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I Introduction

To what extent are children’s opportunities for economic mobility shaped by the neighborhoods

in which they grow up? Despite extensive research, the answer to this question remains debated.

Observational studies by sociologists have documented significant variation across neighborhoods

in economic outcomes (e.g., Wilson 1987, Jencks and Mayer 1990, Massey 1993, Sampson et al.

2002, Sharkey and Faber 2014). However, experimental studies of families that move have tradi-

tionally found little evidence that neighborhoods affect economic outcomes (e.g., Katz et al. 2001,

Oreopoulos 2003, Ludwig et al. 2013).

Using de-identified tax records covering the U.S. population, we present new quasi-experimental

evidence on the effects of neighborhoods on intergenerational mobility that reconcile the conflict-

ing findings of prior work and shed light on the mechanisms through which neighborhoods affect

children’s outcomes. Our analysis consists of two papers. In this paper, we measure the degree to

which the differences in intergenerational mobility across areas in observational data are driven by

causal effects of place. In the second paper (Chetty and Hendren 2016), we build on the research

design developed here to construct estimates of the causal effect of growing up in each county in the

United States on children’s long-term outcomes and characterize the features of areas that produce

good outcomes.

Our analysis is motivated by our previous work showing that children’s expected earnings

conditional on their parents’ incomes vary substantially with the area (commuting zone or county)

in which they grow up (Chetty, Hendren, Kline, and Saez 2014).1 This geographic variation in

intergenerational mobility could be driven by two very different sources. One possibility is that

neighborhoods have causal effects on economic mobility: that is, moving a given child to a different

neighborhood would change his or her life outcomes. Another possibility is that the observed

geographic variation is due to systematic differences in the types of people living in each area, such

as differences in demographic makeup or wealth.

We assess the relative importance of these two explanations by asking whether children who

move to areas with higher rates of upward income mobility among “permanent residents” have

better outcomes themselves.2 Since moving is an endogenous choice, simple comparisons of the

1We characterize neighborhood (or “place”) effects at two geographies: counties and commuting zones (CZs),
which are aggregations of counties that are similar to metro areas but cover the entire U.S., including rural areas.
Naturally, the variance of place effects across these broad geographies is a lower bound for the total variance of
neighborhood effects, which would include additional local variation.

2We define “permanent residents” as the parents who stay in the same commuting zone (or, in the county-level
analysis, the same county) throughout the period we observe (1996-2012).
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outcomes of children whose families move to different areas confound causal effects of place with

selection effects (differences in unobservables). We address this identification problem by exploiting

variation in the timing of children’s moves across areas. We compare the outcomes of children who

moved to a better (or worse) area at different ages to identify the rate at which the outcomes of

children who move converge to those of the permanent residents.3 The identification assumption

underlying our research design is that the selection effects (children’s unobservables) associated with

moving to a better vs. worse area do not vary with the age of the child when the family moves.

This is a strong assumption, one that could plausibly be violated for several reasons. For instance,

families who move to better areas when their children are young may be more educated or invest

more in their children in other ways. We evaluate the validity of this identification assumption in

detail and show that it holds in practice after presenting a set of baseline results.

In our baseline analysis, we focus on families with children born between 1980 and 1988 who

moved once across commuting zones between 1997 and 2010, a sample that consists of 1.5 million

movers . We find that on average, spending an extra year in a CZ or county where the mean income

rank of children of permanent residents (for families at the same income level) is 1 percentile higher

increases a child’s expected income rank by approximately 0.04 percentiles. That is, the outcomes

of children who move converge to the outcomes of permanent residents of the destination area at a

rate of approximately 4% per year of exposure. Symmetrically, moving to an area where permanent

residents have worse outcomes reduces a child’s expected income by 4% per year. Children who

move more than once – entering and leaving a given area within our sample – pick up gains that

are proportional to the number of years in which they lived in that area.

These convergence patterns imply that neighborhoods have substantial childhood exposure ef-

fects: every additional year of childhood spent in a better environment improves a child’s long-term

outcomes. Convergence is linear with respect to age: moving to a better area at age 8 instead of 9

is associated with the same improvement in earnings as moving to that area at age 15 instead of

16. The exposure effects persist until children are in their early twenties. Extrapolating over the

duration of childhood, from age 0 to 20, the 4% annual convergence rate implies that children who

move at birth to area with one unit better outcomes among permanent residents would pick up

about 80% of that effect themselves. We find childhood exposure effects of a similar magnitude for

several other outcomes, including rates of college attendance, teenage employment, teenage birth,

3Throughout the paper, we refer to areas where children have better outcomes in adulthood as “better” neigh-
borhoods. We use this terminology without any normative connotation, as there are of course many other amenities
of neighborhoods that may be relevant from a normative perspective.
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and marriage. We also find similar exposure effects when families moves across counties.

As noted above, the identification assumption underlying the interpretation of the 4% conver-

gence rate as a causal exposure effect is that the potential outcomes of children who move to better

vs. worse areas do not vary with the age at which they move. We use three approaches to evaluate

this assumption: controlling for observable factors, isolating plausibly exogenous moves triggered

by aggregate displacement shocks, and implementing a set of outcome-based placebo tests. The first

two approaches are familiar techniques in the treatment effects literature, while the third exploits

the multi-dimensional nature of the treatments we study to implement overidentification tests.

To implement the first approach, we begin by controlling for factors that are fixed within the

family (e.g., parent education) by including family fixed effects, as in Plotnick and Hoffman (1996)

and Aaronson (1998). This approach identifies exposure effects from comparisons between siblings,

effectively asking whether the difference in outcomes between two siblings in a family that moves

is proportional to the size of the age gap between them. We estimate an annual exposure effect of

approximately 4% per year with family fixed effects, very similar to our baseline estimates. The

sibling comparisons address confounds due to factors that are fixed within families, but they do

not account for time-varying factors, such as a change in family environment at the time of the

move that directly affects children in proportion to exposure time independent of neighborhoods.

We cannot observe all such time-varying factors, but we do observe two particularly important

characteristics of the family environment in each year: income and marital status. Controlling

flexibly for changes in income and marital status interacted with the age of the child at the time

of the move has no impact on the exposure effect estimates.

While the preceding results rule out confounds due to observable factors such as income, they

do not address potential confounds due to unobservable factors. In particular, whatever event

endogenously induced a family to move (e.g., a wealth shock) could also have had direct effects

on their children’s outcomes. Our second approach addresses the problem of bias associated with

endogenous choice by directly focusing on a subset of moves that are more likely to be driven by

exogenous aggregate shocks. In particular, we identify moves that occur as part of large outflows

from ZIP codes, often caused by natural disasters or local plant closures. We replicate our base-

line design within this subsample of displaced movers, comparing the outcomes of children who

move to different destinations at different ages. We obtain similar exposure effect estimates for dis-

placed households, mitigating concerns that our baseline estimates are biased by omitted variables
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correlated with a household’s choice of when to move.4

Although the evidence from the first two approaches strongly supports the validity of the identi-

fication assumption, each of these approaches itself rests on assumptions – selection on observables

and exogeneity of the displacement shocks – that could themselves potentially be violated. We

therefore turn to a third approach – a set of placebo (overidentification) tests that exploit hetero-

geneity in place effects across subgroups – that in our view provides the most compelling method of

assessing the validity of the research design. We begin by analyzing heterogeneity in place effects

across birth cohorts. Although outcomes within CZs are highly persistent over time, some places

improve and others decline. Exploiting this variation, we find using multivariable regressions that

the outcomes of children who move to a new area converge to the outcomes of permanent residents

of the destination in their own birth cohort but are unrelated to those of surrounding birth cohorts

(conditional on their own birth cohort’s predictions). Such cohort-specific convergence is precisely

what one would expect in the causal exposure effect model, but it would be unlikely to emerge

from sorting or other omitted variables because the cohort-specific effects are only realized with a

long time lag, after children grow up.

We implement analogous placebo tests by exploiting variation in the distribution of outcomes

across areas. For instance, low-income children who spend their entire childhood in Boston and

San Francisco have similar outcomes on average, but children in San Francisco are more likely to

end up in the upper (top 10%) or lower tail (bottom 10%) of the income distribution. The causal

exposure effects model predicts convergence not just at the mean but across the entire distribution;

in contrast, it would be unlikely that omitted variables (such as changes in parent wealth) would

happen to perfectly replicate the entire distribution of outcomes in each area in proportion to

exposure time. In practice, we find quantile-specific distributional convergence: controlling for

mean outcomes, children’s outcomes converge to predicted outcomes in the destination across the

distribution in proportion to exposure time at a rate of approximately 4% per year.

Finally, we implement placebo tests exploiting heterogeneity in place effects across genders.

Though place effects are highly correlated across genders, there are some places where boys do

worse than girls (e.g., areas with highly concentrated poverty) and vice versa. When a family with

both a daughter and a son moves to an area that is especially good for boys, their son’s outcomes

converge to those in the destination much more than their daughter’s outcomes. Once again, if our

4We eliminate variation due to individuals’ endogenous choices of where to move in these specifications by instru-
menting for each household’s change in neighborhood quality using the average change in neighborhood quality of
those who move out of the ZIP code during the years in our sample.
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findings of neighborhood exposure effects were driven by sorting or omitted variables, one would

not expect to find gender-specific convergence unless families are fully aware of the exact gender

differences in outcomes across areas and sort to neighborhoods on these gender differences.

Putting together these results, we conclude that the baseline timing-of-move design yields con-

sistent estimates of neighborhood exposure effects, of about 4% per year. An important caveat in

interpreting this estimate is that it is a local average treatment effect estimated based on house-

holds who choose to move to certain areas. The mean exposure effect of moving a randomly selected

household to a new area may differ, since households that choose to move to a given area may be

more likely to benefit from that move than the average household in the population. The fact

that exposure effects are similar within the subset of displaced households and are symmetric for

moves to better and worse areas suggest that the endogeneity of choice does not have a substantial

effect on the magnitude of exposure effects, but further work is needed to understand how exposure

effects vary with households’ willingness to move.

Our findings yield three broad lessons. First, place matters for intergenerational mobility: the

differences we see in outcomes across neighborhoods are largely due to the causal effect of places

rather than differences in the characteristics of their residents. Second, place matters for intergen-

erational mobility largely through differences in childhood environment, rather than the differences

in labor market conditions that have received attention in previous studies of place. Moving to

a better area just before entering the labor market has little impact on individual’s outcomes,

suggesting that place-conscious policies to promote upward mobility should focus primarily on im-

proving the local childhood environment rather than conditions in adulthood. Third, we find that

each year of childhood exposure matters roughly equally; there is no “critical age” after which

the marginal returns to being in a better neighborhood fall sharply. This result is germane to

recent policy discussions regarding early childhood interventions, as it suggests that improvements

in neighborhood environments can be beneficial even in adolescence.

Our results help explain why previous experimental studies – most notably, the Moving to

Opportunity (MTO) Experiment – failed to detect significant effects of moving to a better neigh-

borhood on economic outcomes. Prior analyses of the MTO experiment focused primarily on the

effects of neighborhoods on adults and older youth (e.g. Kling et al. (2007)), because data on the

long-term outcomes of younger children were unavailable. In a followup paper (Chetty, Hendren,

and Katz 2016), we link the MTO data to tax records and show that the MTO data exhibit child-

hood exposure effects similar to those identified here. In particular, Chetty, Hendren, and Katz
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(2016) find substantial improvements in earnings and other outcomes for children whose families

received experimental vouchers to move to low-poverty neighborhoods at young ages. In contrast,

children who moved at older ages experienced no gains or slight losses.5 The findings in the present

paper complement the re-analysis of MTO by (a) delivering very precise estimates of the magnitude

and linear age pattern of childhood exposure effects (making use of 7 million observations instead

of 4,500 observations) and (b) developing a scalable research design that can be used to estimate

neighborhood effects in all areas even in the absence of a randomized experiment.

More generally, our findings imply that much of the neighborhood-level variation in economic

outcomes documented in previous observational studies does in fact reflect causal effects of place,

but that such effects arise through accumulated childhood exposure rather than immediate impacts

on adults. The idea that exposure time to better neighborhoods may matter has been noted

since at least Wilson (1987) and Jencks and Mayer (1990), and has received growing attention in

observational studies in sociology (Crowder and South (2011), Wodtke et al. (2011, 2012); Wodtke

(2013), and Sampson 2012; Sharkey and Faber 2014). We contribute to this literature by presenting

quasi-experimental estimates of exposure effects, which address the concerns about selection and

omitted variable bias that arise in observational studies (e.g., Clampet-Lundquist and Massey

(1993); Ludwig et al. (2008)). Although we find evidence of childhood exposure effects that are

qualitatively consistent with the observational studies, we find no evidence of exposure effects in

adulthood either in this study or our followup MTO study, contrary to the patterns observed in

observational data (e.g., Clampet-Lundquist and Massey (1993)).

The paper is organized as follows. Section II describes the data. Section III presents our

empirical framework, starting with a description of differences in intergenerational mobility across

areas for permanent residents and then specifying our estimating equations. Section IV presents

baseline estimates of neighborhood exposure effects on earnings and other life outcomes. Section V

presents the tests evaluating our identification assumption. Section VI discusses mechanisms, and

Section VII concludes.

5One important distinction beteween the two studies is that the analysis sample in the present quasi-experimental
study consists entirely of families who moved across commuting zones, whereas the MTO experiment compares
families who moved with families who did not move at all or stayed in an area similar to where they lived before.
As a result, the analysis here identifies the effects of moving to better vs. worse areas conditional on moving to a
different area, whereas the MTO analysis compares the effects of moving vs. staying in a given area. The exposure
effect estimates here thus net out any fixed disruption costs of moving to a different area, whereas such costs are not
netted out in the MTO experiment. This distinction may explain why Chetty, Hendren, and Katz (2016) find slightly
negative effects for children who move at older ages in the MTO data, whereas we estimate positive exposure effects
of moving to a better area (conditional on moving) at all ages here.
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II Data

We use data from federal income tax records spanning 1996-2012. The data include both income

tax returns (1040 forms) and third-party information returns (e.g., W-2 forms), which contain in-

formation on the earnings of those who do not file tax returns. Because our empirical analysis is

designed to determine how much of the geographic variation in intergenerational mobility docu-

mented by Chetty et al. (2014) is due to causal effects of place, our analysis sample is essentially

identical to the “extended sample” used in Chetty et al. (2014). Online Appendix A of Chetty

et al. (2014) gives a detailed description of how we construct the analysis sample starting from the

raw population data. Here, we briefly summarize the key variable and sample definitions, following

Section III of Chetty et al. (2014).6

II.A Sample Definitions

Our base dataset of children consists of all individuals who (1) have a valid Social Security Number

or Individual Taxpayer Identification Number, (2) were born between 1980-1988, and (3) are U.S.

citizens as of 2013.7 We impose the citizenship requirement to exclude individuals who are likely

to have immigrated to the U.S. as adults, for whom we cannot measure parent income. We cannot

directly restrict the sample to individuals born in the U.S. because the database only records current

citizenship status.

We identify the parents of a child as the first tax filers (between 1996-2012) who claim the child

as a child dependent and were between the ages of 15 and 40 when the child was born. If the child is

first claimed by a single filer, the child is defined as having a single parent. For simplicity, we assign

each child a parent (or parents) permanently using this algorithm, regardless of any subsequent

changes in parents’ marital status or dependent claiming.

