfh(t, z) + λ`f`(t, z)− (λh + η)fh(t, z) (A.123)

Here, after differentiating, we have the dirac-delta, δ (z), in (A.122) to remove those adopting agents
at the threshold (which was normalized to z = 0), and the insertion of η arrival rate of agents at z̄.

Taking inspiration from Gabaix, Lasry, Lions, and Moll (2016), use the bilateral Laplace trans-
form on the z variable to the new ξ space, such that Fi(t, ξ) ≡

∫∞
−∞ e

−ξzfi(t, z)dz. Applying this

transform to the ODEs in (A.122) and (A.123) gives,53

∂tF`(t, ξ) = gξF`(t, ξ) + (S − λ` − η)F`(t, ξ) + (S + λh)Fh(t, ξ)− S + ηe−z̄ξ (A.124)

∂tFh(t, ξ) = (g − γ)ξFh(t, ξ) + λ`F`(t, ξ)− (η + λh)Fh(t, ξ) (A.125)

From Gabaix, Lasry, Lions, and Moll (2016) equation (16), evaluating at ξ = −1 are the moments
of the Z/M(t) distribution. Hence, to be a stationary first moment (for a given z̄), substitute into
a time-invariant (A.124) and (A.125) to find,

0 = −gF`(t,−1) + (S − λ` − η)F`(t,−1) + (S + λh)Fh(t,−1)− S + ηez̄ (A.126)

0 = −(g − γ)Fh(t,−1) + λ`F`(t,−1)− (η + λh)Fh(t,−1) (A.127)

Solve this algebraic system of equations for F`(t,−1) and Fh(t,−1) and then use the linearity of
the Laplace transform to find F(t,−1) = F`(t,−1) + Fh(t,−1),

Et [Z/M(t)] = F(t,−1) =
g − γ + η + λh + λ`

(g − S + η)(g − γ + η + λh)− λl(S − g + γ − η)

(
ηez̄ − S

)
(A.128)

Since g < γ, from (A.99), limt→∞ z̄(t) = ∞. Therefore, (A.128) diverges for any η > 0, proving
that the mean of the distribution cannot be stationary if z̄ →∞.

To finish the proof by contradiction, recall that the change of variables to z ≡ log(Z/M(t)) was
already normalized relative to M(t), and hence is normalized relative to the adoption cost, ζM(t).
Furthermore, since v`(z) > z, so (47) cannot hold with equality, and the M(t) leading to the g
cannot have been optimal.

53Most of the transformation comes through using the linearity of the operator, and the general formula that the
bilateral Laplace transform of a derivative. That is, using a simple notation: L{f ′(z)} = ξF(ξ). The other important
formula is that L{δ (z − c)} = e−cξ, and L{δ (z)} = 1
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Appendix B Endogenous Markov Innovation

Proof of Propositions 5 and 6 . Note that Section 4.2 nests Section 4.1 when η = 0.

Nested Derivation of Stationary HBJE To create a stationary solution for the value function
define a change of variables,54

wi(z) ≡ e−zv′i(z) (B.1)

From (30) and (31),

w`(0) = wh(0) = 0 (B.2)

Differentiate (B.1) and reorganize ,

e−zv′′i (z) = w′i(z) + wi(z) (B.3)

Assuming an interior solution, take the first order necessary condition of the Hamilton-Jacobi-
Bellman equation in (86), and reorganize

γ(z) = χ
2 e
−zv′h(z) (B.4)

Substitute this back into (86) to get a non-linear ODE,

(r − g)vh(z) = π(z)− gv′h(z) + χ
4 e
−zv′h(z)2 + λh(v`(z)− vh(z)) + η (v`(z̄)− vh(z))

(B.5)

Alternatively, (86) and (B.4) could be kept separate to form a differential-algebraic equation (DAE),
which can be more numerically stable. Differentiate (85),

(r − g)v′`(z) = π′(z)− gv′′` (z) + λ`(v
′
h(z)− v′`(z))− ηv′`(z) (B.6)

As before, for simplicity, assume that if ψ < 1, then κ = 1. Multiply (B.6) by e−z and use (99),
(B.1) and (B.3).55

