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ABSTRACT

We estimate the causal effect of each county in the U.S. on children's earnings and other
outcomes in adulthood using a fixed effects model that is identified by analyzing families who
move across counties with children of different ages. Using these estimates, we (a) quantify how
much places matter for upward mobility, (b) construct predictions of the causal effect of growing
up in each county that can be used to guide families seeking to move to opportunity, and (c)
characterize which types of areas produce better outcomes. For children growing up in low-
income families, each year of childhood exposure to a one standard deviation (SD) better county
increases income in adulthood by 0.5%. Hence, growing up in a one SD better county from birth
increases a child's income by approximately 10%. There is substantial local area variation in
children's outcomes: for example, growing up in the western suburbs of Chicago (DuPage
county) would increase a given child's earnings by 30% relative to growing up in Cook county.
Counties with less concentrated poverty, less income inequality, better schools, a larger share of
two-parent families, and lower crime rates tend to produce greater upward mobility. Boys'
outcomes vary more across areas than girls, and boys have especially poor outcomes in highly
segregated areas. One-fifth of the black-white earnings gap can be explained by differences in the
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generate good outcomes but are not very expensive.
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I Introduction

How are children’s economic opportunities shaped by the neighborhoods in which they grow up? In
the first paper in this series (Chetty and Hendren 2016), we presented quasi-experimental evidence
showing that neighborhoods have significant childhood exposure effects on children’s life outcomes.
Although those results show that place matters for intergenerational mobility, they do not tell us
which areas produce the best outcomes, nor do they identify the characteristics of neighborhoods
that generate good outcomes — two key inputs necessary for developing place-focused policies to
improve upward mobility.

In this paper, we build on the exposure-time design developed in our first paper to estimate the
causal effect of each county in the U.S. on children’s earnings in adulthood. Formally, our first paper
identified one treatment effect — the average impact of exposure to an area where children have
better outcomes — while this paper pursues the more ambitious goal of identifying (approximately)
3,000 treatment effects, one for each county in the country. We use these estimates to (a) quantify
the magnitude of place effects, (b) construct predictions of the causal effect of growing up in
each county that can be used to guide families seeking to move to opportunity, and (c) study the
characteristics of areas that produce high levels of upward mobility to shed light on the types of
place-based policies that could improve upward mobility.

We estimate the causal effects of counties by analyzing families who move across counties using
data from de-identified tax returns spanning 1996-2012, the same sample used in our first paper. We
estimate each county’s effect using a fixed effects regression model that is identified from variation
in the ages of children when families move. To understand how the model is identified, consider
families in the New York area. If children who moved from Manhattan to Queens at younger ages
earn more as adults, we can infer that Queens has positive childhood exposure effects relative to
Manhattan under the assumption that other unobservable determinants of children’s outcomes are
unrelated to the age at which they move. Building on this logic, we use our sample of cross-county
movers to regress children’s earnings in adulthood on fixed effects for each county interacted with
the fraction of childhood spent in that county. We estimate the county fixed effects separately
by parent income level, permitting the effects of each area to vary with family income. We also
include origin by destination fixed effects when estimating this model, so that each county’s effect
is identified purely from variation in the age of children when families make a given move rather

than variation in where families choose to move.
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The key assumption required to identify the county fixed effects using this research design is
that children’s potential outcomes are orthogonal to the age at which they move to a given county.
This assumption is motivated by the evidence in our first paper showing that the age at which
children move to an area with better outcomes (based on permanent residents) appears to be
orthogonal to other determinants of their outcomes. However, it is a stronger requirement than
the condition required to identify average exposure effects in the first paper because it imposes
3,000 orthogonality conditions — one for each county — rather than a single orthogonality condition
that must hold on average. We assess the validity of this stronger identification assumption using
two approaches. First, we show that controlling for parental income levels and marital status in
the years before and after the move — which are strong predictors of children’s outcomes — does
not affect the estimates, supporting the view that our estimates are not confounded by selection
on other determinants of children’s outcomes. Second, we implement a placebo test by analyzing
parents who move after their children turn 23, the point at which neighborhood exposure no longer
appears to affect children’s outcomes based on the evidence in our first paper. The county fixed
estimates obtained from this placebo sample are uncorrelated with our baseline estimates, and we
cannot reject the null hypothesis that there are no “place effects” using these placebo moves.

We use the estimated county effects for three purposes. First, we quantify how much neigh-
borhoods matter for children’s earnings using a variance decomposition. Treating the estimated
county effects as the sum of a latent causal effect and noise due to sampling error, we estimate
the signal variance of neighborhood effects by subtracting the portion of the variance due to noise
from the total variance. For a child with parents at the 25th percentile of the national income
distribution, we find that spending one additional year of childhood in a one SD better county
(population weighted) increases household income at age 26 by 0.17 percentile points, which is
approximately equivalent to an increase in mean earnings of 0.5%. Extrapolating over 20 years of
childhood, this implies that growing up in a 1 SD better county from birth would increase a child’s
income in adulthood by approximately 10%.

Neighborhoods have similar effects in percentile rank or dollar terms for children of higher-
income parents, but matter less in percentage terms because children in high-income families have
higher mean earnings. For children with parents at the 75th percentile of the income distribution,
the signal SD of annual exposure effects across counties is 0.16 percentiles, which is approximately
0.3% of mean earnings. Importantly, we find that the areas that generate better outcomes for

children in low-income families tend to generate slightly better outcomes for children in high-



income families as well on average. This result suggests that the success of the poor does not have
to come at the expense of the rich.

In the second part of the paper, we construct predictions of the causal effect of growing up in each
county that can be used to guide families seeking to move to better areas. Formally, we construct
predictions that minimize the mean squared-error (MSE) of the true impact of growing up in a
given neighborhood relative to the predicted impact. Although the raw county fixed effects provide
consistent estimates of county’s causal effects, they do not themselves provide good predictions
because many of the estimates have substantial noise, leading to high MSE. In counties with very
large populations, such as Cook County in Chicago, 75% of the variance in the fixed effect estimate
is signal and hence the fixed effect itself is quite informative. However, in most counties, which are
significantly smaller, more than half of the variance in the fixed effect estimates is due to noise.

To obtain predictions that have lower MSE, we use a shrinkage estimator that brings in data
on the permanent residents’ (non-movers) outcomes in each area. The permanent residents’ mean
outcomes have very little sampling error, but are imperfect predictors of a county’s causal effect
because they combine causal effects with sorting. The best (MSE-minimizing) linear prediction
of each county’s causal effect is therefore a weighted average of the fixed effect estimate based on
the movers and a prediction based on permanent residents’ outcomes. The weights depend on
the precision of the fixed effect estimate. In large counties, where the degree of sampling error
in the fixed effect estimates is small, the optimal forecast puts most of the weight on the fixed
effect estimate based on the movers. In smaller counties, where the fixed effects estimates are very
imprecise, the optimal forecast puts more weight on the predicted outcome based on the permanent
residents. The county-level forecasts obtained from this procedure have substantially lower MSE
than the raw fixed effects and yield unbiased forecasts of the impacts of each county in the sense
that moving a child to a county with a 1 percentile higher predicted effect will increase that child’s
earnings in adulthood by 1 percentile on average.!

The county-level forecasts identify the best and worst areas in the U.S. in terms of their causal
effects on upward mobility. Each additional year that a child spends growing up in DuPage County,
IL — the highest-ranking county in terms of its causal effect on upward mobility among the 100

largest counties — instead of the average county raises his or her household income in adulthood by

!Conditional on permanent residents’ outcomes, including other predictors — such as racial demographics, poverty
rates, or other observable neighborhood characteristics — does not reduce the MSE of the forecasts appreciably. In
this sense, the simple approach of taking a weighted average of the fixed effect based on movers and the permanent
residents’ outcomes provides an optimal forecast of neighborhood effects given currently available data.



0.80%. This implies that growing up in DuPage County from birth — i.e., having about 20 years of
exposure to that environment — would raise a child’s earnings by 16%. In contrast, every extra year
spent in Cook County — one of the lowest-ranking counties in the U.S. — reduces a child’s earnings
by 0.64% per year of exposure, generating an earnings penalty of approximately 13% if one grows
up there from birth.? Hence, moving from Cook County (the city of Chicago) to DuPage County
(the Western suburbs) at birth would increase a child’s earnings by 30% on average.?

Neighborhoods matter more for boys than girls: the signal standard deviation of county-level
effects is roughly 1.5 times larger for boys than girls in low-income (25th percentile) families. The
distribution has an especially thick lower-tail for boys, as counties with high concentrations of urban
poverty such as Baltimore and Wayne County in Detroit produce extremely negative outcomes for
boys but less so for girls. There are also significant gender differences related to marriage rates. For
example, the San Francisco area generates high levels of individual earnings for girls, but produces
lower levels of household income because growing up in San Francisco reduces the probability that
a child gets married.

Our estimates of the causal effects of counties and commuting zones (CZs) are highly correlated
with the observational statistics on intergenerational mobility reported in Chetty et al. (2014) —
as expected given the findings in our first paper — but there are many significant differences. For
example, children who grow up in New York City have above-average rates of upward mobility, but
the causal effect of growing up in New York City on upward mobility — as revealed by analyzing
individuals who move into and out of New York — is below the national average. This is because
families who live in New York tend to have high rates of upward mobility for other reasons unrelated
to place. In particular, New York has a large share of immigrants, and immigrants tend to have
high rates of upward mobility. More generally, this example illustrates the importance of estimating
the causal effect of each area directly as we do in this paper rather than focusing exclusively on
average neighborhood exposure effects as in our first paper.

Why do some areas produce much higher rates of upward income mobility than others? In

the third part of the paper, we take a step toward answering this question by identifying the

2These estimates are based on data for children born between 1980-86 and who grew up in the 1980’s and 1990’s.
We find that neighborhoods’ effects generally remain stable over time, but some cities have presumably gotten better
in the 2000’s, while others may have gotten worse.

3Interestingly, many families involved in the well-known Gautreaux housing desegregation project moved from
Cook county to DuPage county. The Gatreaux project was not designed as a randomized controlled trial, but
observational studies have shown that it appears to have led to large economic gains for these families and their
children (Rosenbaum 1995). Our results support the view that much of the gain experienced by the children of the
families who moved were due to the causal effect of exposure to better neighborhoods.



characteristics of areas that generate the best outcomes. A large body of research has shown that
in observational data, children’s outcomes are highly correlated with a variety of area-level factors
including segregation, income inequality, school quality, social capital, the fraction of single-parent
families, and racial demographics (Wilson 1987a, Sampson et al. 2002, Chetty et al. 2014). However,
it is unclear whether these correlations are driven by the causal effects of place or selection effects
(sorting). For instance, is growing up in a less segregated area beneficial for a given child or do
families who choose to live in less segregated areas simply have better unobservable characteristics?
We use our causal fixed effect estimates to decompose the correlations documented in prior work
into causal vs. sorting components. We correlate each area characteristic with both our causal effect
estimates (adjusting for noise using the signal to noise ratio) and permanent residents’ outcomes,
which combine both the causal effect and selection effects. We consider each of the characteristics
analyzed by Chetty et al. (2014) in turn.

We find that most of the correlation between low-income children’s outcomes and measures of
racial and income segregation is driven by the causal component. For example, across CZs, the
(population-weighted) correlation between a Theil index of racial segregation and the causal effect
of an area on children’s earnings for families at the 25th percentile is -0.51. This estimate implies
that 80% of the association between segregation and children’s outcomes for permanent residents
in observational data is driven by the causal effect of place and only 20% is due to sorting.* Urban
areas, particularly those with concentrated poverty and high rates of crime, generate much worse
outcomes for low-income children than suburbs and rural areas. Together, these findings strongly
support the view that growing up in an urban “ghetto” reduces children’s opportunities for upward
income mobility, consistent with prior work (e.g. Massey and Denton 1993, Cutler and Glaeser
1997).

Areas with greater income inequality — as measured by the Gini coefficient or top 1% income
shares — also have significantly more negative causal effects on low-income children’s earnings. These
findings imply that the robust negative correlation between inequality and mobility documented
in prior work — coined the “Great Gatsby curve” by Krueger (2012) — is not simply driven by
differences in genetics or other characteristics of populations in different areas. Rather, putting
a given child in an economy with higher levels of inequality makes that child less likely to rise

up in the income distribution. The negative correlation between the causal effects and top 1%

4This result does not necessarily imply that reducing segregation in a given area will improve children’s outcomes.
Other factors associated with less segregation (e.g., better schools) could potentially be responsible for the gain a
child obtains from moving to a less segregated area.



shares contrasts with the findings of Chetty et al. (2014), who find no correlation between top 1%
shares and observed rates of upward mobility. We find that low-income families who live in areas
with large top 1% shares (such as New York City) are positively selected, masking the negative
association between top 1% shares (upper tail inequality) and the causal effect of places of upward
mobility in observational data.

As with segregation and inequality, we find that the observational correlation of upward mobility
with measures of school quality, such as student-teacher ratios and dropout rates, and proxies for
social capital, such as crime rates and Rupasingha and Goetz’s (2008) summary index, is driven
primarily by a correlation with the causal effect of the place rather than sorting. That is, moving
to a place with higher quality schools or more social capital improves a given child’s outcomes.

Correlations with observed rates of upward mobility diverge more sharply from correlations
with the causal effect for variables that are aggregations of individual characteristics and hence are
more likely to capture selection. For example, the fraction of single parents is the single strongest
predictor of differences in upward mobility for permanent residents across areas. However, the
fraction of single parents — although still a significant predictor — is less highly correlated with CZs’
causal effects than income segregation, the Gini coefficient, and the social capital index. This is
because nearly half of the association between permanent residents’ outcomes and the fraction of
single parents is due to selection.

Similarly, areas with a larger African-American population tend to substantially have lower
rates of upward mobility. Roughly half of this association is also driven by selection, consistent
with Rothbaum (2016). Nevertheless, the correlation between the causal effects of place and the
African-American share remains substantial (-0.51 across CZs, -0.32 across counties within CZs).
This result implies that place effects amplify racial inequality: black children have worse economic
outcomes partly because they grow up in worse neighborhoods. Our estimates imply that one-fifth
of the black-white earnings gap can be explained by differences in the counties where blacks and
whites grow up.’

Finally, we evaluate how much more one has to pay for housing to live in an area that generates
better outcomes for one’s children. Within CZs, counties that offer better prospects for children
have slightly higher rents, especially in highly segregated cities. However, rents explain less than

10% of the variance in county’s causal effects for families at the 25th percentile.® This result has

®We find qualitatively similar results when examining variation across CZs and across counties within CZs, but
the correlations with causal effects are smaller and sorting components are larger at the county level.
SBetween CZs, the correlation with house prices and rents is negative, as rural areas have low house prices and



two important policy implications. First, it suggests that encouraging low-income families move
to more expensive areas — for instance by using “small area” fair market rents in housing voucher
programs — may not significantly improve their outcomes. Distinguishing between causal effects
and permanent residents outcomes is critical in uncovering this result. Counties with higher rents
do have higher rates of upward mobility in observational data, but this is almost entirely due to
positive selection of the types of families who live in more expensive areas.

Second, this finding suggests that many areas are “opportunity bargains,” in the sense that
they promote upward mobility without having higher housing prices.” For example, in the New
York metro area, Hudson County, NJ offers much higher levels of upward mobility that Manhattan
or Queens despite having comparable rents during the period we study. To understand the source
of these opportunity bargains, we divide our causal county effects into the component that projects
onto observable factors such as poverty rates and high school dropout rates and the residual “un-
observable” component. We find that only the observable component is capitalized in rents and
house prices, suggesting that the opportunity bargains may partly arise because families lack the
information to identify which neighborhoods have the highest value-added. This result underscores
the value of using an outcome-based approach — measuring neighborhood quality using data on
long-term outcomes — relative to the traditional approach of using ex-ante characteristics such as
poverty rates to define neighborhood quality (e.g., Jencks and Mayer 1990, Sampson et al. 2002).

Overall, the findings in this paper provide support for place-focused approaches to improving
economic opportunity, both by helping families move to opportunity and through place-based
investments. There is substantial scope for households to move to areas within their labor market
(CZ) that produce better outcomes for children without paying higher rents, and our forecasting
approach using data on movers’ outcomes provides a practical method to identify such areas. In
addition, we find that areas that produce high levels of upward mobility have a systematic set
of characteristics, such as less residential segregation and greater social capital. Although these
correlational results do not provide policy prescriptions for how to improve opportunity, the fact
that high-mobility places share many common characteristics suggests that their successes might
be replicable in areas that currently offer lower levels of opportunity.

The rest of the paper is organized as follows. In Section II, we briefly summarize the data,

tend to produce better outcomes. Since most families are likely to choose where to live within a labor market, the
within-CZ correlation is more relevant from a policy perspective.

TOf course, the areas that are “opportunity bargains” in rents may come with other disamenities — such as longer
commutes to work — that might make them less desirable. Our point here is simply that housing costs themselves
are not necessarily a deterrent to moving to opportunity.



focusing on differences relative to the sample used in the first paper (Chetty and Hendren 2016).
In Section III, we use a statistical model to formalize our empirical objectives. Section IV reports
the baseline fixed effect estimates and assesses their robustness. Section V quantifies the magnitude
of place effects, Section VI presents the CZ- and county-level forecasts, and Section VII studies the
characteristics of places that generate better outcomes. Section VIII presents the results on house
prices and opportunity bargains. Section IX concludes. Estimates of causal effects by county and

CZ and related covariates are available on the Equality of Opportunity Project website.

II Data

Our data source parallels that of Chetty and Hendren (2016) and Chetty et al. (2014). We refer
readers in particular to Chetty and Hendren (2016) for a detailed discussion of the data. Our
primary outcome of interest is the child’s income rank in their national cohort at age 26.8 We also
consider alternative outcome measures, including college attendance, individual income rank, and
levels (as opposed to rank) of family and individual income.

Following Chetty and Hendren (2016), we construct estimates of place effects that vary with
the parental family income rank, p(i). We primarily use data from the 1980-88 cohorts, denoted
by s (i). As outcomes will be measured at fixed ages but in different years, it will also be important
to control for the child’s cohort. For each child and year, we assign a county and CZ location based
on the Zip Code from which the family files an income tax return or to which their information
returns (e.g. W-2s) are addressed.

We estimate the causal effect of each place using the sample of families who move exactly once
when their child is at or below age 23. This restriction to 1-time movers is motivated by the finding
in Chetty and Hendren (2016) that the patterns are similar when focusing on multiple movers.
However, in contrast to the baseline analysis of Chetty and Hendren (2016), we do not impose
additional sampling restrictions such as requiring moves to be further than 100 miles or that moves
be to or from places with populations above 250,000. This is for two reasons. First, in contrast
to Chetty and Hendren (2016), our primary specifications do not involve regressing child outcomes
on forecasted outcomes based on permanent residents. As a result, we do not require the ability to

construct precise measures of these permanent resident outcomes.? Second, including more places

8In Appendix Figure I, we document that the cross-CZ variation in outcomes of children who grow up in each CZ
(the “permanent resident” sample in Chetty and Hendren (2016)) measured at age 26 is correlated at 0.93 with their
outcomes measured at age 32, which suggests the spatial pattern of fixed effects for incomes at age 26 are likely to
be informative about impacts at later ages as well.

9See Online Appendix B in Chetty and Hendren (2016) for a detailed discussion of the impact of measurement
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and shorter distance moves increases the connectedness of the graph of moves across the U.S.,
thereby reducing estimation error for each fixed effect below. We report estimates for CZs with
populations above 25,000 and counties with populations above 10,000 in the 2000 Census.

Table I presents the summary statistics of the CZ and county movers sample. We have a sample
of 1,869,560 children whose parents move 1-time across CZs in our sample window and for whom
we observe income at age 26. We have a sample of 1,323,455 children whose parents move across
counties within CZs in our sample window and for whom we observe income at age 26. Mean child
income at 26 is $31,559 in our CZ movers sample and 32,985 in our county movers sample in 2012

dollars, deflated using the CPI-U.

III Estimation Framework and Identification Assumptions

ITII.A  Setup

We estimate place effects using an exposure-effect model that is motivated by the empirical pat-
terns documented in Chetty and Hendren (2016). Let y; denote the child’s earnings (or other
outcome) in adulthood, measured at age T. We model y; as a function of three factors: the neigh-
borhoods in which he grows up, disruption costs of moving across neighborhoods, and all other
non-neighborhood inputs, such as family environment and genetics.

Child ¢ is raised in place c¢(i,a) for each age of childhood, a = 1,...,A where A < T. Let
e denote the causal effect of one additional year of exposure to place ¢ on the child’s outcome
y;. Motivated by the evidence of linear childhood exposure effects in Chetty and Hendren (2016),
we assume that the exposure effect u. is constant for ages a < A and is zero thereafter. In our
empirical application, we permit place effects p,. to vary with parental income p(i), but we suppress
the parental income index in this section to simplify notation. Let k denote the cost of moving
from one neighborhood to another during childhood (e.g., due to a loss of connections to friends
or other fixed costs of moving). Finally, let 6; denote the impact of other factors, such as family
inputs. The parameter 0; captures both time-invariant inputs, such as fixed impacts of genetic
endowments, and the total level of time-varying parental investments during childhood.

Combining the effects of neighborhoods, disruption effects of moving, and all other factors, the

child’s outcome y; is
A

Y = Z [,uc(m) + kl{c(i,a) #c(i,a — 1)}} 4 0; (1)

a=1

error in permanent resident outcomes on their analysis.



The production function for y; in (1) imposes three substantive restrictions that are relevant for
our empirical analysis. First, it assumes that neighborhood effects . do not vary across children
(conditional on parent income and other observables that we consider in our empirical application,
such as gender). For instance, it assumes that neighborhood effects are the same for movers
and non-movers. Second, it assumes that place effects are additive across ages, i.e. there are no
complementarities between neighborhood quality across years. Third, it assumes that the disruption
costs of moving x do not vary across neighborhoods or the age of the child at the time of the move.'°

The objective of this paper is to identify i = {u.}, the causal exposure effect of spending
a year of childhood in each area (commuting zone and county) of the U.S. One way to identify
i would be to randomly assign children of different ages to different places and compare their
outcomes, as in the Moving to Opportunity experiment Chetty et al. (2016). Since conducting
such an experiment in all areas of the country is infeasible, we develop methods of identifying place

effects in observational data.

III.B Identification of Place Effects in Observational Data

Building upon the approach in Chetty and Hendren (2016), we identify [ by exploiting variation
in the timing of when children move across areas. For simplicity, we restrict attention to children
who move exactly once during childhood. To understand the intuition underlying our approach,
consider a set of children who move from the same origin o (e.g. New York) to the same destination
d (e.g. Boston). Suppose that children who make this move at different ages have comparable
other inputs, #;. Then one can infer that Boston has a higher causal effect than New York if the
outcomes of children who move at younger ages are better than those who move at later ages.

We combine information from all such pairwise comparisons in our data to estimate each place’s

effect using the following fixed effects specification:
Yi = €ifl + Qod + €i, (2)

where €; = {e;.} is a vector of length N, with entries denoting the number of years of exposure

child i has to place c. Letting m; denote the age of the child at the time of the move, e;. is given

10The model can be extended to allow the disruption cost to vary with the neighborhood to which the child moves,
or to allow the disruption cost to vary with the age of the child at the time of the move. Neither extension would affect
the results. The key requirement for identification of u. is that the disruption cost does not vary in an age-dependent
manner across neighborhoods.