If parents never file a tax return, we do not link them to their child. Although some low-income

individuals do not file tax returns in a given year, almost all parents file a tax return at some point

between 1996 and 2012 to obtain a tax refund on their withheld taxes and the Earned Income Tax

Credit (Cilke 1998). We are therefore able to identify parents for approximately 95% of the children

in the 1980-1988 birth cohorts. The fraction of children linked to parents drops sharply prior to

6The tax records we use were drawn in the middle of 2013. They include a complete set of information returns
(W-2’s) for 2012, but exclude a small number of amendments and late filings for 1040s. This slight incompleteness
of the data is inconsequential, as using data through 2011 yields very similar results.

7For selected outcomes that can be measured at earlier ages, such as teenage labor force participation rates, we
extend the sample to include more recent birth cohorts, up to 1996.
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the 1980 birth cohort because our data begins in 1996 and many children begin to the leave the

household starting at age 17 (Chetty et al. (2014); Online Appendix Table I). This is why we limit

our analysis to children born during or after 1980.

Our full analysis sample includes all children in the base dataset who are born in the 1980-88

birth cohorts, for whom we are able to identify parents, and whose mean parent income between

1996-2000 is strictly positive (which excludes 1.2% of children).8 We divide the full sample into

two parts: permanent residents (or stayers) and movers. We define the permanent residents of

each commuting zone (CZ) c as the subset of parents who reside in a single CZ c in all years of our

sample, 1996-2012. The movers sample consists of all individuals in the full sample who are not

permanent residents.

In our baseline analysis, we focus on the subset of individuals who live in CZs with populations

above 250,000 (based on the 2000 Census) to ensure that we have adequate precision to estimate

place effects. We also restrict attention to movers who moved at least 100 miles to eliminate moves

across CZ borders that do not reflect a true change of location.9 There are approximately 24.6

million children in the baseline sample, of whom 19.5 million are children of permanent residents

and 1.55 million move at least 100 miles. 10

II.B Variable Definitions and Summary Statistics

In this section, we define the key variables we use in our analysis. We measure all monetary

variables in 2012 dollars, adjusting for inflation using the headline consumer price index (CPI-U).

We begin by defining the two key variables we measure for parents: income and location.

Parent Income. Our primary measure of parent income is total pre-tax income at the household

level, which we label parent family income. In years where a parent files a tax return, we define

family income as Adjusted Gross Income (as reported on the 1040 tax return) plus tax-exempt in-

terest income and the non-taxable portion of Social Security and Disability benefits. In years where

a parent does not file a tax return, we define family income as the sum of wage earnings (reported

on form W-2), unemployment benefits (reported on form 1099-G), and gross social security and

8We limit the sample to parents with positive income because parents who file a tax return (as required to link
them to a child) yet have zero income are unlikely to be representative of individuals with zero income and those
with negative income typically have large capital losses, which are a proxy for having significant wealth.

9We measure the distance of moves as the distance between the centroids of the origin and destination ZIPs. .
We show the robustness of our results to using alternative cutoffs for minimum population size and move distances
in Online Appendix Table II.

10This 1.55M sample selection also imposes the restriction discussed in Section IV that we are able to observe
families in the destination for at least 2 years.
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disability benefits (reported on form SSA-1099) for both parents.11 In years where parents have no

tax return and no information returns, family income is coded as zero.12

Our baseline income measure includes labor earnings and capital income as well as unemploy-

ment insurance, social security, and disability benefits. It excludes non-taxable cash transfers such

as TANF and SSI, in-kind benefits such as food stamps, all refundable tax credits such as the

EITC, non-taxable pension contributions (e.g., to 401(k)’s), and any earned income not reported

to the IRS. Income is always measured prior to the deduction of individual income taxes and

employee-level payroll taxes.

In our baseline analysis, we average parents’ family income over the five years from 1996 to 2000

to obtain a proxy for parent lifetime income that is less affected by transitory fluctuations (Solon

1992). We use the earliest years in our sample to best reflect the economic resources of parents

while the children in our sample are growing up.13 Because we measure parent income in a fixed

set of years, the age of the child when parent income is measured varies across birth cohorts. We

account for this variation by conditioning on the child’s birth cohort throughout our analysis.

Parent Location. In each year, parents are assigned ZIP codes of residence based on the ZIP

code from which they filed their tax return. If the parent does not file in a given year, we search

information returns (such as W-2) for a ZIP code in that year. Non-filers with no information

returns are assigned missing ZIP codes. For children whose parents were married when they were

first claimed as dependents, we always track the mother’s location if marital status changes. We

map parents’ ZIP codes to counties using a crosswalk that combines the union of a 1999 Census

crosswalk and a 2011 Housing and Urban Development crosswalk (Census (1999); HUD (2011)).14

We then assign counties to commuting zones using the crosswalk constructed by David Dorn. See

Online Appendix A of Chetty et al. (2014) for further details on the mapping of ZIP codes to CZs.

11The database does not record W-2’s and other information returns prior to 1999, so non-filer’s income is coded
as 0 prior to 1999. Assigning non-filing parents 0 income has little impact on our estimates because only 2.9% of
parents in the full analysis sample do not file in each year prior to 1999 and most non-filers have very low W-2 income
(Chetty et al. (2014)). For instance, in 2000, median W-2 income among non-filers was $29.

12Importantly, these observations are true zeros rather than missing data. Because the database covers all tax
records, we know that these individuals have 0 taxable income.

13Formally, we define mean family income as the mother’s family income plus the father’s family income in each
year from 1996 to 2000 divided by 10 (or divided by 5 if we only identify a single parent). For parents who do
not change marital status, this is simply mean family income over the 5 year period. For parents who are married
initially and then divorce, this measure tracks the mean family incomes of the two divorced parents over time. For
parents who are single initially and then get married, this measure tracks individual income prior to marriage and
total family income (including the new spouse’s income) after marriage. These household measures of income increase
with marriage and naturally do not account for cohabitation; to ensure that these features do not generate bias, we
assess the robustness of our results to using individual measures of income.

14The 1999 census crosswalk is no longer publicly posted at https://www.huduser.gov/portal/datasets/usps crosswalk.html,
but is available on our project website.
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Next, we define the outcomes that we analyze for children.

Income. We define child family income in exactly the same way as parent family income. We

measure children’s annual incomes at ages ranging from 24-30 and define the child’s household

based on his or her marital status at the point at which income is measured. For some robustness

checks, we analyze individual income, defined as the sum of individual W-2 wage earnings, UI

benefits, SSDI payments, and half of household self-employment income (see Online Appendix A

of Chetty et al. (2014) for more details).

Employment. We define an indicator for whether the child is employed at a given age based on

whether he has a W-2 form filed on his behalf at that age. We measure employment rates starting

at age 16 to analyze teenage labor force participation.

College Attendance. We define college attendance as an indicator for having one or more 1098-T

forms filed on one’s behalf when the individual is aged 18-23. Title IV institutions – all colleges

and universities as well as vocational schools and other post-secondary institutions eligible for

federal student aid – are required to file 1098-T forms that report tuition payments or scholarships

received for every student. The 1098-T forms are filed directly by colleges independent of whether

an individual files a tax return and are available from 1999-2012. Comparisons to other data sources

indicate that 1098-T forms capture more than 95% of college enrollment in the U.S. (see Chetty

et al. (2014), Appendix B).15

Teenage Birth. For women, we define an indicator for teenage birth if they are listed as a

parent on a birth certificate when they are between the ages of 13 and 19, using data from the

Social Security Administration’s DM-2 database.16

Marriage. We define an indicator for whether the child is married at at a given age based on

the marital status listed on 1040 forms for tax filers. We code non-filers as single because linked

CPS-IRS data show that the vast majority of non-filers below the age of 62 are single (Cilke 1998).

Summary Statistics. Table I reports summary statistics for our analysis sample and various

15Colleges are not required to file 1098-T forms for students whose qualified tuition and related expenses are waived
or paid entirely with scholarships or grants. However, the forms are frequently available even for such cases because
of automated reporting to the IRS by universities. Approximately 6% of 1098-T forms are missing from 2000-2003
because the database contains no 1098-T forms for some small colleges in these years (Chetty et al. (2014)). To verify
that this does not affect our results, we confirm that our results are very similar when we exclude data from these
years (not reported).

16The total count of births in the SSA DM-2 database closely matches vital statistics counts from the Center for
Disease Control prior to 2008; however, the DM-2 database contains approximately 10% fewer births between 2008-
2012. Using an alternative measure of teenage birth that does not suffer from this missing data problem – in which
we define a woman as having a teen birth if she ever claims a dependent who was born while she was between the
ages of 13 and 19 – yields very similar results (not reported). We do not use the dependent-claiming definition as our
primary measure of teenage birth because it only covers children who are claimed as dependents by their mothers.
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subgroups. In general, movers are slightly negatively selected on observables relative to permanent

residents. For permanent residents, median parent family income is $59,200, as compared to $58,700

for our sample of one-time movers. Children of permanent residents have a mean family income

of $48,377 when they are 30 years old, compared with $47,882 for one-time movers. Roughly 70%

of children of permanent residents and one-time movers are enrolled in a college at some point

between the ages of 18 and 23 and roughly 11% of daughters of permanent residents and one-time

movers have a teenage birth.

III Empirical Framework

In this section, we first present a descriptive characterization of the earnings outcomes of children

who grow up in different areas in the U.S. We then formally define our estimands of interest –

childhood exposure effects – and describe the research design we use to identify these exposure

effects in observational data.

III.A Geographical Variation in Outcomes of Permanent Residents

We conceptualize “neighborhood” effects as the sum of place effects at different geographies, ranging

from broad to narrow: commuting zones, counties, ZIP codes, and blocks. In this paper, we focus

on variation across commuting zones (CZs). CZs are aggregations of counties based on commuting

patterns in the 1990 Census constructed by Tolbert and Sizer (1996). There are 741 CZs in the

U.S.; on average, each CZ contains 4 counties and has a population of 380,000. We also replicate

the results reported in the main text at the county level in Online Appendix Table IV. We focus

on variation across relatively broad geographies to maximize statistical precision, as some of our

research designs require large sample sizes to discern fine variation in place effects. Of course,

the variation across CZs and counties we document is a lower bound for the total variance of

neighborhood effects, which would include additional variation at narrower geographies.

We characterize children’s outcomes in each CZ using the same approach as in Chetty et al.

(2014), except that we focus here on “permanent residents” – the subset of children whose families

never move between 1996 and 2012 – to measure outcomes for children who spent their entire

childhoods in a single area.17 Importantly, our definition of permanent residents conditions on

17Because our data start in 1996, we cannot measure parents’ location over their children’s entire childhood. For
the 1980 birth cohort, we measure parents’ location between the ages of 16 and 32; for the 1991 birth cohort, we
measure parents’ location between 5 and 21. This creates measurement error in children’s childhood environment
that is larger in earlier birth cohorts. Fortunately, we find that our results do not vary significantly across birth
cohorts, and in particular remain similar for the most recent birth cohorts. The reason such measurement error turns
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parents’ locations, not children’s locations in adulthood. The CZ where a child grew up may differ

from the CZ where he lives when we measure his earnings in adulthood.

Since places can have different effects across parent income levels and over time, we characterize

children’s mean outcomes conditional on their parents’ income separately for each CZ c and birth

cohort s. Chetty et al. (2014) show that measuring incomes using percentile ranks (rather than

dollar levels) has significant statistical advantages. Following their approach, we define child i’s

percentile rank yi based on his position in the national distribution of incomes relative to all others

in his birth cohort. Similarly, we measure the percentile rank of the parents of child i, p(i), based

on their positions in the national distribution of parental income for child i’s birth cohort.

Let ȳpcs denote the mean rank of children with parents at percentile p of the income distribution

in CZ c in birth cohort s. Figure I illustrates how we estimate ȳpcs for children born in 1982 to

parents who are permanent residents of the Chicago CZ. This figure plots the mean child rank at

age 30 within each percentile bin of the parent income distribution, E[yi|p(i) = p]. The conditional

expectation of a child’s rank given his parents’ rank is almost perfectly linear, a property that

is robust across CZs (Chetty et al. (2014), Online Appendix Figure IV). Exploiting linearity, we

parsimoniously summarize the relationship between children’s mean income ranks and their parents’

ranks by regressing children’s ranks on their parents’ ranks in each CZ c and birth cohort s:

yi = αcs + ψcspi + εi. (1)

We then estimate ȳpcs using the fitted values from this regression:

ȳpcs = α̂cs + ψ̂csp. (2)

For example, in Chicago, ȳ25,c,1985 = 40.8 for children growing up at the 25th percentile of the

national income distribution and ȳ75,c,1985 = 56.1 for children growing up at the 75th percentile.

Figure II maps children’s mean income ranks at age 30 by CZ for children with parents at the

25th percentile (Panel A) and 75th percentile (Panel B). We construct these maps by dividing

CZs into deciles based on their estimated value of ȳ25,c,s and ȳ75,c,s; lighter colors represent deciles

with higher mean outcomes. As documented by Chetty et al. (2014), children’s outcomes vary

substantially across CZs, especially for children from low-income families. Chetty et al. (2014,

Section V.C) summarize the spatial patterns in these maps in detail. Here, we focus on investigating

out to be modest empirically is that most families who stay in a given area for several years tend not to have moved
in the past either. For example, among families who stayed in the same CZ c when their children were between ages
16-24, 81.5% of them lived in the same CZ when their children were age 8.
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whether the variation in these maps is driven by causal effects of place or heterogeneity in the types

of people living in different places.

III.B Definition of Exposure Effects

Our objective is to determine how much a given child’s potential outcomes would improve on average

if he were to grow up in an area where the permanent residents’ outcomes are 1 percentile point

higher. We answer this question by studying children who move across areas, focusing on identifying

childhood exposure effects. We define the exposure effect at age m as the impact of spending year

m of one’s childhood in an area where permanent residents’ outcomes are 1 percentile point higher.

Formally, consider a hypothetical experiment in which we randomly assign children to new

neighborhoods d starting at age m for the rest of their childhood. The best linear predictor of

children’s outcomes yi in the experimental sample, based on the permanent residents’ outcomes in

CZ d (ȳpds), can be written as

yi = α+ βmȳpds + θi, (3)

where the error term θi captures family inputs and other determinants of children’s outcomes. Since

the random assignment guarantees that θi is orthogonal to ȳpds, estimating (3) using OLS yields

a coefficient βm that represents the mean impact of spending year m of one’s childhood onwards

in an area where permanents residents have 1 percentile better outcomes. We define the exposure

effect at age m as γm = βm − βm+1.18 Note that if the earnings yi is measured at age T , βm = 0

for m > T , as moving after the outcome is measured cannot have a causal effect on the outcome.

Estimating the exposure effects −→γ m is of interest for several reasons. First, a positive effect

(at any age) allows us to reject the null hypothesis that neighborhoods do not matter, a null

of interest given experimental evidence to date. Second, −→γ m is informative about the ages at

which neighborhood environments matter most for children’s outcomes. Third, the magnitude of

β0 =
∑T

t=0 γm – the impact of assigning children to better neighborhood from birth – provides

an estimate of the degree to which the differences in children’s outcomes across areas are due to

place effects vs. selection. If place effects are homogeneous within birth cohorts and parent income

groups, β0 = 0 would imply that all of the variation across areas is due to selection, while β0 = 1

would imply that all of the variation would reflect causal effects of place. More generally, the

magnitude of β0 tells us how much of the differences across areas in Figure II rub off on children

18We assume that βm does not vary across parent income percentiles p for simplicity, but one could estimate (3)
separately by p to identify βmp for each percentile p. Empirically, we find that βmp does not vary significantly across
percentiles.
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who are randomly assigned to live there from birth.

