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Abstract.  Analyses of polities to reduce gasoline consumption have focused on two effects, a composi-
tional effect on the fuel economy of the automotive fleet and a utilization effect on how much people 
drive. However, the literature has missed a third effect: a matching effect, in which high-utilization house-
holds are matched to fuel-efficient vehicles in equilibrium. We show that higher gas prices should lead to 
stronger assortative matching. Empirical estimates using US micro-level data are consistent with this hy-
pothesis. We find the effect of a gas tax through the matching effect is larger than the compositional ef-
fect, with a $1 tax saving 1.7% of gas consumption. 

 

I.  Introduction 

Both to reduce dependency on petroleum imports and to reduce air pollution, many countries 

seek to reduce gasoline consumption from passenger vehicles.  In the United States, passenger 

vehicles account for 16% of all greenhouse gas emissions (US EPA 2015 p. 2-28).  Additionally, 

they are a major source of conventional pollutants such as carbon monoxide, ozone, and fine par-

ticulates.  These pollutants can cause such health effects as headache, respiratory disease, heart 

disease and premature mortality.  They may be particularly potent in such vulnerable populations 

as the elderly and young children.  Indeed, studies have shown that in-utero and childhood expo-

sure to these gasses have the potential to affect various health outcomes in the short- and the 

long-run (Currie et al. 2014). 
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 Policies to reduce gasoline consumption generally fall into two main categories:  price-

based policies and performance-based policies.  Price-based policies such as a gasoline tax work 

by making driving more expensive.  Among OECD countries, the US has the lowest gasoline 

taxes save Mexico, at $0.49 per gallon (average state plus federal tax) as of 2011, compared to 

$4.10 in the UK and $3.95 in Germany (US DOE 2011).  Performance-based policies mandate 

minimum average fuel economy standards for the fleet.  Examples include the US Corporate Av-

erage Fuel Economy (CAFE) standards and similar policies in Europe, Japan, and elsewhere. 

 Traditionally, the literature assessing the effectiveness of such policies has decomposed 

their effects into two channels:  a compositional effect, relating to the average fuel efficiency of 

the fleet, and a utilization effect, relating to how much people drive (e.g. Bento et al. 2009; Gold-

berg 1998; Li, Timmins, and von Haefen 2009; Puller and Greening 1999).  By increasing the 

cost of driving, gas taxes create an incentive to drive less as well as to obtain a more fuel effi-

cient car.  Thus, they operate through both channels.  Performance standards like CAFE mandate 

more fuel efficient cars (on average), but do not create incentives to drive less—indeed, by put-

ting people in more fuel efficient cars they reduce the cost of driving and increase utilization (the 

so-called "rebound effect").  Bento et al. (2009) and Gillingham (2012) measure both the compo-

sitional and the utilization effects using structural models in which household simultaneously 

choose an automobile and their level of driving in a consistent framework.  They find that the 

utilization effect is bigger than the compositional effect. 

 In this paper, we show that this large literature has overlooked a third effect, a sorting or 

matching effect.  In theory, even if the compositional and utilization effects are held to zero—

that is, even if the fleet remains exactly the same and each individual drives exactly the same 

number of miles annually—an increase in gasoline prices could still reduce gasoline consump-

tion if it leads to stronger assortative matching between high-utilization households and the fuel 

efficiency of the cars they drive.  Intuitively, if a household does little driving, the fuel efficiency 

of its car has little impact on overall consumption (at the extreme, a car parked in the garage 

burns no gas regardless of its fuel efficiency), whereas if a household drives great distances the 

fuel efficiency of its car matters a good deal.  Conversely, if a car is very fuel efficient, its utili-

zation has little impact on overall consumption (at the extreme, the utilization of a bicycle would 

not matter), whereas if a car is fuel inefficient its utilization matters a good deal.   
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To our knowledge, this matching effect has been completely neglected in the literature.  

Yet it is not trivial.  To gauge the potential importance of the matching effect, if household de-

mand for VMT and vehicle fuel efficiency were perfectly matched in 2009, gasoline consump-

tion would have been 15% lower, even with no change in the composition of the fleet and no 

change in individuals' utilization. 

 In addition to pointing out the importance of this effect, in this paper we show that, a pri-

ori, there are good reasons to believe that higher gasoline prices increase the degree of matching.  

The intuition is as follows.  Increases in gasoline prices increase demand for fuel-efficient cars 

relative to inefficient ones, because the monetary savings of owning an efficient vehicle increase.  

But there is exogenous heterogeneity among households in their utilization.  When gasoline 

prices rise, the savings of owning an efficient vehicle increase more for higher-utilization house-

holds than for low-utilization households.  Consequently, high-utilization households are now 

comparatively more likely to outbid low-utilization households for fuel-efficient cars (ceteris pa-

ribus).  Thus, when gas prices increase, high-utilization households tend to be allocated more 

fuel-efficient cars than before, while low-utilization households are allocated less efficient cars.  

Accordingly, in equilibrium, after an increase in the gasoline prices, there should be a stronger 

assortative matching from households, based on the amount of driving they are likely to do, to 

the fuel economy of the cars they own. 

 Finally, we test this hypothesis empirically.  Using data from the US National Highway 

Transportation Survey, we adopt a difference-in-differences framework, comparing the way (ex-

ogenously) high-utilization households change the fuel economy of their car when gas prices in-

crease relative to the way low-utilization households do.  We find a statistically significant short-

run matching effect from gas prices that is robust to a variety of identification strategies, includ-

ing ordinary least squares (OLS) and different ways of instrumenting for utilization.  Specifi-

cally, we find that when gasoline prices increase by $1, a household responds on average by 

driving a vehicle that gives 0.01 to 0.03 more miles per gallon for every 1,000 miles it drives in 

the short run.  Using variation only in gasoline taxes, we find an effect of 0.03 to 0.06 miles per 

gallon for every 1,000 miles.  This matching affect results in an additional savings of about 1.7% 

of fuel consumption, or 2.1 billion gallons and 92 million tonnes of carbon dioxide (CO2) annu-

ally.  These effects are likely to be bigger in the long run. 
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 In so far as it focuses on households' choices for fuel efficiency at the extensive margin 

and how such choices are affected by gasoline prices, our paper relates to the large literature on 

automobile demand and the compositional effect, including Allcot and Wozny (2014); Austin 

and Dinan (2005); Bento et al. (2009); Busse, Knittel, and Zettelmeyer (2013); Feng, Fullerton, 

and Gan (2013); Gillingham (2012); Goldberg (1998); Jacobsen (2013); Klier and Linn (2010); 

Li, Timmins, and von Haefen (2009); Li, Linn, and Muehlegger 2014); Sallee, West, and Fan 

(2016); and Puller and Greening (1999.  Overall, this literature has found that an increase in gas-

oline prices increases the demand for more fuel efficient cars, which in equilibrium modestly 

nudges the composition of the automobile fleet toward fuel efficiency.  In particular, new cars 

entering the fleet become more fuel efficient while older inefficient cars are scrapped more rap-

idly.  Interestingly, Allcot and Wozny (2014); Busse, Knittel, and Zettelmeyer (2013); and Sal-

lee, West, and Fan (2016) find that, in between, the shift in demand manifests in price rather than 

quantity effects, with the prices of fuel-efficient used cars rising relative to inefficient cars when 

gas prices rise.  Our work can be viewed as exploring the heterogeneity in these demand effects 

at the extensive margin, showing that they are larger for (exogenously) higher-utilization house-

holds than lower-utilization households.  In equilibrium, this gives rise to more assortative 

matching, which in turn becomes a third channel through which gas prices affect gasoline con-

sumption. 

 The rest of the paper is structured as follows: Section II explains the matching effect us-

ing a theoretical model; Section III introduces the basic empirical approach and describes the 

data; Section IV presents the results; Section V briefly discusses the implications; and Section VI 

concludes. 

II.  Theoretical Framework 

A.  Conceptual Basics 

Consider an economy with a set ࣝ of cars indexed by c and a set ℐ of individuals indexed by i.  

These sets have the same measure, which we normalize to one, and in equilibrium there is a bi-

jective mapping of cars to individuals.  Individual i's fuel use is equal to its utilization, measured 

in vehicle miles travelled (VMT), times the inverse of the fuel efficiency of its car, or gallons per 

mile (GPM): 
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ܮܧܷܨ  = ܯܸ ܶ × (), (1)ܯܲܩ

where c(i) represents the car assigned to individual i. 

 From this simple tautology, it would seem that changes in fuel use can be decomposed 

into two effects, a change in VMT (utilization) and a change in fuel economy (GPM).  While this 

is true at the individual level, to extend it to the over-all economy is to commit the fallacy of 

composition.  Overall fuel usage is the sum over all individuals of these products: 

ܮܧܷܨ ܮܣܱܶܶ  = න ܯܸ ܶ × ()݂(݅)݀݅ℐܯܲܩ , (2)

where f( ) is the density.  This sum of products can be rewritten as  

= ܮܧܷܨ ܮܣܱܶܶ  തതതതതതܶܯܸ × തതതതതതതܯܲܩ + COV(ܸܶܯ, (3) .(ܯܲܩ

Thus, changes in total fuel consumption can be decomposed into three effects:  the utilization ef-

fect measured in changes in average VMT, the compositional effect measured in changes in the 

average GPM of the fleet, and the matching effect which represents changes in the covariance 

between a households VMT and the GPM of the car assigned to it in equilibrium.  Though seem-

ingly obvious when written this way, to our knowledge the existence of this third effect has been 

overlooked in the literature. 

 Our hypothesis is that when gasoline prices increase, high-GPM cars (i.e. fuel-inefficient 

ones) will tend more strongly to be assigned to low-VMT households.  Thus, the covariance be-

tween VMT and GPM will decrease and total fuel usage will fall, even holding constant average 

VMT and average GPM (indeed, even holding constant every individual's VMT and every vehi-

cle in the fleet). 

 The argument for this hypothesis comprises two basic steps.  First, when gasoline prices 

increase, the demand for high-GPM cars falls relative to the demand for low-GPM cars, and—

more to our point—this shift is greater for high-VMT households.  Second, in equilibrium, this 

shift in demands leads to a more systematic assignment of high-GPM cars to low-VMT house-

holds.  Because it is a simpler point to make, we begin with the second point first. 
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B.  The Matching Effect 

 A partial equilibrium model is sufficient to explain how this shift in relative demands 

leads to the matching effect.  For simplicity, let there be two types of households that differ only 

in terms of what Gillingham (2012) calls their "utilization type," or their demand for VMT for 

reasons exogenous to the choice of car:  thus, there are high-utilization households (ܪ) and low-

utilization households (ܮ).  Let there be two car types:  fuel-inefficient (ܫ) and fuel-efficient (ܧ).  