10



By including origin-by-destination (a,q) fixed effects in (2), we identify i purely from variation
in the timing of moves (rather than comparing outcomes across families that moved from or to
different areas).!! The key identification assumption required to obtain consistent estimates of ji

by estimating (2) using OLS is a standard orthogonality condition.

Assumption 2. Conditional on «,q, exposure time to each place, €;, is orthogonal to other

determinants of children’s outcomes:

Cov(e;,e;c) = 0 Ve.

Assumption 2 requires that children with different exposure times to different places do not sys-
tematically differ in their other inputs, ¢;, conditional on an origin by destination fixed effect. This
assumption is a stronger version of Assumption 1 in Chetty and Hendren (2016). Chetty and Hen-
dren (2016) established that exposure to better places as measured by the outcomes of permanent
residents is not correlated with ¢;. Assumption 2 extends this identification assumption to require
that the amount of exposure to every place satisfies this orthogonality condition. We provide
evidence supporting this stronger identification assumption in Section IV.D after presenting our

baseline results.

IV Fixed Effect Estimates

IV.A Estimating Equation

We estimate place effects for each CZ and county in the U.S. using data that spans a range of
cohorts and parental income backgrounds. As documented in Chetty and Hendren (2016) and
Chetty et al. (2014), spatial patterns of mobility differ across the parental income distribution. To
account for heterogeneity in the causal effects of places across the parental income distribution, we
extend the model in Section III to allow place effects to vary linearly in a child’s parental income,

p (7). We denote the causal effect of place ¢ for child parental income p by

Hpc = M(c) + Hip

"The fixed effects i are only identified up to the normalization that the average place effect is zero, F [u.] = 0,
because €; has rank N. — 1. Intuitively, using movers to identify place effects allows us to identify the effect of each
place relative to the national average.

11



where 10 and p! are the intercept and slope of each place’s causal effect.

We account for the fact that our data pools across cohorts 1980-1988 by adding controls to the
fixed effects in equation (2) for a child’s cohort, s (i).'2 We let Qodps denote controls for a child’s
origin (o(i) = o), destination (d (i) = d), parental income (p (i) = p), and cohort, (s (i) = s).
Equation (2) is then given by

yi = (A—my) Z (el {d (i) = ¢} — ppel {0 (i) = c}) + Qodps + € (3)

C
We flexibly approximate agps using origin-by-destination fixed effects linearly interacted with
parental income rank, along with origin and destination effects interacted linearly with income and
a quadratic in the child’s cohort. Appendix A provides the precise equation for a,gps in our county

and CZ estimation.
IV.B Baseline Results

Directly estimating the set of 1,400+ fixed effects for each CZ (3,000+ for each county) in equation
(3) is not feasible due to computational constraints. We therefore use a multi-step procedure to
estimate these fixed effects. To begin, we estimate the fixed effects for each of the 741 CZs in
two steps, outlined in detail in Appendix A. We first estimate equation (3) separately for each
origin-destination pair, {0 (i) = o,d (i) = d}. This yields an estimate of the exposure effect for each
origin relative to each destination. We then regress these on a design matrix to recover each CZ’s
fixed effect. Finally, we normalize this CZ estimate to have mean zero across CZs by weighting by
population in the 2000 Census so that each fixed effect corresponds to the causal effect of the CZ
relative to an average CZ. This yields our estimated fixed effects in equation (3) for each CZ.

For the county-level estimates, we again cannot directly estimate the 3,000+ fixed effects in
equation (3). However, within each CZ there are a smaller number of counties so that one can
estimate the fixed effects directly using the sample of 1-time movers across counties within a CZ.
We normalize these estimates to have population-weighted mean zero across counties within each
CZ by weighting by population in the 2000 Census. This provides an estimate of the causal effect
of each county relative to an average county within the CZ. Finally, to form our baseline county-
level estimates of the fixed effects in equation (3), we add the CZ-level causal effect estimate to
the county-within-CZ estimate. This yields an estimate of the county’s causal effect relative to an

average county in the U.S.

12Because we measure outcomes of the child at a fixed age, these controls also capture effects of local labor market
fluctuations and other sources of potentially confounding variation across years.

12



Figure 1, Panel A, presents the fixed effect estimates for each CZ for children in below-median
income families (p = 25), highlighting estimates for CZs with more than 2.5M residents. For
example, we estimate that every year of exposure to Cleveland, OH increases a child’s income rank
by 0.12 percentiles (s.e. 0.10) relative to an average CZ. Conversely, every year of exposure to Los
Angeles decreases a child’s income rank by -0.17 percentiles (s.e. 0.043) relative to an average CZ.
When combined, this suggests that each year of exposure to Cleveland instead of Los Angeles raises
a child’s income rank by 0.29 percentiles.

To interpret the percentile magnitudes, we scale these percentile changes to reflect the dollar-
per-year increases in child earnings at age 26.'> We estimate that one percentile in earnings
corresponds to roughly $818 of earnings at age 26, which is 3.21% of mean earnings of $26,091
for children with below-median income parents. In this sense, one year of exposure to Cleveland
instead of Los Angeles raises a child’s income by roughly 0.9%.

Panel B of Figure 1 presents the estimates for each county in the US, highlighting estimates
from the New York and Newark CZ with county populations above 500K. We estimate that every
year of exposure to the Bronx, NY lowers one’s income by 0.23 percentiles, fio5 Brons = —0.23 (s.e.
0.10), relative to an average county. Across the river in Hudson, NJ, we estimate each year of
exposure increases a child’s income by 0.25 (s.e. 0.19) percentiles, fi25 fudson = 0.25. Combining,
each year of exposure to Hudson, NJ relative to the Bronx increases a child’s income rank by 0.48,

or roughly 1.5%.

IV.C Relation to Permanent Residents

The estimates of the causal effect of a place can differ from the observed outcomes of permanent
residents in that place because of sorting of permanent residents to different places. In the language

of the model in equation (1), permanent resident outcomes are given by

gpc = Aﬂpc + épc (4)

13To construct this number, we take the mean income of permanent residents in each CZ for parents at each income
percentile, gjf;c. We then regress gﬁc on the mean rank outcomes, g across CZs for each parent income rank, p. This
yields a coefficient of $818 for p = 25, suggesting that each additional income rank corresponds to an additional $818
of earnings at age 26. For p = 75, regressing incomes, g?s,c, on ranks, 75, yields a coefficient of $840.

An alternative methodology to arrive at income increases would have been to directly estimate the place effects on
income as opposed to ranks. These estimates are provided in the online data tables. Appendix Table I rows 11 and
12, shows the correlation of the resulting estimates of pp. for income with our baseline rank estimates and illustrates
they are very highly correlated. However, they contain considerably greater sampling uncertainty given the high
variances in income outcomes. Indeed, we are unable to estimate a point estimate for the variance of place effects
on income at the county level for p = 25 using this methodology. Trimming outliers restores the ability to estimate
the place effect for incomes, but such trimming is arbitrary; therefore we focus on rank outcomes as our baseline
methodology.
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where A is the cumulative effect of childhood exposure and 6,. = E [6;]p (i) = p, c (i, t) = ¢ V1]
is the average of the other inputs, 6;, that is obtained by permanent residents of location ¢. Chetty
and Hendren (2016) finds that moving to places where permanent residents do better improves
children’s outcomes in proportion to exposure time to the place. In the notation of the model,
Chetty and Hendren (2016) establishes that:

dE [ppelGpe] _

diJpe

where 1y, is roughly 0.035 to 0.04 for CZs for all p.

To translate this result into the present setting, the horizontal axis in Figure 1 shows how the
estimates of causal effects relates to the observed outcomes of permanent residents. A regression
of figs.c on Yo5 . yields a slope of y95 = 0.037 (s.e. 0.003), illustrated as the solid line in Figure
1, Panel A. On average, one year of exposure to a CZ with a 1 unit higher permanent resident
outcome produces 0.037 units higher outcomes.

Although the correlation between . and pi. is high, there is significant variation in p,. even
conditional on the outcomes of permanent residents, ¥,.. The examples of Cleveland and Los
Angeles illustrate this point. Outcomes of permanent residents in Cleveland are lower than those
in Los Angeles. But, our causal estimates suggest that on average exposure to Cleveland produces
higher outcomes than exposure to Los Angeles. In this sense, looking solely at the geographic
patterns of intergenerational mobility of permanent residents, ¥,., can provide a misleading picture
of the causal impacts of these places. This is the fundamental motivation for the construction of

the causal estimates, 1i,., provided in this paper.
IV.D Validating the Identification Assumption

The estimates suggest places play a significant role in shaping children’s earnings in young adult-
hood. But, as formalized in Assumption 2, interpreting these estimates as causal effects requires
that there is not a correlation between the parent’s choice of exposure, e;, and other inputs, 6; ,
after conditioning on a fixed effect of origin, destination, parent income, and cohort, agps-
Chetty and Hendren (2016) provides an in-depth validation of the exposure effect design for
measuring the causal effect of an additional year of exposure to places in which permanent residents
have higher outcomes. They show that other factors affecting the child’s outcomes, 6;, are not
correlated with the average causal effect of place conditional on g,.. Using Figure 1 as an illustration
of this result, Chetty and Hendren (2016) establish that the line reflecting E [jtpe|Upc] reflects the

average causal effect across places ¢ that have a given level of ..
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However, Assumption 2 is stronger. It requires exposure to each place, ¢, be orthogonal to 6;
after conditioning on agps. The key concern is that the deviation of the estimates, ji,. from the line
reflecting E [fipe|ype] does not reflect the causal effect of place. A priori, it is difficult to tell a story
where there is sorting to particular places, ¢, that does not generate systematic sorting to places
in which permanent residents are doing better or worse. But, Figure 1 can illustrate graphically
what must be the case if we have a violation of Assumption 2 but still satisfy the validity of
Assumption 1 in Chetty and Hendren (2016). To illustrate, consider a below-median income (p25)
family moving between Washington, DC and Los Angeles, CA. As shown in Figure 1, both CZs
have similar outcomes for permanent residents at p25. But, we estimate that an additional year of
exposure to DC improves outcomes relative to exposure to LA. One potential confounding story
would be that the set of families that chose to move to DC versus LA when their kids are young
versus old are also providing other inputs to their children (selection bias). Another story is that
something happens to families who choose to move to DC versus LA (e.g. positive income shocks)
and its those shocks that are affecting children in proportion to their exposure to the place. The
key is that whatever these patterns are, they must not lead to systematic sorting to places in which
permanent residents are doing better or worse. Such patterns are arguably unlikely, but here we
present results from a series of additional controls and placebo specifications that provide support

for the stronger identification assumption embodied in Assumption 2.
IV.D.1 Inclusion of Additional Controls

Our first strategy to assess the validity of our identification assumption is to include additional
control variables in equation (3) that capture potentially confounding variables that are correlated
with exposure to particular places and with other inputs, ;. For a given set of additional controls,
X, we estimate regressions of the form

yi = (A —m;) Z (ppel {d (1) = ¢} — ppel {0 (1) = c}) + qtodps + BoXi + L1 Xim; + € (5)

C
This specification is equal to the baseline specification in equation (3) with the addition of the term
BoX + B1Xm;, which includes controls for X and its interaction with the age of the child at the
time of the move, m;.'4

Additional Income Controls. Our baseline specification includes controls for a single mea-

sure of parental income, p(i). If p(i) is a noisy measure of parents’ inputs in their children, 6;

1 We also explored including family fixed effects, as in Chetty and Hendren (2016). Unfortunately, this specification
yields imprecise estimates. When regressing these estimates on our baseline estimates, we obtain estimates that are
not statistically distinct from 1, but are extremely imprecise (e.g. confidence intervals of widths in excess of 4).
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and parents with different inputs are sorting to different places in proportion to exposure time,
then one would expect that controlling for additional measures of parental income would affect the
causal exposure effect estimates. Moreover, one might also worry that the move itself might be
correlated with an income shock that is correlated with the destination choice of the family and
affects children in proportion to their exposure to the place.

To address these concerns, we add controls for the change in the parental income rank in the
year before versus the year after the move. Let p;, denote the parental income rank for child ¢
when the child is age a. We define X; = p; ,,(5)+1 — Pi,m(i)—1, Where m (¢) is the age of the child
at the time of the move. To estimate equation (5), we begin by regressing y; on X; and a vector
of fixed effects that include an interaction of (a) origin, (b) destination, (¢) parent income decile,
(d) child cohort, and (e) child age at move. As noted in Chetty et al. (2014), the inclusion of
these fixed effects ensures that the coefficients, 8y and (;, are identified from variation that is
orthogonal to the child’s exposure to particular places. Given BD and Bl, we construct the residuals
Ui = Yi — BOXZ- — BlXimi. Then, we send these residuals through equation (3) to estimate . using
the same estimation methods as in our baseline estimates. We let ﬂ;’éc denote the resulting fixed
effect estimates.

Figure II presents a scatterplot comparing ,&é’gfe to our baseline estimates fig5. across CZs
(Panel A) and counties (Panel B). For both geographies, the specifications with income controls
are nearly identical. Regressing [ngfc on figs . yields coefficients close to 1 (0.996 across CZs and
1.001 across counties), as shown in the figure and reported in row 3 of Appendix Table I. This
suggests our baseline estimates are not meaningfully affected by the inclusion of these additional
income controls.

Marital Status Controls. Exposure to places could also be correlated with marital status.
Married versus single families may provide different inputs, 6;, into their children. Moreover, moves
to places may be correlated with changes in marital status; if so, it could be that the impact of
marital status changes is affecting the children in proportion to exposure.

To assess this, we include a vector of controls, X;, for marital status both before and after
the move. We construct indicators for each of the four possible marital statuses of the mother in
the year before and after the move (married to unmarried, unmarried to married, unmarried to
unmarried, and married to married); and we include the interaction of these indicators with the
child’s age at move. We let fi;)'¢ denote the resulting fixed effect estimates.

Figure II presents a scatterplot comparing fi5:°. to our baseline estimates figs . across CZs
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(Panel C) and counties (Panel D). As with the parental income control specifications, we find that
our baseline results are not confounded from sorting correlated with changes in marital status.
Regressing fi55°. on figs ¢ yields a coefficient of 0.984 across CZs and 0.995 across counties, as shown
in the figure and reported in row 2 of Appendix Table I. These results suggest that our baseline
estimates are very similar if we were to instead have estimated them using additional controls for

parental income and marital status, and provide support for Assumption 2.
IV.D.2 Placebo Specification using Moves Above Age 23

To further validate our empirical design, we consider a placebo test using parental moves when the
child is above age 23 and likely to be no longer living with their parents. Intuitively, one would not
expect to find that places affect children when they are out of the house. But, one might be worried
that our fixed effect estimates are picking up other shocks or trends that are correlated with the
age of the child at the time they move from one place to another. To assess this, we exploit the set
of moves when the children are above age 23 and presumably out of the house when their parents
move. Using these moves, we replicate our baseline specification and let ,&12)2* denote the resulting
fixed effect estimates.

Regressing the placebo specifications on the baseline estimates leads to coefficients that are very
close to zero. Row 1 of Appendix Table I presents the results. Across CZs for p = 25, we estimate
a coefficient of 0.041 (s.e. 0.086) and across counties we estimate a coefficient of 0.037 (s.e. 0.050).
In none of our placebo specifications can we reject the null hypothesis that there is no correlation

with our baseline estimates. This provides further support for the validity of Assumption 2.

IV.E Summary

Our results suggest that our place effect estimates provide an unbiased estimate of the causal effect
of exposure to each county and CZ in the US on children’s outcomes in adulthood. The next three
sections use these estimates to quantify the magnitude of place effects, construct predictions of the
causal effect of growing up in each county that can be used to forecast the impact of moving to
a particular place on a child’s earnings in adulthood, and study the characteristics of areas that

produce higher levels of upward mobility.
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V The Size of Place Effects

How much does exposure to places during childhood matter for shaping outcomes in adulthood?

We summarize the importance of place effects using the standard deviation of ., which we denote

by ou,.-
V.A Method

We compute o, as follows. Across CZs, we estimate a raw standard deviation of place effects for
children with below-median income parents to be 0.248, as reported in the first row in Table II.
However, these estimates contain considerable sampling variation, as illustrated by the fairly wide
confidence intervals shown in Figure 1. This means that variation in the estimates across places
overstates the true variation in place effects, ji,., because it also includes variation from sampling

error. To adjust for this, we let n,. denote sampling error,

fipe = Hpe + Npe (6)

2

where 7. is orthogonal to pipe, E [Npe|ftpe] = 0. We compute the variance of true place effects, T lipe

by subtracting the variance induced by sampling error, o2 , from the variance in the observed

Tlpc

estimates, 02

Hpe?
o2 =02 —o? (7)

Hpc J Mpc

We estimate the variance of the sampling error as the average squared standard error,

Mpe

where s,. denotes the standard error of fi,. and the expectation is taken across CZs using precision
weights (1/s2.). Appendix A.C provides details for the construction of our standard errors. The
second row of Table II reports the estimated standard deviation, y/F [sgc], of the sampling error

component, 7p.
V.B Baseline Results

For the CZ-level estimates for children in below-median income families, we estimate e, , =

E [335’6] = 0.210. Subtracting the variance of the sampling error using equation (7), we find
Oppe = 0.132. A one standard deviation increase in ji25 . across CZs corresponds to a 0.132 percentile

increase in the child’s rank per year of additional exposure to the CZ.
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Across counties, we estimate a larger raw standard deviation of our place effect estimates of
0.434 for children in below-median income families. However, our county-level estimates contain
considerably more sampling error with a standard deviation of 0.402, as would be expected given
their smaller sample sizes. Using equation (7), these imply a standard deviation of the place
effects of 0.165 for children in below-median income families. As expected, this is larger than the
estimates across CZs, and imply a standard deviation of the effect of county within each CZ of 0.099
for below-median income families. Scaling the county estimates to dollar units, we estimate that
one year of exposure to a county that produces 1 standard deviation higher outcomes for children
in below-median income families increases mean earnings at age 26 by $135. This represents a
0.5% increase in earnings relative to the mean earnings at age 26 of $26,091 for children with
below-median income parents.

For children in above-median income families we estimate a standard deviation of place effects
across CZs of 0.107 and across counties 0.155. This implies that a one standard deviation better
county increases earnings by $130 per year of exposure, or 0.32% of their mean earnings at age 26
of $40,601.

To understand the importance of place for an entire childhood of exposure, we further scale by
an assumption for the length of childhood, A. For a benchmark assumption of A = 20, twenty
years of childhood exposure to a one standard deviation better county increases earnings by 3.308
percentiles, or roughly $2,700. For below-median income families, twenty years of childhood expo-
sure to a one standard deviation better county increases a child’s earnings by roughly 10%. For
above-median income families, a one standard deviation better county increases earnings by 6.4%,
or $2600.

Relationship between 25 . and 75 .. Places that cause high outcomes for children in low-
income families also tend to produce high outcomes for children in high-income families. Across

counties, we estimate a correlation of po5 . and p7s . of 0.287.' Much of this correlation is driven

15To construct this statistic, we construct an estimate of t2s,c on the subsample of children with p < 0.5, and we
construct an estimate of 75, on the subsample of children with p > 0.5. This ensures that the p = 25 and p = 75
estimates are not mechanically correlated from sampling error. We then compute this correlation as

_ cov (Was,c, fr5,c) _ COV (fi25 e, fi75,c)

Opos,cOprs,e Opos,cOurs,c

where [i25,. and fi75,. are estimated on separate p < 0.5 and p > 0.5 samples and we re-compute the signal standard
deviations on these two samples (0.134 and 0.107 respectively). This yields cov (fi2s,c, fi75,c) = cov (j125,c, U75,c). As
in the baseline specifications, we use precision weights to calculate these signal SDs, weighting observations by the
square of their estimated standard errors. When measuring cov (u25 ¢y fU75,c), we measure the precision as the inverse

of the sum of the two standard errors squared, prec = ———1+——.
(/1«25,c) +9(M75,c)
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by variation across CZs; we estimate a positive correlation of the CZ effects at p = 25 and p = 75 of
0.724. Across counties within CZs, we estimate a correlation 0.08. Although smaller, the correlation
remains positive. In the cross-section of counties in the U.S., the success of the poor does not seem

to come at the expense of the rich.

V.C Alternative Specifications

We also construct estimates of place effects using alternative specifications. To begin, we consider
our alternative control and placebo specifications. Using the estimates with additional income
controls, ﬂg’g’cc, we estimate a standard deviation of place effects of 0.155 across CZs and 0.181 across
counties, neither of which are statistically distinct from our baseline estimates of the variance of
place effects. For our specification with marital status controls, we estimate a standard deviation
of place effects using fi55°. of 0.159 across CZs and 0.186 across counties, neither of which are
statistically distinct from our baseline estimates of the variance of place effects. In contrast, for the
placebo specification using moves when children are above 23 years old, we cannot reject the null
hypothesis that places have no effect at all on children’s outcomes for three out of four specifications
for p = 25 and p = 75 across counties and CZs.'6

We also compute estimates of place effects for other outcomes including individual income and
samples restricted to males or females. Broadly, we find similar variation across places when using
individual instead of family income. For example, we estimate a standard deviation across CZs
of 0.126 for p = 25 and 0.119 for p = 75. In contrast, we find significant differences in place
effects across genders. Places have larger effects on males relative to females in below-median
income families. Across CZs, we estimate a standard deviation of place effects on boys of 0.213
percentiles, as opposed to 0.16 for females. Turning to individual income for males, we find even
larger differences for males versus females (0.231 versus 0.129). We return to a discussion of these
gender differences in Sections VI and VII. The online data tables provide these estimates by gender
for individual and family income, along with causal estimates of the impact of place on marriage.

We also construct place effect estimates for a range of other outcomes and specifications listed

in Appendix Table I and discussed in more detail in Appendix B. These include adjustments for

16 Across CZs for p = 25, we estimate a negative point estimate for the signal variance, which we report as a zero
estimate for the standard deviation (the observed variation of the place effect across CZs is larger than the average
square of the standard error). Across counties, our estimates are quite noisy and we estimate a standard deviation of
place effects of 0.163. This is similar to our baseline estimates, but has a wide standard error and a p-value of 0.223
for the null hypothesis of no place effects. For p = 75, we again find a p-value for the null hypothesis of no place
effects of 0.360 across CZs; but do obtain a p-value of 0.003 across counties.
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cost of living, specifications that include quadratic terms in parental income, p (i), in our estimating
equation 3, and specifications using individual income as the outcome. Many of these specifications
are discussed in more detail in the next two sections, and all alternative specifications are provided

in the online data tables for each CZ and county.

VI Formation of Optimal Forecasts

The previous section illustrates that places matter for shaping children’s outcomes in adulthood.
But, they don’t provide much guidance for a family seeking to improve their own child’s outcomes;
for this, it is important to know the likely impact of a particular place, not just the total variance
of place effects. Here, the sampling variation in our causal estimates, fi,., makes them a potentially
misleading guide: If families choose to move to the place with the highest estimate, fip., they may
end up in a place with greater sampling error, 7,., as opposed to a better true place effect, 1.