Although identifying exposure effects sheds light on the importance of place effects on average,

it does not identify the causal effect of any given area on a child’s potential outcomes. The causal

effect of growing up in a given CZ c will generally differ from the mean predicted impact β0ȳpds

based on permanent residents’ outcomes because the degree of selection and causal effects can vary

across areas. We build on the methodology developed in this paper to estimate the causal effect of

growing up in each CZ in the second paper in this series (Chetty and Hendren (2016)).

III.C Estimating Exposure Effects in Observational Data

We estimate exposure effects by studying families who move across CZs with children of different

ages in observational data. In observational data, the error term θi in (3) will generally be correlated

with ȳpds. For instance, parents who move to a good area may have latent ability or wealth that

produces better child outcomes. Estimating (3) in an observational sample of families who move

exactly once yields a regression coefficient

bm = βm + δm,

where δm =
cov(θi,ȳpds)
var(ȳpds)

is a standard selection effect that measures the extent to which parental

inputs and other determinants of children’s outcomes for movers covary with permanent residents’

outcomes. Fortunately, the identification of exposure effects does not require that where people

move is orthogonal to child’s potential outcomes. Instead, it requires that timing of moves to better

areas is orthogonal to children’s potential outcomes, as formalized in the following assumption.

Assumption 1. Selection effects do not vary with the child’s age at move: δm = δ for all m.

Assumption 1 allows for the possibility that the families who move to better areas may differ

from those who move to worse areas, but requires that the extent of such selection does not vary

with the age of the child when the parent moves. Under this assumption, we immediately obtain

consistent estimates of exposure effects γm = βm− βm+1= bm− bm+1 because the selection effect δ

cancels out when estimating the exposure effect. We can go further and estimate the selection effect

δ itself by studying the outcomes of children whose families move after their income is measured,

e.g. at age a ≥ 30 if income is measured at age T = 30. Because moves at age a > T cannot have

a causal effect on children’s outcomes at age 30, bm = δ for m > T under Assumption 1. Using the

estimated selection effect, we can identify the causal effect of moving to a better area at age m as

βm = bm − bT+1 and thereby identify β0, the total causal effect of growing up in area from birth.
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Of course, Assumption 1 is a strong restriction that may not hold in practice. We therefore

evaluate its validity in detail after presenting a set of baseline estimates in the next section.

IV Baseline Estimates of Childhood Exposure Effects

This section presents our baseline estimates of exposure effects. We begin with a set of semi-

parametric estimates that condition on origin fixed effects and correspond most closely to the

hypothetical experiment described in Section III.B. We then present estimates from parametric

models that show how movers’ outcomes can be parsimoniously modeled as a linear combination

of the outcomes of permanent residents in origins and destination. Finally, we present results

from variants of the baseline specification to assess the sensitivity of our estimates to specification

choices.

In our baseline analysis, we focus on children whose parents moved across CZs exactly once

between 1996 and 2012 and are observed in the destination CZ for at least two years. We also

restrict attention to families who moved at least 100 miles to exclude moves across CZ borders that

do not reflect a true change of neighborhood and limit the sample to CZs with populations above

250,000 to mitigate measurement error in the estimates of permanent residents’ outcomes ȳpds. We

present estimates that include families who move more than once in Section 6 and show that the

findings are robust to alternative cutoffs for population size and distance in Online Appendix Table

I.

In prior work (Chetty et al. 2014), we found that the intergenerational correlation between

parents’ and children’s incomes stabilizes when children turn 30, as college graduates experience

steeper wage growth in their 20s (Haider and Solon 2006). Measuring income at age 30 limits us

to estimating exposure effects only after age 15 given the time span of our dataset.19 Fortunately,

measuring income at earlier ages (from 24-30) turns out not to affect the exposure effect estimates.

The reason is that our estimates of bm correlate the incomes of children who move with the incomes

of permanent residents in the destination measured at the same age. The incomes of permanent

residents serve as goalposts that allow us to measure the degree of convergence in incomes at any

age, even before we observe children’s permanent income. For example, if a given area c sends

many children to college and therefore generates relatively low incomes at age 24, we will obtain

a higher estimate of bm if a child who moves to area c has a low level of income at age 24. We

19The most recent birth cohort for which we observe income at age 30 (in 2012) is the 1982 cohort; since our data
begin in 1996, we cannot observe moves before age 15.
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therefore measure income at age 24 in our baseline specifications to estimate exposure effects for

the broadest age range.20

IV.A Semi-Parametric Estimates

To begin, consider the set of children whose families moved when they were exactly m years old.

We analyze how these children’s earnings are related to those of the permanent residents in their

destination CZ using the following linear regression:

yi = αqos + bm∆odps + ε1i, (4)

where yi denotes the child’s household income rank at age 24, αqos is a fixed effect for the origin CZ

o by parent income decile q by birth cohort s and ∆odps = ȳpds − ȳpos is the difference in predicted

income rank (at age 24) of permanent residents in the destination versus origin for the relevant

parent income rank p and birth cohort s. Equation (4) can be interpreted as an observational

analog of the specification in (3) that we would ideally estimate in experimental data.21

Figure III presents a non-parametric binned scatter plot corresponding to the regression in (4)

for children who move at age m = 13. To construct the figure, we first demean both yi and ∆odps

within the parent decile (q) by origin (o) by birth cohort (s) cells in the sample of movers at age

m = 13 to construct residuals: yri = yi−E[yi|q, o, s,m] and ∆r
odps = ∆odps−E[∆odps|q, o, s,m]. We

then divide the ∆r
odps residuals into twenty equal-size groups (ventiles) and plot the mean value of

yri vs. the mean value of ∆r
odps in each bin.

Figure III shows that children who move to areas where children of permanent residents earn

more at age 24 themselves earn more when they are 24. The relationship between yi and ∆odps is

linear. The regression coefficient of b13 = 0.618 , estimated in the microdata using (4), implies that

a 1 percentile increase in ȳpds is associated with a 0.629 percentile increase in yi for the children

who move at age 13.

Building on this approach, we estimate analogous regression coefficients bm for children whose

parents move at each age m from 9 to 30. We estimate {bm} using the following regression specifi-

cation:
20We do not study income before age 24 because a large fraction of children are enrolled in college at earlier ages

and because we find that exposure effects persist until age 23 when income is measured at any point between 24 and
30. We study college attendance as a separate outcome in Section VI.

21We use parent income deciles rather than percentiles to define the fixed effects αqos to simplify computation;
using finer bins to measure parent income groups has little effect on the estimates. Conditional on parent percentile,
origin, and birth cohort, the variation in ∆odps is entirely driven by variation in the destination outcomes (ȳpds).
Hence, bm is identified from variation in ȳpds, as in (3), up to the approximation error from using parent deciles
instead of exact percentiles.
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yi = αqosm +

30∑
m=9

bmI(mi = m)∆odps +

1987∑
s=1980

κsI(si = s)∆odps + ε2i, (5)

where αqosm is an origin CZ by parent income decile by birth cohort by age at move fixed effect

and I(xi = x) is an indicator function that is 1 when xi = x and 0 otherwise. This specification

generalizes (4) by fully interacting the age at move m with the independent variables in (4). In

addition, we permit the effects of ∆odps to vary across birth cohorts (captured by the κs coefficients)

because our ability to measure parent’s locations during childhood varies across birth cohorts. We

observe children’s locations starting only at age 16 for the 1980 cohort, but starting at age 8 for

the 1988 cohort. This leads to greater measurement error in ∆odps for earlier birth cohorts, which

could potentially confound our estimates of bm since the distribution of ages at move is unbalanced

across cohorts. By including cohort interactions, we identify {bm} from within-cohort variation in

ages at move.22

Figure IVa plots estimates of bm from (4). The estimates exhibit two key patterns: selection

effects after age 24 and exposure effects before age 24. First, the fact that bm > 0 for m > 24 is

direct evidence of selection effects (δm > 0), as moves after age 24 cannot have a causal effect on

earnings at 24. Families who move to better areas have children with better unobservable attributes.

The degree of selection δm does not vary significantly with m above age 24: regressing bm on m for

m ≥ 24 yields a statistically insignificant slope of 0.001 (s.e. = 0.011). This result is consistent with

Assumption 1, which requires that selection does not vary with the child’s age at move. The mean

value of δm for m ≥ 24 is δ = 0.126, i.e. families who move to an area where permanent residents

have 1 percentile better outcomes have 0.126 percentile better outcomes themselves purely due to

selection effects. Assumption 1 allows us to extrapolate the selection effect of δ = 0.126 back to

earlier ages m < 24, as shown by the dashed line in Figure 1, and thereby identify causal exposure

effects at earlier ages.

This leads to the second key pattern in Figure IVa, which is that the estimates of bm decline

steadily with the age at move m for m < 24. Under Assumption 1, this declining pattern constitutes

evidence of an exposure effect, i.e. that moving to a better area earlier in childhood generates larger

long-term gains. The linearity of the relationship between bm and the age at move m in Figure

22To avoid collinearity, we omit the most recent birth cohort (1988 for income at age 24) interaction with ∆odps.
The inclusion of the cohort interactions has little impact on the estimates obtained from (5), as shown in Table II,
Column (5), presumably because the fraction of the variance in ∆odps due to measurement error is small. The cohort
interactions play a larger role in specifications that include family fixed effects, as the portion of the residual variance
in ∆odps that is due to measurement error is larger in those specifications.
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IVa below age 23 implies that the exposure effect γm = bm+1 − bm is approximately constant with

respect to age at move m. Regressing b̂m on m for m < 24, we estimate an average annual exposure

effect ofγ = 0.044 (s.e. = 0.0018). That is, the outcomes of children who move converge to the

outcomes of permanent residents of the destination area at a rate of 4.4% per year of exposure until

age 23.23

Because some children do not move with their parents, the estimates of bm in (5) should be

interpreted as intent-to-treat (ITT) estimates, in the sense that they capture the causal effect of

moving (plus the selection effect) for children whose parents moved at age m. We can obtain

treatment-on-the-treated (TOT) estimates for the children who move themselves by inflating the

ITT estimates by the fraction of children who move at each age m. In Online Appendix Figure

IV, we show that the TOT estimate of the exposure effect is γTOT = 0.040. This estimate is very

similar to our baseline estimate because virtually all children move with their parents below age 18

and roughly 60% of children move with their parents between ages 18-23. Because the treatment

effects converge toward zero as the age at move approaches 23, inflating the coefficients by 1/0.6

at later ages has little impact on exposure effect estimates.

IV.B Parametric Estimates

Equation (5) includes more than 200,000 fixed effects (αqosm), making it difficult to estimate in

smaller samples and introduce additional controls such as family fixed effects. As a tractable alter-

native to controlling non-parametrically for parent income, origin, birth cohort, and age at move

using fixed effects, we now estimate a more parsimonious model in which we control parametri-

cally for two key factors captured by the αqosm fixed effects: (1) the quality of the origin location,

which we model by interacting the predicted outcomes for permanent residents in the origin with

birth cohort fixed effects and (2) disruption costs of moving that may vary with the age at move

and parent income, which we model using age at move fixed effects linearly interacted with parent

23Figure IVa is identified from variation in movers’ destinations holding their origin fixed. An alternative approach
is to exploit variation in origins, holding destinations fixed. Online Appendix Figure III presents estimates of bm
identified from variation in origins by replacing the origin (αqosm) fixed effects in (5) with destination (αqdsm) fixed
effects. The resulting estimates yield a qualitative pattern that is the mirror image of those in Figure IVa: the later
the family moves to the destination, the more the child’s outcomes match the permanent residents in the origin, up
to age 23. The estimated exposure effect of 0.03 is smaller than the estimates above because we measure children’s
origins with greater error than destinations, as our location data is left-censored. This is why we focus on variation
in destinations in most of our specifications.
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income percentile pi. This leads to the following regression specification:

yi =
1988∑
s=1980

I(si = s)(α1
s + α2

s ȳpos) +
30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) (6)

+
30∑
m=9

bmI(mi = m)∆odps +
1987∑
s=1980

κdsI(si = s)∆odps + ε3i,

The first two terms of this specification control for origin quality and disruption effects. The third

term represents the exposure effects of interest, and as in equation (5), the fourth consists of cohort

interactions with ∆odps to control for differential measurement error across cohorts.24

Figure IVb plots the coefficients {bm} obtained from estimating (6). The coefficients are very

similar to those obtained from the more flexible specification used to construct Figure IVa. Re-

gressing the bm coefficients on m for m ≤ 23, we obtain an average annual exposure effect estimate

of γ = 0.038 (s.e. 0.002). The exposure effect estimate is similar to that obtained from the fixed

effects specification because controlling for the quality of the origin using the permanent residents’

outcomes is adequate to account for differences in origin quality. Put differently, movers’ outcomes

can be modeled as a weighted average of the outcomes of permanents residents in the origin and

destination, with weights reflecting the amount of childhood spent in the two places.

When measuring income at age 24, we cannot determine whether bm stabilizes after age 24

because moving after age 24 has no causal effect on earnings or because we measure income at that

point. In Online Appendix Figure II, we replicate the analysis measuring income at ages 24, 26,

28, and 30. All four series display very similar patterns of exposure effects in the overlapping age

ranges, showing that our estimates of bm are insensitive to the age at which we measure children’s

incomes in adulthood. In particular, all four series decline linearly at a rate of approximately

γ = 0.04 until age 23 and are flat thereafter. These results imply that neighborhood exposure

before age 23 is what matters for earnings in subsequent years.

The kink at age 23 motivates the baseline regression specification that we use for much of our

analysis. We parameterize both the exposure and selection effects shown in Figure IV linearly,

replacing the non-parametric
∑30

m=9 bmI (mi = m) ∆odps term in (6) with two separate lines above

24In addition to having much fewer fixed effects, this specification uses variation in both the quality of the origin
(ȳpos) and the destination (ȳpds) to identify {bm}. In contrast, the semi-parametric model in (5) is identified purely
from variation in destinations because it includes origin fixed effects. Estimating a parametric model that identifies
{bm} from variation in destinations by controlling for outcomes of permanent residents in the origin interacted with
the age of the child at the time of the move (

∑30
m=9 bmI(mi = m)ypos) yields very similar estimates.
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and below ages 23:

yi =
1988∑
s=1980

I(si = s)(α1
s + α2

s ȳpos) +
30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +
1987∑
s=1980

κdsI(si = s)∆odps (7)

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆odps + I(mi > 23)(δ + (23−mi)δ
′)∆odps + ε3i,

Estimating this specification directly in the microdata yields an average annual exposure effect

γ = 0.040 (s.e. 0.002), as shown in Column 1 of Table II.25

IV.C Alternative Specifications

The model in (7) is one of many potential parametric specifications one could use to estimate

exposure effects. In Table II, we show that several natural variants of (7) all yield very similar

estimates of γ.