In Figure 1 Panel A shows the demand for high-GPM cars relative to low-GPM cars.  Heteroge-

neity in the relative demand for such cars is reflected by ܦு and ܦ, which indicate the relative 

marginal willingness to pay (WTP) of each respective household type.  This WTP could be posi-

tive or negative, depending on which car type is preferred.  Additionally, we take no stand on 

whether the high-VMT types or the low-VMT types have a higher relative WTP for such cars:  

high-VMT types may want them more than low-VMT types for their comfort when driving, or 

want them less than low-VMT types because of their operating cost.  As an illustration, Figure 1 

shows an example of a baseline scenario where ܦு = - and the relܦ .  The market demand isܦ

ative price is ܲ.  The supply elasticity plays no role in the argument; in this example, the market 

supply curve is perfectly inelastic, as might be consistent with the market for used cars too young 

to be scrapped. 

 Panel A depicts a situation where gasoline prices increase, so the relative WTP for high-

GPM vehicles falls.  The new market demand is ܦଵ and the price falls to ଵܲ in the vehicle mar-

ket.  This is consistent with the findings of Allcott and Wozny (2014); Busse, Knittel, and Zet-

telmeyer; and Sallee, West, and Fan (2016).  Our insights hinge on the fact that the relative WTP 

for a high-GPM automobile will particularly decrease for the high-utilization types, as higher 

gasoline prices translate into greater costs for them.  This is shown in this figure where ܦଵு is 

now lower than ܦଵ.  As a consequence, in equilibrium, the low-VMT types now have a greater 

share of the high-GPM vehicles than before ( ା versus ଵଶ).  By the same logic, as shown in 

Panel B, the high-VMT types now have a greater proportion of low-GPM vehicles relative to the 

baseline case. 

Consequently, the correlation between VMT and fuel inefficiency is now lower, so that 

the covariance in Equation (3) is now lower with higher gas prices.  (Equivalent, the correlation 

between VMT and fuel economy is higher.)  In the empirical portion of this paper, we test this 
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hypothesis directly by looking at the matching of car types to utilization types under variation in 

gasoline prices.   

Before getting to that empirical work, however, we must complete the argument by 

showing that the demand for fuel inefficient cars does shift back more among high utilization 

types than low utilization types when gas prices rise. 

C.  Relative Shifts in Demand 

 We begin by generalizing our two-car, two-household model to continuums of types.  In 

particular, let ࣝ be a simply ordered set of cars such that for any two elements c, c' ∈ ࣝ, c' > c ↔ 

GPMc' > GPMc.  In differentiating cars only by their GPM, we do not imply that mileage is the 

only relevant factor.  To the contrary, we allow for the possibility that as GPM increases, the car 

becomes more desirable in other ways such as increased horsepower and/or comfort. 

 Additionally, we assume that individuals can be ranked according to their utilization type.  

In particular, let ߨ(݅, ܿ,  be individual i's inverse demand curve, or marginal WTP, for (ܶܯܸ

VMT conditional on being in car c.  We make the following assumption about the ordering of ℐ: 

Assumption A1.  For any two elements i, i' ∈ ℐ, if i' > i then ߨ(݅′, ܿ, ,݅)ߨ < (ܶܯܸ ܿ,  .(ܶܯܸ

That is, as we go through the index i, the demand curves for VMT, conditional on any car c, shift 

up.  Note Assumption A1 does not necessarily imply that VMTi' > VMTi.  For one thing, i and i' 

may face different gas prices.  Moreover, they may choose different cars, which also affects their 

VMT choice.  Assumption A1 only implies that, if they were in the same arbitrary car and faced 

the same prices, i' would choose higher VMT than i. 

With these preliminaries, consider now the WTP of some household i for an arbitrary 

car c, relative to having no car at all, which is a function of gasoline prices pG: 

 ܹܶܲ(ܿ, ݅, (ீ = ݂(ܿ, ݅) + න ,݅)ߨ ܿ, ெ்∗(,,ಸ)ܶܯܸ݀(ܶܯܸ
− ,݅)∗ܶܯܸ ܿ, (4) .ீ(ܿ)ܯܲܩ(ீ

The individual's WTP for car c comprises three terms.  The first term f( ) represents a value unre-

lated to actually driving the car.  It represents an option value of having it in the garage, a collec-
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tor's value, or some similar utility value.  The remaining two terms represent the consumer sur-

plus from driving the car.  Integrating under ߨ( ) up to the optimal level of driving given gasoline 

prices, ܸܶܯ∗(݅, ܿ,  gives the total (gross) value of driving car c.  From this, we subtract the ,(ீ

cost of driving car c when gasoline prices are ீ, which is ܸܶܯ∗(݅, ܿ,  In   .ீ(ܿ)ܯܲܩ(ீ

equilibrium, an individual buys the car with the highest consumer surplus, after subtracting out 

the price of purchasing the car. 

 Our model depends on the triple difference among car types, utilization types, and gaso-

line prices—that is, on how WTP differs by car type, how that difference differs by utilization 

type, and how that difference-in-difference differs with gasoline prices.  For simplicity, assume 

that all the functions in Equation (4) are twice differentiable in all their arguments.1  In Appen-

dix A, we derive the following relationship on the third partial cross derivative of WTP: 

߲ଷܹܶܲ(݅, ܿ, ீ߲߲߲ܿ݅(ீ = 

− ,݅)∗ܶܯܸ߲ ܿ, ߲݅(ீ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(݅, ܿ, ீ߲߲ܿ(ீ ,݅)ߨ߲ ܿ, +߲݅(∗ܶܯܸ ,݅)∗ܶܯܸ߲ ܿ, ீ߲(ீ ߲ଶߨ(݅, ܿ, ߲߲ܿ݅(∗ܶܯܸ − ߲ଶܸܶܯ∗(݅, ܿ, ߲߲ܿ݅(ீ +ܯܲܩ ߲ଶܸܶܯ∗(݅, ܿ, ீ߲߲݅(ீ ߲ߨ(݅, ܿ, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ .
 (5)

Note that here we are taking the car type c as exogenous, so there are no effects of pG or utiliza-

tion type on the optimal choice of c; instead, in taking the partial derivative with respect to c, we 

consider an exogenous change of car type.   

Conditional on this car, the individual does optimally choose VMT.  At equilibrium, the 

individual sets marginal WTP for an additional mile equal to the cost, so ߨ(݅, ܿ, ீ(ܿ)ܯܲܩ = (∗ܶܯܸ .  As we take the derivatives of the two sides of this expression with respect to c, we 

get two effects.  The marginal WTP for an addition mile increases, ߲ߨ ߲ܿ⁄  > 0, through a utility 

or comfort effect, as driving becomes more comfortable and/or more fun.  But at the same time, 

the actual price paid for an additional mile increases through the GPM effect, that is ீ(ܿ)′ܯܲܩ 

                                                            
1 This assumption is not necessary but simplifies the presentation. 
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> 0.  Thus, what we call the overall car effect on VMT, i.e. ߲ܸܶܯ∗ ߲ܿ⁄ , cannot be signed a pri-

ori.  However, it is the opposite sign as the "rebound effect" in the literature, which is generally 

estimated to be positive (Gillingham et al. 2013, Linn 2016, Small and van Dender 2007, West et 

al. 2013).  A crucial question when evaluating Equation (5) turns out to be the difference in the 

car effect on VMT between different values of i.  Consider the following Assumption: 

Assumption A2.  If i' > i and c' > c, then ሾߨ(݅′, ܿ′, (ீ − ,ᇱ݅)ߨ ܿ, ሿ(ீ − ሾߨ(݅, ܿ′, (ீ ,݅)ߨ− ܿ, ሿ(ீ  ≥  0.   

Or, if ߨ is twice differentiable, then ߲ଶߨ ߲߲݅ܿ⁄  ≥ 0.  Because the effect on operating costs is the 

same at a given car for all household types, A2 implies that the car effect on VMT is non-de-

creasing in i, ߲ଶܸܶܯ ߲߲݅ܿ⁄  ≥ 0.  Thus, as i exogenously moves from c to c' it might decrease its 

VMT, whereas a higher utilization type i' will decrease VMT less or perhaps increase it.  As-

sumption A2 is stronger than A1 but is consistent with the idea that demand for driving is in-

creasing in i.  For example, Assumption A2 is consistent with inverse demand curves for VMT 

that are proportional in c and i. 

 Assumption A2 is sufficient for the following proposition: 

Proposition:  డయௐ்൫,,ಸ൯డడడಸ < 0 so long as either (i) the car effect on VMT is sufficiently small or 

(ii) it is the same sign as ߲ଶܸܶܯ∗ ⁄ீ߲߲݅ . 

A proof of the proposition can proceed by inspecting each line on the right-hand side of 

Equation (5).  The first line is negative, since by definition of our ordered sets, డெ்∗డ  > 0 and ௗீௌ  > 0.  This line, the lowest-order term in Equation (5), represents the basic intuition for why 

the triple difference is negative.  As gas prices increase, operating high-GPM cars becomes more 

expensive, but this is especially true for high-utilization types. 

 Completing the proposition requires considering the higher-order terms in Equation (5).  

The second line also is negative.  ߲ߨ ߲݅⁄  is positive by Assumption A1.  ߲ଶܸܶܯ ⁄ீ߲߲ܿ  is nega-

tive because, by the law of demand, VMT is decreasing in the effective price of driving, which is ீ(ܿ)ܯܲܩ , and the effect of a given change in gasoline prices on the effective price of driving is 

greater for higher-GPM vehicles. 

The third line is non-positive by Assumption A2.  In the first term, Assumption A2 states 
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that ߲ଶߨ ߲߲݅ܿ⁄  is non-negative, and it is multiplied by ߲ܸܶܯ∗ ⁄ீ߲  which is negative by the law 

of demand.  In the second term, ߲ଶܸܶܯ∗ ߲߲݅ܿ⁄  also is non-negative by Assumption A2 and of 

course GPM is positive.  This third line is the only place we use Assumption A2.  Notice that it is 

actually a sufficient—not necessary—condition:  It would suffice for ߲ଶܸܶܯ∗ ߲߲ܿ݅⁄  to be "not 

too negative" rather than non-negative. 

 This then leaves the last line of Equation (5) as the only term that cannot be signed defin-

itively a priori.  The Proposition requires either that this line is small or negative.  The first term 

in the product, ߲ଶܸܶܯ∗ ⁄ீ߲߲݅ , cannot be signed definitively.  ߲ܸܶܯ∗ ߲݅⁄  is positive by As-

sumption A1, but whether VMT becomes more or less responsive to changes in gasoline prices 

with utilization type is another question.  However, if VMT becomes less price elastic with in-

creasing utilization types, as seems plausible, then this term is positive.  The term in square 

brackets is the same sign as the car effect on VMT, which is the negative of the rebound effect.  ߲ߨ ߲ܿ⁄  represents the comfort effect while ݀ܯܲܩ(ܿ) ⁄ܥ݀  represents the GPM effect.  The litera-

ture on the rebound effect suggests this entire term is probably small and certainly negative (Gil-

lingham et al. 2013, Linn 2016, Small and van Dender 2007, West et al. 2013).  This logic sug-

gests the terms in the last line are unlikely to reverse the other effects present in Equation (5).  

For it to do so, it would have to be the case that as people are exogenously placed in larger cars, 

they actually want to increase their VMT because of the comfort effect, but only high-utilization 

types are willing to continue purchasing that VMT as gasoline prices increase, making them out-

bid the low types for the car.  This seems unlikely to be the case and even more unlikely to over-

come the lower order effects.   