This section develops optimal forecasts for each CZ, ,ugc, that minimize mean-square difference
between the true place effect and the forecasted place effect. The resulting forecasts are unbiased in
the sense that on average places that are forecasted to have a 1 unit higher place effect on average
have a 1 unit higher place effect.!” We then use these forecasts to construct lists of places that are
likely to most increase (or decrease) children’s incomes.

We combine two pieces of information to form these forecasts. On the one hand, the causal
effect estimates, fi,., are noisy but unbiased measures of place effects, ji,., as illustrated by the
fairly wide confidence intervals in Figure I. On the other hand, the regression line in Figure I
illustrates that the outcomes of permanent residents, ¥,., provide information about the average
causal effect of being exposed to a place in which permanent residents have 1-unit higher outcomes,
Yp- The resulting estimate, v,7pe (where g, is demeaned across places, c¢), is precisely estimated
and highly correlated with p,.. However, as noted in the previous section, permanent resident
outcomes are not unbiased measures of causal effects because of sorting. In this sense, both the
causal estimates, fi,c, and the outcomes of permanent residents, ¥,., contain information about
the true causal effect, p,., from two mutually exclusive samples of the population: movers and
permanent residents. Given these pieces of information, where are the best places to grow up in

the U.S.?

1"This also generates correct utility rankings of places if families have a quadratic loss function over their child’s
outcomes.
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VI.A Methods

We combine the causal effect estimates, fi,., with the estimates based on permanent residents,
YpYpe, to form optimal linear forecasts, ,u,];c = p1pellpe + pP2.pc (YpUpe). We choose the coefficients to
minimize the mean-squared forecast error, ). (,ugc — upc)Q given our knowledge of the sampling
error of the causal effect, s,.. This ensures that we incorporate our knowledge of the precision of
each place effect estimate, fip..

One can motivate the regression coefficients, pi ;. and p2 . by imagining an experiment where
we assign a random individual with parental income rank, p, to have one year of exposure to a
place, ¢, relative to an average place. We can write the true causal effect using a hypothetical

regression that is the sum of our linear forecast and the forecast error, ¢y.,

Hpc = pl,pc,&pc + P2,pc (’fogpc) + ¢pc (8)

We choose coefficients so that ¢y is orthogonal to the forecast, ,u{,cc = P1 pefipe + p2,pc (VpYpe) given
Spe-

For expositional simplicity, we make two approximations that turn out not to significantly affect
our results. First, we assume 7, is measured without error. In practice, incorporating sampling
variation for 7,¥,. does not significantly affect our results. Second, we model the variance of place

effects as being uncorrelated with sp.. Under this assumption, the optimal forecast is given by

; 2 52
P pc -
Hpe = fipe + (Vp¥pe) (9)
pc X;2)+S;270 pc X]2;+S;2)c pYpc
2 2
where —~25 is the weight placed on the causal effect estimate, fi,., and —2 s the weight placed
Xpt+8pe p Xpt+8pe

on the forecast based on permanent residents, v,yp.. Here, x]% is the variance of place effects after
subtracting the component that is explained by ¥p.: X;Q; = Var (tpe — VpUpe)-

The optimal forecast places a weight on the causal effect estimates that is inversely proportional
to the standard error. If the standard error is zero, then u},cc = f[ipc so that there is no value from
incorporating information from the permanent residents. But, if the standard error is nonzero the
optimal forecast places weight on the permanent resident forecasts. This weight is decreasing in
the degree of bias that is embodied in the permanent resident forecast, which is captured by X;Q)-

Figure III graphically illustrates the construction of these optimal forecasts using the subsample
of CZs with populations above 5M for p = 25. Using the full sample and regressing figs . on the

permanent resident outcomes, o5 ., yields a slope of y25 = 0.032; taking the predicted values from
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this regression yields a predicted per-year exposure effect based on permanent resident outcomes
of 0.032 (25, — E [Y25.¢]), as illustrated by the solid line in Figure III (and in Figure I Panel A).1®

To estimate XZ, we proceed as follows. First, we let €,. = fipc — VpYpe denote the residual of
the regression of fip. on ¥p.. We model the true e, = ppe — Vplpe as having constant variance
across places. With this assumption, we can use the cross-sectional variation in €. to infer the true

variance of €,. by subtracting the average sampling variance across places, E,. [512)0],
XIQ) = vare (épe) — Ee [312,6} (10)

where var. (éy.) is the cross-sectional variance of é,.. Using equation (10), we estimate a signal
standard deviation of the residual place effects, j25 . — VpUpe, 0f x25 = 0.07955. This means that,
on average, one expects that the true per-year exposure effect, pa5 ., lies about 0.07955 percentiles
away from the prediction based on permanent residents, ya5¥25 ..

Now, consider the forecast for Los Angeles, as indicated by the red diamond at ,u£57 4= —0.130
in Figure III. We estimate ¥25 1,4 = 44.8, which implies a prediction based on permanent residents of
0.0129. From the perspective of the permanent resident outcomes, L A has above-average outcomes.
But, we estimate a causal fixed effect of po5 4 = —0.170, with a standard error of so5 1,4 = 0.043,
which suggests the causal effect lies far below the prediction based on permanent residents. The
sampling uncertainty in fio5 7,4 has a standard error of 0.043; the prediction based on permanent
residents has a standard deviation of bias of yo5 = 0.07955. So, our optimal weight that minimizes
mean square error across CZs is then 0.777. We assign 77.7% weight to the estimated fixed effect
and 22.3% to the prediction based on permanent residents. This yields ,ugg)’ 4 = —0.130.

How “uncertain” is this forecast, ,ugf)’ ! The forecast differs from the true causal place effect for
two reasons: (1) fip. has sampling error and (2) v,y is a biased measure of the place effect, ju..
Therefore, a natural measure of uncertainty in this forecast is its root mean square error, which
sums these two sources of uncertainty. This is given by the formula:

1

1 1
—_ + .
Xz s,

TMSEpe =

For example, if one had to rely entirely on the predictions based on permanent residents then one
would obtain a RMSE of x,: by definition, the causal effect on average differs by x;, from the
permanent resident forecasts. Combining information on the permanent residents allows one to

reduce this forecast error at a rate inversely proportional to the standard error of the causal effect

'8 Appendix Table IT, Column (3) reports analogous coefficients for 75 and estimates at the county as opposed to
CZ level.
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estimate, s,.. For Los Angeles, we estimate rmsegs 4 = ﬁ = 0.0375. On average
0.079552 ' 0.0432

across CZs, we expect forecasts like the one for Los Angeles to differ from the true place effect by

0.0375 percentiles.

Repeating the exercise for p = 75, we find 75 = 0.038 and a residual signal standard deviation
of x75 = 0.045. For counties, we estimate 7, of 0.027 at p25 and 0.023 at p75. Across counties,
we find estimates of yo5 = 0.118 and x75 = 0.135. The fact that these estimates are higher at the
county level is consistent with the greater importance of sorting at finer geographies, so that the
permanent resident outcomes do not provide as much information about the causal effects. This
pushes the optimal forecast formula to place more weight on the causal estimates; but on the other
hand, the causal estimates at the county level contain greater sampling variation, which for many
counties will lead to lower weight on the causal estimates. Online Data Tables 1 and 2 present
these forecasts by CZ and county, respectively, along with their RMSEs. We also provide estimates
of causal forecasts for a range of outcomes beyond the baseline family income specification, which
we discuss below.

The resulting forecasts have the property that places forecasted to have a 1-unit higher causal
effect tend to actually have a 1-unit higher causal effect, E |:,upc|1u£c:| = ,ugc. This contrasts with
our unbiased estimates of the causal effect, fi,., which are unbiased conditional on the true place
effect, E [fipe|tipe] = ppe. However, because of sampling error, one would expect that places with a
1-unit higher estimate of fip. will have less than a 1-unit higher true causal effect. In this sense,
the resulting forecasts can be used to form lists of places with the highest and lowest causal effects

on children’s earnings outcomes.

VI.B Baseline Forecasts

VI.B.1 Commuting Zones

Figure IV maps the forecasts ,u},cc across CZs in the U.S. for children in below-median (p25) and
above-median (p75) income families. Table III lists the forecasts for the 50 largest CZs, sorted in
descending order from highest to lowest values of ,u£57 .» along with their root mean square error.
Among the 50 largest CZs, we estimate that Salt Lake City, Utah has the highest causal effect
on children in below-median income families. Every additional year spent growing up in Salt Lake
City increases a child’s earnings by 0.166 percentiles (rmse 0.066) relative to an average CZ. In
dollar units, this corresponds to a $136 increase in annual income per year of exposure, a roughly

0.52% increase; aggregating across 20 years of exposure, this is a 10% increase in the child’s income
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for growing up in Salt Lake City as opposed to an average CZ.

Conversely, at the bottom of the list we estimate that every additional year spent growing up
in New Orleans reduces a child’s earnings by 0.214 percentiles (rmse 0.065) per year relative to
an average CZ. This corresponds to a decrease of $175 per year of exposure, or roughly 0.67%.
Multiplying by 20 years of exposure, this implies that growing up in Salt Lake City as opposed
to New Orleans would increase a child’s income from a below-median income family by $6,223, or
roughly 24%.

Overall, we find wide variation in the forecasts across CZs, for children in below-median and
above-median income families. For above-median income families, we estimate that every year
spent growing up in Los Angeles reduces incomes for children in above-median income families by
0.226 percentiles, which corresponds to $189, or roughly 0.466% reduction in incomes at age 26 per
year of exposure during childhood. In contrast, we continue to find Salt Lake City has the highest

causal effect; it is forecasted to increase children’s incomes by 0.218% per year of exposure.
VI.B.2 Counties

Zooming to the county-level estimates, Figure V plots forecasts for the New York City and Boston
Combined Statistical Areas (CSAs). The results reveal wide variation in place effects, even at
close distances. Every additional year spent growing up in Hudson County, NJ increases incomes
for children in below-median income families by 0.066pp (rmse 0.101), which corresponds to an
increase of $54, or 0.208% of the mean child income for those in below-median income families.
Conversely, every year spent growing up in the Bronx, NY reduces incomes by 0.174pp (rmse 0.076),
which corresponds to a decrease of $142, or 0.544% of mean income. Combining these estimates,
a child from a below-median income family that spends 20 years growing up in Hudson, NJ as
opposed to the Bronx, NY will be forecast to have a 15% ($3,920) higher income.

Best Counties. Table IV presents estimates from the 100 largest counties, focusing on those in
the top and bottom 25 based on the causal effect on family income rank for children in below-median
income families, /457 .- At the top of the list, DuPage County, IL (western suburbs of Chicago) has
the highest causal effect on children from below-median income families. Every year spent growing
up in DuPage increases a child’s income by 0.255 percentiles (rmse 0.09), which corresponds to an
increase of $209 or 0.80%. This contrasts with the nearby Cook County (Chicago) which lowers a
child’s earnings by 0.204 percentiles per year (rmse 0.06), corresponding to a reduction in incomes

of $167, or 0.64%. Twenty years spent growing up in the western suburbs of Chicago as opposed

25



to Chicago proper increases a child’s income on average by $7,520, or roughly 28.8%.

Gautreaux De-Segregation Settlement. This comparison of DuPage to Cook County
Chicago is perhaps particularly of interest in light of the 1976 U.S. Supreme Court ruling'® that
required that the Chicago Housing Authority (CHA) to provide residents living in housing projects
in areas of concentrated poverty in Cook County with the opportunity to move to lower poverty
neighborhoods in the suburbs, many of which were located in the western suburbs of DuPage
County. An influential yet disputed line of research has studied the impact of Gautreaux on adult
and child outcomes. By comparing families who accepted offers to move to the suburbs to those
who chose to remain in the city, Rosenbaum (1995) finds that children whose families moved to the
suburbs experience significantly better economic outcomes. For those who grew up in the suburbs,
54% attend college; this compares to only 20% who remained in the city; similarly, for those not in
college, 75% are employed in the suburbs, as compared to 41% in the city. These large differences
have previously been questioned because families had the choice of whether or not to move. Hence,
one worries that the types of families that chose to move to the suburbs were also different in other
characteristics, ;. While our results do not rule out the potential that the families that moved to
the suburbs were positively selected (i.e. high 6;), our results suggest that growing up in DuPage
as opposed to Cook County should have significant economic impacts on children.

Worst Counties. In contrast to the positive impacts of growing up in DuPage County, we
also find large negative forecasts at the bottom of the list of the 100 largest counties. Mecklenburg
County (Charlotte, NC) and Baltimore, MD have the lowest forecasted causal effect for children in
below-median income families. Every year spent growing up in Mecklenburg, NC reduces a child’s
income by 0.231 percentiles, which corresponds to $189 per year (0.72%) in earnings at age 26.
This implies that twenty years of exposure to DuPage County, IL relative to Charlotte, NC would
raise a child’s income from a below-median income family by $7,948, or roughly a 30.5% increase

in the earnings of a child from a below-median income family.

VI.C Robustness to Alternative Forecast Specifications

Our baseline forecasts incorporate two variables into equation (8): our causal effect estimates,
fipc, and our prediction based on permanent resident outcomes, 7,yp.. However, one could form
precise predictions using variables beyond solely permanent resident outcomes, @,.. Since sorting

of different types of families to different places renders the permanent resident outcomes biased

19Gee Hills vs. Gautreaux, 1976, No. 74-1047, available at http://caselaw.findlaw.com/us-supreme-
court/425/284.html
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measures of the causal effect, the forecast may be improved by including additional regressors that
are correlated with sorting.

While in principle one could improve the forecasts by including additional variables beyond
the permanent resident outcomes, in practice we find that including additional prediction variables
does not meaningfully affect the results. Including additional controls, such as the fraction of black
residents, fraction of foreign born residents, and other predictors of causal effects explored in Chetty
et al. (2014) and in Section VII such as segregation, income inequality, and school quality do not
generate forecasted place effects that meaningfully differ from our baseline results.

To illustrate this, Appendix Figure II presents a scatter plot comparing our baseline fore-
casts to alternative forecasts that include both permanent resident outcomes and the fraction
of black residents in the CZ as predictors. We construct these alternative forecasts by first
regressing fi,. on both ¥,. and the fraction of African American residents in the CZ, fip,. =
YpYpe + vgla‘:kF ractionBlack, + €y.. We then let €pc = fipc — VpUpe — ygl“CkF ractionBlack. and
use this residual to construct the optimal weights on these predicted values versus the causal ef-
fects in equation (8). Including the fraction of African American residents does change the forecasts
slightly. For example, Charlotte instead of New Orleans is the worst CZ. But, broadly the magni-
tudes and orderings of CZs is quite similar to our baseline forecasts. For example, Salt Lake City
remains the highest ranked CZ and the correlation across all CZs between the two forecasts is 0.98
(both weighted and unweighted by 2000 population). Therefore, going forward we proceed with
the simple model using only predictions from permanent residents. The online data tables contain
the variables that can be used to explore whether other forecast specifications can improve the

predictive content of the model.

VI.D Gender, Individual Income, and Marriage

Our baseline analysis focuses on a child’s family income and estimates a common effect across
genders. Here, we present forecasts for estimates constructed on gender-specific subsamples for
both family and individual income, and the impact of place on marriage at age 26.

We generate the fixed effect estimates for family income for both males and females, fio5 ¢ femate
and fi25 ¢ male and combine them with their corresponding permanent resident outcomes to construct
their associated optimal forecasts, /457 ¢, female and u%}), cmale’ following the methods discussed above
in Section VI.A. We repeat this procedure also using individual income for each gender, and for

an indicator for being married at age 26. All estimates are provided in the online data tables for

27



each county and CZ and for above (p = 75) and below (p = 25) median income families. Here, we
discuss two broad patterns from these results: (1) places matter more for boys and (2) individual
income outcomes for women are higher in places that have a negative causal effect on the likelihood

of being married at age 26.

VI.D.1 Places Matter More for Boys

For family income outcomes, we find that the ordering of places for both boys and girls are similar to
the gender-pooled estimates. For example, both Bergen County, NJ and Bucks County, PA produce
high family incomes for both males and females in below-median income families. Appendix Table
IV reports these forecasts. For boys, Bergen and Bucks county increase incomes at a rate of 0.831%
and 0.841% per year of exposure. For girls, they increase incomes at a rate of 0.56% and 0.46% per
year of exposure. In contrast, Baltimore, MD has the lowest causal effect on male family income.
An additional year of exposure to Baltimore for women in below-median income families reduces
their family income by -0.082 percentiles, or -0.27% per year.?"

While the broad ordering of places is similar across genders, our results suggest places matter
more for boys than girls. To illustrate this, Appendix Figure III plots the cumulative distribution
of forecast values, ;405, ¢ female and ,u£57 emale” Not only is the distribution more dispersed for males
relative to females, but it is also more skewed: there is a thicker “left tail” of places that produce
particularly poor outcomes for boys as opposed to girls. This suggests that there are pockets of
places across the U.S. that produce especially poor outcomes for boys, which include: Baltimore
MD, Pima AZ, Wayne County (Detroit) MI, Fresno CA, Hillsborough FL, and New Haven CT.
Twenty years of exposure to these counties lowers a child’s income by more than 14% relative to an
average county in the US. In Chetty et al. (2016), we further explore these patterns and document
that exposure to areas with concentrated poverty tends to have greater negative effects on male

children relative to female children’s earnings and labor force participation in adulthood.

29Given the evidence of heterogeneity in effects across genders, we also present baseline rankings by CZ and county
that allow for different models for girls and boys and then average the resulting estimates. Indeed, one could be
worried that the pooled estimate does not recover the mean effect across gender due to subgroup heteroskedasticity
or finite sample bias from differential fractions of males and females moving across areas. To that aim, Column (10)
of Appendix Tables III-VI reports the average of the two gender forecasts, which can be compared to the pooled
specification estimate in Column (7).

In practice, these two estimates deliver nearly identical forecasts — their population-weighted correlation across
counties is 0.97. Appendix Table IV is sorted in descending order according to the gender-averaged specification
in Column (10). We estimate that DuPage county increases a child’s income by 0.756% per year of exposure; in
contrast, we estimate that Baltimore, MD decreases a child’s income by 0.864% per year. Twenty years of exposure
to DuPage county versus Baltimore will increase a child’s annual income (averaging across genders) by 32.4%.
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VI.D.2 Female incomes and Marriage Effects

Appendix Table V and VI present forecasts for individual income across CZs and counties for males
and females. Broadly, we find patterns similar to our baseline family income patterns, especially
for males. But, we find noticeable divergences for female individual income outcomes. For example,
exposure to the Salt Lake City CZ causes a 0.767% increase in female family income per year of
exposure, but a 0.123% decrease in female individual income per year of exposure. Conversely, the
New York CZ causes a -0.49% decrease in female family income but a 0.13% increase in female
individual income.

These divergences in the impacts of New York and Salt Lake City on individual versus family
income at age 26 are explained by the fact that New York and Salt Lake City have different causal
effects on the likelihood of being married at age 26. Appendix Tables VII and VIII reports our
forecasts for marriage at age 26 across CZs and counties. Every year of exposure to Salt Lake City
is forecasted to increase the chances of being married by age 26 of 0.54pp relative to an average
CZ. Conversely, every year of exposure to New York decreases the chance of being married at age
26 by -0.46pp. Twenty years growing up in Salt Lake City instead of New York will increase the
odds of being married at age 26 by 20pp. In this sense, the divergent patterns for individual versus
family income for females — especially in large cities which tend to have lower marriage rates — are
consistent with exposure to many large cities causing a decrease in the likelihood of being married

at age 26.

VII Characteristics of Good Neighborhoods

What are the characteristics of places that promote upward mobility? Chetty et al. (2014) doc-
umented several systematic correlations between upward mobility and a range of economic and
social factors including segregation, income inequality, school quality, family structure, and social
capital. These correlations with upward mobility could reflect one of two very different economic
phenomena. On the one hand, places with greater segregation may (on average across the US)
cause lower economic outcomes for low-income children. On the other hand, perhaps the types of
people who live in places with greater segregation tend to be different in other characteristics (e.g.
different other inputs, ;). Here, we distinguish between these two potential economic patterns
by studying the characteristics of places that produce good outcomes for children (high s, ) and

comparing this to the patterns for the observed outcomes of permanent residents, g,.. Importantly,
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we do not claim to uncover the causal factors of places that promote upward mobility; such an
analysis would require exogenous variation in those factors to isolate their causal effect.

We study the correlation of place effects for a wide range of covariates largely taken from the
analysis in Chetty et al. (2014), which are also defined in Appendix Table XV. Tables V and VI
provide a comprehensive characterization of the correlation of jio5 . with each covariate. Column (1)
reports the standard deviation of the covariate, weighted by population in the 2000 Census. Column
(2) reports the estimated correlation of the covariate with the place effect, p125 .. To obtain this
correlation, we regress our estimated place effect, fi25 . on the standardized covariate and then divide
by the standard deviation of jig5¢, 0y, = 0.132, shown in Table I1.2! In Column (3), we report
the coefficient from a regression of the permanent resident outcomes, ¥25., on the standardized
covariate. In Column (4), we report the coefficient from a regression of 20/i25 . on the standardized
covariate. By scaling the per-year causal effect estimates by the additional assumption of A = 20
years of exposure during childhood, this characterizes the average impact on a child’s income rank
of growing up in a place that has a one standard deviation higher value of the covariate. We can
then compare this magnitude to the coefficient from the regression using the outcomes of permanent
residents, 25 .. In Column (5), we report the coefficient from a regression of g5 . — 20125 on the
standardized covariate. In the logic of the model, this characterizes the correlation of the covariate
with the other inputs, 6;, received by permanent residents of the area — in this sense it reflects a
correlation with the sorting of children with different other inputs to different areas.??

Table V reports the results across CZs for children in below-median income families (p = 25);
Table VI reports analogous results across counties within CZs. We obtain the county within CZ
estimates by including CZ fixed effects in all of the regressions. Additionally, for a selected set of
covariates, Figures VI and VII present a visual representation of the coefficients from the regressions
using the permanent residents and causal effect estimates. The vertical black lines represent the
coefficients on the permanent residents. The bars represent the coeflicients on the causal component
scaled by 20 years of exposure, 201,.. In the logic of the model, the difference between the coefficient
on %5 and 20ugs5 . reflects the correlation of the mean value of 0; in place ¢ with the covariate.

This is reflected in the dotted lines connecting the bar and vertical black line.

2INote here we use our estimated fixed effect, fipc, not the optimal forecast, ,uzfc. Although fip. is measured with
sampling error, this left-hand side measurement error will not bias the estimated regression coefficient of fi,. on the
standardized covariate.

22Tf there are heterogeneous effects of neighborhoods on movers and non-movers, then this residual sorting effect
can also reflect the correlation with the neighborhood effects that are unique to permanent residents and not captured
by our movers analysis.
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In addition, Appendix Tables IX and X present the analogous patterns for children in above-
median income families, and Appendix Tables XI-XIV present estimates separately by gender for
children in below-median income families. Finally, Online Data Tables 3 and 4 provide the raw data
(both the causal effects and covariates) that can be used for future work exploring these patterns.
In the remainder of this section, we focus our attention on several more salient patterns that emerge

from the results.