(r + λ` + η − (1− ψ)gF ′(0))w`(z) = 1− gw′`(z) + λ`wh(z) (B.7)

Note that using (B.3),

e−z∂z
(
e−zv′h(z)2

)
= 2e−zv′′h(z)e−zv′h(z)−

(
e−zv′h(z)

)2
(B.8)

= 2wh(z)w′h(z) + wh(z)2 (B.9)

Differentiate (B.5), multiply by e−z, and use (99), (B.1), (B.3) and (B.9)

(r + λh + η)wh(z) = 1−
(
g − χ

2wh(z)
)
w′h(z) +

(
λh + (1− ψ)gF ′(0)

)
w`(z) + χ

4wh(z)2

(B.10)

From (B.4),

γ(z) = χ
2wh(z) (B.11)

g ≡ χ
2wh(z̄) (B.12)

54Our approach is to normalize and then substitute the FOC of the HJBE into the Bellman equation to form a
nonlinear ODE, which we can solve numerically. An alternative approach to solving the HJBE numerically might be
to use up/downwind methods as in Achdou, Lasry, Lions, and Moll (2014).
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Define the integrated marginal utility from 0 to z as,

ŵi(z) ≡
∫ z

0
v′i(ẑ)dẑ =

∫ z

0
eẑwi(ẑ)dẑ (B.13)

Integrate (B.1) with the initial value from (87) and use (B.13) to get,

vi(z) = v(0) + ŵi(z) (B.14)

Substitute (98) and (B.14) into (A.29) and rearrange to get an expression for v(0) in terms of ŵ`
and intrinsics,

v(0) =
1 + ηv`(z̄)

r − g + η
=

1 + ηŵ`(z̄)

r − g (B.15)

Value Matching with Endogenous choice of θ and κ: A change to wi(z) space will also be
useful for simplifying integrals. Note that,56∫ z̄

0
v`(z)dF (z)κ = v(0) +

∫ z̄

0
ezw`(z) (1− F (z)κ) dz (B.17)

And expanding when z̄ <∞,∫ z̄

0
v`(z)dF (z)κ = v`(z̄)−

∫ z̄

0
ezw`(z)F (z)κdz (B.18)

Take the value-matching condition for the choice of the idiosyncratic θ̂ and κ̂ given equilibrium
θ and κ choices of the other firms.

v(0) = max
θ̂≥0, κ̂>0

{
(1− θ̂)

∫ z̄

0
v`(z)dF (z)κ̂ + θ̂v`(z̄)−

1

ψ

(
ζ + 1

ϑ θ̂
2 + 1

ς κ̂
2
)}

(B.19)

Use (B.14) and (B.17)

v(0) = max
θ̂≥0, κ̂>0

{
(1− θ̂)

(
v(0) +

∫ z̄

0
ezw`(z)(1− F (z)κ̂)dz

)
+ θ̂ (v(0) + ŵ`(z̄))−

1

ψ

(
ζ + 1

ϑ θ̂
2 + 1

ς κ̂
2
)}

(B.20)

Simplify,

0 = max
θ̂≥0, κ̂>0

{
(1− θ̂)

∫ z̄

0
ezw`(z)(1− F (z)κ̂)dz + θ̂ŵ`(z̄)−

1

ψ

(
ζ + 1

ϑ θ̂
2 + 1

ς κ̂
2
)}

(B.21)

In the case of θ = 0 this simplifies to,

0 = max
κ̂>0

{∫ z̄

0
ezw`(z)(1− F (z)κ̂)dz − 1

ψ

(
ζ + 1

ς κ̂
2
)}

(B.22)

55The general form of κ 6= 1 and ψ < 1 is covered in (97). We are avoiding this due to numerical difficulties rather
than anything intrinsic in the model.