 Under Assumption A2 (and the caveats in the previous paragraph), the Proposition states 

that as gasoline prices increase, the demand for high-GPM cars falls relative to the demand for 

low-GPM cars more so for high-utilization types than for low-utilization types.  This is the key 

result of this sub-section.  Given the equilibrium results in the previous sub-section, the implica-

tion is that as gasoline prices increase, the correlation between utilization and GPM decreases (or 

increases between utilization and MPG). 
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III.  Empirical Strategy and Data 

A.  Empirical Strategy 

Our basic strategy for testing our hypothesis is to run the following difference-in-differences re-

gression.  The model compares the fuel economy of cars matched to high-utilization households 

to those matched to low-utilization households among period-places with comparatively high 

and low gasoline prices.  Our preferred specification is: 

௧ܩܲܯ  = ߙ + ௧௦݁ܿ݅ݎܲߚ + ܯܸߛ ܶ௧ + ௧௦݁ܿ݅ݎܲൣߠ × ܯܸ ܶ௧൧ +ܠ௧′ࢾ + ࣁ + ௧ߣ +  ,௧ߝ
(6)

where ܩܲܯ௧ = 1/ܯܲܩ௧ is miles per gallon of vehicle ܿ owned by household ݅ in metro 

area ݉ in year ݁ܿ݅ݎܲ ,ݐ௧௦ is the per gallon price of gasoline in metro ݉ in year ܯܸ ,ݐ ܶ௧ is 

VMT of vehicle ܿ owned by household ݅, ܠ௧ are demographic variables of household ݅, ࣁ are 

MSA dummies, ߣ௧ is a year dummy and ߝ௧ is an idiosyncratic error term.  The matching effect 

of higher gasoline prices is represented by ߠ and our hypothesis is that ߠ > 0.  In Equation (6), ߣ௧ controls for time-varying unobservables and ߟ controls for time-invariant city-specific unob-

servables. 

Four points about our empirical strategy deserve further comment.  First, because we in-

clude year and city dummies, and because (as discussed below) we use contemporaneous gas 

prices, we view our estimates as short run effects.  Given the transaction costs involved in chang-

ing cars, we would expect the effects to be higher in the long run. 

Second, we assume gasoline prices are exogenous.  In doing so, it is important to empha-

size that we are using micro-level data with city and year dummies.  Thus, conditional on city 

and year, our assumption is that gas prices are unaffected by individuals' choices of fuel econ-

omy.  Thus, a year's deviation in tastes for MPG from the city's long-run average (insofar as they 

differ from national annual deviations) are uncorrelated with city-year gas prices.  In an alterna-

tive specification, we use city-month dummies, reducing the error in Equation (6) to the individ-

ual-level only. 

Third, in our basic approach using OLS, we also assume that VMT is exogenous to the 
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fuel efficiency of the car.  However, as discussed above, VMT and MPG likely are chosen simul-

taneously.  If the MPG effect outweighs the comfort effect, households with more fuel efficient 

vehicles drive more, which is consistent with the rebound effect.  With the exception of Linn 

(2016), recent evidence has suggested that this effect is fairly small (Gillingham et al. (2013), 

Small and van Dender (2007), West et al. 2013).  If so, this endogeneity problem is probably 

small enough to ignore and OLS will be unbiased.  Accordingly, we first use OLS to estimate 

Equation (6).  However, in the following subsection we also consider a variety of instrumental 

variables (IV) strategies, including interactions of household characteristics with gasoline prices 

and nonlinearities inherent in the structural model of Bento et al. (2013).  We generally find our 

results are robust to these approaches. 

Fourth, in the data (described below) VMT is observed on the car, not the individual.  

Thus, ܸܯ ܶ௧ is the VMT of the car, not an individual or household.  In households with only 

one car, these would be observationally equivalent.  In households with multiple cars, this raises 

the question of how cars are assigned to individuals.  In our base model, we effectively treat the 

data as if multi-car households not only have an exogenous total VMT, but an exogenous split of 

VMT into baskets to be assigned to cars.  For example, if a household has two cars with 10,000 

and 5,000 VMT respectively, we treat the household as first exogenously splitting its total VMT 

into one basket of 10,000 miles and one of 5,000.  However, we treat the assignment of cars to 

these VMT baskets as an endogenous choice.  Thus, whether the 10,000 mile basket goes to one 

car and the 5,000 to the other or vice versa is treated in our approach as a choice which can 

change under differing economic conditions.  This approach allows for some within-household 

matching insofar as a high-VMT individual in a household can be more likely to be assigned the 

high-MPG car in the household as gasoline prices increase.  However, it is conservative in that it 

does not allow VMT to otherwise be shifted to the high-MPG car, as it forces the split to stay 

constant (10,000 and 5,000 in this example).  As an alternative, we also consider each household, 

rather than each car, as a unit, using only one car per household or alternatively per-car VMT 

and average fuel economy of all cars in the household.  This approach is even more conservative 

as it removes all within-household matching. 

B.  Data 

Our data can be divided into three categories:  (i) a confidential version of the 2001 and the 2009 
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National Household Travel Survey (NHTS), which surveys a random sample of US households 

about the cars they own and their VMT for each car; (ii) quarterly gasoline prices from 2001-2 

and 2008-9 at the city level, purchased from the American Chamber of Commerce's ACCRA 

Cost of Living Index (COLI) database; and (iii) data on the fuel economy of automobiles by 

make and model, from the U.S. Department of Energy.  These data were merged to produce a 

distinct data-set which provides information on driving habits, household characteristics, average 

gasoline prices paid and the fuel economy of vehicles owned by these households. 

 The 2001 and 2009 NHTS samples consists of 69,815 households and 150,147 house-

holds respectively, from both urban and rural areas in the US.  The 2001 NHTS was conducted 

from March 2001 through June 2002 and the 2009 NHTS was conducted between March 2008 

and May 2009.  Both data sets contain information on household driving patterns, including 

VMT and the type of car(s) owned by the household (make, model, vintage).2  Furthermore, the 

survey includes demographic data about the household (income, number of household members, 

age distribution, race, work status).  The confidential NHTS data to which we had access pro-

vides more specific geographic data on each household than the public version, down to its zip 

code.  After cleaning the data, we are left with 23,739 households in the 2001 sample and 

137,610 households in the 2009 sample.3 

 To each household, we match quarterly gasoline prices in the household's metropolitan 

statistical area (MSA) at the time of the NHTS survey.  Using contemporary gasoline prices, ra-

                                                            
2 NHTS collected VMT data through (i) direct questioning; (ii) estimations based on odometer readings 
(only for 2001 NHTS); and (iii) estimations based on travel diaries.  NHTS data reports two different 
measures of VMT, "reported VMT" and "bestmiles."  Reported VMT is based only on the direct survey 
questions.  Bestmiles is based on regression techniques combining information from all three reporting 
techniques.  Since, bestmiles requires more information, this variables had more missing values compared 
to VMT.  Following Bento et al. (2009), we used reported VMT in our central estimates, using bestmiles 
wherever reported VMT is missing.  As sensitivity analyses, we also considered using only reported VMT 
or only bestmiles.  Our results are qualitatively similar when using those data instead. 
3 Both reported VMT and besmiles ranged from 0 to 200,000 miles.  However, following Bento et al. 
(2009), mileage below 100 and above 60,000 indicate possible coding errors and so were dropped.  This 
resulted in 7,139 (15%) and 18,922 (7%) observations dropped from the 2001 and 2009 NHTS data, re-
spectively.  Additionally, vehicles that were more than 24 years old were not identified in the 2009 NHTS 
sample and so were dropped from the 2001 sample for consistency.  Finally, diesel and electric vehicles 
were dropped.  The results with these assumptions relaxed are similar to the main results and are available 
upon request. 
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ther than longer-term averages, is appropriate if households assume gasoline prices take a ran-

dom walk, so that current prices represent the best long-term forecast.  In previous work, Bento 

et al. (2009), Berry et al. (1995), Gillingham (2012), and Goldberg (1995) all assume that prices 

take a random walk and that only current prices matter.  David and Hamilton (2004) and Geman 

(2007) have shown that gasoline prices do actually follow a random walk.  Li, Timmins, and von 

Haefen (2009) also find the lagged gasoline prices have little impact on purchasing decisions.  

Finally, Anderson et al. (2011) and Anderson, Kellogg, and Sallee (2013) provide empirical evi-

dence suggesting that on average expected real gasoline prices as reported in surveys are equal to 

current prices.  Accordingly, we match gasoline prices at the time of the survey.  Spatially, 

ACCRA provides gasoline prices for more than 300 MSAs.  Using the geographical indicators of 

the NHTS data, we matched these prices to each household in the NHTS data-sets, using the US 

Department of Housing and Urban Development (HUD) USPS ZIP Code Crosswalk Files.4  Gas-

oline prices are converted to 2009 dollars using the Consumer Price Index (CPI). 

 Finally, the fuel economy data was obtained from the Department of Energy's website 

www.fueleconomy.gov.  This website provides the fuel economy data by vehicle make, model 

and year and these variables were used to match the vehicle fuel economy with the NHTS data.5   

 Table 1 provides summary statistics of household responses in the NHTS.  The first col-

umn reports the descriptive statistics for the entire sample.  This is broken down by NHTS sur-

vey years in columns 2 and 3, respectively.  Column 4 compares columns 2 and 3 and reports the 

differences and standard errors in parentheses.  Table 1 shows that the average real gasoline price 

increased from $1.62 in 2001 to $3.14 in 2009 ($1.35 to $3.17 using nominal dollars).  Moreo-

ver, the heterogeneity in gasoline prices increased, with the standard deviation increasing from 

0.22 to 0.65.  One reason for this is major fluctuations in gasoline prices during the period 2008-

                                                            
4 For households in the NHTS outside these 300 metropolitan areas, we used NHTS-reported gasoline 
prices.  The NHTS prices are at a more aggregate geographic level, namely Petroleum Administration for 
Defense Districts (PADDs).  These districts are similar to Census regions in that each state is assigned to 
a given region, but the regions are drawn up in such a way as to maximize gasoline distribution.  ACCRA 
and NHTS gasoline prices are highly correlated.  We regressed ACCRA gasoline prices on NHTS gaso-
line prices and used predicted gasoline prices for those NHTS MSAs that could not be matched with 
ACCRA data. 
5 We use a combined MPG which is a weighted average based on the standard assumption (used by the 
US EPA and others) that the automobile was operated 55% under city driving conditions and 45% under 
highway conditions. 
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2009.  Gasoline prices continued to increase during the first two quarters of 2008, reaching a 

peak of $4.60 and then started to decline before escalating again in the beginning of 2009.  

Panel A in Figure 2 shows the kernel densities of (real) gasoline prices for the two survey years.  

It shows very little overlap in the distributions, with the 2009 distribution being both higher and 

more diffuse.  Panel B of Figure 2 plots average MSA gasoline prices in 2009 against average 

MSA gasoline prices in 2001.  The figure shows that there is a good deal of cross-sectional varia-

tion in changes in gasoline prices, as well as both cross-sectional and temporal variation in levels 

of gasoline prices. 