VII.A Impacts on Below-Median Income Children

Chetty et al. (2014) documents a strong correlation between the outcomes of children from below-
median income families and a range of covariates, including racial composition, segregation and
sprawl, income inequality, family structure, education, and social capital. In this subsection, we

document that these characteristics also have a correlation with the causal effect of the covariate.

VII.A.1 Race and Outcomes for Children in Low-Income Families

We begin by studying the correlation of place effects with the racial composition of the county
and CZ. One of the salient findings in Chetty et al. (2014) is that areas with a higher fraction of
African Americans have much lower observed rates of upward mobility. Column (2) of Table V
shows outcomes of permanent residents in below-median income families (p25) in CZs that have a
one standard deviation higher fraction of black residents are -2.418pp (s.e. 0.229) lower — which
corresponds to roughly 7.6% lower earnings.

On the one hand, this is potentially consistent with the large literature in economics and
sociology that argues that blacks are systematically exposed to worse neighborhoods and that
these impacts cause lower outcomes for children in these low-income families (Wilson (1987b, 1996);
Sampson (2008)). On the other hand, it could be that the types of people who live in areas with
more black residents have other characteristics, 6;, that cause their incomes to be lower.23
Our results suggest CZs and counties with a higher fraction of black residents on average cause

lower outcomes for low-income children. Across CZs, we estimate a correlation of po5 . and the

fraction of black residents to be -0.514 (s.e. 0.128), as reported in Column (2) of Table V. Across

23These characteristics, 6; , include any input beyond the county or CZ-level place effect. For example, this includes
differential parental inputs, the impact of racism on black residents, or even local neighborhood effects within the CZ
that disproportionately affect non-movers. The latter could drive a portion of this effect if (i) people are less likely
to move in and out of the worst neighborhoods when moving across CZs or counties and (ii) places with more black
residents have more of these neighborhoods. In this case, our approach continues to capture the causal effect of the
CZ or county for the set of movers, but the correlation of the fraction of black residents with other inputs, 6;, can
include a component that captures differential local neighborhood inputs into permanent residents versus movers.
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counties within CZs, we find another negative correlation of -0.319 (s.e. 0.103), as shown in Column
(2) of Table VI. Scaling by A = 20, the estimates suggest growing up in a CZ with a one standard
deviation higher fraction of black residents causes incomes to be lower by -1.361pp (s.e. 0.339).
However, this is less than the -2.418 coefficient when regressing permanent resident outcomes on
the fraction of black residents. This suggests that those who grow up in a CZ with a 1 standard
deviation higher fraction of black residents on average have outcomes that would be 1.027pp lower
than average regardless of where they grew up, as illustrated in Column (5) of Table V.

Across counties within CZs, we find a similar pattern shown in Table VI and also Panel B
of Figure VI. Regressing 20/i25 . on the (standardized) fraction of black residents across counties
within CZs yields a coefficient of -0.632 (s.e. 0.201), implying a correlation of -0.319 (s.e. 0.103)
between the fraction of black residents and the causal effect of exposure to the county within the
CZ. As with the estimates across CZs, this is larger than the coefficient for the causal effect.

The black-white earnings gap. The estimates suggest that on average African Americans
grow up in counties that tend to produce worse economic outcomes. While our data do not permit
estimation of causal effects separately by race, we can quantify the extent to which on average blacks
grow up in counties that promote lower economic outcomes. To do so, we first note that if one
takes the average impact of exposure from birth, 20 * p25 ., in counties and weights by the fraction
of black residents in the county, this yields -1.38. In contrast, the average impact of exposure from
birth, 20 * o5 ¢, in counties weighted by one minus the fraction of black residents in the county is
0.305. This suggests that, on average, black families live in counties that produce 1.69 percentile
lower outcomes relative to non-blacks. Scaling this to percentage changes in incomes, it suggests
the counties in which African Americans live cause incomes to be 5.3% lower relative to the counties
in which non-African Americans live. Given the black-white earnings gap of 25% (Fryer (2010)),
this suggests roughly 20% of the black-white earnings gap is explained solely by the differences
in the counties in which these children grow up. Of course, future work can ideally separately
estimate these causal effects by race, and conduct analysis at finer geographies than the county;
in the meantime, our present analysis shows that African American children are systematically
exposed to county environments that cause lower earnings in adulthood and broadly supports the

hypothesis that across the U.S. African American children are exposed to worse neighborhoods.
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VII.A.2 Segregation and Sprawl

A large literature in the social sciences argues that neighborhoods with higher degrees of economic
and racial segregation and areas with greater urban sprawl are worse places for children to grow
up (e.g. Wilson (1987b, 1996); Sampson et al. (2002)). In this vein, Chetty et al. (2014) document
a strong correlation between upward mobility and measures of segregation and sprawl. Our results
suggest that for children in low-income families, places with segregation and sprawl largely reflect
a correlation with the causal effect of the place: Across CZs, we estimate a correlation between
the Theil index of income segregation and the causal effect, po5., of -0.574; we also estimate a
correlation between the fraction of people with a commute time less than 15 minutes and the
causal effect of 0.875, which is the largest correlation we find across all of our covariates. Across
the U.S., places with greater segregation and sprawl tend to cause lower incomes for children in
low-income families. Twenty years of exposure to a CZ with a 1 standard deviation higher fraction
of people with commute times less than 15 minutes on average increases a child’s income by 2.317
(s.e. 0.353) percentiles for children in below-median income families, corresponding to a more than
7% increase in income.

Greater Impacts on Boys. We find evidence that highly segregated areas have more negative
effects on boys than girls. Appendix Table XI illustrates that CZs with a one standard deviation
higher fraction of people with commute times shorter than 15 minutes cause an increase in males
incomes of 3.364 (0.450) percentiles, which corresponds to $2,453 or a 10% increase in income at
age 26. For females, the impact is more modest, with a coefficient of 1.940 (0.558) percentiles,
corresponding to a 6.4% increase in incomes, as shown in Appendix Table XIII.

In Chetty et al. (2016), we further document that places with greater segregation and concen-
trated poverty tend to cause lower labor force participation for boys relative to girls in addition to
lower earnings, and can even explain a 'reversal’ in which female labor force participation is higher
than male labor force participation for children in low-income families from highly segregated areas.

Sorting. Not all of the spatial correlation with segregation and sprawl reflects a correlation
with the causal effects. Across counties within CZs, the patterns suggest greater residential sorting
at finer geographies. This is illustrated by the dashed lines corresponding to the sorting component
in Panel B of both Figure VI and VII. For those in below-median income families, counties with a
higher degrees of residential segregation and income inequality have lower outcomes for permanent

residents; and indeed, the coefficients for the permanent residents are larger than what can be
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accounted for by 20 years of exposure, suggesting a portion of the observed relationship with
permanent residents reflects a sorting pattern. For example, using the racial segregation Theil index,
we find a negative coefficient of -0.735 (s.e. 0.190) for the causal effect, but a coefficient of -1.501
(s.e. 0.195) for the sorting component. This suggests that the observed correlation of outcomes of
children in below-median income families with measures of segregation and concentrated poverty
reflects both a sorting and causal component.

In sum, the negative correlation of place effects with these measures of segregation and sprawl
suggest these adverse environments play a causal role in limiting the economic outcomes of disad-
vantaged youth. However, our results add in several ways to this literature. First, in contrast to
the pure spatial mismatch theory (Wilson (1987b, 1996)), the exposure effects documented here
operate when growing up, not during adulthood.?* Indeed, the correlations with commute times are
unlikely to be the direct effect of being closer to jobs — recall these are cumulative exposure effects:
take two children who both move to the same place at age 20 but one child came from a place with
shorter commutes — we’d expect that the place with shorter commutes will cause that child to have
higher earnings than the other child. Second, while our analysis identifies the causal effects, we also
find evidence of geographic sorting, especially at finer geographies.?> This suggests that previous
observational analyses identifying correlations between neighborhood characteristics and observed

outcomes do not accurately identify the causal role of those neighborhoods on children’s outcomes.

VII.A.3 Income Levels and Inequality

Chetty et al. (2016) documents that CZs with higher incomes do not generally have higher levels
of upward mobility. Outcomes of permanent residents in CZs with a one standard deviation higher
level of mean family income in 1996-2000 have incomes that are 0.217pp (s.e. 0.282) lower across
CZs. However, as one moves to counties within CZs, we find a positive coefficient of 0.814 (s.e.
0.249). Despite this, we do not find a significant correlation with the causal effect of the place
at the CZ or the county-within-CZ level. If anything, across CZs we find that places with higher
incomes tend to cause lower outcomes for low-income children of -0.805pp (s.e. 0.397) and a
coefficient of 0.112 (s.e. 0.278) across counties within CZs. This is consistent with the hypothesis
that the observed positive correlation between mean parental income levels across counties within

CZs largely reflects the sorting of families providing different other inputs, 6;, into their children.

24This childhood exposure effect is consistent with the ideas expressed in Sampson (2008) for why the Moving to
Opportunity experiment did not deliver positive gains.

25This is also supported by the patterns in Chetty and Hendren (2016): the outcomes of permanent residents in a
destination to which a family moves when children are 27 is predictive of the child’s earnings at age 26.
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However, we find a much starker picture when looking at income inequality. CZs and counties
with greater income inequality have much lower rates of upward mobility for permanent residents.
For example, a 1 standard deviation higher Gini coefficient corresponds to incomes of permanent
residents that are -1.387pp (s.e. 0.501) lower across CZs. We find a similar pattern when focusing
on the causal effects. Twenty years of exposure to a CZ with a one standard deviation higher Gini
coefficient on average will cause a reduction in incomes of -2.024pp (s.e. 0.347), or roughly a 6.3%
reduction in income. Across the US, places with greater income inequality tend to cause lower

incomes in adulthood.

VII.A.4 Family Structure

Chetty et al. (2014) documents that CZs with a lower fraction of single parents have much higher
rates of upward mobility. Our results suggest that a significant portion of this pattern reflects a
correlation with the causal effect of these places. Figure VI (Panel A) shows that twenty years of
exposure to CZs with a 1 standard deviation higher fraction of single parent households causes a
child’s income rank to be 1.5pp (s.e. 0.316) lower on average, or a 4.7% reduction in income. This
is smaller than the coefficient of -2.458 (0.345) when using the permanent resident outcomes, a5 ..
This suggests that the majority of the correlation between the fraction of single parents and the
outcomes of permanent residents reflects the causal effect of exposure to those places, as opposed
to systematic differences in other inputs, 6;, for children in places with higher fractions of single
parents. In addition, the difference between the coefficient for permanent residents and twenty
years of exposure to the CZ suggests that children living in areas with a one standard deviation
larger share of single parents on average will have outcomes that are 0.909pp lower than the average
child regardless of where they live.

We find similar patterns across counties within CZs, but with stronger evidence of sorting.
Counties with a one standard deviation higher fraction of single parents have outcomes of permanent
residents that are -2.500pp (0.257) lower. And, we estimate that twenty years of exposure to
counties with a one standard deviation higher fraction of single parents cause a -0.747pp (s.e.
0.212) reduction in the child’s income percentile. This suggests the majority of the correlation
with the permanent resident outcomes across counties within CZs reflects sorting. But despite this
sorting, the fraction of single parents continues to have a -0.377 correlation with the causal effect

of place. Places with a higher fraction of single parents tend to cause lower incomes.
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VII.A.5 Education

Across CZs and counties within CZs, outcomes of permanent residents are positively correlated
with measures of school quality, such as student test scores and the high school dropout rate. For
example, counties with a one standard deviation higher test score within the CZ have 1.750pp higher
income ranks, or roughly 5.5% higher incomes. Our results suggest this pattern is, if anything,
stronger when focusing on the causal effect of the CZ and county. We find a positive correlation
between test scores and g5 . across CZ of 0.509 and 0.354 across counties within CZs. However, we
do also find some evidence of residential sorting across counties within CZs: the 1.750 coefficient for
permanent residents is higher than can be accounted for with 20 years of exposure and a coefficient
of 0.702, suggesting that children residing in counties with higher test scores are also receiving other

inputs, 6;, beyond the impact of exposure to those counties.

VII.A.6 Social Capital

Social capital has been argued to play an important role in promoting upward mobility (Coleman
(1988); Putnam (1995)), and Chetty et al. (2014) documents a strong correlation across CZs between
measures of social capital and upward mobility. For example, CZs with a one standard deviation
higher level of the social capital index of Rupasingha and Goetz (2008) have permanent resident
incomes that are 1.216pp higher (3.8% of mean incomes). Our results suggest this largely reflects
a correlation with the causal effect of exposure to these CZs. Twenty years of exposure to CZs
with a one standard deviation higher level of the social capital index of Rupasingha and Goetz
(2008) cause an increase in incomes of 1.845 (s.e. 0.352) percentiles for children from below-median
income backgrounds (Figure VI, Panel A), which fully accounts for the observed correlation with
permanent resident outcomes.

We also find suggestive evidence that measures of social capital are more strongly correlated
with the causal effects on low-income boys as opposed to girls outcomes. Appendix Table XI shows
that twenty years of exposure to a CZ with a one standard deviation higher measure of the social
capital index will increase a boys’ income in adulthood by 2.609 (s.e. 0.447) percentiles, a 7.8%
increase in income; for girls the increase is only 1.164 (s.e. 0.508) percentiles, or a 3.8% increase in
income, as shown in Appendix Table XIII. Similarly, twenty years of exposure to CZs with a one
standard deviation higher violent crime rate will cause, on average, a reduction in boys’ incomes
by -2.244 (0.366) percentiles, or 6.7%, but a reduction of girls’ incomes by -1.322 (s.e. 0.580)

percentiles, or 4.3%. CZs with more social capital and lower crime rates seem to have positive
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causal effects, especially on boys.

VII.A.7 Immigrants and Positive Selection

In contrast to the above covariates, Chetty et al. (2014) does not document any significant corre-
lation between upward mobility and the fraction of foreign born residents in the CZ. Across CZs,
places with a one standard deviation higher fraction of foreign born residents have outcomes of
permanent residents that are on average 0.196pp higher (s.e. 0.286). However, we find a strongly
negative correlation with the causal effect of the place: twenty years of exposure to a place with
a one standard deviation higher fraction of foreign born residents tends to cause incomes to be
-1.184pp (s.e. 0.275) lower. Taking the difference between these estimates, places with a one
standard deviation higher fraction of foreign born residents have outcomes of permanent residents
that are 1.417pp (s.e. 0.315) higher than would have been expected based on the causal effect of
childhood exposure to the CZ, Apgs .. In this sense, the observed outcomes of permanent residents
tend to over-state the causal impact of the CZ on outcomes of low-income children in places with
a larger share of immigrants.

This pattern can also explain some specific divergences between places that look good from a
permanent resident but not a causal effect perspective. For example, New York has a relatively
high rate of upward mobility (Chetty et al. (2014)) and outcomes of permanent residents, 25 c.
However, Figure I illustrates that New York has a fairly low causal effect on children from below-
median income families. While there are many reasons this positive sorting could occur, it is
consistent with the natural story that immigrants themselves are positively selected. For a given
level of parental income, immigrant children may have higher earnings than their non-immigrant
peers regardless of where they grow up. Hence, the permanent resident outcomes of children in
places with a large share of immigrants will tend to over-state the causal effect of the place on a

child’s earnings.

VII.B Impacts on Above-Median Income Children

In addition to patterns for children in low-income families, we also find several interesting patterns
for children in above-median income families. As noted in Section V, across CZs we find a positive
correlation in the causal effect of a place for above- and below-median income children. This
suggests that the causal effects for children with above-median income parents will share many of

the same correlates. Indeed, Appendix Table IX shows that CZs with less residential segregation,
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higher quality K-12 education systems as measured by test scores and dropout rates, stronger
measures of social capital, and less income inequality tend to have higher causal effects on children
in above-median income families. However, the causal effects for these children do not share all of
the same correlates as those for lower-income children. We find no correlation between the fraction
of black residents and the fraction of single parents and the causal effect of the CZ on children in
above-median income families.

Across counties within CZs, we find a smaller correlation of 0.08 between the causal effects
for children in above- and below-median income families. Consistent with this, we also find that
many of the strong correlations with the causal effects for low-income families are not present when
focusing on children in higher-income families. For example, we do not find that counties with
more segregation and poverty tend to have negative impacts on children from high-income families.
On average, counties with a one standard deviation higher segregation of poverty cause incomes of
children from above-median income families to be -0.181 (s.e. 0.258) lower (as shown in Appendix
Table X), statistically not distinct from zero. This contrasts with the coefficient of -1.810 (s.e.
0.128) for children in below-median income families, roughly ten times as large. This is consistent
with the idea that places with greater segregation tend to promote low outcomes primarily for those
who live in the areas of concentrated poverty within the CZ and county. More generally, we do not
find significant correlations between the causal effects for above-median income children, pi75 ., and
measures of income inequality, social capital, family structure, or K-12 education as measured by
test scores and dropout rates.

Although we do not find strong correlations with the causal effects, we do find significant
evidence of sorting of above-median income families across counties within CZs that correlate with
these variables. Permanent resident outcomes in counties within CZs that have higher income
inequality, more segregation, more single parents, and lower quality K-12 education do have lower
outcomes. For example, permanent resident outcomes in counties with a one standard deviation
higher test score percentile have 1.021pp (s.e. 0.118) higher incomes. But, replacing the permanent
resident outcomes with twenty years of exposure to the causal estimates, 20/i75 ., we find a coefficient
of 0.070pp (s.e. 0.265). This suggests families that provide other inputs into their children’s
outcomes tend to locate in places with higher quality schools; but those places do not appear
to systematically increase their children’s incomes for children in above-median income families.
In this sense, the most salient correlations of measures of disadvantage with the causal effects of

counties within CZs occurs for low-income children.
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VII.C Income Inequality and Relative Mobility: Distinguishing Mechanisms
Underlying the ”Great Gatsby” Curve

In addition to separately analyzing correlates of causal effects for above- and below-median income
families, here we focus on the impact of place on the difference in outcomes for children at the
top and bottom of the parental income distribution (i.e. relative mobility). A large literature
has documented a positive correlation between relative mobility and income inequality, termed the
“Gatsby Curve” (Corak (2013); Krueger (2012)). Countries with greater income inequality tend
to have greater intergenerational income persistence. Chetty et al. (2014) documents this pattern
similarly across CZs within the US. Figure VIII, Panel A, presents a binned scatterplot of the
relationship between relative mobility of permanent residents in a CZ, §100,c — Jo,¢, against the Gini
coefficient of the income distribution in that CZ. Areas with more income inequality tend to have
lower rates of relative mobility: CZs with a 0.1 point higher Gini coefficient on average have a 3.8
percentile higher difference in outcomes for children in rich versus poor backgrounds, ¥100,c — ¥o,c-

This pattern could be driven by two distinct forces. On the one hand, places with greater income
inequality may tend to cause greater intergenerational persistence. On the other hand, places with
greater income inequality may have differences in their distribution of permanent residents that
generates both within-generation income inequality and greater intergenerational persistence. For
example, places with greater income inequality could have greater dispersion in genetic traits that
cause differences in earnings potentials in both the parents and children’s generations.

Our analysis provides new evidence that, across the U.S., areas with more income inequality
tend to cause greater intergenerational persistence in income. Given two children — one from the top
of the parental income distribution (p = 100) and one from the bottom (p = 0) — the causal effect of
a year of exposure to place c on the difference in these children’s outcomes is given by fi100,c — 0,c-
Figure VIII, Panel B, presents a binned scatterplot of the relationship between fi100, — flo,. and
the Gini coefficient in the CZ. Across the U.S., CZs with greater income inequality tend to cause
greater intergenerational persistence in incomes. In an unweighted?® regression across CZs, we
estimate an aggregate slope of 3.325 which suggests that on average each additional year these
children spend growing up in a CZ with a 0.1 point higher Gini coefficient causes a 0.3325 rank

percentile difference in their incomes.

26 A discussed below, we find a smaller relationship across large CZs, so that weighted regressions provide a much
more muted relationship.
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Chetty et al. (2014) also identify heterogeneous patterns for large and small CZs. The correlation
between income inequality and observed intergenerational persistence is strongest in the smaller
CZs. We find similar patterns between income inequality and the causal effects. Panels C and D of
Figure VIII split the aggregate pattern in Panel B into CZs with above and below 2.5M residents.
For CZs with populations below 2.5M residents, we find a strong pattern with a slope of 3.528 (s.e.
1.321). In contrast, in large CZs with populations above 2.5M, we do not find a strong pattern
between income inequality and the causal effect on income persistence, with a slope of 0.37 (s.e.
0.825). In this sense, the correlations of income inequality with both observed relative mobility
(9100,c — Yo,c) and the causal impact on relative mobility (f1100,c — fto,c) are strongest in smaller CZs.

How much of the Gatsby Curve can be explained by the causal effect of place? Multiplying
the aggregate pattern of 0.3325 by 20 years of exposure. corresponds to a 6.6pp difference in
their percentile ranks. This is larger than the observed slope for permanent resident outcomes,
¥100,c — Yo,c, illustrated in Panel A. This suggests that the entirety of the Great Gatsby curve that
is observed across CZs in the U.S. can be explained by the causal effect of childhood exposure
to those CZs on intergenerational persistence. In this sense, it provides suggestive evidence that
intergenerational persistence in other factors in 6; (e.g. genetics) play a minor role in generating
the correlation between income inequality and intergenerational persistence in the U.S.

Finally, we reiterate that our results do not imply that changing a particular characteristic
of a place will cause a difference in the causal effect of that place; we do not have exogenous
variation in the income inequality in a place. Rather, the “Gatsby Curve” in the U.S. reflects a
causal relationship in the following sense: on average, across the U.S. places with greater income

inequality cause greater intergenerational income persistence.

VIII Prices and Opportunity Bargains

Does it cost more to live in places that improve children’s outcomes? In the last two rows of Tables
V and VI, we correlate our measures of place effects, jip., with the median rent and median house
price from the 2000 Census.?” More expensive areas generally produce lower, not higher, outcomes.
We find a strong negative correlation of -0.324 (s.e. 0.133) between fig5 . and house prices and

-0.424 (s.e. 0.139) with rent.?® The negative correlation with prices is perhaps not surprising: rural

2"For the CZ analysis in Table V, we take the median prices in the county and average them across counties within
the CZ.

28We find even stronger negative correlations for pizs . of -0.648 (s.e. 0.120) for house prices and -0.718 (s.e. 0.180)
for rent, as shown in Appendix Table IX.
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areas have higher causal effects and are also less expensive.