We begin in Columns 2 and 3 of Table II by showing that estimating γ using data only up

to age 18 or 23 – i.e., excluding the data at older ages that identifies the selection effect in (7)

– yields similar estimates of γ. Column 4 shows that restricting the sample to children claimed

in the destination CZ (to ensure that the children moved with the parents) also yields similar

estimates. Column 5 shows that dropping the cohort interactions,
∑1988

s=1980 I(si = s)α2
s ȳpos and∑1988

s=1980 κ
d
sI(si = s)∆odps, in (7) has little effect on the results. Column 6 shows we obtain similar

estimates when using a child’s individual income rank as the outcome, yi, as opposed to household

income rank.

The exposure effect estimates also remain roughly similar across subgroups (Online Appendix

Table II) We find similar but slightly higher estimates for children from above-median versus below-

median income families (γ = 0.047 versus γ = 0.031). We also find that moves to better and worse

areas have symmetric effects. Standard models of learning predict that moving to a better area

will improve outcomes but moving to a worse area will not. In practice, we find little evidence

of such an asymmetry: if anything, the point estimate of exposure effects for negative moves is

larger. These findings suggest that what matters for children’s mean long-term outcomes is the

total duration of exposure to a better environment rather than a permanent effect obtained from

short-term exposure.

To distinguish the role of childhood environment from differences caused by variation in labor

market conditions or local costs of living across areas, in Column 7 we add fixed effects for the

25This coefficient differs slightly from the coefficient of γ = 0.038 that we obtain when regressing the coefficients
bm on m in Figure IVb because estimating the regression in the microdata puts different weights on each age (as we
have more data at older ages), while estimating the regression using the bm coefficients puts equal weight on all ages.
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CZ in which the child lives at age 24 (when income is measured) to the baseline model. This

specification compares the outcomes of children who live in the same labor market in adulthood

but grew up in different neighborhoods. We obtain an annual exposure effect of γ = 0.031 in this

specification, indicating that the majority of the exposure effect in our baseline specification is

driven by differences in exposure to a better childhood environment, holding fixed labor market

conditions.26 This conclusion is consistent with the fact that moving to an area where permanent

residents have higher earnings just before entering the labor market (e.g., in one’s early 20s) has

little effect on earnings, as shown in Figure IV.

Our baseline model only includes families who move across CZs exactly once during our sample

frame (1996-2012). In Online Appendix C, we generalize our approach to include families who

move more than once by estimating a variant of (7) that replaces ∆odps with a duration-weighted

measure of exposure to different areas over childhood. We obtain an annual exposure effect estimate

of γ = 0.039 from this multiple movers specification. The similarity of this coefficient to our

estimate for one-time movers implies neighborhoods affect children’s long-term outcomes through an

exposure (or dosage) effect rather than “critical age” effects in which children’s long-term outcomes

are a function of the specific ages at which they live in a neighborhood.

Finally, we replicate the analysis in Table II at the county level in Online Appendix Table

IV. We obtain slightly smaller exposure effect estimates of γ ' 0.035 at the county level. This is

consistent with the hypothesis that selection effects account for a larger fraction of the variance in

permanent resident outcomes at smaller geographies. This is plausible insofar as families are more

likely to sort geographically (e.g., to better school districts) within rather than across metro areas.

IV.D Summary

The results in this section yield three lessons. First, place matters: children who move at earlier

ages to areas where prior residents have higher earnings earn more themselves as adults. Second,

place matters via childhood exposure. Every year of exposure to the better area during childhood

contributes to higher earnings in adulthood. Third, each year of childhood exposure matters roughly

equally. The returns to growing up in a better neighborhood remain substantial well beyond early

childhood. All of these results are predicated on our assumption that selection effects do not vary

with the child’s age at move. We evaluate this critical assumption in the next section.

26This specification likely over-adjusts for differences in labor market conditions and underestimates γ because the
CZ in which the child resides as an adult is itself an endogenous outcome that is likely related to the quality of a
child’s environment. For example, one of the effects of growing up in a good area may be an increased probability of
getting a high-paying job in another city.
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V Validation of Baseline Design

We assess the validity of the key identifying assumption – that the potential outcomes of children

who move to better vs. worse areas do not vary with the age at which they move – using a

series of tests that focus on different forms of selection and omitted variable bias. To organize this

analysis, it is useful to partition the unobserved determinant of children’s outcomes, represented by

θi in equation (3), into two components: a component θ̄i that reflects inputs that are fixed within

families, such as parent genetics and education, and a residual component θ̃i = θi − θ̄i that may

vary over time within families, such as parents’ jobs.

We implement four tests for bias in this section. First, we address bias due to selection on

fixed family factors by θ̄i by comparing siblings’ outcomes. Second, we control for changes in

parents’ income and marital status, two key time-varying factors of θ̃i that we observe in our

data. Our remaining tests focus on unobservable time-varying factors, such as changes in wealth,

that may have triggered a move to a better area. In our third set of tests, we isolate moves

that occur due to local area displacement shocks that induce many families to move. Finally,

we conduct a set of outcome-based placebo (overidentification) tests of the exposure effect model,

exploiting heterogeneity in place effects across subgroups to generate sharp testable predictions

about how children’s outcomes should change when they move to different areas. In our view,

this last approach, although least conventional, provides the most compelling evidence that the

identifying assumption holds and that neighborhoods have causal exposure effects on children’s

long-term outcomes.

V.A Sibling Comparisons

If families with better unobservables (higher θ̄i) move to better neighborhoods at earlier ages,

Assumption 1 would be violated and our estimated exposure effect γ̂ would be biased upward.

We control for differences in such family-level factors θ̄i by including family fixed effects when

estimating (6).27 For example, consider a family that moves to a better area with two children,

27The idea of using sibling comparisons to better isolate neighborhood effects dates was discussed in the seminal
review by Jencks and Mayer (1990). Plotnick and Hoffman (1996) and Aaronson (1998) implement this idea using data
on 742 sibling pairs from the Panel Study of Income Dynamics, but reach conflicting conclusions due to differences
in sample and econometric specifications. More recently, Andersson et al. (2013) use a siblings design to estimate
the impact of vouchers and public housing provision. Our analysis also relates to papers that seek to identify critical
periods by studying immigrants using sibling comparisons (Basu (2010); van den Berg et al. (2014)). Our approach
differs from these studies in that we focus on how the difference in siblings’ outcomes covaries with the outcomes of
permanent residents in the destination neighborhood, whereas the immigrant studies estimate the mean difference in
siblings’ outcomes as a function of the age gap. This allows us to separate the role of neighborhood exposure from
changes in the family that also generate exposure-dependent differences across siblings, such as changes in wealth
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who are ages m1 and m2 at the time of the move. When including family fixed effects, the exposure

effect γ is identified by the extent to which the difference in sibling’s outcomes, y1 − y2, covaries

with their age gap interacted with the quality of the destination CZ, (m1 −m2)∆odps.
28

Figure Va replicates Figure IVb, adding family fixed effects to equation (6). The linear decline

in the estimated values of bm until age 23 is very similar to that in the baseline specification.

Children who move to a better area at younger ages have better outcomes than their older siblings.

Regressing the bm coefficients on m for m ≤ 23 yields an average annual exposure effect estimate of

γ = 0.043 (s.e. 0.03), very similar to our estimates above. The selection effect (i.e., the level of bm

after age 24) falls from δ = 0.23 in the baseline specification to δ = 0.01 (not significantly different

from zero) with family fixed effects.29 The introduction of family fixed effects thus reduces the

level of the bm coefficients by accounting for differential selection in which types of families move

to better vs. worse areas, but does not affect the slope of the bm coefficients. This is precisely what

we should expect if selection effects in where families choose to move do not vary with children’s

ages at the point of move, as required by Assumption 1.

Column 8 of Table II shows that adding family fixed effects to the linear specification in equation

(7) and estimating the model directly on the micro data yields an estimate of γ = 0.044. Other

variants of this regression specification, analogous to those in Columns 2-7 of Table II, all yield

very similar estimates of γ, with one exception: excluding cohort interactions with ȳpos and ∆odps,

as in Column 5, yields γ = 0.031, slightly lower than the other estimates (Column 9). This

attenuation occurs because the level of the selection effect δ is smaller for more recent cohorts,

as children’s origins are measured more accurately in more recent cohorts. Since the specification

with family fixed effects is identified purely from comparisons across birth cohorts, this differential

measurement error across cohorts biases the estimate of γ downward unless one allows for cohort-

specific interactions.30

when a family moves to a new country.
28Since siblings of different ages must be in different cohorts, β is also partly identified from variation in the

outcomes of permanent residents in differing cohorts s. We focus on this variation across cohorts in Section V.D
below.

29δ is identified even with family fixed effects because ∆odps varies across birth cohorts.
30This attenuation due to measurement error is particularly large when we include CZs with smaller population,

where ∆odps is measured with greater error. See Online Appendix B for a discussion of the impact of measurement
error on the family fixed effect specifications.
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V.B Controls for Time-Varying Observables

The research design in Figure Va accounts for bias due to fixed differences in family inputs θ̄i, but it

does not account for time-varying inputs θ̃i. For example, moves to better areas may be triggered

by events such as job promotions that directly affect children’s outcomes in proportion to their

time of exposure to the destination. Such shocks could bias our estimate of β upward even with

family fixed effects.

Prior research has focused on parents’ income and marital status as two of the key determinants

of children’s outcomes in adulthood. We can directly control for these two time-varying factors

in our data, as we observe parents’ incomes and marital status in each year from 1996-2012. We

control for the effects of changes in income around the move when estimating (6) by including

controls for the change in the parent’s income rank from the year before to the year after the move

interacted with indicators for the child’s age at move. The interactions with age at move permit the

effects of income changes to vary with the duration of childhood exposure to higher vs. lower levels

of family income. Similarly, we control for the impact of changes in marital status by interacting

indicators for each of the four possible changes in marital status of the mother in the year before

vs. after the move (married to unmarried, unmarried to married, unmarried to unmarried, and

married to married) with indicators for the child’s age at move.

Figure Vb replicates Figure Va, controlling for all of these variables in addition to family fixed

effects. Controlling for changes in parent income and marital status has little effect on the estimates

of {bm}. The estimates of γ = 0.042 and δ = 0.015 are virtually identical to those when we do not

control for these time-varying factors. Column 10 of Table II confirms that including these controls

in a linear regression specification estimated on the micro data yields similar estimates.

These results show that changes in income and family structure are not a significant source

of bias in our design. However, other unobserved factors could still be correlated with moving

to a better or worse area in a manner that generates omitted variable bias. The fundamental

identification problem is that any unobserved shock that induces child i’s family to move to a

different area could be correlated with parental inputs θi. These changes in parental inputs could

potentially increase the child’s earnings yi in proportion to the time spent in the new area even in

the absence of neighborhood effects. For example, a wealth shock might lead a family to both move

to a better neighborhood and increase investments in the child in the years after the shock, which

could improve yi in proportion to exposure time independent of neighborhood effects. In the next
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two subsections, we address concerns about bias due to such unobserved, time-varying factors.

V.C Displacement Shocks

One approach to accounting for unobservable shocks is to identify moves where we have some infor-

mation about the shock that precipitated the move. Suppose we identify families who were forced

to move from an origin o to a nearby destination d because of an exogenous displacement shock such

as a natural disaster. Such displacement shocks can induce differential changes in neighborhood

quality as measured by permanent residents’ outcomes (∆odps). For instance, Hurricane Katrina

displaced families from New Orleans (an area with relatively poor outcomes compared to surround-

ing areas), leading to an increase in neighborhood quality for displaced families (∆odps > 0). In

contrast, Hurricane Rita hit Houston, an area with relatively good outcomes, and may have re-

duced neighborhood quality (∆odps < 0). If these displacement shocks do not have direct exposure

effects on children that are correlated with∆odps – e.g., the direct effects of the disruption induced

by hurricanes does not covary with neighborhood quality changes – then Assumption 1 is satisfied

and we obtain unbiased estimates of the exposure effect γ. Conceptually, by isolating a subset of

moves caused by known exogenous shocks, we can more credibly ensure that changes in children’s

outcomes are not driven by unobservable factors.31

To operationalize this approach, we first identify displacement shocks based on population

outflows at the ZIP code level. Let Kzt denote the number of families who leave ZIP code z in year

t in our full sample and K̄z mean outflows between 1996 and 2012. We define the shock to outflows

in year t in ZIP z as kzt = Kzt/K̄z.
32

Though many of the families who move in subsamples with large values of kzt do so for exogenous

reasons, their destination d is still the result of an endogenous choice that could lead to bias. For

example, families who choose to move to better areas (higher ȳpds) when induced to move by an

exogenous shock might also invest more in their children. To eliminate potential biases arising from

endogenous choices of destinations, we isolate variation arising purely from the average change in

neighborhood quality for individuals who are displaced. Let E[∆odps|q, z] denote the change in the

mean predicted outcome in the destination CZ relative to the origin CZ for individuals in origin

31This research design is closely related to Sacerdote’s (2012) analysis of the effects of Hurricanes Katrina and
Rita on student test score achievement. Although we use similar variation, we do not focus on the direct effects
of the displacement itself, but rather on how children’s long-term outcomes changed in relation to the outcomes of
permanent residents in the destination to which they were displaced.

32Searches of historical newspaper records for cases with the highest outflow rates kzt reveal that they are frequently
associated with events such as natural disasters or local plant closures. Unfortunately, there is insufficient power to
estimate exposure effects purely from events identified in newspapers.
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ZIP code z and parent income decile q (averaging over all years in the sample, not just the year

of the shock). We instrument for the difference in predicted outcomes in each family’s destination

relative to origin (∆odps) with E[∆odps|q, z] and estimate the linear specification in (7) using 2SLS

to obtain IV estimates of exposure effects, γIV .

Figure VI presents the results of this analysis. To construct this figure, we take ZIP-year cells

with above-median outflows (kzt > 1.17) and divide them into (population-weighted) centiles based

on the size of the shock kzt.
33 The first point in Figure VI shows the 2SLS estimate of the annual

exposure effect γIV using all observations with kzt greater than its median value (1.17). The second

point shows the estimate of γIV using all observations with kzt at or above the 52nd percentile.

The remaining points are constructed in the same way, increasing the threshold by 2 percentiles at

each point, with the last point representing an estimate of γIV using data only from ZIP codes in

the highest two percentiles of outflow rates. The dotted lines show a 95% confidence interval for

the regression coefficients.

If the baseline estimates were driven entirely by selection, γIV would fall to 0 as we limit the

sample to individuals who are more likely to have been induced to move because of an exogenous

displacement shock. But the coefficients remain quite stable atγIV ' 0.04 even when we restrict to

moves that occurred as part of large displacements. That is, when we focus on families who move

to a better area for what are likely to be exogenous reasons, we continue to find that children who

are younger at the time of the move earn more as adults.

These findings support the view that our baseline estimates of exposure effects capture the

causal effects of neighborhoods rather than other unobserved factors that change when families

move. Moreover, they indicate that the treatment effects of moving to a different area are similar

for families who choose to move for idiosyncratic reasons and families who are exogenously displaced

by an aggregate shock. This suggests that the effects identified in our baseline population of movers

who choose to move have potential external validity to a broader set of families who may not

otherwise be choosing to move.