Along with this increase in gasoline prices, Table 1 shows that average VMT declined 

about 12% and average MPG improved by about 1%.  Figure 3 plots the distribution of annual 

VMT and MPG for both surveys.  The figure illustrates the slight leftward shift in the distribu-

tion of VMT over time and little detectable change in that for MPG. 

IV.  Results 

A.  Patterns in the Raw Data 

We begin our analysis of the matching effect by looking at patterns in the raw data.  In Figure 4 

Panel A, the expected value of miles per gallon (MPG) conditional on VMT is plotted for the 

years 2001 and 2009 using linear regression.  Overlayed on each plot is a similar counter-factual 

plot of what the relationship would look like, given the actual distribution of VMT and the actual 

composition of the fleet in each year, if there were perfectly assortative matching, so that the 

lowest-VMT individual had the lowest MPG (highest GPM) car, etc.  The figures show that the 

observed assignment is far from perfectly assortative.  A shift from the empirical relationship to 

perfect matching is one way to gauge the potential for the matching effect.  If household demand 

for VMT and vehicle fuel efficiency were perfectly matched in 2009, gasoline consumption 

would have been 15% lower, even with no change in the composition of the fleet and no change 

in individuals' utilization. 

Our hypothesis does not center on how strong the matching effect should be in any par-

ticular cross section.  Rather, our hypothesis is that when gas prices are higher, the matching ef-

fect should be stronger.  Since gas prices increased from an average of $1.62 per gallon in 2001 

to $3.14 in 2009 (in real terms), we would expect more assortative matching over time.  The raw 

data reveal this pattern.  Figure 4 Panel A shows that, between 2001 and 2009, as gasoline prices 
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increased, the relationship between these two variables went from slightly decreasing to slightly 

increasing.  Panel B displays the CDF of car fuel economy among individuals in the highest 

quartile of VMT and lowest quartile of VMT, for 2001 and 2009 respectively.  It shows that in 

2001, the distribution of MPG among the lowest VMT quartile actually first-order stochastically 

dominated the distribution among the highest quartile.  That is, the low utilization types had cars 

with better gas mileage than the high utilization types.  This is consistent with the downward 

slope in Panel A for 2001.  In 2009, when gas prices were higher, the situation reverses, with the 

distribution of MPG among the highest VMT quartile first-order stochastically dominating the 

distribution among the lowest quartile.  This is consistent with the upward slope in Panel A for 

2009.  The switch from 2001 to 2009 in these patterns is consistent with our hypothesis, with 

high utilization types being more likely to have cars with better gas mileage when gas prices are 

high. 

B.  OLS 

 As discussed in the previous section, our base model uses OLS to estimate the difference-

in-differences model.  Table 2 shows the results of this model under different variants of Equa-

tion (6).  The first column of the table only includes the main effects of VMT (in thousands of 

miles) and gasoline prices as well as their interaction.  The interaction between VMT and gaso-

line prices represents the matching effect, that is, the change in correlation between MPG and 

VMT when gasoline prices increase.  Standard errors clustered by state are reported in parenthe-

ses.  The second column adds MSA dummies to control for time-invariant unobservables be-

tween the survey years, such as the availability of mass transit, urban sprawl, and differences in 

average demands across cities.  The third column adds year dummies to control for national 

time-varying effects.  These could include the change in the fleet composition between years, 

other technological changes, changes in lifestyle and preferences, changes in commuting pat-

terns, and so forth.  Columns 4-6 parallel the first three specifications, but with the addition of 

household-level controls.  These controls include number of household members, number of 

adults in the households, number of workers in the household, the fraction of children (age <18) 

and women in the household, and household income quartiles.  Column 6 represents Equation (6) 

as it is written and is our preferred specification.  The seventh column replaces the city and year 

dummies with city-month dummies.  Finally, the eighth column includes interactions between 

the demographic variables and gasoline prices, capturing additional heterogeneity in the effect of 
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gasoline prices on VMT, beyond that already captured in the interaction with VMT.  For all these 

regressions, the matching effect is positive and statistically significant and quite robust across 

specifications. 

The results imply that as gasoline prices increase, households that drive more are driving 

a more fuel efficient vehicle relative to households that drive less.  Specifically, the results of Ta-

ble 2 indicate that for a $1 increase in gasoline prices, households now choose cars with about 

0.02 greater MPG per 1000 miles they drive.  Holding constant the mean fleet MPG at 2001 lev-

els, when gasoline prices increase from $1.62 to $3.14 the model predicts an individual driving 

4,000 miles (at the 25th percentile of VMT) switches on average from a car getting 25.2 MPG to 

one getting 25.0, while an individual driving 14,000 miles (at about the 75th percentile) on aver-

age switches from a car getting 25.2 MPG to one getting 25.4.  In other words, when gas prices 

increase, fuel-efficient cars are more likely to be allocated to high-VMT types, while inefficient 

cars are more likely to be allocated to low-VMT types, consistent with the matching effect. 

 As noted previously, one potential concern with this model is the endogeneity of gasoline 

prices.  Our preferred specification in column 6 includes year and MSA dummies.  Thus, any en-

dogeneity of gasoline prices would have to come from city-year shocks in the average demand 

for (or supply of) vehicle types that drive city-year variation in gasoline prices, after controlling 

for time-invariant city effects and city-invariant year effects.  This seems unlikely.  However, in 

column 7 we include city-month dummies.  This removes all variation in gasoline prices, so the 

mean residual in Equation (6) only relates to the individual's departure from the city-month aver-

age residual.  Any city-time variation in average MPG that could affect gasoline prices is ab-

sorbed in the fixed effect.  The results remain robust to this specification, indicating little con-

cern about endogeneity of gasoline prices.  Finally, we also consider instrumenting for gasoline 

prices in additional results presented below. 

C.  Instrumenting for VMT 

 A potentially more serious issue with the OLS model is that VMT may be endogenous to 

MPG.  VMT should affect the MPG of the chosen car, but by the same token the MPG of the 

chosen car also affects VMT, either decreasing it through the comfort effect or increasing it 

through the GPM effect. 
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 To overcome this simultaneity problem, we use a variety of instrumental variables strate-

gies.  Our first strategy is to use the interactions of demographics with gasoline prices as instru-

ments for VMT.  In particular, consider the following model: 

௧ܩܲܯ = ߙ + ௧௦݁ܿ݅ݎܲߚ + ܯܸߛ ܶ௧ + ௧௦݁ܿ݅ݎܲൣߠ × ܯܸ ܶ௧൧ +ܠ௧′ࢾ + ߟ + ௧ߣ + ௧, (7)ߝ

ܯܸ ܶ௧ = ܽଵ + ܿଵܲ݁ܿ݅ݎ௧௦ + ௧௦݁ܿ݅ݎܲൣ × ࢊ′௧൧ܠ + ࢈′௧ܠ + ଵߟ + ௧ଵߣ + ௧ଵ (8)ߤ

௧௦݁ܿ݅ݎܲ × ܯܸ ܶ௧ = 
ܽଶ + ܿଶܲ݁ܿ݅ݎ௧௦ + ௧௦݁ܿ݅ݎܲൣ × ࢈′௧ܠ+ࢊ௧൧ᇱܠ + ଶߟ + ௧ଶߣ +  ௧ଶߤ

(9)

where, ܠ௧ is a vector of household characteristics.  The interactions of these characteristics 

with gasoline prices serve as instruments.  These characteristics are the same as those used as 

controls in the OLS model.6   

 The identifying assumptions of this strategy deserve some discussion.  Note the level ef-

fects of ܠ௧ are not excluded from the outcome equation, Equation (7).  Thus, demographics are 

allowed to affect the choice of car.  The identifying assumption is only that gasoline prices do 

not affect car choice differently for different demographic types except through VMT.  De-

mographics do drive heterogeneity in VMT demand (at a given price), which in turn affects het-

erogeneous sensitivity of MPG to gasoline prices.  All this is consistent with our model of WTP 

expressed in Equation (4), where individual demographics can affect the taste for car types at the 

extensive margin f( ) as well as the WTP for travel conditional on car type ߨ(݅, ܿ,  but the ,(ܶܯܸ

first order effect of gasoline prices on car demand only operate through VMT (as seen in the last 

term of the expression).  Our first IV strategy effectively ignores the second order effects related 

to how heterogeneity in ∂VMT*/∂PriceGas (after conditioning on a level of VMT*) feeds back on 

the optimal choice of MPG.  This restriction is embedded in a number of other models of car de-

mand as well, including Feng, Fullerton, and Gan (2013), Gillingham (2012), and Goldberg 

                                                            
6 Thus, the interaction of household income quartile, number of household members, number of adults, 
number of workers, and fraction of children and women in the household with gasoline prices serve as 
instruments for VMT and [VMT × Pricegas].  These variables were selected based on the household de-
terminants of VMT established by the previous literature (Bento et al. 2009, Small and Van Dender 2007, 
Li et al. 2014). 
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(1998). 

 Table 3 shows the results for Equation (7) of the IV model.  Besides the endogenous 

VMT terms, the only controls in the first column of Table 3 are gasoline prices, predicted VMT 

and demographics.  MSA and year dummies are added successively to columns 2 and 3.  Finally, 

MSA-month dummies are included in column 4, which eliminates variation in gasoline prices in 

levels.  (The specifications follow the pattern in Table 2 but always include demographics.)  The 

matching effect is positive and statistically significant in all but the first column (with no con-

trols).  The effect in Table 3 ranges from 0.013 to 0.022.  Overall, the estimated matching effect 

is similar to the OLS estimates, especially when minimal controls are included, indicating little 

concern about the potential endogeneity of VMT and MPG after conditioning on these effects. 

 As noted previously, the above exclusion restrictions are motivated by our theoretical 

model, in which the heterogeneous effects of gasoline prices on MPG work only through hetero-

geneity in utilization.  Nevertheless, it might be desirable to include interactions of demographics 

with gasoline prices in the outcome equation in other ways, beyond the utilization channel, for 

additional flexibility.  For example, perhaps different demographic groups form different expec-

tations about future gasoline prices or have differences in how salient gasoline prices are to them.  

To accommodate this possibility, we consider two very different alternative strategies.  One is to 

add additional economic structure, with nonlinearities in the model that we can leverage for iden-

tification.  The other strategy is simply to loosen the causal interpretation of VMT in the model 

and look at heterogeneous effects of prices as they are correlated with VMT.   