56These come out of using integration by parts on the calculation of the expectation. For example, if F (z) is
the CDF for a random variable Z with minimum and maximum support z and z̄, then the following holds for any
reasonable h(z),

E [h(Z)] =

∫ z̄

z

h′(z)(1− F (z))dz + h(z) (B.16)
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In the case of θ > 0, (B.21) simplifies to,

0 = max
θ̂≥0, κ̂>0

{
ŵ`(z̄)− (1− θ̂)

∫ z̄

0
ezw`(z)F (z)κ̂dz − 1

ψ

(
ζ + 1

ϑ θ̂
2 + 1

ς κ̂
2
)}

(B.23)

Crucially, if the firm chooses a θ̂ 6= θ, they are infinitesimal and have no influence on the value
or equilibrium distributions. Take the first order condition of (B.23) with respect to θ̂ and then let
θ̂ = θ in equilibrium,

θ =
ψϑ

2

∫ z̄

0
ezw`(z)F (z)κdz (B.24)

Take the first order condition of (B.21) and equate κ̂ = κ in the economy. Note that F (z)κ =
exp(κ logF (z)), so that ∂κF (z)κ = log(F (z))F (z)κ and assume conditions to differentiate under
the integral

κ =
−ςψ(1− θ)

2

∫ z̄

0
ezw`(z) log(F (z))F (z)κdz (B.25)

This is an implicit equation in κ. Note that as 0 < F (z) < 1 and log(F (z)) < 0, the sign of this
term is correct to ensure a positive κ.

KFE and Value Matching From (88), for z < z̄ the KFE is,

0 = gF ′`(z) + λhFh(z)− λ`F`(z)− ηF`(z) + (1− θ)(S` + Sh)F (z)κ − S`, z < z̄ (B.26)

In the limit as z → z̄, we know both γ(z) and F (z) are continuous. Assume that limz→z̄ F ′h(z) <
∞ and use g − γ(z̄) = 0 in (24) to (26) and (89) to get the system of equations,57

0 = (λh + η)Fh(z̄)− λ`F`(z̄) + gF ′h(0) (B.27)

1 = F`(z̄) + Fh(z̄) (B.28)

Solve to find a boundary condition for F (z̄) for a given F ′(0)

F`(z̄) =
1

λ` + λh + η

(
gF ′h(0) + η + λh

)
(B.29)

Fh(z̄) =
1

λ` + λh + η

(
−gF ′h(0) + λ`

)
(B.30)

From (B.30) , for Fh(z̄) < 1, it must be that F ′h(0) < λ`/g, which provides a bound for possible
guesses.58

57The KFE for h in (88) is co-linear with (B.26) at z̄, and hence wouldn’t provide an additional equation.
58Using (B.29) gives the same equation due to collinearity. An alternative approach is to rearrange (B.30) and get

the F ′h(0) given the particular Fh(z̄) guess,

F ′h(0) =
λ` − (η + λh + λ`)Fh(z̄)

g
(B.31)
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Upper bound on g: For the unbounded case where η = θ = 0, and z̄ → ∞, we can check the
asymptotic value comes from (B.1)

lim
z→∞

wi(z) = ci (B.32)

To find an upper bound on g, note that as wi(z) is increasing, the maximum growth rate is as
z̄ →∞. In the limit, lim

z→∞
w′i(z) = 0 as wi(z) have been constructed to be stationary. Furthermore,

note that the maximum g from (B.12) is,

g = lim
z̄→∞

χ
2wh(z̄) = χ

2 ch (B.33)

Therefore, looking at the asymptotic limit of (B.7) and (B.10),

(r + λ` + η − (1− ψ)χ2 chF
′(0))c` = 1 + λ`ch (B.34)

(r + λh + η)ch = 1 +
(
λh + (1− ψ)χ2 chF

′(0)
)
c` + χ

4 c
2
h (B.35)

Given a F ′(0), (B.34) and (B.35) provide a quadratic system of equations cl and ch—and ultimately
g through (B.33). While analytically tractable given an F ′(0), this quadratic has a complicated
solution—except if ψ = 0. For that case, define

λ̄ ≡ r + η + λ` + λh
r + η + λ`

(B.36)

Then, an upper bound on the growth rate with ψ = 1 and η > 0 is

g < λ̄(r + η)

[
1−

√
1− χ

λ̄(r + η)2

]
(B.37)

where if η = 0, the unique solution is,

g = λ̄r

[
1−

√
1− χ

λ̄r2

]
(B.38)

where a necessary condition for an interior equilibrium is

r >

√
χ

λ̄
(B.39)

Summarizing the full set of equations to solve for Fi(z) and wi(z) from (23) to (26), (89), (B.2),
(B.7), (B.10) to (B.12), (B.14), (B.15), (B.22) to (B.26) and (B.36).