But, moving from an urban commuting zone to a rural commuting zone requires not only
moving into a new house — it generally requires obtaining a new job. Because the availability of
jobs is another important factor in a location decision, it is potentially misleading to consider the
negative correlation with rent and house prices as an indication that it is cheaper on net to move
to a CZ with a higher causal effect. To more closely approximate a residential choice decision
within a local labor market, we study the patterns of prices across counties within CZs. Because
commuting zones are defined to approximate local labor markets, the location decision within a
commuting zone aligns more closely with the conceptual experiment of holding fixed the set of
job opportunities available to families when making location choices. To quantify how much, on
average, it costs to move to a place that causes a 1-percentile increase in a child’s earnings from a

below-median income family, we regress median rent in the county on CZ fixed effects and % f125 ¢

2
Ouos. .

R

Tligs,. T525,¢

by 7. removes attenuation bias from sampling error in fios .

where . = is the signal-to-total variance ratio of the fixed effect estimate.?? Dividing

The results suggest that in large, segregated CZs, better counties are more expensive. Figure
IX (Panel A) plots the patterns across counties within CZs with populations above 100,000 and
above median fraction of the population with commute times above 15 minutes. In these CZs,
moving to a county that is expected to increase a child’s income rank by 0.1 percentiles per year
of exposure costs, on average, $52 more in median monthly rent.3? In contrast, in large CZs with
less sprawl/segregation, we find no significant correlation: counties that are forecast to increase a
child’s income rank by 0.1 percentiles per year have, on average, $6 lower monthly rent, which is not
statistically distinguishable from zero (Figure IX, Panel B). In other words, there is a price-quality
tradeoff across counties in large, highly-segregated CZs; but this tradeoff does not appear to emerge
in large CZs with below-median levels of segregation.

Opportunity Bargains. Even within these counties in highly segregated CZs, we find evidence
of “opportunity bargains” — places that have the same rent but with higher causal effects on
children’s outcomes. Regressing the shrunk causal effect on median rent and CZ fixed effects yields
a root mean square error of 0.08. This suggests that for a given price, individuals in an average

county could expect to find another county that increases their child’s incomes by 0.08 percentiles

**The numerator, o, , is the signal variance, which we estimate as o7, . = Var (fizs,c) — E [s35 c] where 55 is
the standard error of the estimate for place c.

39We find very similar patterns for all of the results in this section if we use the 25th percentile of the rent
distribution in each county, as opposed to the median.
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per year of exposure yet has the same rental price. Moving to a one-standard deviation better
county that has the same median rent will on average increase a child’s earnings by 5%.

In smaller CZs with populations below 100,000, we find that counties that produce better
outcomes are actually cheaper (Figure IX, Panel C). Moving to a county that is forecast to increase
a child’s income rank by 0.1 percentiles per year (for children in below-median income families) is
associated with, on average, $18 lower median monthly rents.3!

Observables versus Unobservables. Why isn’t it always more expensive to move to a
place that causes higher outcomes for children? Of course, one potential explanation is that the
areas that appear to be opportunity bargains are those with other dis-amenities, such as longer
commutes or different job options, or other factors like lower quality restaurants. But a distinct
potential explanation for the existence of opportunity bargains is that families do not know the
causal impact that a particular place has on their children’s outcomes later in life.

To explore whether individuals know the causal effect, we think of p95 . as having two com-
ponents with different degrees of 'observability’: (1) an “observable” component that is projected
onto covariates that are observable at the time the children are being raised, such as school quality,
social capital, etc, and (2) a residual “unobservable” component that is the residual after projecting
this forecast onto the observable covariates. If individuals have knowledge about a place’s causal
effect on their children’s outcomes and sort to those locations based on this information, one would
expect a positive correlation between housing costs and both the observable component and the
unobservable component.

To explore this, we regress the county-level fixed effect estimates fi,. in CZs with populations
greater than 100,000 on several standardized covariates that are predictive of the causal effect: the
fraction of single parents, the fraction with travel time less than 15 minutes, the Gini-99 coefficient
(Gini coefficient on incomes below the top 1%), the fraction below the poverty line, and a measure
of school quality using an income-residualized measure of test scores. We include CZ fixed effects
and restrict to CZs with populations above 100,000. We then define the observable component as
the predicted value from this regression. We define the unobservable component as the residual

from this regression, which we shrink by its signal-to-noise ratio so that it is an unbiased forecast

31 Although we do not have conclusive evidence on why this negative pattern exists, we have explored whether any
correlates in Table XV can explain this pattern by having an inverse correlation with the county’s effect on children
and median rental prices. One such variable that follows this pattern is income inequality. In CZs with populations
below 100,000, we find a strong negative correlation between the county place effects, o5, and income inequality
(e.g. as measured by the gini coefficient on incomes below the top 1%); but counties with higher income inequality
generally have higher median rents amongst CZs with populations below 100,000.
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of the residual for a particular place.??

Figure X (Panel A) illustrates that the positive correlation with monthly rent in large CZs
is driven entirely by the observable component of the place effect, despite using only a handful
of observable variables to define the observable component.?®> Moving to a county within a CZ
that produces a 0.1 percentile increase (i.e. a 0.3% increase in the child’s earnings) per year of
exposure based on its observable characteristics costs $102.56 (s.e. $8.35) per month, holding the
unobservable component constant. In contrast, we find no significant relationship between prices
and the unobservable component (Panel B). Moving to a county within a CZ that will produce a 0.1
percentile increase per year of exposure based on its unobservable characteristics costs only $21.68
per month (s.e. $12.36), holding the observable components constant. This suggests parents may
not have precise information about the causal effect of these places on their children’s outcomes.
A potential direction for future work is to better understand the knowledge and constraints that

are faced by families when choosing where to raise their children.

IX Conclusion

This paper has estimated the causal effect of childhood exposure to each county in the U.S. on
children’s outcomes in adulthood by analyzing the outcomes of children whose families move across
areas. We find that growing up in a one standard deviation better county from birth increases a
low-income child’s adult earnings by 10%. We use our estimates to construct predictions of the
causal effect of growing up in each county that can be used to guide families seeking to move to
better areas. These estimates allow us identify areas that are “opportunity bargains” — places that
produce high levels of mobility without high housing costs. We also show that areas that produce
high levels of upward mobility share a systematic set of characteristics, such as less residential
segregation and greater social capital.

Our findings provide support for place-focused approaches to improving opportunity, but there

are two important directions for further work that are necessary before one can apply these findings

32Using these observables, we obtain a standard deviation of predicted values of 0.055 implying that roughly
one-third of the signal variance is captured by our observable component.

33Figure X provides a non-parametric representation of the (partial) regression coefficients obtained from regressing
monthly rent on the observable and unobservable components, conditional on CZ fixed effects. In Panel A, we regress
the observable component of ugw on CZ fixed effects and the unobservable component and bin the residuals into
20 equally sized vingtile bins. We also regress median monthly rent on the same CZ fixed effects and unobservable
component of ,u£5’c. Panel A then plots the average of this residual in the 20 vingtile bins. The slope then represents
the partial regression of median monthly rents on the observable component of M£c7 controlling for CZ fixed effects
and the unobservable component of uﬁc. Panel B repeats this process, interchanging the observable and unobservable
components.
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to improve policy. First, our current estimates are at broad geographic levels: commuting zones
and counties. It would be very useful to use the methods developed here to identify the impor-
tance of place effects at finer levels of geography, such as ZIP codes and census tracts. Such finer
geographic variation could provide new insights into the pathways through which place affects chil-
dren’s outcomes; for example, one could examine how the causal effects vary across school district
boundaries. Furthermore, such analysis could be fruitful for providing further guidance to policy-
makers and families seeking to improve their children’s opportunities, in particular for identifying
opportunity bargains.

Second, further work is needed to explore what makes some places produce better outcomes than
others. Our correlational analysis characterizes the properties of places that tend to have high causal
effects, but identifying the causal mechanisms through which places can improve upward mobility
requires exogenous variation in these factors. For example, studying changes in policies targeted at
reducing residential segregation would help us understand the extent to which segregation causes
worse outcomes for children in low-income families.

To facilitate further investigation of these causal mechanisms, we have made all of the county-
and CZ-level estimates of causal and sorting effects available on the Equality of Opportunity Project
website. In addition to the estimates of earnings outcomes we focus on in this study, we also provide
estimates for other outcomes and subgroups not explored in detail here, such as college attendance,
rates of marriage, and estimates for children in one vs. two-parent households. We hope these
data will allow researchers to develop a more precise understanding of the production function for

economic opportunity.
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Online Appendix

A Estimation Details

A.A CZ Estimation 2-Step Implementation

At the CZ level, estimation of the more than a thousand parameters, { pl, ul }C, in equation (3) is not directly feasible
on the micro data due to computational constraints. We therefore estimate these fixed effects in two steps.

In the first step, we estimate the exposure effect separately for each origin-destination pair. We regress y; on
exposure time to the destination relative to the origin, A — m;, for each origin destination pair,

Yi = (A —my) (19q + Hoapi) + K + Qodps + € (11)

where pf, = ,ugd + u})dp represents the impact of spending an additional year of childhood in destination d relative
to origin o and a,qps is given by

Qodps = (Qgq + gy + V55 + 1oq5” + Vaasp + Voqs™p) (12)
Formally, by estimating these effects separately by origin-destination pair, we allow for flexible cohort controls that
vary by origin-destination cell.
In the second step, for a given p we take the dataset of these N2, estimates, {ugd}od, and regress them on
indicators for each CZ,
toa = Glipe + Tod (13)

where G is an N2 x N, matrix of the form
G= -1 0 +1
-1 0 41
+1 -1 0

This matrix collapses the N2 pairwise exposure effects, pi?;, into a vector of N, place fixed effects, i, = (fip1, -s fipnN. ) -
To construct the G matrix, we enumerate all origin-destination pairs as rows, and all unique places as columns. For
each origin-destination row, we code the column corresponding to the destination as +1, the column corresponding
to the origin as -1, and all other columns as 0.4

We estimate i, = {ppc} using the regression in equation (13), weighting each origin-destination-pair observation
by the estimated precision of the p, estimates in the regression in equation (11). To reduce the impact of statistical
noise in this two-step estimation process, we restrict to origin-destination cells with at least 25 observations.?®

A.B County Estimation
As described in the text, we estimate the county level effects using moves across counties within CZs. Within each

CZ, we regress y; as:

yi = (A=mi) Y (pel {d () = e} = ppel {0(0) = €}) + Codps + €

c

where ¢ indexes the counties in the CZ, pp. = pQ + plp is a linear specification in parental income rank, and odps
is approximated by:

Coaps = (adg +alyp) 1{d (i) = d;o (i) = o} + s + 's* + ¥ sp + ¢*s%p

A.C Standard Errors

To account for the 2-step estimation procedure discussed above, we estimate this standard error for each CZ, ¢,
using a bootstrap procedure. We construct 100 samples (with replacement) and repeat our two-step estimation
procedure, yielding sep. as the standard deviation of these bootstrap iterations. We have also verified that these
standard errors would deliver very similar estimates if instead one simply used the analytical standard errors from

34We thank Gary Chamberlain for suggesting this design matrix approach for estimating equation (3).
35Weighting by precision in equation (13) does not solve issues of statistical noise because we must use the estimated precision as
opposed to true precision.
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the regression in equation (13). Formally, the bootstrap method imposes a clustering of the standard errors at the
origin-by-destination level. In practice, however, both approaches deliver very similar standard error estimates. We
provide both standard errors for the baseline specifications in Online Data Tables 3 and 4. For our other outcome and
sample specifications, we use the analytic standard errors in equation (13) for simplicity. To estimate the standard
errors for each county’s estimate, we obtain the standard error from the regression in equation (3) for each county
within each CZ. We form an estimate of the standard deviation of each county’s effect as s ., = 8270 2+ 52 ctyines
where si)ctymcz is the square of the standard error for the county-within-CZ estimate for county cty and s, cz is
the square of the bootstrapped standard error for the CZ estimates. Note that these standard errors are additive
because our 1-time movers samples across CZs and across counties within CZs are mutually exclusive.

B Robustness

We assess the robustness of our estimates to the specification assumptions made in Section III. Appendix Table
I reports the coefficient from a regression of the alternative specification on our baseline estimate, along with the
standard deviation of the place effects under the alternative specification. Panel A reports the results for the CZ-level
estimates; Panel B reports the estimates for the county level estimates.

Linearity. Equation (3) models the impact of places as a linear function of parental income. This is motivated
by the strong linearity we observe in outcomes amongst permanent residents, but could potentially be violated
when constructing the causal effects of places. Here, we relax the linearity assumption in two ways. First, we
include quadratics in parental income for jp.. This specification generates very similar estimates that are highly
correlated with our baseline estimates at both p25 and p75. Regressing these alternative specifications on our baseline
specification for p = 25, we estimate a coefficient of 0.974 at the CZ level and 0.991 at the county level; For p = 75,
we estimate a coefficient of 0.994 at the CZ level and 0.969 at the county level. In short, consistent with the linearity
in the outcomes of permanent residents documented in Chetty et al. (2014), the results are quite robust to relaxing
the assumption of linearity in parental income.

Cost of Living. Our baseline estimates do not adjust for cost of living differences across areas. This is natural
if one believes such differences largely reflect differences in amenities. But, it is also useful to illustrate the robustness
of the results to adjusting both parent and child income ranks for cost of living differences across areas. To do so, we
follow Chetty et al. (2014) by constructing adjusted income ranks for both parents and children that divide income
in year t by a cost of living index3% corresponding to the location of the individual in that year. We then re-compute
the 5-year averages for parental income (1996-2000) and their associated national ranks, along with the national
ranks for the child’s income at age 26.

Across commuting zones, the cost of living-adjusted estimates lead to a coefficient of 0.952 when regressing the
alternative estimates on the baseline estimates for p = 25; we obtain a coefficient of 0.951 across counties.

Overall, our baseline estimates are robust to relaxing the linearity in parental income rank assumption, and
adjusting for costs of living. All of these robustness specifications produce alternative estimates of place effects and
are available in the online data tables.

36See Chetty et al. (2014) for a detailed discussion of this cost of living adjustment. Loosely, we use a predicted value of the ACCRA
index that allows us to expand the coverage of ACCRA to all CZs.

48



FIGURE I: Causal Effect of 1 Year of Exposure Versus Permanent Resident Outcomes
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Notes: These figures present estimates of place effects, fipc for child income rank at age 26 from families at the 25th percentile.
For each place, the vertical axis presents the causal effect, ppc, and the horizontal axis presents the outcomes of permanent
residents, yp.. Panel A presents estimates across CZs. CZs with populations above 2.5M are labeled and highlighted in blue,
and vertical bars reflect their 5/95% confidence intervals. Panel B presents estimates across counties; Counties within the New
York and Newark CZs that have populations above 500K are labeled and highlighted in blue, and vertical bars reflect their
5/95% confidence intervals. The solid line presents the predicted values from a regression of ppe on gpe (using all places, c).



FIGURE II: Robustness of Causal Effects

Robustness to Income Change Controls
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Notes: These figures present scatterplots of the relationship between our baseline causal effect estimates and the estimates
from two alternative specifications. The first specification includes controls for changes in family income around the time of
the move and their interactions with the child’s age at the time of the move. Panel A presents the scatterplot for the CZ-level
estimates at p = 25; Panel B presents the scatterplot for the County-level estimates at p = 25. The second specification
includes controls for marital status and its change around the time of the move along with their interactions with the child’s
age at the time of the move. Panel C presents the scatterplot for the CZ-level estimates at p = 25; Panel D presents the
scatterplot for the County-level estimates at p = 25 with marital status controls. The horizontal axis represents the baseline
specification and the vertical axis represents the estimate under the alternative specification. The figures also report the
coefficient from a precision-weighted regression of the alternative estimates on the baseline estimates. Appendix Table I also
reports these coefficients, along with the analogous coefficients for above-median income families (p = 75).



FIGURE III: Construction of Optimal Forecasts
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Notes: This figure illustrates the construction of our optimal forecasts, u;fc, across CZs for children with below-median income
parents (p = 25). The blue circles present the causal effect estimates for a select set of CZs with populations above 5M. The
horizontal axis reflects the outcomes of permanent residents in the CZ; the solid line reflects the predicted causal effect given
the outcomes of permanent residents, F [tpc|Upe] = YpYpe. The dashed vertical bars around the causal estimates reflect 1
standard error; the dashed bars around the solid prediction line, v,ypc, reflect the estimated standard deviation of ppe — Ypype-
The red triangle presents the optimal forecast, which places more weight on the causal effect estimate when the standard
error of the estimate is low and more weight on the prediction based on permanent residents when the standard deviation of

tpe = Vplpe 1 low.



FIGURE IV: Forecasts by CZ
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Notes: These figures present the forecasts of each CZ’s causal effects, ugc, for below-median (p = 25) and above-median
(p = 75) income families. We compute these forecasts using the methodology discussed in Section VI.



FIGURE V: Forecasts by County for NY and Boston CSA
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Notes: These figures present forecast estimates of the county-level causal effects, ugc, for below-median (p = 25) and above-
median (p = 75) income families in the New York and Boston Combined Statistical Areas (CSAs). We compute these forecasts
using the methodology discussed in Section VI.



FIGURE VI: Predictors of Exposure Effects For Children
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Notes: These figures show the coefficients of regressions of the model components for below-median income families (p = 25)
on a set of covariates analyzed in Chetty et al. (2014) which are normalized to have mean zero and unit standard deviation.
The vertical line represents the coefficient from a regression of the permanent resident outcomes, y25 ., on the standardized
covariate. The solid bar represents the coefficient from a regression of the causal effect of twenty years of exposure, 20u25,., on
the covariate. Therefore, the difference between the bar and the vertical line (denoted by the dashed horizontal line) represents
the regression coefficient from a regression of 25, —20u25,c, on the covariate. The column on the far right divides the regression
coefficient by the estimated standard deviation of p2s,. (from Table II), providing the implied correlation between the covariate
and the causal effects. We restrict the sample to CZs and counties for which we have both causal fixed effects and permanent
resident outcome measurements. The covariate definitions are provided in Appendix Table XV, and results for additional
covariates are provided in Tables V and VI. Panel A presents the results at the CZ level. Panel B presents the results at the
county within CZ level by conditioning on CZ fixed effects.



FIGURE VII: Predictors of Exposure Effects For Children
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FIGURE VIII: Income Inequality and the Great Gatsby Curve
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Notes: This Figure illustrates the relationship between income inequality in a CZ and relative mobility (the difference in
outcomes of children in high- and low-income families). Panel A presents a binned scatterplot of the relationship between
the difference in outcomes of permanent residents, ¢100,c — %o,c, and the gini coefficient in the CZ. Panel B presents a binned
scatterplot of the relationship between the difference in causal effects for children in high- and low-income families, ft100,c — fio,c,
and the gini coefficient in the CZ. Panel C (Panel D) repeats the analysis in Panel B restricting the sample to CZs with below
(above) 2.5M residents based on the 2000 Census.



FIGURE IX: Median Rent versus Exposure Effects

A. Counties in Above-Median Segregated CZs with Populations above 100,000
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Notes: This figure presents binned scatterplots corresponding to a regression of median rent in the county (from the 2000
Census) on the predicted exposure effect for that county at p = 25, l’LgS,c' In contrast to the model in Section VI, we

construct the forecasts u£57 . using only the fixed effect estimates, fiz5,. normalized by their signal-to-total variance ratio (we
do not incorporate information from permanent residents, yp., in order to avoid picking up correlations between prices and
the sorting components). Panels A-C present binned scatter plots of the relationship between median rent in the county and
the predicted exposure effect of the county, conditional on CZ fixed effects. We split counties into three groups: those in
CZs with populations above and below 100,000 based on the 2000 Census. We then split the set of CZs with populations
above 100,000 into two groups: those with above-median segregation/sprawl and below-median segregation/sprawl, where
segregation/sprawl is defined by the fraction of people in the CZ that have commute times less than 15 minutes. Panel A
reports the binned scatterplot for CZs with above-median segregation/sprawl and CZ populations above 100,000; Panel B
reports the binned scatterplot for CZs with below-median segregation/sprawl and CZ populations above 100,000. Panel C
reports the binned scatterplot for CZs with population below 100,000.



FIGURE X: Median Rent versus Unobservable and Observable Exposure Effects

A. Median Rent versus Observable Component
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Notes: This figure presents binned scatter plots corresponding to a regression of median rent on the observable and unobservable
components of the county-level forecasts, ,ugsc, on the sample of CZs with populations above 100,000, conditional on CZ fixed
effects. We construct the observable component by regressing fios . on five covariates that are standardized to have mean zero
and unit variance: the fraction of children with single parents, the fraction with travel time less than 15 minutes, the gini
coefficient restricted to the 0-99th percentiles of the income distribution (which equals the gini minus the fraction of income
accruing to the top 1%), the fraction below the poverty line, and a residualized measure of test scores (see Appendix Table
XV for further variable details). We weight observations by the estimated precision of fizs .. We then define the “observable”
component as the predicted values from this regression. For the unobservable component, we take the residual from this
regression and multiply it by its estimated total variance divided by the signal variance of the residual. The total variance is
given by the variance of the residuals, weighted by the estimated precision of fis5.. To construct the signal variance of the
residual, we estimate the noise variance as the mean of the square of the standard errors, weighted by the estimated precision
of fiz5,c. Given the observable and unobservable components, Panel A presents the binned scatterplot corresponding to the
regression of median rent on the observable component, controlling for CZ fixed effects and the unobservable component. We
regress median rent on the the unobservable component and CZ fixed effects and construct residuals. We then regress the
observable component on the unobservable component and CZ fixed effects and construct residuals. We bin these residuals
of the observable component into vingtiles and within each vingtile plot the average of the median rent residuals. Hence, the
slope of the line corresponds to the partial regression coefficient of a regression of median rent on the observable component,
controlling for the unobservable component and CZ fixed effects. For Panel B, we replace the observable and unobservable
components in the process for Panel A, so that the slope of the graph corresponds to the partial regression coefficient on the
unobservable component in a regression of median rent on the observable and unobservable components of the forecast.



ONLINE APPENDIX FIGURE I: Correlations of place effects by age (p25)
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Notes: This figure presents the estimated correlation between yp. across CZs when measured at age 32 with measurements at
earlier ages (20-32). Correlations are weighted by CZ population in the 2000 Census. The vertical axis presents the estimated
correlation; the horizontal axis corresponds to the varying age of income measurement.



ONLINE APPENDIX FIGURE II: Forecasts using Both Permanent Residents and Fraction
African American Residents
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Notes: This figure presents a scatter plot for the 50 largest CZs comparing our baseline forecasts which use the causal effect
estimates and permanent resident estimates with alternative forecasts that also include the fraction of African American
residents in the prediction in equation (8). We regress flas.c = Yplos,c + You'*" FractionBlack. and replace ypfos,c with
YolJ2s.c +V5* FractionBlack.. We then use the weights in equation (9) but construct the residual variance after subtracting
both the permanent resident and FractionBlack components, X%s = Var (M25,c — Y25Y25,c — ’ygé‘mkFTactionBlackC). The
horizontal axis presents the baseline forecast; the vertical axis presents the alternative forecast.



ONLINE APPENDIX FIGURE III: Distribution of Predicted Values by Gender
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Notes: This figure presents the cumulative distribution of the gender-specific forecasts of county exposure effects for family
income for children in below-median (p25) income families, ,u£5’c. The solid (blue) line presents the cumulative distribution
for male forecasts. The dashed (red) line presents the cumulative distribution of the female forecasts.



ONLINE APPENDIX FIGURE IV: Forecasts by CZ: Male and Female

A. Male (1125,c)

>0.35
(0.22, 0.35)
(0.14, 0.22)
(0.09, 0.14)
(0,05, 0.09)
: (0.01, 0.05)
' B (-0.04, 0.01)
- M (-0.09, -0.04)
W (-0.16, -0.09)
HW=-016
#2 Insufficient Data

B. Female (,uzs,c)

=041
(0.29, 0.41)
(0.20, 0.29)
(0.13, 0.20)
(0.09, 0.13)
: (0.04, 0.09)
» . [(-0.02,0.04)
e ' - W (-0.08 -0.02)
M (-0.15, -0.08)
BW<-01s
&4 Insufficient Data

Notes: These figures present forecast estimates of each CZ’s causal effects on family income for children in below-median

(p = 25) families on separate samples of male (Panel A) and female (Panel B) children. We compute these forecasts using the
methodology discussed in Section VI but do so separately conditional on child gender.