 Consider first the strategy to impose additional economic structure, and to leverage non-

linearities to identify heterogeneous effects of gasoline prices on MPG choice.  If VMT is a non-

linear function of household characteristics, we can include ܲ݁ܿ݅ݎ௧௦ ×  in Equation (7).  We ܜ܋ܑܠ

use a functional form consistent with the structural model of Bento et al. (2009), in which VMT 

and MPG are simultaneously determined and in which such nonlinearities arise through the eco-

nomics of the model.  Bento et al. (2009) use the following indirect utility function: 

ܸᇱ = − ߣ1 exp ߣ−ۇۉ ቌ ܻ ܶൗ − ௧௫ݎ ቍۊی − ߚ1 exp ቆߙ + ߚ ௧௫ெ ቇ + ߬, (10)
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where ߙ = હᇱܢఈ ߚ ; = −expቀ෩ᇱܢఉ ቁ; ߣ = exp൫෨ૃ ᇱܢఒ ൯; ߬ = ૌᇱܢఛ -ெ is vehicle utilization price; ܻ is the household income; ܶ is a fixed number of choice occa ; is vehicle rental priceݎ ;

sions set equal to the number of adults in the household plus one; and ௧௫  is the Hicksian com-

posite commodity price.7  ܢఈ ఉܢ , ఛܢ ,  are vectors of automobile characteristics (age, make, class 

dummies) interacted with household demographics and ܢఒ are household characteristics.8  Using 

Roy's identity, VMT demand for household ݅ conditional on car ܿ is: 

ܯܸ ܶ = exp ߙۇۉ + ߚ ௧௫ெ + ߣ ቌ ܻ ܶൗ − ௧௫ݎ ቍ(11) ۊی

One can predict ܸܯܶ() by using the above model, but ܸܯܶ() still would be endoge-

nous to MPG through the vehicle characteristics ܢ, which are simultaneously chosen.  However, 

we instead can predict VMT of household ݅ at a fixed set of characteristics.  In particular, for 

each household i, we predict VMT for each car type (i.e. make-model-year) c.  We then take a 

weighted average of those VMTs, using the proportion of type c in the sample as weights.  Using 

this ܸܯܶ̅௧ as an instrument, we then estimate the following model: 

௧ܩܲܯ = ߙ + ௧௦݁ܿ݅ݎܲߚ + ࢾ௧ܠ + ௧௦݁ܿ݅ݎܲൣ × ࣋௧൧ܠ + +ܶ௧ܯܸߨ ௧௦݁ܿ݅ݎܲൣߠ × ܶ௧൧ܯܸ + ߟ + ௧ߣ +  ௧ߝ

(12)

ܯܸ ܶ௧ = ܽ + ܶ̅௧ܯܸܾ + ௧௦݁ܿ݅ݎܲܿ + ௧௦݁ܿ݅ݎܲൣ × ܶ̅௧൧݀ܯܸ + ߟ + +௧ߣ  ௧ߤ
(13)

In Equation (13), VMT is a function of gasoline prices and ܸܯܶ̅௧, the latter being computed 

                                                            
7 If the number of adults is less than the number of household vehicles, ܶ equals the number of household 
vehicles.  ௧௫  is computed using the ACCRA cost-of-living index for each year, with adjustments over 
time using the CPI. 
8 Bento et al. (2009) categorized households into twelve different strata based on employment status, av-
erage household age and the number and age distribution of children in the household.  Vehicles are cate-
gorized by vehicle class.  For more information, see Bento et al. (2009). 
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from the model estimated by Bento et al. (2009) averaged over the automobile fleet.  This varia-

ble is a highly non-linear function of demographics, including household members, household 

income quartile, number of children and women in the household, household age distribution, 

number of adults in the households, and vehicle class, vehicle age and driving cost per mile of 

the average vehicle.  In Equation (12), we then estimate the main equation of interest using this 

constructed variable as an instrument for VMT.  The matching effect is again given by ߠ:  the co-

efficient associated with the interaction term between gasoline prices and ܸܯܶ̅௧.  The model 

given by Equations (12) and (13) overcomes the issues associated with the previous two models.  

An advantage of this particular model over the model given by Equations (7)-(9) is that now we 

can include ܲ݁ܿ݅ݎ௧௦ ×  ௧ in the second-stage.  These will capture heterogeneous effects of aܠ

change in gasoline prices on MPG. 

 Table 4 shows the results of the second stage of the IV model given by Equation (12)-

(13).  In the first column, only demographic controls are included.  In the second and third col-

umns, city and time dummies are successively added.  In the fourth column, city-month dummies 

replace the city and year dummies.  As with the previous model using linear instruments, the 

matching effect is positive and significant in all but the first model (with no controls).  The point 

estimates are slightly bigger than the previous models, but of the same magnitude.  Overall then, 

these results are consistent with our previous estimates.  In the last column, the interactions of 

demographic controls with gasoline prices, one of the chief motivations for using these instru-

ments, are added.  Unfortunately, the standard errors are much higher using this approach.  Alt-

hough the estimated point effect is much larger than in the previous models, with the large stand-

ard errors for this model we cannot reject the earlier point estimates.  It may be too great a 

challenge to separately identify heterogeneity across utilization types in the effect of gasoline 

prices on MPG from other such heterogeneity. 

 As an alternative to this additional structure, we also consider a simple reduced form ap-

proach that measures the correlation between heterogeneity in the effect of gasoline prices on 

MPG and heterogeneity in VMT.  Consider the following two equations: 

௧ܩܲܯ = ߙ + ࢼ′௧ܠ + ௧௦݁ܿ݅ݎܲߜ  + ௧௦݁ܿ݅ݎܲൣ × ࣂ′௧൧ܠ + ଵߟ + ௧ଵߣ + ௧ (14)ߝ
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ܯܸ    ܶ௧  = ܽ + ࢈′௧ܠ + ௧௦݁ܿ݅ݎܲܿ + ௧௦݁ܿ݅ݎܲൣ × ࢊ′௧൧ܠ + ଶߟ + ௧ଶߣ + ௧. (15)ߤ

Because the effects of VMT and x cannot be identified separately, Equations (14) and (15) repre-

sent reduced form regressions in which ࢼ and ࣂ (and ࢈ and ࢊ) capture direct effects of de-

mographics and effects through VMT (which is a linear function of demographics).  MPG and 

VMT are simultaneously determined, so ܧሾߤߝሿ ≠ 0, but because VMT does not appear in the re-

duced form equation for MPG, the equations can be estimated with OLS.  Then, the estimated 

heterogeneous effects of price on MPG can be correlated with VMT, to see whether it is the 

high- or low-VMT types that are more responsive to gasoline prices.  In other words, we give up 

on identifying the heterogeneous effects of gasoline prices on MPG across utilization types per 

se, but still identify the heterogeneity across demographic groups, and we can see how those de-

mographic groups are correlated with utilization. 

To accomplish this one could take the following steps: 

1. Estimate Equation (14) by OLS and let ܶ = ܩܲܯ߲ ௦ൗ݁ܿ݅ݎ߲ܲ = መߜ  + - be the estiࣂ′ܠ

mated treatment effect of a change in gasoline prices on MPG for a household with char-

acteristics ܠ. 

2. Estimate Equation (15) by OLS and let ܸܯܶ = ොܽ + ࢈′ܠ + ଓܿ݁௦തതതതതതതതതതതݎܲ̂ܿ +ሾܲݎଓܿ݁௦തതതതതതതതതതത ×  ଓܿ݁௦തതതതതതതതതതത is the average gasoline price in the data.  These areݎܲ , whereࢊ′ሿܠ

predicted household VMT at the average gasoline price.  Average gasoline prices are 

used to isolate shifts in the demand curves of different utilization types, evaluated at the 

same price. 

3. To estimate the correlation between ߲ܩܲܯ ௦ൗ݁ܿ݅ݎ߲ܲ  and ܸܯܶ , run the following re-

gression: ܶ = ߨ + ܶܯଵܸߨ + (16) ,ߪ

where the coefficient of interest is ߨଵ. 

 As we show in Appendix B, this whole process is equivalent to estimating the following 

model: 
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௧ܩܲܯ = ߙ + ௧௦݁ܿ݅ݎܲߚ + ࢽ′௧ܠ + ௧௦݁ܿ݅ݎܲൣߠ × ܶ௧൧ܯܸ + ߟ + ௧ߣ + ௧, (17)ߝ

where ܸܯܶ  is the predicted VMT from Equation (15), but at average gasoline prices.  The 

matching effect in Equation (17) is given by ߠ.  However, this strategy merely provides a corre-

lation between the predicted VMT and the effect of ܲ݁ܿ݅ݎ௦. 

 The results for Equation (17) with corrected standard errors are shown in Table 5.  The 

first column omits any controls except demographics.  The second and third columns add MSA 

dummies and year dummies respectively.  The fourth column includes MSA-month dummies.  

The estimated effects continue to be similar to the OLS and IV models, with a statistically signif-

icant matching effect (again in all but the first model) of roughly 0.015 to 0.02.  Thus, even if we 

cannot say that the causal effect is through utilization per se, we can say that the types of people 

who do drive more are allocated more fuel-efficient cars when gasoline prices are higher, relative 

to those who drive less.  This reduced form correlation is enough to trigger the matching effect 

and to provide additional savings in fuel consumption when gasoline prices rise. 

 Figure 5 summarizes the results of these four models, using our preferred specification 

with year and city dummies and demographic controls.  It shows the changing in the matching 

relationship predicted from various changes in gasoline prices ($0.25, $0.55, $1, and $3.50).   

D.  Robustness Checks 

The above models all use miles per gallon as the dependent variable.  Table 6 replicates the main 

results with gallons per mile as the dependent variable instead (in thousands).  Thus, the coeffi-

cient estimates indicate the change in gasoline consumption (in thousands of gallons) per mile 

when there is a small change in the explanatory variables.  The matching effect is negative for all 

the models, implying that when gasoline prices increase, a household that drives more drives a 

vehicle that consumes less gasoline, relative to a household than drives less.  The bottom row of 

the table converts these estimates to an equivalent effect on MPG at the mean of the data.  The 

results are generally similar to the corresponding estimates from the main tables, indicating little 

sensitivity to this change of specification.  The matching effect corresponds to about 0.01 to 0.05 

MPG per dollar gasoline price per 1000 miles VMT. 

As noted previously, we considered a variety of alternative models as well.  In particular, 

we considered alternative measures of VMT as well as alternative ways of trimming the variable 
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(see notes 2 and 3 above).  We also considered nominal gasoline prices instead of inflation-ad-

justed prices.  For our IV models, we considered GMM estimation as well as two-stage least 

squares.  In all models, we computed standard White heteroskedastic-robust standard errors as 

well as clustered standard errors.  Our basic findings are unchanged with all these models, which 

are available upon request. 

E.  Within- and Between-Household Matching 

Thus far, we have estimated the matching effect for all vehicles in the household.  As noted pre-

viously, households with N vehicles are treated as if they have N exogenous bundles of trips 

which they then allocate to vehicles.  Continuing with this assumption, we can focus just on 

within-household matching effects, in which we look at how such bundles are allocated to vehi-

cles within the household under different gasoline prices.  Figure 6 shows, on the vertical axis, 

the difference in MPG of the car allocated to the highest VMT bundle in the household relative 

to the lowest, plotted against the respective differences in VMT.  Panel A does this for two-car 

households, Panel B for three-car households.  (Notice some differences in VMT are quite large, 

but the left-hand side of the figure holds most of the density.)  The figure shows that, in 2008-9, 

when gas prices averaged $3.14, the difference is positive, meaning that the higher-MPG car was 

allocated to more VMT.  Moreover, it is increasing in VMT especially on the left side which 

holds most of the data, indicating that as the split in miles between the two bundles of trips in-

creases, the difference in MPG grows.  In 2001-2, when gas prices averaged $1.62, the difference 

was negative for two-car families and decreasing.  For three-car households in 2001-2, the differ-

ence is close to zero with little trend.  In either case, the difference is higher in 2008-9, when gas 

prices average $3.14, than 2001-2.  This suggests households match their high-MPG car to more 

VMT when gas prices are higher. 