V.D Outcome-Based Placebo Tests

As a second approach to account for potential time-varying observables, we implement placebo

tests that exploit the heterogeneity in place effects across subgroups. We exploit variation along

three dimensions: birth cohorts, quantiles of the income distribution, and child gender. The causal

33To ensure that large outflows are not driven by areas with small populations, we exclude ZIP-year cells with less
than 10 children leaving in that year.
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exposure effect model predicts precise convergence of a child’s earnings to the place effect for his

or her own subgroup. In contrast, we argue below that omitted variable and selection models

would not generate such subgroup-specific convergence under plausible assumptions about parents’

information sets and preferences. The heterogeneity of place effects thus gives us a rich set of

overidentification restrictions to test whether neighborhoods have causal exposure effects.34 We

consider each of the three dimensions of heterogeneity in turn.

Birth Cohorts. Although place effects are generally very stable over time, outcomes in some

areas (such as Oklahoma City, OK) have improved over time, while others (such as Sacramento,

CA) have gotten worse.35 Such changes in place effects could occur, for instance, because of changes

in the quality of local schools or other area-level characteristics that affect children’s outcomes. We

exploit this heterogeneity across birth cohorts to test the exposure effect model.

Under the causal exposure effect model, when a child’s family moves to destination d, the change

in permanent residents’ outcomes ∆odp,s(i) for that child’s own birth cohort s(i) should predict his

or her outcomes more strongly than the change in outcomes ∆odpt for other cohorts t 6= s(i).

In contrast, it is unlikely that other time-varying unobservables θi will vary sharply across birth

cohorts s in association with ∆odps because the fluctuations across birth cohorts are realized only

in adulthood and thus cannot be directly observed at the time of the move.36 Therefore, by testing

whether exposure effects are predicted by a child’s own vs. surrounding cohorts, we can assess the

importance of bias due to unobservables.

We implement this analysis by estimating the linear specification in (7), replacing the change

in permanent residents’ outcomes for the child’s own cohort, ∆odps(i), with analogous predictions

for another nearby cohorts, ∆odpt (see Online Appendix D for details). The series in red triangles

in Figure VII plots γ̃t when we estimate (7) using the predicted outcome for a single cohort t ∈

{s(i) − 4, s(i) + 4}. The estimates of γ̃t are similar to our baseline estimate of γ = 0.040 for the

leads and lags, consistent with the high degree of serial correlation in place effects. The series in

blue circles plots analogous coefficients γ̃t when all the cohort-specific predictions from the four

years before to the four years after the child’s own cohort are included simultaneously. In this

specification, the coefficients on the placebo exposure effects (γ̃t for t 6= 0) are all very close to zero

34In addition to being useful for identification, these results are also of direct interest in understanding the hetero-
geneity of place effects across subgroups.

35The autocorrelation of ȳpcs with ȳpc,s−1 across children’s birth cohorts is 0.95 at the 25th percentile of the parent
income distribution.

36For instance, a family that moves with a 10 year old child will not observe ȳpds for another 14 years (if income
is measured at age 24).
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and not statistically significant37. However, the exposure effect estimate for the child’s own cohort,

t = 0 remains at γ = 0.04 even when we control for the surrounding cohorts’ predictions and is

significantly different from the estimates of γ̃t for t 6= 0 (p < 0.001).

Since is it unlikely that a correlated shock – such as a change in wealth when the family

moves – would covary precisely with cohort-level differences in place effects, the evidence in Figure

VII strongly supports the view that the change in children’s outcomes is driven by causal effects

of exposure to a different place. Formally, assume that if unobservables θi are correlated with

exposure to a given cohort s(i)’s place effect, they must also be correlated with exposure to the

place effects of adjacent cohorts t:

Cov(θi,m∆odp,s(i)|X) > 0⇒ Cov(θi,m∆odpt|X,m∆odp,s(i)) > 0, (8)

where X represents the vector of fixed effects and other controls in (7). Under this assumption,

the findings in Figure VII imply that our estimates of γ reflect causal neighborhood effects (which

are cohort-specific) rather than omitted variables, which are not cohort-specific under (8).

Quantiles: Distributional Convergence. Places differ not only in children’s mean outcomes, but

also in the distribution of children’s outcomes. For example, children who grow up in low-income

families in Boston and San Francisco have comparable mean ranks, but children in San Francisco are

more likely to end up in the tails of the income distribution than those in Boston. If neighborhoods

have causal exposure effects, we would expect convergence in mover’s outcomes not just at the

mean but across the entire distribution in proportion to exposure time. In contrast, it is less

plausible that omitted variables such as wealth shocks would perfectly replicate the distribution of

outcomes of permanent residents in each CZ.38 Therefore, testing for quantile-specific convergence

can distinguish the causal exposure effect model from omitted variable explanations.

To implement these tests, we begin by constructing predictions of the probability of having

an income in the upper or lower tail of the national income distribution at age 24 for children of

permanent residents in each CZ c. We regress an indicator for a child being in the top or bottom

10% of the distribution on parent rank separately in each CZ using an equation analogous to (1),

including a quadratic term in parental income to account for the nonlinearities in tail outcomes

identified in Chetty et al. (2014). We then calculate the predicted probability of being below

37A joint test that all γ̃t = 0 for all t 6= s (i) yields a p-value of 0.251.
38Families are unlikely to be able to forecast their child’s eventual quantile in the income distribution, making it

difficult to sort precisely on quantile-specific neighborhood effects. Even with such knowledge, there is no ex-ante
reason to expect unobserved shocks such as changes in wealth to have differential and potentially non-monotonic
effects across quantiles, in precise proportion to the outcomes in the destination.
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the 10th percentile, π10
pcs, and above the 90th percentile π90

pcs using the fitted values from these

regressions, as in (2).39

In Table III, we estimate exposure effect models analogous to (7) using these distributional

predictions instead of mean predictions. In Columns 1-3, the dependent variable is an indicator

for having income in the top 10% of the income distribution. Column 1 replicates the baseline

specification in (7), using ∆90
odps = π90

pds− π90
pos instead of the mean prediction ∆odps = ȳpds− ȳpos.40

We obtain an exposure effect estimate of γ = 0.043 per year in this specification. Column 2 uses the

change in the predicted mean rank, ∆odps, instead. Here, we obtain a significant, positive estimate

of 0.022, as expected given the high degree of correlation in place effects across quantiles: places

that push children into the top 10% also tend to improve mean outcomes. In Column 3, we include

both the quantile prediction ∆90
odps and the mean prediction ∆odps, identifying the coefficients purely

from differential variation across quantiles within CZs. The coefficient on the quantile prediction

remains unchanged at approximately γ = 0.04, while the coefficient on the mean prediction is not

significantly different from 0.41

Columns 4-6 of Table III replicate Columns 1-3, using an indicator for being in the bottom 10%

as the dependent variable and the prediction for being in the bottom decile, ∆10
odps, instead of ∆90

odps

as the key independent variable. As in the upper tail, children’s probabilities of being in the lower

tail of the income distribution are fully determined by the quantile-specific prediction rather than

the mean prediction.

In sum, we find evidence of distributional convergence: controlling for mean outcomes, children’s

outcomes converge to predicted outcomes in the destination across the distribution in proportion

to exposure time, at a rate of approximately 4% per year.42 Since omitted variables such as wealth

shocks would be unlikely to generate such distributional convergence, this finding again supports

the view that the convergence in mover’s outcomes is driven by causal effects of place. Formally,

assume that if unobservables θi are correlated positively with exposure to place effects on upper or

lower tail outcomes πqpcs, they must also be correlated with exposure to the place effects on mean

39Since more than 10% of children have 0 income at age 24, we define the lower-tail outcome as an indicator for
being unemployed (measured by having no W-2).

40See Online Appendix D for the precise regression specifications.
41We present binned scatter plots verifying that children’s outcomes are strongly predicted by quantile-specific

predictions rather than mean predictions in Online Appendix C and Online Appendix Figure V
42The rate of convergence need not be identical across all quantiles of the income distribution because the prediction

for permanent residents at each quantile π90
pcs could reflect a different combination of causal effects and sorting. The

key test is whether the prediction for the relevant quantile has more predictive power than predictions at the mean
or other quantiles.
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outcomes:

Cov(θi,mπ
q
pcs|Xq) > 0⇒ Cov(θi,m∆odps|Xq,mπqpcs) > 0. (9)

Under this assumption, the findings in Table III imply that our estimates of γ reflect causal place

effects (which are quantile-specific) rather than omitted variables, which are not quantile-specific

under (9).

Gender. Finally, we conduct an analogous set of placebo tests exploiting heterogeneity in place

effects by child gender. We begin by constructing gender-specific predictions of the mean outcomes

of children of permanent residents by estimating (1) separately for male and female children, which

we denote by ȳmpcs and ȳfpcs. Places that are better for boys and generally better for girls as well:

the (population-weighted) correlation of ȳmpcs and ȳfpcs across CZs is 0.9 at the median (p = 50).43

We exploit the residual variation across genders to conduct placebo tests analogous to those above,

based on the premise that unobservable shocks are unlikely to have gender-specific effects.

In Table IV, we estimate exposure effect models analogous to (7) with separate predictions by

gender. Column 1 replicates (7) using the gender-specific prediction ∆g
odps instead of the prediction

that pools both genders. We continue to obtain an exposure effect estimate of γ = 0.038 per year

in this specification. In Column 2, we use the prediction for the other gender ∆−godps instead. Here,

we obtain an estimate of 0.034, as expected given the high degree of correlation in place effects

across genders. In Column 3, we include predictions for both genders, identifying the coefficients

purely from differential variation across genders within CZs. In this specification, the coefficient on

the own gender prediction is substantially larger than the other-gender prediction, which is close

to zero (see Online Appendix Figure VII for non-parametric binned scatter plots corresponding to

this regression).44

One may be concerned that families sort to different areas based on their child’s gender, which

– unlike the quantile and cohort-specific variation used above – is known at the time of the move.

To address this concern, Columns 4-6 of Table V replicate Columns 1-3 including family fixed

effects. The own-gender prediction remains a much stronger predictor of children’s outcomes than

the other-gender prediction even when we compare siblings’ outcomes within families. Column 7

43Online Appendix Figure V presents a heat map of ȳmpcs − ȳfpcs. Some areas, such as Syracuse and Albany, NY
are relatively better for males than females, while others, such as Milwaukee, WI are relatively better for females
than males. In general, outcomes for boys are relatively worse than those for girls in areas with higher crime rates,
a larger fraction of single parents, and greater inequality (Chetty et al. (2016)).

44It is not surprising that the other gender prediction remains positive, as the prediction for the other gender may
be informative about a place’s effect for children of a given gender due to measurement error. In general, finding
a 0 effect on the “placebo” prediction is sufficient but not necessary to conclude that there is no sorting under an
assumption analogous to (8).
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shows that this remains the case when we restrict the sample to families that have at least one boy

and one girl, for whom differential sorting by gender is infeasible.

The gender-specific convergence documented in Table IV supports the causal exposure effects

model under an assumption analogous to (8), namely that the unobservable θi does not vary

differentially across children of different genders within a family. This assumption requires that

families who move to areas that are particularly good for boys do not invest systematically more

in their sons relative to their daughters, a restriction that would hold if, for instance, families do

not have systematically different preferences over their sons’ and daughters’ outcomes. Under this

assumption, the gender-specific convergence in proportion to exposure time must reflect causal

place effects.

V.E Summary

The results in this section show that various refinements of our baseline design – such as including

family fixed effects or exploiting cohort- or gender-specific variation – all yield annual exposure

effect estimates of γ ' 0.04. These findings have two important implications for identification of

exposure effects.

First, our baseline design – which simply compares families who move with children of different

ages in observational data – does not appear to be confounded by selection and omitted variable

biases. We believe that such biases are small in our application for two reasons. First, the degree

of age-dependent sorting across large geographies such as CZs and counties is limited, as families

seeking better schools or environments for their children at certain ages presumably make more

local moves (e.g., to a neighborhood school district). Second, children’s outcomes conditional on

parent income are not significantly correlated with mean parent incomes in an area (Chetty et al.

2014). As a result, moving to a better area for children is not systematically associated with parents

finding better jobs, mitigating what might be the most important confounding factor.

Second, the findings above imply that any omitted variable θi that generates bias in our expo-

sure effect estimates must: (1) operate within the family in proportion to exposure time (family

fixed effects); (2) be orthogonal to changes in parental income and marital status (controls for ob-

servables); (3) persist in the presence of moves induced by displacement shocks (displacement shock

analysis); and (4) precisely replicate permanent residents’ outcomes by birth cohort, quantile, and

gender in proportion to exposure time (outcome-based placebo tests). We believe that plausible

omitted variables are unlikely to have all of these properties and therefore conclude that places
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have causal effects on children in proportion to the amount of time they spend growing up in the

area.

VI Other Outcomes

In this section, we estimate neighborhood effects for other outcomes, including college attendance,

marriage, teenage employment, and teenage birth. The results provide further evidence on the

types of outcomes that are shaped by neighborhood environment and illustrate how neighborhoods

affect behavior before children enter the labor market.

Figure VIII replicates Figure IVb for rates of college attendance and marriage. In Panel A, we

replicate the baseline specification in equation 6 replacing ∆odps with ∆c
odps = Cpds − Cpos, where

Cpcs is the fraction of children who attend college at any point between ages 18 and 23 (among

children of permanent residents in CZ c in birth cohort s with parental income rank p). In Panel B,

we replace ∆odps with ∆m
odps = mpds−mpos, where mpcs is the fraction of children who are married

at age 26.

We find approximately linear childhood exposure effects until age 23 for both of these outcomes.

Moving to an area with higher college attendance rates at a younger age increases a child’s proba-

bility of attending college. Likewise, moving to an area where permanent residents are more likely

to be married at age 26 at a younger age increases a child’s probability of being married. The

estimated annual exposure effect isγ = 0.037 for college attendance and γ = 0.025 for marriage.

In Figure IX, we analyze outcomes measured while children are teenagers. Panel D considers

teen birth, defined as being listed as a parent on a birth certificate prior to age 20. We construct

gender-specific predictions of teenage birth rates and plot the baseline specification in Equation

(6), replacing ∆odps with ∆z
odpsg = zpdsg−zposg, where zpcsg is the fraction of children of permanent

residents in CZ c with parental income p in cohort s and gender g who have a teenage birth. For

both boys and girls, there are clear childhood exposure effects: moving at an earlier age to an area

with a higher teen birth rate increases a child’s probability of having a teenage birth. The gradient

is especially steep between ages 13 and 18, suggesting that a child’s neighborhood environment

during adolescence may play a particularly important role in determining teen birth outcomes.

In Panels A-C of Figure IX, we analyze neighborhood effects on teenage employment rates.

In these figures, the outcomes is an indicator for employment (based on having a W-2 form filed

on one’s behalf) at ages 16, 17, or 18. The key independent variable in each of these figures is

constructed based on the employment rate of children of permanent residents at the corresponding
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age. For teen employment, we find discontinuous effects of moving just before employment is

measured rather than continuous exposure effects. Children who move at age 15 to a CZ where

more 16 year olds work are much more likely to work at age 16 than children who make the

same move at age 17. Making the same move at earlier ages (before age 16) further increases the

probability of working at age 16, but the exposure effect is small relative to the discrete jump at age

16 itself. Analogous discrete jumps are observed at ages 17 and 18 when one measures employment

outcomes at ages 17 and 18 (Panels B and C).45 These discrete jumps suggest that part of the

effects of the neighborhoods may come from discrete experiences during childhood, such as summer

jobs that are available in a given area at certain ages. These experiences may aggregate to produce

the linear childhood exposure effects that shape outcomes in adulthood.