ONLINE APPENDIX FIGURE V: Forecasts by CZ: Individual Incomes
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Notes: These figures present forecast estimates of each CZ’s causal effects on individual income (as opposed to family income,

shown in Figure IV), yJ,, for below-median (p = 25) and above-median (p = 75) income families. We compute these forecasts
using the methodology discussed in Section VI but replacing a child’s family income with individual income.



ONLINE APPENDIX FIGURE VI: Forecasts by CZ: Male and Female Individual Incomes

A. Male (1125,c)

=>0.09

(0.04, 0.09)
(-0.01, 0.04)
(-0.04, -0.01)
(-0.086, -0.04)

3 & \(-0.08, -0.06)
- 10 (-0.10, -0.08)

i W02 -0.10)
W -0.15,-0.12)

W=-015
#Insufficient Data

B. Female (,uzs,c)

e

>0.32
(0.22,0.32)
(0.18,0.22)
(0.10, 0.16)
(0.07, 0.10)
1(0.01, 0.07)
B (-0.05, 0.01)
W-0.11,-0.05)
W-0.19,-0.11)
| EERE]

&2 Insufficient Data

Notes: These figures present forecast estimates of each CZ’s causal effects on individual income for children in below-median
(p = 25) families on separate samples of male (Panel A) and female (Panel B) children. We compute these forecasts using the

methodology discussed in Section VI but replacing a child’s family income with individual income, and separately estimating
the models conditional on child gender.



Table |
Summary Statistics for Movers

Variable Mean Std. Dev. Median Sample Size

@) 2 3 (4)

CZ Movers Sample

Parent Income 74,390 293,213 45,200 6,791,026
Child family income at 24 23,613 49,457 18,500 2,692,104
Child family income at 26 31,559 83,716 24,400 1,869,560
Child family income at 30 45,225 91,195 33,300 616,947

Child individual earnings at 24 18,787 42,333 15,600 2,692,104
College attendence (18-23) 0.625 0.484 1.000 4,026,000

County Movers Sample

Parent Income 76,285 276,185 51,500 3,772,532
Child family income at 24 24,569 54,583 19,500 1,756,981
Child family income at 26 32,985 70,944 25,700 1,323,455
Child family income at 30 47,500 104,900 34,700 532,388

Child individual earnings at 24 19,832 45,082 16,800 1,756,981
College attendence (18-23) 0.637 0.481 1.000 2,316,963

Notes: This table presents summary statistics for the commuting zone and county movers samples used for the
fixed effect estimation.
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Table Ill
Forecasted Place Effects for 50 Largest CZs

Below-Median Income Parents (p25) Above-Median Income Parents (p75)
Family Income Rank Scaling Family Income Rank Scaling Row

State Prediction RMSE  $Increase % Increase  Prediction RMSE  $Increase % Increase Number
Commuting Zone (1) (2) 3) (4) (5) (6) (7) (8)
Salt Lake City uT 0.166 0.066 135.9 0.521 0.105 0.041 88.4 0.218 1)
Seattle WA 0.140 0.059 114.3 0.438 -0.009 0.038 -7.3 -0.018 2)
Washington DC DC 0.105 0.051 85.8 0.329 0.062 0.034 51.7 0.127 3)
Minneapolis MN 0.103 0.065 84.1 0.322 0.077 0.041 65.0 0.160 (4)
Fort Worth TX 0.057 0.061 46.6 0.178 0.049 0.039 41.3 0.102 (5)
San Diego CA 0.056 0.054 46.1 0.177 -0.131 0.038 -110.0 -0.271 (6)
Boston MA 0.055 0.061 45.3 0.174 0.033 0.040 27.7 0.068 ()
Manchester NH 0.051 0.070 41.8 0.160 0.025 0.041 20.7 0.051 (8)
San Jose CA 0.048 0.065 39.1 0.150 -0.118 0.039 -99.2 -0.244 9)
Las Vegas NV 0.043 0.057 35.0 0.134 -0.078 0.039 -65.6 -0.162 (10)
Denver CO 0.042 0.065 34.0 0.130 -0.060 0.038 -50.5 -0.124 (11)
Portland OR 0.038 0.067 31.0 0.119 -0.091 0.041 -76.4 -0.188 (12)
San Francisco  CA 0.029 0.060 23.4 0.090 -0.119 0.037 -99.6 -0.245 (13)
Pittsburgh PA 0.013 0.065 10.8 0.041 0.104 0.041 87.6 0.216 (14)
Newark NJ 0.012 0.051 9.5 0.036 0.057 0.034 48.2 0.119 (15)
Providence RI 0.007 0.067 5.7 0.022 0.022 0.042 18.4 0.045 (16)
Sacramento CA 0.006 0.058 4.6 0.018 -0.144 0.038 -120.6 -0.297 (17)
Phoenix AZ 0.004 0.049 3.1 0.012 -0.018 0.038 -15.1 -0.037 (18)
Buffalo NY -0.003 0.067 -2.2 -0.009 0.010 0.041 8.6 0.021 (19)
Kansas City MO -0.007 0.067 -5.4 -0.021 0.020 0.042 16.7 0.041 (20)
Houston TX -0.025 0.050 -20.7 -0.079 0.006 0.036 5.3 0.013 (21)
Miami FL -0.026 0.044 -20.9 -0.080 -0.201 0.039 -169.0 -0.416 (22)
Philadelphia PA -0.029 0.057 -23.5 -0.090 0.005 0.037 3.9 0.010 (23)
Grand Rapids MI -0.031 0.070 -25.7 -0.098 0.066 0.043 55.6 0.137 (24)
Dallas TX -0.038 0.055 -30.8 -0.118 -0.009 0.036 -7.8 -0.019 (25)
Cleveland OH -0.042 0.062 -34.7 -0.133 -0.025 0.041 -21.1 -0.052 (26)
Bridgeport CT -0.045 0.059 -37.2 -0.143 0.028 0.038 23.6 0.058 (27)
Jacksonville FL -0.048 0.061 -39.0 -0.149 -0.071 0.042 -59.6 -0.147 (28)
Milwaukee Wi -0.048 0.067 -39.3 -0.150 0.044 0.042 37.1 0.091 (29)
Dayton OH -0.062 0.071 -51.1 -0.196 0.015 0.043 12.9 0.032 (30)
Cincinnati OH -0.082 0.069 -67.3 -0.258 0.063 0.041 53.1 0.131 (31)
Columbus OH -0.086 0.068 -70.7 -0.271 0.006 0.042 5.3 0.013 (32)
Nashville TN -0.087 0.070 -71.4 -0.274 -0.027 0.042 -22.6 -0.056 (33)
St. Louis MO -0.090 0.067 -73.7 -0.282 0.029 0.041 24.6 0.061 (34)
Austin TX -0.097 0.066 -79.6 -0.305 -0.098 0.040 -82.6 -0.203 (35)
Baltimore MD -0.103 0.066 -84.1 -0.322 0.067 0.039 56.4 0.139 (36)
San Antonio TX -0.110 0.063 -90.1 -0.345 -0.078 0.040 -65.2 -0.160 (37)
Tampa FL -0.114 0.048 -92.8 -0.356 -0.128 0.040 -107.8 -0.265 (38)
New York NY -0.117 0.039 -95.5 -0.366 -0.032 0.035 -26.7 -0.066 (39)
Indianapolis IN -0.118 0.070 -96.9 -0.371 -0.019 0.041 -16.3 -0.040 (40)
Atlanta GA -0.124 0.043 -101.3 -0.388 -0.094 0.036 -78.7 -0.194 (41)
Los Angeles CA -0.130 0.038 -105.9 -0.406 -0.226 0.032 -189.4 -0.466 (42)
Detroit Ml -0.136 0.054 -111.0 -0.425 -0.125 0.039 -105.3 -0.259 (43)
Orlando FL -0.136 0.054 -111.3 -0.427 -0.137 0.040 -115.1 -0.284 (44)
Chicago IL -0.154 0.048 -126.2 -0.484 -0.035 0.033 -29.1 -0.072 (45)
Fresno CA -0.164 0.062 -134.3 -0.515 -0.120 0.042 -100.6 -0.248 (46)
Port St. Lucie FL -0.174 0.057 -142.6 -0.547 -0.198 0.040 -166.7 -0.410 (47)
Raleigh NC -0.195 0.065 -159.3 -0.610 -0.114 0.041 -96.0 -0.236 (48)
Charlotte NC -0.205 0.061 -167.6 -0.642 -0.084 0.040 -70.7 -0.174 (49)
New Orleans LA -0.214 0.065 -175.3 -0.672 -0.060 0.042 -50.1 -0.123 (50)

Notes: This table presents per-year exposure forecasts for the 50 largest CZs using the estimation strategy discussed in the text. Column (1) reports
the forecast for the child's family income rank at age 26. Column (2) reports the root mean square error for this forecast computed as the square root
of 1/(1/v_r + 1/v)) where v_r is the residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the
numbers to dollars by multiplying the estimates in column (1) by 818, the coefficient obtained by regressing the permanent resident outcomes at p25
for child family income at age 26 on the analogous outcomes for child rank at age 26. Column (4) divides the income impacts in column (3) by the
mean income of children from below-median (p25) income families of $26,090. Columns (5)-(8) report the analogous statistics for above-median
income families. Column (5) reports the prediction for the child's family income rank at age 26; column (6) reports the root mean square error. Column
(7) scales the numbers in Column (1) by 2.068, the coefficient obtained by regressing the permanent resident outcomes at p75 for child family income
at age 26 on the analogous outcomes for child rank at age 26. Column (8) divides the income impacts on column (5) by the mean income of children
from above-median (p75) income families of 40,601.



Table IV
Forecasted Place Effects for 100 Largest Counties (Top and Bottom 25)

Below-Median Income Parents (p25) Above-Median Income Parents (p75)

Family Income Rank Scaling Family Income Rank Scaling Row

Prediction RMSE  $Increase % Increase Prediction RMSE  $ Increase % Increase Number
County State (1) (2 3) (4 (5) (6) (7) (8)
Dupage IL 0.255 0.090 208.8 0.800 0.076 0.077 63.8 0.157 1)
Fairfax VA 0.239 0.100 195.5 0.749 0.265 0.096 222.5 0.548 )
Snohomish WA 0.224 0.099 182.9 0.701 0.058 0.094 48.9 0.120 3)
Bergen NJ 0.220 0.102 179.7 0.689 0.152 0.099 127.7 0.315 (4)
Bucks PA 0.198 0.101 161.6 0.620 -0.023 0.098 -19.3 -0.047 (5)
Norfolk MA 0.183 0.101 149.6 0.573 0.151 0.099 126.5 0.312 (6)
Montgomery PA 0.155 0.096 127.0 0.487 0.072 0.092 60.5 0.149 @)
Montgomery MD 0.151 0.099 123.5 0.473 0.003 0.098 2.2 0.005 (8)
King WA 0.149 0.084 121.8 0.467 0.077 0.076 64.8 0.160 9)
Middlesex NJ 0.146 0.102 119.1 0.456 0.013 0.101 11.2 0.027 (10)
Contra Costa CA 0.141 0.095 115.2 0.442 -0.069 0.091 -58.3 -0.144 (11)
Middlesex MA 0.123 0.091 100.6 0.386 0.013 0.089 11.0 0.027 (12)
Macomb MI 0.111 0.088 91.1 0.349 0.028 0.091 23.1 0.057 (13)
Salt Lake uT 0.099 0.095 80.7 0.309 0.016 0.093 13.8 0.034 (14)
Ventura CA 0.099 0.100 80.6 0.309 -0.055 0.093 -46.0 -0.113 (15)
San Mateo CA 0.085 0.102 69.2 0.265 -0.035 0.102 -29.7 -0.073 (16)
Worcester MA 0.075 0.107 61.4 0.235 0.130 0.107 109.3 0.269 a7
Monmouth NJ 0.075 0.103 61.2 0.235 0.073 0.096 61.7 0.152 (18)
Honolulu HI 0.073 0.100 59.9 0.230 -0.130 0.113 -109.2 -0.269 (19)
Hudson NJ 0.066 0.101 54.4 0.208 0.161 0.110 135.5 0.334 (20)
Kern CA 0.062 0.086 50.4 0.193 -0.059 0.110 -49.9 -0.123 (21)
Clark NV 0.059 0.074 48.3 0.185 -0.046 0.087 -38.9 -0.096 (22)
San Diego CA 0.058 0.063 47.8 0.183 -0.136 0.064 -114.4 -0.282 (23)
Providence RI 0.048 0.101 39.2 0.150 -0.043 0.108 -35.8 -0.088 (24)
San Francisco CA 0.045 0.100 37.1 0.142 -0.183 0.104 -154.0 -0.379 (25)
Jefferson KY -0.137 0.105 -112.3 -0.431 0.022 0.111 18.5 0.046 (75)
Franklin OH -0.137 0.092 -112.4 -0.431 0.114 0.096 95.9 0.236 (76)
San Bernardino CA -0.140 0.062 -114.5 -0.439 -0.245 0.073 -205.9 -0.507 77)
Davidson TN -0.141 0.098 -115.6 -0.443 -0.036 0.105 -29.8 -0.073 (78)
Pima AZ -0.142 0.083 -116.5 -0.446 -0.139 0.099 -116.7 -0.287 (79)
Montgomery OH -0.142 0.104 -116.5 -0.447 -0.016 0.116 -13.2 -0.032 (80)
Travis TX -0.147 0.089 -120.2 -0.461 -0.159 0.087 -133.6 -0.329 (81)
Essex NJ -0.147 0.096 -120.5 -0.462 0.074 0.098 61.8 0.152 (82)
Bexar TX -0.152 0.090 -124.7 -0.478 -0.092 0.122 -17.4 -0.191 (83)
Milwaukee wi -0.158 0.096 -129.4 -0.496 -0.027 0.097 -22.4 -0.055 (84)
Riverside CA -0.161 0.067 -131.6 -0.505 -0.248 0.075 -208.3 -0.513 (85)
Los Angeles CA -0.164 0.045 -134.1 -0.514 -0.254 0.049 -212.9 -0.524 (86)
Wake NC -0.171 0.101 -139.8 -0.536 -0.094 0.102 -79.1 -0.195 (87)
New York NY -0.173 0.076 -141.5 -0.542 -0.275 0.100 -230.7 -0.568 (88)
Fulton GA -0.173 0.077 -141.6 -0.543 0.024 0.083 19.9 0.049 (89)
Bronx NY -0.174 0.076 -142.0 -0.544 -0.201 0.107 -169.1 -0.416 (90)
Wayne Ml -0.182 0.077 -148.6 -0.570 -0.073 0.079 -61.5 -0.152 (91)
Orange FL -0.193 0.077 -157.9 -0.605 -0.093 0.092 -77.9 -0.192 (92)
Cook IL -0.204 0.060 -166.9 -0.640 -0.030 0.051 -24.9 -0.061 (93)
Palm Beach FL -0.208 0.084 -169.8 -0.651 -0.314 0.097 -263.9 -0.650 (94)
Marion IN -0.209 0.097 -170.8 -0.655 -0.102 0.091 -85.4 -0.210 (95)
Shelby TN -0.210 0.093 -171.5 -0.657 0.030 0.103 25.2 0.062 (96)
Fresno CA -0.215 0.089 -176.1 -0.675 -0.051 0.110 -42.4 -0.105 97)
Hillsborough FL -0.220 0.088 -180.3 -0.691 -0.192 0.102 -161.4 -0.397 (98)
Baltimore City ~ MD -0.223 0.092 -182.4 -0.699 -0.017 0.097 -14.6 -0.036 (99)
Mecklenburg NC -0.231 0.095 -188.6 -0.723 -0.090 0.100 -75.5 -0.186 (100)

Notes: This table presents per-year exposure forecasts for the top 25 and bottom 25 largest counties using the estimation strategy discussed in
the text, sorted by the impact on family income rank for children in below-median (p25) income families. Column (1) reports the forecasts for the
child's family income rank at age 26. Column (2) reports the root mean square error for this forecast, computed as the square root of 1/(1/v_r +
1/v)) where v_r is the residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the numbers to
dollars by multiplying by the estimates in column (1) by 3.13, the coefficient obtained by regressing the permanent resident outcomes at p25 for
child family income at age 26 on the analogous outcomes for child rank at age 26. Column (4) divides the income impacts in column (3) by the
mean income of children from below-median (p25) income families of $26,090. Columns (5)-(8) report the analogous statistics for above-median
income families. Column (5) reports the prediction for the child's family income rank at age 26; column (6) reports the root mean square error.
Column (7) scales the numbers in Column (1) by 2.068, the coefficient obtained by regressing the permanent resident outcomes at p75 for child
family income at age 26 on the analogous outcomes for child rank at age 26. Column (8) divides the income impacts on column (5) by the mean
income of children from above-median (p75) income families of 40,601.
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Appendix Table Il
Prediction Regressions

Cz County
Below Above Below Above
Median Median Median Median
Income Income Income Income
(1) (2) (3) (4)
Prediction Regression
Permanent Residents Regression Coeff. 0.032 0.038 0.027 0.023
(s.e.) (0.003) (0.004) (0.002) (0.003)
SD of predicted values 0.106 0.097 0.115 0.076
SD of residual values 0.224 0.222 0.419 0.429
Noise SD of residuals 0.210 0.218 0.402 0.407
Signal SD of residuals 0.080 0.045 0.118 0.135
Num of Obs. 595 595 2,370 2,370

Notes: This table presents the coefficients from the regression of the fixed effects on permanent resident
outcomes. The first row presents this regression coefficient (regression is precision-weighted). The lower
four rows present the standard deviation of the predicted values, the standard deviation of the residual
values, and the estimated signal and noise standard deviation.



Appendix Table IlI
Forecasted Place Effects for 50 Largest CZs for Below-Median Income Parents (p25)

Male Family Income Female Family Income Pooled Spec Average Row
Commuting State Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Number
Zone (€] () (3) 4 ©)] (6) @) ()] C)] (10) (11) (12)

Seattle WA 0.154  0.101  0.457 0.217  0.087 0.711 0.140 0.059  0.438 0.185  0.067  0.581 (1)
Minneapolis MN 0.155 0.130 0.461 0.154  0.101  0.503 0.103  0.065  0.322 0.154 0.082 0.484 2)
Salt Lake City ~ UT 0.060 0.131  0.178 0.234  0.105 0.767 0.166  0.066  0.521 0.147  0.084  0.461 3)
Washington DC DC 0.078  0.097 0.233 0.108  0.081  0.353 0.105 0.051  0.329 0.093  0.063  0.292 (4)
Portland OR 0.127  0.124  0.379 0.040 0.100 0.131 0.038  0.067  0.119 0.084 0.079 0.262 (5)
Fort Worth TX 0.097  0.109  0.290 0.021  0.090 0.069 0.057  0.061  0.178 0.059 0.071  0.186 (6)
Las Vegas NV -0.029 0.091  -0.087 0.147  0.078  0.482 0.043  0.057 0.134 0.059 0.060 0.185 )
San Diego CA 0.019  0.098  0.056 0.087 0.084  0.286 0.056  0.054  0.177 0.053 0.064 0.167 (8)
San Francisco CA -0.005 0.101  -0.014 0.086 0.085  0.281 0.029  0.060  0.090 0.041 0.066  0.127 9)
Pittsburgh PA -0.002  0.132  -0.005 0.070  0.102  0.230 0.013  0.065  0.041 0.034 0.084 0.107 (10)
Boston MA 0.055 0.106 0.163 0.012  0.089  0.039 0.055 0.061 0.174 0.033 0.069 0.105 (11)
San Jose CA -0.127  0.114 -0.378 0.189  0.093 0.618 0.048 0.065  0.150 0.031 0.073  0.096 (12)
Manchester NH 0.063  0.137  0.187 -0.011  0.106 -0.036 0.051  0.070  0.160 0.026 0.086  0.081 (13)
Denver CO 0.035 0.116  0.104 0.008 0.095 0.026 0.042 0.065  0.130 0.021  0.075  0.067 (14)
Phoenix AZ -0.054 0.084 -0.161 0.076  0.075  0.250 0.004 0.049 0.012 0.011 0.056 0.035 (15)
Cleveland OH 0.096 0.121  0.284 -0.078 0.099 -0.256 -0.042 0.062 -0.133 0.009 0.078 0.027 (16)
Sacramento CA -0.076  0.100 -0.227 0.069 0.085  0.228 0.006 0.058 0.018 -0.003 0.066  -0.011 17)
Providence RI -0.001  0.131  -0.004 -0.007 0.103  -0.023 0.007  0.067  0.022 -0.004 0.083 -0.013 (18)
Newark NJ 0.039 0.084 0.116 -0.048 0.072 -0.158 0.012 0.051  0.036 -0.004 0.056 -0.014 (19)
Buffalo NY -0.008 0.124  -0.024 -0.007 0.099 -0.022 -0.003  0.067  -0.009 -0.007  0.079  -0.023 (20)
Grand Rapids Ml 0.003  0.144  0.009 -0.049 0.109 -0.161 -0.031  0.070  -0.098 -0.023  0.090 -0.072 (21)
Kansas City MO -0.042 0.135 -0.125 -0.013  0.104 -0.041 -0.007 0.067 -0.021 -0.027  0.085 -0.086 (22)
Columbus OH 0.060 0.132  0.178 -0.118 0.102  -0.387 -0.086 0.068 -0.271 -0.029 0.084 -0.092 (23)
Philadelphia PA -0.088  0.090 -0.260 0.024 0.078  0.080 -0.029 0.057 -0.090 -0.032  0.060  -0.099 (24)
Cincinnati OH -0.002 0.135  -0.007 -0.071  0.104 -0.234 -0.082 0.069 -0.258 -0.037 0.085 -0.116 (25)
Jacksonville FL 0.032  0.118  0.094 -0.114  0.095 -0.374 -0.048 0.061 -0.149 -0.041  0.076  -0.129 (26)
Dallas TX -0.146  0.095 -0.434 0.060 0.079  0.197 -0.038 0.055 -0.118 -0.043  0.062 -0.135 (27)
Miami FL -0.103  0.083  -0.306 0.014  0.073  0.046 -0.026  0.044 -0.080 -0.044  0.055 -0.139 (28)
Houston TX -0.094 0.090 -0.279 0.005 0.076 0.016 -0.025 0.050 -0.079 -0.045 0.059 -0.140 (29)
Dayton OH -0.073  0.145 -0.217 -0.045 0.109 -0.146 -0.062 0.071 -0.196 -0.059 0.091 -0.184 (30)
Austin TX -0.073  0.125 -0.217 -0.064 0.100 -0.210 -0.097 0.066  -0.305 -0.069 0.080 -0.215 (31)
Bridgeport CT -0.114 0.109  -0.339 -0.032  0.090 -0.106 -0.045 0.059 -0.143 -0.073  0.071  -0.230 (32)
St. Louis MO -0.061 0.132  -0.182 -0.100 0.102  -0.327 -0.090 0.067 -0.282 -0.080 0.083  -0.252 (33)
Milwaukee Wi -0.114 0.135  -0.339 -0.059 0.105 -0.194 -0.048 0.067 -0.150 -0.087 0.086 -0.272 (34)
Nashville TN -0.057 0.139 -0.170 -0.118 0.105 -0.386 -0.087 0.070 -0.274 -0.087 0.087 -0.274 (35)
Indianapolis IN -0.052 0.135 -0.154 -0.159 0.104 -0.522 -0.118 0.070 -0.371 -0.106  0.085  -0.331 (36)
Tampa FL -0.169  0.089  -0.501 -0.067 0.077 -0.218 -0.114  0.048 -0.356 -0.118  0.059  -0.369 (37)
Atlanta GA -0.132  0.075 -0.393 -0.125 0.065 -0.410 -0.124  0.043  -0.388 -0.129  0.050  -0.404 (38)
Baltimore MD -0.240 0.114 -0.714 -0.022 0.094 -0.071 -0.103  0.066  -0.322 -0.131  0.074  -0.410 (39)
New York NY -0.137  0.065 -0.409 -0.151  0.059  -0.493 -0.117  0.039  -0.366 -0.144  0.044  -0.452 (40)
Los Angeles CA -0.206  0.057 -0.613 -0.089  0.052 -0.291 -0.130  0.038  -0.406 -0.147  0.039  -0.462 (41)
Detroit Mi -0.259  0.103  -0.771 -0.043  0.086 -0.141 -0.136  0.054  -0.425 -0.151  0.067  -0.474 (42)
San Antonio TX -0.168  0.115  -0.500 -0.141  0.093  -0.461 -0.110  0.063  -0.345 -0.154  0.074  -0.484 (43)
Port St. Lucie FL -0.258  0.109 -0.766 -0.057 0.089 -0.187 -0.174  0.057  -0.547 -0.157  0.070  -0.493 (44)
Chicago IL -0.235  0.081  -0.698 -0.118  0.070  -0.386 -0.154  0.048 -0.484 -0.176  0.053  -0.553 (45)
Fresno CA -0.245  0.113  -0.727 -0.109  0.094  -0.358 -0.164 0.062 -0.515 -0.177  0.073  -0.555 (46)
Orlando FL -0.225 0.088 -0.670 -0.138  0.078  -0.451 -0.136  0.054  -0.427 -0.182  0.059 -0.570 (47)
Raleigh NC -0.198  0.120  -0.588 -0.204 0.096 -0.666 -0.195 0.065 -0.610 -0.201  0.077  -0.629 (48)
Charlotte NC -0.191  0.114  -0.567 -0.267  0.092 -0.875 -0.205 0.061 -0.642 -0.229 0.073 -0.718 (49)
New Orleans LA -0.187  0.127  -0.557 -0.285 0.098  -0.932 -0.214  0.065 -0.672 -0.236  0.080 -0.740 (50)