To further explore these within-household effects, we repeat the OLS regression in Ta-

ble 2, column 2 on multi-car households, but also include household fixed effects (which super-

sede MSA dummies and household demographics).  We find a matching effect of 0.0350, statis-

tically significant at the 1% level.  This effect is somewhat bigger than the effect using all the 

data, which is not surprising given that it would be easier to re-match vehicles to trips within a 

household than between households.  We view these results as suggestive, but caution that they 
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depend on our simplifying assumption that we can take baskets of trips as exogenously deter-

mined prior to being matched to vehicles. 

We similarly can focus on between-household effects by reducing the data set to one ob-

servation per household.  This between-household analysis is interesting in itself, because it fo-

cuses on the transactions that take place as households sell old cars and buy new ones and the re-

allocation that emerges.  It has the further virtue of eliminating the necessity of our assumption 

about the exogenous division of trips within the household.  We conduct such a between-house-

hold analysis three ways.  Our preferred approach is to take the average MPG of all cars in the 

household, weighted by each car's VMT, to represent a household-level average MPG.  Like-

wise, we take the total VMT of the household divided by the number of adult, to obtain the 

household's per-capita VMT.  This approach removes within-household variation while giving 

some weight to all its decisions and makes no assumptions about how total VMT is allocated to 

cars.  The results are displayed in Panel A of Table 7 (which for brevity shows only the coeffi-

cients from the matching effect).  The columns correspond to our preferred specification (with 

year and MSA dummies and demographic characteristics) for the OLS, linear IV, IV with the 

non-linear instrument, and non-causal models respectively.  The results remain similar to the pre-

vious findings, but slightly smaller, which is consistent with the idea that the transaction costs of 

re-matching to automobiles is more difficult between households than within them. 

As an alternative to taking the household-level average, in Panel B we take only the car 

with the highest VMT in the household ("top car").  The results are similar to Panel A.  This sec-

ond approach has the disadvantage of taking the VMT assigned by multi-car households to the 

top car as exogenous.  Finally, in Panel C, we take only one-car households.9  While this ap-

proach has the advantage of sidestepping the question of how VMT is allocated across cars, it 

has the disadvantage of created a more selected and less representative sample (as well as drop-

ping over half the data).  For example, the average one-car household has 1.8 people and drives 

8,964 miles per year, whereas the average household in the data has 2.4 people and drives its top 

car 13,027 miles per year.  Nevertheless, the estimates using this approach are similar to the 

                                                            
9 We also include households in which the second car is effectively unused, with less than one thousand 
miles. 
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other two approaches, except for the non-linear instruments, which were ineffective in this sub-

sample (with the instruments failing to pass most tests of relevance). 

F.  Gasoline Taxes 

Our analysis to this point has used variation in the overall price of gasoline.  However, energy 

policies typically influence gasoline prices through gasoline taxes.  Moreover, households might 

respond differently to gasoline taxes than other components of the price.  For example, they 

might view them as more permanent than variation in oil prices or refinery costs or more salient.  

Speaking to this point, Li, Linn, and Muehlegger (2014) recently found that gasoline price elas-

ticities are larger for changes in the gasoline tax than from other sources of variation in prices.  

They also found that the MPG of the average car responded more to taxes.  This raises the possi-

bility that the matching effect might also be stronger from changes in gasoline taxes than other 

price changes. 

To follow up on this issue, we gathered data on gasoline prices by state from the Ameri-

can Petroleum Institute's (API's) State Motor Fuels Tax Reports.  These data are at the monthly 

level for 2008-9 (from which we constructed quarterly averages to match our quarterly gasoline 

price data) and the annual level for 2001-2.  Weighting by our data, the average gasoline tax in-

creased 6 cents between survey waves.  The variability ranged from increases of more than 10 

cents in Texas, Oregon, and Maine to small decreases in Virginia and California. 

Following Li, Linn, and Muehlegger (2014), we then reran our OLS models using both 

variation in gasoline taxes and net-of-tax price variation.  This approach allows us to separately 

identify the two effects.  As an alternative, we continue to employ our basic model with gasoline 

prices in the equation of interest, but instrument for gasoline prices with gasoline taxes.  This ap-

proach obviously limits the source of variation in the data to the taxes.10 

Panel A of Table 8 shows the results of the first approach, in which we separately esti-

mate the effects of gasoline taxes and net-of-tax gasoline prices, showing only the respective 

matching effects.  The estimates suggest the effect of the gasoline tax is three times the effect of 

                                                            
10 We also considered instrumenting for VMT using the above strategies, however, the presence of multi-
ple nonlinear endogenous variables (for the first strategy, VMT interacted with taxes and VMT interacted 
with net-of-tax prices; for the second, VMT interacted with gasoline prices with both treated as endoge-
nous) made it impossible to identify all the structural effects without additional instruments. 
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prices generally, with a statistically significant matching effect of about 0.06 (versus about 0.02 

in our previous models).  Net-of-tax prices have a slightly smaller effect than the over-all price 

effect, of about 0.017.  (Note because they are a much larger share of overall prices they need not 

move as much.)  Panel B shows the results in which we instrument for gasoline prices using gas-

oline taxes.  The point estimates using this approach range from 0.03 to 0.04, still higher than our 

earlier estimates of about 0.02 using raw gasoline prices.  These findings are consistent with the 

notion that gas taxes are more salient than other shocks and with previous results from Li, Linn, 

and Muehlegger (2014).  They also suggest that gasoline taxes can have a more potent effect 

than our earlier estimates using only gas prices would suggest. 

V.  Implications 

In the introduction, we noted that an increase in gasoline prices should have three effects: a utili-

zation effect on VMT, a compositional effect on the average fuel economy of the fleet, and a 

matching effect.  Our model does not estimate the utilization effect, but does capture the com-

bined composition and matching effects.  It also provides a way to decompose the two effects.  

Using our model, the change in household fuel economy due to a change in gasoline prices is 

given by ߲ܩܲܯ ߲ܲ௦⁄ = መߚ + ܯܸߠ ܶ, where ߚመ  and ߠ are the estimated parameters on Price 

and Price*VMT respectively.  The proportion of the change in gasoline consumption through the 

matching channel can be measured by Equation (18): 

Proportion of predicted total change

from matching effect 
= 1 − ۈۉ

∑ۇ ቆ ܯܸ ܶܩܲܯ + መߚ + ߠ ⋅ തതതതതതܶܯܸ − ܯܸ ܶܩܲܯቇ∑ ቆ ܯܸ ܶܩܲܯ + መߚ + ߠ ⋅ ܯܸ ܶ − ܯܸ ܶܩܲܯቇ ۋی
,ۊ (18)

where ெ்ೕெீೕ measures the gasoline consumption of vehicle ݆ and ܸܶܯതതതതതത is the average VMT. 

Using our preferred specification with MSA and year dummies and demographic con-

trols, we predict that a $1 increase in gasoline taxes would result in a savings of 3.5%, or 4.4 bil-

lion gallons a year (column 4, Table 8, Panel A).  This represents a short-run elasticity of 0.03 

through the composition and matching effects combined.  This elasticity is somewhat smaller 

than the short-run estimate of 0.06 in Li, Linn, and Muehlegger (2014) and the medium-run (two 

year) estimate of 0.09 in Gillingham (2012).  Using the above decomposition, we estimate that 
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roughly half (49%) of this affect is through the matching channel.  Thus, we predict that a $1 in-

crease in gasoline taxes would result in a savings of 2.7% of US gasoline consumption in the 

short run from the matching affect alone, or 2.1 billion gallons annually.11  These gasoline sav-

ings correspond to 92 million metric tonnes of CO2 annually.  Using the US social cost of carbon 

of $36/tonne and Parry and Small's (2005) estimate of $0.16/gallon of damages from conven-

tional pollution, these gasoline savings are equivalent to $3.7 billion in benefits from avoided 

pollution per year, just through the matching channel—i.e., with no change in the automotive 

fleet and no change in total miles driven.  Moreover, these short-run effects are likely to be lower 

bounds on the long-run effects.  Using the ratio of Gillingham's (2012) elasticity of 0.09 to our 

estimate of 0.03 as a rough gauge, and assuming the proportion of the matching-plus-composi-

tion effects due just to matching stays constant at about one-half, these savings would be scaled 

up by a factor of 3x over time. 

VI.  Conclusion 

Combustion of gasoline has detrimental environmental and health impacts.  To reduce these ef-

fects, one policy tool is to increase gasoline prices.  Two effects of gasoline prices have been 

identified in the literature, the utilization effect and the compositional effect.  The former implies 

that an increase in gasoline prices results in a decrease in the demand for VMT.  The latter sug-

gests that it causes an evolution of fleet towards fuel efficiency.  As we have shown in this paper, 

there is a potential third effect of gasoline prices that has been overlooked in the previous stud-

ies.  Due to heterogeneity in demand for VMT, increase in gasoline prices should particularly af-

fect vehicle choices of households that drive more.  In the presence of higher gasoline prices, the 

costs borne by high-VMT households is greater and hence they become more to outbid low-

VMT households for a fuel efficient vehicle.  In equilibrium, there will be matching of fuel effi-

ciency among high-VMT households and fuel inefficiency among low-VMT households.  This is 

the first study that analyzes such assortative behavior.   

 To understand the potential importance of the matching effect, if fuel economy was as-

signed perfectly to households based on their VMT demand, US gasoline consumption would be 

                                                            
11 As the models are linear in prices, the effects of smaller changes in taxes can be computed as any pro-
portion of $1.  Similarly, if one prefers to use the estimates from prices in Tables 2-4 rather than taxes, 
one could proportionately adjust these effects by about one-fourth to one-half. 
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15% lower, without changing the fleet or VMT.  Our study exploits variation in gasoline prices 

in the last decade to estimate how gasoline prices affect vehicle choice.  Using our model based 

on taxes and our preferred specification, if gasoline taxes were $1 higher, gasoline consumption 

would have been about 2.7% lower due to the matching effect alone.  These additional benefits 

of higher prices further favor price-based policies.    
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Figure 1: The Matching Effect  

Notes: In these diagrams partial-equilibrium models illustrate the matching effect. There are two types of households: high-VMT and low-VMT 
designated by H and L. There are two types of vehicles: high-GPM and low-GPM. The demand curves D^H and D^L show the relative willing-
ness to pay (WTP) of the two household types for different fuel economies. In both the panels above, the baseline case is given by a scenario 
where D_0^H=D_0^L and the baseline market demand curve is given by D_0 for a relative price P_0. After an increase in gasoline prices, the 
relative WTP for inefficient vehicles decreases. The new market demand curve is shown by D_1 for a relative price P_1. However, due to the 
heterogeneity in demand among agents for VMT, the decrease (increase) in the relative WTP for the high-VMT types for inefficient (efficient) 
vehicles is greater than for the low-VMT types.  
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Figure 2: MSA 2009 Gasoline Prices v.  2001 Gasoline Prices (in 2009 Dollars) 
Panel A:  Gasoline Prices Kernel Densities 

 

Panel B:  2009 Prices against 2001 Prices 

 

 

Notes: The graph in Panel A shows the kernel densities of gasoline prices for the 2001 (solid line) and the 
2009 (dashed line) ACCRA gasoline prices.  Panel B plots 2009 average MSA gasoline prices against 
2001 average MSA gasoline prices.  
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Figure 3: Kernel densities of VMT and MPG 

 

Notes: These graphs show the kernel densities of reported vehicle miles traveled (VMT) in thousands and 
miles per gallon (MPG) per vehicle for the 2001 and the 2009 National Household Travel Survey 
(NHTS).   
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Figure 4: Is there a matching effect? 