Appendix C Further Discussion and Analysis

This appendix collects further analysis of the model, including the role of hysteresis and the em-
pirical plausibility of endogenous innovation.
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Support Exogenous γ =⇒ g Hysteresis? Endogenous γ(z̄) =⇒ g and γ(·) Hysteresis?

Infinite Continuum of g ≥ γ and g < γ Unique γ(∞) with g ≥ γ(∞) and g < γ(∞)

Finite Unbounded Continuum of g ≤ γ Unique γ(z̄) with g ≤ γ(∞)

Finite Bounded Unique g = γ and corresponding z̄ Continuum of γ(z̄) and corresponding z̄, with
unique g = γ(z̄)

Table 3: Summary of Hysteresis and Uniqueness

C.1 Summary of Hysteresis and Multiplicity

The results of uniqueness of stationary equilibria are summarized in Table 3. The table compares
models with infinite support coming from initial conditions, to those with unbounded vs. bounded
finite support (i.e., models in Sections 3.1 to 3.3 for the exogenous γ, and in Sections 4.1 and 4.2
for the endogenous γ).

There are several possible sources of multiplicity in the stationary equilibrium—all of which are
due to initial condition dependence (i.e., hysteresis). The first is that, when the innovation rate
γ(z) is chosen endogenously, the growth rate of the frontier γ(z̄) could be unique or could have a
continuum of solutions depending on the initial conditions. The other source of multiplicity is that,
given a γ (either exogenously or endogenously), there may be a continuum of aggregate growth
rates, g, each with a corresponding stationary distribution F (z) and relative frontier z̄.

These sources of multiplicity interact, but may come different economic forces. The endogenous
choice of innovation, γ, can give rise to feedback, in which the particular productivity distribution
induces different innovation incentives at the frontier. Alternatively, the endogenous choice of
technology adoption can give rise to hysteresis in g, in the sense that for a particular γ, the
productivity growth rates of the distribution as a whole can depend on the initial distribution of
productivities.

Aggregate Growth Rate Multiplicity Where g > γ: The fatter the tail of the initial dis-
tribution, the richer will be the opportunities to adopt superior technologies, and, therefore, the
overall economy-wide growth rate will be higher. In the limit, therefore, the stationary distribution
may depend on the initial productivity distribution. With an initial condition with infinite sup-
port, if the adoption opportunities remain profitable, the limiting growth rate of the economy may
forever exceed its growth rate from innovation alone. This is the case for all models considered in
Technical Appendix E. It also can be the case in Section 2 if the initial distribution has infinite
support and bounded growth rates, as in Proposition 1. By contrast, if the initial productivity
distribution has finite support, the growth rate of limiting distribution must be weakly less than
the exogenous innovation rate, g ≤ γ. As the growth above γ comes from outside the model of
innovation, we label it “latent growth.”

Aggregate Growth Rate Multiplicity Where g < γ: Looking at the other direction, there
will be initial conditions (with both infinite and finite unbounded support) where the incentives for
technology adoption are relatively low, and the aggregate growth rate is unable to keep up with
the innovation rate. In those cases, as analyzed in Section 3.2.1, the growth rate can be g < γ if
z̄ = ∞ or limt→∞ z̄(t) = ∞. In terms of the adoption incentives: the mass of firms close to the
technology frontier growing at rate γ is strictly positive, but asymptotically goes to zero, so the
growth rate of the distribution as a whole doesn’t need to keep pace with the growth rate of the
frontier. In that case, since the incentives for technology adoption are related to the mean (rather
than the maximum) productivity, the growth rate of firms exactly at the frontier is not crucial, and
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the far tail can diverge in relative terms.
However, in the case of a finite bounded solution (i.e., the limt→∞ z̄(t) <∞ of Proposition 4), the

upper tail of the distribution is kept from becoming asymptotically infinitesimal, and the growth
rate, g, converges to the innovation rate γ. Economically, the presence of a small (but strictly
positive) mass of firms arbitrarily close to the technology frontier induces the technology adoption
rate to keep pace. Otherwise, the benefits of technology adoption would diverge relative to the cost.
See the proof in Appendix A.7 for an explanation. We also label this sort of multiplicity as latent
growth, but recognize that the sign is negative—i.e., initial conditions are dragging the aggregate
growth rate to below the innovation rate.