Although the mean earnings of individuals in an area are correlated with other outcomes such

as college attendance and teenage birth rates, there is substantial residual variation in permanent

resident’s outcomes on each of these dimensions. For example, permanent residents’ mean earnings

rank at age 30 has a (population-weighted) correlation of 0.461 with college attendance rates,

implying that more than 75% of the variance in college attendance rates is orthogonal to mean

earnings ranks (Online Appendix Table VI). Hence, the finding that movers outcomes converge to

those of permanent residents constitutes further evidence that neighborhoods have causal effects,

as it would be unlikely that unobserved shocks would generate convergence on a spectrum of

different outcomes.46 Moreover, the fact that neighborhoods have causal effects on a wide variety

of outcomes beyond earnings further suggests that the mechanism through which neighborhoods

shape children’s outcomes is not driven by labor market conditions but rather a set of environmental

factors that shape behaviors throughout childhood.

VII Conclusion

This paper has shown that children’s opportunities for economic mobility are shaped by the neigh-

borhoods in which they grow up. Neighborhoods affect children’s long-term outcomes through

childhood exposure effects: every extra year a child spends growing up in an area where permanent

residents’ outcomes are higher increases his or her earnings. Movers’ outcomes converge to those of

permanent residents in the destination to which they move at a rate of approximately 4% per year of

45The magnitude of the {bm} coefficients in Panels B-D is approximately 0.8 at young ages and 0 after the age at
which employment is measured. Under our identifying assumption of constant selection effects by age, this implies
that movers pick up 80% of the differences in teenage employment rates across CZs observed for permanent residents.

46This logic is analogous to the tests for distributional convergence in Section V.D; here, we are exploiting other
dimensions of the joint distribution of children’s outcomes to test for distributional convergence.
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childhood exposure. Extrapolating this annual exposure effect over 20 years of childhood, children

who move to a new area at birth will pick up roughly 80% of the difference in permanent residents’

outcomes between their origin and destination. Much of the variation in intergenerational mobility

observed across areas thus appears to be driven by causal effects of place rather than heterogeneity

in the types of people living in those places.

These results motivate place-based approaches to improving economic mobility, such as making

investments to improve opportunity in areas that currently have low levels of mobility or helping

families move to higher opportunity areas using targeted housing vouchers. Identifying specific

policy solutions – i.e., the investments needed to improve mobility and the areas to which families

should be encouraged to move – requires identifying the causal effect of each neighborhood and

understanding what makes some areas produce better outcomes than others. The analysis in the

present paper shows that differences in permanent residents’ outcomes are predictive of neighbor-

hoods’ causal effects on average. However, it does not provide an unbiased estimate of the causal

effect of each area on a given child’s outcomes, as the outcomes of permanent residents in any given

area could reflect an arbitrary mix of selection and causal effects. We construct estimates of the

causal effect of growing up in each CZ and county in the U.S. and characterize the properties of

areas that produce good outcomes in the second paper in this series.
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Online Appendix A. County-Level Estimates

Online Appendix Table I replicates our baseline specifications using counties as the geographic
unit, as opposed to CZs. Broadly, the patterns at the county level reflect those at the CZ level, but
with slightly attenuated values for γ. This attenuation is consistent with the presence of greater
residential sorting at the county level. Online Appendix Figure VIII presents estimates of the
permanent resident outcomes across counties for p = 25 and p = 75.

To construct these estimates, we measure ȳpcs using county-level permanent residents and we
consider two samples of 1-time county movers. Online Appendix Table IV presents the summary
statistics of each of these samples. First, we consider a sample of 1-time movers who move at
least 100 miles between counties with populations above 250,000, analogous to the same sample
restrictions we impose on the 1-time CZ movers. Column (1) shows we obtain a baseline slope of
0.035, slightly lower than our baseline slope of 0.040 at the CZ level. The smaller slope is consistent
with a slightly larger degree of residential sorting at the county, as opposed to the CZ level. Column
(2) adds family fixed effects to the baseline specification in Column (1) and obtains an exposure
slope of 0.033 (0.011), not significantly different from the baseline slope of 0.035. This suggests the
quasi-experimental design is not confounded by dynamic sorting patterns operating at the county
level within the CZ.

While our baseline analysis for CZ moves and for the county moves in Columns (1)-(2) focused
on moves above 100 miles, Columns (3)-(7) in Table VI explore moves across counties within CZs
including moves less than 100 miles. Column (3) replicates the baseline specification using moves
across counties with populations at least 250,000, measuring outcomes of the children at age 24.
Here, we obtain a slope of 0.022 (s.e. 0.003), significantly lower than the estimate of 0.035 we
obtain for longer distance moves. This drop is consistent with the the child spending some time
in the old location or the impact of border-effects from the coarse manner in which we measure
neighborhood quality at the county level.

Column (4) measures the child’s outcome (and predicted outcomes of permanent residents) at
age 26 instead of age 24. Here, we obtain a similar but slightly higher slope of 0.032. Column (5)
stacks the data across outcomes at age 24-32. Here, we obtain a more precisely estimated coefficient
of 0.027 (s.e. 0.002). Column (6) adds family fixed effects to the specification in Column (5) and
obtains a similar slope of 0.029 (s.e. 0.025). While our estimate remains stable, it is considerably
more imprecise with the addition of family fixed effects across counties within CZs. Finally, Column
(7) considers within-CZ moves across counties with populations of at least 10,000 as opposed to
250,000. Here, we obtain a similar but slightly attenuated coefficient of 0.024 relative to the 0.027
in column (5). This is consistent consistent with attenuation bias from using relatively imprecise
estimates of the permanent resident outcomes in smaller places.

Online Appendix B. Additional Robustness Specifications

This Appendix presents additional robustness specifications, focusing on the role of the population
and distance restrictions and the impact of more imprecision in the permanent resident outcomes
on the family fixed effects estimates.

Population and Distance Restrictions. Our baseline analysis restricts to families who
move between CZs with at least 250K people in both the origin and destination location and moves
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beyond 100 miles. Online Appendix Table I illustrates how our baseline results for the specification
in equation (7) change when we vary the distance and population size restrictions.

Column (1) repeats the baseline specification in column (1) of Table II. Columns (2)-(4) include
moves of all distances. Column (2) restricts to moves between origins and destinations with at
least 50K people; column (3) restricts to moves to and from places with at least 250K people (our
baseline population restriction); column (4) restricts to move to and from CZs with at least 500K
people. Columns (5)-(7) repeat columns (2)-(4) imposing our baseline restriction that moves are
farther than 100 miles. Hence, column (6) is identical to column (1) as it imposes our baseline
distance restriction of 100 miles and a 250K population restriction. Columns (8)-(10) require that
moves be farther than 200 miles.

Broadly, we find that using a more restrictive sample does not meaningfully affect our results;
but including moves of smaller distances and between places with smaller populations tends to lead
to slightly attenuated coefficients, γ. For example, relaxing the population restriction from 250K
to 50K or removing our distance restriction drops our estimate of γ from 0.04 to 0.036 (s.e. 0.001),
as shown in columns (3) and (5).

These patterns are to be expected because our permanent resident outcomes are estimated with
sampling error. Because of spatial auto-correlation in permanent resident outcomes, one expects
that more of the variation in ∆odps for shorter distances reflects sampling variation as opposed to
true differences in permanent resident outcomes. Similarly, including CZs with smaller populations
naturally leads to less precise estimates of ∆odps and hence an attenuated coefficient for γ. But,
restricting to moves further than 100 miles or more restrictive population restrictions (e.g. 500K)
does not meaningfully affect our results. This suggests sampling error in the permanent resident
outcomes is not significantly affecting our baseline results.

Family Fixed Effects Specification. Sampling variation in permanent resident outcomes can
more seriously affect the family fixed effect estimates. Online Appendix Table VII illustrates this by
showing the impact of incorporating moves between smaller CZs. Columns (1) and (2) report the
baseline specification and baseline family fixed effects specification that include a cohort-varying
intercept and restrict to populations in the origin and destination location above 250,000 based on
the 2000 Census. Columns (3)-(4) repeat the baseline specification dropping the cohort-varying
intercept. As noted in the main text and in columns (5) and (9) of Table II, not allowing the
intercept to vary by cohort attenuates the baseline coefficient to 0.036 and drops the coefficient in
the family fixed effects specification to 0.031. The greater attenuation in the family fixed effects
specification reflects the fact that γ is identified solely from comparisons across birth cohorts when
using variation coming from siblings.

Columns (5)-(6) repeat the specification in Column (3)-(4) now extending the sample to include
moves to places with populations above 100,000 in both the origin and destination. This attenuates
the coefficient in Column (3) from 0.036 to 0.032 in Column (5). Adding family fixed effects now
drops this coefficient to 0.024. As noted in the next row of Online Appendix Table VII, family
fixed effects yields an estimate of γ that is 0.76 the size of the specification without the family
fixed effects. Columns (7)-(8) incorporate moves to places with populations above 50,000, and the
specifications in columns (9)-(10) remove the population restriction entirely. Fully removing the
population restriction yields a coefficient for γ in equation (6) of 0.031, which is then attenuated
to 0.020 using family fixed effects.

As the table illustrates, incorporating less precise estimates for the permanent resident outcomes
induces attenuation not only in the level of our baseline specification given by Equation (6), but also
an even more severe attenuation in the family fixed effects specification. The family fixed effects
specification yields a coefficient that is statistically indistinguishable from our baseline coefficient
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when including moves between large CZs and incorporating a cohort-varying intercept. Dropping
the cohort-varying intercept continues to yield a coefficient in the family fixed effect specification
that is 86% of the size of the baseline coefficient. But, incorporating moves from to places with more
than 100K people drops this to 76%; and 71% if moves are included to places with more than 50K
people, and 61% if the population restriction is removed. This reflects the fact that the variation
in permanent resident outcomes across siblings reflects a greater sensitivity to measurement error
from variation in permanent resident outcomes across cohorts. This motivates our primary focus
on moves between large CZs so that we obtain sufficiently precise estimates of permanent resident
outcomes.

Online Appendix C. Multiple Movers

This section presents the specification that incorporates families that move across CZs more than
once. Let d(j) denote the jth destination location and let mj

i denote the age of the child when
moving to destination. We consider families that move across CZs up to three times, which excludes
the 3% of families who move across CZs more than 3 times. Let Ei denote the number of times the
family moved, Ei ∈ {1, 2, 3}. To parameterize exposure to places when children are above versus
below age 23, we define eij to be the number of years child i is exposed to the jth place below age
23. And, we let e>23

ij denote the number of years above age 23 that the individual is exposed to
place j.

For each place j the child lives, we construct ∆j
od(j)ps = ∆od(j)ps = ȳpd(j)s− ȳpos as the difference

in the child’s predicted outcome based on permanent residents in destination j and the mover’s first
observed (origin) CZ, o. We estimate a specification analogous to our baseline linear specification
in equation (7) given by:
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Our primary coefficients of interest, γj , are the coefficients on the interaction of eij and ∆j
od(j)ps,

which comprise
∑3

j=1 γjeij∆
j
od(j)ps. Analogous to our baseline specification, we also parameterize

a level impact of ∆j
od(j)ps that may vary by cohort, κjs∆odps, and we control for the outcomes of

permanent residents in the origin, interacted with cohort, αsȳpos. Moreover, we parameterize the
impact of exposure above age 23 by including interactions of e>23

ij with ∆od(j)ps and a level effect,

1
{
e>23
ij > 0

}
∆od(j)ps. These two terms represent an extension of the terms I(mi > 23)(δ + (23−

mi)δ
′)∆odps in equation 7 to the case of multiple moves.

The second line includes a set of additional control variables analogous to those in equation
7, but differ in two respects. First, we simplify the controls by including linear terms in expo-
sure, eij , as opposed to separate indicators for the age of the child at the time of the move (e.g.
I (mi = m) in equation 7). Second, we generalize the controls to capture potential disruption effects
of multiple moves. We include indicators for the number of total moves, along with its interac-
tion with exposure time to each place,

∑3
j=1 I (Ei = j) ζ3,jeij , its interaction with parental in-

come,
∑3

j=1 I (Ei = j) ζ4,jpi, and its cohort-specific interaction with permanent resident outcomes,∑3
j=1 I (Ei = j)

∑1988
s=1980 ζ

6,s,j ȳpos.
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Online Appendix Table III presents the results. We estimate a coefficient of 0.040 (s.e. 0.001)
for the first destination (γ), 0.037 (s.e. 0.004) for the second destination (γ2), and 0.031 (s.e.
0.006) for the third destination (γ3), as shown in column 1. Column 2 presents results for γj

that constrains the estimates to be constant for all j, yielding an estimate of 0.039 (s.e. 0.001),
statistically indistinguishable from our baseline estimates using our sample of 1-time movers.

As noted in the text, these results support our interpretation of the results as a model of
exposure, as opposed to a critical age model. To see how the multiple movers analysis implies
this, it is helpful to consider an example of a critical age model. Suppose that moving to a better
neighborhood improves a child’s network of friends with a probability p that is declining with the
age at move and that once one makes a new set of contacts, they last forever. In this model,
neighborhood effects would decline with the age at move (as in Figure IV), but the duration of
exposure to a better area would not matter for long-term outcomes. Conceptually, one cannot
distinguish a critical age model from a duration of exposure model in a sample of one-time movers
because the age at move is collinear with the duration of exposure.

However, the multiple movers specification breaks this collinearity between age at move and
duration of exposure. The fact that outcomes remain proportional to the duration of exposure at
the same rate even when duration is not collinear with the age at which the child moves shows that
duration of exposure is the key determinant of children’s earnings in adulthood.

Online Appendix D. Specification Details for Outcome-Based Placebo Tests

This section presents specification details and further results from the outcome-based placebo tests
described in Section V.D.

Cohort Variation

We begin by describing the specification for the cohort variation test. We begin with the baseline
linear specification in equation (7). For each cohort t = s+a for a ∈ {−4,−3,−2,−1, 1, 2, 3, 4}, we
add six variables to this regression. The first five variables replicate the linear parameterization of
the exposure effect for cohort t by including: 1 {mi ≤ 23}∗∆odpt, 1 {mi > 23}∗∆odpt, 1 {mi ≤ 23}∗
mi ∗ ∆odpt, 1 {mi > 23} ∗ mi ∗ ∆odpt, and ȳpot. These variables are populated for any child, i,
in cohort s (i) for which we observe permanent resident predictions, ȳpct. In the case we are
unable to observe ∆odpt and ȳpot (e.g. if t = 1979 or t = 1987), we set each of these first five
variables to zero and we include an indicator, Ia = 1 {cohort s (i) + a is non-missing} for each
a ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. For example, since our data covers the 1980-86 cohorts, a child in
the 1983 cohort would have non-zero entries for the permanent resident predictions for the three
years surrounding 1983, but would have zero entries for the permanent resident predictions along
with indicators Ia = 1 for a = −4 and a = 4. The resulting specification is

yi =
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+
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where the last line includes these additional controls. The estimates of γa from this specification
are presented in Figure VII.