Notes: This table presents per-year exposure forecasts by gender for the 50 largest CZs. Estimates are for children in below-median (p25) income families. Column (1) reports the
forecasts for the child's family income rank at age 26. Column (2) reports the root mean square error for this prediction, computed as the square root of 1/(1/v_r + 1/v)) where v_r is the
residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the numbers to the percentage dollar increase by multiplying the estimates in
column (1) by the regression coefficient from regressing the permanent resident outcomes at p25 for child family income at age 26 on the analogous outcomes for child rank at age 26
divided by the mean income of children from below-median (p25) income families. Columns (4)-(6) repeat the analysis on the sample of female children. Columns (7)-(9) report the
baseline (pooled gender) forecasts. Columns (10) reports the average of the two gender-specific forecasts. Column (11) reports the rmse of this forecast, constructed as the square root
of the sum of the squared male and female rmse divided by two. Column (12) scales this to the percentage increase in incomes using the same scaling factors as in Column (9). The rows
are sorted in decending order according to the gender-average specification.



Appendix Table IV

Forecasted Place Effects for 100 Largest Counties (Top and Bottom 25 based on Family Income Rank)

Male Family Income

Female Family Income

Pooled Spec

Average

Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Nfrz‘ger
County State 1) 2 (©)] 4 (©)] (6) @ (8 9 (10) (11) (12)
Dupage IL 0.205 0.157 0.608 0.278 0.112 0.909 0.255 0.090 0.800 0.241 0.096 0.756 1)
Snohomish WA 0.234 0.178 0.696 0.224 0.122 0.732 0.224 0.099 0.701 0.229 0.108 0.718 (2)
Bergen NJ 0.279 0.190 0.831 0.171 0.124 0.560 0.220 0.102 0.689 0.225 0.113 0.706 3)
Bucks PA 0.283 0.186 0.841 0.141 0.123 0.461 0.198 0.101 0.620 0.212 0.112 0.664 (4)
Contra Costa CA 0.243 0.167 0.724 0.144 0.116 0.471 0.141 0.095 0.442 0.194 0.102 0.607 (5)
Fairfax VA 0.155 0.189 0.461 0.231 0.124  0.755 0.239 0.100  0.749 0.193 0.113 0.604 (6)
King WA 0.187 0.139 0.557 0.174 0.106 0.570 0.149 0.084  0.467 0.181 0.087 0.566 7)
Norfolk MA 0.209 0.186 0.622 0.135 0.123 0.443 0.183 0.101 0.573 0.172 0.112 0.540 (8)
Montgomery MD 0.126 0.185 0.376 0.208 0.122 0.682 0.151 0.099 0.473 0.167 0.111 0.525 9)
Middlesex NJ 0.131 0.193 0.391 0.143 0.124 0.469 0.146 0.102 0.456 0.137 0.115 0.430 (10)
Montgomery PA 0.074 0.168 0.220 0.177 0.118 0.579 0.155 0.096 0.487 0.125 0.103 0.393 (11)
Ventura CA 0.183 0.181 0.545 0.053 0.123 0.174 0.099 0.100  0.309 0.118 0.109 0.371 (12)
Middlesex MA 0.128 0.159 0.381 0.079 0.114  0.260 0.123 0.091 0.386 0.104 0.098 0.325 (13)
Macomb MI 0.042 0.157 0.126 0.136 0.113 0.447 0.111 0.088 0.349 0.089 0.097 0.280 (14)
San Mateo CA 0.071 0.190 0.211 0.106 0.124  0.348 0.085 0.102 0.265 0.089 0.113 0.278 (15)
Hudson NJ 0.175 0.188 0.521 -0.017  0.122  -0.057 0.066 0.101 0.208 0.079 0.112 0.247 (16)
Salt Lake uT -0.015 0.174  -0.044 0.156 0.122 0.511 0.099 0.095 0.309 0.071 0.106 0.221 17)
Pierce WA 0.092 0.170 0.273 0.030 0.119 0.099 0.033 0.096 0.104 0.061 0.104 0.191 (18)
Providence RI 0.110 0.190 0.326 0.012 0.125 0.039 0.048 0.101 0.150 0.061 0.114 0.190 (19)
Kern CA 0.101 0.149 0.300 0.017 0.110 0.054 0.062 0.086 0.193 0.059 0.093 0.184 (20)
Monmouth NJ 0.010 0.192 0.031 0.103 0.125 0.338 0.075 0.103 0.235 0.057 0.114 0.178 (21)
San Diego CA 0.027 0.106 0.082 0.079 0.088 0.258 0.058 0.063 0.183 0.053 0.069 0.166 (22)
Worcester MA 0.020 0.203 0.059 0.068 0.129 0.221 0.075 0.107 0.235 0.044 0.120 0.137 (23)
Hennepin MN 0.081 0.172 0.242 0.004 0.119 0.014 -0.024 0.094 -0.076 0.043 0.105 0.134 (24)
Hartford CT 0.084 0.192 0.249 -0.001  0.125  -0.004 0.027 0.102 0.084 0.041 0.114 0.129 (25)
Davidson TN -0.095 0.182 -0.284 -0.153  0.121  -0.501 -0.141  0.098  -0.443 -0.124  0.109  -0.390 (75)
Fairfield CT -0.227  0.198  -0.675 -0.038  0.127  -0.125 -0.101  0.104 -0.318 -0.133  0.118 -0.416 (76)
New Haven CT -0.252  0.182  -0.748 -0.015 0.122  -0.051 -0.085  0.099 -0.267 -0.133  0.110 -0.418 77)
Essex NJ -0.081  0.174  -0.241 -0.195 0.118  -0.637 -0.147  0.096  -0.462 -0.138  0.105 -0.432 (78)
Montgomery OH -0.152  0.196  -0.451 -0.133  0.127  -0.437 -0.142  0.104  -0.447 -0.143  0.117  -0.447 (79)
San Bernardino CA -0.200 0.096  -0.596 -0.085 0.082  -0.280 -0.140 0.062  -0.439 -0.143  0.063  -0.448 (80)
Monroe NY -0.234  0.215  -0.695 -0.057 0.132  -0.186 -0.108  0.110 -0.338 -0.145 0.126  -0.455 (81)
Shelby TN -0.151  0.162  -0.448 -0.154  0.116  -0.505 -0.210  0.093  -0.657 -0.152  0.099 -0.478 (82)
Jefferson AL -0.182  0.191  -0.540 -0.142  0.125  -0.463 -0.102  0.102  -0.320 -0.162  0.114  -0.507 (83)
Los Angeles CA -0.218  0.067  -0.648 -0.122  0.060 -0.398 -0.164 0.045 -0.514 -0.170  0.045  -0.532 (84)
New York NY -0.118  0.127  -0.351 -0.228  0.098  -0.747 -0.173  0.076  -0.542 -0.173  0.080 -0.543 (85)
Riverside CA -0.285 0.105 -0.849 -0.071 0.087 -0.234 -0.161  0.067  -0.505 -0.178  0.068  -0.559 (86)
Palm Beach FL -0.277  0.146  -0.824 -0.084 0.112  -0.275 -0.208  0.084 -0.651 -0.181  0.092  -0.566 (87)
Wake NC -0.225 0.190 -0.670 -0.139 0.123 -0.455 -0.171 0.101 -0.536 -0.182 0.113 -0.571 (88)
Fulton GA -0.196  0.130  -0.581 -0.176  0.101  -0.576 -0.173  0.077  -0.543 -0.186 0.082  -0.582 (89)
Marion IN -0.148 0.172  -0.439 -0.237 0.118 -0.775 -0.209  0.097  -0.655 -0.192  0.105 -0.603 (90)
Pima AZ -0.387  0.157 -1.151 -0.001  0.114  -0.002 -0.142  0.083  -0.446 -0.194 0.097 -0.608 (91)
Bronx NY -0.256  0.127  -0.760 -0.137  0.098 -0.448 -0.174  0.076  -0.544 -0.196  0.080  -0.615 (92)
Milwaukee Wi -0.249  0.180  -0.740 -0.144  0.122 -0.471 -0.158  0.096  -0.496 -0.196 0.109 -0.616 (93)
Wayne Ml -0.293 0.135 -0.872 -0.106  0.104  -0.347 -0.182  0.077  -0.570 -0.200 0.085 -0.626 (94)
Fresno CA -0.282  0.155  -0.840 -0.130  0.113  -0.427 -0.215 0.089 -0.675 -0.206  0.096  -0.647 (95)
Cook IL -0.230 0.095 -0.683 -0.196  0.079  -0.641 -0.204 0.060 -0.640 -0.213  0.062  -0.667 (96)
Orange FL -0.246  0.126  -0.731 -0.184  0.099 -0.601 -0.193  0.077  -0.605 -0.215 0.080 -0.673 97)
Hillsborough FL -0.274 0.151 -0.815 -0.155 0.113  -0.509 -0.220 0.088  -0.691 -0.215  0.095 -0.673 (98)
Mecklenburg NC -0.215  0.173  -0.640 -0.225 0.119 -0.737 -0.231  0.095 -0.723 -0.220 0.105 -0.690 (99)
Baltimore City =MD -0.469  0.155  -1.393 -0.082 0.112  -0.270 -0.223  0.092  -0.699 -0.275 0.096 -0.864 (100)

Notes: This table presents per-year exposure forecasts by gender for the top 25 and bottom 25 of the 100 largest counties.
families. Column (1) reports the forecasts for the child's family income rank at age 26. Column (2) reports the root mean square error for this prediction, computed as the square root of
1/(1Nv_r + 1/v)) where v_r is the residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the numbers to the percentage dollar increase
by multiplying the estimates in column (1) by the regression coefficient from regressing the permanent resident outcomes at p25 for child family income at age 26 on the analogous
outcomes for child rank at age 26 divided by the mean income of children from below-median (p25) income families. Columns (4)-(6) repeat the analysis on the sample of female children.
Columns (7)-(9) report the baseline (pooled gender) forecasts. Columns (10) reports the average of the two gender-specific forecasts. Column (11) reports the rmse of this forecast,
constructed as the square root of the sum of the squared male and female rmse divided by two. Column (12) scales this to the percentage increase in incomes using the same scaling
factors as in Column (9). The rows are sorted in decending order according to the gender-average specification.

Estimates are for children in below-median (p25) income



Appendix Table V
Forecasted Place Effects for 50 Largest CZs for Below-Median Income Parents (p25) Individual Income

Male Individual Income Female Individual Income Pooled Spec Average

Commuting Zone  State Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Ntlfrﬁ‘ger
1) 2 (©)] 4 (©)] (6) @ (8) 9 (10) (11) (12)
Minneapolis MN 0.186 0.139 0.537 0.170 0.091 0.600 0.161 0.070  0.530 0.178 0.166 0.586 1)
Newark NJ 0.156 0.090 0.450 0.144 0.068 0.508 0.151 0.052 0.497 0.150 0.113 0.494 (2)
Seattle WA 0.154 0.107 0.446 0.110 0.080 0.387 0.140 0.064  0.462 0.132 0.133 0.435 3)
Boston MA 0.148 0.113 0.428 0.105 0.082 0.369 0.151 0.062 0.499 0.127 0.140 0.416 (4)
Washington DC  DC 0.078 0.102 0.225 0.148 0.076 0.522 0.136 0.058 0.448 0.113 0.127 0.372 (5)
Cleveland OH 0.179 0.129 0.518 0.027 0.088 0.095 0.048 0.072 0.158 0.103 0.156 0.339 (6)
Buffalo NY 0.164 0.133 0.473 0.027 0.088 0.097 0.118 0.072 0.387 0.096 0.159 0.315 7
San Francisco  CA 0.003 0.108 0.008 0.135 0.078 0.477 0.070 0.062 0.230 0.069 0.133 0.228 (8)
Philadelphia PA -0.077  0.096  -0.222 0.203 0.073 0.716 0.081 0.060 0.268 0.063 0.120 0.208 9)
Fort Worth TX 0.104 0.116 0.301 -0.012  0.081  -0.043 0.036 0.061 0.120 0.046 0.142 0.152 (10)
Pittsburgh PA 0.067 0.142 0.194 0.012 0.091 0.043 0.037 0.073 0.123 0.040 0.168 0.131 (11)
Las Vegas NV -0.060 0.096 -0.173 0.137 0.072 0.485 0.049 0.058 0.160 0.039 0.120 0.127 (12)
Portland OR 0.122 0.133 0.353 -0.049 0.088 -0.171 0.017 0.074  0.056 0.037 0.159 0.122 (13)
Providence RI 0.056 0.141 0.162 0.015 0.091 0.054 0.048 0.075 0.157 0.036 0.168 0.118 (14)
San Jose CA -0.083  0.122  -0.239 0.119 0.084 0.419 0.043 0.068 0.142 0.018 0.148 0.059 (15)
Manchester NH 0.054 0.148 0.157 -0.020  0.093 -0.071 0.039 0.078 0.129 0.017 0.175 0.056 (16)
Bridgeport CT -0.057 0.117  -0.165 0.084 0.082 0.297 0.056 0.063 0.183 0.014 0.143 0.045 17
Phoenix AZ -0.031  0.088  -0.090 0.047 0.069 0.167 0.010 0.053 0.033 0.008 0.112 0.027 (18)
Denver CcO 0.009 0.124 0.026 -0.006  0.086  -0.020 -0.016  0.066  -0.051 0.002 0.151 0.005 (19)
New York NY -0.043  0.069  -0.123 0.037 0.056 0.132 0.017 0.039 0.054 -0.003 0.089  -0.009 (20)
Grand Rapids MmI 0.090 0.156 0.259 -0.095 0.095 -0.335 -0.048 0.080 -0.159 -0.003  0.183  -0.009 (21)
Columbus OH 0.055 0.142 0.159 -0.072  0.090 -0.252 -0.085 0.072  -0.279 -0.008  0.168  -0.027 (22)
San Diego CA -0.011  0.104  -0.033 -0.019 0.077  -0.068 -0.007  0.057 -0.024 -0.015 0.129  -0.050 (23)
Cincinnati OH -0.042  0.144  -0.120 0.009 0.091 0.033 -0.037  0.076  -0.122 -0.016  0.171  -0.053 (24)
Sacramento CA -0.110  0.107  -0.316 0.075 0.078 0.266 -0.005 0.057 -0.015 -0.017  0.132  -0.056 (25)
Salt Lake City uT -0.029 0.141  -0.085 -0.035 0.093 -0.123 -0.010 0.075 -0.032 -0.032 0.168 -0.106 (26)
Milwaukee Wi -0.103  0.146  -0.298 0.015 0.093 0.054 0.028 0.073 0.094 -0.044 0.173  -0.145 27
Miami FL -0.164  0.088  -0.472 0.074 0.068 0.262 -0.015 0.055 -0.049 -0.045 0.112  -0.147 (28)
St. Louis MO -0.073  0.141  -0.211 -0.017  0.090  -0.059 -0.037  0.073  -0.123 -0.045 0.167 -0.148 (29)
Dayton OH -0.064 0.156  -0.184 -0.027 0.095 -0.096 -0.069 0.078 -0.227 -0.046  0.183  -0.150 (30)
Jacksonville FL 0.013 0.126 0.039 -0.108  0.085  -0.380 -0.042 0.069 -0.137 -0.047  0.152  -0.155 (31)
Kansas City MO -0.072  0.144  -0.207 -0.038 0.092 -0.132 -0.034 0.075 -0.111 -0.055 0.170 -0.180 (32)
Dallas TX -0.165  0.100  -0.475 0.045 0.074  0.158 -0.062  0.056 -0.204 -0.060 0.125  -0.197 (33)
Houston X -0.067  0.096 -0.195 -0.059 0.071  -0.209 -0.087 0.056  -0.286 -0.063 0.119 -0.209 (34)
Austin TX -0.091  0.133  -0.262 -0.043 0.089 -0.151 -0.114 0.074 -0.376 -0.067  0.160  -0.220 (35)
Indianapolis IN -0.069  0.145  -0.200 -0.070 0.092  -0.247 -0.064 0.075 -0.212 -0.070 0.171  -0.229 (36)
Chicago IL -0.193  0.085 -0.557 0.038 0.066 0.134 -0.059 0.053 -0.195 -0.077  0.107 -0.255 37)
Nashville TN -0.098 0.148 -0.283 -0.064  0.092 -0.225 -0.109 0.076  -0.360 -0.081 0.174  -0.266 (38)
Detroit MI -0.198  0.109 -0.570 -0.006 0.078 -0.021 -0.113  0.061 -0.371 -0.102 0.135 -0.335 (39)
Baltimore MD -0.262 0.122  -0.757 0.031 0.085 0.109 -0.056  0.069 -0.184 -0.116  0.149  -0.380 (40)
Tampa FL -0.195 0.094 -0.563 -0.039 0.071  -0.137 -0.115 0.054 -0.380 -0.117  0.118 -0.385 (41)
Charlotte NC -0.191  0.121  -0.550 -0.058  0.083  -0.206 -0.129 0.069 -0.424 -0.124  0.147 -0.410 (42)
San Antonio TX -0.178  0.123  -0.513 -0.085 0.084 -0.298 -0.136  0.070  -0.448 -0.131  0.149 -0.432 (43)
Los Angeles CA -0.199  0.060 -0.573 -0.082  0.050 -0.289 -0.138  0.037  -0.454 -0.140 0.078  -0.462 (44)
Port St. Lucie FL -0.272  0.116  -0.786 -0.010 0.081 -0.037 -0.152  0.063  -0.502 -0.141  0.141  -0.465 (45)
Orlando FL -0.269 0.093 -0.775 -0.042 0.072 -0.149 -0.129 0.054 -0.424 -0.155 0.117 -0.512 (46)
Fresno CA -0.232 0.121  -0.670 -0.088  0.084  -0.309 -0.152  0.070  -0.501 -0.160  0.148  -0.526 47)
Raleigh NC -0.239  0.128  -0.690 -0.086  0.086  -0.304 -0.202 0.067 -0.666 -0.163  0.154  -0.535 (48)
Atlanta GA -0.229  0.079  -0.660 -0.098 0.062 -0.344 -0.158  0.044  -0.520 -0.163  0.100 -0.537 (49)
New Orleans LA -0.223  0.137 -0.643 -0.133  0.088  -0.468 -0.197  0.070  -0.649 -0.178  0.163  -0.585 (50)

Notes: This table presents per-year exposure effect forecasts on individual income by gender for the 50 largest CZs. Estimates are for children in below-median (p25) income families.
Column (1) reports the forecasts for the child's individual income rank at age 26. Column (2) reports the root mean square error for this prediction, computed as the square root of 1/(1/v_r
+ 1/v)) where v_r is the residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the numbers to the percentage dollar increase by
multiplying the estimates in column (1) by the regression coefficient from regressing the permanent resident outcomes at p25 for child individual income at age 26 on the analogous
outcomes for child rank at age 26 divided by the mean individual income of children from below-median (p25) income families. Columns (4)-(6) repeat the analysis on the sample of
female children. Columns (7)-(9) report the pooled gender forecasts. Columns (10) reports the average of the two gender-specific forecasts. Column (11) reports the rmse of this forecast,
constructed as the square root of the sum of the squared male and female rmse divided by two. Column (12) scales this to the percentage increase in incomes using the same scaling
factors as in Column (9). The rows are sorted in decending order according to the gender-average specification.