Multiplicity of Both the Aggregate Growth Rate and the Innovation Rate: When
innovation is chosen by firms in Sections 4.1 and 4.2, a new source of multiplicity can emerge. In
the unbounded case, the innovation rate is unique since the incentives for innovation are independent
of the incentives for technology adoption, as z → ∞. Ultimately, the the option value → 0, and,
hence, there is no feedback from the distribution to the innovation rate of firms with large z, which
leads to uniqueness. In that case, the aggregate growth rate, g, may still have multiplicity for the
same reasons that it would in an exogenous innovation setup.

But when jumps are added to the distribution, and it becomes bounded, a new sort of hysteresis
enters: multiplicity of the aggregate innovation rate. Unlike the case of z̄ →∞, when the frontier
is bounded, the option value of technology diffusion at the frontier is strictly positive. This creates
feedback between the shape of the distribution (and the accompanying z̄ < ∞) and the choice of
γ(z̄). The stationary distributions can then be parameterized by z̄, the ratio of frontier productivity
to the mean of the distribution (Proposition 6).59 In this case, the support and the position of the
stationary distribution, as well as the growth rate, are parametrically determined by z̄.

If the distribution starts off very compact, with a relatively small z̄, then the option value of
technology diffusion at the frontier is relatively large, leading to less investment in innovation. On
the other hand, if the distribution starts off with a very large z̄, then the growth rate converges to
one with a higher innovation rate that maintains the more dispersed distribution. In all cases, the
bounded distribution leads to g = γ on a BGP.

C.2 Discussion of Firm Dynamics: Growth Rates Conditional on Size

As the intensity of innovation, γ(z), is increasing in z, the larger and more productive firms do the
most innovation. While the economics and model are very different, this is related to Acemoglu,
Aghion, and Zilibotti (2006) and Benhabib, Perla, and Tonetti (2014), who feature innovation rates
weakly increasing in a firm’s relative productivity. In our model, this is driven by the adoption
option value, in that agents closer to the endogenous adoption threshold have less incentive to invest
in incremental productivity enhancement and, accordingly, decrease their endogenous investment
in γ(z).

Because γ(z) is increasing, the growth rate conditional on being a high type is also increasing
in z. While this may appear to contradict Gibrat’s law and some modern evidence on non-Gibrat’s
growth, as surveyed in Sutton (1997) and modeled in Luttmer (2007) and Arkolakis (2015), consider
that: technology adoption is a key component of growth for small firms but is not measured by
γ; this model does not have endogenous exit, which is important for reconciling growth rates of
small firms; and the growth process is not an iid random walk, but has auto-correlation due to the
Markov chain.

The first consideration is that smaller firms at the adoption threshold are growing rapidly.
Therefore, the model does have small firms tending to grow faster than larger firms. Here, we

59Note, that unlike in Proposition 4, z̄ can be jointly solved with F ′`(0), using (72) and (73). In Proposition 6, z̄
can be chosen parametrically for various stationary distributions.
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have simplified the model to ensure that only a single adoption barrier exists and that firms make
immediate productivity jumps. With more frictions and heterogeneity leading to a continuum of
adoption barriers, the average growth rates might be more empirically plausible, while the same
economic forces present in this stark model would remain.