Panel A.  Matching in Raw Data vs. Perfect Matching, 2001 and 2009 

Panel B.  CDF of MPG, by Top and Bottom VMT Quartile, 2001 and 2009 

Notes: In Panel A, actual values in both graphs represent a linear regression of fuel economy on vehicle 
miles traveled (VMT).  For perfect matching, vehicles were re-assigned to households based on their re-
spective VMT, so that their ranks are the same.  Panel B shows the distribution of fuel economy among 
those in the highest and lowest quartile of VMT.  In 2001 low-VMT households have more fuel-efficient 
cars than high-VMT households (in the sense of first-order stochastic dominance of the distribution); in 
2009, the reverse is true. 
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Figure 5.  MPG-VMT relationship for different tax regimes (Year = 2009) 
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Figure 6:  Within-Household Matching 

A.  Two-Car Households B.  Three-Car Households 

  

Note:  The figures show the difference in MPG of the car allocated to the highest VMT bundle in the 
household relative to the lowest, plotted against the respective differences in VMT.   
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Table 1: Summary Statistics: 2001 & 2009 National Household Travel Survey and 
Matched Gasoline Prices 
Variable Full sample 2001 NHTS 2009 NHTS Difference

Gasoline price (2009 dollars) 
2.902 1.618 3.137 1.520***

(0.906) (0.219) (0.651) (0.003) 

Vehicle miles traveled (VMT) in '000  
10.160 11.244 9.974 -1.271***
(8.259) (8.881) (8.132) (0.045) 

Combined unadjusted fuel economy 
(MPG) 

25.545 25.224 25.600 0.377***
(6.193) (5.296) (6.333) (0.028) 

Household size 
2.648 2.847 2.614 -0.233***

(1.280) (1.370) (1.260) (0.007) 

Number of workers in household 
1.218 1.579 1.156 -0.424***

(0.970) (1.011) (0.949) (0.005) 

Number of adults 
2.090 2.112 2.087 -0.026***

(0.713) (0.743) (0.708) (0.004) 

Fraction of children 
0.133 0.175 0.126 -0.049***

(0.212) (0.231) (0.208) (0.001) 

Fraction of women 
0.520 0.510 0.522 0.013***

(0.229) (0.233) (0.228) (0.001) 

Household income <$25,000 0.136 
(0.343) 

0.162 
(0.368) 

0.132 
(0.339) 

-0.030***
(0.002) 

Household income <$50,000 and ≥ 
$25,000 

0.262 
(0.440) 

0.323 
(0.468) 

0.251 
(0.434) 

-0.072***
(0.002) 

Household income <$75,000 and ≥ 
$50,000 

0.200 
(0.400) 

0.217 
(0.412) 

0.197 
(0.397) 

-0.020***
(0.002) 

Household income ≥ $75,000 0.402 
(0.490) 

0.298 
(0.458) 

0.420 
(0.494) 

0.122*** 
(0.002) 

White, only 0.879 
(0.326) 

0.849 
(0.358) 

0.885 
(0.320) 

0.035*** 
(0.002) 

African-American, only 0.049 
(0.216) 

0.050 
(0.218) 

0.049 
(0.216) 

-0.001 
(0.001) 

Asian, only 0.020 
(0.141) 

0.019 
(0.135) 

0.020 
(0.142) 

0.002** 
(0.001) 

Number of households 161,349 23,739 137,610 
Notes: The main entries in columns 1, 2 and 3 report the mean level of the variables with standard devia-
tions in parentheses.  Column 4 reports the differences and standard errors.   
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 2.  Difference-in-Differences Ordinary Least Squares Results 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Pricegas 0.04101 -0.10211*** -0.16228*** 0.04038 -0.10129*** -0.17382*** N/A -0.19544**
(0.0648) (0.0242) (0.0231) (0.0622) (0.0220) (0.0239) (0.0955) 

VMT  -0.03866*** -0.03780*** -0.03548*** -0.03173*** -0.02843*** -0.02564*** -0.02551*** -0.02609***
(0.0074) (0.0069) (0.0074) (0.0074) (0.0073) (0.0078) (0.0090) (0.0075) 

Matching effect  
(VMT x Pricegas) 

0.01954*** 0.01972*** 0.01907*** 0.01991*** 0.02053*** 0.01972*** 0.01998*** 0.01991***
(0.0032) (0.0027) (0.0028) (0.0032) (0.0027) (0.0028) (0.0029) (0.0029) 

MSA dummies  X X  X X  X 
Year dummies   X   X  X 
MSA-Month dummies       X  
Demographic controls    X X X X X 
Pricegas × Demographic 
controls        X 

N =  307,977 307,977 307,977 287,463 287,463 287,463 287,463 287,463 
R2 0.002 0.024 0.024 0.014 0.038 0.038 0.062 0.038 

Notes: The estimates are associated with the OLS model represented by Equation (6).  The first column shows the results of the basic model with 
no controls.  MSA dummies are added in column 2 and year dummies are added in column 3.  Columns 4-6 repeat the first three columns, but add 
demographic controls.  Column 6 represents the model in Equation (6) and is our preferred specification.  Column 7 replaces the MSA and year 
dummies with MSA-month dummies, which also removes variation in gas prices.  Column 8 includes interactions between demographic controls 
and gasoline prices.  Demographic controls are number of household members, number of adults in the households, number of workers in the 
household, the fraction of children (age <18) and women in the household and household income quartile.  Standard errors clustered at the state 
level are in parentheses. 
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 3.  Difference-in-Differences with Linear Instruments — 2nd Stage Results 

 (1) (2) (3) (4) 

Pricegas 0.06378 -0.14567* -0.21433** N/A 
(0.1066) (0.0786) (0.0908)  

VMT  -0.21694 -0.27532* -0.43277*** -0.42052*** 
(0.1580) (0.1615) (0.1345) (0.1359) 

Matching effect  
(VMT x Pricegas) 

0.01257 0.02030*** 0.02182*** 0.01625** 
(0.0090) (0.0074) (0.0082) (0.0076) 

MSA dummies  X X  
Year dummies   X  
MSA-Month dummies    X 
Demographic controls X X X X 
Pricegas × Demographic 
controls Instr. Instr. Instr. Instr. 

N =  287,463 287,463 287,463 286,872 

F-statistics of excluded instruments  
VMT 11.9 14.1 6.5 9.4 
VMT × Pricegas 427.0 252.0 225.7 237.2 

Notes: The estimates are associated with the coefficients estimates from the IV model represented by 
Equations (7) – (9), using demographics interacted with gas prices as excluded instruments.  Column 1 
omits MSA and year dummies, which are successively added in columns 2 and 3.  Column 4 replaces the 
MSA and year dummies with MSA-month dummies, which also removes variation in gas prices.  Demo-
graphic controls are number of household members, number of adults in the households, number of work-
ers in the household, the fraction of children (age <18) and women in the household and household in-
come quartile.  Standard errors clustered at the state level are reported in parentheses.   
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 4.  Difference-in-Differences with Non-Linear Instruments — 2nd Stage Results 

 (1) (2) (3) (4) (5) 

Pricegas 0.41909** -0.20999 -0.32972** N/A -0.71365 
 ܶ̅௧ 0.30908*** 0.03266 0.00542 -0.03144 -0.11501ܯܸ (0.5910)  (0.1451) (0.1352) (0.1845)
(0.1171) (0.0816) (0.0717) (0.0730) (0.1905) 

Matching effect  
(VMT x Pricegas) 

-0.01013 0.03070** 0.03383** 0.03835** 0.07954 
(0.0138) (0.0130) (0.0135) (0.0152) (0.0881) 

MSA dummies  X X  X 
Year dummies   X  X 
MSA-Month dummies    X  
Demographic controls X X X X X 
Pricegas × Demo-
graphic controls     X 

N =  251,960 251,960 251,960 251,960 251,960 

F-statistics of excluded instruments ܸܯܶ̅௧ 17.1 16.3 18.7 15.2 18.1 ܸܯܶ̅௧  × Pricegas 109.8 90.2 83.5 101.3 17.7 

Notes: The estimates reported are coefficients estimates for the second stage of the model represented by 
Equation (13).  ܸܯܶ̅௧ as predicted from the structural model of Bento et al. (2009) serves as the instru-
ment for VMT.  Column 1 omits MSA and year dummies, which are successively added in columns 2 and 
3.  Column 4 replaces the MSA and year dummies with MSA-month dummies, which also removes varia-
tion in gas prices.  Column 5 includes demographics interacted with price in the structural equation.  De-
mographic controls are number of household members, number of adults in the households, number of 
workers in the household, the fraction of children (age <18) and women in the household and household 
income quartile.  Standard errors clustered at the state level are reported in parentheses.   
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 5.  Non-causal estimation of the matching effect 

 (1) (2) (3) (4) 

Pricegas 
0.12163 -0.06784 -0.11667 N/A 
(0.1344) (0.0730) (0.0732)  

VMT Not identified 
Matching effect  
܂ۻ܄)  x Pricegas) 

0.01172 0.01705** 0.01398* 0.01517** 
(0.0095) (0.0069) (0.0073) (0.0075) 

MSA FE  X X  

Year FE   X  

MSA-Month FE    X 

Demographic controls X X X X 

N =  287,463 287,463 287,463 287,463 

R2 0.013 0.035 0.036 0.060 

Notes: The estimates are associated with coefficients estimates of the model represented by Equa-
tion (17).  Predicted VMT is a function of average gasoline prices, demographic characteristics, interac-
tions between these characteristics and average gasoline prices, year dummies and MSA dummies.  Cor-
rected standard errors are reported in parentheses.  
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 6.  Difference-in-Differences using Gallons-per-Mile 

 (1) (2) (3) (4) 

 OLS IV-lin IV-nonlin Non-causal 

Pricegas 
0.18681*** 0.16861 0.45591* 0.04648 

(0.0368) (0.1561) (0.2464) (0.1220) 

VMT 
0.03618*** 0.60231*** -0.01816  

(0.0104) (0.1927) (0.1037)  