Appendix Table VI
Forecasted Place Effects for 100 Largest Counties (Top and Bottom 25 based on Individual Income Rank)

Male Individual Income

Female Individual Income

Pooled Spec

Average

Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Prediction RMSE % Increase Ns;‘ger
County State 1) (2) ) (4) ®) (6) ()] (8) 9) (10) (11) (12)
Bergen NJ 0.351 0.192 1.014 0.213 0.080 0.752 0.288 0.099 0.949 0.282 0.208 0.930 (1)
Norfolk MA 0.308 0.188 0.889 0.190 0.080 0.671 0.274 0.098 0.902 0.249 0.204 0.820 2)
Middlesex NJ 0.263 0.194 0.760 0.159 0.080 0.560 0.216 0.100 0.713 0.211 0.210 0.695 )
Dupage IL 0.234 0.159 0.676 0.149 0.076 0.524 0.217 0.089 0.714 0.191 0.177 0.630 (4)
Hudson NJ 0.279 0.190 0.806 0.103 0.080 0.363 0.169 0.098 0.556 0.191 0.206 0.629 (5)
Bucks PA 0.251 0.188 0.726 0.115 0.080 0.404 0.200 0.099 0.658 0.183 0.204 0.602 (6)
Fairfax VA 0.153 0.190 0.443 0.197 0.080 0.694 0.229 0.099 0.754 0.175 0.206 0.576 (7)
Middlesex MA 0.228 0.162 0.659 0.119 0.077 0.421 0.179 0.089 0.588 0.174 0.179 0.573 (8)
Montgomery MD 0.164 0.186 0.475 0.177 0.079 0.624 0.168 0.097 0.554 0.171 0.202 0.562 (9)
King WA 0.205 0.141 0.592 0.134 0.074  0.471 0.215 0.082 0.708 0.169 0.159 0.557 (10)
Ventura CA 0.278 0.184 0.802 0.048 0.080 0.170 0.122 0.098 0.401 0.163 0.200 0.537 (11)
Contra Costa CA 0.217 0.170 0.627 0.095 0.078 0.334 0.142 0.092 0.467 0.156 0.187 0.514 (12)
Suffolk NY 0.214 0.168 0.618 0.096 0.078 0.338 0.136 0.091 0.449 0.155 0.185 0.511 (13)
Monmouth NJ 0.156 0.193 0.449 0.121 0.080 0.427 0.149 0.100  0.492 0.138 0.209 0.455 (14)
Snohomish WA 0.185 0.179 0.533 0.041 0.079 0.144 0.149 0.096 0.489 0.113 0.196 0.371 (15)
Worcester MA 0.143 0.204 0.413 0.080 0.081 0.283 0.152 0.103 0.499 0.112 0.220 0.367 (16)
Erie NY 0.214 0.210 0.616 0.004 0.082 0.014 0.069 0.105 0.226 0.109 0.225 0.358 17)
Nassau NY 0.103 0.151 0.298 0.110 0.076 0.389 0.081 0.085 0.266 0.107 0.169 0.351 (18)
Prince Georges MD 0.126 0.173 0.363 0.079 0.078 0.279 0.043 0.093 0.143 0.102 0.190 0.337 (19)
Providence RI 0.163 0.191 0.470 0.041 0.080 0.144 0.085 0.099 0.280 0.102 0.208 0.335 (20)
San Mateo CA 0.057 0.192 0.166 0.140 0.080 0.494 0.122 0.099 0.402 0.099 0.208 0.325 (21)
Macomb MI 0.160 0.159 0.462 0.014 0.076 0.051 0.071 0.088 0.235 0.087 0.177 0.287 (22)
Hartford CT 0.081 0.193 0.234 0.068 0.080 0.241 0.081 0.100  0.267 0.075 0.209 0.246 (23)
Suffolk MA 0.116 0.175 0.334 0.019 0.078 0.066 0.006 0.093 0.020 0.067 0.192 0.221 (24)
San Francisco  CA -0.032 0.186  -0.093 0.162 0.079 0.572 0.109 0.098 0.359 0.065 0.202 0.214 (25)
Bronx NY -0.192  0.132  -0.556 0.025 0.072 0.090 -0.058 0.076  -0.191 -0.084 0.150 -0.275 (75)
Tulsa OK -0.121  0.188  -0.348 -0.057  0.079  -0.200 -0.052  0.097 -0.171 -0.089 0.204 -0.292 (76)
Cook L -0.191  0.098  -0.551 0.001 0.063 0.003 -0.081 0.061 -0.268 -0.095 0.116  -0.313 ()
Gwinnett GA -0.221  0.166  -0.637 0.022 0.077 0.078 -0.047  0.090 -0.155 -0.099 0.183  -0.326 (78)
Marion IN -0.132  0.173  -0.380 -0.085 0.078  -0.300 -0.113  0.091 -0.373 -0.108  0.189  -0.357 (79)
Jefferson KY -0.157  0.196  -0.452 -0.071  0.081  -0.251 -0.136  0.099  -0.446 -0.114 0.212 -0.375 (80)
Hillsborough FL -0.208  0.152  -0.601 -0.030 0.076  -0.105 -0.128  0.086  -0.421 -0.119  0.170  -0.392 (81)
Wayne MI -0.231  0.138  -0.667 -0.016  0.073  -0.057 -0.102  0.078  -0.335 -0.124  0.156  -0.407 (82)
Los Angeles CA -0.203  0.070  -0.585 -0.054  0.052 -0.192 -0.144  0.044  -0.474 -0.129  0.087  -0.423 (83)
Montgomery OH -0.183  0.195  -0.528 -0.080 0.080  -0.281 -0.137  0.099 -0.451 -0.131  0.211  -0.432 (84)
Travis TX -0.226  0.159  -0.653 -0.041  0.076  -0.144 -0.169 0.089  -0.556 -0.134  0.176  -0.440 (85)
Mecklenburg NC -0.243  0.173  -0.701 -0.037  0.078  -0.130 -0.147  0.094 -0.484 -0.140 0.190 -0.460 (86)
Milwaukee Wi -0.262  0.180 -0.756 -0.025 0.079  -0.087 -0.081  0.093  -0.268 -0.143  0.197  -0.472 87)
Palm Beach FL -0.280  0.150  -0.809 -0.006  0.076  -0.023 -0.153  0.084  -0.505 -0.143  0.168  -0.472 (88)
Bexar X -0.255 0.180 -0.735 -0.042  0.080  -0.149 -0.155 0.088  -0.509 -0.148  0.197  -0.489 (89)
Bernalillo NM -0.280 0.178  -0.807 -0.023  0.079  -0.080 -0.089  0.089  -0.292 -0.151  0.195 -0.497 (90)
Cobb GA -0.243 0.175 -0.702 -0.064 0.078 -0.227 -0.152 0.094 -0.500 -0.154 0.192 -0.506 (91)
Wake NC -0.274  0.189  -0.790 -0.043  0.079 -0.151 -0.190 0.097  -0.627 -0.158 0.205 -0.521 (92)
Fresno CA -0.235 0.158 -0.679 -0.082 0.076  -0.289 -0.165 0.089  -0.542 -0.159  0.175  -0.522 (93)
Orange FL -0.339  0.128  -0.979 0.003 0.071 0.012 -0.120 0.074  -0.395 -0.168  0.147  -0.553 (94)
San Bernardino CA -0.218 0.099 -0.629 -0.119 0.064 -0.420 -0.186  0.062  -0.612 -0.168  0.118  -0.555 (95)
Fulton GA -0.291  0.134  -0.840 -0.079  0.072  -0.280 -0.168  0.077  -0.553 -0.185 0.152  -0.610 (96)
Pima AZ -0.367 0.159  -1.059 -0.014 0.077 -0.048 -0.112  0.085  -0.369 -0.190 0.177  -0.626 97)
Riverside CA -0.277  0.109  -0.798 -0.116  0.067  -0.408 -0.213  0.066  -0.701 -0.196 0.128 -0.646 (98)
Jefferson AL -0.341  0.190 -0.985 -0.098 0.080 -0.344 -0.173  0.098  -0.570 -0.219  0.206  -0.722 (99)
Baltimore City ~ MD -0.487  0.157  -1.405 0.014 0.076 0.048 -0.140 0.088  -0.460 -0.237 0.175 -0.779 (100)

Notes: This table presents per-year exposure effect forecasts on individual income by gender for the top 25 and bottom 25 amongst the 100 largest counties. Estimates are for children in
below-median (p25) income families. Column (1) reports the forecasts for the child's individual income rank at age 26. Column (2) reports the root mean square error for this prediction,
computed as the square root of 1/(1/v_r + 1/v)) where v_r is the residual signal variance and v is the squared standard error of the fixed effect estimate. Column (3) scales the numbers to
the percentage dollar increase by multiplying the estimates in column (1) by the regression coefficient from regressing the permanent resident outcomes at p25 for child individual income
at age 26 on the analogous outcomes for child rank at age 26 divided by the mean individual income of children from below-median (p25) income families. Columns (4)-(6) repeat the
analysis on the sample of female children. Columns (7)-(9) report the pooled gender forecasts. Columns (10) reports the average of the two gender-specific forecasts. Column (11)
reports the rmse of this forecast, constructed as the square root of the sum of the squared male and female rmse divided by two. Column (12) scales this to the percentage increase in
incomes using the same scaling factors as in Column (9). The rows are sorted in decending order according to the gender-average specification.



Appendix Table VII
Forecasted Place Effects on Marriage at Age 26 for 50 Largest CZs

Below-Median Parent Income (p25) Above-Median Parent Income (p75)

. Row
Commuting Prediction RMSE Prediction RMSE
Zone State 1) 2 @) @) Number
Salt Lake City uT 0.541 0.106 0.788 0.034 1)
Portland OR 0.203 0.100 0.024 0.034 )
Grand Rapids Ml 0.196 0.109 0.352 0.034 3)
Fort Worth TX 0.157 0.092 0.195 0.034 4)
Sacramento CA 0.129 0.085 -0.067 0.033 (5)
Dayton OH 0.104 0.109 0.222 0.034 (6)
San Diego CA 0.104 0.084 -0.158 0.033 @)
San Antonio TX 0.094 0.095 0.053 0.034 (8)
Nashville TN 0.076 0.105 0.211 0.034 9)
Kansas City MO 0.056 0.104 0.110 0.034 (20)
Seattle WA 0.036 0.088 -0.049 0.033 (11)
Houston TX 0.028 0.078 -0.015 0.033 (12)
Austin TX 0.025 0.100 -0.010 0.034 (13)
Columbus OH 0.023 0.102 0.081 0.034 (14)
Dallas TX 0.023 0.082 0.037 0.033 (15)
Fresno CA 0.009 0.095 0.093 0.034 (16)
Phoenix AZ -0.016 0.077 0.092 0.033 a7)
Las Vegas NV -0.023 0.080 0.073 0.034 (18)
Denver CcO -0.036 0.096 -0.051 0.033 (29)
Indianapolis IN -0.037 0.103 0.133 0.034 (20)
Jacksonville FL -0.054 0.095 0.048 0.034 (21)
Cincinnati OH -0.075 0.104 0.068 0.034 (22)
Minneapolis MN -0.077 0.099 -0.051 0.034 (23)
Pittsburgh PA -0.091 0.102 -0.090 0.034 (24)
Tampa FL -0.098 0.078 -0.081 0.033 (25)
San Jose CA -0.110 0.092 -0.348 0.033 (26)
San Francisco  CA -0.114 0.082 -0.399 0.033 (27)
Manchester NH -0.125 0.103 -0.212 0.034 (28)
Atlanta GA -0.132 0.065 -0.084 0.032 (29)
Los Angeles CA -0.135 0.053 -0.226 0.031 (30)
St. Louis MO -0.136 0.102 0.004 0.034 (31)
Orlando FL -0.142 0.079 -0.056 0.034 (32)
Detroit Ml -0.146 0.085 -0.139 0.033 (33)
Buffalo NY -0.152 0.097 -0.186 0.034 (34)
Charlotte NC -0.161 0.092 0.053 0.034 (35)
Providence RI -0.175 0.100 -0.311 0.034 (36)
Milwaukee Wi -0.181 0.102 -0.063 0.034 (37)
Washington DC DC -0.203 0.080 -0.305 0.032 (38)
Raleigh NC -0.208 0.095 -0.023 0.034 (39)
Baltimore MD -0.222 0.091 -0.193 0.033 (40)
Cleveland OH -0.236 0.097 -0.129 0.034 (41)
Port St. Lucie FL -0.245 0.087 -0.210 0.033 (42)
Philadelphia PA -0.257 0.075 -0.326 0.032 (43)
Boston MA -0.305 0.085 -0.419 0.033 (44)
Bridgeport CT -0.316 0.086 -0.384 0.033 (45)
New Orleans LA -0.321 0.095 -0.064 0.034 (46)
Miami FL -0.326 0.071 -0.339 0.033 (47)
Chicago IL -0.330 0.069 -0.267 0.032 (48)
Newark NJ -0.378 0.069 -0.451 0.032 (49)
New York NY -0.462 0.055 -0.475 0.031 (50)

Notes: This table presents per-year exposure forecasts for marriage for the 50 largest CZs. Column (1) reports the exposure effect on the
probability the child is married at age 26 for children in below-median income families (p25). The units are multipled by 100 to reflect
probabilities, so that the coefficient of 0.541 implies that every year of exposure to Salt Lake City increases the chance of being married by
0.541pp; 20 years of exposure to Salt Lake City increases this chance by 10.8pp. Column (2) reports the root mean square error for this
prediction, computed as the square root of 1/(1/v_r + 1/v)) where v_r is the residual signal variance and v is the squared standard error of
the fixed effect estimate. Columns (3)-(4) repeat the analysis for children in above-median income families (p75).



Forecasted Place Effects on Marriage at Age 26 for 100 Largest Counties

Appendix Table VIII

Below-Median Parent Income (p25)

Above-Median Parent Income (p75)

Row
Prediction RMSE Prediction RMSE

County State ) @ 3) @ Number
Salt Lake uT 0.434 0.127 0.483 0.167 1)
El Paso X 0.188 0.121 -0.117 0.203 )
Macomb MI 0.176 0.116 -0.103 0.147 ?3)
Kern CA 0.175 0.115 0.217 0.181 4)
San Diego CA 0.135 0.091 0.018 0.105 (5)
Hidalgo X 0.135 0.129 -0.045 0.220 (6)
Snohomish WA 0.122 0.126 0.109 0.156 @)
Tulsa OK 0.118 0.129 0.287 0.193 (8)
Multnomah OR 0.088 0.123 -0.063 0.159 9)
Kent MI 0.080 0.131 0.344 0.189 (20)
Dupage IL 0.071 0.116 -0.200 0.122 (11)
Contra Costa CA 0.068 0.116 -0.194 0.135 12)
Sacramento CA 0.061 0.116 0.036 0.152 (13)
Pierce WA 0.055 0.123 0.163 0.155 (24)
Harris X 0.023 0.087 -0.125 0.096 (15)
Riverside CA 0.020 0.090 0.008 0.116 (16)
Bexar X 0.018 0.141 -0.023 0.236 a7
Oakland MI 0.012 0.112 -0.034 0.128 (18)
Oklahoma OK 0.009 0.124 0.151 0.187 (29)
San Bernardino CA 0.000 0.085 0.010 0.112 (20)
Bernalillo NM -0.002 0.124 0.052 0.185 (21)
Maricopa AZ -0.003 0.083 0.226 0.092 (22)
Gwinnett GA -0.003 0.120 0.291 0.152 (23)
Tarrant X -0.007 0.106 0.125 0.128 (24)
Cobb GA -0.010 0.124 -0.124 0.157 (25)
Milwaukee Wi -0.304 0.125 -0.141 0.161 (75)
Norfolk MA -0.304 0.122 -0.342 0.143 (76)
Bergen NJ -0.320 0.123 -0.433 0.149 77
Mecklenburg NC -0.332 0.124 -0.229 0.168 (78)
Queens NY -0.334 0.082 -0.452 0.121 (79)
Hudson NJ -0.340 0.122 -0.350 0.171 (80)
Shelby TN -0.355 0.115 0.003 0.169 (81)
Fulton GA -0.356 0.106 -0.033 0.133 (82)
Wayne MI -0.356 0.106 -0.205 0.122 (83)
Middlesex MA -0.358 0.112 -0.448 0.122 (84)
San Francisco CA -0.362 0.122 -0.577 0.160 (85)
Fairfield CT -0.372 0.128 -0.439 0.167 (86)
DeKalb GA -0.381 0.109 -0.265 0.145 87)
Broward FL -0.388 0.096 -0.357 0.141 (88)
Cook IL -0.396 0.081 -0.263 0.080 (89)
Cuyahoga OH -0.410 0.118 -0.345 0.150 (90)
Prince Georges MD -0.418 0.119 -0.488 0.157 (91)
Philadelphia PA -0.419 0.103 -0.227 0.126 (92)
Bronx NY -0.432 0.094 -0.769 0.160 (93)
Suffolk NY -0.446 0.112 -0.529 0.137 (94)
New York NY -0.449 0.093 -0.749 0.144 (95)
Suffolk MA -0.457 0.117 -0.438 0.156 (96)
Baltimore City  MD -0.461 0.113 -0.459 0.153 97)
Essex NJ -0.463 0.117 -0.483 0.145 (98)
Washington DC DC -0.471 0.122 -0.745 0.172 (99)
Nassau NY -0.512 0.104 -0.638 0.123 (100)

Notes: This table presents per-year exposure forecasts for marriage for the top 25 and bottom 25 amongst the 100 largest counties.
Column (1) reports the exposure effect on the probability the child is married at age 26 for children in below-median income families
(p25). The units are multipled by 100 to reflect probabilities as in Appendix Table VII. Column (2) reports the root mean square error
for this prediction, computed as the square root of 1/(1/v_r + 1/v)) where v_r is the residual signal variance and v is the squared
standard error of the fixed effect estimate. Columns (3)-(4) repeat the analysis for children in above-median income families (p75).
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Appendix Table XV
Commuting Zone and County Characteristics: Definitions and Data Sources

Notes: This table provides a description of each variable used in Section X and reported in Tables 12 to 15 and Figures XV and XVI. For variables obtained at the county level, we construct population-

weighted means at the CZ level. See Appendix D of Chetty et al. (2014) for further details on data sources and construction of the variables.

Variable

(1)

Definition
2)

Source
(3)

Segregation and

Fraction Black
Poverty Rate

Racial Segregation

Income Segregation

Number of individuals who are black alone divided by total population
Fraction of population below the poverty rate

Multi-group Theil Index calculated at the census-tract level over four groups:
White alone, Black alone, Hispanic, and Other

Rank-Order index estimated at the census-tract level using equation (13) in
Reardon (2011); the & vector is given in Appendix A4 of Reardon's paper. H(py)
is computed for each of the income brackets given in the 2000 census. See
Appendix D for further details.

2000 Census SF1 100% Data Table P008
2000 Census SF3 Sample Data Table P087
2000 Census SF1 100% Data Table P008

2000 Census SF3 Sample Data Table P052

Poverty Segregation of Poverty (<p25) H(p25) estimated following Reardon (2011); we compute H(p) for 16 income 2000 Census SF3 Sample Data Table P052
groups defined by the 2000 census. We estimate H(p25) using a fourth-order
polynomial of the weighted linear regression in equation (12) of Reardon (2011).
Segregation of Affluence (>p75) Same definition as segregation of poverty, but using p75 instead of p25 2000 Census SF3 Sample Data Table P052
Fraction with Commute < 15 Mins Number of workers that commute less than 15 minutes to work divided by total 2000 Census SF3 Sample Data Table P031
number of workers. Sample restricts to workers that are 16 or older and not
working at home.
Logarithm of Population Density Logarithm of the Population Density where the Population Density is defined as 2000 Census Gazetteer Files
the Population divided by the Land Area in square miles.
Household Income per Capita Aggregate household income in the 2000 census divided by the number of 2000 Census SF3 Sample Data Table P054
people aged 16-64
Gini Gini coefficient computed using parents of children in the core sample, with Tax Records, Core Sample of Chetty et al. (2014)
income topcoded at $100 million in 2012 dollars
|n|2032ie‘ Top 1% Income Share The fraction of income within a CZ going to the top 1% defined within the CZ, Tax Records, Core Sample of Chetty et al. (2014)
a Y computed using parents of children in the core sample
Gini Bottom 99% Gini coefficient minus top 1% income share Tax Records, Core Sample of Chetty et al. (2014)
Fraction Middle Class (between p25  Fraction of parents (in the core sample) whose income falls between the 25th Tax Records, Core Sample of Chetty et al. (2014)
and p75) and 75th percentile of the national parent income distribution
Local Tax Rate Total tax revenue per capita divided by mean household income per capita for 1992 Census of Government county-level summaries
working age adults (in 1990)
Local Tax Rate Per Capita Total tax revenue per capita 1992 Census of Government county-level summaries
Tax Local Govt Expenditures Per Capita  Total local government expenditures per capita 1992 Census of Government county-level summaries

Tax Progressivity

State EITC Exposure

The difference between the top state income tax rate and the state income tax
rate for individuals with taxable income of $20,000 in 2008

The mean state EITC top-up rate between 1980-2001, with the rate coded as
zero for states with no state EITC

2008 state income tax rates from the Tax Foundation

Hotz and Scholz (2003)

K-12 Education

School Expenditure per Student
Student Teacher Ratio

Test Score Percentile (Income
adjusted)

High School Dropout Rate (Income
adjusted)

Average expenditures per student in public schools
Average student-teacher ratio in public schools

Residual from a regression of mean math and English standardized test scores
on household income per capita in 2000
Residual from a regression of high school dropout rates on household income

per capita in 2000. Coded as missing for CZs in which dropout rates are missing
for more than 25% of school districts.

NCES CCD 1996-1997 Financial Survey
NCES CCD 1996-1997 Universe Survey
George Bush Global Report Card

NCES CCD 2000-2001

Number of Colleges per Capita Number of Title IV, degree offering insitutions per capita IPEDS 2000
College Tuition Mean in-state tuition and fees for first-time, full-time undergraduates IPEDS 2000
College College Graduation Rate (Income Residual from a regression of graduation rate (the share of undergraduate IPEDS 2009
Adjusted) students that complete their degree in 150% of normal time) on household
income per capita in 2000
Labor Force Participation Share of people at least 16 years old that are in the labor force 2000 Census SF3 Sample Data Table P043
Local Lab Share Working in Manufacturing Share of employed persons 16 and older working in manufacturing. 2000 Census SF3 Sample Data Table P049
Otlillaarkit °T " Growth in Chinese Imports Percentage growth in imports from China per worker between 1990 and 2000, Autor, Dorn, and Hanson (2013)
Teenage (14-16) Labor Force Fraction of children in birth cohorts 1985-1987 who received a W2 (i.e. had Tax Records, Extended Sample
Participation positive wage earnings) in any of the tax years when they were age 14-16
Migration Inflow Rate Migration into the CZ from other CZs (divided by CZ population from 2000 IRS Statistics of Income 2004-2005
. . Census)
Migration  pparation Outiflow Rate Migration out of the CZ from other CZs (divided by CZ population from 2000 IRS Statistics of Income 2004-2005
Census)
Fraction Foreign Born Share of CZ residents born outside the United States 2000 Census SF3 Sample Data Table P021
Social Capital Index Standardized index combining measures of voter turnout rates, the fraction of Rupasingha and Goetz (2008)
people who return their census forms, and measures of participation in
Social Capital community organizations

Fraction Religious
Violent Crime Rate

Share of religious adherents
Number of arrests for serious violent crimes per capita

Association of Religion Data Archives
Uniform Crime Reports

Family Structure

Fraction of Children with Single
Mothers

Fraction of Adults Divorced
Fraction of Adults Married

Number of single female households with children divided by total number of
households with children

Fraction of people 15 or older who are divorced
Fraction of people 15 or older who are married and not separated

2000 Census SF3 Sample Data Table P015

2000 Census SF3 Sample Data Table P018
2000 Census SF3 Sample Data Table P018

Prices

Median Monthly Rent

Median House Price

Median "Contract Rent" (monthly) for the universe of renter-occupied housing
units paying cash rent

Median value of housing units at the county level (population weighted to CZ
level for CZ covariate).

2000 Census SF3a (NHGIS SF3a, code: GBG)

2000 Census SF3a (NHGIS SF3a, code: GB7)
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