Second, many models investigating the empirics of Gibrat’s law have emphasized that the higher
growth rates for small firms are only conditional on survival. As small firms are more likely to exit,
this implies that the average growth rate for smaller firms in the sample is higher. As we have
purposely shut off exit in our model to focus on the interaction between adoption and innovation,
this effect is not present. Davis, Haltiwanger, and Schuh (1996) find that when selection into exit
and mean reversion in stochastic processes are taken into account, the inverse relationship between
size and growth can disappear. However, Arkolakis (2015) discusses how the inverse relationship
tends to still exist even after selection, and describes how the Davis, Haltiwanger, and Schuh (1996)
adjustment does not apply to random walks. Finally, due to the Markov chain process for growth,
there is auto-correlation of growth rates for firms. This is in contrast to growth being simply a
random walk, and, hence, the Davis, Haltiwanger, and Schuh (1996) results may still apply.

The model presented is stripped down for expositional purposes to highlight the importance
of finite frontiers and how adoption and innovation interact to generate productivity dispersion
and aggregate growth. Extensions such as directed adoption (Section 5), which determines the
conditional growth rate of adopters, may be necessary to better match firm dynamics in the panel
data.

Appendix D Data and Calibration

This section documents our calibration strategy using firm-level data, and presents further empirics
on the technology distribution.

D.1 More Empirics of the Technology Frontier

The slight downward movement in the aggregated Figure 15 might have been caused by composi-
tional changes. We should be cautious, however, due to the high volatility of these growth rates.

The question of stationarity is also important, as a non-stationary process would eventually
diverge (even with a mean 0 growth rate since the log of the ratio can never go below 0). To answer
that question, we will consider tests of stationarity, treating each SIC code as having its own time-
series. The first test to use is Kwiatkowski, Phillips, Schmidt, and Shin (1992) (i.e., KPPS), which
tests the null hypothesis of level-stationarity of the stochastic process. From the other side, we use
Phillips and Perron (1988) (i.e. PPerron), which tests the null hypothesis of a unit root.60 Using
the separate tests with opposite null hypothesis directions helps us better distinguish the degree of
certainty in our results.

See Figure 19 for a histogram of these test statistics across industries, and a further summary
in Technical Appendix Table 2. The results are that that KPSS accepts stationarity about 75% of
the time, while the Phillips-Perron rejects a unit root about 20% of the time.

The results, then, on stationarity are inconclusive. Analyzing both a finite-bounded, and a
finite-unbounded frontier are important and may apply under different conditions, but leave for
future research with better data a tighter sense of the conditions for divergence or stationarity of

60In both cases, the bandwidth (i.e., number of lags) is set to 4, which was calculated as the optimal bandwidth
selected using a Newey and West-style procedure. The PPerron test was chosen rather than Dickey Fuller-style tests
to be consistent with automatic-bandwidth selection of the KPSS test, and are more sensitive to the choice of lags).
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Figure 19: Histogram of Frontier Test Statistics (by SIC, 1990-2014)

the relative frontier.61

D.2 Transition Probabilities

The parameters for the transition rates are roughly calibrated from growth rates of firms in Com-
pustat. While this data source has significant selection issues, this is less of an issue for calibrating
growth rates and transitions (since our theory says that R&D based growth for incumbents is driven
by the upper tail of the distribution).

The data comes from Compustat from 1971-2014, for all firms with primary SIC 2000-3999.
We can use a longer-panel than the proxies for the frontier, since individual firm growth rates are
not sensitive to the bias on the calculation of percentiles with small samples. The demeaned yearly
growth rate in real revenue is calculated for each firm. Any firms with a growth rate > .05 are
assigned the high type, and others are assigned the low type.

Note that the transition matrix P for t years is etP . From the data, at yearly frequency, the
transition matrix of the changes in types is calculated and equated

exp

(
1.0×

[
−λ` λ`
λh −λh

])
=

[
0.74 0.26
0.55 0.45

]
The solution to this system of equations is λ` = 0.533074 and λh = 1.12766. While the transition
probabilities themselves are sensitive to the thresholds for choosing ` vs. h types, this has little
impact on the equilibrium itself.