Quantiles: Distributional Convergence

For the distributional convergence analysis, we again begin with the baseline linear specification
in equation (7). However, we now consider an outcome, yi, to be an indicator for having income
above the 90th percentile (or an indicator for being unemployed). Letting π90

pcs denote the predicted
probability of having income above the 90th percentile in CZ c for parental income level p and cohort
s, we define ∆90

odps = π90
pds − π90

pos to be the difference in permanent resident outcomes in the origin
versus destination.

Column (1) of Table III reports the coefficient γ from the regression analogous to the baseline
linear specification in equation (7) that everywhere replaces mean income outcomes with indicators
for income above the 90th percentile:

yi =

1988∑
s=1980

I(si = s)(α1
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sπ
90
pos) +

30∑
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1987∑
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′)∆90
odps + ε3i,

In column (3), we include five additional controls for the mean incomes of permanent residents:
1 {mi ≤ 23} ∗∆odps, 1 {mi > 23} ∗∆odps, 1 {mi ≤ 23} ∗mi ∗∆odps, 1 {mi > 23} ∗mi ∗∆odps, and
ȳpos, yielding:

yi =

1988∑
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s + α2

sπ
90
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m=9

I(mi = m)(ζ1
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+I(mi ≤ 23) (bmean,0 + (23−mi)γmean) ∆odps + I(mi > 23)(δmean + (23−mi)δ
′
mean)∆odps + α3ȳpos + ε3i,

Column (2) present results from a specification that drops the terms in the second row of the
specification for column (3). Here, we obtain a significant, positive estimate of 0.022, as expected
given the high degree of correlation in place effects across quantiles: places that push children into
the top 10% also tend to improve mean outcomes. Column (3) presents the main results from the
specification above. We estimate γ = 0.040 (s.e. 0.003) and γmean = 0.004 (s.e. 0.003).

Online Appendix Figure V (Panel A) presents a visual illustration of these coefficients. We
present a binned scatter plot of the probability a child is in the top 10%, y90

i vs. the destination
prediction π90

pds and the mean rank prediction ȳpds in the sample of children who move at or before
age 13. The series in circles shows the non-parametric analog of a partial regression of a child’s
outcome on π90

pds, controlling for the ȳpds and the analogous predicted outcomes based on prior

residents in the origin, π90
pos and ȳpos. To construct this series, we regress both y90

i and π90
pds on the

mean predicted income rank, ȳpds, and the analogous origin controls, π90
pos and ȳpos, bin the π90

pcs

residuals into 20 equal-sized bins, and plot the mean residuals of y90
i vs. the mean residuals of π90

pcs

within each bin. The series in triangles is constructed analogously, except that we plot residuals of
y90
i vs. residuals of ȳpcs, the predicted mean rank.

Online Appendix Figure V (Panel A) shows that children who move before age 13 to areas
where children are more likely to be in the top 10% are much more likely to reach the upper tail
themselves: a 1 percentile increase in π90

pcs is associated with an 0.651 percentile increase in the
movers’ probability of reaching the top 10%, controlling for the mean rank outcomes of permanent
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residents in the origin and destination CZ along with the top 10% prediction in the origin CZ. In
contrast, conditional on the probability of reaching the top 10%, variation in the mean predicted
outcome has no impact at all on a child’s probability of reaching the top 10% (slope of 0.030).

Columns (4)-(6) repeat the specifications in columns (1)-(3) but use an indicator for being
employed, as opposed to having income above the 90th percentile. These results are also illustrated
in Online Appendix Figure V (Panel B), which replicates Panel A using non-employment (roughly
the bottom 10%) as the outcome instead of reaching the top 10%. Once again, we find that
children’s probabilities of reaching the lower tail are strictly related to the predicted probability
of reaching the lower tail based on permanent residents’ outcomes rather than the predicted mean
outcome. The fact that mean predicted outcomes of permanent residents ȳpcs have no predictive
power implies that other omitted factors, which are not quantile-specific under (9), do not drive
our findings.

Gender Variation

We begin by constructing gender-specific predictions of the mean outcomes of children of permanent

residents by estimating (1) separately for male and female children, which we denote by ȳmpcs and ȳfpcs.

For a child of gender g ∈ {m, f}, we define ∆g
odps = ȳgpds− ȳ

g
pos. The primary specification in column

(3) of Table IV adds five variables to the baseline specification in equation (7): 1 {mi ≤ 23}∗∆odps,
1 {mi > 23} ∗∆odps, 1 {mi ≤ 23} ∗mi ∗∆odps, 1 {mi > 23} ∗mi ∗∆odps, and ȳpos. This yields the
specification:
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where g is the child’s gender and −g is the opposing gender. We obtain a coefficient of γ = 0.031
(s.e. 0.003) and γother = 0.009 (s.e. 0.003).

To further illustrate these differential patterns, Online Appendix Figure VII presents a binned
scatter plot of children’s ranks vs. the difference in the destination and origin prediction, ∆g

odps, for

their own gender (circles) and the prediction ∆−godps for the other gender (triangles) in the sample
of children who move at or before age 13. Each series shows the non-parametric analog of a partial
regression of a child’s outcome on the prediction for a given gender, controlling for the other-gender
prediction. To construct the series in circles, we regress both yi and ∆g

odps on ∆−godps and origin by

parent income decile by cohort by gender fixed effects. We then bin the ∆g
odps residuals into 20

equal-sized bins, and plot the mean residuals of yi vs. the mean residuals of ∆g
odps within each bin.

The series in triangles is constructed analogously, except that we plot residuals of yi vs. residuals of
∆−godps, the prediction for the other gender. The figure shows that children who move before age 13
to areas where children of their own gender have better outcomes do much better themselves: a 1
percentile increase in the mean rank ȳgpds for g = g(i) is associated with a 0.523 percentile increase
in the movers’ mean rank. In contrast, conditional on the own-gender prediction, variation in the
prediction for the other gender is associated with only a 0.144 percentile increase in the movers’
mean rank.
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FIGURE I: Mean Child Income Rank at Age 30 Vs. Parent Income Rank for Children Raised in
Chicago

Notes: This figure presents a non-parametric binned scatter plot of the relationship between mean child income ranks and
parent income ranks for all children raised in Chicago. The figure measures income of the children at age 30 using the 1982
cohort. Child income is family income at age 30, and parent income is mean family income from 1996-2000. We define a
child’s rank as her family income percentile rank relative to other children in her birth cohort and his parents’ rank as their
family income percentile rank relative to other parents of children in the core sample. The ranks are constructed for the full
geographic sample, but the graph illustrates the relationship for the sub-sample of families who report living in Chicago for all
years of our sample, 1996-2012. The figure then plots the mean child percentile rank at age 30 within each parental percentile
rank bin. The slope and best-fit line are estimated using an OLS regression on the micro data. Standard errors are reported
in parentheses.



FIGURE II: Predicted Income Rank at Age 30 - Permanent Residents

A. For Children with Parent at the 25thPercentile

B. For Children with Parent at the 75thPercentile

Notes: These figures illustrate the geographic variation in child income rank outcomes at age 30 amongst our sample of
permanent residents born in the 1980-82 cohorts, across commuting zones (CZs) in the U.S. Panel A reports the expected
rank for children whose parental income is at the 25th percentile of the income distribution of parents, and Panel B reports
the expected rank for children whose parental income is at the 75th percentile. Both figures use the baseline family income
definitions for parents and children. The figure restricts to the subset of parents who stay in the commuting zone throughout
our sample period (1996-2012) (but does not restrict based on the geographic location of the child at age 30). To construct
this figure, within each cohort we regress child income rank on a constant and parent income rank in each CZ, exploiting the
linearity property shown in Figure I. Panel A then reports the predicted child rank outcome for parents at the 25th percentile
of the family income distribution (˜$30K per year), pooling across cohorts 1980-82. Similarly, Panel B reports the predicted
child rank outcome for parents at the 75th percentile of the family income distribution (˜ $97K per year).



FIGURE III: Movers’ Outcomes at Age 24 vs. Predicted Outcomes Based on Residents in
Destination Moves at Age 13

Notes: This figure presents a non-parametric illustration of the b13 coefficient in equation (4). The sample includes all children
in 1-time moving households whose parents moved when the child was 13 years old. Child income is measured when the child
is age 24. The figure is constructed by first partialing out the fixed effects (the interaction of (a) origin CZ, (b) the child’s age
at the parental move, (c) cohort, and (d) parental income deciles): we regress the difference in the destination versus origin
prediction, ∆odps, on the fixed effects and the child rank outcome on the fixed effects. The figure then plots the relationship
between these residuals from each of these regression. We construct 20 equal sized bins of the residuals from the destination
regression and, in each bin, plot the mean of the residuals from the child rank regression.



FIGURE IV: Exposure Effect Estimates for Children’s Income Rank in Adulthood

A. Income at Age 24 and 26

B. Income at Age 24

Notes: Panel A presents estimates of the coefficients, {bm}, from the semi-parametric specification in equation (5) for various
child income measurements at different ages. The sample includes all children in 1-time moving households. Child income
is measured when the child is age 24, and 26. We estimate these coefficients by regressing the child’s family income rank on
the difference in the predicted family income rank based on prior residents in the destination location relative to the origin
location (computed using the linear regression illustrated in Figure I) interacted with each age of the child at the time of the
move. We include the set of fixed effects for origin by parent income decile by cohort by the child’s age at the time of the
move (as in Figure III). Panel B presents estimates from the specification in equation (6). This specification drops the large
set of fixed effects and instead includes (a) dummies for the child’s age at the time of the move, (b) parental rank (within
the child’s cohort) interacted with child age dummies, and (c) cohort dummies and predicted outcomes in the destination and
origin interacted with cohort dummies. Panels A and B report slopes and intercepts from a regression of the bm coefficients
on m separately for m ≤ 23 and m > 23. We compute δ as the predicted value of the line at age 23 using the bm estimates
for m > 23.



FIGURE V: Exposure Effect Estimates for Children’s Income Rank in Adulthood with Controls
for Observables

A. Family Fixed Effects

B. Family Fixed Effects and Time Varying Controls

Notes: This figure presents estimates of the coefficients, {bm}, in specifications that add family fixed effects (Panel A) and
both family fixed effects and controls for changes in marital status and parental income (Panel B). Panel A presents estimates
of bm from the baseline specification in equation (6) with the addition of family fixed effects. Panel B adds family fixed effects
along with a set of controls for income rank changes and marital status changes around the time of the move. To do so, we
construct parental income ranks by cohort by year of outcome measurement. We interact the differences in parental ranks in
the year before versus after the move with an indicator for the child age at the time of the parental move (for ages below 24)
and an interaction with an indicator for child age greater than 23 at the time of the parental move. We also construct a set
of indicators for marital status changes. We define marital status indicators for the year before the move and the year after
the move and construct indicators for being always married, getting divorced, or being never married (getting married is the
omitted category). We include these variables and their linear interactions with the child age at the time of the parental move
(for ages below 24) and an interaction with an indicator for child age greater than 23 at the time of the parental move. As in
Figure IV, we report slopes and intercepts from a regression of the bm coefficients on m separately for m ≤ 23 and m > 23.
We compute δ as the predicted value of the line at age 23 using the bm estimates for m > 23.



FIGURE VI: Displacement Shocks IV Exposure Effects Estimates

Notes: This figure presents estimates of the exposure time slope for a subsample of moves restricted to zipcode-by-year
observations with large outflows, instrumenting for the change in predicted outcomes based on prior residents, ∆odps, with
the average change in predicted outcomes for the given origin. More specifically, for each zipcode in our sample of children in
the 1980-1993 cohorts, we calculate the number whose parents leave the (5-digit) zipcode in each zipcode, z, in year t, mzt.
Then, we compute the average number of people who leave in a given year across our 1997-2012 sample window, m̄z. We then
divide the outflow in a zipcode-year observation, mzt, by the mean outflow for the zipcode to construct our measure of the
displacement shock, d = mzt

m̄zt
. The horizontal axis presents the results for varying quantile thresholds of d ranging from the

median to the 95th percentile. The corresponding mean value of d for the sample is presented in brackets. For each zipcode,
we compute the mean value of ∆odps for each parental income decile (pooling across all years and all movers in the zipcode).
Throughout, we restrict to zipcode-years with at least 10 observations. Then, for each sample with values of d above the
threshold, we estimate γ in equation (7). We plot the estimate of γ as a function of the threshold.



FIGURE VII: Exposure Effects Based on Cross-Cohort Variation, with Cohort-Varying Intercepts

Notes: This figure presents estimates of the exposure time slope using own and placebo cohort place predictions. The sample
includes all children in 1-time moving households whose parents moved when the child was less than or equal to 23 years old.
The series in red triangles plots estimates of 9 separate regressions using place predictions for child in cohort c as if s/he were
in cohort c+ k, where k ranges between -4 and 4. By construction, the estimate for k = 0 corresponds to the baseline slope of
0.040, illustrated in Figure IV (Panel B). Regressions include the predicted outcomes based on prior residents in the origin and
destination (for cohort c+k), and the interactions of the child’s age at the time of the move with the predicted outcomes in the
origin and destination based on prior residents (for cohort c+k). To be consistent with the baseline specifications, regressions
also include dummy indicators for true cohort and its interaction with the predicted outcomes in the origin location. The blue
series reports coefficients from a single regression that includes all variables in each of the regressions for k = −4, ..., 4 and
plots the coefficient on the interaction of the child’s age at the time of the move with the predicted outcome based on prior
residents in the destination location in cohort c+k. The figure presents the p-value for the test that γ = 0 in the simultaneous
specification (p < 0.001), along with the p-value for the test that all other γa of than the main coefficient, γ, are equal to
zero: γa = 0 for a 6= 0. This generates a p-value of 0.2513, indicating we cannot reject the hypothesis that the other cohort
predictions do not have any explanatory power for the child’s outcome conditional on the child’s own cohort predictions.



FIGURE VIII: Exposure Effect Estimates for College Attendance (18-23) and Marriage at Age 26

A. College Attendance (Age 18-23)

B. Marriage (Age 26)

Notes: This figure presents exposure effect estimates for college and marriage outcomes. In Panel A, we replicate the baseline
specification in equation (6) replacing the child’s outcomes with an indicator for college attendance at any age between 18-23.
We construct separate analogous predicted outcomes based on the prior residents in each CZ for each outcome. We define
college attendance as the existence of a 1098-T form (indicating college enrollment) when the child is 18-23 years old and
restrict the sample to observations we observe for years 18-23. Because we observe college attendance in years 1999-2012, we
obtain estimates for ages at move of 8-29. In Panel B, we replicate the baseline specification in equation (6) replacing the
child’s outcomes with an indicator for being married at age 26 using the child’s filing status at age 26.

8



FIGURE IX: Exposure Effect Estimates for Teen Outcomes

A. Teen Employment at Age 16 B. Teen Employment at Age 17

C. Teen Employment at Age 18 D. Teenage birth

Notes: This figure presents exposure effect estimates for teen outcomes. Panels A-C replicate the baseline specification in
Figure IV (Panel B), but replaces the child’s outcomes with an indicator for working at age 16-18 (defined as the existence
of a W-2 during the year in which the child turned age a). Panel D presents estimates from the baseline specification using
teen birth as the outcome. We define teenage birth as having a birth in the calendar year prior to turning age 20 using birth
certificate records from social security administration records, and estimate the model separately for males and females.
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ONLINE APPENDIX FIGURE I

Map of Boston CZ

Notes: This figure presents a county map of the Boston commuting zone.