Matching effect  
(VMT x Pricegas) 

-0.02445*** -0.01995 -0.04937** -0.01051 
(0.0040) (0.0140) (0.0228) (0.0118) 

MSA FE X X X X 

Year FE X X X X 

Demographic Controls X X X X 

N =  287,463 287,463 251,960 287,463 

Instruments: -- 
Pricegas ×  

Demographic 
controls 

ܶఫ̅ܯܸ  ;ܶఫ̅ܯܸ × 
Pricegas 

-- 

Compare to: Table 2 
Col. 6 

Table 3 
Col. 3 

Table 4 
Col. 3 

Table 5 
Col. 3 

Equivalent value of matching effect 
for MPG at mean 0.0144*** 0.0118 0.0292** 0.0062 

Notes:  The dependent variable in these regressions is 1000 × GPM.  The columns correspond to selected 
models from Tables 2, 3, 4, and 5 respectively.  In Column 3, ܸܯܶ̅௧ is estimated using Bento et al. 
(2009) structural model.  Standard errors clustered at the state level are reported in parentheses.  The unit 
of observation is the vehicle. 
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 7.  Between-Household Analysis 

 (1) (2) (3) (4) 

 OLS IV-lin IV-nonlin Non-causal 

A.  Avg. MPG     

Matching effect  
(N = 149,376) 

0.00887*** 0.01583*** 0.02722*** 0.01840*** 
(0.0022) (0.0054) (0.0082) (0.0047) 

B.  Top Car  

Matching effect  
(N = 149,376) 

0.01254*** 0.02304*** 0.03318** 0.01960*** 
(0.0025) (0.0047) (0.0147) (0.0050) 

C.  One-Car Households     

Matching effect  
(N = 70,197) 

0.01141*** 0.01453** 0.00133 0.01583** 
(0.0032) (0.0065) (0.0197) (0.0062) 

MSA FE X X X X 
Year FE X X X X 
Demographic Controls X X X X 

Notes:  Each household is one observation.  Panel A uses the households average MPG.  Panel B uses the 
MPG of the highest-VMT car.  Panel C uses only one-car households.  All specifications control for year 
dummies and MSA dummies and household characteristics. 
***Significant at the 1% level.  **Significant at the 5% level.  *Significant at the 10% level. 
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Table 8.  Matching Effect of Gasoline Taxes 

 (1) (2) (3) (4) (5) 

Panel A.  OLS.  

Matching effect  
(VMT x Tax) 

0.06760*** 0.06808*** 0.06686* 0.06664* 0.06696* 
(0.0118) (0.0121) (0.0367) (0.0368) (0.0373) 

Matching effect  
(VMT x Net-of-Tax P) 

0.01700*** 0.01740*** 0.01753*** 0.01667*** 0.01688*** 
(0.0018) (0.0018) (0.0043) (0.0044) (0.0046) 

Panel B.  IV using gas 
tax as instrument  

Matching effect  
(VMT x Pricegas) 

0.03037** 0.02986** 0.03684*** 0.03643*** 0.03723*** 
(0.0145) (0.0141) (0.0123) (0.0124) (0.0131) 

MSA dummies   X X  
Year dummies    X  
MSA-Month dummies     X 
Demographic controls  X X X X 

N =  304,496 284,159 284,159 284,159 284,159 

This table shows the matching effect from gasoline taxes.  Panel A separately estimates the matching ef-
fect from taxes from the net-of-tax portion of gas prices.  Panel B estimates the effect of gasoline prices 
when gasoline taxes are used as an instrument. 
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Appendix A.  Derivation of Equation (5). 

We begin by taking the derivative of the expression for WTP in Equation (4) with respect to the 
car type c.  Making use of Leibniz's rule when differentiating ܸܶܯ∗ in the limits of integration, 
we obtain: 

߲ܹܶܲ(ܿ, ݅, ߲ܿ(ீ = 
డ(,)డ +  డగ(,,ெ்)డ +ெ்∗൫,,ಸ൯ܶܯܸ݀ డெ்∗൫,,ಸ൯డ ሾߨ(ܿ, ݅, (∗ܶܯܸ − ,ܿ)∗ܶܯܸ−ሿீ(ܿ)ܯܲܩ ݅, (ீ డீெడ .ீ   (A1)

This expression shows how the WTP for a car changes with the car type, as a function of the in-
dividual type and gasoline prices.  Next, we take the cross partial derivative with respect to the 
individuals' utilization type.   

߲ଶܹܶܲ(ܿ, ݅, ߲߲݅ܿ(ீ = 

߲ଶ݂(ܿ, ݅)߲߲ܿ݅ + න ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ ெ்∗൫,,ಸ൯ܶܯܸ݀
+ ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ ߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ +൨ீ ,ܿ)∗ܶܯܸ߲ ݅, ߲ܿ(ீ ,ܿ)ߨ߲ ݅, +߲݅(∗ܶܯܸ ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ ሾߨ(ܿ, ݅, (∗ܶܯܸ − .ሿீ(ܿ)ܯܲܩ

 (A2)

Now taking the third derivative with respect to ீ: 

߲ଷܹܶܲ(ܿ, ݅, ீ߲߲߲݅ܿ(ீ = 

,ܿ)∗ܶܯܸ߲ ݅, ீ߲(ீ ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ − ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(ܿ, ݅, ீ߲߲݅(ீ ߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ
+ ߲ଶܸܶܯ∗(ܿ, ݅, ீ߲߲ܿ(ீ ,ܿ)ߨ߲ ݅, ߲݅(∗ܶܯܸ − ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ +ܯܲܩ ߲ଷܸܶܯ∗(ܿ, ݅, ீ߲߲߲݅ܿ(ீ ሾߨ(ܿ, ݅, (∗ܶܯܸ − .ሿீ(ܿ)ܯܲܩ

 (A3)

But by the first-order condition for optimal VMT conditional on c, ߨ(ܿ, ݅, (∗ܶܯܸ =  ;ீ(ܿ)ܯܲܩ
that is, the marginal WTP for VMT equals the marginal cost.  Thus, the last term in (A3) drops 
out and we are left, after re-arranging some terms, with: 
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߲ଷܹܶܲ(ܿ, ݅, ீ߲߲߲݅ܿ(ீ = 

− ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(ܿ, ݅, ீ߲߲ܿ(ீ ,ܿ)ߨ߲ ݅, ,ܿ)∗ܶܯܸ߲߲݅(∗ܶܯܸ ݅, ீ߲(ீ ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ − ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ +ܯܲܩ ߲ଶܸܶܯ∗(ܿ, ݅, ீ߲߲݅(ீ ߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ .
 (A4)
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Appendix B.  Proof of the non-causal model 

Consider the following two simultaneous equations: 

ଵݕ = ߙ + ଵݔߚ + ଶݔߜ + ଵݔሾߠ ⋅ ଶሿݔ +  (A.1) ߝ

ଶݕ = ܽ + ଵݔܾ + ଶݔܿ + ݀ሾݔଵ ⋅ ଶሿݔ +  (A.2) ߤ

where E(ݔଵߝ) = E(ݔଶߝ) = E(ݔଵߤ) = E(ݔଶߤ) = 0.  Let ܆ = ሾ1    ݔଵሿ, ܆ = ሾݔଶ    ݔଵ ⋅ ܆ ,ଶሿݔ =ሾ܆    ܆ሿ, ۯ = ሾߚ    ߙሿᇱ and ۯ = ሾߠ    ߜሿᇱ.  Given the orthogonality conditions, (A.1) and (A.2) 
can be estimated by OLS.  By Frisch-Waugh-Lovell (FWL) theorem: 

ۯ = ᇱ܆) ᇱ܆)ିଵ܆ۻ  ଵ (A.3)ݕۻ

where ܑۻ = ۷ − ܑ܆۾  = ۷ −  is the projection matrix onto the space spanned by ܑ܆۾  .ᇱܑ܆ି(ܑ܆ᇱܑ܆)ܑ܆
the columns of ܑ܆ and ܆ᇱܑܑۻ = .  డ(௬భ|܆)డ௫మ = መߜ + ଵݔߠ = ۯ܆ .  Call this ܶ; this is the estimated 
treatment effect of ݔଶ.  To estimate how ߲ݔଶ is correlated with ݕଶෞ, estimate the following regres-
sion: 

ܶ = ߨ + ଶෞݕଵߨ + ߱ (A.4) 

where ݕଶෞ = ොܽ + ܾݔଵ + ଶതതതݔ̂ܿ + መ݀ሾݔଵ ⋅ ଶതതതݔ ଶതതതሿ, the structural parameters are estimated by OLS andݔ = ∑ ௫మேேୀଵ .  Let ܆ = ሾ1    ݕଶෞሿ and મ = ሾߨ    ߨଵሿᇱ.   
મ = ᇱ܆) ᇱ܆)ିଵ܆ ܶ  

મ = ᇱ܆) ᇱ܆)ିଵ܆ ۯ܆   

મ = ᇱ܆) ᇱ܆)ିଵ܆ ᇱ܆)܆ ᇱ܆)ିଵ܆ۻ  ଵ (A.5)ݕۻ

Now consider the following model: 

ଵݕ = ߙ + ଵݔߚ + ଶݔߨ + ଶෞݕଵሾߨ ⋅ ଶሿݔ +  (A.6) ߦ

where ܆ = ሾݔଶ    ݕଶෞ ⋅  :ଶሿ.  By Frisch-Waugh-Lovell (FWL) theoremݔ
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۰ = ᇱ܆) ᇱ܆)ିଵ܆ۻ  ଵ (A.7)ݕۻ

Note that the projection of ݕଵ onto the space defined by ܆ will be the same for (A.1) and (A.6).  
This implies that ۻ =   in (A.1) can be obtained when the residuals܆ : the partial effects ofۻ
from a regression of ݕଵ on ܆ are regressed on the set of residuals obtained when each column of  ܆ is regressed on ܆.  The partial effects of ܆ in (A.6) can be obtained when the residuals from 
a regression ݕଵ on ܆ are regressed on the set of residuals obtained when each column of  ܆ is 
regressed on ܆.  Hence, in both cases the residual-maker is the same and ۻ =  .  Given thisۻ
results, the fact that ܆ᇱܑܑۻ =  and using (A.5) and (A.7) we have, 

ᇱ܆) ᇱ܆)ିଵ܆ ᇱ܆)܆ ᇱ܆)ିଵ܆ۻ ଵݕۻۻ = ᇱ܆) ᇱ܆)ିଵ܆ۻ  ଵ (A.8)ݕۻۻ

ᇱ܆) ᇱ܆)ିଵ܆ ᇱ܆)܆ ᇱ܆)ିଵ܆ۻ ଵݕۻۻ = ᇱ܆) ᇱ܆)ିଵ܆ۻ   ଵݕۻۻ

ᇱ܆) ᇱ܆)ିଵ܆ ᇱ܆)܆ ᇱ܆)ିଵ܆ۻ ଵݕۻ = ᇱ܆) ᇱ܆)ିଵ܆ۻ   ଵݕۻ

મ = ۰ ∎  

 