61Another consideration is the role of regime-changes. Nearly all tests for stationarity are sensitive to regime
switches, and will bias towards rejection of stationarity in those cases. The aggregated time series in Figure 15
shows a likely regime shift around 1990, which led choosing the statistics in Figure 19 for data in 1990-2014. But it
is possible that industries have structural breaks in the frontier at different times within the 1990-2014 sample, as
would be uncovered by tests such as Perron and Vogelsang (1992).
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D.3 Tail Parameters

When looking at a more realistic model with product differentiation, Technical Appendix (G.24)
shows how higher markups lead to changes in the tail parameter of the size distribution, α̂, com-
pared to the underlying productivity distribution. With the α generated by the model, Technical
Appendix (G.30) shows a rough adjustment of α = ($ − 1)α̂ is necessary to compare to the tail
parameter in the data, where $ is the elasticity of substitution. If $ = 3, as in Perla, Tonetti, and
Waugh (2015), then markups are 50%, and an α = 2.12 corresponds to the α̂ = 1.06 tail parameter
in the size or profits distribution—as used in Luttmer (2007)

D.4 Bargaining Power

From Kemmerer and Lu (2012), the reported royalty rates (i.e., the proportion of profits a licensor
must pay for the intellectual property) from a data source called RoyaltySource are heterogeneous
between industries, ranging between roughly 4% and 13%, with a median royalty rate of 5%.

In our model, from (94), the surplus going to the licensor is (1−ψ)(v`(z)−v(0)). If v`(z)� v(0),
such as the adoption of a frontier technology, then this translates to a ψ = .95 to match the royalty
rate. The effective royalty rates for technologies with lower z̄ diminish towards 0 due to the role of
the outside option.

As we suspect that royalty rates that are actually reported are skewed towards those with
enforceable IP near the frontier, we use the ψ = .95 parameter and do a robustness check to test
the sensitivity.

D.5 Frontier Productivity

The frontier productivity depends on the interpretation and selection by industry. Two approaches
to consider:

TFP from Industry Studies Syverson (2011) surveys the evidence on productivity dispersion.
Within the US, the ratio of the top to the bottom decile is approximately 1.92:1 . This provides a
minimum bound on productivity differences, implying a z̄ of at least 0.651. Within places such as
China and India, Hsieh and Klenow (2009) finds the ratio is closer to 5:1, or a minimum z̄ of 1.61.

One consideration is that this data tends to rely on fairly homogeneous manufacturing industries,
where TFP can be easily compared. Hence, it is likely to significantly underestimate productivity
dispersion for more differentiated industries such as the services sector. Another consideration is
that adoption in our model isn’t necessarily about remaining in narrowly defined industries, and
perhaps revenue TFP should be pooled across industries when considering the dispersion.

Firm Size Distribution An alternative approach is to use the values calculated in Section 6.
From Table 1, the proxy for z̄ ≈ log (90th percentile/10th percentile) is around 4.2 across 416
industries from 1980-2014. If all industries are pooled, as in Figure 15, then z̄ is closer to 6.

D.6 Calibration Summary

The calibration and targets for our baseline model are documented in Table 4.
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Parameters Value/Target Calibration

{λ`, λh} {0.533074, 1.12766} Matches estimation of 2 state Markov transition matrix for
firm growth rates using Compustat with firms in SIC 2000-
3999

ψ 0.95 Matches median 5% royalties of large firms reported from
RoyaltySource in Kemmerer and Lu (2012)

Λ 1 Log utility baseline
ρ 0.01 Target interest rate r = .03 when g = 0.02
{χ, ζ} g = 0.02 and α = 2.12 Targets 2% growth rate, and an underlying tail parameter

of the firm size distribution of 1.06 (which translates to α =
2.12 using the rough adjustment implied by monopolistic
competition). Note: The growth rates are a function of ψ
and other parameters which are calibrated separately.

{z̄, η} z̄ ∈ [0.651,∞] If η = 0, then z̄ is set large enough for numerical stability to
approximate ∞ (keeping in mind that ez̄ is the actual mul-
tiplier on productivity of the frontier, so z̄ = 3.0 translates
to a ratio of productivity of the frontier to the threshold of
20.1.) See Syverson (2011) and Appendix D for discussion
of bounds.

κ̄ 1 Simple baseline
θ̄ 0 Simple baseline

Table 4: Summary of Calibration
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