ONLINE APPENDIX FIGURE II

Exposure Effect Estimates at Age 24, 26, 28, and 30

Notes: This figure replicates our baseline specification in equation (6), shown in Figure IVb, using incomes measured at age
24, 26, 38, and 30. The figure reports the slopes from a regression of the bm coefficients on m for m ≤ 23, with standard errors
in parentheses.



ONLINE APPENDIX FIGURE III

Exposure Effect Estimates using Origin Variation

Notes: This figure presents estimates of bm in equation (5) that replaces the αqosm fixed effects in equation (5) with αqdsm

fixed effects that control for the destination, d, instead of the origin, o, so that the slope is identified from variation in the
origin exposure. As in Figure IVa, the figure reports the estimated slopes from a regression on the dots on the figure.



ONLINE APPENDIX FIGURE IV

Exposure Effect Estimates using Parental Move as an Instrument for Child Exposure

Notes: This figure presents estimates of the coefficients bm adjusted for the probability that the child follows the
parent to the destination. Formally, we construct the fraction of children who follow their parents when the parents
move when the child is m years old, φm, as the fraction of children who either (a) file a tax return in the destination,
(b) have a form W-2 mailing address in the destination location, or (c) attend a college (based on 1098-T filings
by institutions) in the destination location. The figure plots the series of bIVm = bm−δ

φm
+ δ, where δ = 0.125 is the

estimated selection effect shown in Figure IVa.



ONLINE APPENDIX FIGURE V

Movers’ Outcomes vs. Predicted Employment and Probability of Reaching top 10% in Destination

A. Probability of Reaching Top 10%

B. Employment

Notes: This figure presents binned scatter plots analogous to Figure III, but with the outcome being the event that the
child reaches the top 10% of the income distribution at age 24 (Panel A) and the event that the child is employed at age 24
(Panel B), controlling for the mean rank predictions. In Panel A, we construct the event that the child is in the top 10% of
the national (cohort-specific) income distribution. Using permanent parental residents in each CZ, we compute the fraction
of children in the top 10% of the national cohort-specific income distribution. The blue series presents a non-parametric
representation of the relationship between the event the child is in the top 10% and the predicted chance that the child is in
the top 10% based on the prior residents in the destination CZ, controlling for the predicted chance the child is in the top 10%
based on prior residents in the origin CZ and placebo controls for the predicted mean child rank in the origin and destination
locations. Analogous to the binned scatter plots above, we partial out these controls, bin the residuals for the regression of
the destination location into 20 equal bins, and plot the mean residual of the child outcome in each bin. For the red series,
we instead plot the placebo relationship between the child being in the top 10% and the predicted mean rank of the child in
the destination, controlling for the mean rank predictions in the origin and the top 10% predictions in both the origin and
destination. In Panel B, we define employed as filing a W-2 at some point during the age of 24. We then repeat the above
process replacing the event the child is in the top 10% with the event that the child is employed.



ONLINE APPENDIX FIGURE VI

Map of Difference in Gender Outcomes, ȳm
pcs − ȳf

pcs, Evaluated at the 25th Percentile of Parental
Income,

Notes: This figure presents estimates of the difference in male versus female outcomes of permanent residents, ȳmpcs − ȳfpcs by
CZ, c, for income at age 24. To estimate ȳmpcs and ȳfpcs, we estimate linear regressions of child rank on parent income
rank for each CZ on separate male and female samples, pooling cohorts 1980-1988.



ONLINE APPENDIX FIGURE VII

Movers’ Outcomes vs. Gender-Specific Predicted Outcomes in Destination

Notes: This figures presents binned scatter plots analogous to Figure III, but using gender-specific predicted outcomes based
on prior residents. The blue series provides a non-parametric representation of the relationship between the child’s own
gender place prediction and the child’s outcome; the red series provides a non-parametric representation of the relationship
between the other (placebo) gender place predictions for the child’s outcome, controlling for the own gender prediction. The
sample includes all children in 1-time moving households whose parents moved when the child was less than or equal to
13 years old. Child income is measured when the child is age 26. For the blue circle series, we regress the own gender
destination prediction for the child’s outcome on the other gender destination prediction, other gender origin prediction, and
own gender origin prediction. Similarly, we regress the child’s income rank on the other gender destination prediction, other
gender origin prediction, and own gender origin prediction. The figure then plots the relationship between the residuals from
these regressions with sample means added to center the graphs. We construct 20 equal sized bins of the residuals from the
destination regression and, in each bin, plot mean of the residuals from the child rank regression. For the red series, we repeat
this process but using the placebo (other) gender predictions. We regress the other gender destination prediction for the
child’s outcome on the own gender destination prediction, other gender origin prediction, and own gender origin prediction.
Similarly, we regress the child’s income rank on the own gender destination prediction, other gender origin prediction, and
own gender origin prediction. The red triangle series then plots the relationship between these residuals from these regressions
with sample means added to center the graphs.



ONLINE APPENDIX FIGURE VIII

County-Level Predicted Income Rank at Age 30 - Permanent Residents

A. For Children with Parent at the 25thPercentile)

B. For Children with Parent at the 75thPercentile

Notes: These figures present the estimated ȳpcs by CZ and County for p = 25 and p = 75.



Variable Mean Std. Dev. Median Sample Size
(1) (2) (3) (4)

Non-Movers
Parent Income 89,909 357,194 61,300 19,499,662
Child family income at 24 24,731 140,200 19,600 19,499,662
Child family income at 26 33,723 161,423 26,100 14,894,662
Child family income at 30 48,912 138,512 35,600 6,081,738
Child individual income at 24 20,331 139,697 17,200 19,499,662
College attendence (18-23) 0.70 0.46 1.00 17,602,702
College quality (18-23) 31,833 13,466 31,600 17,602,702
Teen Birth (13-19) 0.11 0.32 0.00 9,670,225
Teen employment at age 16 0.28 0.45 0.00 19,499,662

Number of movers
1 time 2,511,213
2 times 1,478,177
3 times 583,405
4+ times 544,489
Total 5,117,284

1 time -3 times Movers
Parent Income 89,526 372,354 53,500 4,572,795
Child family income at 24 23,431 57,448 18,100 4,572,795
Child family income at 26 31,535 98,091 23,700 3,424,020
Child family income at 30 46,116 106,599 32,300 1,364,025
Child individual income at 24 19,003 51,373 15,500 4,572,795
College attendence (18-23) 0.658 0.474 1.000 4,145,753
College quality (18-23) 30,439 13,212 30,000 4,145,753
Teen Birth (13-19) 0.130 0.337 0.000 2,266,897
Teen employment at age 16 0.280 0.449 0.000 4,572,795

One-time Movers
Parent Income 97,064 369,971 58,700 1,553,021
Child family income at 24 23,867 56,564 18,600 1,553,021
Child family income at 26 32,419 108,431 24,500 1,160,278
Child family income at 30 47,882 117,450 33,600 460,457
Child individual income at 24 19,462 48,452 16,000 1,553,021
College attendence (18-23) 0.692 0.462 1.000 1,409,007
College quality (18-23) 31,418 13,489 31,100 1,409,007
Teen Birth (13-19) 0.114 0.317 0.000 769,717
Teen employment at age 16 0.277 0.448 0.000 1,553,021

TABLE I
Summary Statistics for CZ Permanent Residents and Movers

Notes: The table presents summary statistics for the samples used in the CZ-level analyses. We split the summary statistics into
the permanent residents ("non-movers") whose parents do not move across CZs throughout our sample window (1996-2012)
and movers. Section II provides details on variable and sample definitions.
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(1) (2) (3) (4) (5) (6)
0.043 0.040 0.046 0.045

(0.002) (0.003) (0.003) (0.004)

0.022 0.004 0.021 0.000
(0.002) (0.003) (0.002) (0.003)

Num. of Obs. 1,553,021 1,553,021 1,553,021 1,553,021 1,553,021 1,553,021

TABLE III
Distributional Convergence

Child Rank in top 10% Child Employed

Notes: Table III presents estimates of the exposure time relationships for the outcome of being in the top 10% of the
cohort-specific income distribution at age 24 and being employed. We define employment as an indicator for filing a W-
2 at some point during the year in which the child is age 24. Analogous to these outcomes, we construct predicted
outcomes using permenent residents in each CZ. Column (1) presents the estimated exposure time slope using a top
10% indicator as the dependent variable and predicted outcomes based on permanent residents in the origin and
destination CZ. Column (2) continues to use the indicator of being in the top 10% as the dependent variable, but uses
the mean rank predictions from the baseline regressions as the origin and destination predictions. Column (3) combines
all variables in specifications (1) and (2). Column (4) presents the estimated exposure time slope using an indicator of
being employed as the dependent variable and predicted outcomes based on permanent residents in the origin and
destination CZ. Column (5) retains the employment indicator as the dependent variable but replaces the predicted
outcomes in the origin and destination with the mean rank predictions from the baseline regressions. Column (6)
combines all variables in specifications (4) and (5). 

Mean Rank Prediction 
(Placebo)

Distributional Prediction



(1) (2) (3) (4) (5) (6) (7)
0.038 0.031 0.031 0.027 0.0308

(0.002) (0.003) (0.006) (0.006) (0.007)

0.034 0.009 0.017 0.017 0.0116
(0.002) (0.003) (0.006) (0.006) (0.007)

Family Fixed Effects X X X X

Sample 2-Gender HH

Num. of Obs. 1,552,898 1,552,898 1,552,898 1,552,898 1,552,898 1,552,898 490964

TABLE IV
Gender Placebos

Notes: Table presents estimates of the exposure time relationships using gender-specific predictions based on prior residents. The
outcome is child rank when the child is 24 years old. Column (1) presents estimates for the baseline specification replacing the
predicted outcomes based on prior residents in the origin and destination with gender-specific predictions. Column (2) replaces own-
gender predicted outcomes with predicted outcomes in the origin and destination based on the other gender. Column (3) combines all
variables in the specification in (1) and (2). Columns (4)-(6) repeat the specifications in (1)-(3) with the addition of family fixed effects.
Column (7) repeats the specification in (6) but restricts to households with at least two children and at least one of each gender. 

No Family Fixed Effects

Full Sample Full Sample

Family Fixed Effects

Other Gender 
Prediction (Placebo)

Own Gender Prediction
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Above 
Median 
Income

Below 
Median 
Income

Positive 
Moves

Negative 
Moves

(1) (2) (3) (4) (5)
Exposure Slope 0.040 0.047 0.031 0.030 0.040

(0.002) (0.003) (0.003) (0.004) (0.004)

Num of Obs. 1,553,021 803,189 749,832 783,936 769,085

Parental Income

Notes: This table presents estimates of the heterogeneity in the baseline exposure time estimates
(Column (1) of Table II) for various subsamples. Column (1) reports the baseline coefficient. Column (2)
(Column (3)) restricts to moves by parents with above (below) median income (median defined as parent
rank = 0.5; note there are more observations of 1x movers with parent rank > 0.5, reflecting the fact that
the likelihood of moving is increasing in parental income). Column (4) (Column (5)) restricts to moves in
which the predicted outcomes based on prior residents in the destination are higher (lower) than in the
origin.

Appendix Table II
Heterogeneity in Exposure Effects

Moves

Baseline



(1) (2)
1st Destination 0.040

(0.001)
2nd Destination 0.037

(0.004)
3rd Destination 0.031

(0.006)
Constrained Specification 0.039

(0.001)

Num of Obs. 4,374,418 4,374,418

Appendix Table III
Multiple Moves

Separate 
Coeffs

Constrained 
Coeff

Notes: This table reports results using our expanded sample of 1-
3 time movers. Column (1) presents estimates for the exposure 
effect of the 1st, 2nd, and 3rd destination by adding exposure 
effect coefficients corresponding to each move, and using the 
sample of 1-3-time movers, as opposed to the 1-time movers 
sample. Column (2) presents the estimates of the exposure effect 
restricting the coefficient to be the same across each move.



(1) (2) (3) (4) (5) (6) (7)
Exposure Slope 0.035 0.033 0.022 0.032 0.027 0.029 0.024

(0.003) (0.011) (0.003) (0.004) (0.003) (0.025) (0.002)

Num of Obs. 654,491 654,491 617,502 457,140 2,900,311 2,900,311 7,311,431

Notes: Appendix Table IV reports exposure effect coefficients in equation (6), analogous to those presented in Table II,
using county-level predictions for the sample of 1-time county movers. Column (1) presents the baseline specification
analogous to Column (1) of Table II, replacing CZ-level predictions with county-level predictions based on prior residents.
We restrict the sample to moves of at least 100 miles and require the county-level population to be at least 250,000 in
the origin and destination county. Column (2) adds family fixed effects to the specification in Column (1). Columns (3)-(7)
drop the distance restriction and consider the set of within-CZ county moves (between counties with populations of at
least 250,000). Column (3) replicates the baseline specification. Column (4) replicates the baseline specification using
income at age 26 as the outcome, analogous to the outcomes considered in Section V. Column (5) presents the pooled
estimate that stacks all outcomes for ages 24 and above (multiple observations per person). Column (6) adds family-by-
age of outcome fixed effects to the specification in Column (5). Column (7) expands the sample in Column (5) to include
moves between all CZs with populations above 10,000).

Appendix Table IV
County Exposure Effect Estimates

Specification:

Baseline Spec. Within CZ Moves

Baseline Family FE Age 24 Age 26 Small CtysFamily FEAge ≥ 24



Variable Mean Std. Dev. Median Sample Size
(1) (2) (3) (4)

Non-Movers
Parent Income 81,932 320,026 54,800 37,689,238
Child family income at 24 25,066 136,016 19,900 19,956,828
Child family income at 26 34,091 157,537 26,600 15,364,222
Child family income at 30 48,941 133,264 36,200 6,355,414
Child individual income at 24 20,686 202,833 17,300 20,069,124
College attendence (18-23) 0.703 0.457 1.000 20,418,691
College quality (18-23) 31,608 13,207 31,400 20,418,691
Teen Birth (13-19) 0.107 0.309 0.000 14,503,588
Teen employment at age 16 0.276 0.447 0.000 37,464,779

One-time Movers Across CZ Sample
Parent Income 94,738 400,685 55,100 1,498,319
Child family income at 24 23,815 72,306 18,200 654,491
Child family income at 26 32,532 139,563 24,300 483,407
Child family income at 30 48,834 110,619 33,500 188,801
Child individual income at 24 20,247 61,185 16,000 654,491
College attendence (18-23) 0.717 0.451 1.000 690,207
College quality (18-23) 32,171 14,001 31,900 690,207
Teen Birth (13-19) 0.103 0.304 0.000 524,194
Teen employment at age 16 0.233 0.423 0.000 1,498,319

One-time Movers Within CZ Sample
Parent Income 84,850 356,758 48,900 1,425,096
Child family income at 24 24,006 68,559 18,300 617,502
Child family income at 26 32,993 75,520 24,500 457,140
Child family income at 30 49,974 108,248 33,500 179,856
Child individual income at 24 20,844 56,639 16,500 617,502
College attendence (18-23) 0.719 0.450 1.000 650,045
College quality (18-23) 32,883 14,086 33,200 650,045
Teen Birth (13-19) 0.095 0.293 0.000 496,122
Teen employment at age 16 0.245 0.430 0.000 1,425,096

Appendix Table V
Summary Statistics for County Permanent Residents and Movers

Notes: The table presents summary statistics for county movers sample discussed in Online Appendix A.
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